Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using FPGAs

Kris Gaj

George Mason University

Thank You!

Great thanks to

Dustin MoodyDaniel Apon

for the kind invitation to give this talk!

CERG: Cryptographic Engineering Research Group

3 faculty members, 8 Ph.D. students, 5 MS students, 7 affiliated scholars

Cryptographic Contests 2007-Present

CERG Group Members supporting PQC

Recent Graduate

PhD Students

Farnoud

SW/HW Codesign RTL Accelerators Experimental Setup for Timing Measurements

CAD Tools

Viet

RTL Design of HW Accelerators for Lattice-based & Code-based PQC

Kamyar

RTL Design of HW Accelerators for Lattice-based PQC Side-Channel Analysis

RISC-V Accelerators

Duc

HLS Design of HW Accelerators for Lattice-based PQC

NEON-based SW implementations

CERG Group Members supporting PQC

PhD Students

Affiliated Scholar

Faculty

Bakry

Experimental Setup for Side-Channel Analysis Lightweight Architectures

Javad

RTL Design of HW Accelerators for Symmetric-based PQC **Michał** Military University of Technology in Warsaw, Poland

RTL Design of HW Accelerators for Lattice-based PQC & Lattice Sieving

Mike

Sampling in Hardware

Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using FPGAs

Evaluation Criteria

Talk Based on GMU Round 2 Report

Cryptology ePrint Archive: Report 2020/795

"Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using Hardware and Software/Hardware Co-design Approaches,"

by Viet Ba Dang, Farnoud Farahmand, Michał Andrzejczak, Kamyar Mohajerani, Duc Tri Nguyen, and Kris Gaj

- 86 pages
- Extensive literature review (16 pages, 11 tables)
- New unpublished results from GMU
- Focus on methodology and rankings
- No details of hardware architectures (to be included in the follow-up conference/journal papers)

NIST PQC Standardization Process

Security Analysis & Software Benchmarking

Three Types of PQC Schemes

Round 2 Submissions (announced Jan. 30, 2019)

• Encryption/KEM	s (17)			Lattice-basedCode-based
 CRYSTALS-KYBER FrodoKEM LAC NewHope NTRU (merger of NTRUEr NTRU Prime Round5 (merger of Hila5, SABER Three Bears 	9 hcrypt/NTRU-HRSS-KEM) /Round2)	 BIKE Classic McEliece HQC 7 LEDAcrypt (merger of LEDAkem/pkc) NTS-KEM ROLLO (merger of LAKE/LOCKER/Ouroboros RQC SIKE 1 		 Isogenies 7 EDAkem/pkc) /LOCKER/Ouroboros-R)
 Digital Signature CRYSTALS-DILITHIUM FALCON qTESLA 	s (9) 3	 GeMSS LUOV MQDSS Rainbow 	4	 Lattice-based Symmetric-based Multivariate

• SPHINCS+

Picnic

2

NIST Report on the 1st Round: <u>https://doi.org/10.6028/NIST.IR.8240</u>

Sources: Moody, PQCrypto May 2019

Level	Security Description
1	At least as hard to break as AES-128 using exhaustive key search
2	At least as hard to break as SHA-256 using collision search
3	At least as hard to break as AES-192 using exhaustive key search
4	At least as hard to break as SHA-384 using collision search
5	At least as hard to break as AES-256 using exhaustive key search

Software, Hardware, Software/Hardware Benchmarking

Software, Hardware, or Software/Hardware?

B

A

С

What NIST wants

- Performance (hardware+software) will play more of a role
 - More benchmarks
 - For hardware, NIST asks to focus on Cortex M4 (with all options) and Artix-7
 - pqc-hardware-forum
 - How do schemes perform on constrained devices?
 - Side-channel analysis (concrete attacks, protection, etc...)
- Continued research and analysis on ALL of the 2nd round candidates
- See how submissions fit into applications/procotols. Any constraints?

Software vs. Hardware

- Program composed of a sequence of assembly language instructions
- Instruction set and thus assembly language varies depending on a processor
- Clock period independent of an application
- Time measured in clock cycles

- **Circuit** composed of arbitrary number of arbitrarily connected basic components
- Two most-popular languages,
 VHDL and Verilog , common for all modern HW platforms
- Clock period strongly dependent on an application
- Time measured in **units of time** [µs, ms, s]

Software/Hardware with Hard Processor Cores

SoC FPGA

- Processor and hardware accelerator located on the same chip, often called SoC FPGA, such as Zynq UltraScale+, Zynq 7000, etc.
- Popular processors: ARM Cortex-A53, ARM Cortex-M9
- Processor clock speed > 1 GHz, independent of application
- Hardware accelerator clock speed < 400 MHz, dependent on application

Software/Hardware with Soft Processor Cores

- Processor and hardware accelerator located on the same chip, e.g., the same FPGA, such as Artix-7, Virtex-7, UltraScale+, etc.
- Popular processors: RISC-V, MicroBlaze
- Processor clock speed < 400 MHz, independent of application
- Hardware accelerator clock speed < 400 MHz, dependent on application

Software, Hardware, or Software/Hardware?

SoC FPGA

Software/Hardware with ARM Cortex Hardware Benchmarking Software/Hardware with RISC-V

FPGA

Microcontroller

Software Benchmarking

Major Optimization Targets

High-Speed

- Parallel processing
- Constant-time
- Parametric code

Lightweight

- Small area, power, energy per operation
- Resistance to power & electromagnetic analysis

Lattice-Based PKE/KEMs

	High-Speed		Lightweight	
	HW	SW/HW	HW	SW/HW
KYBER	1+1	1+1		3
FrodoKEM	1	1		1
LAC	1	2+1		
NewHope	2+1	2+1		3
NTRU		1		
NTRUPrime		1	1	
Round5	1	1	1	
SABER	2+1	1+1		1
Three Bears				
TOTAL	6 candidates	8 candidates	2 candidates	4 candidates
TOTAL	8 out of 9 candidates		5 out of 9 candidates	

1: Designs by GMU

Lattice-Based PKE/KEMs

	High-Speed	Lightweight
KYBER	H: Nanjing U. of Aero- and Astronautics, China + U. Arkansas, USA + ShanghaiTech U., China H, SH: GMU, USA SH: Fudan U., China; (VPQC)	 SH: MIT, USA (Sapphire) SH: Fraunhofer SIT, Darmstadt, Germany SH: TUM/Airbus, Germany (RISQ-V)
FrodoKEM	H: PQShield/Bristol, UK + ALaRI, Switzerland SH: GMU, USA	SH: MIT, USA (Sapphire)
LAC	H, SH: GMU, USA SH: TUM, AIRBUS, Germany SH: Fudan U., China (VPQC)	
NewHope	H: Tsinghua, China H: IIIT Delhi/IIT Ropar, India + NTU/Fraunhofer Singapore H, SH: GMU, USA SH: TUM, Germany + Delft, the Netherlands SH: Fudan U., China (VPQC)	 SH: MIT, USA (Sapphire) SH: Fraunhofer SIT, Darmstadt, Germany SH: TUM/Airbus, Germany (RISQ-V)

Lattice-Based PKE/KEMs

	High-Speed	Lightweight
NTRU	H, SH: GMU, USA	
NTRUPrime	H, SH: GMU, USA	H: TU Hamburg, NXP, Germany
Round5	H, SH: MUT, Warsaw, Poland + GMU, USA	H: MUT, Warsaw, Poland
SABER	H: U. Birmingham, UK, H: Tsinghua, China H, SH: GMU, USA SH: KU Leuven, Belgium + U. Birmingham, UK	SH: TUM+Airbus, Germany (RISQ-V)

Isogeny-Based and Code-Based PKE/KEMs

	High-Speed		Lightweight	
	HW	SW/HW	HW	SW/HW
		Isogeny-based		
SIKE	2	1		1
		Code-based		
BIKE	3			
Classic McEliece/ NTS KEM	1			
HQC	1			
LEDACrypt			1	
ROLLO				
RQC				
TOTAL	4 candidates	1 candidate	1 candidate	1 candidates
TOTAL	5 out of 8 candidates		2 out of 8 candidates	

Isogeny-Based and Code-Based KEMs

	High-Speed	Lightweight			
Isogeny-Based					
SIKE	H: FAU & USF, USA SH: Radboud U., the Netherlands + Microsoft Research, USA H: FAU & USF, USA	SH: Radboud U., the Netherlands + Microsoft Research, USA			
	Code-Based				
BIKE	 H: NTU, Singapore + Yale U., USA + CUHK, Hong Kong (key generation) H: Intel, USA (decoder) H: R-U Bochum, Germany 				
Classic McEliece/ NTS KEM	H: Yale U., USA + Fraunhofer SIT, Darmstadt, Germany				
HQC	H (HLS): HQC Team				
LEDACrypt		H: NTU, Singapore + Marche Polytechnic U., Italy			
ROLLO					
RQC		00			

Digital Signatures

	High-Speed		Lightweight	
	HW	SW/HW	HW	SW/HW
		Lattice-based		
DILITHIUM				1
FALCON				
qTESLA				2
	S	ymmetric-based		
Picnic	1			
SPHINCS+				
		Multivariate		
GeMSS				
LUOV				
MQDSS				
Rainbow	1			
TOTAL	2 candidates	0 candidates	0 candidates	2 candidates
TOTAL	4 out of 9	candidates	2 out of 9	candidates 27

Digital Signatures

	High-Speed	Lightweight
	Lattice-Based	
DILITHIUM		SH: MIT, USA (Sapphire)
FALCON		
qTESLA		 SH: MIT, USA (Sapphire) SH: Yale U., USA + MAN T&B SE, Germany + U. Waterloo, Canada + Microsoft Research, USA
	Symmetric-Based	
Picnic	H: Graz U.T., Austria + AIT, Vienna, Austria	
SPHINCS+		
	Multivariate	
GeMSS		
LUOV		
MQDSS		
Rainbow	H: GMU, USA	28

Round 2 Candidates in Hardware

	#Round 2 candidates	Implemented in hardware	Percentage
AES	5	5	100%
SHA-3	14	14	100%
CAESAR	29	28	97%
PQC	26	15	58%

Why so few?

- Mathematical complexity
- Large amount of man-power
- New types of basic operations
- Need for random sampling not only from uniform but also from discrete Gaussian and/or other distributions
- Constant-time implementations
- Hardware resources required
- Challenges in publishing of results

Level 1: Key Generation on Artix-7

Level 1 - Key Generation

31

Level 1: Encapsulation on Artix-7

Level 1: Decapsulation on Artix-7

Level 3: Key Generation on Artix-7

Level 3: Encapsulation on Artix-7

Level 3: Decapsulation on Artix-7

Level 5: Key Generation on Virtex-7

Level 5 - Key Generation

Level 5: Encapsulation on Virtex-7

Level 5 - Encapsulation

Level 5: Decapsulation on Virtex-7

Level 5 - Decapsulation

Level 3: Encapsulation on Zynq UltraScale+

Level 3 - Encapsulation

Level 3: Decapsulation on Zynq UltraScale+

Hardware Design Conclusions

Conclusions for Hardware Implementations

- CRYSTALS-KYBER, LAC, NewHope, Round5, and SABER (all lattice-based) comparable in terms of speed
- Among them, NewHope & CRYSTALS-KYBER the best in terms of resource utilization
- BIKE and HQC (code-based), FrodoKEM (lattice-based), SIKE (isogenybased) about 2 orders of magnitude slower for all operations
- Classic McEliece (code-based) comparable in terms of encapsulation, about 1 order of magnitude slower for decapsulation, about 2-3 orders of magnitude slower for key generation

GMU Hardware Designs

HW Design: Case Study

7 Key Encapsulation Mechanisms (KEMs) representing 5 out of 9 Round 2 Lattice-Based KEMs

RLWR (Ring Learning with Errors)-based:

NewHope

LAC (3a/3b)

RLWR (Ring Learning with Rounding)-based:

Round5 (0d/5d)

Module-LWE-based:

CRYSTALS-KYBER

Module-LWR-based:

Saber

NewHope, LAC, and Round5

Feature	NewHope	LAC (v3a/v3b)	Round5 (Od/5d)
Underlying Problem	Ring-LWE	Ring-LWE	Ring-LWR
Error Correcting Code	None	BCH	None / XEf
Security Levels	lattice dimension = n L1: n=512, L5: n=1024	lattice dimension = n L1: n=512, L3: n=1024, L5: n=1024	lattice dimension = n L1: n=586/508 L3: n=852/756 L5: n=1170/946
Modulus <i>q</i>	Prime 12,289	Prime 251 / 256	L1: 2 ¹³ /2 ¹⁰ , L3: 2 ¹² /2 ¹² L5: 2 ¹³ /2 ¹¹
Required Hash-based Functions	SHAKE128, SHAKE256	Left up to implementers	L1: SHAKE128, L3, L5: SHAKE256
Sampling	CBD*	n-ary CBD with fixed Hamming weight	CBD*
# Poly-Mult in Encaps	2	2	2
# Poly-Mult in Decaps	3	3	3

* Centered Binomial Distribution (CBD)

CRYSTALS-KYBER and SABER

Feature	CRYSTALS-KYBER	SABER
Underlying Problem	Module-LWE	Module-LWR
Security Levels	n=256, lattice dimension = k*n L1: k=2, L3: k=3, L5: k=4	n=256, lattice dimension = I*n L1: I=2, L3: I=3, L5: I=4
Modulus q	Prime 3,329	2 ¹³
Required Hash-based Functions	SHAKE128, SHAKE256 SHA3-256, SHA3-512	SHAKE128, SHA3-256, SHA3-512
Sampling	CBD*	CBD*
# Poly-Mult in Encaps	k ² + k	² +
# Poly-Mult in Decaps	k ² + 2k	² +

* Centered Binomial Distribution (CBD)

Common Optimization Method

Efficient hardware scheduling to perform operations without data dependency in parallel

NewHope Encryption

Common Optimization Method

Efficient hardware scheduling to perform operations without data dependency in parallel

CRYSTALS-KYBER Encryption (Security Level 1)

Common Optimization Method

Efficient hardware scheduling to perform operations without data dependency in parallel

Algorithm-Specific Optimization Methods

NewHope & CRYSTALS-KYBER

- Number Theoretic Transform (NTT)
- Processing FOUR coefficients at a time
- Resource sharing
 e.g., use a single module to perform NTT, NTT⁻¹, & pointwise multiplication
- Efficient modular reduction

Encapsulation Time on Artix-7 [µs]

Decapsulation Time on Artix-7 [µs]

Rankings & Ratios on Artix-7

Encapsulation

Level 1		Level 3			Level 5			
	Exe[us] F	Ratio	Exe[us] R		Ratio	Exe[us] Ratio		Ratio
LightSaber	11.6	1.00	Kyber	19.9	1.00	Round5_5d	27.6	1.00
Round5_5d	12.2	1.05	Saber	20.8	1.05	LAC-v3b	28.1	1.02
Kyber	14.8	1.28	LAC-v3b	21.2	1.07	Kyber	28.4	1.03
LAC-v3b	14.8	1.28	Round5_5d	21.6	1.09	FireSaber	30.1	1.09
Round5_0d	16.0	1.38	Round5_0d	25.6	1.29	NewHope	30.3	1.10
NewHope	16.3	1.41	LAC-v3a	29.1	1.46	LAC-v3a	33.9	1.23
LAC-v3a	17.9	1.54						

Decapsulation

Level 1		Level 3			Level 5			
Exe[us] Ratios		Exe[us] Ratio		Ratio	Exe[us] Ratio		Ratio	
LightSaber	14.6	1.00	Saber	24.5	1.00	FireSaber	34.6	1.00
Round5_5d	16.3	1.12	Kyber	27.2	1.11	Kyber	36.2	1.05
LAC-v3b	18.9	1.29	Round5_5d	28.4	1.16	Round5_5d	36.4	1.05
Round5_0d	20.6	1.41	LAC-v3b	28.7	1.17	LAC-v3b	37.9	1.10
Kyber	21.4	1.47	Round5_0d	33.2	1.36	NewHope	41.5	1.20
NewHope	22.0	1.51	LAC-v3a	37.4	1.53	LAC-v3a	43.8	1.27
LAC-v3a	22.2	1.52						54

Rankings & Ratios on Artix-7

Encapsulation

Level 1		Level 3			Level 5			
Exe[us] Ratio		Exe[us] F		Ratio	Exe[us] Rat		Ratio	
LightSaber	11.6	1.00	Kyber	19.9	1.00	Round5_5d	27.6	1.00
Round5_5d	12.2	1.05	Saber	20.8	1.05	LAC-v3b	28.1	1.02
Kyber	14.8	1.28	LAC-v3b	21.2	1.07	Kyber	28.4	1.03
LAC-v3b	14.8	1.28	Round5_5d	21.6	1.09	FireSaber	30.1	1.09
Round5_0d	16.0	1.38	Round5_0d	25.6	1.29	NewHope	30.3	1.10
NewHope	16.3	1.41	LAC-v3a	29.1	1.46	LAC-v3a	33.9	1.23
LAC-v3a	17.9	1.54						

Decapsulation

Level 1			Level 3			Level 5		
Exe[us] Ratios		Exe[us] Ratio		Exe[us] Ratio				
LightSaber	14.6	1.00	Saber	24.5	1.00	FireSaber	34.6	1.00
Round5_5d	16.3	1.12	Kyber	27.2	1.11	Kyber	36.2	1.05
LAC-v3b	18.9	1.29	Round5_5d	28.4	1.16	Round5_5d	36.4	1.05
Round5_0d	20.6	1.41	LAC-v3b	28.7	1.17	LAC-v3b	37.9	1.10
Kyber	21.4	1.47	Round5_0d	33.2	1.36	NewHope	41.5	1.20
NewHope	22.0	1.51	LAC-v3a	37.4	1.53	LAC-v3a	43.8	1.27
LAC-v3a	22.2	1.52						55

Resource Utilization on Artix-7

GMU Software/Hardware Co-designs

Software/Hardware Codesign

SW/HW Co-design: Motivational Example 1

Total Speed-Up \geq 10

SW/HW Co-design: Advantages

- Focus on a few (typically 1-3) major operations, known to be easily parallelizable
 - \Rightarrow much shorter development time (at least by a factor of 10)
 - ☆ guaranteed substantial speed-up
 - high-flexibility to changes in other operations (such as candidate tweaks)
- Insight regarding performance of future instruction set extensions of modern microprocessors
- Possibility of implementing multiple candidates by the same research group, eliminating the influence of different
 - ☆ design skills
 - operation subset (e.g., including or excluding key generation)
 - ☆ interface & protocol
 - optimization target
 - 🔅 platform

61

SW/HW Co-design: Potential Pitfalls

- Performance & ranking may strongly depend on features of a particular platform
 - Software/hardware interface
 - ☆ Support for cache coherency
 - Differences in max. clock frequency
- Performance & ranking may strongly depend on the selected hardware/software partitioning

First step, not the ultimate solution!

Two Major Types of Platforms for SW/HW Co-design

Examples:

- Xilinx Zynq 7000 System on Chip (SoC) Zynq UltraScale+ MPSoC
- Intel Cyclone V SoC Stratix 10 SoC FPGAs,

Examples: Xilinx Artix-7, Virtex-7, Virtex UltraScale+

Intel Cyclone 10 LP, Stratix 10

Our Case Studies

SW/HW Codesign: Case Study

12 Key Encapsulation Mechanisms (KEMs)

representing 8 out of 9 Round 2 Lattice-Based KEMs

LWE (Learning with Error)-based:

FrodoKEM

RLWR (Ring Learning with Errors)-based:

NewHope, LAC (3a/3b)

RLWR (Ring Learning with Rounding)-based:

Round5 (0d/5d)

Module-LWE-based:

CRYSTALS-KYBER

Module-LWR-based:

Saber

NTRU-based:

NTRU

- NTRU-HPS
- NTRU-HRSS

NTRU Prime

- Streamlined NTRU Prime
- NTRU LPRime

Methodology

SW/HW Co-design: Step 2 SW/HW Partitioning

Top candidates for offloading to hardware

From profiling:

- Large percentage of the execution time
- Small number of function calls
- From manual analysis of the code:
- Small size of inputs and outputs
- Potential for combining with neighboring functions

From knowledge of operations and concurrent computing:

High potential for parallelization

Operations Offloaded to Hardware

- Major arithmetic operations
 - Polynomial multiplications
 - Matrix-by-vector multiplications
 - Vector-by-vector multiplications
- All hash-based operations
 - (c)SHAKE128, (c)SHAKE256
 - SHA3-256, SHA3-512

Hardware accelerator of Saber

Detailed hierarchical block diagrams developed for the entire hardware accelerator

SW Part Sped up by HW[%]: Decapsulation

Round2 KEMs: SW/HW Results for Decaps

■ Hardware ■ Transfer ■ Software

Round2 KEMs: SW/HW Results for Decaps

■ Hardware ■ Transfer ■ Software
SW Part Sped up by HW[%]: Encapsulation

Round2 KEMs: SW/HW Results for Encaps

■ Hardware ■ Transfer ■ Software

Round2 KEMs: SW/HW Results for Encaps

■ Hardware ■ Transfer ■ Software

Resource Utilization on Zynq UltraScale+

FF

Resource Utilization on Artix-7

FF

77

GMU SW/HW vs. Intel Xeon E3-1220 v3 (3.1 GHz)

Algorithm	median cycles	${f SW}\ ({ m us})$	SW/HW (us)	Ratio	Algorithm
	Encaps	ulation			
	Level	1 & 2			
ntruhrss701	26116	8.4	68.3	0.12	kyber512
ntruhps2048677	35352	11.4	41.2	0.28	r5nd1kem0d
kyber512	44404	14.3	15.2	0.94	sntrup 653
sntrup653	46620	15.0	48.5	0.31	ntruhps 2048677
lightsaber2	67568	21.8	14.0	1.56	r5nd1kem5d
ntrulpr653	69400	22.4	51.6	0.43	ntruhrss701
lac128	82684	26.7	15.9	1.67	lightsaber2
r5nd1kem0d	89500	28.9	16.7	1.73	ntrulpr653
newhope512cca	109040	35.2	15.0	2.34	lac128
r5nd1kem5d	122492	39.5	13.8	2.85	newhope512cca
frodokem640shake	4529184	$1,\!461.0$	1,223.0	1.19	frodokem640shake
	Lev	el 3			
ntruhps4096821	43100	13.9	48.4	0.29	sntrup761
sntrup761	48780	15.7	55.5	0.28	kyber768
ntrulpr761	72372	23.3	59.6	0.39	ntruhps4096821
kyber768	74040	23.9	17.9	1.34	ntrulpr761
saber2	115948	37.4	18.7	2.00	r5nd3kem5d
lac192	158628	51.2	21.4	2.39	saber2
r5nd3kem5d	209572	67.6	19.2	3.52	r5nd3kem0d
r5nd3kem0d	317244	102.3	21.9	4.67	lac192
frodokem976shake	9467152	$3,\!053.9$	$1,\!642.5$	1.86	frodokem 976 shake
	Level	4 & 5			
sntrup857	60668	19.6	63.4	0.31	sntrup857
ntrulpr857	91416	29.5	67.3	0.44	kyber1024
kyber1024	103936	33.5	22.1	1.52	ntrulpr857
firesaber2	175844	56.7	23.7	2.39	firesaber2
lac256	188244	60.7	23.8	2.55	r5nd5kem0d
newhope1024cca	201772	65.1	21.3	3.06	newhope1024cca
r5nd5kem5d	368004	118.7	26.0	4.57	r5nd5kem5d
r5nd5kem0d	392492	126.6	29.2	4.34	lac256
frodokem1344shake	16379980	$5,\!283.9$	$2,\!186.2$	2.42	frodokem1344shake

Algorithm	median	\mathbf{SW}	SW/HW	Ratio			
5	cycles	(us)	(us)				
Decapsulation							
Level 1 & 2							
kyber512	37600	12.1	17.1	0.71			
r5nd1kem0d	43000	13.9	19.3	0.72			
sntrup653	59324	19.1	66.9	0.29			
ntruhps2048677	62004	20.0	95.3	0.21			
r5nd1kem5d	63624	20.5	15.7	1.31			
ntruhrss701	63632	20.5	135.6	0.15			
lightsaber2	69508	22.4	14.3	1.57			
ntrulpr653	82732	26.7	70.9	0.38			
lac128	105388	34.0	17.1	1.99			
newhope512cca	109728	35.4	16.1	2.19			
frodokem640shake	4494652	$1,\!449.9$	1,321.3	1.10			
Level 3							
sntrup761	59120	19.1	78.9	0.24			
kyber768	63916	20.6	20.1	1.03			
ntruhps4096821	79448	25.6	107.1	0.24			
ntrulpr761	85908	27.7	84.1	0.33			
r5nd3kem5d	117028	37.8	22.8	1.65			
saber2	118848	38.3	19.5	1.97			
r5nd3kem0d	156692	50.5	27.0	1.87			
lac192	243008	78.4	23.7	3.30			
frodokem976shake	9380108	$3,\!025.8$	1,866.2	1.62			
Level 4 & 5							
sntrup857	80904	26.1	86.8	0.30			
kyber1024	91628	29.6	24.7	1.20			
ntrulpr857	112116	36.2	97.5	0.37			
firesaber2	182136	58.8	24.8	2.37			
r5nd5kem0d	193228	62.3	35.9	1.73			
newhope1024cca	206248	66.5	24.8	2.68			
r5nd5kem5d	209136	67.5	31.7	2.13			
lac 256	377784	121.9	26.9	4.54			
frodokem1344shake	16312844	5,262.2	$3,\!119.9$	1.69			

SW/HW Co-Design Conclusions

SW/HW Co-design: Conclusions

- Unless all operations offloaded to hardware, limited insight on ranking of pure hardware implementations
- FrodoKEM much slower than other lattice-based KEMs
- Concerns regarding resource utilization:
 - ☆ NTRU-HPS and NTRU-HRSS : large number of DSP units
 - Streamlined NTRU Prime and NTRU LPrime : large number of LUTs (but no DSP units)
- In NewHope, CRYSTALS-KYBER, SABER & FrodoKEM resource utilization almost independent of the security level
- Important step toward the development of full hardware implementations

High-Level Synthesis

High-Level Synthesis (HLS)

Popular HLS Tools

Commercial (FPGA-oriented):

- Vivado HLS: Xilinx selected for this study
- FPGA SDK for OpenCL: Intel

Academic:

- Bambu: Politecnico di Milano, Italy
- **DWARV:** Delft University of Technology, The Netherlands
- GAUT: Universite de Bretagne-Sud, France
- LegUp: University of Toronto, Canada

Case for HLS in Crypto Competitions

- All submissions include reference implementations in C
- Development time potentially decreased several times
- All candidates can be implemented by the same group, and even the same designer, reducing the bias
- Results from High-Level Synthesis could have a large impact in early stages of the competitions and help narrow down the search (saving thousands of man-hours of cryptanalysis)
- Potential for quickly detecting suboptimal code written manually

GMU Case Studies

- **5 Final SHA_3** Candidates + SHA-2 Applied Reconfigurable Computing, ARC 2015, Bochum, Apr. 2015
- 16 Round 3 CAESAR Candidates
 + AES-GCM

Field Programmable Technology Conference, Melbourne, Dec. 2017

Ekawat Homsirikamol a.k.a "Ice"

HLS vs. Manual: SHA-3 Candidates Revisited

Altera Stratix III FPGA

HLS vs. Manual: Round 3 CAESAR Candidates

Throughput Manual / Throughput HLS for Xilinx Virtex-7

- 1. Interface mapping
- 2. Addition of HLS Tool directives (pragmas)
- 3. Hardware-driven code refactoring

Sources of Productivity Gains

- Higher-level of abstraction
- Focus on datapath rather than control logic
- Debugging in software (C/C++)
 - Faster run time
 - No timing waveforms

Software/Hardware Codesign with HLS

Block Diagram (BD) vs. Space-Exploration (SE)

Time spent on particular phases of the development process:

SW/HW Co-design: GMU Case Study Applied Reconfigurable Computing, ARC 2020

3 Lattice-Based

- Key Encapsulation Mechanisms (KEMs) representing 2 NIST PQC Round 2 Submissions 1 NIST PQC Round 1 Submission
- CRYSTALS-KYBER
 - Round 2 (R2)
 - Round 1 (R1)
- NewHope
 - Round 2 (R2)

Major Findings

Almost identical number of clock cycles

Identical number of DSP units

Identical number of BRAMs (except of 40% increase in Kyber R2)

Overhead: Clock Frequency [MHz]

Algorithm	RTL	HLS	HLS/RTL
1: NewHope	476	454	0.95
5: NewHope	476	455	0.96
1: Kyber R1	500	455	0.91
3: Kyber R1	500	455	0.91
5: Kyber R1	500	455	0.91
1: Kyber R2	500	455	0.91
3: Kyber R2	500	416	0.83
5: Kyber R2	500	416	0.83

Clock Frequency reduced by 17% or less

Overhead: LUTs

Algorithm	RTL	HLS	HLS/RTL
1: NewHope	1,040	1,181	1.14
5: NewHope	842	1,110	1.32
1: Kyber R1	2,185	2,788	1.28
3: Kyber R1	3,318	4,205	1.27
5: Kyber R1	4,363	5,562	1.27
1: Kyber R2	2,040	2,325	1.14
3: Kyber R2	3,054	5,379	1.76
5: Kyber R2	4,055	7,111	1.75

#LUTs increased by 14%-76% or less

Round 3

NIST Announcement on July 22, 2020

Round 3 Candidates

NIST Announcement on July 22, 2020

NISTIR 8309

"Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process,"

by Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone

available https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

No references to papers on hardware implementations. All decisions based solely on **security analysis** and (to lower extent) **performance in software**.

NSA's Cybersecurity Perspective on PQC July 29, 2020

- Strong preference for Lattice-Based Cryptography
 - "fairly well-studied"
 - "secure when well-parameterized"
 - "among the most efficient"
- Lattice-based KEM and digital signature scheme to be approved for National Security Systems (NSS)
- Stateful signature schemes, LMS and XMSS,
 - "have a limited number of allowable signatures per key"
 - "require the signer to maintain an internal state"
 to be approved for NSS solutions for certain niche applications
- NSA CSD does not anticipate the need to approve other PQC schemes for NSS usage
 - "circumstances could change"

Round 3 Encryption/KEMs

Round 3 Encryption/KEMs

Round 3 Encryption/KEMs + Classical PKE

Public Key (Bytes)

Round 3 Digital Signature Schemes

Round 3 + Classical Digital Signature Schemes

Close Matchups

KEMs

CRYSTALS-KYBER

Module-LWE: Module Learning with Errors

NTRU

SVP Shortest Vector Problem

SABER

Module-LWR: Module Learning with Rounding

Digital Signatures

CRYSTALS-DILITHIUM

Fiat-Shamir with aborts Module-LWE & Module SIS (Short Integer Solution)

FALCON

Hash & Sign SIS (Short Integer Solution) over NTRU Lattices

Round 3 Candidates without HW Implementations

Future Work Directions

- More focus on hardware implementations vs. software/hardware implementations
- More focus on comparisons across families, rather than within the same family
- More hardware platforms to focus on
- Optimized software implementations targeting vector instructions of embedded processors, such as RISC-V and ARM
- Investigation of lightweight implementations protected against side-channel should be conducted by multiple groups, serving interchangeably as attackers and defenders
- Trade-offs among speed, area, power, energy, and resistance against side channel attacks

Evaluation of SCA-protected implementations

- Practical experiments
- Information leakage assessments
- Actual attacks
- Development and evaluation of various SCA countermeasures
Instead of Conclusions...

Topics for Discussion

Priorities

- Hardware vs. SW/HW with ARM vs. SW/HW with RISC-V
- IND-CPA PKE vs. IND-CCA KEM vs. Digital Signatures
- High-speed vs. lightweight
- Finalists vs. alternates

Need for a common FPGA platform

- Need for a common Hardware API
- **Role for High-Level Synthesis**
- How to make software/hardware benchmarking fair?
- Defining speed-up vs. software
- Reliable ways of evaluating resistance against SCA
- Reproducibility of results vs. publication cycle length
- Publication standards: Mathematical vs. engineering improvements
- Written report, online database of results, both?

Arguments against using only Artix-7

- 1. Low-cost family. Not suitable for high-speed implementations.
- 2. Traditional FPGA, not an SoC FPGA. Suitable only for SW/HW co-designs with "soft" processor cores, such as RISC-V.
- 3. Unsuitable for HLS designs.
- 4. Relatively old FPGA family, released by Xilinx in 2010.
- 5. It is not customary to base ranking of candidates in cryptographic contests on results obtained for a single family of a single vendor.
- 6. Multiple reviewers of papers devoted to implementations of Round 2 PQC candidates treated the NIST's choice of Artix-7 as an absolute requirement!

Recommended FPGA Platforms

- For lightweight hardware implementations and lightweight software/hardware implementations based on soft processor cores: Xilinx Artix-7 and Intel Cyclone 10 LP.
- For lightweight software/hardware implementations based on hard processor cores:

Xilinx Zynq 7000-series and Intel Cyclone V SoC FPGAs.

3. For high-speed hardware and high-speed software/hardware implementations:

Zynq Xilinx UltraScale+ and Intel Stratix 10 SoC.

Cryptographic Engineering

Research Group

Thank You!

Questions?

https://eprint.iacr.org/2020/795

CERG: http://cryptography.gmu.edu ATHENa: http://cryptography.gmu.edu/athena Choose: PQC

