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WELCOME 

The National Computer Security Center and the Institute for Computer 

Sciences and Technology are pleased to welcome you to the Eleventh Annual 

National Computer Security Conference. The past ten conferences have 

stimulated the sharing of information and the application of this new 

technology. We are confident the Eleventh NCS Conference will continue this 

tradition. 

This year's conference theme--Computer Security: Into the Future-­

reflects the growth of computer security awareness and a maturation of the 

technology. Our next major challenge is to understand how to build secure 

applications on trusted bases. The efforts of the National Computer Security 

Center,the Institute for Computer Sciences and Technology, computer users, and 

the computer industry have all contributed to the advances_ in computer security 

over the past jew years. We are committed to a vibrant partnership between the 

Federal Government and private industry to further the state of the art in· 

computer security. 

Our challenge is to build upon the foundations we have established so that 

secure applications emerge. We must understand and record how we build on 

these foundations in order to secure user-based systems. To be successful, we 

need your help as you take back to your places of work an increased awareness 

of where we are, where we must go, and 

JAMES H. BURROWS PATRICK R. GALLAGHER, JR. 
Director Director 

Institute for Computer Sciences National Computer Security Center 
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A MULTILEVEL SECURITY MODEL FOR OBJECT-ORIENTED SYSTEMS 

T.F. Keefe 	 W.T. Tsai MB. Thuraisingham 

Department of Computer Science Department of Computer Science Honeywell 
University of Minnesota 
Minneapolis, MN 55455 

University of Minnesota 
Minneapolis, MN 55455 

Corporate Systems Development Division 
Golden Valley, MN 55427 

Abstract - This paper describes a security model for a Multilevel Secure 
Object-Oriented System. The model is posed in terms of an object-oriented 
computation model incorporating distributed co-operating objects. The model 
supports a data sensitivity level classification appropriate for use in Multilevel 
Secure Database Management Systems (MLS/DBMS). This security model 
allows a subject to act with the lowest clearance level necessary to accomplish 
a task and thus avoid over-classification of data. The paper discusses the 
security properties of the model, including the safety of message passing and 
the existence of covert channels. 

Index Terms - Multilevel Security, Multilevel Secure Database 
Management Systems, Security Model, Object-Oriented Systems 

1. Introduction 

MultiLevel Secure Database Management Systems (MLS/DBMSs) allow 
users with different clearance levels to share a database consisting of data 
having varying sensitivity levels. MLS/DBMSs achieved prominence at the 
Air Force Summer Study of 1982 [AIRF82] as a method of preventing DBMS 
security violations. During the study various designs for MLS/DBMSs were 
proposed. One design based on a near-term set of requirements incorporated 
off-the-shelf concepts in its solution and another based on a long-term set of 
requirements including content, context and dynamic classification and a 
solution to the inference and aggregation problem. The committee members 
defined a partial solution and outlined further research. 

Recently much research is devoted to the design of Multilevel Secure Rela­
tional DBMS [DENN87b, DILL86, DWYE87]. Techniques to deal with the 
inference and aggregation problems are also being investigated [HINK88, 
MORG88, SUOZ87, THUR87, THUR88]. 

The relational data model is well defined and generally applicable to a wide 
range of data modelling problems. For some problem domains involving 
Multimedia DBMS and CAD/CAM, object-oriented systems present a more 
suitable data model and have become popular for use in these domains. 

Object-oriented systems began as programming systems and are only now 
dealing with issues such as data models, predicate based queries [CHEN87], 
schema evolution, version control [BANE87], transactions and controlled 
sharing of data [FISH87]. Resolving these issues paves the way for more 
useful object-oriented DBMS and generates a need for security. 

Object-oriented DBMSs unify a data model and a computational model setting 
them apart from relational systems. The relational algebra does not deal with 
the subject of updating or creating new relations even though most relational 
DBMS do provide this capability. The fact that the object-oriented 
computational model allows for creation and modification of data as well as 
data access forces a security model to deal with the problem of data 
modification. 

The computational model also defines objects as isolated computational 
entities communicating explicitly with other objects through messages. This 
naturally leads to distributed security enforcement rather than the centralized 
enforcement possible with relational queries. 

Previous work on security in object-oriented systems has been done to enforce 
discretionary and mandatory security policies. [ANCI83] describes a protection 
mechanism and defines how it may be embedded in an object-oriented 
concurrent programming language. The protection mechanism is based on 
capabilities and allows for static access control. The protection mechanism 
implements discretionary but does not address mandatory security. 

Mandatory security is investigated in [MIZU87]. Security is enforced with a 
combination of compile-time and run-time checks. The security model 
~lassifies. variables as having a fixed or indeterminate sensitivity level. The 
mdetermmate levels are meant to deal with indeterminate information flows 

and must be checked at run-time. The security model does not support the 
classification of data according to its content and does not support a separate 
classification for aggregate data objects. 

When classifying data in a database two factors are considered, the type of data 
that has been created and the sensitivity level of the data which is used to 
create it. Security constraints attempt to model the correlation between types 
of data and corresponding sensitivity levels. In many systems the subject's 
security clearance level is assumed to be the sensitivity level of data used in 
creating a new datum. This is based on the fact that the subject's clearance 
level represents the most sensitive datum the subject has access to. This leads 
to over-classification, since this clearance level will always dominate the 
actual sensitivity level of data incorporated in the result. [WOOD87] discusses 
the classification of information based on its composition. Data is marked 
with sensitivity labels which track the least upper bound of all data in the 
composite object. A covert channel is identified which exists when a higher 
clearance subject causes an object to become unreadable by a subject with a 
lower clearance. To avoid this channel, the labels are used in an advisory 
manner and not in the enforcement of mandatory security. Separate Mandatory 
Access Control Levels (MACLs) are attached to data objects for this purpose. 
This approach does not solve the over-classification problem with respect to 
mandatory access, since the MACLs do not represent the highest sensitivity 
level of data known by the process which created the object but the highest 
sensitivity level of data the subject is allowed to know. The model described 
in [WOOD87] assumes that the sensitivity level of an object is independent of 
other objects' values and sensitivity levels. This assumption is not consistent 
with requirements for security in DBMSs. 

We propose a security model for a Multilevel Secure Object-Oriented System 
with the following advantages. It is posed in terms of an object-oriented 
computation model incorporating distributed co-operating objects. Each object 
is assumed to be a self-contained computing element whose only interaction 
with other objects is through sending and receiving messages. The model 
supports a mandatory security policy with extensions to support the data 
classification necessary for use in MLS/DBMS. This security model allows a 
subject to act with the lowest security classification level necessary to 
accomplish a task and thus avoids over-classification of data in the presence of 
updates. The model does this without introducing the covert channel as 
discussed in [WOOD87]. This allows data classification to follow a set of 
security constraints defined on the database schema and not the security 
clearance level of users making the updates. 

The organization of this paper is as follows: Section 2 describes the essential 
points of MLS/DBMS. Section 3 gives an overview of object-oriented 
systems. Section 4 describes a multilevel security model for object-oriented 
systems and Section 5 discusses the security properties of the model. Finally, 
Section 6 concludes this paper with future considerations. 

2. MLS/DBMS 

A MLS/DBMS is different from a conventional DBMS in at least the 
following ways: 

1. 	 Every data item in the database has associated with it one of several 
classifications or sensitivities, that may need to change 
dynamically over time. 

2. 	 A user's access to data must be controlled based upon the user's 
authorization with respect to these data classifications. 

Providing a MLS/DBMS on current computing systems presents many 
problems. The granularity of classification in a DBMS is generally finer than 
a file and may be as fine as a single data element. Another problem that is 
unique to databases is the necessity to classify data· based on content, time, 
aggregation and context. DBMSs are also vulnerable to inference attacks where 
a user infers unauthorized information from legally obtained data. 
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A solution proposed to overcome some of these problems in relational 
database management systems is to use security constraints to associate 
classification levels with all data in a database [DENN87a, DWYE87]. The 
constraints provide the basis for a versatile and powerful classification policy 
because any subset of data can be specified and assigned a level. 

Simple constraints provide for the classification of the entire database, as 
well as the classification by relation and by attribute. Constraints that 
classify by content provide the mechanism for classification by tuple and by 
element. Context-based constraints classify relationships among data. In 
addition, the results of applying a function to an attribute in all or a subset of 
tuples in a relation, such as sum, average, and count can be assigned different 
classification levels than the underlying data. Finally, the classification levels 
of the data can change dynamically based upon changes in time, content, or 
context. 

A constraint consists of a data specification and a classification. The data 
specification defines any subset of the database using relational algebra and the 
classification defines the classification level of this subset. For example, 
consider a database which consists of a relation EMP(NAME, SALARY, 
SOC_SEC#) with SOC_SEC# as the key. I 

The content-based constraint, using the notation proposed in [DWYE87], 
which classifies the names of all employees who earn more than 50K as 
Secret is expressed as: 

LEVEL(PROJECT[NAME] (SELECT[SALARY>50K] EMP)) = 
SECRET 

and the context-based constraint which classifies all names and salaries taken 
together as Secret is expressed as: 

LEVEL(PROJECT[NAME, SALARY] EMP) =SECRET 

The simple constraints which classifies all names and salaries taken 
individually as Secret is expressed as: 

LEVEL(PROJECT[NAME] EMP) =SECRET 

LEVEL(PROJECT[SALARY] EMP) =SECRET 

3. Object-Oriented Systems 

This section gives a brief background on object-oriented systems. There is a 
wide variation in what is meant by "object-oriented". Most of our 
interpretation comes from SMALLTALK-80 [GOLD83]. Variations on this 
object-oriented model are given in [STEF86]. The object-oriented model as 
defined by SMALL TALK was intended as a programming system. Our 
definition of an object-oriented system also stems from our desire to 
incorporate database considerations such as data models, predicate based 
queries, schema evolution, version control, transactions and controlled sharing 
of data. Our understanding of these issues comes from [BANE87], [FISH87] 
and [Y00N87]. 

In an object-oriented system everything is represented as an object. An object 
is made up of private state information and a set of actions which represent the 
only way to access or modify this state information. The state information is 
represented as a set of instance variables whose values are objects each of 
which contains its own state information and methods. The actions defined on 
an object are called methods. A method carries out its action by sending 
messages. A message consists of a method selector, which is the name of the 
method to be invoked, followed by a list of objects to be used as arguments to 
the method. Sending a message to an object causes a method to be executed. 
Objects are passive entities which store information. A method is also passive 
and represents a function which can be performed on an object. A message 
combined with an object yields a method activation. Method activations are 
active and perform the computation in the system. 

Primitive objects represent their state directly without using other objects, 
examples of these primitive objects are numeric values, strings and identifiers. 
Primitive methods represent actions carried out directly by the virtual machine 
without sending messages, examples are adding numeric values and reading the 
value of an instance variable. 

1 The notation used in our discussion of database concepts and relational 
algebra is based on [ULLM82]. 

Each object has a type or class it belongs to. All objects in a class are 
equivalent computationally. Each may have a different state but the type of 
computation which can be performed on an object is uniform throughout the 
class. The class defines what methods are available in instances of the class 
and what instance variables are included in the instance objects. The class of 
an object is also an object. A class object responds to messages to create new 
instance objects. A class object defines a type by specifying the types which it 
specializes. These types are referred to as its super-types. An object inherits 
methods and access to instance variables from its class object and each super­
type of the class object all the way up the lattice to the root, OBJECT. 

An object represents a distributed computation element. Methods are specified 
such that only data contained in the object receiving the message can be 
modified directly. A method activation has no knowledge about the states of 
other objects unless it explicitly queries them and it can not affect the state of 
other objects except through requests to them. Each method activation 
performs an independent computation except where it explicitly communicates 
by sending a message. 

For the most part, methods are described informally in the text. When we 
wish to be more precise we will use notation similar to that in [GOLD83]. A 
method specification consists of a message pattern and a sequence of 
expressions separated by periods. The message pattern determines the message 
selector the method will be used for and assigns names to the formal 
parameters of the method. An example of a message pattern is shown below: 

spend: amount on: reason 

The message selector for this method is 'spend:on:'. The two formal 
parameters in this method are 'amount' and 'reason'. The expressions which 
make up the body of the method consist of message expressions with an 
optional assignment. Message statements are described briefly below: 

Unary Messages 

A unary message consists of the name of the receiver object followed by the 
selector of the method to be executed. The statement below sends the message 
consisting of a selector named 'salary' and no parameters to the object 
'EmpOl': 

Emp01 salary 

Keyword Messages 

A message can be constructed from parts of the selector or keywords alternated 
with arguments. The following message sends the object 'HouseHoldFinances' 
the selector spend:on: along with objects representing the real number 30.45 
and the string 'food'. 

HouseHoldFinances spend: 30.45 on: 'food' 

A message expression returns an object as a result which represents the value 
of the expression. This object can be assigned to an instance variable. This is 
done by preceding the message expression with the name of the variable and 
the assignment symbol 'f-' as in the example below: 

Tota!Finances f- Tota!Finances + (HouseHoldFinances totalSpentFor: 
'food~ 

Blocks 

A block is similar to a function in a traditional programming language. It 
takes a list of arguments and produces a result. A block is similar in form to a 
method. It is enclosed in square brackets and begins with a list of parameters. 
Separated from the parameters by a 'I' is a list of expressions which form the 
body of the block. The block shown below is a function of one argument 
'ObjectToClassify' and returns a boolean result: 

[:ObjectToClassify I (ObjectToClassify salary)> 100000] 

The block sends its argument the message 'salary' and to the resulting object it 
sends the message with selector '>' and argument 100000. A block is an 
object and can be used as an argument to a method. 

4. Security Model 

This section proposes a security model posed in terms of the object-oriented 
computing model. The model combines the use of security constraints for data 
classification with mandatory access control. Security constraints allow the 

2 
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automatic classification of data objects by their type and by their relation to 
other data. Classification by security constraints conflicts with classification 
by information flow. A newly created object has two classifications, one by 
an applicable security constraint and another from the current security 
classification of the user creating the object, (a user can only write objects 
with sensitivity levels dominating their cirrrent security classification level). 
A distinguishing aspect of this model is the emphasis placed on classification 
derived from security constraints. 

[DENN87c] uses security constraints to classify newly entered data. Once 
classified, the MACLs are fixed and do not respond to changes in related data. 
Since the levels are fixed, after some updates to the database the levels 
assigned to data may not be consistent with the levels assigned by the 
constraints. Consider the security constraint which classifies, the names of 
employees as Secret when the employee's salary is greater than $100,000.00 
and the name is Unclassified otherwise. When an employee's salary is 
increased to over $100,000.00 the sensitivity level of the name remains 
Unclassified by this model. In this model the sensitivity level of a datum does 
not depend solely on the applicable security constraints and therefore there can 
be more than one sensitivity level for a datum. Since the key value does not 
determine the sensitivity level of an entity, polyinstantiation [DENN87b] is 
used to disallow a low level user from overwriting higher level invisible data 
without opening a covert channel. 

The opposite extreme is a model which insures that security constraints are 
always maintained. The level of each piece of data is completely determined by 
the applicable security constraints. This model allows only those 
modifications to the database which maintain the security classification 
determined by the security constraints and adhering to information flow 
restrictions. In the case of the classification discussed above, if a Secret user 
created an employee with a salary over $100,000.00, the data would be 
inserted in the database. If it were attempted by a Top Secret user it would be 
rejected since the data would have to be classified Top Secret to dominate the 
clearance level of the user which is in conflict with the level Secret assigned 
by the security constraint. In this model, the security level of an object is 
completely determined by security constraints. If the security constraints are 
conditioned only on the key value of an entity, the key value completely 
determines the sensitivity level and polyinstantiation is unnecessary. 

The proposed model is somewhere between the other two. It allows a subject 
to act with the lowest authority possible so that data can more often be 
classified in accordance with security constraints. It applies the security 
constraints in a dynamic fashion, changing the classification of a piece of data 
when the security constraint derived level changes. For example, if the names 
of employees are classified Secret when the employee's salary is greater than 
$100,000.00 and Unclassified otherwise, then when an employee's salary is 
increased to over $100,000.00 the sensitivity level of the name is also 
changed. This model insures that an object's assigned sensitivity level always 
dominates the sensitivity level determined by security constraints. This model 
must rely on polyinstantiation since the sensitivity level of an object is not 
determined solely by security constraints. Modifying the security classification 
level of subjects and objects dynamically can open covert storage channels and 
so need to be done with caution. The proposed model allows these level 
changes in only those cases where a covert channel can not exist. 

The elements of the proposed security model are discussed in the next section. 
It describes the role of each object-oriented element in the security model. This 
is followed by a discussion of the type of security constraints included in the 
model and their representation. Finally, there is a description of the model 
restrictions. 

4.1. Security Entities 

This section identifies the role played by each entity in the object-oriented 
computation model in the security model. The portions of the object-oriented 
model discussed are: objects, methods, messages and method activations. The 
object-oriented model requires certain conceptual extensions to support 
mandatory security; these are discussed as well. 

Objects An object is a collection of passive data with an 
associated sensitivity level. The protected data is the 
object's instance variables and it is disclosed by reading 
one or more of the variables. 

Methods A method is a function defined for execution on the data 
of a particular object type. It is a passive entity. When 
a message is sent to an object a particular method is 
selected and executed in a method activation and this 

Messages 	 A message is sent on behalf of a security subject. It is 
sent to an object requesting execution of a selected 
method with the authority of the security subject which 
the message represents. A message is an object and 
therefore is protected by the security system. Messages 
are labelled with two security classification levels. The 
first is the clearance level, Lsclear. of the security 
subject originating the message. The second level is the 
current security classification level, Lscurrent. of the 
originating subject. These two levels act as an upper 
and lower bound on the classification level of the new 
method activation. 

Method Activation 	 Method activations are the only active entities in the 
model and therefore represent security subjects. Each 
method executes in a separate context described by an 
activation. The execution is carried out by sending 
messages to objects. Sending messages is not a security 
relevant action, for two reasons. First, because the 
message carries with it boundaries on the authority of 
the method activation it creates, which are encompassed 
by the boundaries of the subject sending the message. 
Secondly, the data sent in messages is in the form of 
protected objects. These points will be discussed more 
fully in the section describing model properties. Certain 
primitive actions such as reading an instance variable, 
writing an instance variable, carrying out a conditional 
action or creating a new object are carried out directly 
by the method activation without sending any mes­
sages. These actions are security relevant since they 
directly access and modify information in the method 
activation and instance variables of the object. 

4.2. Security Constraints 

This section discusses the type of security constraints supported by the model. 
The first section explains the security constraint mechanism and how it can be 
used to represent simple, content-based and context security constraints. 
The next section defines a method used to enter the constraints and shows 
specific examples of its use to register simple, content-based and context 
security constraints. 

Both sections demonstrate how the classification mechanism works through 
the use of examples on the database described in the next two figures. Figure 1 
gives the schema of a sample database. The schema is for a database 
containing personnel information for a company. There are two types of 
complex objects in the database, Employee type objects and Department type 
objects. Each Employee object has a field (instance variable) for the social 
security number, name and salary of the employee and one which is filled by a 
Department type object which describes the department the employee is a part 
of. Each Department object has a field for the department name (Dname) and 
project name (Project) of the project the employees of the department are 
working on and a field which is filled by the Employee type object 
representing the manager (Mgr) of the department 
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Figure 1 - Sample Schema Diagram 

Figure 2 depicts objects in a database following the schema shown in Figure 
1. In the figure, boxes represent instance objects, arrows point to the value of 
the instance variable, the class of the object is given in the upper left comer of 

method activation is an active entity. the object and the upper right hand comer contains an identifier to reference the 
objects in the following discussion. 
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Figure 2 - Sample Database 

4.2.1. Assigning Classification Levels 

Every object has a sensitivity level, Lc, determined by a set of object 
classification functions. Each function groups objects into sets called 
classification sets and gives each set a sensitivity level Lc- The meaning is 
that the sensitivity level for disclosing all objects in the classification set is 
Lc- Each object individually can be disclosed without regard to Lc, however, 
the last object disclosed must be classified at a level which dominates Lc. Lc 
is the sensitivity level of the object determined by the security constraints in 
force. This is only one factor used to determine an object's sensitivity level 
Lo which is used by the reference monitor to determine the allowability of an 
access. 

An object is considered disclosed to a subject S 1 if another subject S2 which 
can write objects visible to S 1 has read it. In other words the object is read 
with respect to a subject with clearance Ls 1 if it was read by a subject with 
clearance LS2 such that Ls2 ~ Ls 1· This definition is very restrictive. It is 
required to protect classification sets in the case of one subject reading a 
member of the set and writing the information into a new object of a different 
type. For example, consider the context constraint which classifies names and 
salaries together as Secret and otherwise Unclassified. If an Unclassified user 
reads the name of an employee and stores the name in an object of type 
'string', the context constraint will no longer relate this name to the salary of 
the employee. The definition of who has read the name object must include 
any other user who is allowed to read the special name object of type 'string'. 
It must include all subjects with current classifications which dominate the 
current classification of the subject when the object was read. 

This mechanism allows the expression of simple, content and context 
security constraints as described in [DWYE87]. A simple constraint 
classifying all objects of class Project as Secret is represented by placing each 
member of 'project' in a separate classification set with a classification of 
Secret. Since each set consists of only one object, the object will immediately 
receive a classification level Lc of Secret. When this classification is applied 
to the sample database shown in Figure 2 the classification in Figure 3 
results. This constraint produces only one classification set. The set contains 
the object 'POl'. Since it is the only object in the Secret set, its sensitivity 
level, Lc, immediately becomes Secret. 

Figure 3 - Classification of Objects of Class Project as Secret for Sample DB 

A content-based constraint specifies a set of objects by means of a predicate 
based on the values of some objects and classifies each with the same 
classification. For example, classify the names of all employees whose salary 
is greater than $100,000.00 as Secret. This type of constraint is represented 
the same as a simple constraint. Each 'name' which has a corresponding 
'salary' greater than $100,000.00 is placed in a classification set by itself and 
the set is classified Secret. The two classification sets which result from 
applying this constraint to the database of Figure 2 is shown in Figure 4. 
This constraint produces two classification sets, one containing 'N04' and the 
other containing 'N03'. Since each object is the only object in its 
classification set, it takes on the sensitivity level of its classification set, 
Secret. 

.<t::~:;;rf??>.
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Figure 4 - Classification of the Names of all Employees Whose Salary is 

Greater than $100,000.00 as Secret for Sample DB 


A context constraint matches this security constraint mechanism exactly. 
Related objects are grouped into classification sets and given the sensitivity 
level Lc meaning that the sensitivity level for disclosing all objects in a set 
is Lc. Figure 5 shows an example of a context constraint classification. 
This constraint classifies the Project and the Name of any Employee working 
on the Project, taken together as Secret. The constraint creates four 
classification sets, ( 'NOl', 'POl' ), ( 'N02', 'POl' ), ( 'N03', 'POl' } and( 
'N04', 'POl' } . Each of these sets share the object 'POl'. This means that as 
soon as 'POl' is read, all of the Name objects become Secret and if any Name 
object is read, 'POl' becomes Secret. 
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Figure 5- Classification of Project and the Name of any Employee Working 
on the Project, Taken Together as Secret for Sample DB 

The security model is enforced by cooperating autonomous objects. This 
affects the way in which security is enforced and in particular how security 
constraints are specified. In this distributed model each object is given 
responsibility for insuring the security of its own data. Security constraints 
must be reevaluated when a change is made to the database. For each security 
constraint, one or more objects must be chosen to be responsible for doing 
this reevaluation whenever it is necessary. This responsibility is split between 
the objects which are members of the classification set and what is called the 
anchor object for the constraint. This anchor object is not classified by the 
constraints but is used as a reference point for evaluating the constraint. The 
responsibility of the anchor object is to alert objects when they are classified 
by the security constraint. The anchor object in turn depends on objects which 
the constraint is conditioned on to alert it to changes in their values. This 
mechanism allows the burden of the constraint maintenance to be shared 
among many objects. 

In a simple or content-based constraint the anchor object is chosen to be 
the class object which the classified objects are instances of. For example in 
the constraint, 

Name in Employee where Salary> $100,000.00 is Secret 

the anchor object is the class object Name. The set of objects to be classified 
is specified with respect to this anchor object. The class object Name is 
responsible for alerting each Name object with a Salary over $100,000.00 that 
it is classified by the security constraint. Whenever a new Name object is 
created which satisfies the predicate the anchor object must alert it to its new 
classification. Consider a Name object created with a Salary of $50,000.00, 
the constraint will not apply but the corresponding Employee and Salary 
object will be made responsible to report changes in their values to the anchor 
object, Name. Later if the Salary is updated to $110,000.00 the object will 
report this to the class object Name and the anchor object will alert the Name 
instance object of its new classification. 

Each context constraint creates one or more classification sets. In the 
example above there is one set of objects for each Employee object in the 
database. If this constraint is applied to the database shown in Figure 2, the 
resulting classification sets are shown in Figure 6. This constraint produces 
four classification sets, ( NOl', 'SOl'}, ( 'N02', 'S02'}, ( 'N03', 'S03' } and ( 
'N04', 'S04' } . Each set has a sensitivity level of Secret. This classification 
has no immediate effect on the sensitivity level, Lc. of any of the objects, if 
however object 'S03' is read this constraint will cause Lc of N03' to become 
Secret. 
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Figure 6 - Classification of Name and Salary Taken Together as Secret for 

Sample DB 


4.2.2. Specifying Security Constraints 

A set of methods are defined in all objects, securityConstraintfl:Level:, 
securityConstraintfl:f2:Level:, etc., which take an ordered collection of 
functions and an aggregate sensitivity level Lc as arguments. The functions 
(fl ... fn} are defmed as follows: 

fl : anchor_object -) object* 
f2-n : object -) object* 

Where object* represents a set of zero or more objects. The functions f 1 ... fn 
are used in the following way to define a setS of classification sets. 

S] = (xI x E fl(OAnchor)} 
S = ( ( Yl, Y2, ··· , Yn } I Yl E S 1 A Y2 E f2(Yl) A ••• A Yn E fn(Yn-1) } 

Where 0 Anchor is the anchor object, the object receiving the classification 
message. The first function, f1, applied to the anchor object produces the first 
set S 1 of objects in the classification sets. The next object in the 
classification set results from applying f2 to one of the objects in S 1· This is 
carried out for all n functions to create each element of S. 

Simple and content-based constraints classify single objects not sets of 
objects as. do context constraints. A context constraint must specify a 
classification set. Each object in the set allows itself to be read only when at 
least one other member of the set is still unread. The last unread object in the 
set must increase its sensitivity level to that specified in the context 
constraint before it is read. Instead of maintaining the constraint specified 
classification set, the set of specified objects which have not yet been read can 
be maintained. The classification set is then specified and maintained as an 
ordered sequence of objects. The anchor object is responsible for alerting each 
first object that it is the first object in a context constraint. The object is 
also given the specification of the rest of the ordered sequence. Each object in 
the sequence then acts as an anchor object for the next object in the sequence, 
alerting it that it is included in the constraint and passing on the specification 
of the rest of the ordered sequence of objects. Consider the constraint, 

Name in Employee and Salary in Employee taken together are Secret. 

The anchor object for this constraint is the class object Employee, (this is an 
arbitrary decision). 'Employee' is required to alert each object which fills the 
Name slot of one of its instances that it is part of a context constraint. The 
specifications for the rest of the objects are passed on with this notification. 
The Name object which receives this information then uses.the specification 
of the rest of the ordered sequence to alert the prospective next objects in the 
sequence. In this example the Name object determines its containing 
Employee object and then the Salary object contained within. This Salary 
object is alerted that it is part of the context constraint. The Salary object is 
the last in the sequence and so doesn't need to alert any further objects. 

The following are examples of how security constraints can be represented 
using the above classification scheme. We are expressing the constraints in a 
notation similar to SMALLTALK-80 [GOLD83} as described in Section 3. 
First we will describe some of the methods used in the example: 

Object Class Method Description 

object fillsSlot:In: This is a predicate. When used as 
'fillsSlot: name In: employee'. It returns 
True if the receiving object is the value 
of the 'name' instance variable in an 
'employee' object. 

object containingObject This method returns the object which uses 
the receiver as the value of one of its 
instance variables. For example, if the 
object 'SOl' received the message the 
result would be 'EO!', the employee' 
object which 'SOl' is contained in. 

class instancesOf Returns the objects which are instances of 
this class. 

class with: This message is used as 'Set with: a'. It is 
sent to the class object 'Set' and creates a 
new set containing the object 'a'. 
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set select: 	 This method takes one argument which is 
a predicate. It returns a new set which 
contains all of the members of the 
original set for which the predicate is true. 

set collect: 	 This method takes one argument which is 
a function and applies it to each member 
of the. receiving set object. The objects 
returned by the function applications are 
collected into a new set which is the 
result. 

employee name 	 Returns the value of the 'name' instance 
variable. 

employee salary 	 Returns the value of the 'salary' instance 
variable. 

Below are the sample security constraints: 

Simple Security Constraints 

Constraint: project in department is Secret 

project securityConstraintfl: 
[:Object I (Object instancesOf) select: 

[:ObjectToC!assify I ObjectToC!assify fillsS!ot: project 
In: department] 

l 
Level: Secret 

This constraint classifies all objects which fill the 'project' role in 'department' 
objects as Secret. The constraint is established by sending the anchor object 
'project' the block shown and the sensitivity level Secret. The block f1 first 
computes the set of instances of its argument. Elements of this set are then 
selected for inclusion in the result based on the block which takes an object as 
an argument and returns True if the object fills the slot named project in a 
department object. This constraint would classify object 'POI' from Figure 2 
as Secret 

Content-Security Constraints 

Constraint: name in employee where salary> 100000 is Secret 

name securityConstraintfl: 
[:Object I ( Object instancesOf) select: 

[:ObjectToC!assify I 
(ObjectToC!assify fillsS!ot: name 

In: employee) 
and: 

(((ObjectToC!assify containingObject)salary) 
> 100000) 

l 
Level: Secret. 

This constraint classifies all objects which fill the 'name' role in 'employee' 
objects if the corresponding 'salary' is greater than 100000. The constraint is 
established by sending the class object 'name' f1 and the sensitivity level 
Secret. The anchor object is the class object name. The block f1 returns the 
set of instances of its argument which satisfy the following block. The block 
combines two predicates using the ':and' message. The first is True if the 
object fills the 'name' slot in 'employee'. The second determines the 
corresponding 'salary' object and tests to see if its value is greater than 
100000. The effect of the above constraint would be to classify the object 
'N03' as Secret. 

Context-Security Constraints 

Constraint: 	 name in employee and salary in employee taken together are 
Secret 

employee securityConstraintfl: 
[:Object I (Object instancesOf) collect: [:each I each name]] 

f2: 
[:p I Set with: ((p containingObject) salary)] 

Level: Secret. 

This constraint groups objects into two element classification sets and assigns 
the set a sensitivity level of Secret. The constraint requires of a user reading 
more than one object in any set to have at least a Secret clearance. The class 
object 'employee' is the anchor and is sent fl, f2 and the sensitivity level 
Secret. The class object Employee is used as the argument to fi to compute 
the first elements in each classification set. The block first creates a set of all 
of the instances of 'employee', in this example the set (EO!, E02, E03, E04}. 
From this set it creates a new set by applying the block [:each I each name] to 
each member. This block returns the 'name' of the employee object. The 
resulting set is (NO!, N02, N03, N04}. Given an argument in {NO!, N02, 
N03, N04}, f2, maps it to the second element in the classification set. The 
function finds the containing object and then requests of it the salary object. It 
then creates a set from these objects. The resulting sets obtained in this way 
are shown in Figure 6. 

These methods allow a common method for defining simple, content-based 
and context constraints. Simpler methods could be developed if each type of 
constraint were considered separately. For example, a simple constraint can 
be specified by supplying only the class name of the objects to be classified. 
A content-based constraint needs in addition a predicate to be evaluated by 
the objects to be classified. 

4.3. 	 Model Restrictions 

This section describes the security model restrictions. The restrictions define a 
set of allowable object accesses. There are four parts to the model. The first 
part describes which object accesses are allowed based on the sensitivity level 
of the object and the current security level of the method making the request. 
The second part describes allowable assignments and allowable changes to 
object sensitivity levels. The next section describes allowable assignments and 
allowable changes to security classification levels for methods. The final 
section discusses the effect of security-inconsistent database states on 
mandatory security. 

4.3.1. Object Access 

A method activation executing with a current security classification level 
Lscurrent is allowed to: 

(1.1) 	 Read the instance variables of an object with sensitivity level L0 

such that L0 ~ Lscurrent· 

(1.2) 	 Modify the instance variables of an object with sensitivity level L0 

such that Lscurrent ~ Lo ~ Lsc!ear· 

In addition, pointer references are restricted as follows: 

(1.3) 	 A pointer to an unreadable object behaves exactly as a null object 
pointer. 

Rules (1.1) and (1.2) by themselves do not insure the simple-security property 
or the *-property [BELL 76] since the levels of objects and methods are 
allowed to change and these changes have not yet been defined. The 
maintenance of these properties can be insured only after examining the 
modification policy for sensitivity levels for objects and classification levels 
for methods. This is discussed in Section 5. 

4.3.2. Object Sensitivity Levels 

Security classification rules determine sensitivity levels for all objects at all 
times. In the interest of maintaining mandatory security some of these derived 
sensitivity levels can not be used. The following rules describe the way 
assignments are made, taking into account the sensitivity level derived from 
the security constraints and concerns for information flow restriction. 

(2.1) 	 Objects are assigned the lowest sensitivity level Lo at object 
creation time such that Lo dominates all sensitivity levels L 1, ... , 
Ln imposed by applicable security constraints and Lo dominates 
the security level, Lscurrent. of the method activation creating the 

object. In other words Lo = Lscurrent nL1 n ... nLn.1 

(2.2) 	 The security level of an object can only be increased. An object 
classified with a sensitivity level of Lo can be changed to level 

1 n represents the least upper bound defined on the security classification 
lattice by the partial ordering ~-
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Lo' if and only if Lo s LQ'. Downgrading of objects must be 
done by trusted method activations. 

(2.3) 	 The security level LQ of an object can be affected only by method 
activations executing with a current classification level Lscurrent 
such that Lscurrent s Lo. If this were not the case a covert 
channel would exist since a higher level subject could signal 
information to a lower level subject by increasing the sensitivity 
level of an object originally readable by the lower level subject, 
thus making it unreadable. This channel is pointed out in 
[WOOD87]. The model restriction allows a subject with a 
clearance level LS2clear to make modifications to the security level 
of an object which is visible to a subject with a clearance level 
LsIclear even when Ls!clear is strictly dominated by Ls2clear. as 
long as Ls !current ~ Ls2current· This approach decreases the 
amount of over-classification and at the same time eliminates the 
covert channel. 

4.3.3. Method Activation Security Levels 

A method activation executes with a security classification level Lscurrent 
determined by two quantities. The first is the clearance level Lsclear of the 
security subject which initiated the computation. Lsclear is the security 
clearance level of a user and applies to all methods which are executed on the 
user's behalf. The second quantity which determines Lscurrent is the current 
security classification level LSoriginator of the method activation which 
started this method by sending a message. Both of these quantities are at least 
conceptually carried by the message. A passive method is combined with a 
passive message to create a method activation which executes with a security 
classification level determined by Lsoriginator and Lsclear as obtained from 
the message. Below is a set of rules determining the current security 
classification of a method activation. 

(3.1) 	 The login method begins execution with classification level 
LScurrent =System Low. 

(3.2) 	 A method activation begins with a classification level Lscurrent = 
LSoriginator· 

(3.3) 	 If an attempt to read an object with sensitivity level Lo such that 
Lo s LSclear fails, the classification level of the method will be 

modified to Lscurrent' such that LScurrent' = Lscurrent nLo. 

(3.4) 	 A method activation object Omal is only visible to another 
activation object Oma2 and vice versa if either: 
(i ) Omal originated execution of Oma2· 
(ii) Omal originated execution of Oma3 and Oma3 is visible to 

Oma2· 

Rules (3.1) through (3.3) insure that LSclear will always dominate Lscurrent· 
Lscurrent starts at System Low and if Lscurrent s LSclear neither (3.2) or 
(3.3) will make LScurrent > Lsclear· Rule (3.4) states that method activation 
objects are only visible to other objects in the same calling graph. 

4.3.4. Model Enforcement and Security-Consistent Database 
States 

Security constraints are used to classify consistent entities only. At times 
during the creation or update of an object an entity can become inconsistent. 
When this happens it is not possible to immediately classify some of the 
objects involved. This complicates security enforcement since it becomes 
impossible to determine immediately if an operation can be allowed. The 
problem is illustrated in the following example. 

This example is interested in trying to create an 'employee' object and place it 
in the database. The employee object is 'E03' from the sample database shown 
in Figure 2. Assume 'Name' objects with corresponding 'Salary' objects 
greater than lOOK are Secret and all other objects are Unclassified. The 
subject's current classification level is Unclassified and its clearance level is 
Secret. The steps in the object creation are listed in Table 1 along with the 
sensitivity of the object being created or modified and Lscurrent• the current 
classification level of the method activation. 

&l.iQn Object Sensitivity ~ 	 l.~ 
1. Create employee object 'E03' Unclassified Unclassified 
2. Store 'E03' in department object 'D02' Unclassified Unclassified 
3. Create social security object 'SS03' Unclassified Unclassified 

4. Store 'SS03' in employee object 'E03' Unclassified Unclassified 
5. Create salary object 'S03' Unclassified Unclassified 
6. Store 'S03' in employee object 'E03' Unclassified Unclassified 
7. Create name object 'N03' Unclassified Unclassified 
8. Store 'N03' in employee object 'E03' Secret Secret 

Table 1 - Steps in Creating an Employee Object 

In steps 1 through 7, the database is not consistent. According to our 
assumptions, only the sensitivity levels of Name objects are affected by a 
relation to another object provided only in consistent objects. Once the 
'Salary' object is stored the correspondence between 'N03' and 'S03' is 
established and 'A. Talbot' becomes Secret. At this time the subject must 
change Lscurrent to Secret. There is a time between steps 7 and 8 when 'A. 
Talbot' has been entered in the system but not yet classified Secret. 

This problem stems from the fact that security constraints are applied after 
each change to an object and not when a consistent object has been created. 
The security constraints in the example classify names with corresponding 
high salaries as Secret and otherwise they are assumed to be Unclassified. In 
step 7 there is still no corresponding salary for the name 'N03' and so it is 
assumed Unclassified. In fact, the sensitivity level of 'N03' is unknown 
because no specific security constraint applies to the object when it is 
inconsistent. 

We are still investigating this problem. Our approach is to do these 
modifications inside a transaction. A transaction [DATE84] groups individual 
operations carried out on a database to be considered as one atomic change. A 
transaction has two possible outcomes. It can be committed in which case the 
transaction completes and its affect on the database is made permanent. It can 
be aborted in which case the database is restored to its state previous to the 
beginning of the transaction. The transaction allows the individual 
modifications needed to get to a security-consistent state to be considered one 
unit of change. It is described further below: 

1. 	 If an object is modified outside of a transaction it must go 
immediately to a consistent state, where each object is classified by 
a security constraint. The modification must not cause the 
classification of any object to become unknown. 

2. 	 If an object is modified inside a transaction the classification of an 
object can go through unknown states. When a change causes an 
object to go from an unknown classification to a known 
classification, the validity of the intervening operations is checked. 
If security is violated the transaction is aborted and the database 
state is restored to its previous state. 

This method is outlined in Table 2. 

The table outlines the actions involved in creating an employee object. There 
is one extra column in this example which represents the conditions under 
which the action is allowed by the security model. This condition is based on 
the as yet unknown sensitivity levels. In the table LN03 represents the 
unknown sensitivity level of the object 'N03'. Once step 9 is complete LN03 
is found to be equal to Secret, the condition on step 9 is not satisfied and the 
transaction must be aborted. 

5. Model Properties 

This section discusses properties of the security model. We don't attempt 
formal proofs of these properties but rather use informal arguments to 
demonstrate the properties. In the future we hope to develop a formal model 
and prove these properties at that time. 

5.1. 	 Simple Security Property 

The simple security property states that a subject with a current security 
classification level Ls is not allowed to read an object with a sensitivity level 
Lo such that Lo > Ls. In the notation used in this model it is, a subject with 
clearance level LSclear is not allowed to read an object with sensitivity level 
Lo if Lo > LSclear· This is ensured by restriction (1.1) from the previous 
section along with the fact that at all times LScurrent S LSclear· This follows 
from restrictions (3.1), (3.2) and (3.3). 
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Allowed on ConditionAction Object Sensitivity ~ 
1. Start Transaction 
2. Create employee object 'E03' Unclassified Unclassified 
3. Store 'E03' in department object 'D02' Unclassified Unclassified 
4. Create social security object 'SS03' Unclassified Unclassified 
5. Store 'SS03' in employee object 'E03' Unclassified Unclassified 
6. Create salary object 'S03' Unclassified Unclassified 
7. Store 'S03' in employee object 'E03' Unclassified Unclassified 
8. Create name object N03' LN03 LN03 LN03 ~ Secret 
9. Store 'N03' in employee object 'E03' LN03 LN03 LN03 ~Unclassified 
10. Abort Transaction 

Table 2 - Steps in Creating an Employee Object with Deferred Classification 

5.2. *-Property 

The *-property states that a subject with current security classification level 
Ls can not write objects with sensitivity level La such that Lo < Ls. The 
proposed model allows a subject to write objects with sensitivity levels below 
Lsclear as long as the subject does not have information from objects whose 
level strictly dominates the object written. Evidence the model enforces this is 
based on two facts, the first that Lscurrent dominates the sensitivity level of 
all information the method has obtained and second the method activation can 
not write or create objects such that LScurrent > Lo (from (1.2)). 

The information accessible to a method activation can come from its instance 
variables, information about its calling context and information available 
about the existence of unreadable objects. The information accessible from 
instance variables is covered by point (3.3), Lscurrent dominates the 
sensitivity level of all objects which are directly read by a method activation. 

Information read by the calling method activation can be passed on by the 
mere fact that the method is executed. For example, in the computation 
below, 

SecretObject ifTrue: [ UnclassifiedObject at: Answer put: True] 

the execution of the true block is predicated on the information in 
SecretObject. This method activation is restricted to start execution at the 
classification level of its originator by restriction (3.2), Secret in this case. 
This ensures that LScurrent dominates the level of its originating activation 
level and thus it dominates the sensitivity level of all information its 
execution could be predicated on. This also address the problem of information 
being transferred when the SecretObject is False, since the program can not 
store information when the value is True and it doesn't attempt to when the 
value is False, this program will not pass information about SecretObject. 

Information about the existence of objects is given to a method activation 
when it can distinguish between null objects and objects it is not allowed to 
read. This transfer of information is disallowed by (1.3). 

5.3. Message Safety 

Sending and receiving messages can not violate mandatory security. This will 
be discussed in two parts. Sending a message to begin execution of a method 
is discussed first, followed by a discussion of the object returned on 
completion of the method execution. 

A message is sent by an active method activation, MJ, to a passive object 
causing another method activation, M2, to begin execution. M1 is executing 
with a clearance level of LSclear and a current classification level of 
Ls !current· From restrictions (3.2) and (3.3) it can be seen that the method 
activation M2 is started with the same current authority level and the same 
clearance level. Any information which is transferred to the method activation 
M2 by beginning its execution is acceptable since both methods execute with 
the same current classification level. 

Restriction (3.3) places the upper bound for LS2current to be LSclear· Thus 
the upper bound on any object returned to MI by M2 is also LSclear. by (3.3) 
and (1.2). This object can always be read by MI because of (3.3) and the fact 
that the same level for LSclear applies to both method activations. Security 
can only be violated if M2 can return higher level information to MI and MI 
does not increase its current classification level to match that of M2. If M I 
attempts to read the object returned it will raise its classification level 
according to (3.3) and security will not be violated. If M I does not read the 
object it will not receive the information and security will again not be 
violated. 

5.4. Storage Channels 

This section will discuss covert storage channels. The main threat of a covert 
channel in this model comes from covert signalling using the sensitivity 
levels of objects. This problem can exist in security models which allow the 
sensitivity levels of objects to change. The signalling is done by allowing a 
high level subject to modify the sensitivity levels of objects, making them 
either visible or invisible to a lower level subject. We have added restrictions 
to the model to disallow this signalling. Method activations are objects but 
have different restrictions on them than normal objects. First the restrictions 
for normal objects will be discussed and then the special case of method 
activations is discussed. 

To disallow signalling through the sensitivity level of normal objects, 
restriction (2.3) was added. This forbids a high level subject from modifying 
the sensitivity level of an object visible to a lower level subject indirectly. 
This can also take place directly if the subject tries to modify a lower level 
object, and is disallowed by (1.2). It takes place indirectly when a change to a 
higher level object causes the security constraint derived sensitivity level Lc 
to change. This is a natural restriction if the security level of the object is 
actually recorded in the object and the method activation making a change to 
an object supplies the authority to update all changed sensitivity levels. This 
ensures that a method activation MI can only change the visibility of an 
object visible to another method activation M2 ifLSiclear ~ LS2clear· This 
transfer of information is legitimate and does not violate security. 

Method activations violate the above restriction. Restriction (3.3) allows the 
change of a method's security level conditioned on the existence of an object 
with a higher classification level. This can allow a covert storage channel if 
another method activation can monitor the classification level of the method 
activation. A method activation is an object which changes its visibility to 
other method activations depending on its sensitivity or classification level. 
Restriction (3.4) was added to eliminate this possible channel. Method 
activations are allowed to see other method activation objects in the same 
calling graph since this may be necessary in practice. This does not cause a 
channel since the method activation object of method activations in the same 
calling graph is always visible to another method activation in the same tree 
and will cause Lscurrent of an observing method to rise to the sensitivity 
level of the activation being observed. This is because they share the same 
value for Lsclear• (see discussion of message safety above). 

6. Conclusion 

We have proposed a security model for a Multilevel Secure Object-Oriented 
System. The model is posed in terms of an object-oriented computation model 
incorporating distributed co-operating objects. Each object is assumed to be a 
self-contained computing element whose only interaction with other objects is 
through sending and receiving messages. 

The model contains extensions to support the data classification necessary for 
use in MLS/DBMS. This security model allows a subject to act with the 
lowest classification level necessary to accomplish a task and thus avoid over­
classification of data in the presence of updates. This allows data classification 
to follow a set of security constraints defined on data containers and not the 
security clearance level of the subject making the updates. 

One distinct advantage of our approach is that the object-oriented computation 
model provides a uniform treatment for all objects in the system. This sim­
plifies the statement of a security model and the subsequent design. 

There are many issues which remain to be examined. Although covert storage 
channels in the proposed security model have been considered we have not as 
yet performed a formal analysis of these storage channels. The practicality of 
some of the methods proposed, such as the deferred enforcement for security­
inconsistent database states need to be determined. 
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We intend to further develop this security model and analyze its security 
properties more formally. At that time we will consider the problem of 
system complexity and verification. We also intend to implement the model 
in an object-oriented system to investigate the feasibility of the model and 
performance issues related to its implementation. 
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A security policy and a formal policy model for the 
security properties of an internet system are 
presented. The model is a result of the resolution of 
specific system design issues, environmental attri ­
butes, security requirements and the desire to for­
mally specify and verify the internet system design 
with respect to specific security constraints. 
Although the modeling approach is general and 
applicable to many systems, the actual resulting 
model is system-specific. 

Introduction 

In this paper, we document a security policy and formal 
policy model for an internet system. We give a rationale 
for the model and its development with respect to related 
requirements from the DoD Trusted Computer System 
Evaluation Criteria, DoD 5200.28-STD [1]. The model pro­
vides a view of the internet system as a whole and not as a 
collecti;n of components. 

Several kinds of security models have been described in 
recent papers [2,3,4]. The specific kind of security model 
one would use is driven by the functionality of the target 
system [5]. Such systems include operating systems and 
their kernels, network components with specific functional 
requirements, networks themselves and data base systems." 
These are being analyzed from a formal modeling point of 
view. Adaptation of any single security model, such as the 
Bell-LaPadula model [6], for all targets may not bt> 
appropriate because of the variety of analyses and particu-. 
Jar requirements of interest. 

Many models [2,3,4,6] describe system security in terms 
of states (or state-transitions) of the system. The use of a 
state oriented model forces an order on the events of a sys­
tem. In the case of a system that provides a datagram ser­
vice, one cannot depend on the order of the arrival and 
departure of datagrams at an individual component or at 
the system as a whole. The security properties of the com­
ponents of the datagram system as well as the datagram 
system itself must therefore be independent of these 
aspects. The model we present is independent of the order 
of the datagrams as they pass through the system. 

Background 

At the fall 1987 SIGSAC conference at UCLA, J. Millen 
summarized reasons for modeling systems and what system 

models are to accomplish [7]. First, models are constructed 
to provide a descriptive capability that can be used to iden­
tify the important concepts. Second, models are con­
structed to provide a general mechanism to analyze these 
important concepts. Third, models are constructed to pro­
vide a mechanism for obtaining specific solutions. They are 
to be used to answer questions about the system. 

The following applies those observations to security 
models. First, models are used to describe the security pro­
perties of the system. Second, they are used to provide a 
means to analyze these· security properties. Third, they are 
used to provide a mechanism to answer questions about the 
security of the system. Security models also are used to 
establish the basis for the formal verification of the system 
security design. In this paper we present an internet formal 
policy model and illustrate these modeling observations. 
We provide a general modeling approach and offer a specific 
internet policy model. 

The Multinet Gateway System security policy model 
provides a description of the security properties of a system 
of packet switch nodes as a whole system. The model does 
not deal just with a node within the system, nor just the 
software portion of the corresponding Trusted Computing 
Base[!]. This is because a user of an internet system i~ 

interested in what the entire system will do with his infor­
mation, from visible interface to visible interface. His 
interest will not be satisfied merely by telling him about the 
properties of some piece of software embedded deeply 
within the internet system. The focus of the formal policy 
model is protection against compromise together with 
specific integrity constraints that support protection against 
compromise. 

The formal policy model defines, as important from a 
security point of view, the notions of information units, 
their acceptance into the system, the associated internal 
·processing (termed derivation, which includes information 
unit isolation by security label) and their delivery out of the 
system. A definition of system security is then made in 
these terms. The model formulation is expressed in terms 
of what information is allowed to flow. It is not expressed 
in terms of states and state-transitions (see Sections 3, 4). 
This formulation defines a general mechanism for the 
specification and analysis of the security properties of an 
internet system. By making specific choices within the com­
ponents of the formal policy model, distinct policies can be 
specified and implemented. This includes a portion of a 
DoD policy expressed as a "dominance" [1] relation on sen­
sitivities. The model has been used to provide a means to 
establish consistency among the security properties. 
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Multinet Gateway System and Environment Considerations 

An internet system is a collection of gateways intercon­
nected by networks that provides a datagram service to 
Hosts. To set the framework for the policy itself, a brief 
discussion is provided of the Multinet Gateway System 
(MGS), its environment and related security concerns. The 
reader is encouraged to read [8] for additional background 
information. The internet system, security policy and for­
mal policy model are described and illustrated in this paper 
by direct usage of the MGS concepts and terminology. 

The purpose of the MGS is to increase inter-operability 
and survivability of DoD communications networks and to 
provide secure communications. Increased interoperability 
is achieved by allowing Hosts on different networks, with 
different network protocols, to exchange data without 
resorting to exceptional procedures. Survivability is 
achieved by providing the capability to use public networks 
as transfer mechanisms to reestablish DoD internet connec­
tivity. Secure communication is achieved by a combination 
of label-based access control mechanisms, information isola­
tion and processing separation. Encryption is provided 
where necessary. 

In Figure 1, we show a configuration of a MGS, the 
attached networks and their Hosts. The configuration con­
sists of a MGS, together with Hosts and End Networks 
external to the MGS. Hosts are connected to the MGS via 
End Networks. Neither End Networks nor Hosts are under 
the control of the MGS. The system boundary of the MGS 
is identified in the figure. It is necessary to identify and 
describe the security characteristics expected of the MGS 

'by the Hosts and interconnecting networks, as well as the 
characteristics expected of the Hosts and interconnecting 
networks by the MGS. Hence, these characte~stics and 
assumptions form the basis for the MGS security policy. 

The MGS consists of MG NODES and Transport Net­
works connecting the MG NODES. Two aspects of the 
figure are to be noted for modeling purposes. First, the 
MGS, not just a node, is to be identified by the formal 
model as a single entity. Second, the Transport Networks 
provide a private subnet that is to be viewed as inside the 
MGS and hence under its control. One can achieve this 
result by actually placing the Transport Networks inside a 
physical boundary completely under the control of the MGS 
or one can use some means, say encryption, to guarantee 
that MGS traffic across some resource shared with other 
systems (i.e., the Transport Networks) is isolated from those 
other systems. This is the basis for a secure channel within 
the MGS. A secure channel is a generalization of the 
"trusted path" concept as described in [1]. A secure chan­
nel is realized by specific mechanisms that allow the com­
munication of sensitive information, both within a Multinet 
Gateway Node and among gateway nodes. A Host con­
nected to a Transport Network does not have access to this 
secure channel. 

Finally, in providing the datagram service for end-users, 
additional information is required to be handled by the 
MGS that is not end-user data. Examples include specific 
protocol information or control information. The system, 
therefore, ~:teeds to distinguish between these two types of 
information. 

M UlTINET GATEWAY SYSTEM 

---G 

--G 

SYSTEM BOUNDARY 

•INPUT/OUTPUT SECURITY ACCESS CHECKS A4897 

Figure 1. The Multinet Gateway System As an Internet 

Security Policy 

Perimeters and Policy 

In the specification of the security policy, security responsi­
bilities are allocated to the components of MGS, End Net­
works and Hosts. Vl/e use the notion of a perimeter enclos­
ing various components to bound the security properties of 
the components. There are two perimeters of importance 
for the Multinet Gateway System: the Security Perimeter 
and the Certification Perimeter. 

The Security Perimeter of the MGS extends to the Inter­
net Protocol (IP) layer of protocol on a Host. This is 
because the MGS provides an IP datagram service, and 
because ·neither End Networks nor Hosts are under the con­
trol of the MGS. For example, a Host and an End Network 
are to provide the correct security sensitivity of each 
datagram sent to the MGS. The security perimeter 
extends, therefore, beyond the system boundary of the· 
MGS. These associated assumptions and security charac­
teristics are to be inc! uclecl in the internet ,security policy, 
and consequently, included in the formal specification. 

The Certification Perimeter encompasses the internet 
security relevant functions. The Certification Perimeter is 
contained within the Security Perimeter. For the MGS 
Certification Effort, security assertions are made and being 
proven (verified) concerning security relevant functions that 
are within the Certification Perimeter. Security assump­
tions are made also about security relevant functions out­
side the Certification Perimeter, but within. the Security 
Perimeter. 

The MGS assumes security responsibility for Host data 
at a MGS Port. This Port is the interface between the End 
Network and the MGS. The collection of MGS Ports .estab­
lishes the MGS Certification Perimeter, which is the system 
boundary and i<;lentified in Figure 1. The MGS Security 
Policy, as seen by Hosts, is defined with respect to this 
Certification Perimeter. 

The MGS implements a security policy based on the 
DoD Security Policy. The enforcement of this security pol­
icy depends upon a combination of administrative pro­
cedures and technical enforcement mechanisms. Adminis­
trative procedures are necessary to determine and validate 
the associated security attributes of each Host and assign 
those security attributes to the appropriate MGS Port. 
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Technical enforcement mechanisms are then used to ensure 
that all data exchanged via the MGS is always mediated 
against these security attributes and that the security attri ­
butes are protected against unauthorized modification. 
Hosts are expected to have a wide range of security attri ­
butes. Of concern here are those Host security attributes 
related to the exchange of data through the MGS. These 
Host specific security attributes must be converted into a 
uniform set of Sensitivity levels, to ensure that there is con­
sistency in Sensitivity level naming conventions. 

Multinet Gateway System Security Policy 

The MGS Security Policy encompasses Protection Against 
Compromise, Integrity, Provision of Service, and Accounta­
bility. The full policy statement is given in [9]. In particu­
lar, the Protection Against Compromise Policy is one of 
assuring the secrecy of the information within datagrams 
handled by the MGS. Related to this are the integrity con­
siderations that are in direct support of the maintenance of 
that secrecy. The organization of the statements emphasize 
the relationship between a restricted form of integrity and 
the overall policy for Protection Against Compromise. 
Since the scope of the formal model is only on the Protec­
tion Against Compromise together with specific integrity 
constraints, we do not document the full Accountability 
Policy or the Provision of Service Policy in this paper. 

Protection Against Compromise: The intent of the 
MGS Security Policy for Protection Against Compromise is 
that information flowing through the MGS will not be sent 
to Hosts and End Networks that are not allowed to see that 
information. The exchange or transport of information 
between Hosts and the MGS shall be either end-user infor­
mation or non end-user information. The policy of Protec­
tion Against Compromise consists of the following rules: 

DATA SECRECY 

a. 	 The security policy shall provide for the control of 
information within datagrams based on the labeling of 
information. 

b. 	 This policy refers to end-user information at the MGS 
certification perimeter. 

c. 	 The unit of data exchange between Hosts and the 
Multinet Gateway System for end-user information 
shall be termed an information unit. 

d. 	 The unit of data exchange between Hosts and the 
Multinet Gateway System for non end-user informa­
tion shall be termed a non information unit. 

e. 	 There shall be the notion of a Sensitivity level associ­
ated with each information unit that is to reflect the 
Sensitivity of the information unit. The Sensitivity 
level shall be realized via a security label. The secu­
rity label shall consist of a security classification and a 
set of security categories. 

f. 	 Hosts may be authorized to send and receive data at 
more than one Sensitivity level. Associated with each 
Multinet Gateway System Port is one or more security 
labels authorized for the Hosts connected to that port 
via an End Network. There may be separate sets of 
security labels for incoming and outgoing ports. 

g. 	 It shall be possible to associate a security label with 

each information unit as it enters a port. 


h. 	 The security label associated with an information unit 

accepted into the System shall be one of the securdy 


:1.2 

labels associated with the port on which the unit was 
received. Otherwise, the information unit will not be 
accepted. 

i. Information units may be transformed as they pass 
through the system. The transformations will be lim­
ited, however, so that data from one or more informa­
tion units are combined into one information unit via 
a transformation only when the associated security 
labels are equal. The security label of the result is to 
equal the secu1·ity label of the information units being 
transformed. The resulting unit is said to be Derived 
From the associated information units being 
transformed. 

j. If an information unit is delivered to a port for 
transmission to a Host, then (1) it was Derived From 
information units accepted into the system and (2) the 
security label associated with this unit is one of the 
security labels associated with the Destination port. 
Otherwise, it will not be delivered. 

k. Information units enter and leave the MGS only via 
End Networks. 

L Non information units received by the MGS will not 
compromise any information in information units and 
no non information unit sent out a MGS port will con­
tain information from an information unit. 

The above policy statements can be summarized as fol­
lows: The security label associated with an information unit 
is not to be changed while the unit is inside the system, the 
association between security label and data is to be main­
tained throughout the system, and data from two different 
information units can be combined inside the system only 
when the associated security labels are the same. An infor­
mation unit will be allowed to enter (leave) the system only 
if an associated port possesses a security label set compati ­
ble with the security label of the information unit. Further, 
there shall be no mixing of information units with non infor­
mation units. 

The policy itself is quite general and can be used to 
describe a number of policies for pote.ntially different appli­
cations. vVe give a summary of examples of this in Section 
5. 

INTEGRITY IN SUPPORT OF DATA SECRECY 

The Multinet Gateway Integrity Policy is based on the 
notion of information unit described above. The Integrity 
Policy requires that information flowing out of the MGS is 
equivalent to information read into the MGS. The Integrity 
Policy provides the explicit definition of the Derived From 
relationship mentioned above. The terms used in the policy 
are the same as those for Protection Against Compromise. 
The Integrity Policy consists of the following rules: 

a. 	 This policy refers to information at the MGS 
certification perimeter. 

b. 	 Such information is embodied in information units, as 
specified in the policy for Protection Against 
Compromise. 

c. 	 An information unit delivered from an MGS must be 
Derived From at least one information unit accepted 
into the MGS. (Note that this statement is related to 
statements (h) and (i) of the Protection Against 
Compromise Policy.) 

d. 	 The delivered information unit must satisfy one of the 
following properties: 

-------------------------------·-----·--·-·· 



1. 	 It must be the same as an information unit 
accepted into the MGS, 

2. 	 Its contents must be contained in an information 
unit accepted into the MGS, or 

3. 	 Its contents are a combination of information 
units accepted into the MGS. 

The MGS .is defined to be Secure with respect to Pro­
tection Against Compromise, if at all times, every informa­
tion unit ever sent by the system to a port for delivery to a 
Host satisfies the Data Secrecy and Integrity statements 
above. 

A distinct integrity model is not provided. Only these 
statements related to integrity are formally modeled and 
verified and then only within the context of the model for 
protection against compromise. 

Accountability: The MGS Accountability Policy refers 
only to events that take place inside the MGS. The events 
that will be monitored are those that either affect the secu­
rity of the system or represent an attempted security viola­
tion. These events will be logged in a protected fashion and 
made accessible to appropriate operators of the MGS. 
Since the MGS node is an Internet Device acting at the IP. 
level, by its nature it is a best effort datagram forwarding 
device. The associated policy statement is that the MGS, 
within the limits of the IP protocol, will provide a best 
effort datagram forwarding service in getting the accounta­
bility information to the appropriate audit .gathering facil­
ity. 

Policy Statement: MGS Security: The MGS is said to be 
SECURE if is it secure with respect to both the Policy on 
Protection Against Compromise and the Policy on Accoun­
tability. 

It is important to note that the formal model (given in 
Section 4) as well as the formal specification and its 
verification is the basis for increased assurance at the Al 
level [1] that the running MGS satisfies the Policy on Pro­
tection Against Compromise. 

MGS Model of Policy: Narrative 

In this section, we present a narrative description of the 
Multinet Gateway System Security Policy Model. The 
model is one one of an external view of the system. The 
model is based on identified terms, a collection of security 
assertions about these terms, and specific relationships 
among them. 

The formal description of the properties of the system, 
on which this narrative description is based, is given in Sec­
tion 4. A discussion of several consequences of the formal 
model and how various security policies can be described 
using the model are given in Section 5. 

Primitive Terms 

The motivation and security policy specification of the pre­
vious sections have been given in rather concrete terms. 
The formal model is presented in more abstract terms to 
better describe the important concepts. The following list 
identifies terms in the model. They are given with a brief 
description of the intended semantics. The list also pro­
vides a means to associate the abstract terms with the con­
crete terms used in the previous sections. 

INTERNAL_SYSTEM 
The 1NTERNAL_SYSTEA1 is the system under 
diseussion. This is the system that is being 
modeled. This section describes the security 
model of the INTERNAL_SYSTEM, which 
relates to the MGS discussed in the previous sec­
tions. 

EXTERNAL_SYSTEM 
The INTERNAL_SYSTEM provides data 
transfer services for the EXTERNAL_SYSTEMs. 
Although security properties of the 
EXTERNAL_SYSTEMs are not being demon­
strated, assumptions about these security pro­
perties will be modeled. EXTERNAL_SYSTEMS 
relate to the Hosts, which use the services of the 
MGS. 

!_W2re 
The INTERNAL_SYSTEM receives information 
from the EXTERNAL_SYSTEMs via 2"_wires. 
An i_wire represents an incoming connection to 
an END NETWORK. 

The INTERNAL_SYSTEM sends information to 
the EXTERNAL_SYSTEMs via o_wires. An 
o_wire represents an outgoing connection to an 
END NETWORK. 

information_unit 
There is a set IU of information_units. They are 
used to carry end-user information among 
EXTERNAL_SYSTEMs by way of the 
INTERNAL_SYSTEM. Note that we use the 
term information_unit here rather than Protocol 
Data Unit or datagram for the sake of generality 
and historical reasons. The two names refer to 
the same concept. 

security_label 
There is a set SL of security_labels. A single 
security_label is used to mark the Sensitivity of 
an information_unit. Each i_wire (o_wire) is 
associated with a set of security_labels. An 
information_unit is accepted for transfer from ali 
i_wire (or transfer to an o_wire) only if its 
security_label is an element of the set of 
security_labels associated with the i_wire (or 
o_wire). Note that it is not necessary at this 
time to describe an inner structure or com­
ponents of a security_label in order to define the 
various functions on a security_label, or to define 
what is meant by the term SECURE system. A 
security_label encompasses the notion of a secu­
rity attribute as used in the previous sections. 

Derived_From 
There is a notion of one information_unit being 
Derived_From one or more other 
information_units. The Derived_From operation 
permits the description of the security properties 
of fragmentation, assembly, transfer from one 
location to another, encryption and decryption. 

Figure 2 illustrates this more general setting and is to aid 
the understanding of these terms when compared with the 
terms used to describe the formal model. ·Again, it is 
important to note that the policy model views the 
INTERNAL_SYSTEM as a black box. 
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Figure 2. A Pictorial Description of the Model 

Security Assertions 

The following assertions are to be satisfied by the system. 
By communication we mean the transfer of 
information_units. 

a. 	 i_wires and o_wires always connect 
EXTERNAL....SYSTEMs to the INTERNAL_SYSTEM 

b. 	 The only communication into and out of the 
INTERNAL....SYSTEM is via i_wires and o_wires. 

c. 	 All communication across i_wires and o_wires consists 
of information_units. 

d. 	 Each information_unit has an associated 
security_label. 

e. 	 Each i_wire and each o_wire has an associated set of 
security_labels. 

f. 	 The INTERNAL_SYSTEM accepts an 
information_unit only from i_wires and only if the 
security_label of the information_unit is an element of 
the set of security_labels associated with the cwzre 
bearing the information_unit. 

g. 	 The INTERNAL_SYSTEM delivers an 
information_unit only to o_wires and only if the 
security_label of the information_unit is an element of 
the set of security_labels associated with the o_wire to 
which the information_unit is delivered. 

h. 	 If a given information_unit is delivered to an o_wire, 
then it was Derived....From information_units accepted 
from i_wires. Additionally, the security_label of each 
such accepted information_unit must equal the 
security_label of the delivered information_unit. 

There are three major points addressed by these assertions. 
First, there is an acceptance criterion (Assertion f). 
Secondly there is a Derived....From criterion (Assertion h), 
and finally there is a delivery criterion (Assertion g). The 
other assertions are there to guarantee that the 
INTERNAL_SYSTEM has the appropriate relationship with 
EXTERNAL_SYSTEMs. Figure 3 illustrates the acceptance 
into , derivation and delivery out of the MGS. 

INTERNAL SYSTEM 
0 WIRES 

"----ACC - DER - D 

Figure 3. Acceptance, Derivation and Delivery of the Model' 

MGS Model of Policy: Mathematical Description 

This section presents the formal model of the security policy 
on Protection Against Compromise, which is given in Sec­
tion 2. 

The MGS Security Policy Model is a structure consisting 
of three components. The first component, specified in sec­
tion 4.1, is a collection of sets. The second component, 
specified in section 4.2, is a collection of functions using 
these sets. These functions are termed "primitive" because 
they are the basis of all the security relationships being 
specified. The third component, specified in section 4.3, is a 
collection of boolean-valued functions which specify the 
necessary relationships among the various functions. These 
are the security assertions. Using these relationships of the 
model, an expression is then given that specifies what it 
means for a system to be SECURE and based on the 
model. 

Throughout this section the notation PS {M} is used to 
denote the POWER SET of a given set M. For a set M, the 
power set, PS {M}, is the set of all subsets of the set M. 
Additionally, for two arbitrary sets, A and B, A X B 
denotes the cartesian product of the sets. 

Underlying Sets For the Policy Model 

Let I_ WIRE, 0_WIRE, SL, IU and DU be non-empty sets. 
Let elements of these sets be called i_wires, o_wires, 
security_labels, information_units and data_units, respec­
tively. No assumptions are made about the sets other than 
that they are finite and no two of them have a common ele­
ment. Further, let IU contain two sets, IU;n and IUout. Ele­
ments of IU;n, (Iuout) represent information_units coming 
into (leaving) the INTERNAL....SYSTEM, respectively. Let 
DU contain a distinguished element, termed the 
null_data_unit. Let INTERNAL_SYSTEM be a single 
object. These sets model the primitive terms in the previ­
ous section except for the term Derived....From. 

Primitive Functions 

The following functions are the basis for the security asser­
tions identified in the policy section. Let functions be 
specified as follows: 
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Derived_From: 

Derived_F'rom : IUout -+ PS (IU;n) (1) 

The function Derived_From .associates with each 
information_unit, iu, leaving the INTERNAL_SYSTEM, a 
subset of information_units that enter. The Derived_From 
function can be used to discuss the necessary security pro­
perties of fragmentation, assembly, transport, encryption 
and decryption. This discussion is illustrated by presenting, 
in Section 5.2, the specific relationship between fragmenta­
tion and assembly with Derived_From. 

Is_Received: 

Is__Received : IU;n X L WIRE -+ { T , F } (2) 

The function Is_Received associates with each 
information_unit and o_wire pair a boolean value. If 
Is_Received (iu, i_wire}, then the iu was actually received 
on that i_wire by the INTERNAL_SYSTEM. 

Is_Delivered: 

IsJJelive1·ed : IUout X 0_ WIRE -+ { T , F } (3) 

The function Is_Delivered associates with each 
information_unit and o_wire pair a boolean value. If 
Is_Delivered {iu, o_wire}, then the iu was actually sent to 
that o_wire by the INTERNAL_SYSTEM. 

Sensitivity: 

Sensitivity : IU -+ SL (4) 

The Sensitivity function associates with each 
information_unit a security_label. The security_label associ­
ated with each iu is used to control the acceptance and 
delivery of information_units on particular i_wires and 
o_wires. 

L Wire_Allow: 

LWire_Allow: !_WIRE-+ PS (SL) (5) 

The function L Wire_Allow associates with each i_wire a 
subset, possibly null, of security_labels. An iu can be 
accepted into the INTERNAL_SYSTEM only if an 
appropriate relationship exists between the Sensitivity of 
the iu and the set of security_labels associated with the 
i_wire. The function L Wire_Allow allows one to describe 
that relationship, which is given by the function 
Is_Securely_Accepted, and specified in the Security Asser­
tions subsection ( 4.3). 

0_Wire_Allow: 

O_Wire_Allow: O_WIRE-+ PS (SL) (6) 

The function 0_Wire_Allow associates with each o_wire a 
subset, possibly null, of security_labels. An iu can be 
delivered from the INTERNAL_SYSTEM to the o_wire only 
if an appropriate relationship exists between the Sensitivity 
of the iu and the set of security_labels associated with the 
o_wire. The function 0_Wire_Allow allows one to specify 
that relationship, which is given by the function 
Is_Securely_Delivered, and specified in the Security Asser­
tions subsection also ( 4.3). 

Data: 

Data : IU -+ DU (7) 

The function Data associates with each information_unit a 
data_unit. It represents the data portion of the 

information_unit. 

Is__?art_Of: 

ls_.Part_Of :DUX DU-+ { T , F} (8) 

The function Is__?art_Of define a relation on data_units. 
Let it be reflexive and transitive. 

Data_Combine: · 

Data_Gombine : PS (DU)-+ DU (9) 

The function Data_Combine permits one to describe the 
bringing together of data_units into a single data_unit. Let 
the image of the empty set, (which is an element of 
PS (DU}), be the distinguished element of DU, the 
null_data_unit. 

Data_Accounted_F'or: 

Data_Accounted_For : IU X PS (IU) -+ { T , F } (10) 

Data_Accounted_For is defined as: 

Data_Accounted_For (iu, X) 

!
iff 


There exists a set P, P ~ DU, such that 

Data (iu) = Data_ Combine (P) & 


p E P implies there exists xP E X, Is_?art_Of (p, Data (xp) ) 


x EX implies the.re exists p, E P, Is_?art_Of (p,, Data (x)) 

This function describes what it means for a given data_unit 
to be related to other data_units. 

Security Assertions 

Security assertions identified in the narrative description 
are expressed in mathematical terms next .. 

Is_Securely_Accepted: The following definition specifies 
what it means to be accepted into the 
INTERNAL_SYSTEM. 

Is_Securely_Accepted : IU;n X L WIRE "-+ { T , F } (12) 

Is_Securely_Accepted must ha~e the property: 

Is_Securely_Acceptdd (iu, w) 
iff 

Sensitivity (iu) E LWire_Allow (w) & (13) 
, Is_Received (iu, w) 

The function Is_Securely_Accepted, is related to the 
functions Sensitivity, L Wire_Allow. and Is_Received. The 
necessity for such a relationship is that. in an actual system 
the INTERNAL_SYSTEM may read in info'tmation_units 
from an i_wire and maynot be able to determine the Sensi­
tivity of the particular information_unit until after it has 
been read in. Once the Sensitivity has been determined, it 
is then possible to say whether it is permissible to process it 
further. If Is__Becurely_Accepted (iu, w), then the iu is a 
candidate for further processing. 

Is__BecurelyJJerived: 

· Is_Securely_Derived : IUout -+ { T , F } (14) 

Is_Securely_Derived .must have the property: 

Is_Securely_Derived (iu) 
iff (15) 

for every iu 1 E Derived_From (iu) 

j
Sensitivity (iu) = Sensitivity (iu 1) & 

for some i_wi1·e w, Is_Securely_Accepted (iu 1 

, w) 

Data_Accounted_For (iu, Derived_From (iu) ) 


The function Is_Securely_Derived is related to other 
functions. This relationship is specified in expression (15). 
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Specifically, a given information_unit is determined to be 
securely derived if and only if three conditions are satisfied. 
First, the particular information_unit was Derived_From a 
set of information_units that they themselves were securely 
accepted. Second, each of these securely accepted 
information_units have the same Sen.sitivity as the derived 
information_unit. Third, the data portion of derived 
Information_unit equals the combination of data_units that 
are themselves part of the data of the incoming 
information_units. Note that the Sensitivity of the derived 
iu is the same as the Sensitivity of the accepted ius. If an 
information_unit is determined to be securely derived, then 
it is a candidate for further processing. 

Is_Securely_Delivered: The next definition specifies the 
conditions that must be met before an information_unit can 
be placed on a particular o_wire. 

ILSecurely_])elivered: IUout X O_WIRE--+ { T, F} (16) 

Is_Securely_Delivered must have the property: 

Is_Securely_])elivered (iu, w) 
iff 

{ 
Sensitivity (iu) E O_Wire_Altow (w) 
[s_Securely_j)e'rived (iu) 

&} (17) 

The function Is_Securely_Delivered is a boolean function. 
Just as there is a specific relationship between the function 
Is_Securely_Accepted and some other functions, there is to 
be a specific relationship with the function 
Is_Securely_Delivered and additional functions. Expression 
(17) gives that relationship. Specifically, a particular 
information_unit is said to be securely delivered if and only 
if two conditions are satisfied. First, the set of 
security_labels associated with that particular o_wire must 
have as an element, the security_label of the particular 
delivered information_unit. Second, the information_unit 
must have been securely derived. These are the conditions 
specifying what it means to deliver an information_unit to a 
given o_wire securely. 

Definition of a Secure System 

The definition of a secure system is given in this subsection. 
As presented, the MGS Security Policy Model is a structure 
consisting of three components. Even though it allows for 
considerable flexibility, it is intended that the meaning of 
security be the same no matter how one may choose to use 
the flexibility provided. The flexibility is allowed by letting 
the actual choice of the sets (first component) and the func­
tions ,defined using them (second and third components) be 
left to a given design and implementation approach. 

In order to accurately describe what it means for a sys­
tem to be Secure based on the model, two additional 
notions need to be described. First, definitions of what an 
instance of the model is and what security means within 
that particular instance of the model need to be identified. 
Second, a means of relating a system to a particular 
instance of the model needs to be identified. 

An INSTANCE_OF..MODEL is defined to be a particu­
lar choice for each of the five sets and a particular choice of 
the primitive functions, e.g., Derived_From, Is_Received, 
Is_Delivered, Sensitivity, I_ Wire_Allow, etc. that satisfy the 
specified expressions (1 )-(17). 

Note that the functions, Is_Securely_Accepted, 
Is_Becurely_Derived and Is_Becurely_Delivered, are defined 
in terms of the previous functions and no arbitrary choice 
can be made for them. 

An INSTA.NCE_OF ...MODEL is defined to be SECURE 
if, for the corresponding choices made in determining the 
particular INSTANCE_OF....MODEL, the following 

statement is true: 

for every iu E IU 
if 

Is_Delivered (iu, w) (18) 
then 

Is_Securely_Delivered (iu, w) 

Note that the expression in (18) is the only place where 
the function Is_Delivered is related to the function 
Is_Securely_Delivered. 

Consider an arbitrary system and a given instance of 
the model, denoted by INSTANCE_OF'....MODEL. An asso­
ciation of the INSTANCE_OF...MODEL to the entities of 
the system is defined to be a mapping from the particular 
components of INSTANCE_OF....MODEL to the system's 
entities. 

A system is said to be SECURE and Based on the 
Model if the following conditions are satisfied. First, there 
exists an instance of the model, INSTANCE_OF...MODEL. 
Second, there exists an association of the instance of the 
model, INSTANCE_OF....MODEL, to the system's entities. 
Third, suppose the system actually delivers an entity that 
corresponds to an information_unit under the particular 
association and model instance. Then the expression num­
bered (18), when interpreted within the system via the same 
association, is to evaluate to true if and only if the expres­
sion (18) within INSTANCE_OF....MODEL evaluates to true. 

MGS Model of Policy: Discussion 

The policy stated as the MGS Security Policy in Section 2 
and the associated formal model given in Section 4 are very 
general. Depending on given instances of the model, includ­
ing the definition of security_labels and the association of 
security_labels with the ports of a system, all sorts of flows 
are possible. To enforce DoD policy, one expects to use the 
DoD security labeling scheme. One expects to not permit 
the write down of information; that is, labeling a port with 
a high label when all the EXTERNAL_SYSTEMs connected 
to it are at low level. The associated wires should not be 
permitted to carry the high data. The model, in fact, disal­
lows this. This is one of the places where the administra­
tive actions in determining the security_labels associated 
with ports becomes crucial to enforcing DoD policy. 

Specific observations about the formal model and the 
type of policies one can obtain from the model are 
summarized below. 

Observations On the Formal Policy Model 

There is neither a "destination" nor "source" function 
defined on the set of information units. While it is tempt­
ing to introduce such concepts, it is not necessary for this 
particular environment, and would probably impose addi­
tional difficulties for the formal verification of a system 
based on such a model. Additionally, the formal model does 
not explicitly incorporate (at this time) 
non_information_units although the security policy does 
identify such entities. The focus of the formal modeling has 
been on handling end-user information rather than on 
modeling, for example, protocol control messages. Such 
information would not have the same acceptance or delivery 
checks. Further, such non end-user information leaving the 
system needs to be "derived from" only non end-user and 
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system initialization information and not be mixed with 
end-user information. 

Note that the empty set (or null label) can not be asso­
ciated with an information unit. A particular i_wire or 
o_wire, however, may have the empty set associated with it 
(via the functions L Wire_Allow and 0_Wire_Allow). If it is 
an i_wire, then no information_units will be accepted from 
that i_wire. If it is an o_wire, no information_units will be 
delivered to it. 

There is nothing in the assertions that guarantees the 
delivery of information_units once they are accepted into 
the system. It may turn out that all security_label sets 
associated with o_wires do not contain the security_label of 
an accepted injormation_unit. 

If an information_unit was delivered from the 
INTERNAL_SYSTEM, then there was at least one 
information_unit accepted into the INTERNAL_SYSTEM. 
The information contained in the delivered zu was 
Derived_From the accepted in/ormation_unit(s). 

There is no connection in the model between an i_wire 
and an o_wire. In a particular application, each i_wire may 
be paired with an o_wire. But the security_label sets 
attached to the i_wires and o_wires are independent of each 
other. Hence in an i_wire / o_wire pair,· the i_wire and 
o_wire may have different security_label sets associated with 
them. Also, an INTERNAL_SYSTEM can securely deliver 
an iu to more than one o_wire. 

An EXTERNAL_SYSTEM may be connected to the 
INTERNAL_SYSTEM by a single i_wire or o_wire. That is, 
the EXTERNAL_5YSTEM may be only a source or a sink 
for information with respect to the INTERNAL_5YSTEM. 

Further, the data will not necessarily stay constant 
throughout its traversal of an INTERNAL_5YSTEM. In 
fact, it may change because of fragmentation, encryption, 
decryption, etc. Consequently, there is no reason to expect 
any verification regarding the possibility of no change to 
the data or some portion of the data. 

The security policy and formal model allow transforma­
tions on information units that relate, under a given condi­
tion, two or more units to another single information unit 
(refer to policy statement (h) of Protection Against 
Compromise and the notion of derivation). This may poten­
tially permit data aggregation, where, by the model scheme, 
a resulting information unit would have a sensitivity label 
possibly lower than the aggregation of the set of associated 
information units. There are two aspects to this aggrega­
tion. First, the aggregation is achieved "outside" the sys­
tem. Namely, the system being modeled is a datagram ser­
vice and the aggregation would be related to the higher 
level transport services using the datagram service of the 
system being modeled. Second, if, within the modeled sys­
tem, one assembles information units, they are assembled 
from a related entity that was previously fragmented. The 
assembly is actually the re-assembly of a previously frag­
mented datagram. Therefore, in this second case there 
would be no aggregation. 

Finally, the concept of Derived_From is distinct from the 
concept of Data and the combination of data. The latter is 
introduced to describe the necessary properties of fragmen­
tation and assembly. The concepts are brought together 
only in the meaning of Is_Securely.J)erived. 

Assembly, Fragmentation and Derived_From 

This subsection shows how the function Derived_From 

models both assembly and fragmentation. The upper por­
tion of Figure 4 illustrates the concept of the assembly and 
fragmentation of in/ormation_units across the 
INTERNAL_5YSTEM. 

Now consider the function Derived_From. As defined, 
the image of an information_unit under Derived_From is a 
set of incoming information_1mits. Observe that the sense 
of direction of the function, Derived_From, considers an 
outgoing information_unit and "looks back" at what the 
given information_unit is derived from among the incoming 
information_units (refer to lower portion of Figure 4). In 
this way assembly is represented directly by the function 
Derived_From. 

To explicitly relate fragme~tation to Derived_From, one 
additional definition is · needed. For a given 
information_unit, iu belonging to IU;n, define the following 
set: 

FRAGMENTS (iu) = {I [ IE !Uout• iu E Derived_From (!)} 

The set, FRAGMENTS (iu), identifies all those outgoing 
information_units that are related to the given iu by the 
function Derived_From. In this way, fragmentation is 
modeled by the function Derived_From. 

Two properties are associated with Derived_From (ref: 
expression 15 of Section 4). They are the security proper­
ties for fragmentation as well as assembly. First, for a 
given outgoing information_unit, iu, 

For all x E Derived_From (iu), Sensitivity (iu) =Sensitivity (x) 

Second, all portions of data in iu are to be accounted for by 
data in the information_units of the set, Derived_From (iu). 
This concept is captured by Data_Accounted_For of Section 
4. 

INTERNAL 
SYSTEM 

...,::-:::::::~~-------------

INTERNAL 
SYSTEM 

ASSEMBLY FRAGMENTATION 

IU out 

-,~~:=~:::==:::::::_-_-------

---------------~;~~--=:::::::·------

-------::::::~--=~-..--.... 

----~=::-:.-=::_·:_-___ 
1u 

--c~~~~~;~:-~:~~:~?~~~:~:~ 
INTERNAL 

Dertved_From(tu) __/' SYSTEM­

DERIVED FROM 

Figure 4. Assembly, Fragmentation and Derived_From 

An incoming information_unit that does not leave the 
INTERNAL_5YSTEM is modeled by Derived_From by hav­
ing that incoming information_unit not be an element of the 
image of any outgoing information_unit under 
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fragmentation are adequately modeled as described, then f. It must then be verified that the system maintains the 
the approach is symmetric. Specifically, referring to the definition of SECURE for every information_unit 
lower portion of Figure 4 and "looking forward," rather actually sent out on an o_wire. 
than "backward," one could define a function 
"Derive_For," which would associate a set of outgoing 
information_unils with an incoming information_unit. Frag­
mentation and assembly would be modeled in an analogous 
manner. Since we are interested in what goes out of a sys­
tem based on what comes into it, the choice was made as 
given. 

Security Assertions as Mathematical Relationships 

Certain assertions within the policy are represented within 
the formal model as specific relationships among functions. 
Specifically, one can think of the INTERNAL_SYSTEM as 
a device that reads injo1·mation_units from i_wires, produces 
new information_units from the accepted ones, and delivers 
information_units to o_wires. 

The security assertions (a)-(c) of subsection 3.2 above 
must actually be satisfied by both physical and hardware 
limitations of the INTERNAL_BYSTEM. It is assumed that 
the INTERNAL_SYSTEM is connected only to packet 
switch networks. It is assumed that all input and output of 
informatioTLum·ts to the INTERNAL_SYSTEM occur 
through only these networks. It is assumed that these net­
works are connected only to external 
INTERNAL_SYSTEMs and in fact that the 
2·nformation_units transferred to the INTERNAL_SYSTEM 
have security_labels. That is, that it is possible for the 
INTERNAL_SYSTEM to determine the security_label of all 
information_units received. 

The collection of functions, Derived_From, Is_Received, 
Is_Delivered, Sensitivity, L Wire_Allow, and 0_ Wire_Allow, 
are primarily for description. They either describe proper­
ties of the information_units or of the i_wires and o_wires. 

The last three security assertions stated in section 3.2 
are described mathematically in sections 4.3.1-4.3.3. At any 
instant of time, the INTERNAL_SYSTEM must be secure 
in the sense of the definition in 4.4. That is, all 
information_units actually sent to an o_wire up to that 
point must satisfy the conditions given in 4.4. 

Implementing a System-Specific Security Policy 

To implement a particular security policy within a system 
based on the model, several steps are required. 
a. 	 Determine the set of security_labels. 

b. 	 Determine the set of injormation_unils to be managed 
by the INTERNAL_SYSTEM. This set will change 
with time. 

c. 	 Determine the mechanism(s) in the 

INTERNAL_SYSTEM for determining the Sensitivity 

of information_units. 


d. 	 There must be databases, or some other mechanisms, 
in the INTERNAL_SYSTEM so that the functions 
L Wire_A.llow and 0_Wire_A.llow can be implemented. 
These databases must be securely initialized and pro­
tected from unauthorized changes. The content of 
these databases determines the acceptable flow of 
information_units from i_wires, through the 
INTERNAL_SYSTEM, and finally to o_wires. Various 
specific policies can be implemented depending on the 
content of the databases. 

e. 	 The INTERNAL_BYSTEM must have a notion of 
Derived_From, which has the identified properties. 

The model supports a number of specific security poli­
cies. The security policy in force for a particular implemen­
tation of the model depends on the security_label set and 
the distribution of the subsets of security_labels to the vari­
ous i_wires and o_wires. For example, DoD policy would be 
that if an i_wire or o_wire could carry top secret informa­
tion, it could also carry secret, confidential and unclassified 
information, unless explicitly stated otherwise. This can be 
modeled by having the security_label set of the i_wire or 
o_wire contain all four classifications. This allows the tie to 
the familiar "dominance" relation identified in [1]. 

Another policy might be that the i_wire or o_wire con­
nected to EXTERNAL_BYSTEMs should only allow secret 
information. This can be described in the model by having 
the security_label set associated with the i_wire and o_wire 
that connect the EXTERNAL_SYSTEMs to the 
INTERNAL_SYSTEM to contain only the element secret. 
Information_unils with other than a secret security_label 
cannot then be carried on the particular i_wire. Other 
specific policies can be realized via this general policy 
model. 
Model Validations 

It is often required to validate a given model in two ways. 
First, validate that the model actually represents the con­
cepts and statements within a given security policy. Call 
this an external validation. For the Multinet Gateway Sys­
tem, this external validation is based on the Protection 
Against Compromise Policy. Second, validate, by some rea­
sonable means, that the model is consistent within itself. 
Call this an internal validation. Both validations of the for­
mal model are given in [G]. The internal validation gives 
our interpretation of the requirement stating ". . . a formal 
model of the security policy supported by the TCB shall be 
maintained ... that is proven consistent with its axioms [1, 
para. 4.1.3.2.2]." 

Conclusions 

This paper has presented an internet security policy and 
formal security policy model. The scope of the security pol­
icy is the collection of the security properties of a packet­
switched internet system providing a datagram service. 
The formal model focuses on protection against comprom­
ise. The paper has summarized the approach taken to 
show informally that the model is a representation of an 
appropriate portion of the policy and that the model itself 
has an internal consistency. It illustrates a way of model­
ing the security attributes of an internet system and pro­
vides a specific example of one such security model. The 
model and approach outlined here has been used in the pro­
duction of the formal specification, in Gypsy, of the Mul­
tinet Gateway System, and in the formal verification of 
that specification. 

The authors gratefully acknowledge the careful review 
provided by Jim Williams, Don Good, Mike Smith and Max 
Heckard of previous drafts during the development of this 
paper. 

References 

[1] 	 DoD Computer Security Center, "Trusted Computer 
System Evaluation Criteria," DoD 5200.28-STD, Dec., 
1985. 

18 



[2] 	 J. McLean, C. Landwehr, C. Heitmeyer, "A Formal 
Statement of the MMS Security Model," Proceedings of 
the 1984 Symposium on Security and Privacy, April 29­
May 2, 1984, Oakland, Calif. pp. 188-194. 

[3] 	 J. Glasgow. G. MacEwen, "A Two-Level Security Model 
For a Secure Network," Proceedings of the 8th National 
Computer Security Conference, Sept. 30-0ct. 3, 1985, 
Gaithersburg, Md., pp.-56-63. 

[4] 	 J. Goguen, J. Meseguer, "Security Policies and Security 
Models," Proceedings IEEE Symposium on Security and 
Privacy, April 1982, pp. 11-22. 

[5] 	 D. Nessett, "Factors Affecting Distributed System 
Security," Proceedings IEEE Symposium on Security 
and Privacy, April 7-9, 1986, Oakland, Calif., pp. 204­
222. 

[6] 	 D. Bell, L. LaPadula, "Secure Computer Systems: 
Mathematical Foundations and Model," Technical 
Report, MITRE Corp., 1974, Bedford, MA. 

[7] 	 J. Millen, Introductory Remarks, Session on "Toward a 
Theory of Computer Security," ACM SIGSAC Sympo­
sium on Distributed Systems & Local Networks, UCLA, 
Nov. 14, 1987. 

[8] 	 Baker, P. C., Dinolt, G. W., Freeman, J. W., Krenzin, 
M.D., and Neely, R. B., "AI Assurance For an Internet 
System: Doing the Job", Proceedings of the 9th 
National Computer Security Conference, Sept. 15-18, 
1986, Gaithersburg, Md., pp. 130-137. . 

[9] 	 Ford Aerospace Corporation, "Security Model Task 
Report: Policy and Formal Model," (Rev. to Final) 
July, 1988, CSD-TRI711. 

19 



ULYSSES: A Computer-Security Modeling 

Environment 


Tanya Korelsky, Bill Dean, Carl Eichenlaub, 

James Hook, Carl Klapper, Marcos Lam, 


Daryl McCullough, Clay Brooke-McFarland, Garrel Pottinger, 

Owen Rambow, David Rosenthal, Jonathan P. Seldin, 


and D. G. Weber 


Odyssey Research Associates, Inc. 

301A Harris B. Dates Drive 


Ithaca, New York 148-50-1313 * 


Abstract 

This paper presents an overview of the Ulysses com­
puter security modeling environment. Ulysses is a design 
environment in which models of systems can be described 
formally, properties of those models can be verified, and 
in which specialized security analysis is supported by a for­
mal theory of security. The theory of security is motivated 
by non-deducibility and non-interference concerns, and it 
also permits the security analysis of complex designs by 
decomposing them into interacting parts. Graphical and 
textual specification languages allow users to describe these 
design decompositions in an intuitive manner, while remain­
ing grounded in the formal theory of security. A natural­
language component generates English descriptions of user­
created models. A library facility allows re-use of secure 
models. The use of this environment requires extensive 
theorem-proving and heuristic support; this is provided by a 
powerful mathematical engine, incorporating a meta-language 
facility. 

1 Introduction 

Ulysses is a collection of tools that assist in the design and ver­
ification of secure computer systems. It is being developed at 
Odyssey Research Associates (ORA) in Ithaca, New York. It 
provides a rich environment in which both new and previously 
defined secure systems and secure system components can be dy­
namically examined and incorporated into a system design. The 
design methodology supported by Ulysses uses the same princi­
ples of modularity and reusability that characterize modern pro­
gramming development environments. Because Ulysses supports 
the verification of security properties, it includes an automated 
theorem proving engine and tools for constructing proofs. This 
paper is intended to give an overview of the important ideas and 
tools incorporated by the system. 

From a security standpoint, the most important feature of Ulysses 
is the capability of producing a complete and formal proof of se­
curity. A security methodology is a definition of security together 
with a collection of theorems which aid in constructing a proof 
of security for particular models. These theorems are often ex­
pressed as conditions for deducing the security of a whole system 
from the properties of its components. With such a methodol­
ogy, the task of proving security of an entire system reduces to 
the smaller tasks of showing the particular properties on only 
parts of the system. When a methodology can be carried out 
formally we say that it is the basis for a formal security analysis. 
One instance of such a security methodology is the noninterfer­
ence security definition and theory of (McC88b]. In this case, 
whenever all of the components are shown to be secure then one 
can conclude the system is also secure. This sort of property is 
called composable or a "hook-up" property. Composable proper­
ties are particularly easy to work with. The more general security 
methodologies are often constructed to be applied to particular 
classes of models (e.g. a process connected to a buffer). The 
Ulysses environment is one which aids in both the development 
and the formal application of security methodologies. 

As a design tool, Ulysses was influenced by the experience of 
the MASCOT project (Sta86] and the hierarchical design ab­
straction of Moriconi's PegaSys system [MH85]. These pictorial 
system description schemes are similar to the graphical specifica­
tion language that Ulysses users will be given to describe systems. 
The design process, which Moriconi calls refinement, is primar­
ily "top-down". A user begins with a diagram representing the 
entire system, and refines it by dividing it into sub-systems, each 
represented by an icon. Connections between sub-systems are 
also specified as icons. The meaning of each icon is given for­
mally in the theory of security, and the user may also associate 
other information (documentation, other formal specifications) 
with the icons. The design is "grounded" by associating formal 
textual specifications in the theory of security with atomic icons 

*This work was supported by the Air Force Systems Command ,,,t Rome Air Development Center under 
Contract No. F30602-85-C-0098. The views and conclusions contained in this paper are those of the authors 
and should not be interpreted as necessarily representing the official policies, either expressed or implied, of 
the Air Force or the U.S. Government. 
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(i.e., icons representing components that have not been further 
graphically refined). If each atomic component is proved secure 
(in the sense of [McC87]), then the "hook-up theorem" can be 
used to infer the security of the entire system. 

One of the more innovative aspects of the Ulysses system is its 
mathematical foundation. Ulysses is being developed in a formal 
system based on a constructive type theory which is also capa­
ble of expressing classical mathematics. The advantages of this 
foundation fall under two heads-improved support for security 
modeling and exciting prospects for future extensions. 

Security modeling support is enhanced because the logical basis 
allows for a more rigorous treatment of modeling than previous 
bases. This enhancement has two main aspects. First, for many 
security theories, it is possible to formalize the relation between 
the theory and the semantics of the specification language used 
to describe systems. Second, the economy with which the under­
lying logic is formulated and its known consistency allay doubts 
about correctness of the implementation and about correctness 
of the logic itself. 

The logic also allows the modeling of polymorphic typing, which 
is of great interest in current discussion of programming lan­
guages, and, due to its constructive character, includes a pow­
erful model of computation. We believe that these features will 
make it possible to extend Ulysses to include a system develop­
ment environment which is both sound and robust. 

The paper is organized as follows. Section 2 explains in greater 
detail the primary theory of security being used in Ulysses. Next, 
in section 3, various ways in which the system can be used are 
described. The implementation of the type theory mentioned 
above is discussed in section 4. Finally, in section 5, we conclude 
with a few remarks about the software implementation of Ulysses. 

2 Security Analysis 

Secure design in Ulysses depends on flexible and sound theor;eti­
cal foundations. To develop such foundations we examined ,pre­
vious formalisms for security, particularly the pioneering work of 
Bell and LaPadula in access control[BL 76], the non-interfe~ence 
model of Goguen and Meseguer[GM82], and the information flow 
theory of Sutherland [Sut86]. 

Our investigations convinced us that these previous models of 
security were, for the purposes of secure design in Ulysses, lacking 
in some respects. Some of the problems we found among these 
formalisms were 

o they were not based on observable behavior 

o they were not sufficiently implementation-independent 

o they could only be applied to completed systems, and there­
fore could not be used for the incremental development of 
a secure design 

o they only applied at one level of abstraction 

o 	they were only suitable for deterministic systems 

The biggest problem, however, was that there was no research on 
the interactions of trusted systems and processes-in particular, 
it was not known to what extent security was preserved when 
one connected several trusted systems into a distributed system. 

The primary security formalism used by Ulysses is based on this 
previous work, but it goes beyond it in that it is intended to 
be useful in design as well as in implementation. In contrast 
with the preceeding formalisms, the Ulysses security formalism 
can be used to analyze the security of isolated components and 
partially fleshed-out system designs, whose implementations are 
still undetermined. This gives the designer greater flexibility, 
allowing him to 

o reuse off-the-shelf secure components 

o 	discover the security flaws of a design early so as to mini­
mize wasted effort 

o freely substitute components with equivalent security char­
acteristics 

A formal definition of secure processes that had many of the de­
sirable features mentioned above has been developed by McCul­
lough ([McC88b]). One of the properties derivable from this the­
ory is the "hook-up" property, which provides the basis for a for­
mal security analysis. The theory is formulated in terms of state­
machines. Each state transition corresponds to a possible input, 
output or internal event of a system. Non-deterministic choice 
between different transitions is allowed. Within this framework, 
a security property can be defined. We call this property 'flow 
security'. It is a noninterference property which limits the effect 
that transitions associated with high security levels can have on 
transitions at lower security levels. These limits formalize the 
intuitive notion that information should not flow from high level 
users to low level users. It is a composable property, meaning 
that if system A and system B are each flow-secure, then the 
combined system of A composed with B will also be. It must 
be noted that other security properties often turn out not to be 
composable [McC88a]. 

Using Ulysses to prove that components are flow-secure will per­
mit us to incrementally verify the security of a system. Once 
the flow-security of all atomic components is verified, the flow­
security of the entire system is assured. 

Although a particular theory of processes and a particular th~ry 
of security are used in Ulysses, they are neither fixed nor "built 
in". The theory of security may be expanded by proving (within 
Ulysses) new facts about the hook-up of processes. For example, 
the hook-up of several processes, none of which is secure, may 
form a combined process that is secure [WL87]. Ulysses allows 
the formulation of such new theories of security. These alternate 
theories could then be used in proving new hook-up theorems 
as well as properties of systems. The mechanisms for packaging 
new theories and referencing them are outlined in section 4. 

3 How Ulysses Will Be Used 

The user may interact with the system through several specially 
designed interfaces. They are: 

o 	 The graphical system design interface: graphical system 
descriptions, in which icons have formal meaning in the 
theory of security, are used to describe the design of a model 
from its secure components 

o 	 The natural language component: brief summaries of the 
design and its security characteristics may be generated 
automatically 
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o 	The verification and textual specification interface: textual 
specifications of components can be built and verified, new 
security theories can be added to the system, and tactics 
(heuristics) for proving security can be built 

o 	The library browsing interface: models and other informa­
tion stored in the Ulysses system may be reviewed and 
updated 

In· the next few sections we provide a more detailed description 
of these interfaces. 

3.1 Operations 

User interactions fall into three main divisions: adding informa­
tion to the system, retrieving information from the system and 
deriving new information within the system; The subject of most 
end user interactions will be descriptions of computer systems. 
These are most naturally presented in a graphical manner, al­
lowing the user to visualize the subject system. The graphic lan­
guage employed presents objects hierarchically, much like the Pe­
gaSys system(MH85]. Within this context of graphical represen­
tations the following operations are typical of what the Ulysses 
user interface supports: 

o Retrieving Information: 

- view an archived system or component 

- show (or hid~) the sub-components of an icon repre­
senting a process 

- show the textual specification associated with an icon 

- show the textual specification associated with the hook­
up of two i"cons 

o Adding Information: 

- load an archived component into the current system 
design 

- create (or delete) a hook-up (i.e., a communication 
channel) between two processes 

- refine an icon representing a system by adding or chang­
ing icons representing its sub-components 

- associate formal textual specifications and other prop­
erties with an icon 

o 	Synthesizing Information: 

- prove that component specifications imply the speci­
fications of the systems they form 

- give general mathematical facts to assist in proving 
security 

- ask the system to assist heuristically in developing a 
secure system 

Some of these operations involve interfaces besides the strictly 
pictorial or graphical one suggested above. For example, the 
natural language interface produces English text associated with 
graphical displays of the system. Textual specifications for atomic 
icons are produced by interacting with an editor. Retrieving 
archived systems may involve browsing through the library of 
stored specifications. Generating proofs involves using the inter­
face to the theorem-prover and its tactics (heuristics). 

3.2 The Graphics Interface - An Example 

The Ulysses graphical design environment allows the designer to 
select an icon representing a component, (using a mouse-driven 
"point-and-click" scheme), and cause Ulysses to open up the 
component so that its internal structure can be seen. The com­
ponents can themselves be made up of lower-level components. 
The 1owest level may either be left pending or contain a link to 
a textual process specification. 

We describe the way the graphics system works by using a simple 
example. We will model some aspects of a secure distributed 
operating system (SDOS). (This example is a simplification of 
the design described in [v+ss].) A system is distributed if it is 
composed of a network of computers with no shared memory. 
An operating system is distributed if it can service requests so 
that the location of the resources used to handle those requests 
is transparent to the user. In this example, we will model how 
messages can flow securely through such a system. Since it is 
distributed, requests from a user may have to be serviced by a 
different host than the one the request was made on. Hence, 
not only must a message be routed to the right location, but 
sometimes the location may have to be found first. We will call 
the task which ·actually does the routing of messages the 'message 
switch' and the task which makes the determination of a host to 
handle the message the 'locator'. 

We first need to construct an overview of the system consisting 
of a collection of interconnected hosts and users (figure 1). This 
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Figure 1: Multiple Hosts with Multiple Users 

might be done by the following sequence of steps. First we create 
and connect icons representing a particular host (called an SDOS 
node) and a set of users. Now we create a virtual component 
to represent that any arbitrary set of interconnections between 
nodes is to occur and then connect it to the SDOS-users icons. 

We can then provide a more detailed description of each SDOS 
node (figure 2). We use the refinement operation to open up the 
SDOS node and proceed to add more detail inside of it. In this 
case we have decided to break up the functions ofSDOS into four 
categories. TIP's are the processes which handle communications 
with the users, and the NET is the process which handles commu­
nication with the actual network protocol. The Kernel handles 
the most essential operations of the system. The other kinds of 
processes are divided into two boxes representing other managers 
and processes. (Note that we must explicitly perform an opera­
tion which connects the SDOS users to the TIP processes.) In 
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Figure 2: A particular host 

this presentation we only care about the system operations which 
relate to message handling, and these are contained within the 
Kernel. We may consider the other process icons as place holders 
for possible future refinement of the model. 

We can further refine the picture by describing the structure 
of the Kernel (figure 3). In particular the Kernel contains the 

KERNEL 

•
MESSAGE SWITCH 

·~----------------1 

LOCATOR 

Figure 3: The Kernel 

message switch and other management tasks. One of these man­
agement tasks is the locator. Finally we connect the message 
switch icon to the other processes outside of the Kernel. 

The graphics system not only constructs and displays the model, 
but it also constructs the security theory of the example. It 
uses assumptions or theorems about the underlying components 
to infer what is true about the systems which contain them. 
It also uses information about the components to enforce the 
requirement that only the appropriate connections are made. In 
the example, the Ulysses system can infer that the entire model 
is flow-secure once it has been verified that each of the pieces is 
secure. 

3.3 Textual Specification Interface 

Atomic processes are ones that are not subdivided further in the 
graphical representation. The graphics system generates condi­
tions implying that all atomic processes and larger subsystems 
have been legally hooked-up; these conditions are usually trivial 
and can be discharged automatically by the theorem-prover. If 

all the connections between components are legal, then by com­
posability we can verify that the composite system is flow secure 
by establishing that each atomic component is flow secure. For 
some simple cases, the proof that a component is flow secure 
can be done automatically; in general, though, it is necessary to 
examine or refine the component using the textual specification 
interface. 

The security of a component depends on its functionality. The 
textual interface allows us to describe the functionality of a com­
ponent by giving a state machine representation of its behavior. 
This representation consists of the definitions of the data types 
involved in the internal state parameters of the component and 
in the messages that the component uses to communicate, to­
gether with axioms describing the possible state transitions of 
the component and the security levels associated with messages 
and internal parameter information. From the state machine 
representation of a component, the statement of flow security' for 
that component can be generated automatically. 

The state-machine model, the theory of security, and tactics for 
proof of security for particular processes, are all connected via 
the textual interface to the logical formalism described in section 
4. Flow security, as well as other properties of components, can 
thus be verified by reasoning in the underlying logic. 

3.4 Natural Language 

The text generation component of Ulysses is intended to serve 
two purposes: First, to provide annotations and comments to 
aid the designer during the design process; second, to produce 
an overview of the system, including its security characteristsics, 
once the design has been completed. As practical experience 
with the design process is still limited, efforts have concentrated 
on the second application. 

The design of a system in Ulysses is determined graphically and 
(in the case of atomic components) by the textual formal specifi­
cation. Typically, such designs would be accompanied by manu­
ally written annotations. Annotations complement diagrams and 
formal specifications by giving an informal rationale behinl the 
design and its structure. Annotations summarize the function­
ality of the design components and explain them by app~aling 
to concepts shared by the designer and the reader of the anno­
tations. Such annotations become indispensable in the context 
of a secure design; these usually involve some compromise be­
tween functional requirements and security considerations that 
need explanation or justification. 

The text generation component of Ulysses is a pioneering attempt 
to generate annotations automatically. During the first stage 
of our work, the emphasis is on producing texts that describe 
the security features of the system with less attention paid to 
functionality. 

The information about how security is enforced in the system is 
derivable from the history of the security proof for the compo­
nent. Thus a user who is not familiar with a given design would 
have to consult three different sources - graphical design, formal 
specification, security proof - and synthesize an understanding 
of the system himself. It is this job of synthesis that the natural 
language generation component performs. 

The area of text generation of system documentation has not 
yet been studied by either linguists or computer scientists. How­
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ever, highly promising and effective systems exist for other do­
mains (for example McKeown's interface to a naval data base, 
[McK85]). Such work has allowed us to build on existing general 
techniques and concentrate on specific problems arising in our do­
main of annotations of secure designs. At present, the generation 
component of Ulysses produces multi-paragraph texts about sys­
tems such as the Secure Distributed Operating System (SDOS) 
[V+ss]. 

The text generation requires computation at three levels: text 
planning, sentence planning and sentence generation, described 
below. 

Text planning assembles a series of conceptual representations 
that determine the contents and organization of the text. For­
mally, the approach used is inspired by that of McKeown: schemata 
encode recurring textual patterns and access the available knowl­
edge. However, there is no homogenous knowledge representation 
in Ulysses that the text generator can use. Instead, it uses any 
information that is available such as: 

o 	the decomposition of the system into communicating com­
ponents, as defined by the user through the graphical in­
terface 

o 	the security characteristics of individual components as they 
are determined during the proof, and the proof strategies 
used 

o domain-specific knowledge about different types of systems 
(operating systems, gateways, LANs, etc.) 

o certain information the user has entered after being prompted 
by Ulysses 

However, this information about the system is not yet in a for­
mat that could be. accessed by a general text planner; instead, 
the available information needs knowledge-based interpretation 
in order to serve as the basis for informative and meaningful 
texts. This is particularly true of the description of the syst~m's 
security features. Certain typical security strategies need to be 
inferred from the structure of the system and the level of ·secu­
rity of the components. For example, components which serve 
as mediators of communication between other components must 
figure more prominently in the security analysis. The knowledge 
needed for interpretation is encoded directly in the schemata, 
which makes text planning ·efficient but restricts it to the do­
main of secure system design. 

Sentence planning takes the sequence of conceptual representa­
tions and transforms it into a sequence of sentence representa­
tions. The transformation involves message combination (de­
termining sentence boundaries), syntactic decisions (determining 
sentence structure) and lexicalization (choosing English words for 
the concepts). 

Sentence generation produces an English sentence. The gener­
ation component is based on Meaning-Text Theory [MelSl]. It 
defines a series of transformations from the sentence represen­
tation (the deep-syntactic representation) to the surface string, 
thus localizing linguistic decisions at particular levels. 

Figure 4 shows an annotation of SDOS generated by the system. 

SODS: General Structure and Security Features 

A SDDS is a secure distributed operating system. It is a 
collection of distributed SODS nodes connected by a net. The 
net is the only link between them. Each SODS node supports a 
group of Users. They have access to operating system services 
only through their SODS node. In the SDDS security is enforced 
locally by the multilevel secure SODS nodes. The Users are 
modeled as singlelevel trusted or multilevel, secure. 

Each SODS node is a complex subsystem and consists of a Kernel, 
a Network Interface and groups of TIPs, of Processes and of 
Managers. The Managers, the TIPs, the Network Interface and 
the Processes communicate only through the Kernel. The Kernel 
is multilevel secure and enforces the security of the SODS 
node. The Managers and the Processes provide operating system 
services. The Managers can be singlelevel trusted or 
multilevel secure; the Processes are untrusted. The TIPs serve 
as interface to the Users. They can be singlelevel trusted or 
multilevel secure. The multilevel secure Network Interface· 
handles communication with the net. 

The Kernel is a composite subsystem and consists of a Kernel 
Manager and a Message-Switch. The Message-Switch mediates 
communication between the TIPs, the Managers, the Processes and 
the Network Interface. It is multilevel secure and enforces 
the security of the Kernel. The multilevel secure Kernel 
Manager supports its activity. 

Figure 4: The SDOS Text 

3.5 Library of Models 

The function of the library is to provide and organize informa­
tion useful in the design and verification of systems. The library 
contains three major kinds of information: 

1. 	 System descriptions. Both the specifications of atomic com­
ponents and interconnections of complex system designs 
built from the components are stored in the library. The 
status of what has been proven about the security of the 
components and of the systems is also maintained. 

2. 	 Security Theory and other Mathematical facts. The lib,rary 
maintains a store of information describing the security' the­
ory and other relevant mathematical facts. Also included 
are definitions of the tactics and theories used by the the­
orem prover. 

3. 	 Graphical presentation. The system can record various 
facts about the graphical layout of designs. This informa­
tion is in addition to the design information of the theories. 

The library will contain a variety of designs of generic, commonly 
used software systems ranging from very small components, such 
as buffers or queues, to complex ones, such as a Database Man­
agement System. The list of secure designs includes some generic 
trusted processes (multilevel buffers, secure separators, secure 
schedulers), a Local Area Network (several designs for different 
medium access control), a Multinet Gateway, a Database Man­
agement System, a Distributed Operating System, and several 
others. The user will be able to study library designs and their 
associated documentation and to use them in his own designs. 
The user can either use library designs as "building blocks" and 
rely on proofs done by Ulysses' developers, or change library de­
signs according to the requirements of his or her system. 

Ulysses will support browsing through the library for components 
or other theories that meet given criteria. 
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The theory of security currently used in Ulysses is merely a de­
fault. It is one particular set of theorems about the hook-up of 
components into systems. Other theories of security are possible. 
For example, a precise theory of components that are "almost se­
cure" might be definable, and facts about their hook-up proved. 
Users may add such new theories to the library. 

The Mathematical Component 

The goal of the Ulysses project is to understand security at the 
design level and to automate that understanding in a logically 
coherent formal setting. We believe that a general mathematical 
theorem-proving environment based on type theory is a good 
foundation for this task. 

We will explain what this assertion means and what our reasons 
for believing it are in the following way. We begin with a general 
sketch of the mathematical component's design. Then we discuss 
its antecedents (subsection 4.1), explain how mathematics will 
be expressed within this framework (subsection 4.2), and say 
why this setting is especially suited to work on security modeling 
(subsection 4.3). The remainder of the section will be devoted 
to some brief remarks about technical aspects of the design­
the underlying logic (subsection 4.4), the core component of the 
logic's implementation (subsection 4.5), and theory management 
(subsection 4.6). 

Within the mathematical component, the word "theory" has a 
technical sense. But this technical usage reflects accurately many 
important facets of the term's ordinary meaning. Intuitively, a 
theory is a collection of related facts and notations for express­
ing them. The facts collected in theories may be related in a 
number of ways - they may be stated in a common language, 
may depend on common axioms, and may support one another 
in various fashions in the sequential development of a theory. 

Facts and notation may be incorporated into a theory by relying 
on a previously developed theory, by introducing a notational 
abbreviation, by introducing a definition, by postulating a new 
axiom, by stating and proving a theorem, and by introducing all 
of the facts and notations from some other theory after show­
ing that all of its assumptions are satisfied in the theory being 
developed. 

The mathematical component provides a rigorous setting within 
which all of these features of our informal conception of theories 
are represented precisely and usefully. 

Theories have two main parts: a precis, which identifies the lin­
guistic dependencies and states the postulates of a theory, and a 
body, which contains the development of new facts and notation 
introduced by the theory. In the context of a library of theories, 
the precis determines the initial environment of a theory. That 
is, it determines the collection of facts and notation imported 
from other theories directly. In addition, it contains the axioms 
and new symbols characteristic of the theory under development. 
The body extends the environment of facts, assumptions and no­
tation defined by the precis. Essentially, the meaning of a theory 
is the incremental extension of the initial environment which the 
body provides. 

Ulysses is based on a version of type theory capable of expressing 
both classical and constructive mathematics. Within the mathe­
matical component of the system, the relationship between theo­

ries of security and the semantics of their specification languages 
is expressed rigorously, for theories which permit it. In particu­
lar, this has been done for flow security. This formal foundation 
will reduce the consistency question for the logic and the cor­
rectness question for the theorem prover, to the consistency and 
correct implementation of the six rules of the underlying type 
theory. 

4.1 History 

The idea of using type theory for the expression of mathemat­
ics in a theorem proving environment was first championed by 
de Bruijn in the AUTOMATH system [BruSO]. The aim of Au­
TOMATH was to verify mathematical "books". The system was 
very batch oriented, originally reading the "book" as a deck of 
punched cards. 

In the early eighties, Constable and his students at Cornell Uni­
versity began another major project to express mathematics in 
type theory called the "prl" project [C+S6]. ("prl" is short for 
"Proof Refinement Logic" and is pronounced "pearl".) Their 
work was inspired by the AUTOMATH project and by the work of 
the logician Per Martin-Lof [Mar82]. Their aim was not just to 
provide an environment for the verification of mathematics, but 
to assist users in developing mathematical theories interactively. 

The key idea that made this possible was the concept of a re­
finement style proof editor [Bat79]. Such a proof editor allows 
the user to state a theorem and then construct a proof interac­
tively by manipulating subderivations displayed on the screen. 
This can be done either by directly invoking the primitive rules 
of the system or by invoking tactics which direct the machine to 
do these micro-inferences automatically. 

The tactic mechanism has proved to be a vital feature of the sys­
tems developed during the prl project, and it plays an equally im­
portant role in Ulysses. The meta-language of the prl systems is 
ML [Mil78], which was developed to provide the meta-language 
of LCF [GMW79]. The same is true of our system. Tactics 
are segments of ML code which extend the primitive inferetitial 
apparatus of the logics on which these systems are based. , The 
systems' proof checking mechanisms insure that these exten~ions 
are sound. 

In principle, it would be possible to write a general theorem prov­
ing program and rely on it as one's sole tactic. But experience 
with the prl systems has shown that it is more productive to de­
sign tactics for specific circumstances encountered in developing 
mathematical theories. The tailoring of tactics to the special 
requirements of security modeling is one of the most important 
features of the mathematical component of Ulysses. 

Although the design of the mathematical component draws heav­
ily from the experience of the prl project, there are two primary 
differences. The first is the choice of the underlying logical system 
and the second is'the addition of a facility for modular theories. 
These two issues are related: the logical base we have chosen sup­
ports modularity much more easily than does the type theory on 
which prl is founded [Sel88]. 

In addition to these differences, there are several design differ­
ences that are expected to give Ulysses significantly better per­
formance than the Nuprl system (the new and current version 
of prl) and allow the mathematical component to be integrated 
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with other system components. One of these is the use of graph 
reduction to handle necessary computations in the underlying 
lambda calculus (subsection 4.5). Another is the treatment of 
definitions. We discuss this briefly now and return to the topic 
in subsection 4.6. 

For Ulysses to be used successfully, the mathematics expressed 
in theories must be visually similar to mathematics as it is ordi­
narily written, and, when the mathematical component is used 
as part of a domain specific system, domain specific information 
must be presented to the user in a recognizable form. Conse­
quently, there must be a very powerful mechanism for extending 
the notation of the system. This feature is called the definition 
facility, and the concerns expressed in the first sentence of this 
paragraph played a major role in shaping its design. 

4.2 Expressing Mathematics and Security 
Theories 

Once the foundation of the system is laid, the next step is to 
express something in it. That requires developing familiar math­
ematical concepts, such as elementary arithmetic, simple set the­
ory, a theory of sequences, and some simple computational mod­
els within the system. These theories will be included in the 
system library. The theory manager enforces a presupposition 
structure specifying which other theories must be included in 
the current environment if a given theory is to be used. 

Once all of these 'basic pieces of mathematics are in place, the 
theory of security is formulated and theories describing exam­
ple systems are synthesized within Ulysses. This collection of 
theories forms an experimental testbed for the automation of 
security reasoning. The automation will be provided by combin­
ing the ML mechanism that provides assistance in proofs with 
supplementary code written in Common Lisp. Besides supplying 
assistance in proofs, the system will provide support for formulat­
ing appropriate security theorems and for integrating previously 
defined structures into the current environment. 

We expect that once we have developed a library of verified, 
composably secm;e components, most Ulysses users will be able 
to view the systeq1 as a fully automated theorem prover, and not 
as a proof development environment. The sophisticated user will 
have the opportunity, however, to invoke any mathematical facts 
that can be developed within the system when arguing formally 
that a system, or system component, is secure. And the system 
designers will have confidence that all of the components they 
have supplied to the users are, in fact, secure according to the 
formal definition. of security axiomatized within the system. 

Besides providing a formal framework in which to pursue the 
current goals of the Ulysses project, the system design allows for 
the development of extended versions which will incorporate a 
code verification facility. We believe that, ultimately, this formal 
foundation will make Ulysses a trustworthy robust system de­
velopment environment. Of course, whether we are right can be 
determined only by developing such an environment and bringing 
the result before the bar of experience for judgment. 

4.3 Advantages for security modeling 

A number of features of the mathematical component make it an 
especially useful tool for dealing with security modeling. Chief 

among these is the tactic mechanism. We are creating a library of 
tactics tailored to the demands of proving security results about 
the sorts of models most commonly dealt with. This library will 
greatly enhance the usefulness of Ulysses. 

Quite often, it is possible to restrict attention to a class of security 
models considerably smaller and simpler than the class of all such 
models, and, for such models, it is fairly simple to prove what 
needs to be shown about the processes involved. In such cases, 
we are going to automate the proof process almost completely 
by writing appropriate tactics. 

For example, many processes accept an input, emit some outputs, 
and then process the next input. For these kinds of processes, one 
can use a security tactic which converts the goal of proving flow 
security into simpler kinds of conditions. It suffices to show that 
(1) for any given input there will be only finitely many outputs, 
(2) the security level of an output is always greater than or equal 
to the level of the input, (3) the content of the output is based 
only on the input and information carried by parameters at or 
below the level of the input, and (4) high level inputs do not 
change the low level characteristics of these parameters. See 
[Ros88) for more details. 

Another important characteristic of the mathematical compo­
nent is its expressive power. With this system it is relatively 
easy to build new abstract data types. This makes descriptions 
of models easier to understand and allows for more accurate de­
scriptions. Descriptive power also enables the user to formulate 
properties of a. process more easily. For example, it is easy to 
assert within the language that a process halts. Also, the secu­
rity theory is built directly into the system. This insures that 
proving that a system has the properties specified by the theory 
really does show it is secure, in the sense specified by the theory. 

A third useful aspect of the proof development environment is 
that it allows security results to be proven about generic descrip­
tions and not just particular instances (see subsection 4.4). This 
means that most adjustments to a model will require little if 
any work in reconstructing proofs of security for it. Often, the 
modeling environment will do all the necessary reconstruction, 
without intervention from the user - if you want to add 'new 
components to a model, demonstrating security may involve no 
direct effort on your part. 

4.4 The logic 

The logical system underlying Ulysses is the theory of construc­
tions of Coquand and Huet [CH84], [CH86], [Hue87], [Sel88], 
[Pot87). Besides providing a quite expressive logical system, the 
theory of constructions also includes a powerful model of com­
putation. The model of computation is not important for the 
current aims of the Ulysses project, but we expect to rely on it 
in future extensions of the system. 

There are only two built-in types in the theory, but there is a 
facility for reasoning in the context of type assumptions that de­
scribe both the operations and axioms of mathematical theories. 
This mechanism supports an abstract style of theory develop­
ment. Suppose group theory has been developed in a context 
that specifies the operations and axioms characteristic of groups. 
It will be possible to instantiate this abstract theory on a par­
ticular structure by specifying which operations of the structure 
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are to play the role of the group operations and proving that the 
group axioms are satisfied by the specified operations. 

The theory of constructions contains a type which formally repre­
sents the type of all propositions. In turn, this type is contained 
in a type which satisfies very strong closure conditions. Con­
sequently, the theory contains full, higher order logic - having 
specified a ground type by means of appropriate assumptions, 
one can refer to properties of the ground objects, properties of 
such properties, functions from properties of the latter sort to 
those of the former, and so on, without limit. 

The logic provided by the theory of constructions is constructive. 
This is noteworthy for two reasons. First, it is the key reason 
why the theory includes a model of computation. Second, it 
means that the logic is richer than classical, two valued logic ­
constructivity is an enhancement, not a restriction. 

The theory of constructions provides a model of computation in 
which, besides taking types as arguments, functions can return 
types as values. Furthermore, the type of the value returned by a 
function can depend on the argument, and not merely on the ar­
gument's type. Consequently, the theory is of great interest from 
the point of view of research on polymorphism in programming 
languages. 

This model of computation is extremely powerful. Formal mea­
sures of its power, relying on the results of [Gir71,Gir72], show 
that it is strong enough to represent any computable (total) num­
ber theoretic function considered in ordinary mathematical prac­
tice, and this is a lower bound. An informative upper bound on 
the strength of the model of computation built into the theory 
of constructions has not yet been established. 

As far as correctness is concerned, Coquand has shown that the 
logic embodied in the theory of constructions is consistent and 
that all computations in the model of computation terminate. 
Taken together with the features of the theory discussed above, 
this explains why the theory of constructions is interesting, both 
from a purely logical standpoint and from the point of view of 
theoretical computer science. It also led to the decision to base 
the mathematical component of Ulysses on the theory of con­
structions. 

4.5 The Primitive Inference Engine 

The core of the mathematical component is the Primitive In­
ference Engine (PIE). The PIE includes a proof checker for the 
theory of constructions and rudimentary (but extensible) tools 
for proof development. We are proceeding on the basis of a for­
mulation of the theory of constructions which is especially suited 
to the character of the proof development tools and also allows 
.for efficient proof checking [Pot88a]. 

The central computational problems involved in implementing 
this formal system have to do with handling substitution, reduc­
tion and conversion of terms. We have reduced these problems to 
their essence by representing terms of the theory of constructions 
in the simpler framework provided by the type-free lambda cal­
culus and have done the same thing for the relations of reduction 
and conversion [Pot88a]. 

Recasting the computational problems in this way is, of course, 
only a beginning. An efficient implementation of the type-free 

lambda calculus will be produced by using graph reduction [Wad71, 
Tur79]. 

4.6 Theory management 

As was remarked in subsection 4.1, in many important respects 
the mathematical component of Ulysses is modeled after Nuprl. 
We end this section by commenting briefly on two important 
differences. 

It is reasonable to say that proofs of hook-up security require a 
small mathematical foundation, if "small" is understood in the 
sense of the term customary among mathematicians. But actu­
ally providing such a foundation requires building a complicated 
structure in the machine. Definitions are common and vital com­
ponents of this structure, so it is important to have an efficient 
way of handling .them. Our approach to this problem is quite 
different from the one taken by Nuprl, and we think it will turn 
out to be superior [Pot88b]. 

It is also certain that we must develop theories modularly, if 
Ulysses is to be practically useful. It should be clear from the 
discussion of this section that this concern is handled adequately 
in the system we are constructing. In contrast with this, Nuprl 
provides no mechanisms for modular theory development, and 
certain features of the logical system on which Nuprl is based 
make the project of introducing such mechanisms problematic. 
This reinforces our conviction that the theory of constructions, 
which directly supports modularity in developing theories, is a 
good choice for the logical basis for security modeling in Ulysses. 

5 Implementation 

A Ulysses system that implements the functions described in 
previous sections is now being built at ORA. By October 1st, we 
expect to have a functional prototype. The prototype version will 
run under Symbolics Genera 7.1. However, we have placed great 
emphasis on portability even at early stages in the development. 
Most of the source code is written in Common Lisp or one of its 
object-oriented extensions (Symbolics Common Lisp or CLOS); 
the only exceptions are the tactics, which are written in a version 
of ML that is itself implemented in Common Lisp. Symbolics 
Common Lisp will be converted into CLOS and v.v. with a set of 
translation macros. As a result, only a minimum of effort should 
be involved in re-targeting Ulysses to any other architecture that 
supports Common Lisp; most of this effort will relate to the 
graphical interface. 

6 Conclusion 

The design of Ulysses incorporates ideas and techniques from a 
diverse collection of sources, including those in computer security, 
systems design, computational logic, and computational linguis­
tics in order to create a modeling environment with both rigor 
in its theoretical foundations and flexibility in its use. Because 
of the nature of the theorem prover and the overall design of the 
system, it has the potential to significantly reduce the time and 
effort needed in constructing secure models. 
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Abstract 

In this paper, the integrity policy 
introduced by Clark and Wilson is taken as 
a set of valid requirements suitable for 
commercial and other data processing 
requirements that must be enforced with a 
high level of assurance. A methodology 
for converting a policy expressed in terms 
of the Clark/Wilson notation into a 
corresponding mandatory policy expressed 
in terms of a lattice of access classes 
together with an appropriate supporting' 
policies for identification and 
authentication is stated. The existence 
of such a methodology implies that the 
Clark/Wilson integrity requirements can be 
met by existing, appropriately-configured 
Trusted Computing Bases. 

1. Introduction 

The integrity policy presented by 
D.D.Clarke and D.R.Wilson in [1] has 
received a relatively high degree of 
attention as an accurate representation of 
what the business and commercial data 
processing community means by the term 
integrity with respect to data processing 
applications oriented toward commercial 
applications, just as the Bell and LaPadula 
formal security policy model [2] has 
served, in the past, as the technical basis 
for trusted computer systems enforcing a 
mandatory access control policy oriented 
toward military and government applications 
processing information classified under 
federal regulation. 

Clark and Wilson state, as their two major 
conclusions, that "a lattice model is not 
sufficient to characterize integrity 
policies", and that "distinct mechanisms 
are needed to control disclosure and to 
provide integrity". The implication of 
these conclusions, if true, is that the 
Trusted Computing Base technology described 
in [3] are not applicable to the evaluation 
of systems designed to enforce the 
Clark/Wiison integrity policy. 

In this paper, issue is taken with both of 
these conclusions. The argument has the 
following outline: starting with an 
arbitrary Clark/Wilson policy, an 
equivalent access control policy based upon 
a lattice of sensitivity labels is derived. 
Together with appropriate supporting 
controls for a security officer interface 
and identity-based subject activation, a 
policy interpretation compliant with the 
requirements of [3] can therefore be 
formulated. A TCB enforcing such a policy 
would satisfy the Clark/Wilson policy as 
well as the Criteria. As the originally 
chosen integrity policy was arbitrarily 

chosen from the family of Clark/Wilson 
policies, it follows that any Clark/Wilson 
policy can be enforced by an 
appropriately-configured TCB meeting the 
criteria stated in [3]. 

As the transformation is constructive, it 
shows how an arbitrary policy, expressed in 
terms of the Clark/Wilson model, can be 
reformulated as an equivalent combination 
of access controls based upon a lattice of 
access classes together with a 
discretionary component controlling access 
to the execution of transactions to the 
granularity of an individual. 

The implication of this construction is 
that one could envision a TCB, designed to 
be evaluated under the criteria of the [3], 
that is also well-suited to the enforcement 
of controls expressed in terms of the 
Clark/Wilson model. In fact, it can 
further be observed that such a TCB is 
already available. In a later section, I 
will discuss how an existing TCB (Gemini 
Computer's GEMSOS) can be tailored to 
support a Clark/Wilson model. 

1.1 Relationship to Previous Work 

Several papers earlier than [1] are 
important in the study of the application 
of computer security technology to 
integrity issues. I have drawn freely from 
them in the work presented below. Biba, in 
[4] presents a "mandatory integrity policy" 
that is the mathematical dual of a 
mandatory secrecy policy based on a lattice 
of labels. Such a policy is often called a 
Biba integrity policy. Lipner, in [5] 
constructs a commercially-oriented policy 
from a combination of secrecy and mandatory 
integrity levels and categories. Shirley 
and Schell, in [6] introduce the notion of 
program integrity, a policy that is 
important when subjects that are "trusted 
with respect to integrity" exist in a 
system. They demonstrate, in addition, 
that a ring-based protection hierarchy, 
such as that found in Multics or GEMSOS, 
can be interpreted as a hierarchical system 
of subjects trusted (to various degrees) 
with respect to integrity, upon which the 
program integrity policy is enforced. 

Boebert and Kain, in [7] introduce a 
system of trusted pipelines, enforceable by 
the Honeywell LOCK (formerly, SAT) TCB. 
They demonstrate (correctly) that a 
hierarchy of Biba integrity levels alone is 
insufficient to enforce a trusted pipeline. 
The generalization that a full lattice 
including Biba integrity categories is 
insufficient as well is not addressed by 
Boebert and Kain. This paper is an 
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important predecessor to [1]: indeed, it 
could be fairly stated that the 
Clark/Wilson policy is an elaboration of 
the trusted pipeline idea. 

In addition to these, the Clark/Wilson 
presentation has induced a number of 
additional papers, generally of the form 
"system X can enforce the Clark/Wilson 
policy." A recent paper by Lee, [8] 
presents a construction identical in many 
respects to the system presented here. The 
primary deficiency in Lee's paper is that 
one of the important Clark/Wilson 
constraints, requiring that controls be 
enforced at the granularity of a 
user/object/program triple appears to be 
inadequately addressed. Lee's work and mine 
are independent: drafts of both papers 
were presented concurrently as position 
papers at the invitational Workshop on 
Integrity Policies for Commercial 
Information Systems held at Bentley 
College, Waltham, Mass. The notion of what 
Lee calls a partially trusted subject upon 
which both of our systems depend is 
original with neither Lee nor myself: it 
is discussed by Schell et al. in [9] and by 
Bell [10] as a part of this "updated" 
version of the Bell and LaPadula model. 

Also noteworthy is a recent paper by Karger 
[11] that provides a capability-oriented 
perspective on the Clark/Wilson 
requirements and raises a number of 
interesting design and implementation 
issues, as well as featuring a review of 
background papers and reports more 

extensive than that given here. 
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1.3 Overview 

This paper provides an overview of the 
basic construction that I have defined for 
translating an arbitrary abstract system 
meeting the Clark/Wilson requirements into 
an equivalent system based upon a label­
based access control policy with integrity 
and disclosure categories and "partially 
trusted" subjects. Rather than presenting 
this transformation in abstract 
mathematical terms, I have chosen in this 
paper to provide a more understandable 
overview, together with a concrete example. 
For those who may be interested, the more 
abstract (and precise) presentation is 
available as a Technical Report in [12]. 

A short section after the tec.hnical 
overview addresses the ability to implement 

an instance of the transformation using a 
currently avail.able TCB, the GEmini Multi ­
Processing Secure Operating System (GEMSOS). 

2. Technical Summary 

In this section, I will first review 
selected technical capabilities provided by 
a typical commercially-available TCB 
(GEMSOS) that will be important in 
constructing the transformation from a 
Clark/Wilson set of access control 
requirements to an equivalent set of policy 
requirements, stated in terms of 
discretionary, non-discretionary, and 
application policy controls. (I have 
chosen to use the term "non-discretionary 
access controls" in place of the usual 
"mandatory access controls", as originally 
defined by Salzer and Schroeder [13], in 
order to avoid Clark and Wilson's complaint 
that the use of the term "mandatory" can be 
confusing to those unfamiliar with the 
jargon of the Trusted Computing Base 
technical community.) It should similarly 
be understood that by identifying certain 
of the controls described in the system 
below as "discretionary", I mean simply 
that the control is based on an individual 
user identifier (as opposed to an access 
class or clearance) and represents an 
authorization for that individual user to 
perform some security-relevant action 
(represented by access to a directly or 
interpretively accessible object.) 

In order to illustrate the system 
concretely, I will develop a "toy" system 
as the summary proceeds. We will imagine a 
system comprised of four data types, A, B, 
C, and D, with each data type comprised of 
an indefinite number of distinct data 
objects. (For example, data type A might 
include data objects Al, A2, A3, etc.) We 
will suppose that there are defined three 
transactions that transform data from one 
type to another: AtoB, BtoC, and BtoD. We 
will also suppose that there is defined a 
verification procedure ValidateAB that 
determines whether the objects of type A 
and B are mutually consistent (without 
modifying them). (These transactions are 
simply executable programs.) The example 
will be extended as needed below. 

2.1 Non-Discretionary Mechanisms 

The purpose of this section is to review 
the mechanisms assumed available for the 
enforcement of the non-discretionary 
components of the policy and their 
application in terms of a strongly-typed, 
transaction-oriented system such as that 
described by Clark and Wilson. It is 
assumed that the system is comprised of 
objects (passive information repositories) 
and subjects (active entities that can read 
and/or write objects.) It is important to 
note that we distinguish between a program 
(which is an object) and a subject (which 
is typically a program in execution, acting 
on behalf of a particular user). The 
abstraction of a subject is implemented by 
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the security kernel. The distinction 
between a program and a subject is 
important because the single label on a 
program represents its sensitivity as a 
data repository, while the pair of labels 
(explained later) on a subject, which are 
related only incidentally to the label on 
the program it is executing, represents the 
accesses allowed to the subject. 
It is similarly important to distinguish 
between the notion of a subject and of a 
user. A subject is an entity internal to 
the computer system, which executes on 
behalf of a user (who is external to the 
computer system). Again, the distinction 
will be important because a given subject 
may well have a pair of labels only 
incidentally related to the user's 
clearance. 

The set of all possible access classes 
forms a lattice -- mathematically, a set of 
labels with a dominance relation that 
partially orders them, such that least 
upper and greatest lower bounds are 
uniquely defined. (It may be observed that 
when integrity and/or disclosure categories 
exist, it is not necessary for all possible 
combinations of the categories to be 
defined in the set of labels to have a 
lattice -- a lattice that includes all 
possible combinations is called a 
distributive lattice [14]. Of importance 
in this paper is that the lattice is built 
from two essentially independent 
components: every label represents a 
sensitivity with respect to disclosure, and 
an independent component representing a 
sensitivity with respect to modification. 
Because these components are mathematically 
independent, we are able (in effect) to 
give each object (including programs) 
independent labels with regard to its 
disclosure and integrity sensitivities, 
give users independent clearances with 
respect to disclosure and integrity, 
and give subjects (programs in execution) 
independent authorizations with respect to 
read and write access. 

Both the disclosure and Biba integrity 
components of a label may generally contain 
hierarchical levels and non-hierarchical 
categories. As it turns out, non­
hierarchical categories alone are 
sufficient to implement the desired non­
discretionary component of a Clark/Wilson 
policy. The following notation will be 
used to represent an arbitrary set of 
integrity and disclosure categories: 

[a, b, c, . ] {x, y, z • .} 

is that unique access class composed of 
integrity categories a, b, c, and so on, 
together with secrecy categories x, y, z, 
and so on. Thus, square brackets are used 
for a set of integrity categories, and 
curly braces for a set of disclosure 
categories. For arbitrary access classes, 
these sets may overlap. 

For access classes composed of sets of 
integrity and disclosure categories alone, 

the dominance relation is simplified to the 
following: access class A dominates access 
class B if, and only if, the disclosure 
categories of A are a superset (proper or 
improper) of the disclosure categories of 
B, and the integrity categories of A are a 
subset (proper or improper) of the 
integrity categories of B. 

Intuitively, a system of strongly typed 
objects may be constructed as follows: 
each data type is represented by an 
integrity category reserved for that type, 
(used to limit the subjects that will be 
allowed to modify objects of that type) and 
by a disclosure category reserved for that 
type (used to limit the subjects that will 
be allowed to observe objects of that 
type). 

For our example system, the access class 
labels reserved for objects of type A, B, 
C, and D are [a]{a}, [b]{b}, [c]{c}, and 
[d]{d}, respectively. 

Program objects are given special 
treatment. Because we wish to control the 
ability to execute transactions to the 
granularity of a single certified 
transaction, each transaction object 
(program) will be assigned an individual 
data type of its own. In addition, we will 
indicate that a transaction is certified to 
operate upon objects of a particular data 
type by including the integrity category 
for that data type in the access class of 
the transaction object. 

For our example, certified program AtoB is 
certified to operate (either by reading, 
writing, or both) on objects of types A and 
B. In addition to the unique transaction 
categories tl reserved for it, we add the 
integrity categories for both A and B to 
the access class for the object containing 
this program: viz., [tl,a,b]{tl}. 
Similarly, BtoC would have access class 
[t2,b,c]{t2}, BtoD would have access class 
[t3,b,d]{t3}, and ValidateAB would have 
access class [t4,a,b]{t4}. 

It may appear surprising that the program 
for a transaction is given an integrity 
category for a data type it only needs to 
read. However, a read, in a real computer 
system, is useful only if the read allows 
a copy to be made of the data value (e.g., 
as a return value in a subject's stack.) 
This copy must be protected as having 
the same integrity as the original: 
therefore, in order to work, the program 
(when executed) must be able to write 
information (in order to make copies) of 
any integrity category it is required 
to read. It follows that the program 
itself must also be certified to write 
information of this integrity. 

Subjects are given two labels, called the 
write label and the read label, one of 
which (the write label) serves to prevent 
the subject from writing objects of an 
unauthorized type, and the other (the read 
label) from reading objects of an 
unauthorized type. The precise rules 
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enforced are as follows: a subject will be 
allowed to write an object only if the 
write label of the subject is 
mathematically dominated by the label of 
the object, and will be allowed to read an 
object only if the read label of the 
subject mathematically dominates the label 
of the object. 

The reader may justifiably find it 
difficult to apply these rules when both 
disclosure and integrity categories are in 
use, particularly as the mathematical 
definition of dominance is abstract. In 
more intuitive terms, a subject may only 
write objects that have all of the secrecy 
categories in the subjects read label (or 
more) -- no write down with respect to 
disclosure. A subject may also only write 
objects that have no more integrity 
categories than the subject's read label 
no write up in integrity. The subject 
similarly may not read up in secrecy or 
read down in integrity. The abstract 
mathematical definitions allow the security 
kernel to enforce all four of these 
constraints by encoding them in two subject 
labels and one object label. 

In order to capture the notion of 
strongly-typed objects, it turns out that 
the appropriate format for the write label 
of a subject is the set of all integrity 
categories for the data types it is 
certified to read and/or write, while the 
form of the read label is the set of all 
disclosure categories for these data types, 
together with the disclosure category for 
the transaction to be executable. (For our 
system, a subject must usually be confined 
to execute a single transaction in order to 
successfully be created.) 

For our example (without knowing anything 
about user clearances yet) we suppose that 
some subject must be created to execute 
transaction AtoB. The indicated write and 
read labels for such a subject would then 
be [a,b] for the write label, and {a,b,tl} 
for the read label. 

It should be observed that relative to 
objects with an assigned type, the labels 
on the subject correctly and precisely 
constrain it to manipulate data objects of 
the desired type only. For example, an 
object of typeD, with label [d]{d}, cannot 
be read, because [d]{d} is not dominated by 
the subject's read label {a,b,c,tl,t2}. 
Similarly, the object [d]{d} cannot be 
modified by this subject because it does 
not dominate the subject's write label, 
[a,b,c]. Finally, transaction t2 cannot be 
executed by this subject (for example), 
because it will not be allowed to read or 
execute an object with disclosure category 
{t2}. 

An important observation is that a subject 
labeled as described is "partially trusted" 
in that it may be able to write objects of 
different access classes, and may be able 
to write objects of an access class not 
dominating the access class of some object 

it can read. Therefore, it is important 
that the subject be limited to execute only 
those transactions certified to perform the 
type conversions it might be able to make. 
The program integrity rule, however, 
guarantees that this will be the case. The 
program integrity rule requires that any 
program executed by a subject have an 
access class with integrity categories that 
include all of the integrity categories of 
the subject's write label. (It may have 
more). This rule has a relatively 
intuitive interpretation in the context of 
strong typing: program integrity 
guarantees (as enforced by the security 
kernel) that a subject may only execute 
transactions that have been certified to 
operate correctly against all of the data 
types for data objects the subject is 
allowed to access. That is, enforcement of 
program integrity by the kernel means 
globally that every transaction tha.t is 
executed will be certified to be executable 
against any of the typed objects accessed 
-- exactly what is wanted for any strongly 
typed system, including Clark/Wilson. 

Users (who are distinct from subjects) are 
given a clearance that reflects their 
authorization to manipulate data of a given 
type by placing both its disclosure and 
modification categories in the user's 
clearance. Furthermore, a user is given 
authorization to execute a particular 
transaction by placing its disclosure 
category in the user's clearance. It is 
sufficient that the TCB constrain the read 
and write labels of a subject, executed on 
behalf of an authenticated user, to have a 
write class that is some subset of the 
user's integrity categories, and a read 
class that is some subset of the user's 
disclosure categories. A subject obeying 
this constraint will either have no 
transaction executable (i.e., the attempt 
to create the subject by the TCB aborts) 
or will end up executing a single 
transaction, authorized to the user, 
against objects of data types authorized to 
the user. As discussed above, program 
integrity guarantees that such a 
transaction will also be one that has been 
certified to operate on objects of the 
given type. 

It is worth noting that although a 
transaction might be certified to operate 
on a variety of types (e.g., A, B, and C), 
an individual user might be authorized only 
to operate on a subset of these types 
(e.g., A and B). In such a case, the user 
will not be able to create a subject 
executing the transaction against an object 
of the forbidden type, even though the 
transaction itself is certified to do so. 
Many existing systems based upon granting 
access to "canned transactions" are unable 
to limit the authorizations independently 
for different users of the same 
transaction. If a user has access to a 
transaction, the user "inherits" any 
authorizations the transaction may have. 
(The "setuid" feature provided by UNIX 
works this way, for example.) 
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In contrast, the system described here {tl,a}[a] to the user's clearance. In 
allows the authorizations of different order to make transaction t2 executable 
users to be controlled independently of the 
certifications recorded for each 
transaction. Thus, the certifying official 
(for transactions) need only concentrate on 
determining what a transaction is trusted 
to do correctly in selecting a label for 
the transaction, while the security 
administrator controls access by individual 
users to particular transactions and object 
types without, (in theory), needing to 
consider the certification a transaction 
has gained. If an attempt is made to give 
a subject "too much authority" with respect 
to the actual certification recorded for a 
transaction, the TCB, enforcing program 
integrity, will abort the subject before it 
begins because the transaction will be 
unexecutable. 

2.2 Discretionary Mechanisms 

The system summarized above does not yet 
capture the complete intent of the 
Clark/Wilson requirements with respect to 
access control. It might be characterized 
as "strong typing," with users cleared to 
execute particular transactions and 
(independently) to access objects of 
particular types. Clark and Wilson ask, 
in particular, for controls on which 
transactions a user can execute against 
which objects: that is, permission to 
access object A and to execute transaction 
T, should not automatically imply 
permission to execute T against A, even if 
T 	 is certified for A. 

In particular, Clark and Wilson require 
that the TCB maintain (either implicitly or 
explicitly), a list of relations listing 
authorized combinations of users, 
transactions, and objects (or data types). 
It is important to see how the system 
described so far does not meet this 
requirement. 

In more complex systems than our example, 
it becomes possible, if there are no 
additional controls, to implicitly clear a 
user for an undesired transaction in order 
to make some combination of desired 
transactions available. Suppose, for 
example, that there are four data types (A, 
B, C, D), and two certified transactions, 
both "query" transactions, each certified 
to operate correctly on each of the data 
types. (We might imagine, for instance, 
that A, B, C, and D are disjoint 
collections of personnel records for four 
different divisions, tl is a transaction 
for observing salaries, and t2 a 
transaction for observing training 
qualifications.) 

We wish to give a particular user the 
authority to observe salaries in database A 
only, and training qualifications in any of 
the databases. In the system so far 
described, there is no way to do this 
without granting too much authorization. 
In order to make transaction tl executable 
against A for the user, we must add 

against A, B, C, and D, we must add 
{t2,a,b,c,d}[a,b,c,d] to the user's 
clearance. The user's single composite 
clearance is now {tl,t2,a,b,c,d}[a,b,c,d] 
and nothing prevents the user from 
executing either transaction against any of 
the data objects. 

It can be argued that by restructuring the 
transactions and repartitioning the data, 
the desired effect could be attained. 
While this is true, it is hardly convenient 
or practical to have to repackage either 
transactions or data types in reaction to 
the addition of new users with novel 
clearances. In this matter, I concur 
whole-heartedly with Clark and Wilson: the 
maintenance of a table of relations between 
permitted user/transaction/object 
combinations (however it may be stored 
physically) is a practical necessity. 

The approach I endorse is to treat the 
table of triples as a special form of 
discretionary controls maintained within 
the TCB. When a request is made to the TCB 
to create a new subject, this table will be 
consulted to determine whether the new 
subject is permitted. Sufficient 
information to do this is encoded in the 
requested read and write labels for the 
subject (plus the user identity, maintained 
within the TCB) if only single-transaction 
subjects are allowed: the integrity 
category for the subject, plus any data 
types accessed, is included in the write 
label requested for the subject. 

I have preferred to separate this control 
from the underlying non-discretionary 
controls for the following reasons: 

• 	 it would"appear that the control is 
intrinsically discretionary in nature: 
it is based (in part) on the actual 
user identity (not a clearance). The 
notion of the non-discretionary 
component of the system is that users 
are cleared to execute transactions 
and access data objects on a long-term 
basis: this is refined by a 
discretionary control granting access 
to particular combinations of 
transactions and objects on a more 
volatile basis. 

• 	 it should not be assumed that the 
mechanism is vulnerable simply because 
I have called it a "discretionary" 
mechanism, any more so than the 
management of group memberships (for 
example) is vulnerable. It would be 
possible, for instance, to make the 
table of relations modifiable only by 
a designated security administrator 
via a trusted TCB interface. 

• 	 the decomposition into three related, 
but distinct sets of controls 
(certification of transactions, 
clearance of users, and authorization 
by means of relations) would appear to 
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simplify the problem of keeping 
everything straight. In particular, 
the 	certification of transactions 
would depend only upon their 
correctness (the certifier does not 
need to be concerned with the impact 
of a change in certification on user 
authorizations); the clearance of 
users I view as establishing long-term 
"damage control" boundaries, while the 
authorization of users to execute 
transactions against particular 
objects or data types in the relation 
table establishes a shorter-term "need 
to do". 

• 	 It should be understood that in order 
for execution of a transaction to 
commence, several things must match: 
1) the transaction must be certified 
for execution against the selected 
data types, 2) the user must have a 
basic clearance both to access the 
data types, and to execute that 
transaction, 3) specific authorization 
in the relation table must exist for 
the user to execute the transaction 
against these specific objects. If 
any of these conditions fail, the 
transaction cannot begin. 

3. 	 Application to the Clark/Wilson 
Requirements-

In the previous section, the emphasis was 
on presenting an overview of how the 
proposed system is to work. In this 
section, the requirements stated by Clark 
and Wilson in [1] are restated, with a 
short summary of how they are mapped into 
the proposed system. 

3.1 Definitions 

• 	 Constrained Data Item (CDI) -- those 
data items within .the system to which 
the integrity policy must be applied. 

A CDI corresponds to what has been 
called a data type in the preceding 
section. Note that a CDI may consist 
of many distinct objects, or, for 
important ~ata objects, an object may 
be given a unique type: it is up to 
the application designer. 

• 	 Integrity Verification Procedure (IVP) 
-- a procedure, the purpose of which 
is to confirm that all of the CDI's in 
the system conform to the integrity 
specification at the time the IVP is 
executed. -- In my system the IVP, as 
designed, would be a transaction 
object certified to correctly perform 
the verification function over all 
represented data types. Note that my 
system also accommodates "smaller" 
IVP-like transactions for arbitrary 
subsets of the data types. 

• 	 Transformation Procedure (TP) -- a 
well-formed transact'ion that changes 
the set of CDis from one valid state 
to another. -- In my system, a TP is 

an arbitrary transaction objec~ 
(program) that has been certified to 
operate correctly on its designated 
data types. 

• 	 Unconstrained Data Item (UDI) -- a 
data item not covered by the integrity 
policy. -- In my system, a data type 
would be reserved for UDis. Those 
TP's certified to correctly transform 
UDis to CDis (i.e., validate and move 
data into the system) would simply 
have the integrity and disclosure 
categories for the UDI data type added 
to their access class. 

3.2 Enforcement Rules 

• 	 Cl: All IVPs must properly ensure that 
all CDis are in a valid state at the 
time the IVP is run. -- Clark and 
Wilson identify this as a requirement 
imposed upon the certifier of the IVP, 
as it would be in the system I have 
described. 

• 	 C2: All TPs must be certified to be 
valid. • ~ For each TP, the certifier 
must specify a list of CDis (called 
a relation) which the TP has been 
certified to manipulate correctly. 
-- In the system described, this 
list is embedded in the access 
class assigned to the TP program 
object. 

• 	 El: the system must maintain the 
relation referred to in rule C2, and 
must ensure .that the only manipulation 
of any CDI is by a TP, for which the 
CDI occurs in the relation for that 
TP. -- This rule is enforced 
indirectly by means of program 
integrity. The security kernel 
ensures by means of this constraint 
that the TP executed by a subject is 
certified for all CDI's accessible by 
the subject. It follows that any CDI 
manipulated by a TP in execution is 
one that the TP is certified to 
manipulate correctly. 

• 	 E2: the system must maintain a list of 
relations associating triples of the 
form <UseriD, TP, CDI> that identifies 
which users may cause which TPs to be 
executed to manipulate which CDis. - ­
as discussed in the last section, this 
rule is enforced explicitly by the TCB 
as a discretionary policy. However, 
it is backed up by the additional 
requirement that the user be cleared 
for a given TP and list of CDis in the 
non-discretionary sense. 

• 	 C3: the list of relations in E2 must 
be certified to meet the separation of 
duty requirement. -- Clark and Wilson 
identify this as a rule to be enforced 
by the human administrators of the 
system. 

• 	 E3: the system must authenticate the 
identity of each user attempting to 
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execute a TP. -- as this is a 
commonly met requirement for any 
high-assurance evaluated TCB, it would 
seem unnecessary to address this 
requirement in any detail. 

• 	 C4: all TPs must be certified to write 
to an append-only CD! (the log) all 
information necessary to permit the 
nature of the operation to be 
reconstructed. -- It might be noted 
that this is presented by Clark and 
Wilson as an application-dependent 
requirement, requiring review of the 
TP by the certifier. However, the 
intent of this requirement would be 
met in part by the security audit 
function of the underlying TCB, which 
would record, as a security-relevant 
event, the creation of a new subject, 
its associated user and access classes 
in the security audit log. 

• 	 CS: any TP that takes a UDI as an 
input value must be certified to 
perform only valid transformations, or 
else no transformations, for any 
possible value of the UDI. - ­
Enforcement of this rule is also the 
province of the certifiers: the 
described system provides a means, 
however, for ensuring that a TP not 
certified to take a UDI as input in 
fact, cannot be executed with read 
access to a UDI. 

• 	 E4: only the agent permitted to 
certify entities may change the list 
of such entities associated with other 
entities: specifically, those· 
associated with a TP. An agent that 
can certify an entity may not have any 
execute rights with respect to that 
entity. -- This rule is to be enforced 
in several parts (outside the security 
kernel). First of all, in order to 
"certify" a TP one must be able to 
create a subject with a write label 
containing the integrity category [tn] 
reserved for that TP. It follows that 
a user with a clearance containing 
{tn}[tn] is a "certifier" for the TP. 
In order to execute the TP against a 
data type A, a user's clearance must 
contain {tn,a}[a]. Thus, there exists 
a clear-cut way to distinguish 
"certifiers" from "users" of a TP: 
only certifiers have a clearance 
containing [tn]. The rule that must 
be enforced by the TCB can then be 
restated as follows: no individual 
may be given a clearance that 
simultaneously contains the integrity 
category·for a transaction and the 
integrity and/or secrecy category of 
any data type contained in the label 
for the transaction object. This rule 
would be most easily enforced by the 
TCB the time some user was given a 
clearance as a "certifier" by ensuring 
that the user was cleared for none of 
the reserved proposed for it by the 
"certifying" individual). 

4. 	 Prospects for ~ Near-Term 
Implementation 

In the material presented above, I have 
described the proposed system for 
supporting the Clark/Wilson requirements in 
the simplest mathematical terms I could 
find: the emphasis was on making a rather 
complex construction as clearly explained 
as possible without becoming mired in 
extraneous design issues. In particular, 
neither the efficiency nor the prospects 
for actually building the proposed system 
were considered. The purpose of this 
section is to address these issues briefly. 

We might first list some of the 
characteristics a conventional TCB with a 
non-discretionary security kernel should 
have in order to support the construction 
given above: 

• 	 it should support both disclosure and 
Biba integrity policies; 

• 	 it should support partially trusted 
subjects with both write and read 
labels; 

• 	 it should support both hierarchical 
and non-hierarchical access classes; 

• 	 it should enforce a program integrity 
policy; 

• 	 it should be subsetted in such a way
that the special requirements of the 
Clark/Wilson policy for constraining 
clearances and imposing controls on 
the creation of new subjects based on 
<Userid, TP, CDI> triples can be 
introduced without disturbing the 
security kernel itself. 

The GEMSOS TCB has all of these properties. 
One issue raised by Karger in [11] is worth 
special mention: it should be apparent 
that a relatively large number of integrity 
and disclosure categories will be needed 
for a practical system. GEMSOS supports an 
access class label with over 90 bits 
available to represent the lattice of 
access classes. The commercial version of 
this system uses these bits to represent a 
distributed lattice conformant to the 
guidelines in [3]. However, the 
interpretation o.f these bits is confined 
internally to a single module which is 
easily modified. In order to support a 
Clark/Wilson policy (as only limited 
combinations of the categories will 
actually occur) this module can relatively 
easily be restructured to encode a much 
higher number of "data types". The 
remainder of the kernel depends, for its 
correct operation, only upon the fact that 
the policy is a lattice. (In particular, 
non-distributive lattices are 
accommodated.) Thus, making the required 
modification to the kernel is an issue 
primarily of routine software engineering. 

The 	following changes, all relatively 
minor, would be needed to convert the 
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GEMSOS TCB into one supporting a 
Clark/Wilson policy in a practical way: 

• 	 the internal module interpreting 
access class labels would need to be 
modified, as discussed above; 

• 	 additions would have to be designed 
and coded for the discretionary access 
control manager to enforce the 
additional requirement to constrain 
subject creation based on a table of 
"triples". These would not disturb 
the existing discretionary and/or 
non-discretionary controls, but serve 
as a refinement to them. 

• 	 additions would have to be designed 
and coded to enforce rule E4. 

All of these changes are relatively minor. 
Although a re-evaluation of the TCB would 
be induced, existing evidence could be 
substantially re-used. In particular, 
because of the high degree of structure in 
the existing GEMSOS design, and because no 
fundamental changes would be required to 
the design, the magnitude of effort 
required for such a re-evaluation would be 
low, and the risk of failure small. 

A final point worth noting is that 
mathematically (and practically, as well) 
it is relatively easy to define a lattice 
that combines the lattice of "types" with 
conventional disclosure and integrity 
lattices (using the Cartesian product.) It 
follows that a policy combining the 
military and strongly-typed systems is 
immediately feasible. 

5. 	 Conclusions 

In this paper I have presented a 
construction that maps an arbitrary 
Clark/Wilson policy to an equivalent 
"military" policy containing both non­
discretionary and discretionary components. 
In particular, the most important elements 
of the Clark/Wilson requirements (execution 
of TPs only against CDis they are certified 
for, and only by users authorized to 
execute the TP against these CDis) can be 
enforced with the strong assurances 
traditionally associated with non­
discretionary policies. Moreover, because 
this construction points the way for 
utilizing existing technology, the 
prospects for a near-term implementation of 
a highly-assured Clark/Wilson system are 
promising. 

However, this construction would appear to 
have some theoretical interest as well. 
Essentially, the construction shows that a 
security kernel supporting Biba integrity, 
with both hierarchical and non-hierarchical 
components, and enforcing program 
integrity, can serve as a strong type 
manager. As it would appear that Boebert 
and Kane have shown that the inverse 
transformation is also possible -- a strong 
type manager can enforce a lattice security 
policy -- in some sense, these views about 

integrity are two different ways of talking 
about the same things. Which way you 
select depends upon the things you want to 
talk about -- a "change of coordinates" 
into the other system is always possible. 
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ABSTRACT 

Currently, an important concept in computer 
security is data integrity. As early as 1977, there 
existed formal models which incorporated integrity 
in an access control policy [Biba]. In 1982 Goguen 

and Meseguer provided the modelling world with 
their non-interference theory which develops 
assertions based upon pairs of users [G+M]. 
Furthermore Clark and Wilson [C + Wl discussed the 
concept of data integrity and the differences between 
an integrity policy and those policies controlling 
access to sensitive information. This paper takes 
advantage of the flexibility of non-interference to 
define a security policy for data integrity. 

Introduction 

A major concern of computer security is the 
concept of data integrity. Integrity considers the 
ability of a computer system to assure its users that 
the information it stores is not corrupted. This is 
different from the access control policies [B + L] used 
for protecting sensitive information which have been 
studied intensely for the past decade. Unlike access 
control policies which restrict access to data objects 
based on classification and clearances, an integrity 
policy should discuss properties of the system which 
protect the soundness and completeness of the stored 
information. We do not concern ourselves with a 
liscussion of the differences in the two policies, but 

this point is clearly brought out in a paper by David 
Clark and David Wilson [C + W]. However we use 
certain of the concepts from their paper as 
motivation for our integrity policy which is 
expressed in non-interference theory. 

Motivation 

The model by Clark and Wilson [C + W] 
consists of a finite state machine which has a set of 
constrained data items (CDI's) representing those 
elements for which integrity must be provided and 
similiarly a set of unconstrained data items (UDI's). 
Also included in the model are two types of 
procedures. The first type of procedure is called a 
Transformation Procedure (TP) which can be viewed 
as the typical state transition functions. The second 
type of procedure is a Integrity Verification 
Procedure (!VP), whose purpose is "to confirm that 
all of the CDI's in the system conform to the integrity 
specification at the time the IVP is executed." [C + W 
p.l89]. With a given set of procedures, they also 
define a set of nine rules, partitioned into 
certification and enforcement rules, to which the 
procedures must adhere if the system is to provide 
data integrity. 
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A key concept described by these rules is that of 

separation of duty. Separation of duty refers to a 

system in which a state transition cannot be fully 

executed by one user but requires the cooperation of 

two or more users to complete. A typical example of 

separation of duty is a business procurement process. 

That is, one user requests an object, another user 

authorizes the request, a third actually purchases 

and receives, until finally the original user who 

requested the object receives it. In this example a 

company handling multi-million dollar objects 

certainly would not want one person to have the 

capability of performing all the functions in the 

procurement process. It is this concept of separation 

of duty upon which we will build our definition of an 

integrity policy. 

Definitions 

Let U be the set of all system users and C the 

set of state changing commands. For every user u e 

U let au e U be the user who is designated as the 

"authorizer" of any command issued by u. 

Informally, our definition of an integrity preserving 

system is as follows: 

Def: A system (finite state machine) preserves 

integrity provided that for every user u e U and 

command c e C, the command c, when issued by u 

does not effect the system until au authorizes c. 

The phrase "u does not effect the system" can 

be restated as "whatever u does is not visible by any 

other user" or, better yet "u does not interfere with 

v" where v e U\{u,au}. The last phrasing indicates a 

relation to non-interference theory. However we will 

see that the clause "until au authorizes the 

command" will be represented in a definition for a 

purgeable user-command pair. We formalize our 

definition using the notation of Goguen and 

Meseguer in [G + M]. Recall that w is a finite 

sequence of user-command pairs w = 
tut,CI),(uz,cz), ... ,(un,cn) where Ui e U and Ci e C. The 

family of all possible input sequences is denoted by 

fUxC)*. The state of the machine determined by w 

from the universal initial state is denoted by [[w]]. 

The non-interference assertion that we develop for 

integrity differs somewhat from the assertions that 

Goguen and Meseguer created. The difference lies in 

the definition of purgeability of a user-command pair 

which in turn creates a difference in the purge 

function. 

A purging function is the key tool in 

formalizing non-interference assertions. Given a 

finite sequence of user-command pairs w, the purge 

of the sequence w is simply a certain subsequence of 

w. In our case, this subsequence of w is the one 

where all commands issued by u are authorized. 

That is, any command by u that is not authorized is 

deleted (purged) from the sequence w. Formally we 

say: 

Def 1: A user command pair (Ui,Ci) e w is purgeable 

with respect to u iff u = Ui and there is not a user­

command pair (uj,Cj) e w with Uj = au and Cj = 

"authorization command for u" and i < j. 

Using this definition of a purgeable user-command 

pair we get a recursive definition for the purge 

function: 

Def: Let w = (ut,CI),(uz,cz), ... ,(un,cn). Then for i = 
1,2, ... ,n we have Purgeu:(UxC)* ::} (UxC)* where 

Purgeu(0) = 0 and Purgeu((Ui,Ci), ... ,(un,Cn)) = 

Purgeu((Ui + I.Ci + t), ... ,(un,Cn)) 


if(ui,Ci) is purgeable with respect to u 


or 


(Ui,Ci),Purgeu((Ui + I,Ci + t), ... ,(un,Cn)) 


otherwise 


Informally Purgeu(w) will delete from the 

sequence w any command issued by u that is not 

later authorized by au. Notice that this definition of 

purging is different from the purging performed in 

the non-interference definition in [G+M p.79]. 

Their purging function simply removes all user­

command pairs issued by u or removes those where 

the command is from a subset of C. Our definition of 

purge is dependent upon the rest of the sequence in 

determining the purgeability of a user-command 

pair. 
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Even though the de fin tion of our purge function 

is different from Goguen and Meseguer's, with an 

extra assumption we can derive a purge function 

which performs conditional non-interference. The 

assumption is: let any authorization command 

issued by au authorize all previous commands by u. 

With this additional hypothesis, our purge function 

behaves exactly like that of Goguen and Meseguer's 

conditional non-interference purging. That is, 

Purgeu(w) = w1w2 where w = w1w2l and w1 is the 

longest subsequence of w which ends in an 

authorization command and w2 = Purgeu(w21). We 

will discuss more aspects of purging in a later 

section, for now let us continue with our 

developement of data integrity. Given the above 

definitions we can state the following: 

Policy 1: A system (finite state machine) preserves 

integrity provided that for every u e U and v e 

U\{u,au} we have u does not interfere with v modulo 

Purgeu written 

u :I v mod Purgeu 

Ill 
out([[ w ]],v,r) =out([[Purgeu(w)]],v ,r) 

for all w e (U xC)*. 

Generalizations 

Upon examination of the above definition, 

there are several ways one could generalize to allow 

more flexibility. Each generalization will be 

summarized by stating a new definition for the 

purgeability of a user-command pair and also a 

revised policy statement. The purge function will 

also be different but that is implicit because of the 

new definition ofpurgeable. We have already stated 

a generalization earlier with the assumption that all 

previous commands issued by u can be authorized by 

au with a single command. The most obvious way to 

Jeneralize is to say that more than one user needs to 

authorize a command issued by u. That is, let 

Au = {x e U I x must be a member of the 

authorization process for u }. 

We postulate that the members of the authorization 

set Au constitute a tree as defined in digraph theory. 

This seems to be a natural structure to impose on the 

set because of the management hierarchy which 

exists in the corporate world. We know that in many 

instances a manager will not grant authorization for 

an action until various subordinates have given 

their approval. This concept simply says that there 

is a partial ordering on the set Au· Thus Au 

determines an "authorization tree for u" with the 

members of Au as the nodes, u as the root, and a 

directed edge exists from Ui to Uj, with Ui,Uj e Au, iffuj 

follows Ui in the authorization process for u. The 

example below will help to illustrate this point. 

Ex: Suppose Paul, whenever he wants to publish a 

paper, has to get the following approvals; 

Will(technical advisor), Ted(division chief), 

John(office chieD, and Fred(patent officer). If we 

assume that the jobs of Will,Ted, and Fred are 

independent and an office chief is above a division 

chief in the corporate architecture then APaul = 
{Will,Ted,John,Fred} and the authorization tree for 

Paul looks like Figure 1. 

John 

t 

Will Ted Fred 

Paul 

Figure 1 

Incorporating Au into our integrity concept yields 

the new purgeable definition and policy: 

Def 2: A user command pair (ui,Ci) e w is purgeable 

with respect to u iff u = Ui and there is not a 

subsequence of user-command pairs beginning at 

(Ui,Ci) which define the authorization tree for u. 

Policy 2: A system (finite state machine) preserves 

integrity provided that for every u e U and v e 

U\({u}UAu) we have u does not interfere with v 

modulo Purgeu written 
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u :I v mod Purgeu 

Ill 
out([[w]],v,r) =out([[Purgeu(w)]],v,r) 

for all we (U xC)*. 

Closely related to the previous generalization 

is the capability of providing "group" integrity 

protection. This refers to allowing individuals to 

interact with each other without worrying about 

integrity, in other words interfering. Groups arise 

naturally out of the common practice of partitioning 

a project among several people. In this case we 

would want all the people on the same project to be 

able to interact freely without always having to 

satisfy an authorization process. This is easily 

formalized by defining Gu = {uj I the integrity 

concern between u and Uj is void}. This 

generalization does not effect the definition of a 

purgeable user-command pair, and the policy is 

defined by replacing v e U\( {u}UAu) in Policy 2 with v 

e U\({u}UAuUGu). 

The last generalization we want to make 

concerns the actual command that a user issues. In 

particular, suppose that a user has to seek 

authorization from two different sources depending 

upon the command that he performs. The 

combination of the earlier examples illustrates this 

notion. That is, suppose Paul wants to purchase a 

Cray computer. The procurement process involves 

someone with the capability to authorize the use of 

corporate funds whereas the publishing process is 

independent of money matters. This suggests that a 

user u has an authorization tree for every different 

command that he can issue. Adding this concept 

leaves us with the final definition and policy 

statement: 

Purgeable Def: A user command pair (ui,Ci) e w is 

purgeable with respect to u iffu = Ui and there is not 

a subsequence of user-command pairs beginning at 

(Ui,Ci) which define the authorization tree for u 

issuing command Ci. 

Integrity Policy : A system (finite state machine) 

preserves integrity provided that for every u e U and 

v e U\({u}UA(u,c)UGu) we have 

u using command c does not interfere with v modulo 

Purgeu 

written 

u,c :I v mod Purgeu 

Ill 
out([[w]],v,r) = out([[Purgeu(w)]],v,r) 

for all we (UxC)*. 

Remarks: 

Clearly, we ought to consider the question: are 

all the concerns of data integrity emcompassed in 

our policy definition? The answer is probably no. 

For instance in [C +W] Clark and Wilson state nine 

rules which must be satisfied to provide data 

integrity. Some of the rules require procedures 

which certify state transitions and data items; others 

require procedures to identify and authenticate 

every user attempting to execute a transition. These 

rules, certainly germane, are not covered by our 

model. 

Our definition has the advantage of 

formalizing, in our opinion, the notion of separation 

of duty, a concept of considerable current interest 

and concern as pointed out forcefully in [C +W]. To 

use the theory of non-interference seems to be a very 

natural mathematical environment in which to try 

to express the notion precisely. There is the 

additional advantage that the theory has been 

elegantly developed by Goguen and Meseguer, 

Haigh and Young, and Johnson and Thayer. 

Moreover, we have described a different type of 

non-interference assertion. That is, a non­

interference assertion that does not purge like that 

of Goguen and Meseguer, nor does it act like a 

conditional non-interference assertion. The reason 

for this lies in the definition of the function Purgeu. 

As stated before, Purgeu removes any occurrence of 

an unauthorized command issued by u, whereas the 

Goguen and Meseguer non-inteference purge 

function removes all occurrences of a command(in a 

certain set) issued by u and the conditional non­

interference purge function purges only after a 

specific occurrence, thus allowing previous 
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unauthorized events to be effective. Hence we see 

that the "power of a non-interference policy" (i.e. 

how much interference is allowed) is contingent 
[Bib a] upon the definition ofthe purge function. 

For the moment, suppose that our purge 

function actually behaves like a conditional non­

interference assertion. (Recall that the necessary 

assumption for this example is that any command 
[C+W]issued by au authorizes all previous user-command 

pairs (u,c) in the sequence w). With this extra 

hypothesis, the integrity policy is directly related to 

the multi-domain policy(MDS) for SAT which is 

described in [H + Y]. The non-interference 

assertions in both policies look for an occurrence of a [G+M] 
"channel", a path from the domain of user u to 

domain d in the MDS policy and an "authorization 

tree" for user u issuing command c for our integrity 

policy. It is interesting that these assertions not only 

act the same way on commands but are considered to [H+ Y] 

comprise the mandatory part of the overall security 

policy. 

Conclusion 

In this paper we have developed a 

formalization of the concept of data integrity, the 

basis of which is separation of duty. Specifically we 

formalized the intuitive notion of an "authorization 

process" by defining a purgeable user-command pair. 

From this definition we created a purge function 

which in turn results in a policy for integrity. The 

use of non-interference theory as a mathematical 

environment in which to describe the policy, not only 

allows us the capability to enhance our defintion 

with aspects of integrity which may appear in the 

future as our understanding of the ·concept deepens, 

but also exhibits a relationship between integrity 

policies and multi-level security policies already 

developed in non-interference assertions. 
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ABSTRACT 

This paper describes a model for ADP Risk Analysis (RA) 
that was developed in response to the special requirements of 
the military data processing environment typified by the De­
fense Communications Agency's (DCA) Joint Data Systems 
Support Center (JDSSC) in the Pentagon. The reasons why 
more traditional RA models and methodologies have failed in 
this environment are identified. The special challenges faced 
by risk analysts in the military classified ADP environment 
are described. This paper considers the needs of security man­
agement officials for RA results in both a single-site single­
system environment and the more typical multiple-systems 
multiple-sites environments faced by JDSSC and other mili­
tary commands. Finally, a methodology for RA is presented 
that responds to these needs through the use of multiple 
metrics, a standardized threat nomenclature, and standardized 
reporting. 

INTRODUCTION 

During 1987, work sponsored by the DCA JDSSC ADP Secu­
rity Office (C703) resulted in the development of a RA meth­
odology for use by JDSSC ADP Security officials during RAs 
at World Wide Military Command and Control System 
(WWMCCS) sites and other installations operated and man­
aged by JDSSC. The JDSSC RA Guide (RAG) incorporates a 
model and a methodology for RA that is appropriate to 
JDSSC's needs but somewhat different from other RA models 
being used in similar environments. While certainly not state­
of-the-art given the science of RA, the JDSSC RAG was de­
signed to provide practical guidance in the performance of an 
ADP RA, not to define new methods for analyzing diffuse 
risks. 

Unlike many other RA methodology results, the JDSSC RAG 
RA results are combinable: RA efforts from distributed sites 
can be summarized over a large number of installations. This 
capability can be used to identify the types of "network secu­
rity postures" JDSSC requires. Also, the JDSSC RAG RAre­
sults are abstractable, producing the level of RA reporting 
necessary for both low-level specific countermeasures and 
high-level JDSSC policy decisions and budget planning. 

While results from the application of the JDSSC RAG are still 
tentative, they show great promise for the future. Current evo­
lutionary plans for the JDSSC RAG include expansions in the 
guidance provided for Network RAs, automation of the model 
and the methodology, and the establishment of mechanisms 
for effective Risk Management in a military ADP environ­
ment. 

BACKGROUND 

Before beginning any discussion of the JDSSC RAG, it is ap­
propriate to begin with a rapid review of why ADP RAs are 
performed, what is expected of them, and why current meth­
ods just don't seem to work. 

RA is a Well Developed Science 
What may still distinctly surprise many involved in the busi­
ness of ADP RA is that RA, in its purest sense, is a well 
developed, sophisticated, and evolving science. However, the 
business of ADP RA is not well developed, sophisticated, or 
evolving. On the contrary. Little new or innovative work in 
ADP RA is occurring at all. 

The science and the art of RA have been applied to other 
fields over a significant period of time. RAs by professional 
risk analysts against a wide variety of complex systems have 
been conducted. Notable among non-ADP RA efforts was a 
study conducted to determine the safety of commercial nu­
clear power stations [1]. TheRA contained detailed examina­
tions of the safety mechanisms incorporated into commercial 
reactor systems, and it plotted the failure rates of individual 
components (as well as related and dependent components in 
combination) against the potentials for measurable leakages 
of radiation. A highly quantified study, it has been widely 
cited as an illustration of what the process of RA should be. 

As RA has evolved, organizations such as the Risk Analysis 
Society have greatly extended the types of problems which 
can be considered through quantitative methods. Non­
bayesian techniques for evaluating risk have been developed 
and applied to a wide variety of problems not amenable to 
deterministic evaluation. 

Origins of ADP RA - Basic Mandates 
The business of ADP RA can be said to have begun with the 
publication of Transmittal Memorandum Number 1 to the Of­
fice of Management and Budget's Circular A-71 [2],. OMB 
A-71/TM#1 required that all executive branch departments 
and agencies develop and implement computer security pro­
grams. Within this original guidance, RAs were explicitly 
called for at all computer installations operated by or for the 
federal government "to provide a measure of the relative vul­
nerabilities at the installation so that security resources can 
effectively be distributed to minimize the potential loss." RAs 
were required for all installations each time a significant 
change occurred, or at least once every five years. 

Both before and after the publication of OMB Circular 
A-71/TM#1, the Department of Commerce published a series 
of standards and guidelines to aid federal agencies in the per­
formance of RAs [3] [4] [5]. The requirements and specific 
methodologies for RA have also been incorporated into a 
number of Department of Defense (DoD) regulations includ­
ing [6], [7], and [8]. 

The original guidance from the OMB has recently been re­
placed as OMB A-130 [9]. The requirements in the current 
OMB Circular are only slightly more explicit than those origi­
nally contained in [2] - "The objective of a Risk Analysis is to 
provide a measure of the relative vulnerabilities and threats to 
an installation so that security resources can be effectively 
distributed to minimize potential loss." However, the current 
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circular does allow for a variance in the formalism of the 
analysis based on the size of the installation - "Risk Analyses 
may vary from an informal review of a microcomputer instal­
lation to a formal, fully quantified risk analysis of a large 
scale computer system." 

This softening in the requirement is perhaps in response to 
the realities of ADP RA state-of-the-practice. Many ADP 
managers perceive ADP RAs costly, time-consuming, and of 
questionable value to management planning. The next section 
of this paper reviews the problems with ADP RA in more 
detail. 

REQUIREMENTS ANALYSIS 

The development of the JDSSC RAG generally followed the 

stages of the standard product lifecycle, beginning with an an 

analysis of the requirements that must be satisfied by the 

JDSSC ADP RA methodology. Following this analysis, anum­

ber of ideas were prototyped for evaluation through their ap­

plication to a live analysis effort. 


Purpose of RA - Management Benefits 

The primary management benefit of an ADP RA is that the 

quantified evaluation of risk (i.e., relative criticality based on 

some common metric - the basis of all RA efforts) is highly 

useful as a yardstick of relative need. During the process, 

management also gains an insight into problems faced at sev­

eral system levels, many of which are normally hidden be­

cause of overall system complexity. Decisions to act based on 

RA results assure the best use of available funding, where 

best is defined by the metric employed. If the metric em­

ployed is dollars, then RA points towards the actions that 

make the best economic sense. As described earlier, however, 

dollars are not the only possible metric, and other methods for 

quantifying loss can be used in situations where fiscal eco­

nomics are inappropriate. 


A secondary benefit from ADP RA is the opportunity to reac­

quaint staff personnel with the importance of the data proc­

essing resource to overall mission objectives. Through the 

identification of real and potential losses, the extent of the 

reliance on an ADP resource is rediscovered. Most, if not all, 

user mission objectives are directly dependent upon the suc­

cess of the ADP organization. In the absence of the ADP re­

source, no alternative means for user mission satisfaction are 

available. The true extent of DoD reliance on its ADP re­

sources is only poorly understood by most data processing 

professionals involved in supporting these resources. 


Another secondary benefit from the process of RA is the iden­

tification of important dependencies. Seemingly unimportant 

resources and functions can play paramount roles in overall 

system reliability. Within an ADP environment, the reliability 

of the entire ADP resource can be focused on individual 

pieces of equipment and specific personnel. Even minor fail­

ures can have major impacts on an entire installation. Ramifi­

cations of minor problems in the ADP environment can mean 

disasters for user organizations. 


Problems with Existing ADP RA Methods and Models 

Many models, methodologies, and tools supporting (some pur­

porting to 'automate') ADP RA have been produced and em­

ployed by different federal department and agencies [7] [8] 

[10] [11] [12]. These models of ADP RA, and the particular 
methodologies supporting them, vary from agency to agency, 
from regulation to regulation, and from standard to standard. 
Seemingly, the only thing that all existing ADP RA method­

ologies, tools, and models have in common is their diversity. 
Nearly every existing methodology, tool, and model has its 
own positive and negative points [13]. Few are compatible 
with any other approach. Nearly all are based on a purely 
financial analysis of loss and cost-effectiveness of counter­
measures. 

Considerable resources have been invested over the past ten 
years in the performance of ADP RAs. A cottage industry in 
the performance of RAs has emerged to service the ADP RA 
needs of the federal marketplace. Unfortunately, the diversity 
and the impropriety of the methods for ADP RA being em­
ployed have raised serious doubts about the utility of the proc­
ess to ADP management. ' 

ADP RA results have been widely criticized for (1) their sizes 
- ADP RAs can produce volumes of detailed data of question­
able accuracy or utility, (2) their diversity - managers are 
faced with awide variety of RA results from different efforts, 
and (3) their nature - the types of issues considered by differ­
ent RA methodologies and models are different, and ADP RA 
is highly dependent upon the personnel performing the analy­
sis. 

Within the military environment, experiences in the perform­
ance of ADP RAs have been much the same as for non-DoD 
agencies. Unfortunately for the DoD, where the greatest reli­
ance on ADP exists, and where the most significant risks are 
faced, none of the methodologies for RA is at all appropriate. 
Without exception, these methodologies, models, and tools 
fail to properly appreciate the priorities of the military envi­
ronment. These priorities include elements that are crucial 
considerations in ADP RA: 

1. 	 Unlike most other federal agencies, the DoD ADP systems 
process classified information that must be protected to 
the maximum extent possible. Military command and con­
trol systems process information vital to the national de­
fense. 

2. 	 System failures in the military environment have implica­
tions for national security, not just finance. The eventual 
users of military systems include all military commands 
and elements. Failures of different military systems have 
differing levels of implications. 

3. 	 Policy decisions and budget allocations in the DoD are 
made centrally. Current ADP RAs are highly system- and 
environment-specific processes. Thus, policy decisions 
must be based on very detailed RA results. 

4. 	 An ADP RA requires so much time and associated re­
sources that the known risk posture within a single author­
ity or command (such as JDSSC) cannot be kept current. 
Practical means are unavailable for keeping ADP RA re­
sults up to date in a rapidly changing environment. 

5. 	 A significant level of expertise is required for the perform­
ance of a quality ADP RA. It is difficult to provide suffi­
cient guidance in the performance of ADP RAs that inex­
perienced personnel can produce useful results. 

Currently available tools JDSSC evaluated before the JDSSC 
RAG was developed were found to be universally difficult to 
use or tailor to specific environments, lacking in mechanisms 
for maintaining RA results, and unable to produce both de­
tailed and abstracted results. The Los Alamos Vulnerability 
Analysis (LAVA) tool received from the National Computer 
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Security Center (NCSC) was evaluated in depth. The evalu­
ation concluded that: 

1. 	 LAVA can be quite cumbersome to use. If questions 
within its automated questionnaire are answered incor­
rectly; no mechanisms exist for their specific modification. 

2. 	 While LAVA's extensive automated questionnaire quite 
well addresses the areas within its scope, no mechanism is 
provided to address issues outside of the defined areas. 
Non-addressed areas included TEMPEST, office automa­
tion, personal computers, Operations Security (OPSEC), 
and word processing. 

3. 	 The report LAVA produces is difficult to read, and con­
veys less insight to actual security conditions than does an 
annotated copy of the input questionnaire upon which the 
report is based. Vulnerability ratings are presented with no 
description of their basis. 

4. 	 LAVA is based on assumptions about the types of threats 
to which the data processing resource is exposed. For this 
to be reasonable, other assumptions must be made about 
the scope of the analysis LAVA is able to support. 

JDSSC's analysis of LAVA, the National Aeronautics and 
Space Administration's (NASA) Self Analysis Guide 
(SAGUD), and Lance Hoffman's RISKCALC, among others, 
have resulted in the following conclusions about available 
ADP RA methodologies and tools: 

1. 	 None of the examined methodologies or tools provides suf­
ficient comparison of RA results across different systems 
or installations. 

2. 	 None of the examined methodologies or tools adequately 
addresses the issues of mission satisfaction or information 
compromise. 

3. 	 The tools examined are not sufficiently flexible or expand­
able to be useful to JDSSC because of the dynamic nature 
of the JDSSC ADP environment. 

4. 	 None of the examined methodologies or tools allows risk 
analysis results to be collected and accumulated across in­
stallations for strategic planning and abstract analysis. 

While the failings of particular tools and methodologies differ, 
no existing tool or methodology seems to solve some prob­
lems: 

1. 	 The value of classified information is difficult to quantify. 
No reliable method exists for determining the value of 
classified information in the general case. No formula is 
possible that factors in the real value of classified infor­
mation to a potential adversary. 

2. 	 The values of assets are not identical in all instances. The 
value of classified information when compromised, for ex­
ample, is much greater than the value of classified infor­
mation unintentionally destroyed (e.g., in a fire). Valu­
ation must be as a function of the threats an asset is 
exposed to, a point missed by most, if not all, established 
methodologies. 

3. 	 Losses experienced due to 'mission dissatisfaction' can in­
clude a decrease in U.S. defense readiness. Threats which 
might affect mission satisfaction are difficult to quantify 
realistically. As a result, RA findings that imply effects 

against mission satisfaction are typically under- or over­
emphasized by the losses attributed to them. 

4. 	 None of the established methodologies allow for sufficient 
comparison or abstraction of ADP RA results. ADP RA 
results must be comparable across systems and installa­
tions and must be easily, intuitively, and quickly under­
stood by laymen. 

5. 	 The maintenance of ADP RA results is not well supported 
in a very dynamic and networked environment. No provi­
sions exist for rapid calculations based on 'what if' scenar­
ios against risk analysis results, or for the dynamics of an 
environment with rapidly changing threats and assets. 

6. 	 Risk Management (the continuing identification of risks, 
and the corrective actions taken in response to identified 
risks) is not sufficiently emphasized by existing tools or 
methodologies. Some tools include no provisions for Risk 
Management whatsoever. 

7. 	 Even within a given methodology, RA results tend to vary, 
and even strong methodologies can result in ADP RA re­
sults that are inconsistent with prior studies in the same 
installation. Strong guidelines for the analysis techniques, 
scope, and categories of investigation are needed to ensure 
consistent ADP RA results. 

To a large extent, the methods employed cause the problems 
with ADP RAs. [14] stated that "The majority of computer 
security risk analyses have used annual loss expectancies 
(ALEs), a method well-suited to and used by insurance com­
panies." Most methodologies examined compute the ALEs 
in terms of dollars. However, dollars are an inappropriate 
measure of many risks faced in the military environment. 
Losses of classified information, or of the implications inher­
ent in potential failures of critical defense ADP systems, just 
cannot be stated in terms of "dollars lost" per instance or per 
year. 

[14] also concludes that the science has been hampered by the 
lack of available, appropriate metrics to apply to intangible 
losses. [14] further identifies means to analyze diffuse and 
undefined risks. Both [14] and [15] discuss the need to better 
apply the true science of RA to the problem of ADP RA 
through non-bayseian techniques. However, in the analyses 
which led to the production of the JDSSC RAG, the problems 
with the techniques used to compute risk (ALEs) were seen as 
less indicative of why current models have failed to be useful 
than the problems obvious with the techniques used to com­
pute specific loss. It was felt that dollars lost were an ex­
tremely inappropriate way to express the potentials involved 
in classified information compromise and in denial of service 
for crucial military ADP resources. 

Qualitative versus Quantitative RA 
Although highly quantified computer security RAs have 
tended to become quickly overbearing, unquantified analyses 
face other risks. Unless supported by some form of quantifi­
cation, findings of vulnerability and recommendations for 
countermeasures and safeguards are reduced to opinion and 
conjecture. 

It is in the quantification of risk that RA derives its benefits. 
Qualitative assessments of security (physical security, techni­
cal security within systems, and administrative controls, etc.) 
by experienced analysts usually identify many weaknesses for 
which remedial actions can be recommended and reasonably 
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supported. Unfortunately, no budget is sufficient to allow im­
plementation of every safeguard that looks attractive or which 
seems necessary. In the military environment, as elsewhere, 
many reviews have been conducted based on this "best guess" 
approach, resulting in recommendations which may not have 
been the best application of available funding. 

[16] warns against the qualitative approach to computer secu­
rity: "Security Measures are cost-effective only when the 
losses that are displaced are significantly greater than the 
[cost of the] security measures." Although individual prob­
lems are easy to evaluate on their own merits, the "common 
sense" approach quickly breaks down when applied to many 
concurrent problems. The problems facing management may 
also be extremely complex and require a deep understanding 
of the specific situation to appreciate the need for any reme­
dial action. Only by somehow quantifying risk can different 
problems be realistically compared and decisions made about 
safeguard implementations really supported. [16] recom­
mends that analysts "do a comprehensive job of problem defi­
nition and gross quantification before attempting the imple­
mentation of computer security measures." 

Minimal Requirements 
While several ADP RA methodologies are in use, most were 
intended for application to non-defense systems, where eco­
nomics plays the major role in management decision making. 
JDSSC's special challenges are not satisfied through any 
methodology or tool demonstrated to date, in part because 
many of the situations it faces do not lend themselves to a 
purely financial analysis. Safeguards over classified informa­
tion, for example, are difficult to justify by dollars saved. De­
fining the JDSSC RAG first required reviewing what the 
JDSSC environment required. 

JDSSC manages systems critical to national security, distrib­
uted across a wide geographic region. Its mission includes 
support of (1) the National Military Command Center 
(NMCC) supporting the Organization of the Joint Chiefs of 
Staff (OJCS), the Office of the Secretary of Defense (OSD), 
and the National Command Authority (NCA); (2) the Alter­
nate Military Command Center (ANMCC); and (3) a wide 
variety of smaller and more specialized operational, develop­
mental, and research systems and networks (both local and 
wide area) supporting critical defense needs. In the near fu­
ture, classified networks, office automation, and classified 
word processing systems will probably become even more 
prevalent than they are today. Due to this variety of support 
areas, JDSSC's most important requirement for ADP RA is 
for techniques sufficiently flexible for each of these diverse 
types of systems and which allow identification of the types of 
risks each faces. In practical terms, and because some of the 
automation security requirements for networks (as one exam­
ple) are not fully defined today, the methodology must be ex­
pandable. 

Some systems managed and operated by JDSSC are subject to 
security requirements based on their processing modes. 
JDSSC systems process classified information at various lev­
els, and each level is associated with increasing requirements 
for computer security. The ADP RA methodology required by 
JDSSC must include provisions for these types of considera­
tions. 

Security management within JDSSC is centralized. Any rec­
ommendations must be based on identification of the most 
critical problems among all JDSSC systems so that decisions 

can be made about where action (new or revised policies, etc.) 
is most needed. A second important consideration for JDSSC 
is the need for a methodology that can allow security manage­
ment officials to realistically compare problems across sys­
tems and installations and to make summary decisions at the 
policy level based on this information. 

Personnel responsible for budget allocations have only a lim­
ited understanding of the details of each system supported by 
JDSSC. These officials must be provided with summary infor­
mation that can be rapidly assimilated without reviewing vo­
luminous reports or detailed calculations. Techniques for ADP 
RA results abstraction are needed to support high-level man­
agement decision making. 

Prior ADP RAs performed against JDSSC systems have identi­
fied major risks. Recommendations for the implementation of 
countermeasures were based on the findings, and actions were 
assigned to different organizations to ensure that risks were 
mitigated. Follow-on reviews revealed, however, that in 
many cases ADP RA recommendations were not acted upon, 
and that risks identified during analyses were still present 
when the next analysis was performed. JDSSC needed mecha­
nisms to provide for proper Risk Management. A system was 
needed to ensure that ADP RA results were acted upon in a 
timely manner and that dependent situations (where multiple 
actions were needed to respond to single risks) were success­
fully tracked. 

In the past, JDSSC has attempted to perform RAs according 
to defined methodologies and guidelines published by various 
sources. There have been problems in applying standardized 
techniques to JDSSC systems, and the standardized tech­
niques have not fully met all JDSSC requirements for ADP 
RA and risk management. These problems fall into four major 
categories: 

1. 	 Technology. JDSSC is involved in state-of-the-art applica­
tion of available technology for secure networks, secure 
systems, office automation, and classified word processing 
systems. Mechanisms needed to evaluate these types of 
systems are not included, incomplete, or not expandable 
or modifiable. 

2. 	 Comparative Results. JDSSC management must be able to 
compar.e results obtained from analyses at one installation 
with those obtained at other installations. Methodologies 
not designed to support comparisons between installations 
are difficult to use for this purpose. 

3. 	 Results Abstraction. The budget allocation process must 
be supported by information that is brief, concise, rapidly 
understandable, and that does not require a detailed un­
derstanding of the systems or specific problems involved. 
In most of the tools and methodologies used, the results 
are presented in lengthy reports which contain detailed 
computations, none of which is suitable for JDSSC. 

4. 	 Risk Management. Mechanisms are needed to ensure that 
ADP RA results are acted upon in a timely manner and to 
track progress toward planned goals. No current tools or 
methodologies sufficiently provide for this need. 

In general terms, the concepts involved in ADP RA are rela­
tively simple. Problems are discovered, the assets involved are 
valued, the frequencies of occurrence are determined or esti­
mated, the losses are computed, and countermeasures are 
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postulated and analyzed. Problems often arise, however, in 
applying this relatively simple concept to the JDSSC environ­
ment. The problems arise from unique aspects of these sys­
tems and from shortcomings in a number of popular method­
ologies and tools. 

DESIGN OF THE JDSSC ADP RA METHODOLOGY 

The JDSSC ADP RA methodology's basic requirements are 
that new approaches be developed to account for the failings 
of the currently available methods. The JDSSC RAG is de­
signed around an approach for quantifying "risk" that does 
not depend upon dollars as the sole measure of loss. 

ADP RA Risk Model 
Earlier, we reflected on the sophisticated work being done to 
analyze diffuse risks by professional risk analysts outside of 
the ADP field. Others have described how these methods 
might be more appropriate than the more simplistic model of 
risk nearly all ADP RA models employ. The ADP RA objec­
tive is not, however, the most accurate portrayal of the true 
extent of risks. Mandates require only the accurate ranking of 
relative risks to the ADP resource. 

For the purposes of an ADP RA (done quickly, and with only 
a limited amount of time to quantify results), the model of 
risk most ADP RA methodologies employ may be the most 
appropriate and is certainly quite adequate: 

RISK ALE = AFE x SLE 

RISK ALE 	 Annual Loss Expectancy. A measure of the 

extent of the danger from a given threat. 


AFE 	 Annual Frequency Estimate. How often a 

given negative event is expected to occur. 


SLE 	 Single Loss Estimate. Some measure of ex­

actly what the result$ of that negative event 

will be each time it occurs. 


The model allows evaluation and relative ranking of negative 
events (threats). It is beyond the scope of this paper to debate 
the advantages of alternative models of risk. Suffice it to say 
that we believe that this model in its most general sense is 
sufficient to this application, and that its inaccuracies are well 
hidden by the fallacies inherent in any attempt to quantify 
threat freqencies or the true loss that will be experienced in 
any disaster. 

ADP RA Results Evaluation 
Numbers are used in an ADP RA not to absolutely quantify 
the exact risk, but rather to relatively rank risks. As a result, 
and because of the inaccuracies built into any evaluation of 
risk, the process of ADP RA is at the same time highly quali­
tative (i.e., judgmental) and quantitative (i.e., based on num­
bers). Understanding exactly what the results of an ADP RA 

· effort mean (and what they do not) and how these results can 
support risk mitigation is important. Without an appreciation 
of the inaccuracies of the process, misconceptions are prob­
able. 

A major misconception can occur when risk is expressed as a 
figure, an ALE. For example, an ALE of $27,000.00 due to 
fires in the computer room must be taken with a truckload of 
salt. No installation (still standing) loses this much every year. 
Even a liberal interpretation (the figure divided by the likeli­
hood of a fire yielding some figure for the potential damage a 
fire is likely to cause) is unrealistic. No study can exactly pre-

diet losses or the cost of recovering them. Postulations of po­
tential losses are hypothetical at best. Real disasters are 
messy, worse-than-worst-case, and wholly unpredictable. An 
installation with an excellent fire safety program can be de­
stroyed by fire immediately after receiving a clean bill of 
health from the local fire marshal. 

What then do ALEs represent, if the real costs associated with 
disasters cannot be reliably established in advance? They rep­
resent the magnitude of the potential or risk. Problems or 
threats with high ALEs are more important than those with 
low ALEs. Only in this relative and qualitative ranking do the 
numbers employed in the process have their place. 

Management has a limited budget and a limited opportunity 
for positive change. ADP RA techniques indicate where im­
provements are most needed and where resources can best be 
applied. That is all. In the situation described above, manage­
ment would be wrong to assume that, by setting aside the 
ALE for fire every year, that they would be covered in the 
event of a fire disaster. They would also be wrong to assume 
that any safeguard costing less than 27K annually is cost­
effective. This risk must be compared with others, and what is 
possible to mitigate those risks which appear most threatening 
must be postulated. The relative cost-effectiveness of counter­
measures must be assessed against the most relatively serious 
risks. In many cases, doing anything to reduce either the like­
lihood or the potential impact of identified risks may not be 
cost-effective. Their identification is still important. 

The value of the process lies not in the exactness of the fig­
ures employed but in their magnitudes, reasonableness, and in 
the relative ranking of problems based on their consistent ap­
plication across a range of situations. There is a great desire 
for techniques and "truly scientific" methods to overcome the 
vagaries of the ADP RA process. These desires spring from 
fears that the actual numbers employed in ADP RAs are unre­
alistic. The fears are justified. Real numbers could never be 
produced in advance. Even close estimations are difficult at 
best. Experiences with well known threats (Courtney's five 
major sins, etc.) tend to support the contention that, through 
quantification, a reasonable qualitative ranking can be 
achieved. 

Increases in the accuracy of the values for assets (and the 
other assumptions such as threat frequencies) do not increase 
the accuracy of the process. Quantified ADP RAs are per­
formed to avoid the only alternative, a best-guess qualitative 
ranking of problems. Guessing (i.e., estimating asset values, 
threat frequencies, and relative degrees of exposure) is still 
required, but is performed in limited ways. Upper and lower 
bounds for the guesses are provided as, for example, statistics 
for threat frequencies and equipment purchase costs. The 
methods yield generally supportable rankings for problems 
that can be intuitively ranked, and they increase the confi­
dence in the rankings of less easily understand problems. 

Risk Analysis Metrics 
In nearly every application of the traditional RA model to 
ADP RA, the SLE and the RISK ALE are demonstrated as 
dollars. During the analysis preceding the development of the 
JDSSC RAG, however, we wondered if other measures of 
"risk" might also be useful when dollars (as a measure of 
loss) were inappropriate. Those areas where financial analy­
ses are most inappropriate are information compromise and 
system downtime. Alternative metrics were devised and ap­
plied to a live analysis effort as an evaluation of their utility. 
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Information:l\®0mpromise:' A metric for information com­
promise was based on a qualitative review of elements of the 
compromise threat. We decomposed the threat as the inherent 
risk associated with the classification level of information 
(Top Secret data is inherently more valuable than Confidential 
information), the extent of the compromise (need to know vio­
lations are less severe than a leakage from Top Secret to Un­
classified), the extent of the loss (a little data is less valuable 
than a great volume of data if the other factors remain the 
same), and the utility of the compromised information (auto­
mated media at high density or high speed) is more useful 
than paper output. 

For information compromise, the SLE is computed as a for­
mula: 

SLE = c X E X A X L 

C A Multiplier based on the highest classification of 
data which could be exposed. Note 1. 

E The percentage of the total volume of data (contained 
within the system being examined) that is exposed to 
the threat. Note 2. 

A A multiplier based upon the avenue through which 
the information is exposed. Note 3. 

L The number of classification levels over which infor­
mation exposure occurs. Note 4. 

Note 1. Classification multipliers were established on an or­
der of magnitude scale to allow the formula to be biased ap­
proximately equally between a small volume of highly classi­
fied data and a large volume of less highly classified data due 
to the inferences possible through volume and the probability 
of classification through aggregation. 

Note 2. Exposure, a factor applied to all formulas in the 
JDSSC RAG, is used to apply granularity within undefined 
assets, such as system information volumes. 

Note 3. The Avenue multiplier was originally devised as a 
measure of the bandwidth of compromise (volume over 
speed). In practice, the data required to accurately compute 
bandwidth is generally unavailable or difficult to compute, 
and a rougher measure (the avenue multiplier is described 
below) was employed. 

Note 4. The number of levels is a multiplier to describe the 
increasing loss potential as information is compromised 
across need to know (level 1) and classification level (Confi­
dential to Unclassified is Level 2, Secret to Confidential is 
Level 3, etc.) boundaries. 

Because ADP systems are vulnerable to compromise of infor­
mation through various types of mechanisms, the metric in­
cludes an Avenue Multiplier to allow the speed of leakage to 
be considered: 

10 - Information exposed over high-speed communications 
lines to remote installations. 

9 - Information exposed to local automated processes on 
high speed media. 

8 - Information exposed to local automated processes on 
lower speed media. 

7 - Information exposed over low-speed communications 
lines to remote installations. 

6 - Information exposed to high speed terminal devices 
with local storage capability. 

5 - Information exposed to high speed terminal devices 
without local storage capability. 

4 	 - Information exposed to low speed display terminals. 

3 - Information exposed to high speed hard copy termi­

nals. 


2 - Information exposed to low speed hard copy termi­
nals. 

1 - Information exposed on paper only - not automated 
media. 

The scale allows high risk exposures in an automated environ­
ment (i.e., high speed data leakage in a digital form away 
from the facility) to be afforded more importance than less 
inherently risky losses (i.e., improper handling of paper me­
dia). In practical terms, and given the high degree of "noise" 
present in possible attempts to glean useful information 
through the examination or monitoring of an automated sys­
tem, the scale reflects variance in the potential that an adver­
sary could gain sufficient data in an appropriate form for 
automated or manual analysis to actually discover something 
useful. 

Through this metric, loss is expressed as an abstract number. 
The actual units (CEALs) were sufficiently obtuse that the 
term 'Abstracted Units' was employed in reporting the values 
computed for various situations. While the scale produced 
may not be uniform, since more serious problems may not 
result in a SLE value sufficiently high to reflect their true 
import, the formula has resulted in a reasonable relative rank­
ing of problems, which was the intent. It also satisfies the 
basic objectives: 

1. 	 Risks associated with information compromise across both 
discretionary and mandatory controls can be computed 
and compared. 

2. 	 Situations that involve exposure of classified information 
to personnel with no need-to-know will rank lower (L=1) 
than situations associated with the compromise of infor­
mation across levels (L.gt.1). 

3. 	 The greater the number of classification levels crossed, the 
greater the risk. The higher the bandwidth (as estimated 
via the 'avenue') the greater the risk. 

4. 	 Situations involving highly classified information will tend 
to have higher risk values than situations involving less 
highly classified information, unless the volume (as esti­
mated via the exposure) of less highly classified informa­
tion is sufficiently great to overcome the order of magni­
tude emphasis of classification level. 

Mission Dissatisfaction: Some ADP RA methodologies at­
tempt to place an overall value on the ADP organization, or 
on the overall value of the user organization. In the military 
environment, the approaches used to value the mission have 
been inafJpropriate, resulting in dollar values for "mission" 
that are much too high, while still missing the vital factors 
which must be evaluated. 

Mission values are sometimes based on salaries (of all person­
nel), equipment costs, or annual budget allocations. All tech­
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niques in use to place a financial value on "mission satisfac­
tion" as an asset result in enormous numbers. These 
numbers, in the presence of even relatively minor risks to 
ADP resource availability, result in potential loss values 
(based on the percentage of potential availability unrealized or 
percentage of mission unsatisfied) that can justify nearly any 
safeguard that at all reduces the potentials for system down­
time. Vast savings appear possible "through applying expen­
sive countermeasures to reduce downtime potentials by min­
uscule amounts. 

For commercial organizations, a case can be made for "mis­
sion satisfaction" valuation as a function of the overall organi­
zation's reliance on the ADP resource for revenue. In a mili­
tary environment, however, the competition is not economic 
but strategic. The value of a command and control system 
cannot be estimated as dollars per hour nor can downtime be 
computed in terms of dollars lost. Downtime losses are much 
greater conceptually than in financially. 

Any metric of mission satisfaction must consider system avail­
ability. Mission satisfaction for an ADP organization is best 
described as the highest degree of system availability and the 
lowest degree of downtime. Any metric which attempts to por­
tray the "losses" associated with system downtime must ap­
preciate the realities of such situations: 

1. 	 Downtime losses for systems differ according to the 
criticality of the resource being examined. In a computer 
room containing multiple resources, only a subset of these 
resources is absolutely critical. Others (development sys­
tems, etc.) could become unavailable for significant peri­
ods of time without appreciable impacts on the overall 
mission. 

2. 	 Downtime losses are not linear. A downtime of four days 
is much more than four times as damaging than a single 
day of system unavailability. Secondary losses begin to ac­
crue as organizations which rely upon the resource are un­
able to satisfy their needs. Initial per-hour figures may 
escalate as the length of unavailability increases. 

Our original thoughts led us to the following formula for 
losses associated with system downtime: 

ALE = AFE * M * (D*D) 

ALE= Annual "Risk" 

AFE = Frequency of the situation involving downtime 

M A measure of the criticality of the system 

D Downtime length. 


Real costs (personnel costs, etc.) were estimated as dollars 
lost with an appreciation for the secondary impacts of lengthy 
denials to various users: 

SLE = AFE * D * (C + (C1 + C2 ... )) 

SLE = Dollar costs associated with downtime. 

C = Cost per unit of downtime (Note 1.) 

C1,2 = Cost escalation based on downtime length. 


Note 1. Cost per unit of downtime must be computed based 
on the user population dependent upon the resource. This user 
population must be identified based on the users of informa­
tion produced, not merely by the number of user accounts. 

In actual use, however, the survey of user organizations re­
quired to actually quantify these loss potentials proved ex­

tremely complex and the analysis of potential per-hour or sec­
ondary costs much too time-consuming for manual tracking. 
Also, the rapid ADP RA performed to testbed this metric dis­
covered risks applied equally across all surveyed resources. In 
a more detailed analysis, the use of both of the formulas de­
scribed above may be possible and appropriate. In the rapid 
ADP RA performed, however, the metric for downtime losses 
was considerably simplified: 

SLE (in hours) = D * E 
ALE (in hours) = AFE * SLE 
D = the downtime length possible (in hours) 
E = the percentage of system resources (normally 100%) 

affected by the threat. 

Downtime losses are computed as annual hours-lost figures 
for all situations involving the potentials for downtime. 

Analysis using Multiple Metrics: In use, the use of dollars, 
"Abstracted Units" (for information compromise) and 
"hours" (for denial of service potentials) results in three rank­
ings of problems discovered during an ADP RA. Problems can 
be ranked according to those with the greatest potential an­
nual costs, those with the greatest potentials for information 
compromise, and those with the greatest potentials for system 
downtime. These rankings are useful both in isolation and in 
comparisons with one another. 

Different problems will tend to be shown as most important 
according to each metric. Specific situations will entail losses 
in more than one metric. For example, in a fire the systems 
may need to be shut down (downtime), the components may 
burn (dollar losses), and unauthorized personnel will have to 
be granted access to the computer room (information compro­
mise). When the relative rankings of these problems (accord­
ing to the various metrics involved) are considered, however, 
the potentials for information compromise (based on a rank­
ing in the face of other information compromise potentials) 
quickly diminish, while the potentials for denial of service and 
major dollar costs (again as relatively ranked within these 
scales) become apparent. 

Countermeasure evaluations are also different in an ADP RA 
model which employs multiple metrics. The traditional dol­
lars-saved per dollars-invested cost-benefit analyses can also 
be "abstracted units saved" per dollar invested or "hours of 
downtime saved" per dollar invested. Although the metrics 
employed make it more difficult to state with assurance that 
"countermeasure x is cost-effective," they do point out which 
countermeasures are more relatively cost-effective. Again, 
relative, not absolute, ranking is facilitated. Comparing prob­
lems or countermeasures across metrics is purely subjective. It 
is impossible to state that a problem in information compro­
mise is more or less severe than a problem with availability or 
real costs. Each problem is important on its own merits. 

Risk Management 

An ADP RA is useful only within a program for managing 

risk. Risk Management is a responsibility of senior manage­

ment in all ADP installations as a part of everyday business. 

A periodic ADP RA supports this process but cannot in isola­

tion satisfy the need for a systematic program for Risk Man­

agement. 


Risk Management is applied to any system that faces risks. In 
software development, for example, one of the major manage­
ment programs that must be implemented is a Risk Manage­
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ment program to deal with the threats to the software design 
and development process [DoD-STD-2167]. Although the 
management of an ADP installation is a venture with signifi­
cantly more inherent risks than those faced during software 
development, few installations have formalized their risk man­
agement approaches. As a result, management is quickly 
overwhelmed with problems, and a fire-fighting approach to 
ADP resource integrity and reliability management is inevita­
ble. 

Problem identification and evaluation occur within the context 
of specific disasters. The minimum actions absolutely neces­
sary to resolve current situations are considered and acted 
upon without considering root causes or long-term effects. 
This approach to management is the state-of-the-practice in 
ADP organizations that face rapid change or a significant 
number of regular threats. Ironically, it is exactly this environ­
ment that would benefit most from a formalized risk manage­
ment program. 

Effective management actions in any system correspond to 
Risk Management. Management determines new programs, 
initiatives, and corrective actions based on informal percep­
tions of the severity of the problems addressed or averted. 
Even high-level budget decisions are based on an informal 
understanding of cost vs. benefits. 

Risk Management is only the formalization of the process of 
effective management. Too often, problems discovered during 
one ADP RA remain to be rediscovered during the next. Too 
often, problems are qualitatively perceived to be minor until 
crises occur. Too little action is taken too late in response to 
these problems. In other cases, minor problems become lost 
in the system and are never dealt with or responded to. Prob­
lems or risks considered too minor will be ignored. Rapid 
evaluations of potential risks ignore some potential impacts. 
The extent of interdependencies within an ADP organization 
is generally accepted but poorly understood. In some cases, 
decisions are reached regarding the need to respond to needs, 
but effective actions to implement these decisions are not 
taken to the depth necessary for effective problem resolution. 
The details of implementing policy are much too voluminous 
for the current methods of control and monitoring. ADP RAs 
conducted at JDSSC installations have revealed numerous 
cases of incongruities between policy and actual practice, or 
between high level decisions and low level implementations. 

Formalizing the existing management system of control in re­
sponse to the volume of problems and the details of the imple­
mentation of responses is necessary and long overdue. To 
identify how that formalization can be achieved, we reviewed 
how Risk Management works in well-defined management 
controls such as those mandated for software development. 
Risk Management consists of the following steps, each of 
which is conducted within a formalized tracking system: 

3. 	 Risk Miti2:ation. A response to each identified risk should 
be decided based on an understanding of both the risk and 
the costs of alternative responses. Risk Mitigation is the 
development of appropriate resposes to known risks. 

4. 	 Risk Monitoring. After a response has been decided upon, 
its implementation and effectiveness in use must be moni­
tored by management. 

These steps remain the same for any system and should be 
quite familiar to anyone in Configuration Management. A 
problem reporting system is required; and the status of the 
analysis, review, approval, and implementation of counter­
measures (corrective action) is regularly recorded and re­
ported. Our analyses show no reason to modify this system, 
and we incorporated it directly into the JDSSC RAG. 

Risk Management aids management not only in terms of what 
decisions and actions must be taken but also in terms of how 
those decisions are made. Courtney's [un]common sense rec­
ommendations for consideration of losses before countermea­
sures are implemented by such an approach. Once estab­
lished, such a system facilitates control to a greater degree of 
detail than is humanly possible without formal tracking. 

JDSSC RAG METHODOLOGY 

Once the basic model of risk was established, the other re­
quired elements of the methodology were developed around it. 
Summarization methods were defined from both the defined 
defined and a standardized list of threats. ADP RA results 
combinations (the prelude to true network ADP RA tech­
niques) were defined based on percentage of losses due to 
threats by metrics, an approach which allows different ADP 
RA scopes in different locations. Finally, the analysis stages 
were defined to allow both standard problems, those typically 
found or expected in nearly all ADP installations, and non­
standard problems, those unique to the specific environment 
and which may have never before been encountered, to be 
identified and analyzed. 

Planning 

The elements of the scope of an ADP RA should be agreed 

upon in advance as should the schedule for interim reporting. 

The results of this planning should be in writing. 


The first phase of performance defined in the JDSSC RAG is 
scope identification. The scope of an ADP RA has three ele­
ments; physical, technical, and administrative. 

Within the physical scope, the specific facilities and areas 
within those facilities to be reviewed are identified. The list of 
external and well known threats to the facility in general are 
agreed upon in advance. Areas to remain unaddressed (e.g., 
overall facility problems, grounds, etc.) should be explicitly 
identified. 

1. 	 Risk Identification. Problems are identified several ways. 
ADP RAs identify many problems in a short time. Other 
risks are identified the hard way - after the fact. Finally, 
many problems are recognized by management during 
day-to-day operation. 

2. 	 Risk Evaluation. The probability of risk, its potential im­
pacts, and any and all contributing factors must be identi­
fied as quickly and as completely as possible after a risk 
has been identified. 

It is unproductive to repeat some analyses performed many 
times before. It is unlikely that moving an existing computer 
facility (the only possible response to some of the "risks" con­
sidered in many ADP RAs) can be justified based on external 
factors like the risk of flooding, earthquakes, volcanoes, or 
great hurricanes. Given the frequency of ADP RAs it is also 
unlikely that prior analysis results in these areas will need to 
be adjusted (for continental drift or the global greenhouse ef­
fect) very soon. It is only necessary that these factors be un­
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derstood once - before the facility is built. The JDSSC RAG 
recommends that prior analysis results be consulted for this 
information if it must be republished at all. 

Within the technical scope, the actual systems to be reviewed 
are agreed upon, as is the depth of technical analysis to be 
applied against each system. Within JDSSC, other initiatives 
exist to review risks to ADP resources and to grade the vul­
nerabilities of technical security mechanisms. Within other 
agencies, programs for contingency planning, application cer­
tification, and ADP MIS may provide significant inputs to 
these types of analyses if they are necessary. In this area, it is 
imperative that scoping be performed based on an under­
standing of the materials available for analysis. Attempting to 
perform application certification, inventorying, or contingency 
planning within an ADP RA is inappropriate. Unless sufficient 
tracking mechanisms exist, reviews of the technical environ­
ment can be extremely time-consuming. 

Finally, the organizations to be reviewed are agreed upon. In 
specific cases (e.g., the ADP Security organization, the Opera­
tions organization), the actual organizational structure and re­
porting mechanisms can become threats to the ADP resource. 
While many may disagree, the organization is itself an expen­
sive (and continuing) asset, and it may itself be at risk based 
on threats management is exposed to. 

Qualitative Review 
Once the scope of an ADP RA has been established, the sec­
ond stage of performance can begin. A qualitative review of 
the installation is performed. Questionnaires are distributed to 
site personnel, and the answers to those questionnaires should 
be available and reviewed prior to interviews. Site reviews and 
tours are required for all involved in an ADP RA. 

To a large degree, the JDSSC RAG methodology draws from 
the already available successful and positive elements of other 
methodologies for ADP RA. LAVA's excellent questionnaire 
is incorporated, as are the questionnaires from AR 380-380, 
the WWMCCS RAG, and the NASA ADP Risk Analysis 
Guideline. The JDSSC RAG provides guidance as to the most 
appropriate audiences for each element of each questionnaire. 
The areas where contentions or differences exist between dif­
ferent copies of identical questionnaires can provide valuable 
insights about where problems exist within an ADP installa­
tion. 

All involved in an ADP RA effort are required to tour the 
facility and make their feelings and impressions known to the 
other members in writing. While all ADP RA members can be 
expected to see similar things in these unstructured reviews, 
each will see each thing differently and will spot problems 
missed by all others who perform the same review. This 
'touch and feel' element of an ADP RA cannot be eliminated 
and is a large part of the value provided through the analysis. 
ADP RA remains dependent upon the people performing the 
analysis. Personnel with the right backgrounds and level of 
generalized experience required are needed. 

Structured interviews are conducted from the bottom up in all 
reviewed organizations (as well as within organizations not 
being spec.ifically reviewed). Interviewing from the bottom up 
maximizes the productivity with personnel at higher points in 
an organizational structure where experience is concentrated. 
Interviews are conducted not to learn of the standard threats 
to the ADP resource, which should have been identified 
through the questionnaires, but to learn of other and non­
standard threats the ADP resource is exposed to. The JDSSC 

RAG provides a starting point for this stage of the analysis, 
including a structure forinterviewing that concentrates on the 
identification of duties, responsibilities, and reporting struc­
ture. 

Qualitative reviews employ standard mandates, including the 
EDP Auditors Association's Control Objectives - 1980. Using 
established mandates limits the types of subjective judgements 
that can lead to contention. Within JDSSC, analyses are also 
made against established mandates including JCS Publication 
22 and DoD-5200.28. 

Quantification and Analysis 
After the qualitative review is completed, the quantification 
process begins. Standardized threats and national statistics for 
tho·se threats are employed. Most problems have well-known 
countermeasures. Those without well-known responses re­
quire more in-depth analysis. 

Each problem is associated to a set of threats and recorded on 
standardized forms. The potential losses to each threat (in 
each appropriate metric) are computed and recorded. 

Countermeasures are analyzed in terms of their impact on the 
losses to each threat in each metric. Note that the countermea­
sures are evaluated on their own merits and independently of 
problem-specific losses. Problem-specific loss estimation is 
useful only for problem ranking. The mapping between coun­
termeasures and problems is less than exact; one problem 
may require multiple countermeasures, one countermeasure 
may apply to a number of specific problems. 

Summarization and Abstraction 
The set of quantified loss potentials and countermeasure 
analyses are input to the final stage of the analysis - abstrac­
tion and summarization. The results of this stage are used to 
report the ADP RA to management and to allow ADP RAs to 
be combined across installations. 

Problem-specific losses are first combined to produce losses 
by threat within metric during the last phase of the analysis 
described above. Next, the percentage of loss attributable to 
each threat within metric is defined. This effort should also 
result in the identification of the most serious problems (for 
major threats) within each metric. The summarization report 
contains these percentage of loss by threat within metrics fig­
ures and illustrates them by. summarized descriptions of the 
most serious problems for each metric. Countermeasures 
which are the most cost-effective are also contained in the 
summary report. 

The summarization report should contain all of the informa­
tion required for ADP RA results combination. In practice, the 
JDSSC RAG rnay need to be adjusted to increase or. change 
the information contained in the summary report. 

Pie charts were used in the testbed ADP RA to illustrate the 
losses attributable to major threats in each metric. A list of 
the percentage of loss by threat is listed to contain threat per­
centages too minor to be visible within thew pie chart. While 
graphical representation is seen as an important feature of the 
summary report, other representations of the information are 
still being researched. 

FUTURE EXPANSIONS 

The JDSSC RAG was delivered in December of 1987. It re­
mains far from optimal, especially in terms of the level of 
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guidance it provides to inexperienced personnel. Future ef­

forts will concentrate on making the JDSSC RAG easier to use 

in locations where specific expertise in ADP RAs is not avail­

able, such as high security environments and remote loca­

tions. Other areas for research include the areas identified 

below. 


Combinational ADP RA Results 

During 1988 and 1989, JDSSC will begin to employ its RAG 

during other ADP RAs. As additional ADP RA results are 

produced, the means for combining and summarizing ADP 

RA results contained in the RAG will be revised and demon­

strated. Combining ADP RA results is a capability prerequi­

site to effective ADP Security management within JDSSC. 


Expansions to a Network ADP RA Model 

However, the combining of specific ADP RA results is not the 

only prerequisite to the performance of Network ADP RAs. 

Networks are exposed to threats not applicable to ADP re­

sources in isolation. Many of the elements of the JDSSC RAG 

(e.g., its standardized threat nomenclature, etc.) must be re­

vised or extended before application to a network is possible. 


Analyses of "risk" in an automated network environment 

based on the trustedness of its systems versus the clearance 

levels of its users (the NCSC's Yellow Books) must also be 

considered. It must be accepted, however, that networks incor­

porating all trusted elements remain in the future for JDSSC. 

In the largest part, both its networks and its systems in isola­

tion remain unevaluated and uncertifiable. The lack of trusted 

components is not, however, in any way slowing the move­

ment of agencies like JDSSC towards networking. Security 

mechanisms are being retrofitted into commercially available 

networking systems as an alternative to no security at all. As a 

result, the need for Network ADP RAs is extremely high. 


Automation 

Automation severely constrains the ability to modify a meth­

odology in development. As a result, we have resisted the im­

pulses to automate too much of the methodology too quickly. 

However, several elements of the methodology are now ready 

for such a process. We intend to begin by automating the 

best-known part of the methodology, quantification and sum­

marization, along with an automated set of questions in spe­

cific areas. Implementation will concentrate on the ability to 

to transmit risks, problems, countermeasure implementation 

reports, and security postures between various field locations 

and a central controlling authority - the model of ADP secu­

rity in the military environment. 


CONCLUSIONS 

The JDSSC RAG is still in its beginning and conceptual design 
stages. More work is needed before it becomes a useful tool 
for JDSSC ADP Security management. It provides some possi­
ble responses to some of the more difficult questions facing 
risk analysts in a classified ADP environment. In the absence 
of experienced ADP RA analysts, means must be found to 
communicate exactly what must be done to identify how re­
sults are to be produced. JDSSC remains committed, however, 
to seeking answers to these questions through the develop­
ment of new methods. Existing methods and tools have not 
met their needs. The approach conceptualized above may pro­
vide the starting point for analyses to solve the critical prob­

!ems facing ADP management officials in the military envi­
ronment. 
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Abstract 

As the number and complexity of computer systems grow, the need 
for useful tools for performing risk assessments of these systems will 
become more pressing. In recent years, there have been several attempts to 
automate the risk assessment process through the use of questionnaires and 
menus. Some of these are implemented on personal computers for wide 
availability. Although these techniques offer an improvement over 
completely manual methods, they are often either cumbersome to use 
because of the wealth of information that must be laboriously extracted, or 
inadequate for deriving a sufficiently accurate risk assessment. 

We have been investigating a new artificial intelligence-based approach 
to standardizing and automating the risk management process that will 
enable the analyst to produce risk assessments that are less costly, more 
uniform, and less prone to subjectivity. Central to our approach is the 
concept of determining the risk to information as it is used in the system, 
rather than the replacement cost of hardware and facilities. A four-level 
abstraction hierarchy for classifying system components and assets is used 
as the basis for constructing system models. We then determine risk to 
informational assets according to three primary criteria of security value: 
confidentiality, integrity, and availability. A model of information usage in 
the system is then developed to analyze the security risk for the complete 
information system. 

Introduction 

The development of an effective security program is critically 
dependent on the application of risk management to the initial design, 

E.F. Troy 

Martin Marietta Information & Communications Systems 
P.O. Box 1260 

Denver, Colorado 

subsequent modifications, and ongoing monitoring of a system. 
Therefore, the need for useful risk assessments and tools will become 
more urgent as the number and complexity of computer systems grow. 
Although a variety of methods have been proposed and are currently in use 
for performing risk analysis [1, 2], many are difficult to apply efficiently. 
In recent years, there have been several attempts to automate the risk 
assessment process through the use of computer-driven questionnaires and 
menus. Some of these, including RiskPAC, RiskCALC, RISKA, and 
LAVA/CS [3], are implemented on personal computers for wide 
availability. Although these techniques offer an improvement over 
completely manual methods, they are often either cumbersome to use 
because of the wealth of information that must be laboriously extracted via 
lengthy questionnaires, or inadequate for deriving a sufficiently accurate 
risk assessment due to their focus on component replacement cost. 

With a goal of enabling risk assessments that are less costly, more 
uniform, and less subjective, we have been investigating a new approach 
to standardizing and automating the risk management process, which 
incmporates artificial intelligence techniques of representation and 
reasoning to model a computer system, its components, and the asset 
usage within the system. The approach draws on research in artificial 
intelligence, which has led to new methods of representing symbolic 
information at different levels of abstraction. Frame-based and object­
oriented systems, in particular, are extremely powerful and versatile 
techniques for describing entities symbolically and embedding them into 
hierarchies of related entities. We are exploring the use of these methods 
for constructing representations of a computer system's components, so 
that we can model their interactions. In addition, we will be using 
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advanced techniques for reasoning about imprecise and uncertain 
infonnation, such as the theory of fuzzy sets, to better describe the risk 
involved in a complex environment. 

We have developed the concept for a knowledge-based expert system 
to assist in the risk management process. The current proposed 
architecture for our system, described in [5], is shown in Fig. 1. This 
approach has these primary features: 

• 	 It is based on multiple, high-level computer graphic models of the 
system, so that fewer detailed questions are required, many 
relationships can be derived automatically, and all of the input data 
can be checked for consistency. 

It minimizes the requirement for sophisticated risk management 
knowledge and leads to more unifonn results. 

• 	 It considers all aspects of comprehensive risk management, 
drawing on multiple underlying knowledge bases for expertise 
about the domain. 

Central to the design is the security schematic, which is a model of the 
security requirements and attributes of the system based on an underlying 
model of the risk management process. The requirements are broken 
down into the three basic or primary criteria of security value ­
confidentiality, integrity, and availability- and drive all of the system's 
reasoning. The underlying knowledge bases or hierarchical data bases 
contain taxonomies of risk entities., such as assets, threats, vulnerabilities, 
and countenneasures, as well as banks of questions, similar to the ones 
found in automated questionnaires such as those used by LAVA/CS. 
These questions may be selected dynamically by the system as needed, 
rather than mechanically through a laborious, step-by-step process. The 
reasoning module, or inference engine, controls the operation of the 
system, and includes the capacity for generating and analyzing security 
requirements; building and maintaining models; selecting appropriate 
parameters, questions, and data from the knowledge bases; and analyzing 
the trade-offs necessary for efficiently managing risk. Despite all this 
complexity, the user interface porticm of the system presents a palatable set 
of views of the system's model and analysis, as well as dialog windows, 
which allow the option of querying or modifying any part of the 
knowledge bases textually or graphically. 

Informational Assets 

Traditionally, risk assessments have focused on the replacement value 
of the hardware and facilities of a system. Indeed, the risk assessment 
methodologies sanctioned by various government agencies, such as that 
described in FIPS PUB 65 [6], are also based on this approach. Although 
it is undeniably important to include direct physical losses in a 
comprehensive risk assessment, the greatest risks to any computer system 
by far, and those that are hardest to quantify, are the compromise of the 
infonnational content of the system, rather than the system components 
themselves. We have therefore concentrated on quantifyirig and 
expressing the risk to the Informational assets of a computer system. We 
view the definition and evaluation of infonnational assets as central to the 
task of adequately assessing system risk. 

Infonnational assets (which we shall sometimes refer to as simply 
assets) refer to the actual knowledge or infonnation that is valuable to the 
organization, such as customer names and addresses, not the instantiations 
of that infonnation, such as data files containing customer names and 
addresses. The distinction is a subtle but important one. We are 
concerned with ensuring the security of.the infonnation, rather than a 
particular instantiation of it. For instance, if a disk containing records of 
recent transactions crashes and is lost, the infonnation may be recoverable 
from a backup copy, or by reconstruction of the lost records. 
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As mentioned above, the security requirements of an organization's 
assets can be classified into three primary criteria ofsecurity value: 
confidentiality (protecting an asset from hannful disclosure), integrity 
(protecting an asset from modification), and availability (assuring that 
infonnation is available when needed). The value of a primary criterion of 
a particular instantiation of an asset, as it were, may or may not correspond 
to the value of the primary criterion of that asset itself. So, for instance, in 
the example used above, assurance of the availability of the particular data 
me containing recent transactions is not necessary in order to assure the 
availability of the infonnation itself. 

The intuitive inverse correlation of availability and confidentiality can 
be demonstrated clearly using a particular attribute of the instantiation of an 
asset according to our fonnulation. For example, if we consider the 
attribute of number of copies of an asset, we can show that the risk to 
confidentiality rises as the nlimber of copies rises, while the risk to 
availability declines, as illustrated in Fig. 2a. Integrity risk has a more 
complex curve, shown in Fig. 2b. The integrity of an asset is at greater 
risk of compromise as the number of copies rises (in the absence of 
countenneasures, such as matching the copies against a master), yet the 
risk also increases as the number of instantiations approaches zero, since it 
cannot be lower than the risk to availability. 

RISK Confidentiality 

Number of Copies 

Figure 2a. Risk trade-oils based on number of software 
instantiations of an informational asset. 

RISK 

Number of Copltl 

Figure 2b. Integrity risk tends to the maximum 
of confidentiality and availability risk. 

An asset has a number of attributes that must be specified and 
understood clearly before its infonnational value can be established. These 
include attractiveness to threat agents, perceived value, possible outcomes 
(undesirable events that can befall it), and the sum of all other attributes, its 
actual compromise value, which is an expression of how much is lost if its 
security, as measured by one of the primary criteria, is compromised. To 
detennine asset value; we must develop a methodology for considering 
these tightly interrelated attributes. 
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Figure 3. Abstraction levels of assets and components. 

Abstraction Levels of Assets and Components 

Although informational assets are the primary entities needing 
protection, and drive the determination of security requirements, we cannot 
assess the risk to assets directly, nor protect them directly. Instead, we 
must consider the system and the environment in which the information is 
processed. 

Accordingly, we have developed a four-level abstraction hierarchy for 
classifying assets and system components, illustrated in Fig. 3. At the 
lowest level are the hardware components of the system, such as the CPU, 
tape and disk drives, printers, and cables. These are generally fixed in 
place physically, and are the base on which everything else operates. The 
next level comprises media components, which sit on the hardware 
components, but tend to be less fixed. Examples of media components are 
tapes, disks, and printouts. The third level, software, includes files, 
databases, and programs, which exist in the environment provided by the 
hardware and media levels. At the highest, most abstract, level are the 
informational assets themselves. It is at this level that asset value and 
security requirements are determined. 

Informational assets can have instantiations at each of the component 

levels. For instance, customer names and addresses (information) may be 
recorded in a database (software), stored on a disk (medium), and accessed 
through a disk drive (hardware). Threats arid their actions operate in the 
environment ofthe component levels, and countermeasures are 
implemented there as well, although informational assets may be the 
ultimate targets of those threats. 

It is also useful to classify system components according to 
functionality with respect to assets processing in the system. The 
functions performed by an information system can be divided into three 
broad categories: storage, transfer, and transformation. If we are to model 
asset usage in the system, it is essential to understand these three 
functions, the relationships and differences between them, and the ways in 
which they are performed by the system's components. 

Figure 4 depicts a matrix showing the different functions associated 
with various components at the three lower abstraction levels. More 
information is contained here than is immediately apparent. For instance, 
although both hardware and media components are used for storage, 
hardware storage typically tends to be short term, whereas media storage 
implies a longer term. Storage in software, meanwhile, has a different 
meaning, because the software component used for storage resides in a 
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hardware or media component. These distinctions are invaluable in 
modelling system usage and in assessing the risk associated with the 
system and the methods of minimizing that risk. 

Modellin~ System Components 

Based on the preceding discussion of assets and components, it is 
clear that an accurate, comprehensive risk assessment for informational 
assets must entail a model of the components in a computer system and 
their interactions, overlain by an asset usage model that describes 1he 
processing of information by the system. Likewise, an automated system 
for assisting in the risk management process should be capable of 
constructing and utilizing such models. 

We are currently developing the framework for such a system. A 
required step is to create a component library, consisting of data structures 
that represent knowledge about system components. As the information 
contained in the library becomes richer, the skill of the system will 
improve. At a basic level, however, library entries must include the type 
and function of the component with respect to both the processing of assets 
and its links to other system components. 

The user of such an automated system, as we envision it, would select 
predefmed components from the library and link them together into a 
functional and physical model of the system using existing CAD/CAM 
tools, which provide graphic displays that facilitate interaction and enhance 
understanding. Alternatively, the user would be able to defme novel 
components and include them in the model, as well as enter them into the 
library. 

In addition to a library of system components, it will be necessary to 
develop data structures to represent the informational assets that need 
protection from compromise. With these, the user would be able to 
construct an information flow model to illustrate the processing of assets 
through the system, which would be presented as another graphical view 
of the system. The three graphical views described here are illustrated in 
Fig. 5. 

FUNCTIONAL PHYSICAL INFORMATION FLOW 

II 

Figure 5. User views of system models. 

The automated system would then apply the user's model of system 
design and asset usage, combined with its knowledge of the component 
characteristics and the security requirements of the assets, to identify 
component vulnerabilities with respect to the assets and to propose 
adequate countermeasures for dealing with them. 

We summarize here the stages of risk management according to the 
above methodology: 

1. 	Building a model of the system under review - this is done 
graphically, using schematics and other diagrams. In this stage, 
predefined components are selected from existing data bases, 
additional novel components that may be present are defined, and 
the components are structured into a complete system definition, 
which includes the functions of and relationships between 
components. The system is then checked for consistency and 

important aspect of this activity is the identification of asset transfer 
and utilization. The information from this stage is used to derive 
asset compromise cost by component. 

3. 	Identifying vulnerabilities associated with the system component~ 
and countermeasures for neutralizing or minimizing those 
vulnerabilities - component vulnerabilities that expose the assets 
they process are defined, and countermeasures (CM) are identified 
that can be used to reduce or eliminate asset exposure. 

4. 	Identifying threats to the system assets - based on knowledge of 
threat agents and their actions, specific threats are identified that may 
exploit a vulnerability ofthe system to compromise the security of 
an asset. Included are both non-human or unintentional threats such 
as component failure, and intentional threat actions such as 

5. 	Analyzing the likelihood and severity ofpossible threat paths, and 
identifying the outcome ofthreat actions -possible and likely paths 
by which threats could access and compromise assets are analyzed, 
along with the outcomes and consequences ensuing from each. 
From this analysis, overall risk of compromise to system assets can 
be asssessed. 

6. 	Presenting a summary ofsystem risk that offers safeguard packages 
described in terms ofcosts and benefits - the results of the risk 
analysis are presented to the user in the form of a risk summary and 
graphic descriptions of various safeguard alternatives with their 
cost/benefit trade-offs. Specific situations representing the highest 
risk are identified. 

The stages of model-based risk management are portrayed in Fig. 6. 
In the next section, we present a description of a knowledge-based system 
that assists in this process, with some suggestions for its implementation. 

Figure 6. Model-based risk management. 

A 	Knowled~e-Based System for Modellin~ Asset Usa~e 

Useful methods for symbolically representing knowledge have 
evolved from research in artificial intelligence. In an object-oriented 
representation, each entity is represented as an object with various 
attributes. But, each object may be a member of one or more classes of 
objects which have attributes of their own, and the object classes are also 
objects, and may thus be members of other classes, and so on. This 
formalism allows us to build hierarchies of objects, which can be 
constructed to correspond to actual hierarchies of entities in the domain 
being described. Objects may inherit attributes or values from their parent 

2. Identifying the assets processed by the system and their value, 
classes, and default values may be specified for the attribute values. taking into account the consequential value ofasset compromise­

the informational assets processed by the system are identified and Various processing methods can be used with objects, including triggering 
assessed, and the outcomes of their compromise are specified. An actions based on the value of the object's attributes. 
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We are currently designing an object-oriented system for representing 
and reasoning about system components and asset usage. Hardware, 
media, and software, as discussed above, are examples of object classes in 
such a representation. One attribute shared by the members of all of these 
classes is function, i.e., storage, transfer, or transformation. Conversely, 
certain classes, such as hardware, may have attributes, such as physical 
description, size, capacity, and location, that are not shared by other 
classes. The value of specific attributes also may vary within an object 
class. Those objects with similar attributes can be grouped into subsets. 

The input and output ports are critical attributes in representing the 
transfer of assets within a system. At the hardware level, these may refer 
to actual hardware ports or terminals of the component, whereas at the 
media level, they refer to the hardware on which the media reside, and for 
software, to the input and output capabilities of the software component. 
Integrating the representation of the attributes of the various component 
levels is the key to creating an asset usage model of the system. 

We are designing the system so that it will lead the user through the 
risk management process by constructing a model or set of models of the 
system under consideration, including the physical layout, functional, and 
information flow diagrams described above. Since the graphical objects in 
these views are representations of the underlying objects of the knowledge 
base, the user is actually building a model of the system in the computer's 
memory. The user would be able to switch from one view to another at 
will, and modify or query the knowledge base interactively from any view, 
while the system would guide the user through this model-building phase 
and check for missing or inconsistent information. The expert system 
would use these graphic models to derive information about the security of 
the system, inferring most relationships directly. It would then walk the 
user through a dialog requesting additional information not explicit in those 
views and suggest values for risk management parameters. This method 
ensures the accuracy and consistency of the analysis, facilitates 
modification, and closely resembles the method risk management 
professionals use to perform risk assessments. 

Implementation Example 

We now present a specific example to illustrate how the proposed 
system might work. The knowledge base may include a hierarchical 
structure, such as that in Fig. 7 showing the representation of knowledge 

about networks. Each of the specific network implementations Oeaf 
nodes) would have a component library entry, and the higher level nodes 
would have library templates filled in only to the appropriate level of detail. 
Examples of portions of these library entries are shown in Figs. 8a, b, and 
c. Note that each successive node down the hierarchy inherits information 
from its parent node. Thus, the knowledge engineer who builds the 
hierarchy does not have to enter all the information for each node, reducing 
effort and the potential for entry errors. Additional and more specific 
information can be added for particular nodes, as shown. 

lYPE OF NElWORK: 

Baseband 
Broadband 

CHANNEL TYPE: 

Coaxial cable 
Twisted pair 
Radio 
Fiber optic 

NUMBER OF STATIONS: 

DATA RATE: 

I Mbps 
5 Mbps 
10 Mbps 
20 Mbps 

Figure Sa. Network object entry. 

Suppose the user indicates, perhaps by clicking the mouse on a 
network icon on the main model-building display, that the system under 
review includes a network. The expert system could then present a menu 
of network types. It might even display this in the form shown in Fig. 7, 
with common defaults highlighted as indicated, and allow the user to 
browse through the tree and select a node. 

If the user then selects the node labelled "Ethernet," the network 
specified by the user as being part of the system schematic model is now 
identified as an Ethernet, and is associated with the information contained 
in the component library about Ethemets, as well as the information about 
bus networks and networks in general. 

Figure 7. Network knowledge base hierarchy. 
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TYPE OF NETWORK: PACKET SIZE: 
Baseband Must be between 56 and 1518 bytes 
Broadband 

TOTAL LENGTH OF CABLE: 
CHANNEL TYPE: Max 2500 meters 

Coaxial cable 
Twisted pair LENGTH OF INDIVIDUAL CABLE SEGMENTS: 
Radio 	 Max 500 meters 
Fiber optic 

NUMBER OF CONNECTED CABLE SEGMENTS: 
NUMBER OF STATIONS: 	 Max 5 

Maximum of 1 024 
MEDIUM ATTACHMENT UNITS PER SEGMENT: 

DATA RATE: 	 Max 100 per indiv. cable segment 
1 Mbps 
5 Mbps 	 LENGTH OF MEDIUM TRANSCEIVER CABLE: 

10 Mbps 	 Max 50 meters 

20 Mbps 

Figure Sb. CSMA/CD architecture network 

(Carrier Sense, Multiple Access with Collision Detection 


as defined in IEEE Standard 802.3). 


TYPE OF NETWORK: PACKET SIZE: 
Baseband Must be between 64 and 1518 bytes 

CHANNEL TYPE: TOTAL LENGTH OF CABLE: 

Coaxial cable Max 2500 meters 


AccESS METHOD: LENGTH OF INDIVIDUAL CABLE SEGMENTS: 
CSMAICD Max 500 meters 

NUMBER OF STATIONS: NUMBER OF CONNECTED CABLE SEGMENTS: 
Maximum of 1024 Max 5 

DATA RATE: MEDIUM ATTACHMENT UNITS PER SEGMENT: 
10 Mbps Max 100 per indiv. cable segment 

BACKOFF ALGORITHM: 
LENGTH OF MEDIUM TRANSCEIVER CABLE: 

Binary exponential backoff Max 50 meters 

INTERPACKET SPACING: 
DISTANCE BETWEEN 2 FARTHEST END NODES:

9.6 ItS 
Max 2700 meters 

Figure 8c. Ethernet object entry. 

If the user were to then construct an information flow model showing 
the transmission of assets sensitive to disclosure (confidentiality 
requirement) along this network, the expert system would be able. to infer a 
possible threat to confidentiality at this component, based on its knowledge 
of the vulnerability of coaxial cable bus networks to undetected · 
wiretapping. It might then propose a countermeasure, such as the 
installation of fiber optic cable. The expert system would also know that a 
threat agent could, via a single component, gain access to the assets that 
are processed on the other components on that network, and consider this 
possibility in relation to the security requirements of the assets. 

Status and Plans 

Our system has been under design since February 1987. The initial 
conceptual design was completed in mid-1987 and reviewed internally and 
by a government team consisting of experts from the National Bureau of 
Standards and the National Computer Security Center. A static mockup of 
a sample walkthrough was constructed as part of the presentation. In early 
1988, we implemented a portion of the system for proof of concept on a 
personal computer. Following the review of this implementation, we are 
continuing to develop an initial prototype of the full-scale system. 

Our work thus far has revealed a number of areas that need more 
attention. It is clear that a lucid, comprehensive, workable model of risk 
management must be formulated as the basis for this work. We are 
interacting vigorously with major government and industry figures in this 
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area.[4]. In addition, taxonomies of the various components of such a 
model must be developed. It is especially important to create better 
quantitative and qualitative methods for measuring risk and analyzing 
trade-offs, and we intend to investigate the use of reasoning methods from 
artificial intelligence and traditional sources for this purpose. For example, 
estimates of the likelihood of a given threat action occurring are often 
necessarily imprecise. Fuzzy set theory provides tools developed 
specifically for reasoning with imprecise information, and can be utilized in 
this case. We also must design easy-to-use and representationally adequate 
user presentation and interface methods. We plan to pursue all of these 
issues in 1988 and 1989. 
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Abstract 

Distributed secure systems also have distrib­
uted security policy and unequal security 
risk. The n-squared problem (addressing 
security interface of n communicating nodes, 
not just the directly connected ones) and the 
cascading problem (creating greater risk by 
connecting systems of differing data exposure 
levels) are primary sources of difficulty in 
distributed system risk analysis. Landwehr 
and Lubbes described factors for determining 
Orange Book evaluation criteria in complex 
systems. This paper expands on their approach 
by adding network risk propagation rules. The 
model presented here is applicable to evalua­
tion of sensitivity requirements (preventing 
unauthorized disclosure) and criticality 
requirements (preserving system integrity and 
availability) in heterogeneous networks. An 
automated analysis tool has been developed. 

Background 

The authors discussed issues of network and 
distributed system security at last year's 
conference [1]. There the ideas of Biba [2] 
and others were used to propose a criticality 
approach similar to that used when protecting 
sensitive information, which is the primary 
objective of current security policy and 
requirements (see Figure 1). Also discussed 
were techniques of system decomposition, an 
approach which deals individually and in 
combination with the elements of very large 
systems. 

~ c 
Sensitivity 

(Exlstln& Basis) 
Criticality 

(Proposed Enhancements) 

Protect Classified data Mission Data 
Control Data, Processes 

Threat Disclosure Loss of Integrity 
Denial of Service 

Levels Unclassified 
Confidential 

Secret 
Top Secret 

(Compartments) 

Noncritical 
Critical 

Highly-Critical 
(Compartments 

possible) 

Control Goal Need-to-Know Need-to-Modify/Execute 

Protection 
Mechanisms Resistance Resistance 

Detection/Recovery 

Figure 1. Network Security Elements 

This paper addresses the complex subject of 
risk analysis in a distributed system. The 
approach follows the lead of National 
Computer Security Center (NCSC) Yellow Book 
[3] guidance for assigning Orange Book [4] 
division and class and it also extends the 
ideas of Landwehr and Lubbes [5] to distrib­
uted, heterogenous environments. The recently 
available Trusted Network Interpretation 
(TNI, [6]) provides some guidance for eval­
uating and accrediting heterogenous networks, 
but TNI emphasis is on "single trusted 
systems." This paper thus describes a method­
olgy for determining security (sensitivity 
and criticality) requirements in complex 
networks. 

A system security policy must cover all of 
what is internal, plus external communica­
tions interfaces (logical as well as 
physical). This follows from and expands the 
Orange Book concept of the primary external 
interface as the human "user." The concept 
covers all "external subjects," including 
humans, computers (e.g., hosts), networks, 
other components or other systems. 

The identification/authentication policy must 
cover each of these external subjects and, 
using access control capabilities, determine 
what controlled information can be received 
from and sent to each of them. There must be 
label consistency or a mapping technique must 
be defined that ensures proper protection and 
integrity. In some systems it will be neces­
sary to maintain accountability to the user 
level, even though the user interface is with 
an external system. Sometimes the poliqy 
will require accountability only at the 
interfacing system level. The interface 
policy deals not only with the physical 
interconnectivity, but also with all pairs of 
communicating entities. This is the so 
called N-squared problem (Figure 2). 
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Security Policy Interface Physical Network Connectivity 

Figure 2. N-Squared Problem 

Sometimes data are passed from one external 
syst~m through the system of interest to 
another external system (Figure 3). Policy 
must ensure that required protection consis­
tent with a mutual interconnection policy 
exists at the interface. If the systems are 
nodes of a network that receives and delivers 
encrypted data and if a mandatory sensitivity 
or criticality level separation or a discre­
tionary "need-to-know" or "need-to-modify" 
exists, the appropriate security labels and 
access control lists must be shared between 
the two systems communicating data. The 
network need not necessarily be aware of 
these labels and lists. 

Each network component has a unique security 
policy (even if it is no policy). This 
policy may be more strict or less strict than 
the policy of the other components. 
Inclusion into the system might increase the 
risk associated with a component due to the 
cascading problem (Figure 4), wherein the 
range of security levels in the network may 
be greater than the accreditation range of 
any component. 

User 

El!laQr£ 
Mandatory Policy 
Discretionary Policy 
Common Levels Supported 
Trusted or Untrusted 
Allocation of Responsibilities 

Figure 3. Interconnection Policy 

• The network connection has 
created a risk of introducing 
TS information into a C-S system 

Figure 4. Cascading Problem 

When we consider the security policy from an 
overall system level, it must be assured that 
all component policies are supported through­
out the system (including both physical and 
logical interface). Further, there may be 
policy dictated at the system level that is 
over and above the policy that exists at the 
individual component level, and this higher 
level policy must also be supported. 
Finally, there is policy at the system level 
which concerns the system's interface with 
the outside world, and it must be ensured 
that this system level policy is supported by 
the components that interface with the out­
side world (external subjects to the system). 

Security Risk 

The goal of a security program is to prevent 
the disclosure of sensitive information to 
unauthorized sources and to protect the 
integrity and availability of the systems and 
the data critical to mission operations. 
This goal is accomplished through the process 
of risk management. Risk management attempts 
to: 

o Identify, control, and minimize the 
occurrence and effect of uncertain events 
that would compromise the security goals 

o Obtain and maintain the authority 
for approval of operations involving sensi­
tive or critical data andjor functions 
through a Designated Approval Authority (DAA) 

o Facilitate information system 
management throughout the system's life cycle 
based on security requirements and protection 
levels. 

Risk Modeling is a method of correctly deter­
mining evaluation criteria for specification, 
design/development, and accreditation pur­
poses. This paper presents an approach which 
extends Yellow Book and Landwehr-Lubbes 
methods to complex networks. 

Yellow Book Guidelines The National 
co:iil:Puter-securit:Y-centerd.eveloped the orange 
Book to identify protection requirements 
associated with a gradation of risk levels. 
To assist in the assessment of risk level the 
NCSC also provided the Yellow Book guidance 
(CSC-STD-003-85, illustrated in Figure 5). 
The Yellow Book considers these parameters: 
the maximum sensitivity of the data to be 
protected by the system~ the user with the 
minimum clearance level who potentially has 
access to the system~ and whether or not the 
system was developed in an open or closed 
environment. A closed environment exists 
where there is adequately secure design and 
development with proper configuration control 
and assurance. Yellow Book risk indices 
(exposure levels) are summarized in Table 1. 

The Yellow Book guidelines also make recom­
mendations on security mode of operation 
based on the degree of exposure (maximum data 
sensitivity level minus minimum user 
clearance level). Data exposure in a 
dedicated mode or system high environment is 
by definition zero, and in controlled or 
multi-level environments the potential 
exposure is equal to the separation between 
the high and low levels being protected. 

II 
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Ma.XimtiltlJ)ata SensitivitY· 

Figure 5. Yellow Book Approach 

Table 1. Exposure Levels 

Minimum User Clearance Maximum 

Data 


Sensitivity 


0-U 

1-N 

2-Cor>l 

3-SorC+>l 

4-S+>l 

5-TSorS+2 

6-TS + 1 

7-TS+>l 

Landwehr - Lubbes Approach - In order to try 
to loosen the strict guidance of the Yellow 
Book and to consider other variables, the 
Landwehr-Lubbes approach uses the fact that 
different users possess different capabili ­
ties, thereby potentially reducing the 
identified risk and criteria levels. In 
addition to the data exposure parameters of 
the Yellow Book, this approach considers the 
user capability, nature of the communications 
path and local processing capability. Thus, 
users may be categorized by risk levels. 
Expanding on the previous figure, Figure 6 
shows the addition of the Landwehr - Lubbes 
criteria which combines system risk with data 
exposure to determine criteria levels. The 
matrices for determining process coupling 
risk and system external risk are shown in 
Tables 2 and 3. Table 4 shows how to use data 
exposure and system external risk levels to 
arrive at an Orange Book evaluation criteria 
division and class for sensitivity. 

Figure 6. 
Landwehr-Lubbes Added Criteria 

Table 2. Process Coupling Risk 

Local Processing 
Capability 

Communication Path 

1. S/FNet 
(one-way) 

2. S/FNet 
(two-way) 

3. 1/A Net or Direct 
Connection (LAN,DDN) 

I. Receive-only Tenninal 2 3 4 

2. Interactive Tenninal 
(fixed function) 2 4 5 

3. Programmable Device 
(Access via PC or 
programmable host) 

4 5 6 

Table 3. System External Risk 

User Capability 
Process Coupling Risk 

(From Table 2) 

1. Output-only (Subscriber) 

2 

3 

3 

4 

4 

5 

5 

6 

6 

7 

2. Transaction Processing 
(Analyst) 

5 6 7 8 

3. Full Prograrruning - 6 7 8 9 

Table 4 Orange Book Levels 

Sensitivity 
Data Exposure 
(from Table I) 

System External Risk 
(from Table 3) 

3 4 5 6 7 8 g 

0 Cl Cl Cl Cl/C2 C2 C2 C2 

I Cl/C2 C2 C2 C2 C2/81 81 81 

2 C2 C2/81 81 81 81 81/82 82 

3 81 81 81/82 82 82/83 83 83/Al 

4 82 82/83 83 83/Al AI AI AI 

5 83/Al AI AI - -
6 

7 - -

Table 5. Mapping System Risk using Criticality Division 

' 
Criticality 

System External Risk 

Data Exposure 
3 4 5 6 7 8 g 

0 c c c c c c c 

I c c c c c 8 8 

2 8 8 8 8 8 8 8 

3 8 8 8 8 8 8 A 

4 8 8 8 A A A A 

5 A A A -
6 - -

7 - - -
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Security Risk in Networks. Data exposure and 
the Landwehr-Lubbes criteria appear to be 
equally applicable to criticality. Table 5 
can be used to determine the appropriate 
division (A, B or C) of criticality criteria. 
Prototype evaluation criteria for criticality 
divisions are described in [7]. Factors for 
applying the risk methodology to criticality 
as well as to sensitivity are described 
below. The method presented here, including 
rules that utilize the Landwehr-Lubbes 
matrices, accounts for the propagation of 
risk in networks. 

Network Concatenation/Propagation Rules - It 
was an objective to follow the principles of 
the Yellow Book and it also seemed that the 
essence of risk in the distributed system 
problem was embodied in the capabilities 
possessed by the remote users. Before these 
rules could be applied it was first obvious 
that the cascading effect of both maximum 
data sensitivity and minimum user clearance 
would have to be dealt with. Further, the 
communication of a user with a remote 
computer system might not be only through a 
variety of communications links, but also 
through systems that may or may not be 
trusted and may or may not take responsibil ­
ity for the data and its communication. 

The approach taken (Figure 7) was to identify 
concatenation and propagation rules that 
applied to the maximum data level being 
protected (e.g., through the cascading 
effect), to the minimum user clearance level 
protected against, and finally to the inter­
pretation of multiple (and remote) communica­
tions paths. The rules adopted for maximum 
data sensitivity and minimum user clearance 
are given in Figure 8. If we are evaluating 
System A with respect to system B, then 
system A assumes the maximum data sensitivity 
level equal to the maximum of A and B if 
there are no trusted absorbing nodes or if 
there are no one-way data lines that only 
carry data in the direction from A to B. 

A "trusted absorbing node" is a node that has 
a trusted system base at the appropriate 
level, takes and controls information that 
comes into it via security policy that 
considers trust levels of the systems with 
which it interfaces and controls communica­
tions with the destination. A node is not 

Local Proc. Comm.Path 

\ Jl 
Process Coupling 

RiskI. User 
rcapability 

System External 
Risk 

trusted absorbing either if it is not trusted 
or if it is trusted but merely acts as a 
store and forward switch in the communica­
tions system, taking no responsibility for 
the labels or the policy associated with the 
communications. 

Propagation of minimum user clearance is 
defined similarly~ however, note that the 
direction of the one-way rule is reversed. 
Both of these rules apply to criticality as 
well as sensitivity, with the exception that 
the directions of the one-way rules are re­
versed in both cases. In criticality we are 
worried about writing and activating, and 
less worried about data exposure. 

To enhance the Landwehr-Lubbes criteria, we 
further expand the criteria used to interpret 
a complex path to determine the matrix value 
for "communications path" to use in the 
process coupling risk matrix (previously 
given in Table 2). These additional criteria 
are given in Figure 9, ·where trusted 
absorbing node and one-way are defined as 
before. Two-way is defined as in the 
original Landwehr-Lubbes paper, where there 
is a two-way store-and-forward capability, 
but no direct interaction. 

Rule 1: Maximum Data Sensitivity 


(Evaluate A with respect B) 


If trusted absorbing nodes in path, or 


one-ways away from A, then 


Amax=Amax. 


Otherwise Amax = Max(Amax,Bmax) 


Rule 2: Minimum User Clearance 

(Evaluate A with respect to B) 

If trusted absorbing nodes in path, or 

one-ways in the direction of A, then 

Amin=Amin. 

Otherwise Amin = Min(Amin,Bmin) 

(For criticality the one-way rules are reversed) 

Figure 8. Network Propagation Rules 

Rule3: 

To determine comm. path for Table 2 

If one-way in direction of A, or 
trusted absorb. node in path - No path 

If one-way away from A - 1 

If~~wey - 2 

Otherwise (e.g., LAN) 3 

Figure 9. Network Propagation Rules (cont.) 

Figure 7. Network Evaluation Approach 
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Risk Evaluation Model and Examples - The de­
termination of evaluation criteria in net­
worked systems can now be accomplished by 
applying the concatenation and propagation 
rules, and then performing the evaluation 
implied by the original approaches of the 
Yellow Book andjor Landwehr-Lubbes criteria. 

The problem is not a simple one as can be 
seen from the simple network example. In 
theory, every path from each source to each 
destination element must be considered in 
this evaluation, or must at least go as far 
as is required to show that there will be no 
cascading of security properties. Develop­
ment of the algorithm into an automated 
software tool is in progress. This tool 
facilitates the engineering process, since 
all but the simplest of analyses become too 
complex to deal with manually, as will be 
illustrated. 

Any model must have implicit and explicit 
simplifying assumptions. In our model, the 
entire threat is through system users who 
have limited access. It is assumed that 
computers are physically protected and that 
communications lines are either physically 
protected or the data are protected with 
encryption and integrity encoding. It is 
also assumed that interface policies have 
been devised and that these policies can be 
enforced by trusted systems. As an example, 
if a trusted system receives data from an 
untrusted system, it will not trust the 
labels and will treat those data at system 
high level of the untrusted system. 

The definitions of nodes, systems, and 
terminals are left to the judgement of the 
evaluator and ultimately the DAA. Full 
capability high performance microprocessors 
might be treated as systems. The definition 
also might differ depending on whether a 
sensitivity or a criticality analysis is 
being made. For example, a network node may 
be performing routing and other processing 
based on protocol information, and labels. 
other simplifications will be apparent as we 
go through an example. 

The procedure for evaluating risk (i.e., 
determining protection levels) in hetero­
genous networks is summarized as follows. 
Consider the risk evaluation of System A in a 
network (see Figure 10). For each potential 
path to system A from each external subject: 

- Determine max. data sensitivity (rule 1) 
- Determine min. user clearance (rule 2) 
- Determine path data exposure (table 1) 
- Determine communication path (rule 3) 
- Determine process coupling risk (table 2) 
- Determine system external risk (table 3) 
- Map system risk and data 

exposure to Orange Book level (table 4) 

This yields criteria level for that path. 
security requirements and associated protec­
tion mechanisms for each path must be 
analyzed and validated. System A risk level 
becomes the worst case path. The analysis is 
repeated for System A criticality threat. 
·Finally, the process is repeated for all 
systems in the network. 
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As an example, consider a very small part of 
the system in Figure 10, consisting only of 
systems A, B, and c as well as the user 
terminal connected at B. Here we are 
performing the evaluation only with respect 
to A. This evaluation example is shown in 
Figure 11. We are performing only a 
sensitivity evaluation; however, a critical­
ity evaluation would follow similarly, but 
using the slightly altered concatenation/pro­
pagation rules and different risk matrices. 

Figure 10. Evaluation of System A in a Network 

The elements are given starting states and 
from these it is determined how risk is pro­
pagated into A. The user at B has a Confi­
dential clearance, systems B, A, and C 
respectively have Confidential, Secret, and 
Secret minimum user clearance levels. They 
also possess, respectively, Secret, Secret 
and Top Secret, maximum data sensitivity. 
Neither A, B, or C are trusted absorbing 
nodes. Programming can be accomplished at 
the terminal and, once a user logs on, 
programming could be done at any of systems 
A, B, and c. Two-way (store and forward) 
links exist between the terminal and system B 
and between systems B and c. A one-way link 
connects system A and B where data can travel 
from A to B, but not in the other direction. 
Another one-way data link allows flow of data 
from c to A, but not in the other direction. 

Evaluating the results shows a path from the 
terminal to B to A, but it is one-way and 
rates a 1 in the Landwehr-Lubbes criteria. 
The path through B and then C is not 
considered a path because of the one-way in 
the wrong direction. (Note that Landwehr­
Lubbes is worried about leakage of sensitive 
information but is not concerned with the 
user being able to send data into A, which is 
a criticality problem.) The minimum user 
clearance in A must be updated to Confiden­
tial since data from A is now exposed to that 
level. Further, the maximum data sensitivity 
of A must be updated to Top Secret since 
there is a potential leakage path from C to 
A. 

Now we are able to assess the risk level at 
System A (only) based on the information 
given in this simple example, and from that 
determine the applicable Orange Book level. 
Using Table 2, the process coupling risk is 
determined to be a 4. Further, tne system 
external risk is determined to be a 7 from 
Table 3. The data exposure between Confiden­
tial user and Top Secret data from Table 1 is 
determined to be 3. Based on this exposure, 
the Yellow Book would recommended a B3 class 
(as with Landwehr-Lubbes, open environments 
are assumed). From Table 4, the Landwehr­
Lubbes approach (with network propagation 
effects factored in) recommends a B2/B3 level 
of criteria. 



Evaluate System A with respect to B & C 
(Potential paths are BA and BCA). 

User 	 r,:;-, LAN r.lEvaluate System A with respect to B & C 
(Potential paths are BA and BCA). ..6,++~· ·~ 

LAN~~ 

SystemB 

c 
c 
No 

SystemC 

s 
TS 

No 

System A 

s 
s 
No 

p p p 

Initial Parameters User atB 

Min User Clearance c 
Max Data Sensitivity 

Trusted Absorption 

Local Process Capab. p 

User Capability 

SystemB 

c 
s 
No 

p 

SystemC 

s 
TS 

No 

p 

System A 

s 
s 
No 

p 

Initial Parameters 

Min User Clearance 

Max Data Sensitivity 

Trusted Absorption 

Local Process Capab. 

User Capability 

UseratB 

c 

p 

Risk Calculation for Path BA (BCA is not a valid path in this case). 

Max Data Sensitivity (rule 1): max (A,B,C) = TS 


Min User Clearance (rule 2): min (A,B) = C 


Path Data Exposure (table 1): (5,2) = 3 


Comm Path (rule 3): 1 


Process Coup!. Risk (table 2): (3,1) = 4 


System Ext Risk (table3): (3,4) = 7 


Orange Book Level (table 4): (3,7) = B2/B3 


(Yellow Book=> B3) 

Risk: Calculation for Path BA Risk for Path BCA 

Max Data Sensitivity (rule 1): max (A,B) = S Max (A,B,C) = TS 

Min User Clearance (rule 2): min (A,B) = C Min (A,B,C) = C 

Path Data Exposure (table 1): (3,2) = 1 (5,2) =3 

Comm Path (rule 3): 3 3 

Process Coup!. Risk (table 2): (3,3) = 6 (3,3) = 6 

System Ext Risk (table 3): (3,6) = 9 (3,6) =9 

Orange Book Level (table 4): (1,9) = B1 (3,9) = B3/A1 

(Yellow Book=> Bl) (Yellow Book=> B3) 

Figure 11. Risk Evaluation Example (1) 

We purposely went through this first example 
step by step, relating it to the appropriate 
rules and tables. If we were to evaluate the 
network in Figure 10 just with respect to 
system A, we would have to consider each 
potential path from each user and from each 
of the other systems to system A. A Local 
Area Network evaluation example is presented 
in Figure 12. studying numerous examples and 
results of the automated evaluation tool 
provides insight into network security 
problems. One revelation is that the security 
design so~ution with respect to node A may be 
not ch:=tng1ng node A at all. The solution may 
be to 1nsert a more restrictive communication 
link on the other side of the network to 
reduce A's exposure. Although this is 
intuitively obvious for simple networks it 
is less obvious in complex networks. ' 

Conclusions 

We have presented a deterministic approach 
for dealing with the distribution of risk in 
connected systems. The methodology is more 
qualitative than quantitative, since many 
risk factors are difficult to quantify 
precisely. We used as a starting point the 
NCSC Yellow Book guidance and the Landwehr­
Lubbes approach. The evaluation methodology 
described here enables consistent determina­
tion of ;networJ:c cr~tica.lity and sensitivity 
ev~luat1on cr1ter1a (1.e., requirements). 
Th1s approach may also be adapted for other 
than DoD environments, where a hierarchical 
set of security requirements exists. The risk 
evaluation methodology described here has 
been programmed to simulate many different 
system environments. 

Figure 12. Risk Evaluation Example (2) 
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Abstract 

Today's computer systems are vulnerable to both 
abuse by insiders and penetration by outsiders, as 
evidenced by the growing number of incidents re­
ported in the press. Because closing all security 
loopholes from today's systems is infeasible, and 
since no combination of technologies can prevent le­
gitimate users from abusing their authority in a sys­
tem, auditing is viewed as the last line of defense. 
What is needed are automated tools to analyze the 
vast amount of audit data for suspicious user be­
havior. This paper presents a survey of the auto­
mated audit trail analysis techniques and intrusion­
detection systems that have emerged in the past sev­
eral years. 

Introduction 

The last few years have seen a sudden and growing inter­
est in automated security analysis of computer system au­
dit trails and in systems for real-time intrusion detection. 
There is a growing number of research activities devoted to 
the subject, and some operational systems and even a few 
commercial products have appeared. 

The earliest work on the subject was a study by Jim 
Anderson [1], who categorized the threats that could be 
addressed by audit trail analysis as 

• 	 External penetrators (who are not authorized to use 
the computer) 

• 	 Internal penetrators (who are authorized to use the 
computer but not the data, program, or resource ac­
cessed), including 

Masqueraders (who operate under another user's 

id and password) 


Clandestine users (who evade auditing and ac­

cess controls) 


• 	 Misfeasors (who are authorized to use the computer 
and resources accessed but misuse their privileges) 

Anderson suggested that external penetrators could be 
detected by auditing failed login attempts and that some 
would-be internal penetrators could be detected by observ­
ing failed access attempts to files, programs, and other re­
sources. He suggested that masqueraders could be detected 
by observing departures from established patterns of use for 
individual users. All of these approaches have been adopted 
in subsequent studies. 

Anderson offered no suggestions for detecting legitimate 
users who abuse their privileges. To detect such abuse how­
ever, a priori rules for acceptable behavior could be estab­
lished; this approach has been taken in a few studies. Com­
parison with the norm established for the class of user to 

which the user belongs also could detect abuse of privilege; 
this approach is under consideration by the research group 
at SRI. 

The clandestine user can evade auditing by using system 
privilege or by operating at a level below which auditing oc­
curs. The former might be detected by auditing all use of 
functions that turn off or suspend auditing, change the spe­
cific users being audited, or change other auditing param­
eters. The latter might be addressed by low-level auditing, 
such as auditing system service or kernel calls. Anderson 
suggested monitoring certain system-wide parameters, such 
as CPU, memory, and disk activity, and comparing these 
with what has been historically established as usuai or nor­
mal for that facility. At least one subsequent study has 
included this approach [2]. 

2 The Experiments 

Subsequent to Anderson's study, early work focused on de­
veloping procedures and algorithms for automating the of­
fline security analysis of audit trails. The aim of such algo­
rithms and procedures was to provide automated tools to 
help the security administrator in his or her daily assess­
ment of the previous day's computer system activity [3,4]. 
One such project used existing audit trails and studied pos­
sible approaches for building automated tools for audit trail 
security analysis [ 3]. Another such project considered build­
ing special security audit trails and studied possible ap­
proaches for their automated analysis [4]. These projects 
provided the first experimental evidence that users could 
be distinguished from one another based on their patterns 
of use of the computer system [3], and that user behavior 
characteristics could be found that could be used to dis­
criminate between normal user behavior and a variety of 
simulated intrusions [4]. 

2.1 The Sytek Work 

A tool that ranked user sessions by their suspiciOusness 
would allow the system security officer to analyze audit trail 
records that are most likely to represent intrusions with­
out having to wade through volumes of records of mostly 
normal user activity. The Sytek work sought to provide a 
feasibility demonstration for such a tool [5]. 

Sytek's work was guided by concepts from pattern 
recognition theory. User sessions were recognized as nor­
mal or intrusive based on patterns formed by the individual 
records on the audit trail for that session. The Sytek study 
defined several audit record features as functions of the au­
dit record fields. For each user, expected values for the 
features were determined through a process called training 
(that is, for each feature, the set or range of values was 
determined from the audit data). The study then tested 
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the features for their ability to discriminate between nor­
mal sessions and sessions containing staged intrusions. A 
session was flagged as intrusive by a feature if the value of 
the feature calculated for the session was outside the user's 
range or set of expected values. Features that successfully 
detected the staged intrusions were combined to create a for 
each user user profile-the collection of the normal ranges 
for each feature. 

Sytek wrote software to collect audit data from a Unix1 

system that were analogous to data available in general­
purpose operating systems. An audit record containing the 
command name, associated files, process statistics, and file 
statistics was generated whenever a user issued a command. 

The Sytek team collected one week of audit data and 
generated a set of statistics to identify features of the audit 
trail that were potentially useful in discriminating among 
users [6]. Each identified feature was trained on the pre­
sumedly normal audit data to establish a range or set of 
expected values exhibited during each user's sessions. The 
Sytek team then enacted and audited various intrusion sce­
narios in such a way that the intrusions were embedded 
into the audited behavior of legitimate users of the sys­
tem [7]. The intrusion scenarios included break-ins by 
outsiders, intruders and legitimate users masquerading as 
other users, and users deliberately subverting the system in 
various ways. Sytek then tested the selected features to see 
whether they were useful in detecting the simulated intru­
sions [8]. Those features that detected one or more of the 
simulated intrusions were retained for further study. 

Sytek then tested each feature still under considera­
tion against an additional week of (presumedly normal) 
audit data to determine the percentage of normal sessions 
the feature flagged as abnormal (i.e., the false-alarm rate). 
Sytek found that the features password changed, user iden­
tity queried, and access to system dictionary performed ex­
tremely well. It found the most effective file statistics were 
device on which the accessed file resides, file size, oversized 
file associated with this command, group id of the owner of 
the accessed file, and user id of the owner of the' accessed 
file. The most effective process statistics were time of use, 
day of use, user program CPU time, and maximum total 
memory use. These 12 features had low (under 15 percent) 
false-alarm rates and were selected for use in a pattern clas­
sifier that analyzed their composite performance [9,10]. 

The pattern classifier flagged those sessions that did not 
fall within the pattern defined by the user profiles. The 
idea was that the resultant set of flagged sessions should be 
sufficiently small to enable a security officer to examine the 
set manually. 

The performance of the pattern classifier could be dif­
ferent from that of the individual features taken separately, 
because (1) if several features individually each flagged a 
certain session, the composite would flag that session only 
once, so the composite could flag fewer norm;tl sessions and 
thus have better performance than the features taken indi­
vidually and (2) one feature might not flag the same normal 
sessions as another feature, so the combination of features 
could flag more normal sessions and thus have worse per­
formance than the features taken individually. 

Sytek also attempted to compute a certainty measure 
that would indicate the degree of certainty that a flagged 
session actually represented an intrusion or the degree of 
suspicion for a user session. They computed a certainty for 

1 Unix is a trademark of AT&T. 

each feature, namely, the-number of audit records within a 
session that were flagged by the feature. They then com­
puted a certainty for a session as the sum of the certainties 
for all 12 features. 

In tests to analyze for intrusion-detection strength and 
false-alarm rate, the pattern classifier successfully detected 
all the simulated intrusions. However, the false-alarm rate 
was high (between 40 and 70 percent). Much better perfor­
mance could be expected if a longer training period were 
used. 

Four of the selected features pertained to a user's com­
mand usage patterns. These features were very good at 
detecting the intrusion scenarios but had very high false­
alarm rates. Believing that command usage patterns were 
potentially very useful in discriminating between normal 
and abnormal behavior, Sytek decided to modify these fea­
tures to improve their performance. It decided to make 
these features fuzzy; that is, to allow the computed value 
for a user's session to be a certain distance from the range 
in the user's profile before the session was flagged as abnor­
mal. The greater the fuzziness, however, the greater the 
chance of missing intrusions. For each of the four measures, 
Sytek analyzed the effect of increasing the fuzziness on 
both the intrusion-detection strength (percentage of scenar­
ios flagged) and on false-alarm rate (percentage of normal 
sessions flagged). To reach an acceptable false-alarm rate, 
the intrusion-detection strength was also greatly reduced. 
Sytek found, however, that for features proportional real du­
ration of command (percentage of a session's real elapsed 
time spent in the command) and proportional CPU dura­
tion of command (percent of a session's CPU time spent in 
the command), an acceptable false-alarm rate was achieved 
with a relatively modest reduction in intrusion-detection 
strength. Hence, these two features showed considerable 
promise as discriminators of intrusive behavior. 

2.2 The SRI Study 

A group at SRI led by Hal Javitz performed an exten­
sive statistical analysis on audit data from IBM systems 
running MVS and VM. The purpose of the study was to 
develop analytical statistical techniques for screening com­
puter system accounting data to detect user behavior in­
dicative of intrusions. A high-speed algorithm was devel­
oped that could accurately discriminate among users based 
on their behavior profiles. 

Audit data were obtained from normal system account­
ing records for IBM VM and MVS systems. Because the 
overwhelming majority of information in the accounting 
records concerned system usage parameters that either were 
beyond the control of the user, bore no reasonable relation­
ship to intrusion attempts, or were redundant with infor­
mation contained on other accounting records, subset of the 
accounting data was selected that could be used to detect 
logon activity outside the user's normal range, execution 
time outside the user's normal range, activity from other 
than a user's normal set of input or output (1/0) devices, 
and files for which the user is authorized but which are only 
infrequently accessed by the user. 

From VM accounting records the research group ob­
tained logon time and day of week, logon mode (normal 
or autolog), terminal used, minidisks accessed, connect 
time, computer system accessed, CPU time, number of page 
reads and writes, number of virtual cards read and punched, 
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and number of virtual lines printed. From MVS accounting 
records they obtained time and day of week, computer sys­
tem used, job priority, CPU time, number of job steps, 1/0 
units, card reader class and type, number of card images, 
number of programs run, number of files accessed, number 
of changes of index levels, and number of VSAM records 
inserted, retrieved, updated, or deleted. 

They created a database containing 4 weeks of audit 
data for a set of representative users. They selected a job 
as the unit of analysis for batch users and a session for 
interactive users (both are referred to as jobs hereinafter) 
and characterized each job by variables such as CPU time 
used, terminal used, and the number of files accessed. They 
then used these variables to construct a profile, representing 
the statistical norm for the user's jobs, for each user. 

The SRI researchers developed statistical techniques to 
detect jobs that deviated from the profiles developed for 
each user's jobs. The statistical algorithms aimed to maxi­
mize the true positive rate (percentage of intrusions identi­
fied as abnormal) and minimize the false positive rate (per­
centage of normal use identified as abnormal). A true pos­
itive rate of 100 percent means that all intrusions are de­
tected. The detection ratio is the true positive rate divided 
by the false positive rate. The more variable user behavior 
is, the higher the false positive rate will be. Although the 
false positive rate can be reduced by raising the threshold 
of the statistical test (so that fewer events are considered 
abnormal), this also lowers the true positive rate. 

They compared the results obtained when the following 
criteria were used to define an abnormal job: 

• A job is abnormal if the value of one of its parameters 
has a probability of occurring of less than 10 percent 
for that user. 

• A user's 	job is abnormal if a discriminant analysis 
shows that the probability that the job was submitted 
by another user is greater than the probability that 
the job was submitted by the user in question. 

They split the 4 weeks of audit data into two sets: the 
training set (the first 2 weeks of data), used to determine 
the statistical thresholds for the test, and the verification 
set (second 2 weeks of data), used to measure the test's 
performance. 

Because all activity represented in the sample database 
was assumed to be normal, there were no examples of in­
trusive behavior. Thus, for each measure the researchers 
calculated a surrogate true positive rate (the probability of 
identifying a user's job as abnormal when measured against 
another user's job profile) and a surrogate false positive rate 
(the probability of identifying a user's own job as abnor­
mal). These are the true and false positive rates discussed 
below. 

For VM sessions, by far the best indicators were the 
type of login and the terminal used; both of these had ex­
tremely low false positive rates (and low to medium true 
positive rates, but very high detection ratios). Minidisk id 
had an extremely high true positive rate, but also a high 
false positive rate. The computer system used had a fairly 
high true positive rate and a low false positive rate, with 
a detection ratio of seven. Most other characteristics had 
detection ratios of between one and two. 

Discriminant analysis was superior to measures of job 
abnormality based on extreme values of job parameters. 
In the discriminant analysis, the researchers used a user's 

training set to estimate the multivariate probability distri­
bution (with respect to parameters such as CPU time, time 
of day, etc.) of normal jobs for that user. They assumed 
a certain multivariate probability distribution for intrusive 
jobs. They then used classical statistical paradigms to de­
termine a rule for classifying a job as normal or abnormal. 
With this approach, every point in the multivariate space 
is assigned a value equal to the ratio of the height of the 
intrusive job probability distribution to the height of the 
normal job probability distribution. The points with the 
largest ratios form a critical region in which the probability 
of normal jobs belonging to that region is less than a few 
percent. Once a user's critical region has been determined, 
a new job for that user can be considered abnormal if it 
falls into the critical region, and normal otherwise. 

Because audit data containing intrusive jobs were not 
available, two different approaches were taken to determine 
a hypothetical multivariate probability distribution for in­
trusive jobs: 

• Nonintrusive profile approach: Assume that intrusive 
jobs have a uniform distribution 

• 	 Surrogate intrusive profile approach: Use other users' 
jobs to develop a probability distribution for intrusive 
jobs 

For MVS jobs, discriminant analysis produced a true 
positive rate of over 90 percent and a false positive rate of 

only 6 or 7 percent. For VM sessions, although the single 
parameter rules had by far the lowest false positive rates 
(averaging less than 1 percent), the discriminant analysis 
method had a much higher true positive rate (over 80 per­
cent). The false positive rate was shown to increase with 
the number of days since the profile was last updated. The 
SRI group estimated that with daily profile updating the 
results would be even better. If additional security-relevant 
audit data were used in the analysis, they estimated that a 
discriminant analysis would produce a true positive rate of 
90 to 98 percent and a false positive rate of 1 to 3 percent. 
Thus, these statistical procedures are potentially capable of 
reducing the audit trail by a factor of 100 while detecting 
approximately 95 percent of all intrusions [3]. The security 
officer would still have to determine whether the statistical 
abnormalities represent actual intrusions. 

3 	 The Intrusion-Detection Sys­
terns 

The early evidence of the Sytek and Javitz studies was the 
basis for a real-time intrusion-detection system, that is, a 
system that can continuously monitor user behavior and de­
tect suspicious behavior as it occurs. This system, known as 
IDES (Intrusion-Detection Expert System), is based on the 
approach that intrusions, whether successful or attempted, 
can be detected by flagging departures from historically es­
tablished norms of behavior for individual users [12,13]. 

Another real-time approach, called keystroke dynamics, 
is based on measurements of certain characteristics, such 
as typing speed, of a user's keyboard activity. Keystroke 
dynamics has been found to be a powerful means of contin­
uously verifying the identity of the user doing the typing. 

For systems like IDES, different intrusion-detection 
measures may be appropriate to different classes of user. 

67 



For example, for users whose activity is almost always dur­
ing normal business hours, an appropriate measure might 
simply track whether activity is during normal hours or off 
hours. Other users might frequently login in the evenings 
as well, yet still have a distinctive pattern of use (e.g., log­
ging in between 7 and 9 p.m. but rarely after 9 or between 5 
and 9); for such users, an intrusion-detection measure that 
tracks for each hour whether the user is likely to be logged 
in during that hour would be more appropriate. For still 
others for whom "normal" could be any time of day, a time­
of-use intrusion-detection measure may not be meaningful 
at all. 

There are obvious difficulties with attempting to detect 
intrusions solely on the basis of departures from observed 
norms for individual users. Although some users may have 
well-established patterns of behavior-logging on and off at 
close to the same times every day and having a characteris­
tic level and type of activity-others may have erratic work 
hours, may differ radically from day to day in the amount 
and type of their activity, and may use the computer in 
several different locations and even time zones (in the of­
fice, at home, and on travel). For the latter type of user, 
almost anything is normal, and a masquerader might easily 
go undetected. Thus, the ability to discriminate between a 
user's normal behavior and suspicious behavior depends on 
how widely that user's behavior fluctuates and on the user's 
range of normal behavior. And although this approach 
might be successful for penetrators and masqueraders, it 
may not have the same success with legitimate users who 
abuse their privileges, especially if such abuse is normal for 
those users. Moreover, the approach is vulnerable to de­
feat by an insider who knows that his or her behavior is 
being compared with his or her previously established be­
havior pattern and who slowly varies their behavior over 
time, until they have established a new behavior pattern 
within which they can safely mount an attack. Trend anal­
ysis on user behavior patterns, that is, observing how fast 
user behavior changes over time, may be useful in detecting 
such attacks. 

Because the task of discriminating between normal and 
intrusive behavior is so difficult, another study has taken 
the straightforward approach of automating the security 
officer's job. Such an approach lends itself to traditional 
expert system technology, in which the special knowledge 
of the intrusion-detection experts (the system security offi­
cers) is codified as rules used to analyze the audit data for 
suspicious activity. The obvious drawback to this approach 
is that the security officers, in practice, have only limited 
expertise. Thus, while automating these rules frees the se­
curity officer to perform further analysis, such rules cannot 
be expected to be comprehensive. This approach would be 
more aptly called a security officer's assistant. 

Several study teams are attempting to comprehensively 
characterize intrusions (e.g., MIDAS [2]). These systems 
encode information about known system vulnerabilities and 
reported attack scenarios, as well as intuition about suspi­
cious behavior, in rule-based systems. The rules are fixed 
in that they do not depend on past user or system behav­
ior. (An example of such a rule might be that more than 
three consecutive unsuccessful login' attempts for the same 
user id within 5 minutes is a penetration attempt.) Audit 
data from the monitored system are matched against these 
rules to determine whether the behavior is suspicious. A 
limitation of this approach is that it looks for known vul­

nerabilities and attacks, and the greatest threat may be 
unknown vulnerabilities and the attacks that have not yet 
been tried; one is in a position of playing catch-up with the 
intruders. 

Below is a survey of these various intrusion-detection 
systems. 

3.1 	 A Priori Rules for Normal Program 
Behavior 

Paul Karger has suggested what he calls a knowledge-based 
name checker to compare the names and types of objects re­
quested (for reading, writing, creation, or destruction) by 
a program with the names and types of objects expected 
for the program [11]. He posits as an example a FOR­
TRAN compiler containing a Trojan horse that surrepti­
tiously modifies a user's LOGIN.CMD file while compiling 
the user's program. The name checker expects the FOR­
TRAN compiler to require read access to a file with a user­
supplied name and a suffix of .FOR and to create new files 
with the same name but suffixes of .OBJ and .LIS. If the 
compiler attempts to create or to write to a file named 10­
GIN.CMD, the name checker would recognize that such a 
file is unexpected for the FORTRAN compiler. Other rules, 
for a Unix system for example, could check whether a user 
program asks for set-uid privileges. 

Although Karger envisions the name checker being used 
for access control decisions, it could also be used as a rule­
based form of real-time intrusion-detection. He suggests 
obtaining the rules for the behavior expected of commands 
from information already known to the computer system; 
for example, in VAX/VMS from the command definition 
tables. For user programs and batch jobs, the user would 
encode the rules in what Karger calls a special directory tree, 
which would enumerate the objects on which the program 
is expected to operate. 

3.2 	 IDES 

SRI International is developing a prototype intrusion­
detection system called IDES (Intrusion-Detection Expert 
System) [12,13]. The goal of IDES is to provide a system­
independent mechanism for real-time detection of all types 
of security violations, whether they are initiated by out­
siders who attempt to break into a system or by insiders 
who attempt to misuse the privileges of their accounts. The 
IDES approach is based on the hypothesis that any ex­
ploitation of a computer system's vulnerabilities entails be­
havior that deviates from previous patterns of use of the 
system; consequently, intrusions can be detected by ob­
serving abnormal patterns of use. The IDES prototype 
is based on the IDES model developed by Dorothy Den­
ning [14,15]. This model is independent of any particular 
target system, application environment, system vulnerabil­
ity, or type of intrusion, thereby providing a framework for 
a general-purpose intrusion-detection system. 

The IDES prototype is an independent system that runs 
on its own hardware (a Sun Workstation2) and processes 
audit data received in real time from a target system [12,13]. 
The user activity monitored by the IDES prototype in­
cludes login, logout, program execution, directory modifi­
cation, file access, system call, session location change, and 
network activity. 

2 Sun Workstation is a trademark of Sun Microsystems, Inc. 
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IDES is driven by the arrival of audit records, each 
of which describes behavior relevant to possibly several 
intrusion-detection measures. (A measure is an aspect of 
user behavior.) There are two kinds of measures: discrete 
and continuous. A discrete measure is one whose domain of 
values is a finite, unordered set (e.g., the set of locations). 
Such measures are generally constant for a particular user 
session, for example location and time of login. A continu­
ous measure is one whose value is a number or count that 
accumulates over a user session (e.g., connect time, CPU 
time, and I/0 activity). 

To determine whether user behavior as reported in the 
audit data is normal with respect to past or acceptable 
behavior, IDES includes user behavior profiles for the mea­
sures. (A profile is a description of the expected behavior of 
a user with respect to a particular measure.) The profiles 
are periodically updated based on observed user behavior, 
and the profile data are aged using a decay factor that gives 
the data a half-life of 50 days. Thus, the profile reflects a 
moving time window of behavior for each user. Anomalous 
behavior is user behavior that deviates from the expected 
behavior for some measure by an amount indicated in the 
user profile for that measure. Because IDES can be con­
figured to monitor arbitrarily detailed user behavior, it is 
potentially capable of detecting intrusions (for example, by 
masqueraders) that cannot be detected by the target sys­
tem's access controls. 

The IDES prototype has demonstrated its ability to 
adaptively learn users' behavior patterns; as users alter 
their behavior, the thresholds maintained in the profiles 
change. This capability makes IDES a flexible system: it 
does not have to be given rules determined by a human ex­
pert in order to learn what constitutes suspicious behavior; 
rather, IDES derives its own rules. Thus, IDES is poten­
tially sensitive to abnormalities that human experts may 
not have considered. 

The IDES prototype currently monitors a DEC-2065 
machine at SRI running a locally customized version of 
the TOPS-20 operating system3 • SRI modified the TOPS­
20 operating system to collect audit data, transform the 
data into the IDES format, encrypt the formatted data, 
and transmit the records to IDES according to the IDES 
protocol. 

IDES's flexible system-independent audit record format 
and protocol for the transmission of audit records make it 
adaptable to different host systems without fundamental 
alteration (although the particular measures and param­
eters chosen will depend on the system and users being 
monitored). SRI's plans are to adapt IDES to monitor a 
network of Sun workstations and to monitor a large IBM 
mainframe system running MVS. 

Now that the framework has been established, adding 
additional intrusion-detection measures to IDES is straight­
forward. In ongoing work, SRI is implementing a greater 
variety of intrusion-detection measures, including some 
"second order" measures to detect behavior trends, thereby 
improving the intrusion-detection capability of IDES. In 
addition, an expert system and rule-base that encodes in­
formation about hypothesized intrusion scenarios and sus­
picious behavior is being added to IDES. 

The IDES intrusion-detection processes are imple­
mented on a Sun 3/260, and the IDES security administra­

tor interface is implemented on a Sun 3/604 • The security 
administrator interface maintains a continuous display of 
various indicators of user behavior on the monitored sys­
tems and allows the security administrator to choose from 
a menu of built-in queries or to build ad hoc queries against 
the audit data and profiles. 

3.3 MIDAS 

SRI's IDES prototype detects intrusions by flagging user 
behavior that deviates from that user's past behavior. An­
other approach is to develop an intrusion-detection system 
that encodes a priori rules that define an intrusion. This 
approach is used in the Multics Intrusion Detection and 
Alerting System (MIDAS), being developed by the National 
Computer Security Center to monitor a U.S. government 
Multics system [2]. 

MIDAS is implemented on a stand-alone Symbolics 
LISP machine. It uses a home-grown expert system shell, 
capable of 150 inferences per second, with a forward­
chaining inference engine and an explanation facility. Its 
rules are elaborated in LISP, and statistical user profiles 
are maintained in LISP structures. The rules are compiled 
for fast performance. At the time of writing, MIDAS in­
cludes about 40 rules. 

MIDAS is based on Denning's intrusion-detection 
model [15]. MIDAS monitors at the user command line 
level and logs all commands used. MIDAS uses four types 
of heuristic rules: 

• 	 Immediate-These are hard-and-fast rules that make 
no use of information of past or expected user behav­
ior. They are intended to detect those events that, 
considered in isolation from any other information, 
are suspicious. 

• 	 Anomaly--These rules use statistical user profiles to 
detect when a user's behavior departs from a pattern 
established by observing past behavior. User profiles 
are updated at the completion of a user session. The 
profiles contain a list of the user's usual commands, 
the usual access times and location for the user, and 
the expected typing rate for the user. MIDAS also 
profiles the observed behavior of remote systems. 

• 	 System-wide state-MIDAS also can maintain a 
system-wide profile to characterize what is normal for 
the system globally. For example, an unusually high 
number of invocations of the copy command might 
indicate suspicious activity. 

• 	 Sensitive path-A command sequence can be char­
acterized as abnormal if its probability of occurring 
is sufficiently low. This type of heuristic rule can 
also be used to determine whether a user's com­
mand sequence is similar to those characterizing a 
known or postulated attack. Attack scenarios are ob­
tained through interviews with system security offi­
cers, hackers, and experts in penetration testing. Use 

of the sensitive-path heuristic rule could enable MI­
DAS to detect an attack in progress before the darn­
age occurs. The sensitive-path type of heuristic rule 
is not currently implemented on MIDAS. 

3DEC-2065 and TOPS-20 are trademarks of Digital Equipment 4 Sun 3/260 and Sun 3/60 are registered trademarks of Sun Microsys­
Corporation. tems, Inc. 
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MIDAS combines different intrusion indicators to decide 
whether an intrusion is occurring. A login time unusual for 
a given user, for example, is not alone sufficient to raise an 
alarm; but if combined with other anomalous data, how­
ever, MIDAS might decide an intrusion was in progress. 

MIDAS's rules attempt to detect attempted break-ins, 
masqueraders, penetrators, Trojan horses, viruses, and mis­
use. To detect attempted break-ins, MIDAS uses rules in­
volving password failure on a system account, login fail­
ure with an unknown user name, login attempt from out­
side the continental United States, and login attempt to 
a locked account. To detect masqueraders, MIDAS uses 
rules involving unusual login (e.g., time, location, termi­
nal type), unusual commands or command patterns, in­
valid commands, and user logged in simultaneously from 
different locations. To detect penetrators, MIDAS uses 
rules involving attempted use of sensitive commands, at­
tempted use of unauthorized commands, attempted access 
to sensitive objects, and attempted access to other people's 
objects. To detect misuse, MIDAS uses rules involving re­
source overuse, inactive session, and command out of scope 
for project. To detect Trojan horses and viruses, MIDAS 
uses rules involving attempted modification to system files 
and programs and unusual execution of predictable com­
mands (e.g., who taking abnormally long). 

A preprocessor on the Multics system formats the audit 
data for MIDAS. The preprocessor collects audit data from 
the usual Multics auditing program5 and from additional 
audit collection software that was written specifically for 
MIDAS. 

In its current implementation, audit data are accumu­
lated in a Multics file and dumped to tape, and then the 
tape is fed into MIDAS. A real-time capability is planned 
for a later implementation phase. 

3.4 Ask the Experts 

TRW is developing an intrusion-detection system for the 
U.S. Government using traditional expert system technol­
ogy [17]. The expert system rules attempt to character­
ize intrusions, either in general (what TRW calls generic 
common-sense rules), for the particular organization, or for 
the particular type of system and installation. The rules are 
obtained using standard knowledge-engineering techniques 
such as interviewing and working with system security of­
ficers. Known cases of intrusions drive the selection of the 
rules. The system security officers will be able to add new 
rules and modify old rules in the rule base. 

This expert system is intended to do the work of the sys­
tem security officer whose job now is to flip through huge 
printouts of audit trails looking for problem areas. The 
benefit from the system is expected to be twofold: first, it 
will be able to analyze data that are too voluminous for the 
security officer to thoroughly analyze and to spot long-term 
trends; and second, it will provide a degree of proficiency 
that would otherwise be scarce, because experienced secu­
rity officers are rare. 

This system uses the audit trail already produced by 
the monitored system. Once suspicious activity has been 
identified, the system is intended to be used to build a case 

5 Because Multics is a B2 system, its auditing facilities satisfy the 
auditing requirements for B2 trusted computing systems as enumerated 

against the intruder. It does not operate in real time but 
after the fact (like the security officers it mimics). ' 

In one test, a feasibility system using 50 rules exhibited 
a false positive rate of about 12 percent, but detected the 
one intrusion planted in the 500 test cases. In addition 
it detected at least one problem that had been thus fa; 
undetected. A prototype system is under development. 

3.5 NAURS 

The Network Auditing Usage Reporting System (NAURS) 
is used in conjunction with the Terminal Access Controller 
(TAC) Access Control System for the MILNET and the 
ARPANET [18,19]. 

NAURS monitors network activity originating from the 
TACs and network access controllers (NACs). It collects 
data about TAC/NAC logins, TAC/NAC login failures, lo­
gouts, open and close connections, and TACs coming on­
line, and maintains the data in a database. NAURS pro­
vides both background analysis on past activity and real­
time analysis of current use. It provides periodic audit trail 
reports and real-time reports on unusual events, triggered 
by the events themselves. Interactive query from local ter­
minals is also supported. Incident reports, generated every 
day from the previous day's audit data, include incidents 
that satisfy one of three rules about the number of simul­
taneous logins and duration of sessions. 

The threats addressed are twofold: break-in by an out­
sider (who has discovered a valid TAC id and password) and 
misuse by a legitimate user (trying to break into various 
network hosts). (Authorized TAC users are not generally 
registered users of every host on the network.) 

A prototype NAURS exists on a separate machine from 
the SRI-NIC host. NAURS is not accessible for remote lo­
gin or file transfer by network users. A planned production­
quality NAURS will feature redundancy of equipment, dis­
tribution of functionality (five dedicated workstations have 
been proposed), ability to perform real-time detection of 
incidents, and redundancy of the audit database. Plans 
include reports on trends, such as 6-month differential-use 
trends of port usage (number of logins, length of sessions). 
Profiles will be maintained for users and devices. Some 
of these profiles will be established when an individual be­
comes a registered user, and others will reflect observed 
user behavior patterns. Proposed additional incident rules 
are unexpected host connection for a particular user, long 
idle periods, excessive connect time, simultaneous TAC lo­
gins with the same user id but not necessarily from the 
same TAC, excessive number of simultaneous logins from 
the same TAC, unusual time of day for a particular user, 
excessive number of unsuccessfullogins from the same TAC 
and same user id, excessive number of unsuccessful host lo­
gins at different hosts, and excessive number of successful 
host logins at different hosts during the same TAC session. 

3.6 Keystroke Dynamics 

International Bioaccess Systems Corporation6 offers a suite 
of products, collectively called Bioaccess System 2000, 
that perform intrusion-detection using keystroke dynamics. 
Among these are two products BioPassword and BioCon­
tinuous for biometric access protection for IBM personal 
computers (PCs). 

in the Department of Defense Trusted Computer System Evaluation 
6 Bioaccess, BioPassword, BioContinuous, and BioNet are trade­Criteria [16]. 

marks of International Bioaccess Systems Corporation. 
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Keystroke dynamics technology is based on the "fist of 
the sender" concept from the days of the telegraph when 
Morse Code operators could identify a sender by listening to 
the incoming signals. BioPassword produces an electronic 
signature based on the unique typing characteristics of each 
authorized user for keystroke-dynamics verification of user 
id and password. BioPassword is implemented on a board 
installed in the CPU socket of the mother board of IBM 
personal computers; no special keyboard is needed. 

A user's electronic signature is stored in nonvolatile 
memory on the BioPassword board. The first time a per­
son logs on the computer following installation of the board, 
the signature is developed by having the user type his or 
her id and password repeatedly (about 12 times). Once a 
user's electronic signature is installed, BioPassword oper­
ates transparently to the user. 

BioPassword is automatically activated when the work­
station is turned on or reset or when a user logs off, and 
can be invoked by software for reverification at any time. 
BioPassword prompts the user for an id and password and 
verifies both the contents and keystroke dynamics of each 
against the stored electronic signature, letting the user pro­
ceed with normal work only if the verification is positive. 
Once access is granted, if the workstation is idle for a pre­
specified period of time, BioPassword times out and re­
quires reverification of the user before continuation of the 
idled job. All access attempts and logins are audited. 

BioContinuous incorporates all of the features of 
BioPassword and adds continuous real-time verification of 
users. BioContinuous is a single-board component for the 
IBM PC. With its own high-speed processor, the BioCon­
tinuous board continuously verifies a user's identity in par­
allel with the user's work on the PC's processor, using over 
110 typing characteristics, including intervals, rhythm, an 
analog of pressure, and error characteristics. After devel­
oping an electronic signature for a user id and password, 
BioContinuous develops an extended electronic signature 
for each user. This extended electronic signature contains 
additional biometric signature data that match a user's 
keystroke characteristics used in normal work. The learn­
ing process takes place over a few days, and, once the learn­
ing process is completed, the user's keystroke dynamics are 
automatically and continuously verified against his or her 
extended electronic signature. 

BioContinuous includes a programmable security matrix 
containing information that indicates what actions are to 
be taken when a possible intruder is detected. The action 
can depend on risk factors, such as which data are being 
accessed or which function is being performed. Thresholds 
and alarms can be preselected. 

International Bioaccess Systems Corporation is develop­
ing a product called BioNet that will add flexibility to PCs 
connected to a local area network by providing a central 
storage of electronic signatures. This will allow authorized 
users to use any workstation on the network without hav­
ing to store their electronic signatures on each workstation. 
BioNet also will provide for integrated auditing of an in­
dividual user's activity across all the workstations on the 
local network. 

3.7 Discovery 

Discovery is an intrusion-detection expert system developed 
by TRW to address the intrusion threat in an environ­
ment in which computer services are sold to outside cus­

tomers [20]. In such an environment, the customers may 
not be as concerned with safeguarding the security and in­
tegrity of the service provider's system and information as­
sets as would, say, those users (employees of the service 
company) who create and maintain that information asset. 
Thus, the customer cannot be relied upon in any program 
of security instituted at the service company. The threat is 
that subscribing customers may give away their passwords, 
or lend their terminal devices, to would-be intruders. Thus, 
Discovery attempts to detect imposters who have obtained 
legitimate user ids, access codes, and inquiry formats. The 
perceived need was for an intrusion-detection mechanism 
that operates transparently to the subscribers of the ser­
vice. The goal is that Discovery become a preventive, as 
well as a detective, control. 

Discovery is an expert system that searches for fre­
quently occurring patterns in subscriber inquiries to the 
data and compares these patterns to daily subscriber in­
quiry activity to detect variances in normal subscriber be­
havior. It develops a user profile for each customer by type 
of service and access method, and updates a user's profile 
daily if there has been activity for the user access code that 
day. 

Discovery is systemcspecific in that the intrusion­
detection rules are particular to the specific application­
dependent data fields, or variables, being monitored. How­
ever, Discovery also monitors some variables that are 
generic to most computer .systems, such as date and time 
of access, type of access, user location, user identifier, pass­
word, and port identifier. Discovery allows the security offi­
cer to choose the variables to be monitored and the thresh­
old parameters, so that the system can be fine-tuned and 
the impact of adding new services can be determined. The 
security officer can also modify, delete, and add variables 
to be monitored as service offerings change. The thresholds 
can be set individually for each variable being monitored 
for each user access code. 

Discovery analyzes the daily inquiry activity for each 
user access code for comparison with the established pro­
file for the customer and also for comparison with a model 
of illegitimate access. Discovery only analyzes correct in­
quiries submitted by customers; thus Discovery cannot use 
error patterns as indicators of intrusions. Discovery records 
all inquiries that fall outside of acceptable thresholds, and 
provides an explanation for why the inquiry is unaccept­
able (these are not used in updating the customer's profile). 
Discovery is not a real-time system, but alerts the security 
officer to unusual activity at the end of the workday. 

While Discovery was under development, a prototype 
was used to parallel the work of security investigators, in 
order to ensure that Discovery would make the same deci­
sions as the investigators. TRW found that the use of Dis­
covery resulted in investigative leads being developed more 
quickly, and the analysis of Discovery's exception data pro­
vided more concise leads than did the investigators' con­
ventional methods. Other, unexpected, benefits included 
the ability to perform marketing analysis on detailed, up­
to-the-minute data. using Discovery's customer usage pat­
terns. Trends can also be observed by comparing current 
customer usage data with previous usage aata. 

3.8 Clyde Digital Systems' Audit 

Clyde Digital Systems' Audit is a product that audits users 
of VAX/VMS machines. Audit can create a complete log 

71 



of all terminal input and output and provides procedures 
to help analyze the data collected. 

Audit can record every byte that passes between a user's 
terminal and the system, including control and escape se­
quences, and stores this data in a file, although certain 
qualifiers can be specified so that particular special char­
acters can later be discarded from the audit log file (for 
ease of display and formatting, for example). Audit also 
provides the option to monitor only terminal input (from 
the user). 

Audit also provides a flexible capability for selective au­
diting. For example, auditing can be activated selectively 
for terminal sessions satisfying certain criteria, such as for 
specific users, or specific times of day (producing an audit 
trail for the user's terminal session), and the use of spe­
cific programs can also be selectively audited (producing 
an audit trail for the specified program). 

Auditing can be controlled by VMS-format keyboard 
commands or from programs. 

Audit allows analysis of the audit data by random sam­
pling or through selective analysis based on the system 
manager's knowledge of external events. Audit's analy­
sis produces three reports: a security summary report, 
which summarizes the activity of high-risk users (as de­
fined by a predetermined set of 14 risk factor tests and 
a programmable set of weighting parameters); a security 
event report, which summarizes the events that caused 
those users to be considered high-risk; and a supporting 
data report, which includes data from the audit log to sup­
port the conclusions of the first two reports. The risk fac­
tors for which Audit tests include sessions outside business 
hours or on weekends or holidays (the definition of normal 
business hours and holidays can be selected by the system 
manager); sessions indicating use of the AUTHORIZE or 
SYSGEN utilities; sessions indicating browsing; file access 
alarms; other alarms (alarms can be established for certain 
activities); repeated unsuccessful login attempts; sessions 
with dial-up or remote terminals; simultaneous logins for 
the same user; and attempts to turn off auditing. Some of 
Audit's 14 tests use data contained in the audit logs, and 
some use information from the VMS operator log file; no 
test uses data from both. The operator log file is used to 
test for file access alarms, other alarms, login failures, and 
attempts to turn off auditing. The other tests use the audit 
logs. 

Each of the 14 tests has an associated weight and three 
factors. One factor is for after-hour use; one factor is for 
activity from a dial-up terminal; and one factor is for ac­
tivity from a DECnet remote terminal. Whenever an event 
satisfies one of the tests, its weight is multiplied by its rel­
evant factors and the result is added to the score for that 
user. Users with sufficiently high scores are considered to 
be high-risk. The weights and factors can be selected by 
the system manager. The system manager can also add 
additional tests. 

There has been at least one published report of bypasses 
of certain Audit tests [21]. Allen Clyde reports that Au­
dit has detected "numerous acts of misconduct, including 
criminal conduct ... on sensitive computer systems" [22]. 

Conclusions 

None of the intrusion-detection approaches described is suf­
, ficient alone--each addresses a different threat. A success­

ful intrusion-detection system should incorporate several 
different approaches. In particular, a statistical user profile 
approach augmented with a rule-base that characterizes in­
trusions promises to be an effective combination. Because 
they use this combination of approaches, two prototype 
systems-IDES and MIDAS-have the potential to become 
strong intrusion-detection systems. Of these two, IDES 
is particularly strong in its statistical approach, whereas 
MIDAS focuses primarily on enumerating a comprehensive 
(although site-specific) set of expert system rules. 

Although, as Linde notes [23], the more skilled penetra­
tor can disable the auditing mechanisms in order to work 
undetected, auditing and intrusion-detection mechanisms 
are still of value in detecting the less skilled penetrator, 
because they increase the difficulty of penetration. 
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EXPERT SYSTEMS IN INTRUSION DETECTION: A CASE STUDY 
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Abstract - The Multics Intrusion Detection and Alerting System 
(MIDAS) is an expert system which provides real-time intrusion and 
misuse detection for the National Computer Security Center's net­
worked mainframe, Dockmaster, a Honeywell DPS-8!70 Multics. 
The basic design ofMIDAS was heavily influenced by the intrusion 
detection research ofDorothy Denning and Peter Neumann ofSRI 
International. They proposed that statistical analysis ofcomputer 
system activities could be used to characterize normal system and 
user behavior. Given such statistical profiles, user or system activity 
that deviates beyond certain bounds should be detectable. MIDAS 
has been developed to employ this basic concept in its evaluation of 
the audited activities ofmore than I 200 Dockmaster users. 

Introduction 
The annoying ring of the telephone jarred John out of his 

contemplation of the Monday morning newspaper. One of his 
staff answered, then handed him the phone, whispering "It's the 
Chief'. 

"Computer Center, John Speaking." 
"Hello, John? This is Edward." 
"Hi, Ed. What's up?", replied John, trying to sound casual. 

By the tone ofEdward's voice, John could tell he was upset. 
"John, I just got a call from Carla in Marketing. She says she 

got a message when she logged on this morning about having 
been logged in over the weekend." 

"Boy, that's Carla for ya', always so darned dedicated ... ", 
John said, frantically trying to think of something to say to dis­
tract Edward. He knew what was coming. 

"She says she wasn't." 
"She says she wasn't what?" 
"She says she wasn't on the system over the weekend." 
"Oh." 
"You people are paid to take care of this system. Why can't 

you get your act together down there!", said Edward, starting to 
get worked up. "Don't you evermonitorwho's logged on? Carla 
has access to some of this company's most sensitive informa­
tion! Why is it that we never know when we've been had until 
someone steps up and tells us! We look like blithering idiots!" 

"Now hold on, Edward! Sure the system monitors who logs 
on; heck, it even keeps track of the misspelled commands, the 
access errors, and half-a-dozen other things. But with the num­
ber of users on our system, we simply don't have the manpower 
to pour over those logs day in and day out." But even as he said 
it, John knew that wasn't true. Not even an army of workers 
would be able to make sense out ofthe mountains oflog data that 
poured out of the system every day. More staff wasn't the 
answer, but John didn't know what was. 

"Don't start on me again with that whining for more help. 
Your department's overstaffed in the first place! And top heavy, 
too! Why don't you try doing your job for a change!" 
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The phone went dead in John's hand. "OK troops," he said, 
turning to his staff with a heavy sigh, "let's get out the logs for 
this weekend and see what we can find ... ". 

Intrusion Detection 
Audit trail analysis seems to be like the proverbial sour 

grapes; it is so difficult to obtain that it is tempting to dismiss it 
as unprofitable and abandon any further attempt at it. The fac­
tors that make audit trail analysis so difficult may be sum­
marized into three broad categories: the lack of adequate and/or 
appropriate audit data; the inability of system security officers 
to utilize available data; and the lack of a precise definition of 
what to look for. 

"Feast or Famine" characterizes the audit trail data of typi­
cal systems. Many systems do not provide adequate auditing 
facilities to be able to detect a penetration or abuse by audit data 
analysis; these are the famine systems. In other systems, the 
security officer is inundated with page upon page of audit data 
until buried under a paper mountain; these are the feast systems. 
There is a variant of this latter category which allows audit sour­
ces to be selectively activated, but even this is not the solution. 
In such systems the security officer is faced with the unattractive 
prospect ofhaving to decide which features to activate at the risk 
of failing to activate the audit facility that would have provided 
the key bit of data necessary to detect and apprehend a system 
penetrator. 

Even if a system were developed which provided just the 
right kind and amount of audit data, the security officer still has 
a formidable task, for only the most blatant ofattacks will be dis­
cernible through scrutiny of a single day's audit data. The 
sophisticated penetrator will spread out his activity over anum­
ber of days or weeks. They will subtly exploit the dark corners 
ofa system. For the security officers to detect such attacks would 
require the correlation and recall of an incredible store of data; 
nothing short of a Herculean feat. 

Another problem complicating the task of security officers 
in their attempts to analyze audit data is the imprecise definition 
of what characterizes the threat they are attempting to counter. 
Anderson [12] defines the threat that monitoring system activity 
is expected to counter as: 

"The potential possibility ofa deliberate unauthorized at­
temptto: 

a) access information 
b) manipulate information 
c) render a system unreliable or unusable." 

Butwhatdoesanintrusionlooklikeintermsoftheauditdata 
generated? How can we differentiate between authorized use 
and the unauthorized threat just described? These are certainly 
not easy questions to answer, but they lie at the heart of any at­
tempt to automate audit analysis aids. 

Studying the activity of a successful security officer in­
volved in audit trail analysis may reveal an approach. Consider 
the process followed by a security officer in tracking down the 
hacker that has just scribbled all over his company's payroll 
database. First, he applied a rule ofthumb, or heuristic, that most 



penetration attempts occur in the early hours of the morning 
when the system is unattended, so he concentrated his search on 
sessions in that time period. Next, since the only users at that 
hour were connecting to the system across a network, he looked 
for individuals whose point of origin fluctuated. His reasoning 
here was that someone illegally penetrating the system would at­
tempt to cover his actions by varying the network path. These 
two constraints yielded a set of potential accounts. From these 
he was able to pinpoint the account that had been compromised 
because the audited activities of the individual using it simply 
"didn't feel right" for the particular account. He immediately 
shut down that account and had a long talk with the account 
holder who eventually admitted to giving his password to his 
roommate, a computer "enthusiast". From this example we can 
see that the reasoning process employed by successful system 
security officers involves symbolic reasoning, heuristics and 
uncertainty. This emphasis on knowledge and its application 
through symbolic reasoning makes intrusion detection an ap­
propriate candidate for expert systems [8]. 

Expert Systems 

The goal of any intrusion detection system must be to aid 
system security officers in the detection of penetration and 
abuse. The expert system should provide the knowledge of an 
"expert" security officer. This is a MINIMUM standard of per­
formance for an intrusion detection system; as already dis­
cussed, humans generally don't do a very good job of audit trail 
analysis. The set ofpenetrations or abuses detected by a security 
officer with the aid of the automated system should be a super­
set of those that would have been detected by the security officer 
unaided. 

Codification and reapplication ofknowledge under similar 
circumstances is the basis of an expert system. This knowledge 
is encoded in the form of facts (assertions about the state of a 
problem solution) and heuristics (rules which govern the trans­
formation of the solution state). Expert systems have been 
developed that have accomplished amazing results in a number 
of different fields (see [9, 3, 11]). MIDAS is an example of such 
a system to detect intrusions into a computer system. 

MIDAS Design 

"Get place and wealth, ifpossible, 
with grace; 

If not, by any means get wealth 
and place." 

-King Midas 

The Multics Intrusion Detection and Alerting System 
(MIDAS) provides real-time intrusion and misuse detection for 
the National Computer Security Center's networked 
mainframe, Dockmaster. Dockmaster is a Honeywell Multics 
computer system employed primarily as an electronic com­
munications mechanism for the national computer security 
community. MIDAS was developed using the Production­
BasedExpertSystemToolset(P-BEST),anin-houseexpertsys­
tern shell that provides the mechanisms for developing, 
compiling and debugging very powerful rulesets. The P-BEST 
inference engine controls the assertion of data into the MIDAS 
knowledge base, and via its forward chaining inference engine, 
directs rule selection and execution. 

The basic design of MIDAS was heavily influenced by the 
seminal work in this area of J.P. Anderson, the intrusion detec­
tion research ofDorothy Denning and Peter Neumann ofSRI In­
ternational, and similar efforts at Sytek [13]. Denning and 
Neumann proposed that statistical analysis ofcomputer system 
activities could be used to characterize normal system and user 
behavior (see [2, 1]). Given such statistical profiles, user or sys­
tem activity that deviates beyond certain bounds should be 
detectable. MIDAS has been developed to employ this basic 
concept in its evaluation ofthe daily activities ofmore than 1200 
network users. 

Architecture 

Multics 

Symbolics 

System Security Monitor 

Figure 1 MIDAS Architecture 

MIDAS consists of a number ofdistinct parts, including: a 
command monitor (CM) that captures command execution data 
not audited by Multics systems; a preprocessor (preproc) for 
transforming Dockmaster audit log entries into a canonical 
form; a network-interface daemon (Net); a statistical database 
ofrecorded user and system statistics (STAT); a knowledge base 
consisting of a representation of current fact base (FB) and rule 
base (RB ); and an extensive end-user interface for communicat­
ing with system security officers. The preprocessor, command 
monitor, and network daemon reside on Dockmaster; the 
MIDAS knowledge, statistical base, and user interface are in­
stalled on a Symbolics Lisp machine. 

Each time an audit record or command monitor record is 
generated, the preprocessor filters out unnecessary data ~d 
transforms the remainder into a MID AS assertion. The asseruon 
is handed to the network interface daemon and passed via local 
area network to the Symbolics lisp machine hosting the expert 
system. The fact is placed into the fact base ofthe expert system. 
This introduction of a fact into the expert system will cause the 
creation ofrule-fact bindings between the fact and all match~ng 
rules in the rule base. Assertion ofthis fact may satisfy the fmng 
conditions of one or more rules. Any such rules will then f~e, 
potentially transforming the state of the syst.em. Depe~~mg 
upon the nature of the fact, it could cause a cham of rule fm':gs 
resulting in a number of potential system responses, rangmg 
from warning the operators of suspicious activity to taking direct 
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action to stop a penetrator. The system's reaction is proportion­
al to the extent that the monitored activity deviated from what is 
considered 'normal' according to the relevant statistical profile. 

MIDAS statistics record the aggregation ofmonitored sys­
tem activity. Comparing norms derived from past activity ag­
gregation to ongoing actions determines whether the current 
activity is outside some standard deviation. MIDAS keeps both 
user and system-wide statistics. User profile statistics, which 
define normal behavior for a user are maintained (in monthly ag­
gregate form) for each user account throughout the life ofthe ac­
count. These statistics are updated as user behavior changes. 
MIDAS also keeps current session activity data in a session 
statistics structure which is maintained for the duration ofa user 
session. User session statistics are initialized at login from the 
data extracted from user profile statistics. Session statistics in­
clude the calculated values that act as thresholds of concern for 
all activities monitored for that user. For example, if an 
individual's user statistics indicate that during his 350 sessions 
he triggered an average 38 system errors, with a standard devia­
tion of20;asystemerrorconcern threshold of58 (38 +20)would 
be stored in his session statistics profile. This value would be the 
upper limit for normal activity -- if this limit were exceeded 
suspicion would be aroused, and action might be taken in the 
form of messages to the operator or by the assertion of a fact 
noting the suspicion into the knowledge base. When the user 
logs out, the user statistical profile is updated to incorporate the 
statistical variance that has been developed from the user's ac­
tivity during the session. Figure 2 illustrates the cycling of in­
dividual user statistics. 

CREATE 


USER 
PROFILE SESSION 

PROFILE 

(AT LOGOUT) 

Figure 2 User Statistics Cycle 

MIDAS maintains similar statistical structures to determine 
system-wide activity norms. 

Heuristics 

The logical structure ofthe MIDAS system revolves around 
the rules (heuristics) in the rule base. These rules may be charac­
terized in two ways: according to the type of heuristics they 
employ, or according to the particular area of surveillance they 
address. 

There are three basic types ofheuristics employed to review 
audit data under MIDAS: immediate attack heuristics, user 
anomaly heuristics, and system state heuristics. 

Immediate Attack- Immediate attack heuristics represent 
a superficial level of analysis. These rules operate with a very 
narrow view of the data and are, in some sense, static in their in­
terpretation. They are narrow in that they generally involve only 

a small number ofdata items in their analysis; and they are static 
in that they do not make use of any statistical information. In ef­
fect, they are intended to detect those audit log entries that are, 
in isolation ofany other information, anomalous enough to raise 
concern. 

Figure 3 gives an example of this type ofheuristic encoded 
in the P-BEST language. This rule concerns attempted system 
breakin. The rule monitors the knowledge base waiting for the 
assertion of a bad login attempt in which the account specified 
by some user was invalid, but commonly used on other systems 
to denote a privileged account. When the rule finds such an 
assertion it will warn the MIDAS operator and "remember" 
another fact; namely, that with high probability, a breakin at­
tempt has occurred. 

(defrule illegal_privileged_account states 
if there exists a failed_login_item 

such that name is ("root" or "superuser" 
or "maintenance" or "system") and 

time is ?time_stamp and 
channel is ?channel 

then 
(print "WARNING: ATTEMPTED LOGIN TO 

PRIVILEGED ACCOUNT") 
and remember a breakin_attempt 

with certainty *high* 
such that attack_time is ?time_stamp 
and login_channel is ?channel) 

Figure 3 Immediate class rule 

User Anomaly -User anomaly heuristics make use of the 
statistical profiles to detect anomalous user behavior. They en­
code the intuition of the security officer when he says, "it just 
doesn't feel right." Figure 4 illustrates this sort ofrule. In this ex­
ample, the rule is concerned with user logon analysis. 

(defrule unusual_login_time states 
if there exists a lo9in_entry 

such that user 1s ?userid and 
time_stamp is ?login_time 
and (unusual_login_time ?userid ?login_time) 

then 
remember a user_loqin_anomaly 

such that user is 1userid and 
time_stamp is ?login_time) 

Figure 4 Anomaly class rule 

This example incorporates the notion ofa 'usual'login time 
for a user. Ifa user accesses the system outside his normal hours, 
then an anomaly record would be generated. This would, in ef­
fect, trigger a heightened level of suspicion about that user. 

System State - System state heuristics are anal_ogous to 
anomaly heuristics, except that they characterize what IS n~rmal 
for the entire system. One example of this type of rule IS the 
detection of an inordinately large number of login failures sys­
tem-wide. Such an occurrence might be indicative ofan attempt 
to break into the system. 

Areas of Concern 

In addition to the categories ofheuristics, Denning defined 
eight general areas ofconcern: breakin, masquerading, penen:a­
tion,leakage, database inference, Trojan horse, virus, and de mal 
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of service [2]. Under MIDAS, Trojan horse and virus attacks are 
collapsed into a single category because of their similarities. 
Also, since our concern is mainly with operating system 
penetration, as opposed to database compromise, inference type 
attacks are not considered. Finally, denial of service concerns 
and leakage concerns are combined with misuse concerns. 
Together with the heuristics described above, these concerns 
define a matrix which outlines the intended coverage of the 
MIDAS system. 

IMMEDIATE ANQMALY SYSIEM 
BREAK-IN 0 0 

MASQUERADE 0 

PENETRATION 0 0 0 

MISUSE 0 0 

TROJAN HORSE 0 0 

o = rule coverage 

Figure 5 Coverage of MIDAS Heuristics 

Attempted Breakin- This area ofconcern focuses primari­
ly on login failures. An example of this kind of heuristic was il­
lustrated in figure 3. This rule flags login failures on restricted 
a~count names (such as 'superuser', or 'root') as being suspi­
ciOus. 

Another level of analysis involves monitoring parameters 
which define the state of the entire system at any given time. If 
the attacker were smart enough to vary the target accounts, the 
system rules would still detect the abnormal behavior by the rise 
in system-wide login failures. 

Other examples from this concern area include: flagging 
excessive password failures on a system account and noting ex­
cessive or abnormal password failure on other accounts. 

Masquerade - This area of concern involves the detection 
of intruders who have obtained access to accounts and valid 
passwords which do not belong to them. Detecting such occur­
rences is straightforward: it is based upon the assumption that 
parameters gleaned from a user's normal interaction with the 
system may be used to spot activity attributed to that user but 
which deviates from the user's statistical norms. A number of 
statistical measures for a variety of factors are collected and 
stored for each valid user account. Some examples of these fac­
tors include: origin of connection (for network users), login 
time, resource usage, command usage, and command errors. 
Both the average measure for each factor and the normal devia­
tion is recorded. 

During a login session, MIDAS continually monitors the 
statistics of the current users and compares them against their 
user profiles. If a user's current activity exceeds acceptable 
limits suspicion is aroused. An example of this type of rule was 
given in figure 4. 

Penetration- Penetration concern involves the detection of 
any attempted violation of system security mechanisms, and is 
applicable to valid users as well as masqueraders. This area of 
concern is addressed by immediate, anomaly, and system wide 
heuristics targeted toward access or attempted access of system 
sensitive programs or data. 

Misuse - Unusual resource usage may be an indicator of 
many things. It can certainly increase suspicion that the user is a 
masquerader. Abnormal resource usage can also indicate that a 
valid user is engaged in some undesirable activity. For instance, 

if he directs his printer output to some location other than where 
he normally sends output, he may be attempting to leak sensitive 
data [2]. Simple inactivity (logging on and then wandering away 
from the terminal), while not an attack, represents wasted 
resource and a potential security compromise. As such it is noted 
and reported by the system. This area of concern also covers 
basic detection of covert channel activity. Under Multics 
release 11.0, all large covert channels (bandwidth 100 BPS) 
have been eliminated. Moderate (10- 100 BPS) and small (1 ­
10 BPS) channels are captured and audited by Multics [4]. 
These MIDAS rules act on the occurrence of audited covert 
channel activity. 

Trojan Horse/Virus - This area of concern involves the 
detection of a Trojan horse or virus which has been introduced 
into the system. These two areas are not separate because we 
have not determined a way to differentiate between them given 
the available audit data. The key factors which are considered 
when addressing this concern are access violations on system 
sensitive objects, and execution statistics which violate norms 
established for given commands. Access violations on sensitive 
objects may indicate the introduction of a virus into the target 
system; monitoring execution statistics attempts to detect their 
presence. 

Rule Base Structure 

In the discussion to this point, the phrase 'raise suspicion' 
has been used without reference to exactly what is meant. Most 
of the rules in the MIDAS system are sensory rules. Sensory 
rules detect anomalous activity and assert a conclusion into the 
knowledge base representing the suspected problem. These 
rules may also issue a warning message. Another category of 
rules, referred to as secondary rules, operate only on the output 
of the sensory rules. These rules act like AND-gates; firing only 
when certain kinds of suspicions have been aroused. 

Figure 6 represents the structure of the MIDAS rule base. 
Each area of concern (breakin, masquerading, misuse, etc.) is 
addressed by a different set of rules. The output of these rules 
feed the secondary rules, which in turn result in concrete actions 
being taken. 

ACTION 

secondary 

KNOWLEDGE BASE I AUDIT DATA 


Figure 6 MIDAS Rule Base Structure 
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MIDAS Operation 

MIDAS operates continuously, constantly monitoring user 
activity and the state of the target system. Ifit detects anomalies 
in system operation, relevant messages are displayed on the 
MIDAS console. The operator may choose to act directly on 
these warning messages, or to investigate further using the com­
mands available through the user interface. For example, the 
operator may query the target system status, or a user's status, or 
trace specific user activity. Based on this analysis, the operator 
will initiate corrective action. 

As discussed previously, MIDAS is composed of a number 
of distinct parts. First among these is the preprocessor, imple­
mented on Dockmaster, which extracts and reformats relevant 
audit data. This data is then transferred to the MIDAS worksta­
tion, where it is asserted into the expert system shell (P-BEST) 
and applied to the compiled MIDAS rules and statistical sub­
routines. Any anomalies detected are reported immediately via 
the MIDAS user interface. 

The logic ofthe MIDAS rule base is covered in the Architec­
ture section ofthis paper. More detailed discussions ofaudit data 
preprocessing and the user interface are now presented to 
provide a complete system description. 

Audit Data Preprocessing 

The MIDAS system acts primarily upon five types of audit 
data: logins, logouts, commands, detected errors, and I/0 re­
quests. This data is extracted from the Dockmaster audit logs and 
reformatted into a time-sorted series of assertions having the 
basic structure suggested by Denning [2]: 

( <Subject><Object><action><exception> <time­
stamp>) 

For most of the different audit assertion types, <subject> is 
list composed ofuserid, project, tag, process identifier, terminal 
type, connection source (local dial, TYMNET, or MILNET in­
dicator), and hostid. 

Similarly, <time-stamp> is universally formatted as a list 
containing the elements: absolute time (the number of seconds 
since midnight), date (YY /MM/DD), and time (HH:MM:SS). 

The remaining fields <object>, <action>, and <exception> 
have varying meanings depending on the audit assertion type. 
For example, a typical login entry might look something like 
this: 

(LOGIN (COLOSSUS FORBIN A 03452 H19 VT1 
456} NIL NIL NIL (120 02/12/88 00:02:00)) 

and a command usage entry might look like this: 

(CMD (COLOSSUS FORBIN A 03452) NIL 
BOUND_INFO$WHO 0.2 (230 02/12/88 00:03:50}) 

User Interface 

The MIDAS User Interface is a comprehensive window­
based environment composed of a bit-mapped display which 
presents four panes arranged within one overalldisplaywindow, 
and allows various operator interactions through a mouse menu 
interface. The four display panes are: the User Pane, which dis­
plays a list ofusers currently on the system; the Command Pane 

which provides a mouse/menu driven access to a number of 
MIDAS commands; the Warning Pane, which displays specific 
warning messages generated by MIDAS; and the Graphical 
System Status Pane, which is used to display the state ofMIDAS 
and the targetted host. The operator can adjust the operation of 
MIDAS, and trigger some specific report generation through the 
user interface. (Figure 7 illustrates the MIDAS window dis­
play). The MIDAS user interface displays the ongoing analysis 
of the target system security state. 

User Pane- Information provided in the MIDAS UserPane 
consists of the Login Time, Userid, Project, and Tag for all 
processes in the monitored computer system. (Tag is a one 
character flag which indicates whether the user is in interactive 
mode ("a"), or batch mode ("m")). 

Two flags may appear prior to the user's name in the User 
Pane: 

• The first flag, a question mark (?), indicates that the user 
is suspected of anomalous activity. This suspicion may be 
generated as a result of the user's having triggered some 
combination of MIDAS rules, or by independent observa­
tion by the Dockmaster operator. 

• 	The second flag which may appear to the left ofa user name 
is a capital M. This mark indicates that a user's session is 
now being closely monitored. All audit data pertaining to 
this user is now also reflected in the MIDAS Warning 
Pane. This is a powerful tool for detailed user monitoring. 

Warning Pane - The Warning Pane displays the warning 
messages and MIDAS conclusions generated as a result of 
MID AS rule execution. These messages include warnings about 
breakins, masqueraders, penetrations, misuse, trojan 
horse/virus detection, and the reasons why these warnings were 
generated. 

Sample Messages 

NOTE: FIRST LOGIN FOR USER COLOSSUS 
(SRC: VT1.0438) 

MONITOR: COLOSSUS EXECUTED CMD "LIST", 
CPU .03 

WARNING: FEY EXCEEDED 1ST THRESHOLD 
FOR CPU USE 

ALERT: COLOSSUS IS A MASQUERADER. 

REASONING IS: 


LOGGED IN FROM AN UNUSUAL SOURCE 
(31 06.4452) 

LOGGED IN AT UNUSUAL TIME (01 :45) 
EXCEEDED 1ST THRESHOLD FOR CMD ERRORS 

(15) 
EXCEEDED 2ND THRESHOLD FOR SYSERRS 78 
EXECUTED THE INVALID COMMANDS "PRIV", 

"SUID" 

Warning Pane information is generated independent of the 
MIDAS Window Interface, and thus can be made available on 
other (non-windowing) versions of MIDAS. Warning Pane 
messages are hierarchically grouped into classes ofrelated mes­
sages, from notes, to warnings, to system alerts. Each of these 
message types has a slightly differentformatorfontin order that 
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Figure 7 MIDAS User Interface 

the message type be easily distinguishable, and in order that the 
really important messages are easily noted. All messages, from 
the notes to the system alerts, are written to a daily log along with 
an analysis of each suspicious user's session (see Figure 8 for a 
sample session analysis). This log is printed at the end ofthe day 
(midnight). 

Command Pane - The MIDAS operator has available a 
number ofcommands to modify the operating parameters of the 
system or generate different displays. MIDAS commands are 
invoked by pointing the mouse at the desired command (in the 
Command Pane), and clicking. Most ofthe commands listed in­
voke menus which are in themselves lists of commands. These 
commands provide the means to display user and system statis­
tics, generate reports, modify MIDAS execution parameters, 
and execute operator commands. For example information 
about a selected user(selected by invoking the "Investigate Stats 
Menu" then selecting the "Analyze User Session" command and 
mousing on a current user in the User Pane) might look some­
thing like this: 

ACTIVITY FOR USER COLOSSUS IS 
ANOMALOUS: 

LOGGED IN FROM AN UNUSUAL SOURCE 
LOGGED IN AT AN UNUSUAL TIME 
USE OF COMMAND(S) "PRINT", "WHO" IS HIGH 
USE OF COMMAND(S) "LIST" IS VERY HIGH 
OCCURRENCE OF COMMAND ERRORS IS HIGH 
OCCURRENCE OF SYSERRS IS VERY HIGH 
COLOSSUS IS A SUSPECTED MASQUERADER 

Figure 8 User Session Analysis 

Graphical System Status Pane- This pane (the low right 
comer offigure 7) displays information about the state ofthe tar­
get host, and about the state of MIDAS. Currently four his­
tograms and three meters are displayed. The histogram labelled 
"MIDAS Concern Levels" displays how many facts the expert 
system has concluded in these areas (attempted breakins, 
masquerader, etc.). The three histograms labelled "Logins", 
"Total CPU", and "Total Syserrs" inform the operator about 
these particular occurences. A quick glance at these histograms 
can reveal how many of these occurrences have occurred today 
(or in any particular hour of today) as well as how many occur 
system wide per day. Finally, across the bottom of this pane, 
three meters give the operator some indication as to how well the 
expert system is running. The MIDAS RPM meter informs the 
operator how many audit records per minute the expert system 
processes. The MIDAS FPM meter, describes how many facts 
the expert system processes. Finally the MIDAS Facts meter in­
forms the user how many facts are left in the fact base. 

Results 

MIDAS tracks all user activity on Dockmaster in real-time. 
However, in order to implement the system in a modular fashion 
and test in a controlled environment, MIDAS was initially 
deployed on only 105 users, approximately 11% of the total user 
population. Data was transferred daily via magnetic tape. Con­
sequently, the system was tested by flooding it with audit entries 
in simulated real-time. 

MIDAS performed as intended in the test-bed implementa­
tion. Under limited testing ofcrude simulated attacks, almost all 
anomalous activities were detected. For example, test data 
developed by changing the userid throughout one sessio~'s set 
of audit data to the userid of another system user resulted m the 
determination by MIDAS that the test user was a masquerad~r. 
In addition, a number ofunexpected anomalies were detected m 
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"live" audit data that are now under further review. MIDAS 
reliably flags a monitored set of 17 different immediate attack 
activities (For example attempting to use sensitive system com­
mands). Those rules which fire based on overall system state 
anomalies are also quite reliable. 

Despite the limited size of the test-bed, we became confi­
dent that MIDAS would be capable of monitoring the complete 
DOCKMASTER user base. We gained confidence because 
MIDAS was deliberately designed with speed as a paramount 
criteria, and because initial test data timings were very 
favorable. 

MIDAS is fast for three reasons. First, MIDAS rules are 
compiled into lisp object code, not interpreted as is the case using 
many expert system shells. Second, wherever possible, MIDAS 
rules have been generalized to handle as many areas ofconcern 
as possible. Minimizing the number of rules within the system 
in turn minimizes the number of rule/fact bindings that occur, 
thus reducing the number ofpossibilities the systemmustcheck. 
Third, we have placed a number of analysis functions into the 
user interface to be triggered at the operator discretion, rather 
than in the rule base to be triggered nondeterministicly by 
matching fact patterns. For example, the MIDAS user interface 
contains a function for checking if any users have been inactive 
for an excessive period of time. This function detects misuse 
rather than intrusion, and does not need to be active constantly. 
Putting its execution at the operator's discretion reduces the load 
on the rule base. 

Actually, MIDAS is faster than we had anticipated. In 
processing the data for the limited test group of 105 users over a 
period of approximately 45 days, MIDAS has averaged an 
evaluationrate of425 audit entries per minute. The average time 
it has taken to process an entire day's test-bed activity is 9 
minutes. Given that the test population was 11% of the normal 
target system population, a simple extrapolation indicated that 
the system could process all audit data for an entire day in less 
than 2 hours. Even allowing a massive reduction in throughput 
based on the rule/fact binding complexities that would accumu­
late during peak periods of Dockmaster usage (30- 50 users), 
MIDAS appearred ready to monitor Dockmaster in real-time. 

Currently the system runs in real time. The system al?p~ars 
slightly oversensitive. Rules based completely on statistical 
profiling often trigger too readily because the thresholds ofcon­
cern are often too low. This problem may be solved by develop­
ing better algorithms for col!cern _thr~sh?l?s, or some ~a~ic 
adjustments to the rules deali!lg with mdividual _user activity 
may be required. As user profiles become normalized, the sys­
tem will better differentiate between suspicious and normal user 
activity. MIDAS has been successful in profiling system-wide 
behavior, by summarizing from the logs su_ch statistics as total 
login failures, total system errors, etc ... As It stands, the system 
has detected many anomalies, some of a suspicious nature. We 
will continue investigation of these unusual activities with the 
help of the system administration personnel. :<\lthough the S;YS­

tem is still being enhanced and tested, we beheve that applymg 
MIDAS to the audit log problem improves detection of com­
puter abuse and misuse. 

Future Directions 

MIDAS was designed specifically to provide intrusion 
detection for the National Computer Security Center's 
Honeywell Multics system. Ho"Yever, MIDA~ could easily b_e 
generalized to monitor any Multics system. With some effort, It 
may be operable for a number of different target systems. For 
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example, MIDAS may soon be modified to monitor an IBM sys­
tem running ACF2. Also, although the MIDAS expert system 
was developed on a Symbolics workstation, the basic system has 
been ported to a Sun workstation. Efforts are ongoing to develop 
a user interface for the Sun version which takes advantage ofSun 
capabilities for graphics and color display. 

A proposed enhancement is to implement Markovian 
analysis ofcommand input patterns. Under Markovian analysis, 
each command type is regarded as a state variable, and a state 
transition matrix is used to characterize the transition frequen­
cies between states. A command input transition would be ab­
normal if its probability (as determined by the previous system 
state and the current transition matrix entry) was too low. This 
mechanism can be used, for example, to determine if the com­
mand sequences ofa user are similar to those which characterize 
a penetrator. 

Some means for validating the performance of the rule base 
should be developed. Interim measures include the analysis of 
MIDAS performance under normal conditions and under 
'stress' conditions. These stress conditions will be generated by 
assembling a tiger team to attempt to compromise the monitored 
system. However, a more rigorous method for rule base valida­
tion and verification is greatly needed. This represents a current 
area of particular concern in artificial intelligence. Numerous 
approaches have been proposed for analyzing the structure of 
rule-based systems to check for consistency and completeness 
(see [5, 6, 7, 10]). Tools of this nature are presently under con­
sideration as extensions for the Production-Based Expert Sys­
tem Toolset which supports MIDAS. 

The rules of the expert system could be improved by inter­
viewing hackers, and those who have caught hackers. Current­
ly the heuristics of the expert system rules are based on the 
knowledge of system administrators and system programmers. 
Also, knowledge gained from discovering intrusion, misuse, 
penetration, etc ... will furtherrefine and enhance the rules. 

Finally, we would like to enhance MIDAS so that if the sys­
tem runs unattended, MIDAS can act on its own suspicions. 
That is, the system could take the least disruptive action to fol­
low up on its conclusions. This could occur as a result ofa user's 
failure to correctly answer a challenge response question issued 
by MIDAS inreponse to the user's previous anomalous session 
activity [ 14]. We want to enhance MID AS so that it can interact 
with the target host if it must. This would broaden its scope con­
siderably from that ofjust an audit reduction tool. 
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ABSTRACT 

This paper describes the important features of the SunOS MLS auditing mechanism, and how it solves the 
problems of perfoiming useful audit functions in large distributed systems. The goals and experiences which led to 
this design are described. The Sun OS MLS mechanism is compared with other implementations. 

INTRODUCTION 

This paper begins with a brief overview of the SunOS MLS system: 
its hardware, its software interface, and its additional security 
features. That overview serves merely to introduce the system; 
soine familiarity with UNIX and the Trusted Computer System 
Evaluation Criteria [DoD85] is expected for complete understand­
ing of this paper. 

The system overview is followed by three sections describing the 
characteristics that distinguish auditing in SunOS MLS from more 
conventional implementations. The section on audit message life 
cycle describes how an audit message travels from its point of ori­
gin to permanent storage. This mechanism was designed to minim­
ize overhead for message generation while still strictly limiting the 
amount of audit data lost due to a system failure. That section also 
describes the methods the administrator can use to manage large 
volumes of online audit data, and how the data can be migrated 
offline. 

The section on audit analysis describes the audit analysis tool, 
which is how the "single system image" of SunOS MLS is imple­
mented for auditing. This tool has extensive merging and selection 
capabilities, and is the primary mechanism for processing audit 
data before analysis or display. 

The section on audit message format summarizes the "Flexible 
Audit Message Format", which was designed as a system­
independent format suitable for use in arbitrary operating systems, 
not just SunOS MLS. This format is being considered by the IEEE 
P1003.6 and X/Open standards subcommittees on security. 

UNIX is a registered trademark of AT&T. Ethernet is a registered trademark of Xerox 
Corporation. Sun Microsystems is a registered trademark of Sun Microsystems, Inc. 
SunOS, NFS, Sun-3, Sun-4, and Sun View are trademarks of Sun Microsystems, Inc. 
POSIX is a trademark of the Institute of Electrical and Electronic Engineers. X/Open 
is a registered trademarl< of the X/Open Company, Ltd. 

The work described herein was performed under contract to Sun Microsystems, Inc. 

The statistics and mechanisms presented in this paper are taken from a pre-release 
version of SunOS MLS, and do not represent a commitment to any specific 
implementation or performance characteristics of the actual Sun OS MLS product. 

The paper ends with a section describing the implementation 
characteristics of SunOS MLS auditing. This includes some com­
parisons between SunOS MLS and other systems ([Piccioto87], 
[Gligor86]), as well as a preliminary discussion of SunOS MLS 
auditing performance. 

OVERVIEW: WHAT IS SunOS MLS? 

Sun's SunOS MLS product is secure distributed system which is 
targeted for evaluation at the B1 Criteria level and which is 
currently undergoing developmental evaluation with the NCSC. It 
is a variant of Sun's standard SunOS system (release 4.0) with 
which it has complete application compatibility except in areas 
where security requirements prohibit. SunOS MLS runs on Sun's 
Sun-3 and Sun-4 hardware product line, which ranges from 
1.5 MIPS desktop workstations through 10 MIPS workstations and 
file server machines. It has been under development since rnid­
1986, and is described in more detail by [Sun87]. 

SunOS is a version of the UNIX operating system which includes 
compatibility with the AT&T System V, Release 3 definition, 
numerous enhancements from the Berkeley 4.2/4.3bsd systems, and 
Sun's own extensions. In addition to the basic UNIX functions, 
SunOS includes Sun View, a window-based user interface, and full 
support for the TCP/lP and NFS (Network File System) network 
protocols. 

SunOS MLS is an extended version of the basic SunOS system 
intended to meet the B 1 class requirements of the Trusted Com­
puter System Evaluation Criteria (TCSEC) [DoD85]. In addition to 
auditing, which this paper describes, it includes protection of user 
passwords, support of mandatory security labels in the file system 
and in NFS, device labeling, mandatory security for socket-based 
interprocess communication, and an extension to the window inter­
face, Secure SunView, which places mandatory access control 
labels on all on-screen windows and allows simultaneous display 
and manipulation of data at many different labels. A more com­
plete description is found in [Sun87]. 
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SunOS MLS Configuration 

A SunOS MLS system is a distributed system comprising one or 
more physical machines (such as workstations or file servers) con­
nected to a dedicated Local Area Network (LAN). Because the 
LAN (which uses Ethemet-based technology) represents the com­
munication path between the CPUs in the distributed system, it is 
also referred to as the interconnect or "backplane" for the system. 
Some machines may be referred to as ''servers'', generally because 
their primary purpose is to export disk storage to other machines. 
In a typical configuration, most machines are "diskless" and use 
NFS to reference their data, which is stored on one or more servers. 

Because all the machines, their peripherals (if any) and the LAN 
interconnect, are part of the same system and equally trusted, phy­
sical security is required for all those components to ensure that no 
compromise occurs due to violation of hardware integrity. In a 
fully secure configuration, no "foreign" hardware may be attached 
to the LAN: it is used only for communication among a set of 
machines all running the same TCB software. 

Single System Image 

Although each machine in a SunOS MLS system is a partly 
independent processor running its own instance of the TCB and its 
own set of users, the entire set operates as a single system. This is 
possible because a user's (and administrator's) view of the system 
is independent of the machine being used. All machines share the 
same file system, and a file name has the same meaning regardless 
of location. 

Similarly, all administrative functions may be performed (by an 
appropriately authorized user) from any machine. The administra­
tive databases are all maintained at a single point, and distributed 
throughout the system by Sun's Yell ow Pages distributed database 
mechanism. In particular, this is true of authentication data, so that 
user identity is unique regardless of location. 

As is described below, this single system image is very important 
for auditing. This concept allows the system administrator to view 
and analyze the audit trail for the entire system as a single entity, 
even though the audit data was generated by numerous independent 
machines and may be stored in multiple locations. Because file 
names and user identities are unique through the system, it is 
straightforward to analyze the merged audit data. 

Accountability 

. An important aspect of SunOS MLS for auditing is the audit user 
/D. This is a unique user identity, kept in addition to the standard 
UNIX real user ID and effective user ID values, that identifies a 
process (subject). The audit user ID is assigned to a process only 
by its initial login through the trusted path, and its value is the same 
as the initial values of the other user IDs. This identity is inherited 
by all descey1dants of the initial process, and, in effect, provides 
accountability back to the user whose fingers are at the keyboard. 
Unlike the effective user ID and real user ID, the audit user ID's 
value is never changed. All activities performed between login and 
logout, regardless of which window they are performed in, or 

which machine the process runs on, are accountable to the original 
logged in user. For example, the audit user ID is maintained when 
the user issues the su command to switch to a privileged role or 
uses the rlogin command to initiate a session on another machine. 

AUDIT MESSAGE LIFE CYCLE 

The generation side of the audit mechanism is responsible for 
responding to "audit" calls from TCB programs, generating mes­
sages, and writing those messages to permanent storage for 
analysis. Although this is a conceptually simple path, the require­
ments for high bandwidth and reliable transmission often make this 

a complex process. Even in a conventional multi-user timesharing 
system, the path for an individual audit message may include 
several buffers, each perhaps slower to access, but less likely to 
overflow. In a distributed system, where audit message storage 
may be accessed through a communication interface, the problems 
are exacerbated. 

Audit Message Pre-Selection 

The first part of an audit message's life is really the decision of 
whether to generate the message at all. The TCSEC requires not 
that all security-relevant events be audited, but merely that they be 
auditable. It also specifies a minimum set of characteristics for 
selecting1 specific audit messages. This allows the .administrator 
some flexibility in making the tradeoff between what to collect and 
the volume of information recorded. These administrative control 
mechanisms will probably be different in different systems, but 
they always rely.on some form of categorization of messages. 

Although the most powerful selection mechanisms are available 
only at analysis time, some limited options are available to control 
the set of messages recorded. For each user, the system administra­
tor may specify a set of audit event classes for which messages 
should be recorded. These are further divided into two sets: mes­
sages to be recorded when an attempted operation is successful, and 
messages to be recorded when an attempted operation fails for any 
reason. These per-user values actually just modify a system-wide 
default; rather than specifying the exact set of classes for each user, 
the administrator writes specifications such as ''the default, plus 
successful access changes, plus all failed attempts". Thus, the 
administrator can establish a set of audit classes for the whole sys­
tem, and adjust it individually for particularly trustworthy or partic­
ularly suspicious users . 

The class selection mechanism is based on audit message types (see 
AUDIT MESSAGE FORMAT, below). Every distinct operation 
generates a message of a different type. One set of message types 
is defined to describe each of the operations defined in the POSIX 
specification, and individual systems (such as SunOS MLS) define 

1 The TCSEC allows events to be "selectively audited" either by making the 
selection at generation time (pre-selection), or by picking specific messages out of the 
audit trail at analysis tim~ (post-selection). SunOS MLS provides selection by user 
identity (and message class) at both generation and analysis time, but only provides 
selection by object security label (and most other attributes) at analysis time. 
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additional message types for their extensions. Additional message 
types can also be defined by third-party applications. The number 
of types may be quite large: in SunOS MLS, it is approximately 
300. The message type is a fine-grained selection mechanism, and 
corresponds directly to the operation performed by an administrator 
or a user program. 

There is a system-wide table that maps each of these individual 
message types into one of a small number of message classes. The 
message class indicates the class of operations (such as "adminis­
trator action", "file modification", etc.) to which the message 
belongs. Message classes are used to identify subsets of the com­
plete audit trail which are to be recorded for particular users or pro­
grams (thus reducing the volume of data). Since message classes 
are intended for administrative control of the audit mechanism, 
there should be only a fairly small number defined. It is expected 
that the set of classes may be different in different system imple­
mentations; in SunOS MLS, 13 classes are currently defined. 

Audit Messages in the Kernel 

A SunOS MLS audit message starts life in the kernel (the hardware 
privileged part of the TCB software). It may have been generated 
either by an auditing call internal to the kernel, or by a system call 
made from some trusted process. In either case, the information for 
the audit message is gathered up and formatted into an audit mes­
sage data structure, which is then stored in one of a small set of 
buffers in kernel memory. If a failure occurs in the local machine, 
no more than those buffers worth of audit data can be lost (up to 10 
audit messages). Once a message is placed in a buffer, the "audit 
daemon" is notified. 

The Audit Daemon 

The audit daemon is an independent process which runs on each 
machine. Unlike ordinary processes, it runs almost entirely in ker­
nel mode. Therefore, except when handling errors, all the data it 
manipulates is in kernel memory, and not subject to swapping or 
paging. This allows the audit daemon to respond very quickly to 
arriving audit messages and ensures that it is not a bottleneck. 

The audit daemon's job is to take the audit messages from their 
kernel buffers and write them to the destination file. In normal 
operation, the audit daemon is awakened whenever a message is 
placed in a kernel buffer. It runs promptly and performs a normal 
file system write operation to write out the message. This process 
is repeated until all the kernel buffers are again empty, at which 
point the audit daemon goes back to sleep and awaits another mes­
sage. The audit daemon runs in kernel mode to avoid an extra 
buffering step and to improve context switch efficiency. Its pro­
cessing loop is invoked by a special system call which never 
returns from the kernel unless an error occurs. 

In addition to this normal mode of operation, the audit daemon is 
also responsible for creating audit files, for handling any errors 
which occur while writing to an audit file, and for monitoring the 
amount of space still available for writing more messages. When­
ever an I/0 error or a file system full condition occurs, the audit 
daemon returns to user mode, selects a new location for audit data, 

and creates a new file into which messages will be written. It then 
again invokes its special system call to write messages to this new 
file. No messages are lost on the local machine when this occurs, 
since the kernel buffers remain full while waiting for the audit dae­
mon to find a new home for them. 

Each audit daemon has a list of directories (known as "audit file 
systems") from which it can choose a location for audit files. It 
consults this list whenever a new audit file must be created. Typi­
cally, this list is different for each machine or small group of 
machines, in order to spread the audit traffic evenly. Normally, the 
directory is chosen based on a fixed algo~ithm, but the audit dae­
mon also has a control interface that allows an administrator to 
direct its attention to a particular audit file system, or simply to 
close out the current audit file and open a new one. 

When the audit daemon is unable to find a destination for the audit 
messages, or if the audit daemon itself suffers a failure, the kernel 
buffers continue to fill up. As soon as all 10 kernel buffers are in 
use, the machine ceases to perform any auditable operations until 
the condition is remedied or until it is rebooted. The audit 
daemon's operations while trying to create new audit files are not 
audited until after a new audit file is available, to avoid an infinite 
loop. Because the audit daemon keeps trying to create new audit 
files, as soon as the error condition is remedied, it will succeed, 
drain the kernel buffers, and the processes on the machine which 
are being audited (and therefore were hanging, awaiting kernel 
buffers) will resume normal operation. 

This recovery mechanism is important because of the distributed 
nature of the SunOS MLS system. Because audit files are usually 
physically resident on disks attached to remote machines, the audit 
daemon references them using the NFS protocol over the LAN 
interconnect. The failure or temporary unavailability of one of 
these remote machines should not halt the entire system. 

Audit File Systems 

Audit files are typically kept in dedicated file systems2 reserved for 
audit data alone. This is done to keep the audit data from interfer­
ing with other user and system files: if an audit file system becomes 
full, the effect is only to direct audit messages to another location, 
rather than the more serious effects of exhausting disk storage used 
for other purposes. 

Audit file systems are also typically kept on a small set of machines 
acting as "audit servers", and referenced through NFS. This 
allows for efficient and reliable storage because the audit servers 
can be chosen to have large amounts of disk storage and high relia­
bility. Storing audit files for many machines on a single server also 
speeds analysis, since those files can all be accessed directly on that 
machine, rather than through NFS. Although, for instance, audit 
data could be stored on the local disks attached to individual desk­
top machines, this would be inefficient for access, and would also 
mean that some audit data would be unavailable for analysis simply 

2 A SunOS file system is a fixed-size region of disk, or an entire disk, which 
contains a portion of the system's directory hierarchy. 
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because the user of some machine turned its power off. Finally, use 
of audit servers may improve the physical security of audit data. 
Although the TCB prevents users from accessing any data, even 
that on local disks, except as allowed by the security policy, 
transmission of audit data to a remote machine in a physically more 
protected environment may still be desirable. 

Recovery From Unusable File Systems 

An audit file system may become unusable either because it is inac­
cessible (its server machine has crashed, or its network connection 
is broken), or because it is full. In the first case, after some brief 
attempts at error recovery, an audit daemon simply selects the next 
audit file system from its list, and attempts to create a new audit 

file. 

In the second case, the file system has reached one of two limits: 
soft or hard. The soft limit is a variable threshold set by the 
administrator which causes the audit daemon to run the audit warn 
command script. After encountering the soft limit, the audit dae­
mon attempts to switch to using another audit file system which has 
not yet reached its soft limit. Encountering the hard limit simply 
means that no space remains, and that either a new location must be 
found or the machine will hang awaiting space somewhere. 

In all these limit and error cases, the audit warn script is run. A 
default version of this script is shipped with the product. An instal­
lation may modify it to take more complex recovery actions. The 
default action on these conditions is simply to warn the administra­
tor about whatever condition has arisen, by sending mail, and by 
printing a message on the console for the more serious conditions. 
However, the script can be tailored to perform arbitrarily complex 
actions as well, such as automatically deleting or moving old audit 
files from a full file system, terminating user processes to prevent 
additional activity, or changing the audit flags for existing 
processes to reduce the set of events being audited. 

Archiving Audit Files 

In addition to the live audit files that are being written by the audit 
daemons, the administrator must also manage old audit data. The 
audit reduction tool provides numerous ways of doing this. 

The first thing to do with audit data is generally to combine it (a 
day's worth at a time, perhaps) into a single file and move it to 
another file system. The destination need not be a dedicated audit 
file system, since the combined file will not grow unpredictably 
after it is created. Often, this combination process involves several 
steps and intermediate destinations, but as long as the directories 

are appropriately organized, the rearrangements will be transparent 
to the audit analysis tools. 

Another form of archiving is tape. Although no software is pro­
vided specifically for managing tapes of audit archives, the ability 
to combine and trim audit files makes tape management much 
simpler. 

Two other forms of management for online audit files are available: 
compression and trimming. Compression uses the standard SunOS 

compress program to reduce the size of audit files; the reduction 
tool automatically handles compressed audit data, uncompressing 
when reading it, and generating compressed data on request. 

Finally, audit files can be trimmed of unwanted messages. This 
allows, for example, an administrator to keep a full year's worth of 
login and logout messages online, while having the other messages 
readily available in complete audit files on tape. The trimming 
capability is also implemented in the audit reduction tool. 

AUDIT DATA ANALYSIS 

Audit analysis in SunOS MLS is performed with the aid of the 
auditreduce program. This is used to perform a logical merge of all 
the audit files in the system, select some messages for processing, 
and output them as a stream of messages for processing. Of course, 

auditreduce does not physically merge all the audit files every time 
it is run- that could represent gigabytes of data. Rather, it selects 
messages (by time and machine identity) only from appropriate 
files, and merges those, trimming out unwanted messages as early 
as possible in the merge. In this way, it provides the most efficient 
possible presentation of any desired subset of the system-wide audit 
trail. 

No actual analysis is performed by auditreduce; rather, its purpose 
is to write (to stdout) a stream of messages for processing by 
another program. The simplest example is the praudit program, 
which simply displays the messages in human-readable form. This 
can be combined with grep and other SunOS utilities to make more 
specific selections. 

The dynamic read mode of auditreduce, rather than reading mes­
sages already present in audit files, watches all the audit files and 
file systems for new messages and files, and writes them to its out­
put as soon as they appear. This output can then be piped into a 
program or even a simple shell script to perform real-time analysis 
and alarms. It can even be piped into a real-time alarm shell script; 
a program has been developed independently of the mainstream 
SunOS MLS development effort to take advantage of this capabil­
ity: it dynamically displays the most common recent audit mes­

sages in a graphical form. 

Merging Audit Files 

The merge of audit files relies on the fact that all the audit messages 

in a file are recorded in time-sorted order. Because each audit file 
is written initially by exactly one process, some machine's audit 
daemon, the daemon can easily ensure this. Furthermore, the 

filenames of all audit files contain a pair of timestamps and 
machine name3 , so that the origin and times of audit messages 
within a file can be determined by efficient examination of the file's 

3 11tis convention is implemented by the audit daemon and by OJidjtreduce (when 
it writes files), and is relied upon by OJidjtreduu when reading files. Audit files with 
other names are inconvenient to manipulate, and OJidjtreduce provides a function to 

regenerate the timestamps. lbis is important for fixing up files which were not closed 
normally (because of a Ciash or file system), and whose ending timestamp still 
indicates "I/O in progress". 
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name, rather than its contents. 

Whenever audit data is generated by independent processes, and 
more so when generated on independent machines, synchronization 
of time stamps in audit messages can be a problem. In 
SunOS MLS, this is not a significant problem, because, in general, 
all of a particular subject's (process's) auditable activities are 
recorded on the local machine where the subject is running. Some 
activities, such as remote login, may additionally be recorded on 
another machine, and then followed by a series of messages on that 
other machine (recorded as the activities of a different subject, with 
the same identity), but there is always an easy way to track the ori­
gin of the activity. Therefore, as long as normal administrative pro­
cedures are used to keep the clocks in different machines approxi­
mately synchronized, the time. stamps in audit messages will be in 
proper sequence. 

Because a single process is limited in the number of files it can 
have open at one time, the merge is performed in multiple 
processes. This allows auditreduce to process files from an arbi­
trarily large number4 of machines. Considerable effort has been 
made to ensure that auditreduce performs efficiently even for very 
large configurations. 

Selecting Audit Messages 

The other half of auditreduce is message selection: choosing which 
messages will be passed through to the display or analysis pro­
grams. Selection options are provided to Select on any criterion 
which can be assessed from a single message: time, type of mes­
sage, selection class, originating user, security label, etc. The 
selections ~e all performed at the. earliest possible point in the 
merge, in the subprocesses. This reduces the amount of data which 
travels among the family of processes creates by an auditreduce 
invocation. Selection by time is the most important heavily optim­
ized criterion: as described above, at a coarse granularity, messages 
can be selected by time based only on the timestamps in filenames, 
and without opening a file unless it is known to contain messages 
from the interval of interest. 

Audit Migration Facilities 

Some miscellaneous facilities are provided by auditreduce, pri­
marily in support of the audit file migration strategies described 
above. Messages are combined from multiple files into one using 
the options to write an output file, delete input files, and read all 
messages from any input files processed, even if the messages are 
outside the specific time intervals specified. Input files can be in 
compressed format, and output files may be requested to be written 
in compressed format. 

Compression is performed using the standard SunOS compress pro-. 
gram, which uses adaptive Lempel-Ziv coding. On English text, 

4 Limited only by configurable table size limits in the kernel. The implementation 
has worked well with ovu 1000 files. The nwnbu of files which must be open at a 
time is equal to the nwnbu of machines which genuated them: exactly one file at a 
time from each machine is needed because the files, as well as the messages in them, 
are kept in strict time sequence. 

the typical compression ratio is only 50 to 60%, but on 
SunOS MLS audit data, it generally achieves 75% to 90% compres­
sion. These ratios can be achieved with audit files containing 1 
megabyte of data. The compression is most efficient when large 
amounts of audit data are being collected, since when a single pro­
cess generates many messages in rapid succession, the messages 
will usually have significant redundant content which can then be 
removed by compress. 

AUDIT MESSAGE FORMAT 

The final important aspect of auditing in SunOS MLS is the format 
for audit messages. Because this format offers significant benefits 
for third-party software developers, it is being proposed as an 
extension to the IEEE POSIXS standard, and is being considered by 
both the IEEE P1003.6 committee and the X/Open6 security sub­
committee. 

Goals 

The basic problem which makes audit messages difficult to inter­
pret and analyze is that they come from a wide variety of sources 
and contain many different types of information. For example, 
SunOS MLS can generate approximately 300 distinct audit mes­
sages. Despite all this variety, however, the messages contain only 
a relatively few distinct types of data which are interesting for 
analysis: times, labels, file pathnames, subject (process) identities, 
etc. The multiplicity of formats is caused by the need to report dif­
ferent sets of these datatypes for different operations. 

The goals of the audit message format are fourfold: 

1) 	 Easy selection of audit messages on a variety of criteria; 

2) Easy addition of new audit messages as functions are added to 
·the system (without changes to audit analysis tools); 

3) Allowing third-party software developers to create additional 
audit analysis tools which are independent of a particular ver­
sion of SunOS MLS; and 

4) 	 Allowing third-party software to generate its own audit mes­
sages which can be meaningfully analyzed with existing 
analysis tools. 

The initial implementation of auditing in SunOS MLS did not meet 
these goals. It used an inflexible, fixed-format message, in which 
additional data was simply tacked on following the header in a 
message-dependent way. As a consequence, both auditreduce (for 
message selection) and praudit had to understand the format of 
every single audit message. Whenever a new type of audit message 
was added to the system, praudit always (and auditreduce often) 

5 POSIX is the IEEE's Portable Operating System Intmace specification, which is 
based on common UNIX system intmaces. The Pl 003.6 committee is developing 
security extensions for the basic POSIX functions suitable for use at all TCSEC levels. 

6 X/Open is an intunational organization of UNIX system vendors which 
develops portability standards based on its membus' systems. The security 
subcommittee is developing security extensions intended primarily for commucial 
applications and the C2 TCSEC level. 
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had to be modified to understand the specific message format asso­
ciated with the new message type. This was clearly undesirable 
even within the scope of SunOS MLS development, to say nothing 
of its consequences for third-party developers. As a message for­
mat, it satisfied none of the above goals. 

The remainder of this section discusses how these goals are met by 
the current design. 

Audit File Format 

In the scheme described here, an audit file is treated as a sequen­
tially accessed stream of bytes. The stream is broken into 
variable-length records. Each audit file contains an identifying 
header, followed by an arbitrary number of records, as shown 
below: 

IHeader IMessage #1 IMessage#2 I· ... 
0 256 327 361 

NOTE: The numbers along the bottom of all the 
diagrams indicate byte offsets from the beginning. In 
this diagram, they are only for illustrative purposes, 
and do not represent any required values. 

In the diagrams showing individual tokens, the 
number at the beginning of each token is its token 
type, which is a one-byte value appearing at the 
beginning of all tokens to identify their contents. 

Although the size is arbitrary, it is useful, though not required, to 
keep the audit files to a manageable size by periodically instructing 
the audit daemon to switch to a new file. 

Although this format allows only sequential access7 , and does not 
support backward reading or random access, its simplicity is impor­
tant, because it allows audit data to be passed between programs 
easily, or moved between systems without regard to internal file 
formats. 

Flexible Audit Message Format 

The message format treats each audit message as a string of "audit 
tokens". Each of the tokens is a self-identifying piece of data, 
representing a file pathname, a subject, a label, etc. The token 
starts with an identifying byte, which is followed by a string of 
bytes representing the rest of the data in a token type dependent 
format. A message looks something like this: 

To a large extent, each audit message, and even each token within 
the message, can be considered independently of all others, which 
simplifies interpretation and message selection. 

There are three classes of tokens: Control, Data, and Modifier 
(identified as C, D, and M in the table below). Each of these classes 
contains several distinct token types, identified by the one-byte 
identifier at the beginning of each token. There are currently 17 
defined token types. 

Control tokens are essentially part of the audit system's overhead: 
they identify the beginning (and end) of messages. Data tokens 
provide the primary identification of a subject or object: a data 
token should provide enough information to know what the mes­
sage is referring. A data token may be followed by one or more 
modifier tokens. Modifier tokens provide additional information 
about a subject or object. This information is not included with the 
data tokens for two reasons, both having to do with the applicabil­
ity of this message format to arbitrary systems, not just 
SunOS MLS. First, an implementation could choose to save space 
by not recording information that its customers don't care about 
(for example, file attributes or the supplementary group list). 
Second, an implementation can always save space by not recording 
information that doesn't make sense for that system (such as labels 
in a C2 system). These variations represent an implementation's 
"auditing style", and may be built in to the system or available to 
an administrator as configuration options. Because the individual 
audit tokens are largely self-defining, an analysis program can work 
regardless of the auditing style of the system generating the mes­
sages. 

The average size of SunOS MLS audit messages is between 120 
and 180 bytes, with 6 to 10 tokens per record. The compression 
typically reduces the message size to between 20 and 30 bytes of 
compressed data per message. 

Example of Audit Message 

As an example, the audit message for an unlink!> system call might 
contain the following tokens, laid out in the message as shown in 
the previous diagrams: 

Header Token 

Message 
Time 

0 3 5 

Subject Token 

0 1 13 14 2425 5657 

7 This restriction applies only to the simplest implementations. The TRAILER 8 The opezation Wllink (Path) removes a link to the file named Path, deleting the 
token type allows backward reading and binary searching. file's contents if that was the last link to the file. 
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Label Modifier Token In addition to these token types, there are others which identify 

32-byte binary label 
(Sun specific format) 

0 32 

Pathname Token 

Root Working Pathname 
Directory Directory Argument 

(variable) (variable)0 

The first token, present in all audit messages, is the header, which 
gives the type, time, class, result, and length of the entire message. 
The second token, present in most messages, identifies the subject 
performing the operation. The third is a label, the label of the sub­
ject. This is an independent (modifier) token to allow the format to 
be used on systems (such as class C2) which do not implement 
labels and therefore would not want to reserve space for labels in 
all their audit messages. The fourth token is the file pathname for 
the target of the link. 

As this is an example only, it is somewhat simplified: the actual 
audit message for unlink() also includes the label of the object 
being unlinked and the return value from the system call (to indi­
cate success or failure). 

Audit Token Types 

The message header token is present in all audit messages, and con­
tains three pieces of information in a fixed format: the message 
type, the time the message was generated, and the total length of 
the message. The total length of the message is used to allow 
sequential processing of the variable-length messages. The mes­
sage type is used to identify a specific operation, such as a system 
call or administrative operation (see Audit Message Pre-Selection, 
above). 

The subject token identifies a subject (process). It contains the 
process's process ID, audit user ID, real user ID, and effective user 
ID. For a system with mandatory access control, this token is 
always followed by a label token identifying the subject's label. 
The subject's audit user ID is an identity which is assigned at login 
time and cannot be changed even by the setuid system call (unlike 
the "real" and effective user IDs). In a system with mandatory 
access controls (such as SunOS MLS), a subject token is always 
followed by a label modifier token. 

The file path token type contains the complete pathname needed to 
identify an object, including the process's current root directory 
and working directory, as well as the name which was supplied for 
the object itself. All three are always included, even though the 
pathname supplied as the argument to a system call might be an 
absolute pathname, making the working directory irrelevant. Simi­
larly to subject tokens, in SunOS MLS, a path token are always fol­
lowed by a label modifier token unless the designated object does 
not exist. 

Ill 
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Two additional token types allow the inclusion of arbitrary text of 
binary data in a message. These are used when the data does not 
correspond to any of the defined token types, and where additional 
data about an operation is required. Text and data tokens are dis­
tinct types to allow the analysis tools to select on the contents of 
text. An opaque data token is generally intended for interpretation 
by a special-purpose analysis tool, whereas the text token and 
miscellaneous/arbitrary data tokens are intended for reading by a 
human auditor. 

The table below lists all the defined token types, their class (C for 
control tokens, D for data tokens, M for modifier tokens), and a 
brief description. 

Name Class Description 

HEADER c Beginning of a message (length, type, time) 

TRAILER c End of a message; contains the length for 
backward reading 

SUBJECT D Subject attempting the audited operation 

SERVER D Identity of server process acting for subject 

DATA D Miscellaneous binary data; includes informa­
tion about datatype (character, integer, etc.) 
and instructions for printing (decimal, hexa­
decimal, string, etc.) 

PATH D Complete pathname(s) identifying a file sys­
tern object (root directory, current directory, 
and supplied name) 

IPC D System V IPC object (Shared Memory, 
Semaphore Set, Message Queue) 

PROCESS D Process that is target of operation 

TEXT D Text message; distinct from DATA in that 
length is implicit, reducing the token's size 

RETURN D Return value and error code from system call 

OPAQUE D Application-specific structured binary data; 
generated only by non-TCB programs 

PACKET D Header and identifying information from an 
IP packet 

ATTR M Attributes (type, owner, permissions, etc.) of 
file system object 

IPC ATTR M Attributes of System V IPC object 

LABEL M Label for subjects and objects 

GROUPS M Group list (supplementary group IDs) for a 
subject 

NET_ADDR M Address (4-byte IP format) identifying loca­
tion of a subject or object 

Writing Audit Messages 

To further insulate programs generating audit messages from their 
format in storage, a function is provided which accepts as argu­
ments the message type, class, and pointers to data to be inserted as 
additional tokens in the message. Because a file token is generated 



from a name and inode pointer (or perhaps just a name), this allows 
a generating program to supply these pointers without worrying 
about whether the system has mandatory access control so that 
labels have to be included in the audit message. 

This interface is available both within the kernel, for internal use by 
the SunOS MLS TCB, and as a system call for use by the trusted 
processes in the SunOS MLS TCB and by third-party trusted 
software. 

Application-Generated Audit Messages 

The system allows programs other than the supplied TCB software 
to generate audit messages. This allows an installation to write 
programs that generate audit messages describing their activities. 
Because these messages use the same token-based format as TCB­
generated audit messages, they can be analyzed with the same 
tools. 

If these messages could mimic the messages generated by TCB 
software, or in some way overwhelm the audit system's capacity, 
the integrity of the audit trail would be lost. The system protects 
against this in two ways. First, all application-generated messages 
are identified by a specific message type, set by the TCB when the 
message is written. This precludes programs from imitating 
genuine TCB audit messages since the message types will always 
differ. Second, application-generated messages belong to a special 
class of audit messages, and are only recorded if that class of mes­
sages is being audited. Thus, the system administrator can control, 
on a per-user basis, which users are permitted to generate non-TCB 
audit messages. 

IMPLEMENTATION CHARACTERISTICS 

The SunOS MLS audit mechanism is quite similar to other UNIX­
based audit implementations (such as [Gligor86] and [Piccioto87]). 
The principal differences are the system-independent nature of 
message and file formats and the need for a "single-system view" 
assembled dynamically (by auditreduce) from a potentially 
widely-distributed collection of audit data files. This section 
explores those differences and summarizes the performance charac­
teristics of the SunOS MLS implementation. The comparisons are 
not made with any other specific systems, but rather with general 
characteristics that appear in many systems. 

Comparison With Other Implementations 

A daemon process for writing audit data was chosen, despite the 
small additional overhead it entails, to de-couple the writing of 
audit data from its generation in the kernel. This simplifies use of 
the audit trail by non-kernel software, but mostly is important 
because it allows the target location (file or otherwise) of audit 
messages to be chosen with great flexibility. 

The additional levels of buffering bring a cost in reliability, by 
increasing the amount of data lost in the event of failure, but this 

seems more than compensated for by the automatic file switching 

capability provided by the daemon. In any case, the maximum 
amount of data loss is limited and predictable, and the daemon 
structure is such that a more reliable transport mechanism (or 
perhaps one using non-erasable optical storage) could easily be 
integrated, whereas such a change might be very difficult in a sys­
tem where the kernel does all message processing directly. 

Audit messages in SunOS MLS are larger than in many other sys­
tems, because of the additional information they include for identi­
fying objects. This resulted from a tradeoff between simplicity of 
analysis tools and size of messages: the less context the analysis 
tool has to remember (such as each process's current working 
directory), the easier its job is. In practice, this seems largely com­
pensated for by the degree of compression provided by the 
compress program. When the audit data is particularly bulky and 
contains mostly redundant information, compression ratios of 
nearly 8 to 1 are possible. Thus, although the data is temporarily 
bulkier, in permanent storage (after the automatic daily consolida­
tion), the bulk is comparable to other implementations. The addi­
tional CPU overhead for decompression at analysis time appears 
minimal. 

Similarly, the machine-independent format carries a significant 
space penalty relative to other implementations, and again, this 

results from the tradeoff between audit trail size and flexibility of 
analysis tools. This tradeoff, too, is largely masked by the 
efficiency of compression. 

The auditreduce program, in combination with self-identifying data 
in messages, provides essentially all the types of selection and 
analysis that can be provided when examining messages sequen­
tially. The audit class mechanism provides some capability for 
pre-selection, but is not nearly as powerful as auditreduce. 

The SunOS MLS audit mechanism is intended to meet or exceed 
the TCSEC B 1 requirements specifying which events are to be 
audited and what forms of selective auditing may be performed. 
However, it is also intended to meet practical needs, both for 
human auditors and automated analysis systems, such as the the 
Intrusion Detection Expert System (IDES) [Lunt88], which 
analyzes patterns in audit data to detect unauthorized use of a sys­
tem. The capabilities of auditreduce are particularly important for 
manual interpretation of audit data. 

Performance Characteristics 

As SunOS MLS had not been distributed to the field when this 
paper was written, these numbers are necessarily tentative. How­
ever, they indicate that the size of data collected and the overhead 
for collection is quite comparable to that for other systems. Most 
of the numbers below describe size of the raw binary audit data; 
compressed data is treated at the end. 

With a minimal set of audit classes selected (logins, logouts, and 
administrative and privileged activity), a system of 10 SunOS MLS 
machines (workstations and servers) generates about lOOK bytes of 
uncompressed audit data per day for the entire system. If auditing 
of failed operations is added, this increases to 1-2 megabytes per 
day. If auditing of all event classes for success and failure is 
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enabled, this increases to 10-30 megabytes per day (again, for the 
whole 10-machine system). It must be emphasized that these 
numbers are generated by the "normal" activity of a software 
development group, which consists primarily of text editing and 
compilation. Any heavy file system activity increases the bulk con­
siderably. 

The maximum capacity of the audit system seems to be about 20 
megabytes of raw data per hour on a typical machine. If all audit 
classes are turned on, and the machine is set to running a test suite 
which primarily exercises the file system, it can generate about that 
much data in an hour. The ml\chine is still usable in this state; 
although performance is certainly slowed, normal interactive work 
can still take place in much the same way as on a slower (previous 
generation) machine. 

When audit data is compressed (by the automatic daily consolida­
tion), typical compression ratios range from 3.5-to-1 to 5-to-1. 
When the audit data is heavily redundant (such as when all audit 
classes are selected), the compression ratio can reach 8-to--1. This 
reduces a daily 30 megabytes to 7 or 8, or the flat-out 20 megabytes 
per hour per machine to a more manageable 2.5. 

Performance of any audit system is so dependent on the nature of 
the workload as to essentially defy characterization. With the 
minimal set of audit classes described earlier, the performance 
impact is negligible. Performance impact on machines used as file 
servers is also essentially negligible, since auditing and access con­
trol is performed on the client machines. This is less true for 
machines used as servers for file systems receiving audit data, 
although even there, buffering in the client machines reduces the 
impact. Since a SunOS MLS file server can support an aggregate 
throughput (for all its clients) exceed 200K bytes per second, even 
an additional 20 megabytes per hour represents a small fraction of 
that capacity. 

Finally, auditing of security-relevant events does not affect the per­
formance of CPU-bound programs. Because a SunOS MLS system 
is typically not resource limited except for CPU-bound jobs or rela­
tively brief periods of heavy I/0 activity, the most important meas­
ure of auditing performance may be perceived impact on response 
time, which is minimal because of the high performance of the 
individual workstations. 

CONCLUSIONS 

Distributed systems pose significant difficulties in storing audit 
messages. Use of multiple buffers and failure recovery algorithms 
makes auditing practical and efficient in a distributed system. 

The auditreduce tool gives the administrator of a distributed system 
the all-important big picture. It also provides the management 
capabilities for maintaining and archiving the enormous volumes of 
audit data which are created in a large SunOS MLS configuration. 

Pre-selection of "interesting" audit messages is important for 
reducing the volume of messages generated. As yet, the capabili­
ties for doing so in SunOS MLS are rather primitive, but further 

work is planned to investigate selection by label, by object identity, 
and other potentially interesting criteria. Even so, the current 
implementation allows the volume of audit data to be adjusted over 
nearly two orders of magnitude. 

Because of the general message format, it is straightforward to use 
auditing in third-party trusted software, and to create third-party 
analysis tools. This has already happened within Sun: several audit 
display tools have been created outside the product development 
effort, and it is hoped that similar efforts will take place at field 
sites once the product is delivered. 

As of this writing, there is too little experience with SunOS MLS to 
quantify the performance impact of auditing, and even the storage 
requirements are not entirely clear. 
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Abstract 

Andrew is a distributed computing environment that is a synthesis of the personal computing 
and timesharing paradigms. When mature, it is expected to encompass over 5000 
workstations spanning the Carnegie Mellon University campus. This paper examines the 
security issues that arise in such an environment and describes the mechanisms that have 
been developed to address them. These mechanisms include the logical and physical 
separation of servers and clients, support for secure communication at the remote procedure 
call level, a distributed authentication service, a file-protection scheme that combines access 
lists with Unix mode bits, and the use of encryption as a basic building block. The paper 
also discusses the assumptions underlying security in Andrew and analyses the vulnerability 
of the system. Usage experience reveals that resource control, particularly of workstation 
CPU cycles, is more important than originally anticipated and that the mechanisms available 
to address this issue are rudimentary. 

1. Introduction 
Andrew is a distributed computing environment that has been under 
development at Carnegie Mellon University since 1983. An early 
paper [18] describes the origin of the system and presents an overview of 
its components. Other papers [24, 10] focus on the distributed file 
system that is the information sharing mechanism of Andrew. 

The characteristic of Andrew that has influenced almost every aspect of 
its design is its scale. The belief that there will eventually be a 
workstation for each person at CMU suggests that Andrew will grow into 
a distributed system of 5000 to 10000 nodes. A consequence of large 
scale is that the laissez-faire attitude towards security typical of closely­
knit distributed environments is no longer viable. The relative 
anonymity of users in a large system requires security to be maintained 
by enforcement rather than by the goodwill of the user community. 

A sizable body of literature exists on algorithms for security in 
distributed environments. The survey by Voydock and Kent [28] 
describes many of these algorithms and discusses the basic security 
problems they address. In contrast, this paper focuses on the design and 
implementation aspects of building a secure distributed environment. It 
puts forth the fundamental assumptions on which security in Andrew is 
based, examines their effect on system structure, describes associated 
mechanisms, and reports on usage experience. 

Andrew is a joint project of Carnegie Mellon University and the IBM 
Corporation. The author was supported in the writing of this paper by 
the National Science Foundation (Contract No. CCR-8657907). The 
views and conclusions in this document are those of the author and 
should not be interpreted as representing the official policies of the 
National Science Foundation, the IBM Corporation or Carnegie Mellon 
University. 

hough Andrew is no longer an experimental system it is far enough 
I1.:>m maturity that many of its details are still evolving. Rather than 
trying to describe a moving target, this paper presents a snapshot of 
Andrew at one point in time. The point of reference is the date of the 
official inauguration of Andrew, on November 11 1986. At that point in 
time there were over 400 Andrew workstations serving about 1200 active 
users. The file system stored 15 gigabytes of data, spread over 15 
servers. The system was then mature and robust enough to be in regular 
use in undergraduate courses at CMU and in demonstrations of Andrew 
at the EDUCOM conference on educational computing. In the rest of 
this paper the present tense refers to the state of the system at this 
reference point. Exceptions to this are explicitly stated. 

The paper begins with an overview of the entire system and an 
identification of its major components. Section 3 then discusses the 
underlying assumptions and the conditions that must be met for Andrew 
to be secure. Sections 4 to 7 describe the protection domain, 
authentication, and enforcement of protection in the distributed file 
system. Section 8 discusses the problem of resource control. Section 9 
underlines the fundamental role of encryption and proposes that 
encryption hardware be made an integral part of all workstations in 
distributed environments. Section 10 deals with various other security 
concerns, while Section 11 examines the ways in which the security of 
Andrew could be compromised and suggests solutions to some of the 
possible modes of attack. Finally, Section 12 ends the paper with an 
outline of changes that are in progress or have occurred since the 
snapshot presented here. 

2. System Structure 
Andrew combines the user interface advantages of personal computing 
with the data sharing simplicity of timesharing. This synthesis is 
achieved by close cooperation between two kinds of components, Vice 
and Virtue, shown in Figure 1. A Virtue workstation provides the power 
and capability of a dedicated personal computer, while Vice provides 
support for the timesharing abstraction. Although Vice is shown as a 
single logical entity in Figure 1, it is actually composed of a collection of 
servers and a complex local area network. This network spans the entire 
CMU campus and is composed of Ethernet and IBM Token Ring 
segments interconnected by optic fibre links and active elements called 
Routers. Figure 2 shows the details of this network. 
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Each Virtue workstation runs the Unix 4.2BSD operating system1 and is 
thus an autonomous timesharing node. Multiple users can concurrently 
access a workstation via the console keyboard, via the network or via 
lines that are hardwired to the workstation. But the most common use of 
a workstation, and the usage mode most consistent with the Andrew 
paradigm, is by a single user at the console. 

A distributed file system that spans all workstations is the primary data­
sharing mechanism in Andrew. In Virtue, this file system appears as a 
single large subtree of the local file system. Files critical to the 
initialisation of Virtue are present on the local disk of the workstation 
and are accessed directly. All other files are in the shared name space 
and are accessed through an intermediary process called Venus that runs 
on each workstation. Venus finds files on individual servers in Vice 
caches them locally and performs emulation of Unix file syste~ 
semantics. Both Vice and Venus are invisible to processes in Virtue. All 
they see is a Unix file system, one subtree of which happens to be 
identical on all workstations. Processes on two different workstations 
can read and write files in this subtree just as if they were running on a 
single timesharing system. 

A mainframe computer that runs a Venus can also share Vice files. It is 
more likely to have multiple concurrent users and make greater use of its 
local file system than a Virtue workstation. It will probably enforce local 
resource usage controls too. From the point of view of security in 
Andrew, however, such a mainframe is no different from a Virtue 
workstation. 

3. Assumptions 
Saltzer [22] makes an important distinction between a securable system 
and specific secure instances of that system. Our purpose in this section 
is to describe the level of security offered by Andrew and to state the 
assumptions under which this is achieved. The degree to which a 
specific Andrew site is secure depends critically on the effort taken to 
meet these assumptions. 

It is easiest to characterise Andrew using the taxonomy introduced by 
Voydock and Kent. Their survey [28] classifies security violations into 
unauthorised release of information, modification of information, and 
denial of resource usage. The security mechanisms in Andrew primarily 
ensure that information is released and modified only in authorised ways. 
The difficult issue of resource denial is not fully addressed. The 
complexity of this problem is apparent if one considers a situation where 
a defective piece of network hardware floods the network with packets. 
The resulting denial of network bandwidth to legitimate users is clearly a 
security violation in the strict sense of the term. However, it is not clear 
what Andrew could possibly do in such situations except to bring the 
problem to the attention of system administrators. This issue of resource 
control is discussed at length in Section 8. 

Alternative taxonomies of security also exist. Wulf [30], for instance, 
considers the security of the Hydra operating system in the light of the 
problems of mutual suspicion, modification, conservation, confinement, 
and initialization. It is more difficult to characterise Andrew within this 
framework. Since Vice and Virtue do not trust each other until a user 
successfully executes the authentication procedure described in Section 
5, there is indeed mutual suspicion. But users do depend on Vice to 
provide safe, long- term storage of their files and to enforce their 
protection policies. Andrew can protect against modification of files by 
other users, but there is no safeguard against incorrect modifications by 
Vice itself. Since Andrew supports revocation it does address t11e 
problem of conservation. But the problem of confinement, extensively 
discussed by Lampson [15], is one that Andrew makes no attempt te 
solve. It is not clear how the initialization problem in Wu1f's model 
applies to Andrew. 

1Unix is a trademark of AT&T. 


2The servers also run Unix 4.2BSD. A "superuser" is a privileged Unix user free of 

nonnal access restrictions. 

The Department of Defense taxonomy of computer systems described o' 
Schell [261 classifies ~ornputer s~stems into four major categories wit~ 
nut;n~rous subcat~gones. Security ranges in strength from class D 
(mmmtal protectzon) to class A2 (verified implementation). In this 
classification scheme, Andrew appears to fit best into class C2 
(controlled access) or, possibly, Bl (labelled security). 

For simplicity, we shall restrict our attention in the rest of this paper to 
the model put forth by Voydock and Kent. We do recognise, however, 
that a complete analysis of Andrew security in terms of a variety of 
taxonomies would be a valuable exercise in itself. ' 

A fundamental assumption pertains to the question of who enforces 
security in Andrew. Rather than trusting thousands of workstations, 
security in Andrew is predicated on the integrity of the much smaller 
number of Vice servers. These servers are located in physically secure 
rooms, are accessible only to trusted operators, and run software that is 
above suspicion. No user software is ever run on servers. For 
operational reasons, it is necessary to provide utilities that can be run on 
servers to directly manipulate Andrew file system data. These utilities 
can be run only by superusers on servers. 2 Both access to servers and the 
ability to become superuser on them must be closely guarded privileges. 

Workstations may be owned privately or located in public areas. We 
assume that owners may modify both the hardware and software on their 
workstations in arbitrary ways. It is therefore the responsibility of the 
user to ensure that he is not being compromised by software on a private 
workstation. Such a piece of software, referred to as a Trojan horse [9], 
is trivially installed by a superuser. Consequently the user has to trust 
every individual who has the ability to become superuser on the 
workstation. A user who is seriously concerned about security wou1d 
ensure the physical integrity of his workstation and would deny all 
remote access to it via the network. 

In the case of a public workstation, it is assumed that there is constant 
surveillance by administrative personnel to ensure the integrity of 
hardware and software. It is relatively simple to visually monitor and 
detect hardware tampering in a public area. But it is much harder to 
detect a miscreant becoming superuser and installing a Trojan horse. 
Keeping the superuser password on a workstation secret is not adequate 
because workstations can be easily booted up standalone, with the person 
at the console acquiring superuser privileges. An organisation that is 
serious about security would have to physically modify workstations so 
that only authorized personnel can boot up public workstations 
standalone. At the present time public workstations at CMU do not have 
such physical safeguards. 

It is common for a pool of private workstations to be used by a small 
collection of users. Workstations located in shared offices or 
laboratories are examples of such situations. From the point of view of 
security, such workstations are effectively co-owned by all users who 
can physically access them. It is their joint responsibility to ensure the 
integrity of the hardware and software on the workstations. 

It should be emphasised that the preceding discussion of software 
integrity on workstations pertains to local files. There are usually only a 
few such files, typically system programs for initialising the workstation 
and for authenticating users to Vice. All other user files are stored in 
Vice and are subject to the safeguards discussed in Section 6. 

The network underlying Andrew has segments in every building at 
CMU, including student dormitories. It is impossible to guarantee the 
physical integrity of this network. It can be tapped at any point, and 
private workstations with modified operating systems can eavesdrop on 
network traffic. A consequence of these observations is that end-to-end 
mechanisms based on encryption are the only way to ensure secure 
communication between Vice and Virtue. These mechanisms are 
described in Section 5. 

The routers shown in Figure 2 are dedicated computers that run 
specialised software. The integrity of these routers is not critical to 
Andrew security. Because Andrew uses end-to-end encryption, a 
compromised router cannot expose or modify information that is 
transmitted through it. At worst, it can cause packets to be misrouted or 
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modified in ways that cause the receiver to reject them. These are 
essentially cases of resource denial, which Andrew does not attempt to 
address completely. Physical damage to a network segment has similar 
consequences. 

Finally, the design of the Andrew file system postulates the use of an 
independent, secure communication channel connecting all the Vice 
servers. This is used for administrative functions such as tape backups 
and distribution of the protection database described in Section 4. This 
secure channel has to be realised either by a separate, physically secure 
network or by the use of end-to-end encryption as in the case of Vice­
Virtue communication. At the present time, neither of these of measures 
is used at CMU. The secure communication channel is the same as the 
public network, and communication on it is unencrypted. 

4. The Protection Domain 
The fundamental protection question is "Can agent X perform operation 
Y on object Z?" We refer to the set of agents about whom such a 
question can be asked as the Protection Domain [23]. In Andrew, the 
protection domain is composed of Users and Groups. A user is an entity, 
usually a human, that can authenticate itself to Vice, be held responsible 
for its actions, and be charged for resource consumption. A group is a 
set of other groups and users, associated with a user called its Owner. 
The name of the owner is a prefix of the name of the group. It is possible 
to impose meaningful structure in the names of groups, although Andrew 
ignores such structure. For example, "Bovik:Friends", 
''Bovik:Friends.CatLovers'', and ''Bovik:Friends.CatHaters'' could 
mnemonically indicate the purpose of three groups owned by user 
"Bovik". 

Vice internally identifies users and groups by unique 32-bit integer 
identifiers. An id cannot be reassigned after creation. Such 
reassignment would require elimination of all existing instances of the id 
from long-term Vice data structures, an operational nightmare in a large 
distributed system. User and group names, on the other hand, can easily 
be changed. 

A distinguished user named "System" is omnipotent; Vice applies no 
protection checks to it. Our original intent was that "System" would 
play the same role that a superuser plays in Unix systems. In practice we 
have found it more convenient to defme a special group named 
"System:Administrators." It is membership in this group rather than 
authentication as "System" that now endows special privileges. An 
advantage of this approach is that the actual identity of the user 
exercising the privileges is available for use in audit trails. We consider 
this particularly important in view of the scale of Andrew. Another 
advantage is that revocation of special privileges can be done by 
modifying group membership rather than by changing a password and 
communicating it securely to the users who are administrators. 

The protection domain includes two other special entities: the group 
"System:AnyUser", which has all authenticated users of Vice as its 
implicit members, and the user "Anonymous" corresponding to an 
unauthenticated Vice user. Neither of these special entities can be made 
a member of any group. Although the current implementation blurs the 
distinction between these two entities 3 , we forsee situations where the 
distinction would be valuable. For example, when the support for 
independent administrative domains discussed in Section 10.3 is 
operational it would be convenient to be able to recognize and grant 
specific privileges to all authenticated members of a particular 
administrative domain. 

3Files stored in Vice by an unauthenticated user appear as if they were stored by 
"System:AnyUser' rather than by "Anonymous." 

Membership in a group can be irtherited. The IsAMemberOf relation 
holds between a user or group X and a group G, if and only if X is a 
member of G. The reflexive, transitive closure of this relation for X 
defines a subset of the protection domain called its Current Protection 
Subdomain (CPS). Informally, the CPS is the set of all groups that X is a 
member of, either directly or indirectly, including X itself. This 
hierarchical structuring of the protection domain is similar to the 
schemes in the CMU-CFS file system [I] and Grapevine [3]. 

The CPS is important because the privileges that a user has at any time 
are the cumulative privileges of all the elements of his CPS. For 
example, suppose "System:CMU", "System:CMU.Faculty" and 
"System:CMU.Students" are three groups with the obvious 
interpretations. If the second and third groups are members of the first, 
new additions to those groups will automatically acquire privileges 
granted to "System:CMU." Conversely, when a student or faculty 
member leaves, it is only necessary to remove him from those groups in 
which he is explicitly named as a member. Inheritance of membership 
thus conceptually simplifies the maintenance ami administration of the 
protection domain. The scale of Andrew makes this an important 
advantage. 

A common practice in timesharing systems is to create a single entry in 
the protection domain to stand for a collection of users. Such a collective 
entry, often referred to as a "group account" or a "project account," 
may be used for a number of reasons. First, obtaining au individual entry 
for each human user may involve excessive administrative overheads. 
Second, the identities of all collaborating users may not be known a 
priori. Third, the protection mechanisms of the system may make it 
simpler to specify protection policies in terms of a single pseudo-user 
than for a number of users. 

We believe that this practice should be strongly discouraged in an 
environment like Andrew. Collective entries will exacerbate the already­
difficult problem of accountability in a large distributed system.4 The 
hierarchical organisation of the protection domain, in conjunction with 
the access list mechanism described in Section 6, make the specification 
of protection policies simple in Andrew. In spite of this we are 
disappointed to observe that there are some collective entries at CMU. 
We conjecture that this is primarily because the addition of a new user is 
cumbersome at present. In addition, groups can only be created and 
modified by system administrators. As discussed in Section 12, these 
problems are being addressed and we hope that collective entries will 
soon become urmecessary. 

5. Authentication and Secure Communication 
Authentication is the indisputable establishment of identities between 
two mutually suspicious parties in the face of adversaries with malicious 
intent. In Andrew, the two parties are a user at a Virtue workstation and 
a Vice server, while the adversaries are eavesdroppers on the network or 
modified network hardware that alters the data being transmitted. 

From a user's point of view, using Virtue seems no different from using 
a standalone workstation. In response to a standard Unix login prompt, 
the user provides his name and password. While logged in, he may 
access local files as well as Vice files located on many servers. Venus 
establishes secure, authenticated connections to these servers as they are 
needed. The establishment of a connection is completely transparent to 
the user. In particular, he does not have to supply his password each 
time a new connection is made. 

The authentication mechanism we use is a derivative of Needham and 
Schroeder's original scheme [19] using private encryption keys. The 
overall function is decomposed into three major components: 

• a Remote Procedure Call mechanism that provides support 
for security. 

• a scheme for obtaining and using Authentication Tokens. 
• an 	Authentication Sen'er that is a repository of password 

information. 

40ur use of the group "System:Administralors" rather than the pseudo-user 
"System•' is motivated in part by this concern. 
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5.1. Secure RPC 
Early in our implementation, it became clear that the remote procedure 
call package used between Vice and Virtue was a natural level of 
abstraction at which to provide support for secure communication. 
Birrell's report on security in the Cedar RPC package [4] independently 
confirmed the validity of our decision. 

The interface of the RPC package is described in detail in the user 
manual [25]. When a client wishes to commw1icate with a server, it 
executes a BIND operation that sets up a logical Connection. Connections 
are relatively cheap to establish and require only about a hundred bytes 
of storage overhead at each end. A connection can be set up to be at one 
of four levels of security: 

Open Kimono neither authenticated nor encrypted. 

AuthOnly authenticated, but RPC packets not encrypted. 

HeadersOnly 	 authenticated and RPC packet headers, but not 
bodies, encrypted. 

Secure authenticated, and RPC packets fully encrypted. 
Only the last of these four levels provides true end-to-end security; the 
second and third levels are provided as a compromise between security 
and efficiency, and the first can be used when secure communication is 
not required. 

A client can specify the kind of encryption to be used when establishing 
a connection. The server provides a bit mask indicating the kinds of 
encryption it can handle, and will reject attempts by a client to use any 
other kind. This flexibililty makes it feasible to equip servers with 
encryption hardware as well as a suite of softwan~ encryption algorithms 
of differing strength and cost. A workstation owner can make a tradeoff 
between economy, performance and degree of security in determining 
the kind of encryption to use. The preferred approach is, of course, to 
equip all workstations with encryption hardware. Section 9 discusses 
encryption in greater detail. 

For all the authenticated security levels, the BIND operation involves a 
3-phase handshake between client and server. The client side of the 
application provides a variable-length byte sequence called Client/dent, 
and an 8-byte encryption key for the handshake. The server side of the 
application supplies a procedure, GetKeys, to perform key lookup and a 
procedure, AuthFail, to be invoked on authentication failure. The latter 
allows the server to record and possibly notify an administrator of 
suspicious authentication failures. 

At the end of a successful BIND, the server is assured that the client 
possesses the correct handshake key for Clientldent. The client, in turn, 
is assured that the server is capable of deducing the handshake key from 
Clientldent. The possesion of the handshake key is assumed to be prima 
facie evidence of authenticity. 

The steps performed by the RPC package during BIND are as follows: 
1. The client chooses a random number, ~ and encrypts it 

with its handshake key, HKC. It sends the result, (Xr)HKc, 
and Clientldent (in the clear) to the server. 

2. When the BIND request arrives at the server, the RPC 
package invokes GetKeys with Clientldent as a parameter. 

3. GetKeys does a key lookup and returns two keys. On~ of 
these keys is a handshake key, HKS, and the oth~r 1s _a 
session key, SK, to be used after the connection 1s 
established. If the return code from GetKeys indicates that 
the key lookup was unsuccessful, _the_ Bn:m request. is 
rejected immediately and AuthFail 1s mvoked w1th 
Clientldent and the network address of the client as 
parameters. 

4. Otherwise the server decrypts 	(~)HKC with its handshake 
key, yielding ( ~)HKCfKS· 

5. The 	server adds one to the result of its decryptio~, th~n 
encrypts this and a new random number, Yr, Wlth liS 
handshake key. It sends the result, ((((~)HKCfK5+1), 

YrfKs, to the client. 

6. The client uses its handshake key to decrypt this message. 
If HKC and HKS match, the first number of the decrypted 
pair will be (Xr+l). If this is the case, the client concludes 
that the server is genuine. Otherwise the server is a fake 
and BIND terminates. 

7. The client adds one to the second number of the decrypted 
pair and encrypts it with its handshake key. It sends the 
result, (((YrfKSfKC + lfKc, to the server. 

8. The server decrypts this message with its handshake key. 
If HKC and HKS match, the decrypted number will be 
(Yr+l). 1n that case the server concludes that the client is 
genuine. Otherwise the client is a fake and the BIND 
terminates after AuthFail is invoked. 

9. The server then encrypts the session key, SK, and a 
randomly chosen initial RPC sequence number, xO, with its 
handshake key. It completes BIND by sending the result, 
(SK, xO)HKs, to the client. All future encryption on this 
connection uses SK. The sequence numbers of RPC 
requests and replies will increase monotonically from xO. 

The correctness of this authentication procedure hinges on the fact that 
possession of the handshake key by both parties is essential for all steps 
of the handshake to succeed. Without the correct key, it is extremely 
unlikely that an adversary will be able to generate outgoing messages 
that correspond to appropriate transformations of the incoming messages. 
Mutual authentication is achieved because both the client and the server· 
are required to demonstrate that they possess the handshake key. The 
use of new random numbers for each BIND prevents an adversary from 
eavesdropping on a successful BIND and replaying packets from that 
sequence. 

Figure 3 sununarises the steps involved in the BIND authentication 
procedure. It is important to note that the RPC package ll_lakes _no 
assumptions about the format of Clientldent or the marmer m wh~ch 
GetKeys derives the handshake key from Clientldent. The next sect10n 
describes how this generality is used in Andrew in two different ways: at 
login, to communicate with an authentication server, and each time 
Venus contacts a file server. A connection is terminated by an UNBIND 

call which destroys all state associated with that connection. 

Security in Andrew is not critically dependent on the details of the 
authentication handshake. The code pertaining to it is small and self­
contained. The handshake can therefore be treated as a black box and an 
alternative mutual authentication technique substituted with relative ease. 

5.2. Authentication Tokens 
Andrew uses a two-step authentication scheme based on Tokens for 
reasons of transparency as well as robustness. This approach provides a 
number of advantages over a single-step authentication scheme: 

1. It allows Venus to establish secure connections as it needs 
them, without users having to supply their password each 
time. 

2. It avoids having to store passwords in the clear on 
workstations. 

3. It limits the time duration during which lost tokens can 
cause damage. 

4. It allows system programs other than Venus to perform 
Vice authentication without user intervention. 

Authentication tokens are pairs of objects whose possession is indirect 
proof of authenticity. Such a pair is like a Capability [14] in that n_o 
consultation with an external agency is required when using them, but 1s 
different from a capability in that it establishes identity rather than 
granting rights. Tokens are conceptually similar to Authenticators 
described by Birrell [4]. 

One of the components of the pair, the Secret Token, is encrypted at 
creation and can be sent in the clear. The other component, the Clear 
Token has fields that are sensitive and should be sent only on secure 
conne~tions. Both tokens contain essentially the same iiJ!orm_a~~m: ~~ 
Vice id of the user, a handshake key, a unique handle for ldenllfymg 
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token, a timestamp that indicates when the token becomes valid, and 
another timestamp that indicates when it expires. The secret token 
contains, in addition, a fixed string for self-identification. The 
appearance of this string when decrypting a secret token confirms that 
the right key has been used. The secret token also contains noise fields 
that are filled with new random values each time a token is created. This 
is done to thwart attempts to break the key used for encrypting tokens. 

The Unix program for logging in on workstations has been extensively 
modified, although its user interface is unaltered. LOGIN now contacts an 
authentication server using the RPC mechanism described in Section 5.1. 
The name and password typed in by the U:ser are used as the Clientldent 
and handshake key respectively. The GetKeys routine in the 
authentication server obtains this password from an internal table. When 
the RPC handshake completes, a secure, authenticated connection has 
been established between LOGIN and the authentication server. LOGIN 

uses this connection to obtain a pair of tokens for the user. The 
authentication server generates a new handshake key for each pair of 
tokens it creates. It encrypts the secret token with a key known only to 
itself and the Vice file servers. LOGIN now passes the clear and secret 
tokens to Venus, which retains them in an internal data structure. At this 
point LOGIN terminates, and the user can use the workstation. 

Whenever Venus needs to establish an RPC connection to a Vice file 
server on behalf of a user, it invokes BIND using the secret token for that 
user as Clientldent and the key in the clear token as the handshake key. 
In the first phase of the BIND, the GetKeys routine on the server is 
invoked with Clientident as the input parameter. The server obtains the 
handshake key from the secret token after decrypting it. The 
authentication procedure is critically dependent on the assun1ption that 
only legitimate servers possess the key to decrypt secret tokens. At this 
point Venus and the server each have a key that they believe to be the 
correct handshake key. The remaining steps of the BIND proceed as 
described in Section 5.1, leading to mutual authentication. If the BIND is 
successful, the server uses the id in the secret token as the identity of the 
client on this RPC connection and sets up appropriate internal state. 

Since tokens have a finite lifetime, a user will need to periodically 
reauthenticate himself. At present, tokens are valid for 24 hours at 
CMU. The program LOG, which is functionally identical to LOGIN, can 
be used for reauthentication without explicitly logging out. This allows 
users to retain logged-in context. 

When multiple users are logged into a workstation, Venus maintains a 
separate secure RPC connection for each of them for each of the Vice 
file servers they have accessed. When a user logs out of a workstation, 
Venus deletes his tokens. In the future Vice may support other services 
besides a dis•ributed file system. The components of such services 
which execute in Virtue will be able to use tokens for authentication, just 
as Venus does at present. 

5.3. Authentication Server 
The authentication server, which runs on a trusted Vice machine, is 
responsible for restricting Vice access and for determining whether an 
authentication attempt by a user is valid. To perform tl1ese functions it 
maintains a database of password information about users. An excerpt of 
this database is shown in Figure 4. The passwords stored in the databa~e 
are effectively in the clear, but are encrypted with a ke;r known to the 
server so that non-malicious system personnel are prevented from 
accidentally reading the passwords. Tiris database is used for password 
lookllp whenever a user logs in to a Virtue workstation. lt is updated 
whenever a user is created, deleted or has his name or password changed. 
Users can change their own password; other operations can only be 
performed by system administrators. 

Server performance is considerably improved by exploiting the fact that 
queries are far more frequent than updates. This makes it appropriate for 
the server to maintain a write-through cache copy of the entire database 
in its virtual memory. A modification to the database immediately 
overwrites cached information. The copy on disk is not, however, 
overwriten. Rather, an audit trail of changes is maintained in the 
database by appending a timestamped entry indicating the change and the 

identity of the user making the modification. On startup the 
authentication server initialises its cache by reading the database 
sequentially. Later changes thus override earlier ones. An offline 
program has to be run periodically to compact the database. 

The key used by the authentication server for encrypting secret tokens 
has to be known to all the Vice file servers. This key should be changed 
periodically if an Andrew site is serious about security. The Vice file 
servers remember the two most recent such keys and try them one after 
the other when decrypting a secret token. This allows unexpired tokens 
to be used even if the authentication server has changed keys. At present 
key distribution is manual; this should be automated in the future. 

For robustness, there is an instance of the authentication server running 
on each Vice file server. These are slaves and respond only to queries. 
Only one server, the master, accepts updates. Changes are propagated to 
slaves over the secure communication charmel referred to in Section 3. 
For this specific application, nonuniform propagation speed and the 
temporary inconsistencies that may result do not pose a serious problem. 
For further robustness, each instance of the authentication server has an 
associated watchdog Unix process that restarts it in the event of a crash. 

Each server instance has a log file in which authentication failures and 
unsuccessful attempts to update the password database are recorded. 
Figure 5 shows an excerpt from such a log. It would not be difficult to 
provide a more sophisticated and timely warning mechanism for system 
personnel if suspicious events are observed by aut11entication servers. 

6. Protection in Vice 
As the custodian of shared information in Andrew, Vice enforces the 
protection policies specifed by users. The scale, character and periodic 
change in the composition of the user community in a university 
necessitate a protection mechanism that is simple to use yet allows 
complex policies to be expressed. A further consequence of these factors 
is that revocation of access privileges is an important and common 
operation. In the light of these considerations we opted to use an Access 
List mechanism in Andrew. The next three sections describe how access 
lists are implemented, how they are used for file protection, and how 
Vice represents and maintains information on the protection domain. 

6.1. Access Lists 
The access list mechanism is implemented as a package available to any 
service in Vice, though only the distributed file system currently uses it. 
An entry in an access list maps a member of the protection domain into a 
set of Rights, which are merely bit positions in a 32-bit integer mask. 
The interpretation of rights is specific to each Vice service. The total 
rights possessed by a user on an object is the union of all the rights 
possessed by the members of his CPS. In other words, he possesses the 
maximal rights collectively possessed by himself and all the groups of 
which he is a direct or indirect member. 

An access list is actually composed of two sublists: a list of Positi1·e 
Rights and a list of Negative Rights. An entry in a positive rights list 
indicates possession of a set of rights. In a negative rights list, it 
indicates denial of those rights. In case of conilict, denial overrides 
possession. 

Negative rights are primarily a means of rapidly and selectively revoking 
access to sensitive objects. Although such revocation is more properly 
done by changes to the protection domain, the changes may take time to 
propagate in a large distributed system. Negative rights can reduce the 
window of vulnerability, since changes to access lists are effective 
immediately. As an example, if it is discovered that a member of a large 
group is misusing his privileges, he can be immediately given negative 
rights on objects used by the group. He can also be deleted from all 
groups that may directly or indirectly give him rights on those objects. 
After the membership changes are effective at all Vice servers, he can be 
removed from the negative rights lists. Negative rights thus decouple the 
problems of rapid revocation and propagation of information in a large 
distributed system. They can also be used to specify protection policies 
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of the form "Grant rights R to all members of group G, except user 
U." Rabin and Tygar, in their recent work on ITOSS [21], independently 
confirm the advantages of providing negative privileges. 

The algorithm executed during an access list check is quite efficient. 
Suppose A is an arbitrary access list and C is the CPS of U. The entries 
in A and C are maintained in sorted order. The rights possessed by U are 
determined as follows: 

1. Let M and N be rights masks, initially empty. 
2. For each element of C, if there is an entry in the positive 

rights list of A, inclusive-OR M with the rights portion of 
the entry. 

3. For each element of C, if there is an entry in the negative 
rights list of A, inclusive-OR N with the rights portion of 
the entry. 

4. Bitwise subtract N from M. 
5. M now specifies the rights that U possesses. 

Profiling of the Vice servers in actual use confirms that the overheads 
due to access list checks are negligible. 

6.2. File Protection 
Vice associates an access list with each directory. The access list applies 
to all files in the directory, thus giving them uniform protection status. 
The primary reason for this design decision is conceptual simplicity. 
Users have, at all times, a rough mental picture of the protection state of 
the files they access. In a large system, the reduction in state obtained by 
associating protection with directories rather than files is considerable. 
A secondary benefit is the reduced storage overhead on servers. Usage 
experience in Andrew has proved that this is an excellent compromise 
between providing protection at fine granularity and retaining conceptual 
simplicity. In the rare instances where a file needs to have a different 
protection status from other files in its directory, we place that file in a 
separate directory with appropriate protection and put a symbolic link to 
it in the original directory. 

Seven kinds of rights are associated with a directory: 

read (r) 	 read any file 

write (w) 	 write any file 

lookup (I) 	 lookup status of any file 

insert (i) 	 insert a new file in this directory (only if it does not 
already exist). This is particularly useful in 
implementing mailboxes. 

delete (d) 	 delete any existing file 

administer (a) 	 modify the access list of this directory 

lock (k) 	 lock any file. This has turned out not to be a 
particularly useful right, but continues to be 
supported for historical reasons. 

The three most commonly used combinations of rights are rl, for read 
access, rwlidk for write access, and rwlidka for complete access. Figure 
6 shows an example of the access list on a Vice directory. Modifications 
to access lists take effect immediately. 

Certain privileges commonly found in timesharing systems do not make 
sense in the context of Andrew. Execute-only privilege, for example, is 
not a right that Vice can enforce since program execution is done by 
Virtue. Revocation of read rights is another area where Vice can do little 
since Virtue caches files. At best it can ensure that new versions of a file 
are not readable by the user whose access is revoked. 

6.3. Protection Domain Representation 
Protection domain information is maintained in a database that is 
replicated at each Vice file server. The database consists of a data file on 
disk and an index file that is cached in its entirety in virtual memory. 
The index file enables id-to-name translations in constant time, and 
name-to-id translations in logarithmic time. For each entry, the index 
also contains the offset in the data file where the first byte of information 
about the corresponding user or group is stored. A typical lookup of the 
database by user or group name involves a search to find the id, followed 
by a seek operation and a read operation on the data file. 

Each entry in the database corresponds to a single user or group. It 
consists of a uame and an id followed by three lists specifying 
membership information. The first list specifies the groups to which that 
user or group directly belongs, while the second list is the precomputed 
CPS. For a user, the third list enumerates the groups owned by the user; 
for a group, it is the list of users or groups who are its direct members. 
Each entry also has an associated access list, that is unused at the present 
time. We intend to allow users to directly manipulate the database via a 
protection server. The access lists will then control the examination and 
modification of group membership. Figure 7 shows an excerpt of the 
database. 

When Venus makes a secure RPC connection on behalf of a user, the file 
server caches the CPS of the user in virtual memory and uses it on access 
list checks. At present, changes to the protection domain do not affect 
the cached copy until the RPC connection is terminated. It would be 
relatively simple to modify the server to invalidate cached CPS copies 
whenever the protection domain changes. ' 

At present, changes to the protection domain are manually performed at a 
central site in Vice. Utilities are available to simplify the creation or 
deletion of a user or to modify the membership of a group. These 
utilities also precompute the CPS by transitive closure and construct the 
index file. Modifications performed at the central site are 
asynchronously propagated to all other Vice sites via the secure 
communication channel mentioned in Section 3. In our experience, the 
minor temporary inconsistencies that occasionally arise due to varying 
propagation speeds have not significantly affected the usability of the 
system. 

7. Protection in Virtue 
As a multi-user Unix system, Virtue enforces the usual firewalls between 
multiple users concurrently using a workstation. In addition, its role in 
Andrew places other responsibilites related to security on it: 

• It emulates Unix semantics for Vice files. 
• It ensures that caching is consistent with protection in Vice. 
• It allows owners full control over their workstations, without 

compromising Vice security. 
• It provides user and program interfaces for explicitly using 

the security mechanisms of Vice. 
The next four sections describe these functions in detail. 

7.1. Unix Emulation 
Virtue provides strict Unix protection semantics for local files and a 
close approximation for Vice files. Each Unix file has 9 Mode bits 
associated with it. These mode bits are, in effect, a 3-entry access list 
specifying whether or not the owner of the file, a single specific group of 
users, and everyone else can read, write or execute the file. 

Venus does the emulation of Unix protection for Vice files. In a 
prototype implementation of Andrew, the mode bits in a file were 
derived from the access list of its directory and could not be changed by 
applications. Unfortunately a few applications, such as version control 
software, encode state in the mode bits. In addition, our users expressed 
a desire to be able to prevent themselves from accidentally deleting 
critical files in a directory. We have therefore evolved a scheme in 
which the Vice access list check described in Section 6.1 performs the 
real enforcement of protection and, in addition, the three owner bits of 
the file mode indicate readability, writability or executability. These 
bits, which now indicate what can be done to the file rather than who can 
do it, are set and examined by Venus but ignored by Vice. For 
directories, the mode bits are completely ignored. The directory listing 
program, LS, has been modified in Andrew to omit mode bits for 
directories and show only the owner bits for files. Figure 8 shows an 
example of a directory listing in Vice. 

Since the group mechanisms of Vice and standard Unix are incompatible 
Venus does not emulate Unix group protection semantics. Our 
experience indicates that no real applications have been affected by this. 
From the point of view of an application all Vice files belong to a single 
Unix group. 
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7.2. Caching Protection Information 
Although ignorant of the Vice group mechanism, Venus caches 
protection information. When a directory is cached on behalf of a user, 
Vice includes rights information for the user and System:AnyUser. 
Future requests are checked by Venus without contacting Vice. If a 
different user on that workstation wishes to access the same directory, 
and the rights for System:AnyUser are inadequate, Venus explicitly 
obtains his rights from Vice. Protection information can be cached for a 
small number of distinct users on each directory. If there are more users 
on a workstation the protection checks will be functionally accurate, but 
will take longer because of ineffective caching. Vice notifies Venus 
whenever the protection on a cached directory changes. 

Caching interacts with Unix semantics in a counter-intuitive manner. In 
Unix, protection failures can only occur when opening a file. In Andrew, 
a protection failure can occur when closing a file if the protection on one 
of the directories in its path was changed while the file was open. There 
is no simple solution to this problem because Vice cannot delegate the 
responsibility of checking access on store operations. It cannot trust the 
access check that Venus performs when opening a cached file. 

This difference from Unix semantics affects a number of common Unix 
applications that do not expect the close operation to fail, and hence do 
not check return codes from it. In rare instances, the user of such an 
application may be unaware that one or more files were not stored in 
Vice because of a protection violation. We do try to inform users of the 
problem by printing a message on the workstation console. However, 
using the console as an out-of-band notification mechanism does not help 
in situations where there is no user to act upon the message. The only 
robust solution to this insidious failure mode is to modify the 
applications to check return codes. 

7.3. Superuser Privileges 
Certain sensitive operational procedures in Unix can only be performed 
by the pseudo-user "root". Workstation owners need to become root on 
occasion to perform these procedures. As a result, root is logically 
equivalent to a group account as discussed in Section 4. An RPC 
connection on behalf of root provides no knowledge about which actual 
user it corresponds to. 

A further complication is that the initialisation of a workstation causes a 
number of standard processes belonging to root to come into existence 
automatically. Since there may be no users logged in, Venus may not 
have tokens with which to make authenticated connections for these 

5processes. We address these problems by treating root specially and 
granting it the same default access privileges in Vice as 
System:AnyUser. RPC connections made on behalf of root are 
unauthenticated and insecure. Usage experience indicates that this 
provides a good compromise between security and usability. 

The Setuid mechanism in Unix effectively provides amplification of 
rights [13]. When a file marked setuid is executed, it acquires the access 
privileges of the owner of the file rather than the user executing the file. 
The interpretation and enforcement of the setuid property is done by 
Virtue, but Vice requires authentication tokens for the owner of the 
program being run setuid. Since the tokens will not be available except 
in the unlikely case of the owner of the file being logged in to the 
workstation, Andrew cannot support the setuid mechanism in its general 
form. However, many useful system utilities on workstations are owned 
by root and run setuid. Since root has only System:AnyUser privileges 
on Vice files, and since RPC connections for root do not require tokens, 
we are able to support setuid in this limited form. 

If naively implemented, setuid programs owned by root would make 
Trojan horses trivial. A user could become root on his workstation, store 
a Trojan horse program in Vice and mark it setuid. If this program were 
run by any other user, it would be able to compromise his workstation. 

5Automatic logging in of root would require the password to be stored in the clear on 
workstations, a security risk we were unwilling to assume. 

To guard against this, we define a special Vice user "stem." No one can 
be authenticated as stem, but a system administrator can make stem the 
owner of a file. When Venus caches a setuid file owned by stem, it 
translates the owner to root and honours the setuid property. If the file is 
not owned by stem, the setuid property is ignored. 

7.4. Vice Inte•·face 
Virtue provides a number of programs to allow users to use the security 
mechanisms of Vice. FS is a program to allow users to set and examine 
Vice access lists. LOGIN, LOG, and su are modified versions of standard 
Unix programs. They prompt for a password, contact the authentication 
server, obtain tokens and pass them to Venus. A modified version of the 
Unix PASSWD program allows users to change their passwords by 
contacting the authentication server. 

For other applications, Virtue provides a library of routines to get, set 
and delete tokens stored by Venus. An important user of these routines 
is the Andrew version of the standard Unix program RSH that allows a 
user to execute a program on a remote workstation. Another important 
user is REM, a program that makes idle workstations available for remote 
use [20]. Both these programs extract tokens from the workstation a user 
is at, and passes them to the remote Venus so that it can access Vice files 
on behalf of the user. Since the clear and secret tokens are sent in the 
clear by these programs, they violate the security assumptions of Section 
3. Nevertheless, these programs are popular in our user community. 

There are occasions when a user may wish to voluntarily restrict his 
rights. For example, he may wish to run a program being debugged in an 
environment that will not allow it to modify critical files. Virtue allows a 
user to temporarily disable his membership in one or more groups. Such 
a group may be reenabled at a later time. We also intend to allow groups 
to be disabled by default, but this is not implemented at the present time 
except for the special group System:Administrators. 

To implement this temporary disabling of membership, Virtue associates 
a unique integer called a Process Access Group (PAG) with each 
process. When a process forks, its child inherits the PAG. Venus 
associates secure RPC connections to a server with (user, PAG) pairs. 
Usually all the processes of a user have a single PAG. If a user disables 
his membership of a group, the process in which the disabling command 
was issued acquires a new PAG. Each time another server is contacted 
on behalf of the new (user, PAG) pair, Venus makes a secure RPC 
connection and requests the server to disable membership in the specified 
groups. The server constructs a reduced CPS for that connection and 
uses it on access list checks. PAGs also change when a LOG or su 
command is executed. 

8. Resource Usage 
The absence of a focal point for allocation of resources makes resource 
control difficult in a distributed system. Processes in a typical 
timesharing system are constrained in the rate at which they can consume 
resources by the CPU scheduling algorithm. No such throttling agent 
exists in a typical distributed system. Another significant difference is 
that a process in a timesharing system has to be authenticated before it 
can consume appreciable amounts of resources. In contrast, each 
Andrew workstation can be modified to anonymously consume network 
bandwidth and server CPU cycles. 

As discussed in Section 3, Andrew is not designed to be immune to 
security violations by denial of resources. However, it does provide 
control over some of the resources. The major resources in Andrew are: 

• network bandwidth, 
• server disk storage and CPU cycles, 
• workstation disk storage and CPU cycles. 

In the next three sections we examine how Andrew treats these 
resources. 

8.1. Network Bandwidth 
Since Andrew does not provide mechanisms to control use of network 
bandwidth, responsible use of the network is primarily achieved by peer 
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pressure and social mores of the user community. Blatant misuse, such 
as by flooding with packets, is relatively easy to .detect. But it is hard to 
detect subtle misuse. For example, a malicious user can generate a level 
of traffic that degrades performance but does not bring useful network 
activity to a standstill. Or he can use multiple widely-separated public 
workstations to generate high volumes of traffic. Identifying the user can 
be particularly difficult because he can modify workstations to generate 
packets with arbitrary source addresses. 

In our experience, network-related problems have not been due to 
malicious activity. Occasionally we observe high network utilisation and 
poor file transfer rates on segments of the network that support non­
Andrew diskless workstations. The problem has not proved serious 
enough yet to warrant special attention. In one memorable instance, a 
bug in the low-level network code on workstations was triggered by a 
malformed broadcast packet generated by a non-malicious user during 
debugging. The bug affected every workstation in the environment and 
effectively halted all of them. 

8.2. Server Usage 
Because of the long-term, shared nature of the resource, we felt it 
important to be able to control disk usage on servers. An Andrew system 
administrator can specify a storage quota for the Vice files of a user. The 
quota is actually placed on a Volume, an encapsulation of a small subtree 
of the Vice file space [27], and can be changed with ease. 

When storing a file on behalf of a user, a server will abort a store 
operation if his quota is exceeded. This can cause a problem similar to 
the one described in Section 7.1; an application program that does not 
check the return codes from a close operation will not report a failure 
caused by the quota being exceeded. But our users and system personnel 
consider server disk storage an important enough resource that they have 
tolerated this problem. 

A minor exposure arises from the manner in which electronic mail is 
implemented in Andrew. Each user has a mailbox directory on which 
System:AnyUser has insert rights. Mail is delivered by storing a file in 
this directory. A malicious user could exhaust the quota of another user 
by sending him large quantities of junk mail. In practice, this has not 
proved to be a problem. 

Although a user carmot execute a program on a server, his Venus can 
consume server CPU cycles in file system operations. Excessive 
demands on a server are a form of resource denial to other users. At 
present, Vice does not constrain the amount of server CPU cycles a user 
can utilise. It could do so, if necessary, since user requests come in on 
distinct RPC connections. · 

8.3. Workstation Usage 
Andrew does not restrict the amount of space used by local files on 
workstations. For cached Vice files, Venus employs an LRU algorithm 
to limit disk usage below a value specified at initialisation. The 
algorithm is not infallible because read and write operations are not 
intercepted by Venus. It is possible for a program to open a short file 
and then append a large amount of data thereby exceeding the cache 
limit. In practice this has rarely been a problem. 

Since a workstation can be privately owned, it would seem inappropriate 
for Andrew to constrain the use of its CPU cycles. However, the 
problem has proved more complex than we anticipated. The primary 
source of difficulty is the fact that each workstation is a full-fledged Unix 
system. Hence it is possible to remotely access one workstation from 
another via standard Unix programs such as TELNET and RSH. Since the 
Vice file space is identical at all workstations, it is particularly easy for a 
user to use any workstation as his own. Such convenience was, of 
course, a fundamental motivation for the distributed file system. 

Unfortunately, an individual at a workstation perceives the attempt to use 
its cycles by another user as a security violation. This perception is 
particularly strong if the first user is at· the console of the workstation. 
Totally disabling the network daemons that allow remote access is not a 

viable solution for two reasons. First, system personnel sometimes need 
to remotely access workstations for troubleshooting. Second, an owner 
may wish to aq:ess his workstation from home. Ow· modem access 
facilities require the network daemons to be present. 

We have evolved a mechanism whereby "I:ELNET access to a workstation 
can be restricted to a list of users stored in the local file system of that 
workstation. This restriction is, however, stronger than what most users 
desire. When he is not using ·his workstation, a user is usually amenable 
to others using it. It is also unacceptable for public workstations, 
because every Andrew user should be able to use them. At the present 
time we do not have a complet'ely satisfactory solution to this resource 
problem. The REM system, mentioned in Section 7 .4, allows a user to 
specify the conditions that must be satisfied for his workstation to 
become available for remote. use. Although satisfactory to a logged-in 
user, this approach is harsh on the REM user who is in constant danger of 
having his computation aborted at the remote site. A full-fledged Butler 
mechanism [7], that migrates remote users rather than aborting them 
would be a more acceptable alternative. 

The problem of controlling workstation CPU usage will become acute as 
Andrew grows. The large pool of idle workstations available for parallel 
computation, and the development of applications that exploit such 
parallelism will make remote use even more attractive in future. 

9. Encryption 
Security in Andrew is predicated on the ability of clients and servers to 
perform encryption for authentication and secure communication. The 
design and implementation of the encryption algorithm has to satisfy 
certain properties: 

• It must be difficult to break, given the computational 
resources available to a malicious individual in a typical 
Andrew environment. 

• It must be fast enough that neither the latency perceived by 
clients nor the throughput of servers be noticeably degraded. 

• It must be cheap enough that it does not appreciably increase 
the cost of a workstation owned by an individual. 

Based on considerations of strength and standardization, we have chosen 
the Data Encryption Standard (DES) [17] published by the National 
Bureau of Standards as the preferred encryption algorithm in Andrew. 
Since the encryption algorithm is a parameter to our RPC mechanism, it 
is possible to use other algorithms. We believe, however, that 
standardising on DES is appropriate in our environment. This algorithm 
has been publicly scrutinized for many years and although concerns have 
been expressed about its strength [8], we feel that DES is adequate for 
the level of security we ~equire. 

At the present time the latency for a simple interaction between a client 
and server is about 20 to 25 milliseconds, and the file transfer rate is 
about 50 to 70 kbytes per second. We expect these numbers to improve 
over time, as Venus, Vice and the routers in the network are improved. 
The fastest software implementation of DES that we are aware of runs at 
less than 5 kbytes per second on a typical workstation. Software 
encryption would therefore be an intolerable performance bottleneck in 
om system; hardware is essential. 

Encryption devices embedded in low-level communication hardware 
have been available for some time in mainframes. In many cases such 
devices provide secure machine to machine communication over an 
insecure link, but are not accessible to higher level software. Andrew 
depends on end-to-end encryption where. the ends are user level 
processes on workstations and Vice servers. Since every connection has 
a distinct key, only . RPC software can ·determine the key to use in 
encrypting a packet Transparent embedding of encryption capability at 
a low level is therefore not useful in Andrew. 

Although a number of VLSI chips for DES are available [2, 29], 
integration of such chips into workstation peripherals is not common. A 
commercially available device for the IBM PC-AT [11, 12] could be 
used in our IBM RT-PC workstations, but its performance of 50 kbytes 
per second is barely adequate. We have therefore built a prototype 
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device [6] for the IBM RT-PCs using the AMD 9568 chip. Based on our 
parts cost and labour, we estimate that a commercial version of this 
device, produced in quantity, would cost an end user between $500 and 
$800. As perceived by a user-level process, the time to encrypt N bytes 
using the device is N * k + C, where k is 4 microseconds per byte, and C 
is 470 microseconds. The overhead of the device is thus under a 
millisecond for a small packet and the asymptotic encryption rate is 
about 200 kbytes per second. We are currently redesigning the device to 
reduce k in the above expression to about 0.6 microseconds per byte, 
yielding an asymptotic encryption rate of over 1 l'vlbyte per second. At 
the present time, we do not have encryption devices for the Sun and 
Microvax workstations in our environment. 

A difficult nontechnical problem is justifying the cost of encryption 
hardware to management and users. Unlike extra memory, processor 
speed, or graphics capability, encryption devices do not provide tangible 
benefits to users. The importance of security is often perceived only 
after it is too late. At present, encryption hardware is viewed as an 
expensive frill. We believe, however, that the awareness that encryption 
is indispensable for security in Andrew will eventually make it possible 
for every client and server to incorporate a hardware encryption device. 

In the interim, while the logistic and economic aspects of obtaining 
encryption hardware are being addressed, Andrew uses exclusive-or 
encryption in software. Although it is trivially broken, we felt it worth 
our while to use it for two reasons. First, it exercises all paths in our 
code pertaining to security, and allows us to validate om implementation. 
Second, although a weak algorithm, it does require a user to perform an 
explicit action to violate security by decrypting data. Merely observing a 
sensitive packet on the network by accident will not divulge its contents. 

10. Other Security Issues 
We now consider three diverse questions from the viewpoint of security 
in Andrew: 

• How do low-power personal computers access Vice files? 
• Can diskless workstations be made secure? 
• Is decentralised administration of Andrew possible? 

Sections 10.1 to 10.3 examine these questions. In focusing only on 
security our discussion ignores many broader issues and implementation 
details. 

10.1. PC Server 
Personal computers (PCs) such as the IBM PC and Apple Macintosh 
differ from Andrew workstations in that they do not run Unix and often 
do not possess a local disk. They are thus not capable of being full­
fledged clients of the Andrew File System. Since a significant number of 
Andrew users also use PCs, we have developed a mechanism that 
enables PCs to access Vice files. 

Vice access from a PC is mediated by a server called PCSen•er, that 
makes a Unix file system transparently accessible from a PC. Since Vice 
files are part of the Unix file name space of an Andrew workstation, 
PCServer automatically makes them accessible from PCs. The primary 
advantage of this decoupling is that it allows the Andrew File System to 
exploit techniques essential to scalability, without distorting its design to 
accommodate machines of inadequate hardware capability. 

Communication between a PC and PCServer uses a protocol distinct 
from that used in the Andrew file system. The protocol supports 
encryption using a key that is randomly generated and sent in the clear 
when a client-server connection is established. It does not incorporate 
the 3-way BIND handshake described in Section 5.1, but does support a 
weaker form of authentication. The workstation running PCServer also 
runs an authenticator process called Guardian. When a PC user needs to 
access Vice files,·he supplies his Andrew user id and password. These 
are transmitted to Guardian, which contacts the Andrew authentication 
server and obtains authentication tokens in a manner identical to LOGIN, 

as described in Section 5.2. The password and tokens are logically sent 
in the clear, but are encrypted with a fixed key known to Guardian and 
PCServer. Although this is not secure, it does provide a modicum of 

privacy. Guardian hands these tokens to Venus and then forks a 
dedicated Unix PCServer process on behalf of the user. This process 
acts as the surrogate of the PC user and services file requests from his 
PC. 

From the point of Venus, it appears as if the PC user had actually logged 
in at the workstation running PCServer. Enforcement of protection for 
Vice files is performed exactly as described in Section 6.2. The main 
security exposure in using PCServer is the information sent in the clear 
between the PC and Guardian during the establishment of a session. 

10.2. Diskless Workstations 
Operating workstations without local disks has been shown to be a viable 
and cost-effective mode of operation [16]. However, the impact of 
diskless operation on security has been ignored in the literature. To be 
secure when operating diskless, two factors have to be considered. Page 
traffic has to be encrypted, and workstations have to be confident of the 
identity of their disk servers so that Trojan horses are avoided. 

How fast will encryption have to be done to avoid significant 
performance penalty when running diskless? Cheriton et al (5] present 
data from the V kernel on a Sun workstation indicating that it takes about 
5 milliseconds plus disk access time to remotely read or write a random 
512-byte block of data. These numbers are for file access, but to a first 
approximation we assume that they also hold for page access. Assuming 
that the server does write-behind, a page fault with replacement would 
involve a remote page write, a disk access at the server, and a remote 
page read. This yields a page fault service time of 30 milliseconds, 
assuming a typical disk latency of 20 milliseconds. If encryption is to 
degrade paging performance by no more than 5%, it has to be possible to 
encrypt 2 512-byte pages in no more than 1.5 milliseconds. This implies 
an average encryption rate of about 700 kbytes per second. For the more 
typical Unix page size of 4K bytes, an encryption rate in the range of 0.5 
to 1 l'vlbyte per second still seems necessary. As described in Section 9, 
encryption hardware whose performance meets these demands seems 
feasible, though not readily available. 

Mutual authentication is a more difficult problem. To perform a 3-phase 
authentication handshake, the client and server need to share a secret 
key. Where can this key be stored at the client? Embedding it in the 
ROM containing the boot sequence seems the only realistic solution. 
However, this does violate the goal, mentioned in Section 5.2, of not 
storing long-term authentication information in the clear on workstations. 
Authentication based on public keys might avoid this problem, but Ws 
has to be investigated. 

Although these problems are not insurmountable, we know of no 
implementations of diskless workstations that address them. Concerns 
regarding security played a small but nontrivial part in our decision to 
avoid diskless operation in Andrew. 

10.3. Decentralised Administration 
Our discussion has assumed that there is a single protection domain for 
all of Andrew, and that the Vice id and Virtue id of a user are identical. 
While this is true at present, the growth of Andrew makes it increasingly 
attractive to allow multiple protection domains. The motivation for this 
comes from two distinct scenarios. 

First, an established non-Andrew timesharing system or collection of 
workstations may join the Andrew environment. An existing user of 
both environments may have different user names and ids in the two 
envirorunents. In the merged environment, Vice and Virtue will view the 
individual as two distinct users. Changing the id in either environment is 
difficult, because ids are embedded in long-term data structures in both 
Unix and Vice file systems. 

Second, individual organisations may wish to administer a collection of 
Vice file servers, control their resources, and restrict access to a set of 
Andrew workstations. Such decentralised operation is likely to provide 
greater flexibility and responsiveness to users. It would also allow each 
organization to have its own set of privileged groups, such as 
System:Administrators. 
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A mechanism that addresses these issues by supporting independent 
Andrew Cells [31] is being implemented. A cell corresponds to a 
complete autonomous Andrew system, with its own protection domain, 
authentication and file servers, and system administrators. The name 
spaces of two or more such cells can be merged to form a unified 
Andrew environment. Users see a uniform, seamless, file name space 
and are not hindered by the multiplicity of protection domains. 

It is Venus that makes cells transparent during file access. Each user and 
group id in the composite environment has a cell id as its prefix. The 
LOG program, mentioned in Section 5.2, allows a user to direct his 
authentication request to a specific cell. The authentication procedure is 
identical to that described in Section 5.2, except that tokens are stamped 
with the cell id of the authentication server who created them. Venus 
maintains a collection of tokens, one secret-clear pair for each cell to 
which the user has authenticated himself. When establishing a secure 
connection to a Vice server, it uses the tokens appropriate to the cell in 
which the server is located. If the user has not authenticated himself to 
that cell, he gets System:AnyUser privileges in it. 

The name, id and password of an individual may be different in each 
cell. Application programs that translate ids to user names, such as LS, 

have to be modified to take this into account. However, long-term data 
structures on disk do not have to be modified to allow access to multiple 
cells. Since all Vice files stored on a server belong to the same cell, their 
access lists specify only users and groups who are in that cell. Thus a 
server does not need the cell prefix when performing an access list 
check. The prefix is used only when a secure RPC connection is being 
established. 

11. Risk Analvsis 
In this section ;,e briefly consider how security could be subverted in 
Andrew. Our analysis is not intended to be exhaustive nor is it a proof of 
security. Its primary purpose is to summarise the discussions of the 
preceding sections of this paper. A secondary goal is to illustrate the 
complexity of applying relatively simple security algorithms to a real 
distributed environment of substantial scale and diversity. 

A fundamental assumption in Andrew is that encryption of sufficient 
strength and speed is available to Vice and Virtue. Otherwise it is trivial 
to violate security. For the purposes of this section, we assume that all 
servers and workstations have DES hardware. We also assume that all 
RPC connections on behalf of users are authenticated and fully 
encrypted. 

Low-level network attacks can, at worst, result in denial of service to 
users. Since RPC packets are encrypted end-to-end, eavesdropping will 
not reveal useful information. Mutilating RPC packets will not violate 
security either. Such packets will be rejected by the recipient because 
RPC sequence numbering information is encrypted and it is extremely 
unlikely that a mutilated RPC packet will have the correct sequence 
number when decrypted. 

With patience and considerable computational resources, a malicious 
individual could eavesdrop on client-server traffic and break the key 
under which the traffic is encrypted. Since a new random session key is 
generated when an RPC connection is established, breaking that key will 
only give access to one server. To masquerade as the user, the 
eavesdropper would have to carefully intersperse fake RPC requests 
encrypted under the session key. The session key is not adequate to 
establish connections with other servers. 

Greater damage can be done by breaking the key in secret and clear 
tokens. One way to do this is to break the key used by the authentication 
server for encrypting secret tokens. Periodic changing of this key is 
therefore essential. An alternate way to break the key in a token pair is 
to observe a number of BIND requests that involve the same pair of 
tokens. This is unlikely, because tokens expire after 24 hours, and the 
number of BIND requests made by a user in that period is not likely to be 
sufficient to mount a serious key-breaking effort. A compromised token 
pair allows the miscreant to establish secure RPC connections with the 
privileges of the victim on any Vice file server. It is not adequate, 
however, to establish a secure connection to the authentication server. 

The most damage is caused when the password of a user is broken, 
particularly if he is a system administrator. However, the password is 
typically used only once a day when the user is contacting an 
authentication server for tokens. The standard practice of changing 
passwords periodically will reduce the total amount of information 
available for key-breaking. 

A well-known mode of attack is via a Trojan horse. Public workstations 
are particularly susceptible to this. A Trojan LOGIN program on a 
workstation could compromise the password of every individual who 
uses that workstation. As mentioned in Section 3, a concerned site 
should ensure that rebooting a workstation standalone is impossible for 
normal users. This would defeat the simplest way to install a Trojan 
horse. 

A more subtle way to introduce a Trojan horse is by masquerading as a 
server that is temporarily down, and handing out fraudulent binaries. 
During their reboot sequence, workstations fetch new copies of a few 
local binaries from Vice over insecure connections. To avoid this 
problem, automatic updating on reboot should be disabled. Instead, the 
owner of the workstation should explicitly update these files, using 
binaries fetched on his secure RPC connection. 

Workstations with multiple logged-in users make a number of other 
security threats possible. A malicious user with superuser privileges 
could cause Venus to dump core, examine the dump and extract the 
tokens of other logged-in users. Andrew does not provide any special 
mechanisms to protect against such threats. As mentioned in Section 3, 
users of a shared workstation have to trust all individuals who could 
become supemser on that workstation. A superuser can also read and 
modify all cache copies of files on the workstation. 

Vice is critically dependent on the ph)'sical security of its servers and on 
carefully restricted superuser access on them. For maximum security, 
servers should disallow TELNET access. Physically secure machine 
rooms and trustworthy operators are, of course, also essential. A 
malicious individual with superuser access on a server could read or 
modify all Vice file data. 

Membership in the group System:Administrators has to be carefully 
guarded. A system administrator can modify any access list in the 
system, and can therefore read or write any file. He can also change 
storage quotas and modify the ownership of files. For increased security, 
it would be relatively simple to modify Vice to grant 
System:Administrator privileges only to individuals who are logged in at 
one of a specific set of physically secure workstations, in addition to 
being authenticated. 

To keep things in perspective, it should be noted that this section is 
deliberately negative in tone. Most of the scenarios described here are 
highly unlikely, and typically involve the violation of the assumptions 
discussed in Section 3. A site which adheres to those assumptions will 
find Andrew more secure than any existing distributed system of 
comparable functionality. Further, in spite of the attention it pays to 
security, Andrew remains a highly usable system. 

12. Conclusion 
As mentioned at the beginning of this paper, Andrew is an evolving 
system. A number of changes have been made since the date of the 
snapshot on which this paper is based. Many of these changes have been 
improvements to existing functionality. The protection database now 
stores its index as part of itself rather than in a separate file. This 
eliminates the occasional inconsistences between index and data that 
used to occur when propagating protection domain information. The 
remote procedure call mechanism described in Section 5.1 has been 
replaced by one that is more stringent in its use of memory. The primary 
reason for this change was the desire to run Venus on workstations with 
severly limited physical memory. The details of the authentication 
handshake are different from that described in Section 5.1, but the same 
effect is achieved. We are in the process of designing a faster encryption 
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device for the IBM RT-PCs, as discussed in Section 9. Finally, the cell 
mechanism referred to in Section 10.3 is a significant change that will 
provide new functionality when complete. 

We have long appreciated the need for users to be able to create and 
manipulate groups themselves, rather than submitting requests to the 
administrators of Andrew. A Protection Sen,er that implements this 
functionality has been planned but not implemented yet. This server 
could be an extension of the existing authentication server and would 
allow us to merge security information that is currently distributed over a 
number of different data structures: the "/etc/passwd" file on 
workstations, the password database on authentication servers, the 
protection domain database on file servers, and the files containing direct 
group membership information from which system personnel generate 
the protection domain database. This change would considerably 
simplify administration and operation of Andrew. 

In conclusion, we believe that security issues will assume greater 
significance as distributed systems of increasing size and complexity are 
built. A substantial amount of theoretical research has already been done 
on security algorithms for distributed environments. Applying those 
principles to the design of real systems is complicated by the many levels 
of abstraction spanned, by the need for compatibility and by the many 
detailed aspects of the systems that are affected. Andrew is an attempt to 
seriously address these issues. It offers substantially greater security 
than existing distributed systems without significant loss of usability or 
performance. 
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101 



I. Figures 

The amoeba-like ~tructure in the centre i:::: a collection of insecure networks and secure seiVers that constitute 
Vice. Virtue is typically a workstation. but can also be a mainframe. 

Figure 1: Vice and Virtue 
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Client Server 

This figure shows the sequence of events in the BIND handshake. Each arrow represents a packet. The notation 
(a)h means that a is encrypted with key b. The last packet of the exchange conveys a randomly selected session 
key and a randomly selected initial sequence number to the client. 

Figure 3: RPC BIND Authentication Handshake 

277 545c5058595a5156 aad Anthony Datri 
265 575c585f5b5b575a abOq A1fred Blumstein 
672 13020a030619091f ab2g A. Leonard Brown 
969 5f55595c595e555e ab6q Ahmadou Barry 
131 565956595f5a545e abrahama Julia Abrahama 
913 565857585d5a5459 ac2d Arjun Bijoy Chatterjee 

.................... ·········· ················································ 

283 13020a030619091f zubrow David Zubrow 
18 0503135c5a6e676f i By 18 at Wed Mar 19 13:09:23 1986 
18 0503135c5a6e676f i By 18 at Wed Mar 19 16:36:55 1986 
1022 Ob0317040709676f rk27 i By 18 at Wed Mar 19 16:37:37 1986 
1023 1500081d190b156f bdOp i By 18 at Wed Mar 19 16:37:37 1986 
102~ l50018030c1d146f cc37 i By 18 at Wed Mar 19 16:37:38 1986 
1025 Ob0315021b1d676f cc38 i By 18 at Wed Mar 19 16:37:38 1986 
1026 150£13020502146£ jc15 i By 18 at Wed Mar 19 16:37:38 1986 

........ ············ ········ ························ ............................ 


Each entry corresponds to infonnation about one user. The first field is the Vice id of the user. the second is his 
encrypted password: the third field is the name of the user. Other fields are ignored by the authentication server. 
The fust few lines correspond to entries that were present when the database was initialised. 1be entries at the 
bottom represent modifications. Each modification is tagged with the identity of the user making the change and 
the time the change was made. 

Figure 4: Excerpt from Authentication Database 
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Date: Mon Sep 29 09:51:13 1986 

09:51:13 Server auoceaafu~ly started 
11:03:49 Authentication failed for "faOt" from 128.2.14.11 
11:05:22 Authentication failed for "faOt" from 128.2.14.11 
11:05:54 Authentication failed for "an09" from 128.2.14.8 
11:09:50 Authentication failed for "whOa" from 129.2.14.4 
11:10:25 Authentication failed for "whOa" from 128.2.14.4 
11:12:28 Authentication failed for "ao07" from 128.2.14.14 
11:12:58 Authentication fail.ed for "whOa" from 128.2.14.4 
11:20:43 Authentication failed for ''ao07" from 128.2.14.14 
12:00:26 Authentication failed for "ka2n" from 128.2.13 .3 
13:58:46 Authentication failed for 11 dana" from 128.2.243.3 
15:22:26 Authentication failed for "dt1a" from 128.2.17.17 
16:16:17 AuthChangePaaad() attempt on dh2u by ja8c denied 
16:19:17 AuthChangePaaad() attempt on dh2u by js8o denied 
16:24:57 Authentication failed for "ak11" from 128.2.14.14 
16:56:53 Authentication failed for 11 ja8c 11 from 128.2.17.4 
20:46:03 Authentication failed for "jeSS" from 128.2.14.11 
21:47:13 Authentication failed for 11 cm2m11 from 128.2.14.20 
22:20:17 Authentication failed for "jr45" from 128.2.17.20 
23:30:16 Authentication failed for "1116" from 128.2.14.20 
23:30:56 Authentication failed for "1116" from 128.2.14.20 
23:44:58 Authentication failed for "efOu" from 128.2.11.62 
23:53:59 Authentication failed for "gw0v 11 from 128.2.36.6 

Date: Tue Sep 30 09:51:50 1986 

09:51:50 Authentication failed for "bkOu" from 128.2.14.12 
09:56:23 Authentication failed for "bkOu" from 128.2.14.12 
09:57:51 Authentication failed for "bkOu" from 128.2.14.12 
10:16:48 Authentication failed for "jeOx" from 128.2.14.3 
11:22:16 Authentication failed for "la24" from 128.2.14.10 
11:32:02 Authentication failed for "mb3h" from 128.2.14.16 
11:35:55 Authentication failed for "la24" from 128.2.14.10 
12:38:45 Authentication failed for "km35" from 128.2.14.9 

This figure shows typical entries from the authentication log. Most of the entries are invalid authentication 
attempts, probably caused by a user typing in his password incorrectly. Each entry identifies the user and the 
workstation from which the operation was attempted. Two of the entries are failed attempts by one user to 
change the password of another user. 

Figure 5: Excerpt from Authentication Log 

mozart> fs Ia /cmu/itc/satya/sll 
Normal righta: 

Syatem:ITC.FileSystemGroup rlidwk 
Syatem:AnyUaer rl 
aatya rlidwka 

Negative righta: 
System:ITC.UaerinterfaceGroup rlidwka 

mozart> 

This figure shows how an access list is displayed in Andrew. The string "mozart>" is the prompt by the 
workstation. The command "fs !a" lists the specified directory. Note the use of negative rights: a member of 
System:ITC.UserlntetfaceGroup would have no rights on this directory, even though System:AnyUser has read 
and lookup rights. 

Figure 6: Access List on a Vice Directory 
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'''''''''''''''''''''''''''' I VICE protection database I 

'''''''''''''''''''''''''''' 
I Linea such as these are comments. Comments and whiteapace are ignored. 

B This file consists of user entries and group entries in no particular order. 
I An empty entry indicates the end. 

I A user entry has the form: 
I UserName Uaerid 

"Ia a group I directly belong to" List' '!a a group in my CPS" List 
"Ia a group owned by m;" List ' 
Access List'i 

i 

I A group entry has the form: 

I GroupName Groupid Ownerid 


"Is a group I directly belong to" List' "Ia a group in my CPS" List' "Ia a user or group wh; is a direct member' Access List' ' 
I A simple list has the form ( i1 i2 i3 ..... ) 

fJ: An access list has two tuple liats: 
one for positive and the other for negative rights:' (+ (i1 r1) (i2 r2) ... ) 

It (- (i1 r1) (i2 r2) ... ) ' 

M. Satyanarayanan'aatya 19 
( -201 -207 -209 
( -201 -207 -209 
( -203 -205 ) 
(+ (19 -1) (-101 1)) 
(- ) 

Syatem:UaerSupport -213 777 
() 

() 

( 427 177 117 746 585 416 64 201 1032 1247 1244 3017 377 259 1 

(+ (777 -1) (-101 1)) 

(- ) 


Figure 7: Excerpt from Vice Protection Domain Database 
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mozart> la -1 /cmu/itc/aatya 
total 120 
-rwx 1 aatya 1385 Jul 24 14:23 3270.kaya 
d 4 aatya 2048 Nov 17 1986 411 
-rw­ 1 aatya 1979 Oct 3 1986 Buildfila 
d 2 aatya 8192 Sep 17 1986 Mailbox 
d 2 aatya 12288 Feb 8 10:39 Maillib 
d 2 apoolar 18432 Aug 2 1986 PrintDir 
d 2 aatya 2048 Mar 3 1986 Tamplataa 
-rw­ 1 aatya 5219 Jul 20 16:42 arliclaa.f:r:m 
-rw­ 1 aatya 6620 Jul 20 16:36 arliclaa.par 
d 8 aatya 2048 Jul 9 11:36 bench 
d 2 aatya 2048 Jan 5 1987 daya 
d 10 aatya 2048 Jan 9 1986 dtapa 
d 2 aatya 2048 Jun 9 17:25 infp 
d 2 aatya 2048 Nov 25 1986 lib 
d 2 aatya 2048 Oct 28 1986 maclib 
d 18 aatya 2048 Jun 12 11:26 miac 
d 3 aatya 4096 Jul 2 13:47 m:r:p 
d 3 aatya 2048 Sap 18 1986 nat 
d 25 vaailia 2048 Mar 11 16:50 old:r:ca 
1 1 aatya 38 Jul 2 1986 personal -> /cmu/itc/aatya/privat 
d 19 aatya 2048 Jun 29 09:32 pgm• 
-r-­ 1 aatya 728 Apr 7 13:14 preferences 
d 2 aatya 2048 Mar 23 14:49 private 
d 5 aatya 4096 Jul 2 16:53 public 
d 2 aatya 2048 Apr 15 20:38 :r:p2p 
d 5 aatya 6144 Jul 14 14:48 :r:pc2 
d 2 aatya 2048 May 24 14:50 :r:pc2eg 
d 3 aatya 6144 Jul 23 16:15 all 
d 3 aatya 2048 Jan 19 1987 acribelib 
d 2 aatya 2048 Jul 24 10:24 sec 
d 3 aatya 2048 Oct 31 1985 unc 

TI1is is an example of a directory listing in Andrew. For files, the status of the owner mode bits are shown as 
"r", "w" and "x". These bits are not shown for directories, since mode bits do not apply. Note the use of a 
symbolic link to obtain a protection status for the file named "personal" that is different from other files in this 
directory. The file is physically located in the directory "private" which has more restrictive access than the 
directory shown here. 

Figure 8: Listing of a Vice Directory 
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ABSTRACT 

This paper explores various research issues that need to be 
addressed in process models and automated support environ­
ments to better build trusted systems for Defense needs. A 
broader notion of trustworthiness of systems is discussed; the 
shortcomings of the typical security engineering life cycle and 
the nature of the software development life cycle as well as 
the related trust issues are explored. The paper then describes 
several contributing technologies that, when merged, offer a 
next generation integrated approach to trusted system devel­
opment to better support Defense needs. The paper concludes 
with a set of recommendations for research directions to be 
pursued. 

BACKGROUND 

A significant long-range problem that needs to be ad­
dressed is the critical need for systems to meet major current 
and future Defense system requirements for security, integrity 
and high reliability. The current generation software develop­
ment paradigms for producing systems is woefully inadequate 
for developing and demonstrating mission critical systems in 
which we have a high degree of trust in their correct and se­
cure operation. The existing formal security modeling and 
specification and verification technologies that have been de­
veloped and applied primarily in the trusted systems arena are 
labor-intensive and inadequately supported with cost-effective 
analysis techniques and tools. Various computer security pro­
jects in which formal methods have been applied in the past 
have produced systems with inadequate performance to meet 
Defense system needs and with system implementations that 
bear little resemblance to the abstract proofs of security or 
"trustworthiness" about them. To date, these formal methods 
have not been coupled artd effectively integrated with other 
testing, analysis and configuration managem~nt techniques 
into a sound engineering development paradigm for large 
complex systems meeting future DoD requirements. The 
trusted systems that have been produced to meet the higher 
levels of the Trusted Computer System Evaluation Criteria 
(TCSEC) are not widely applicable and, due to their limita­
tions, are not replacing less secure and less truste? systems 
that are in widespread use in the Defense commumtv. 

This paper explores some of the issues to be addressed in 
development paradigms and automated support environments 
to meet the challenge of current and future Defense system 
trust requirements. 

THE PROBLEM 

Although good progress has been made in the last several 
years in producing secure components, extend.ing this pro­
gress to building secure multi-component operatiOnal systems 
has been slow, expensive and complex. Some major aspects 
of the problem include: 

• 	 Expansion or variation of the definition of security beyo~d 
confidentiality as it applies to large systems that are mis­
sion critical. 

Patricia A. Rougeau 

TRW Federal Systems Group 

2751 Prosperity Avenue 


Fairfax, VA 22031 

(703) 876-4100 

• 	 The nature of the security engineering life cycle, which 
often is separate from and parallel to the system develop­
ment life cycle. 

• 	 The nature of the software development life cycle, which 
no longer fits a "waterfall" paradigm and for which new 
process models and supporting development environments 
must be explored. 

• 	 The tendency of contributing technologies like formal veri­
fication and Ada tool development to be isolated and not 
integrated with mainstream system development environ­
ments. 

These aspects will be discussed in the following sections. 

VARIATIONS ON THE DEFINITION OF SECURITY 

Traditionally, discussions on security have concentrated on 
a definition of security to mean confidentiality, that is, the 
protection against unauthorized disclosure or modification of 
data. Confidentiality was considered more important than 
other aspects of the system requiring more expertise and at­
tention. The activity of separating the system into Trusted 
Computing Base (TCB) and non-TCB, or trusted and un­
trusted components, was formulated so that more attention 
(verification, testing, design scrutiny) could be placed on the 
trusted part. In this regard, such things as denial of service 
were not strictly security concerns. 

Although denial of service is not strictly security related 
per the TCSEC, for programs which have a high degree of 
mission criticality, the line between security, denial of service 
and mission criticality becomes blurred. In fact, SDI is one of 
these mission critical programs. In the SDI security approach, 
confidentiality is only one leg of three aspects simultaneously 
addressed: confidentiality, assured service and integrity. In 
this case, confidentiality is concerned with identification and 
authentication, least privilege, object reuse, audit, data protec­
tion, key management, TEMPEST, personnel security, OP­
SEC, traffic flow security, trusted facility management and 
trusted distribution. Integrity is concerned with error detection 
and correction, data authentication, source/recipient authenti­
cation, consistency, concurrency controls, and N-man control. 
Assured service is concerned with both assured communica­
tion service and assured computing service. Assured commu­
nication service includes the link level, the network level, and 
the application level. Assured computing service includes 
hardware and software assurance, trusted recovery, deadlock 
and algorithm design, as well as component fault tolerance 
and secure failure. This is an excellent example of where a 
process model and development environment are neede·d· in 
which several aspects are equally important in the competitiOn 
for design scrutiny and dollars. 

THE SECURITY ENGINEERING LIFE CYCLE 

Figure 1 shows the Security Engineering Life Cycle as a 
parallel activity to the system development process. Through­
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out the life cycle of the project, depending on the project size, 
a security engineer or a group of security engineers performs 
the analysis and produces documentation to support the secu­
rity engineering of the system. This begins with the Security 
Requirements Analysis phase, which leads to the formulation · 
of security policy and the security model. 

Next is the first of series of risk and vulnerability assess­
ments to be performed. The second one should be performed 
between preliminary design and critical design, as important 
design tradeoffs are being made. At this point, covert channel 
analysis can also be performed, so that any identified covert 
channels can be addressed in the critical design. Another risk 
assessment/vulnerability analysis/covert channel analysis 
should be done when the system is being realized in code, to 
ensure that no new vulnerabilities or covert channels have 
been introduced. 

After the security model is done, the Security Architecture 
is produced, which includes all aspects relevant to the security 
posture at that point in the design. It should include assump­
tions about the system operation, assertions about the security 
enforcement techniques, an initial partitioning of the system 
into trusted and untrusted segments, expected operational sce­
narios, and an initial security design of the Trusted Comput­
ing Base. Next comes the Descriptive Top Level Specification 
and the Formal Top Level Specification as specified by the 
TCSEC. Finally comes Security Testing Activities and Docu­
mentation, and then Certification and Accreditation activities. 

There are several important aspects that are inadequate in 
this life cycle to meet current and future Defense needs: 

• 	 It is too expensive. It costs to maintain a staff of security 
engineers and to produce extensive documentation which 
must be carefully configuration managed, and maintained. 

• 	 The parallel nature of the process focuses exclusively on 
security rather than on trust and assurance of the system 
as a whole. This lack of integration of security into the 
mainstream life cycle undermines broader trust and integ­
rity concerns of a system with a dedicated mission. 

• 	 The separation of security engineers from normal design 
and development engineering often sets project groups 
against one another as important design decisions are 
made and tough tradeoffs must be made on requirements 
allocation, performance, etc. 

System Preliminary 
Project Requirements Design 
Start Review Review 

t t 	 t 

• 	 It is labor intensive because there is little automation 
which supports this parallel life cycle. Tool use is spo­
radic, at the discretion of individual subsystem managers, 
and is not well integrated with other project software de­
velopment tools. 

• 	 It is fragile. The life cycle does not take advantage of the 
true nature of building systems today, which involves feed­
back, iteration and interaction as shown in Figure 2. The 
interactive nature involves prototypes, analyzing the ef­
fects of one requirement or design alternative on the rest 
of the system, modeling and sensitivity analysis. The par­
allel life cycle is much more rigid. If any assumptions are 
changed along the way, the model and design can be in­
validated and a "startover" can result. 

TRUST ISSUES IN SOFIWARE DEVELOPMENT LIFE 
CYCLE 

As a consequence of the problems discussed above, the 
current typical software development life cycle is inadequate 
in meeting the needs of developing complex systems having a 
high degree of trust and reliability requirements. Current and 
future system requirements raise trust-related issues for both 
the process model and the software development environment 
that are not being addressed today. These include the need 
for: 

• 	 Effective development paradigm for trusted systems. 

• 	 Access control, trustworthiness and integrity of the soft­
ware development environment. 

• 	 Support for the trusted system evaluation process. 

Most software systems today are developed with a "water­
fall" method of software development which was appropriate 
when it was introduced but no longer meets the needs of de­
veloping complex systems. The waterfall paradigm treats the 
software development cycle as a series of sequential steps, 
each· of which is completed before the next step is begun. 
First the requirements are completely specified, then the pre­
liminary design is completely done, and so on. The waterfall 
model does not adequately address concerns of developing 
program families and reusable components, nor does it ade­
quately organize software to accommodate change. It assumes 
a relatively uniform progression of elaboration steps and does 

Critical 
Design 
Review Coding Testing Completion 

t t t 
System Development Cycle t 

Security Security Security Descriptive Formal 
Requirements ll/lodel Architecture Top Level Top Level 

Analysis Specification Specification 

Security Certification & 
Testing Accreditation 

Documentation Activities 

Risk/ Risk/ Risk/ 
Vulnerability Vulnerability/ Vulnerability/ 
Assessment Covert Channel Covert Channel 
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Figure 1. Security Engineering Activities Parallel System Development Cycle 
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not accommodate the realistic evolutionary development 
needed to develop complex systems and which is made possi­
ble by current rapid prototyping capabilities. The waterfall 
model also does not address the possible future modes of 
software development such as those incorporating program 
transformation capabilities or knowledge-based software capa­
bilities. 

The current development paradigm used for trusted sys­
tems is security engineering as a parallel activity to the water­
fall development process as illustrated in Figure 1 and 
described in the previous section. This is an inadequate and 
ineffective approach for building complex systems having re­
quirements for a high degree of reliability, integrity and trust­
worthiness. What is needed is a next generation development 
paradigm for trusted systems that effectively couples and inte­
grates a new process model with formal methods and security 
engineering methodologies and puts these critical develop­
ment components in the context of sound software engineer­
ing practices and automated support environment necessary 
for developing large complex Defense systems. This new 
process model should be a risk-driven process model; that is, 
it should be a process model which can take into account the 
particular vulnerabilities and risks and environment of the tar­
get system at each stage of development. This enables the 
development process to react to feedback and changes with 
appropriate elaboration steps to reduce the identified risks, 
for example, additional system prototyping or formal specifi­
cation. 

A second trust-related issue to be addressed is the impact 
on the software engineering environment to be used in support 

of the trusted target system development. Current software 
engineering environments do not adequately address these 
needs. The Trusted Computer System Evaluation Criteria 
were developed for operating systems and do not adequately 
address the trustworthiness needs of the software engineering 
environment. Issues identified are the appropriate level of the 
Evaluation Criteria as a goal for software engineering environ­
ments to be used for trusted system development, architec­
tural impacts on the environment and need for tool and 
project database integrity in the environment. These issues are 
only now starting to be considered in efforts to standardize the 
interface specifications for software engineering environments 
for security applications. More detailed analysis of these is­
sues is needed before standardization efforts get cast in con­
crete. 

Currently, there is no effective integration of the tools to 
support formal methods in trusted system development with 
other development and analysis tools needed to support the 
software engineering process. There is no support in environ­
ments for the appropriate notations, descriptions and repre­
sentations needed for trusted system development. In place of 
a consistent design/development notation throughout the de­
velopment, tools are applied to different notations with gaps 
between the notations requiring manual translation. For exam­
ple, at the security model and high level specification stages, 
the notation of a formal specification language, such as Gypsy 
or Special might be used. Later, in the preliminary design 
stage, a pseudo code language such as PSL might be em­
ployed. Since the two notations are different, automated 
traceability between the two is very difficult. The implementa­
tion is often carried out in yet another notation, for example, 

• Analyze Operational 
Requirements 
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• Define Hardware & 

Software Subsystems 
• Define Database 

Communication 
• Analyze Performance 
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- Performance 
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• Perform Tradeoff 
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Figure 2. Security Engineering/Design Engineering Interaction 
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in C, Pascal or Ada. Added to that are the variety of rotation 
which are employed for testing and configuration manage­
ment. 

Without a consistent notation, traceability throughout the 
development is very difficult, if not impossible, for a complex 
system. Formal specification and verification technology is not 
integrated with and not on a par today with the other tools and 
techniques ·used in system development, is not in widespread 
use today and is not used in a cost-effective manner for criti­
cal system components. 

Another trust issue of software engineering environments 
for trusted system development is the need for a trustworthy 
and controlled environment for the development life cycle. 
This includes concern for trustworthiness of the tools in the 
environment and the integrity of the project database, access 
control of the developers to portions of the developing target 
system, configuration management and control of the environ­
ment as well as access control to the project database and the 
tools. These concerns are currently not being addressed. 

Current software engineering environments also do not 
provide support for the trusted system evaluation process, i.e., 
for evaluation of the target mission-critical trusted system 
against the appropriate Evaluation Criteria. Needed support 
would include evaluation tools in a controlled environment for 
the initial evaluation as well as any required periodic re­
evaluation of a system to retain its ·evaluation level. Such 
automated tools might include tools for documentation trac­
ing, covert channel analysis, and configuration management. 
Some of the analysis tools useful for evaluation are part of a 
normal suite of development tools within an environment 
while others are for evaluation purposes only. There must be 
access control to those tools as well as a high degree of trust 
in their proper use. 

The various trust-related issues in development paradigm, 
software development environment and support for the evalu­
ation process need to be addressed in order to meet the needs 
of future complex systems requiring a high degree of trust­
worthiness of operation and integrity of the system. 

CONTRIBUTING TECHNOLOGIES FOR TRUSTED 
SYSTEM DEVELOPMENT 

The broad computer security and software engineering 
communities have a challenge and an opportunity to effec­
tively address the issues raised in the previous sections for 
developing trusted systems by integrating several fundamental 
contributing technologies to achieve a better result than any of 
the components alone could produce. These technologies in­
clude a new risk-driven process model coupled with formal 
methods and security engineering methodologies and inte­
grated automated support environments incorporating tools 
needed for developing large complex Defense systems. In or­
der to have widereaching impact, we propose that this technol­
ogy integration be done in the context of Ada trusted system 
development for DoD. 

While each of the contributing technologies exist in some 
fashion today, most are state-of-the-art rather than state-of­
the-practice. Nor are they used in an integrated manner in a 
unifying framework for trusted system development. In addi­
tion, the communities of interest (computer security, formal 
methods/verification, software engineering, software environ­
ments) have not communicated very much or very effectively 
with one another. Each community of interest is narrowly fo­
cused on only one aspect of what is necessary for building 
next generation DoD systems. Positive impact on future DoD 

trusted system requirements will be based on coupling these 
efforts. 

The computer security community has focused on security 
aspects in the narrow sense (as defined in TCSEC) rather 
than on more broadly defined trust. The needs of computer 
security have driven the development of security policy mod­
els, security engineering methods and formal specification 
and verification methods, languages and tools. This driving 
force has helped focus the efforts to solve problems in com­
puter security but have not adequately addressed trust issues 
such as those to be found in SDI or other mission critical 
systems. It is not clear whether the techniques developed will 
scale up effectively or whether significant enhancement and 
redevelopment will be necessary. Current SDI-sponsored secu­
rity architecture studies are beginning to address some of the 
broader trust issues. 

The formal methods/verification community over the last 
decade has largely been driven by computer security commu­
nity needs. The positive impact has been the development of a 
number of prototype and operational systems with formal 
specifications of their security related properties and mechani­
cal proofs of consistency of specifications with respect to the 
security properties. The computer security community has 
also funded the development of several verification environ­
ments that are largely still experimental. This current genera­
tion of verification technology cannot in its current form be 
applied to large scale systems nor is it considered state-of-the­
practice by software developers. This is in large part because 
the verification tools and techniques have not been integrated 
into the software development process. Although it would 
seem that this integration should occur naturally, it has not yet 
occurred. The U.S. verification community has also, until re­
cently, ignored Ada verification issues. 

The software engineering community has focused on the 
software development life cycle (methods and tools) and has 
largely ignored the needs of software development for trusted 
systems. Research efforts have addressed new process models 
and alternative development paradigms such as those based 
on risk analysis, automatic programming, rapid prototyping, 
program transformations and knowledge-based software assis­
tant capabilities. Important software engineering issues such 
as accommodating families of systems, prototyping of key sys­
tem capabilities, reuse of previous software and scaling up to 
very large systems are equally important for trusted systems 
yet they have not been addressed in that context. Issues relat­
ing to Ada (e.g. Ada process model, software reuse in Ada, 
... ) are also a current focus of attention. Integration of the 
computer security and formal methods technology in the con­
text of a sound software engineering paradigm is a critical 
research need to address the problem of trusted system devel­
opment. 

The software environment community has focused on the 
development of integrated software development environ­
ments but has not involved the integration of formal specifica­
tion and verification tools into such environments. Since 
environments are to provide automated support to the devel­
opment and analysis of complex Defense systems, if the tar­
get system has trust requirements, the ability to analyze a 
system's behavior through formal and informal means is 
critical. This means that an environment needs to provide a 
spectrum of analysis tools which include the appropriate, inte­
grated role for verification tools. This integration has not been 
an area of concentration for the software environment com­
munity. With the advent of Ada for DoD mission-critical sys­
tems, we have an opportunity to focus attention on a next 
generation Ada environment that would support trusted sys­
tem development. 
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RECOMMENDATIONS 

Since the trust issues raised here have the potential for 
having unwieldy or complex solutions, the challenge for the 
research community is to be able to aim for long term goals 
while simultaneously seeking near-term and intermediate re­
sults. Results need to be realized in worked examples which 
drive and focus the research as well as paper studies, since 
theory is often changed in the execution of the ideas. 

Progress toward goals could take place in two environ­
ments. The first is to have research in a laboratory environ­
ment where the integration of the technologies can be 
attempted in worked prototype examples which would be 
scaled up later in operational systems if they prove fruitful. 
The second is to attempt limited integration in actual opera­
tional system development. A valuable initial step would be to 
hold a workshop or summer study on future trusted systems 
development. This would bring together key contributing tech­
nologists from the computer security, formal verification, soft­
ware engineering and software environments communities and 
focus on integrating appropriate aspects of their work and 
identifying gaps in the research to be funded. 

Research areas and directions for studies and prototype 
developments that we have identified include the following: 

• 	 Establishment of a framework for modeling and develop­
ment of trusted systems including development/interpreta­
tion of evaluation criteria for software environments for 
trusted systems. 

• 	 Investigation of trust issues (security, integrity, assurance) 
with respect to Ada trusted system development including 
impact on development paradigm and support environ­
ment architecture and tools. 

• 	 Research to develop a next generation process model for 
trusted systems that integrates the appropriate contributing 
technologies. 

• 	 Prototype development of "trustworthy" automated sup­
port environment for the next generation process model 

for trusted systems. 

Demonstration of applicability of the new process model 
and environment on a set of high impact worked exam­
ples. 

Several of these research directions are long-range projects 
spanning five years or more but near-term and interim results 
can be achieved and be made known in a broad community. 
We can have a positive impact on DoD trusted system require­
ments by leveraging and combining several contributing tech­
nologies today. 
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1. Introduction 

In his 1984 Turing Award Lecture[l], Ken Thompson 
described a sophisticated Trojan horse attack on a 
compiler, one that is undetectable by any search of the 
compiler source code. The object of the compiler Tro­
jan horse is to modify the semantics of the high order 
language in a way that breaks the security of a trusted 
system generated by the compiler. 

The Trojan horse Thompson described is a form of 
virus, inasmuch as it is self-reproducing, but it has 
other characteristics that differentiate it from viruses 
that exploit the implementation details of a computer 
system. First of all, the self-reproduction is symbiotic 
that is, the Trojan horse depends on the source text of 
the legitimate compiler for its continued existence. 
The virus only reproduces itself in the output stream 
of the compiler, when the compiler is compiling itself 
(thus destroying the original virus). A second 
difference is the relative portability of the virus to 
different systems. The compiler Trojan horse Thomp­
son described is less dependent on the design details of 
a particular machine because it exploits the portability 
of high order languages. A final difference is the loca­
tion of the virus in the executable file. The compiler 
Trojan horse is inserted in a place that is hard to 
search. that is in mid-file. While this is possible for 
any form .of virus, it is more difficult for viruses that 
do not have the compiler's internal functions at their 
disposal. 

In his lecture, Thompson asserted that "no amount of 
source-level verification or scrutiny will protect you 
from using untrusted code." When no other means are 
used to provide assurance, this is true. However, this 
paper describes a technique that will remove such Tro­
jan horses when used in conjunction with high-order 

language source code analysis. 

This paper does not address what is referred to here as 
a general virus, that is, one that infects programs by 
direct modification of their images on disk (or other 
secondary storage). The general virus is a much larger 
problem; for example, detection of arbitrary general 
viruses is undecidable[2]. 

Section 2 of this paper explains why this class of Tro­
jan horse and virus is important for trusted systems, 
Section 3 describes the basic compiler Trojan horse, 
and Section 4 describes the defense in detail. Section 5 
gives a brief sketch of some possible measure~ and 
countermeasures. The paper concludes with some pos­
sible applications of this technique to building trusted 
systems. 

2. The Importance of Compiler Trojan Horse 
Viruses 

Compiler Trojan horses that are based on a symbiotic 
relationship between the source code and the binarv 
code of the same compiler are important for sever~l 
reasons besides the difficulty of detecting such a Tro­
jan horse. Such a Trojan horse can compromise the 
security of many systems without propagating itself to 
those systems, it can compromise several classes of sys­
tems without redesign, and it is difficult to locate in an 
executable file. 

The compiler Trojan horse can introduce unauthorized 
bypasses of security mechanisms into trusted systems, 
yet never exist on those systems. If such a Trojan 
horse is successfully installed on a development system, 
it can infect every system ever developed there. It can 
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do this because the compiler will generate security 
flaws in every trusted system it generates code for, 
whether it is compiling for its own host or some other 
system. 

Unlike the general virus, the compiler Trojan horse 
virus does not depend on low level machine or operat­
ing system dependent details of the implementation it 
infects. One of the subtleties of Thompson's design is 
the use of the compiler's code generator to install the 
binary version of the viruses. If the Trojan horse virus 
is created in the same intermediate language that is 
passed to the code generator, it will be appropriately 
translated, linked, and loaded for whatever machine 
the compiler is targeted for. This applies not only to 
the self-reproducing or viral component, it also applies 
to the other malicious code that may be installed by 
the Trojan horse. 

The compiler Trojan horse virus can easily install itself 
in the middle of the disk image of program, because 
the compiler inserts it as it generates code. A general 
virus can be inserted into the middle of the disk image 
of a program too, but the problem is more difficult for 
the general virus. In the latter case, the virus must be 
designed to obtain privileges that permit it to modify 
the disk images of programs. It must also be designed 
to perform link editing correctly, a non-trivial task 
when the program disk image is in link editor output 
format. 

An assertion that general viruses cannot insert them­
selves in mid-program would be untrue. Nevertheless, 
it is significantly more difficult to create such a general 
virus and each copy of the general virus must contain 
all the code necessary for correct mid-prograll1 inser­
tion. 

3. The Trojan Horse 

The compiler Trojan horse is introduced into the sys­
tem by a procedure that resembles a compiler compil­
ing itself. The authorized Trojan-horse-free version of 
the compiler is used to compile a Trojan horse version 
of itself that always reproduces the Trojan horse in the 
compiler. For this to occur, there must be at least one 
read access to the legitimate compiler source code, one 
or more execute accesses to the compiler (even viruses 
must be debugged), and at least one write access to the 
legitimate compiler binary. None of these accesses 
must necessarily occur on the same system. 

The compiler Trojan horse is created as follows: 
1) a source code version of the compiler is 
written that includes two Trojan horse capa­
bilities, a security mechanism bypass and a 
self-reproducing feature, 

2) the legitimate Trojan horse free version of 
the compiler is used to produce an object code 
version of the Trojan horse compiler, and 

3) the Trojan horse object code version is 
installed over the legitimate object code ver­
sion of the compiler. 

At the end of this process the source code of the com­
piler is free of Trojan horses but the executable file has 
two Trojan horse features. The first Trojan horse 
feature adds unauthorized security mechanism 
bypasses whenever it compiles the appropriate source 
code. The second Trojan horse feature reinserts the 
object code of the Trojan horse into the compiler 
whenever it compiles the legitimate compiler source 
code. The Trojan horse object code will remain in the 
system undetected by any analysis of the high order 
language source code of the compiler. Additionally, 
targeted security mechanisms generated by this com­
piler will have unauthorized and undetected bypasses 
installed. 

This attack destroys the semantics of high order 
languages and undermines trust in assurance measures 
that depend on them. This threat is a. serious problem 
because many valuable assurance techniques depend 
on high order language semantics. The availability of 
a technique for ensuring that. the semantics of a high 
order language are free of such problems is essential for 
trust in high order language assurance techniques. 

4. The Defensive Technique 

The defense against this attack is based on the :::;arne 
concept of a compiler compiling itself. The defense 
exploits the symbiotic relationship between the source 
text of the legitimate compiler and the self-reproducing 
feature of the Trojan horse object code[3]. 

The Trojan horse reproduces itself whenever it com­
piles the compiler. To do this, it must first recognize 
some key portion(s) of the source text of the legitimate 
compiler. If the Trojan horse compiler compiles a 
compiler that it cannot identify as such, it will not 
reproduce in that program's object code. If the 
suspect compiler is fed a disguised version of itself or a 
simple temporary compiler of a different design; it will 
not reproduce any such Trojan horses. 

If the legitimate compiler can be hidden from its Tro­
jan horse symbiont, so to speak, the Trojan horse will 
be erased by itself.. Since it will not reproduce and the 
object code generated by the disguised compiler will be 
used in all future compilations, the threat is removed. 

Hiding the legitimate compiler is not necessarily sim­
ple. First, recognition of an arbitrary compiler from 
an analysis (by the Trojan horse) of the function of the 
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program can be ruled out as beyond the state of the 
art. However, the Trojan horse has many clues at its 
disposal within the superficial features of the legitimate 
source text. If, for example, every identifier was 
scrambled, the Trojan horse still might detect a pat­
tern in the keywords of the compiler source. If these 
were scrambled too (this is not difficult on many com­
pilers), the Trojan horse could analyze comments, con­
stant strings (such as "C Compiler, Version :3.7", 
requests for library units, or error messages (e.g., the 
C compiler is the only one with Hl8 error messages). 

With careful analysis and design (by the defenders), a 
reduced function compiler could be created; one that 
even incorporated large amounts of code that had 
nothing to do with compilation. This temporary com­
piler would be compiled first, and then its Trojan 
horse free object code version used to compile the 
undisguised legitimate compiler. An integrated editor, 
compiler, and link editor that can scramble and 
unscramble program text as appropriate would be a 
very useful application of this technique. 

5. Measures and Countermeasures 

There are compiler Trojan horse measures beyond the 
text string searches mentioned above. Three measures 
that are of practical significance are, in increasing 
order of effectiveness for the Trojan horse: 

1) attempt to recognize the compiler by its 
function, 

2) make the Trojan horse part of the 
compiler's legitimate features, 

3) extend the symbiosis. 

The following discussion explains each measure and 
proposes a countermeasure to meet it. 

5.1. Recognizing the Function of the Legiti­
mate Compiler 

While the problem of recognizing the function of an 
arbitrary program is not decidable, it is possible for the 
Trojan horse to recognize the function or a key part of 
the function of a restricted class of compilers. By 
making simplifying assumptions, the Trojan horse can 
still identify the legitimate compiler. An example of 
such an assumption is to assume the compiler will be 
generated by compiler construction tools. The output 
of a lexical analyzer generator or a compiler compiler 
contains regular patterns of instructions and data that 
could be associated with the tool and its target pro­
gram. 

The countermeasure to this approach is to construct a 
very simple but extremely modular compiler by hand. 
This compiler could employ techniques not used in 

compiler construction tools to complicate the detection 
problem. If this compiler is also divided into very 
small modules in separately compiled source files, the 
Trojan horse will never have enough source text to 
identify the compiler function. 

5.2. Installing the Trojan Horse in a Compiler 
Feature 

One measure mentioned in[3] is to incorporate part of 
the compiler function into the Trojan horse. When 
the Trojan horse is removed by recompilation, no com­
piler on the system will work. A good concrete exam­
ple of this is the run time support for the language. If 
the Trojan horse is placed in the object code of the run 
time support mechanism of the language in such a way 
that it performs some of the run time support, it can­
not be removed without breaking the language. 

Any practical plan for disguising a compiler must take 
a system view of the entire language. Many languages 
assume the existence of support mechanisms that are 
outside the definition of the language or are not part of 
the compiler program. These support mechanisms can 
be suitable targets for the compiler Trojan horse, so 
this defensive technique should be applied to them 
also. 

5.3. Extending the Symbiosis of the Trojan 
Horse 

The final and most effective measure for the Trojan 
horse is to extend the symbiosis. As originally defined, 
the Trojan horse is a symbiotic system where the legi­
timate compiler source text is necessary for the contin­
ued existence of the object code virus. If a general 
virus is added as an additional symbiotic feature, the 
total Trojan horse system becomes a general virus with 
limited complier Trojan horse capabilities, since the 
security mechanism bypass feature is still portable. 

In the original case, if the object code of the compiler 
was modified without including the symbiotic self­
reproducing feature, the compiler Trojan horse would 
be destroyed when the compiler was recompiled. How­
ever, in the original case, the compiler Trojan horse 
with the self-reproducing feature is protected by its 
relationship to the compiler's legitimate source; when­
ever the Trojan horse detects the compiler in its own 
input, it reproduces. 

In the case of the third measure, extending the sym­
biosis, the compiler Trojan horse system is E'Xpanded 
to include a general virus that resides at the start of 
some other program. That general virus component 
can then protect the original compiler Trojan horse. 
To do this, the general virus modifies the source of the 
compiler to include the compiler Trojan horse, recom­
piles it, and deletes the modified source file. All of this 
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can be done in background mode, in such a way that 
the original compiler source is not modified, only a 
copy of it. The Trojan horse in the compiler can 
check selected executable files to see if its symbiont 
general virus is there, and if not, restore it. Thus both 
virus and compiler Trojan horse would exist in mutu­
ally reinforcing positions on an infected system. 

The third measure results in a general virus, that is, 
the resulting Trojan horse is no longer strictly in the 
class addressed by this technique. The offending 
program gives up portability and relative simplicity for 
an increased likelihood of survival on a single hardware 
base. It increases its chances of survival by establish­
ing a symbiont that will not be overwritten when the 
compiler is recompiled. 

Nevertheless, the defensive technique of disguising the 
legitimate compiler will present the symbiotic general 
virus with the same problem. The general virus must 
also identify the source text by the same means as its 
partner within the compiler object code. If the com­
piler has been successfully disguised, it will be equally 
protected from both the original Trojan horse and any 
symbiotic extensions that must identify the compiler. 
However, the disguise techniques must now be in effect 
at all times, and furthermore, all source files must be 
disguised in addition to the compiler. 

6. Conclusions 

In general, this technique increases the complexity of 
the problem facing a compiler Trojan horse. A more 
complex compiler Trojan horse is more likely to have 
errors, it will take longer to design, develop, and test, 
and it will probably be easier to detect because it is 
larger. Use of this technique makes the outcome of 
such an attack depend more on personal skill and less 
on system features. 

The technique can be applied with varying amounts of 
resources and achieve reasonably proportionate 
assurance results. A low resource approach would 
merely scramble identifiers and constants before 
recompiling the compiler, while a high resource 
approach would be a programming system that com­
pletely hid all of its data. In the latter case, vendors 
could have such systems independently verified. 

This technique is appropriate for very high assurance 
systems (e.g. beyond A1) where every available defen­
sive measure is desired. A high assurance version of 
this technique should be supported by a trusted 
development ·environment and additional measures to 
intended to cope with general viruses[4, 5]. 

The technique is also appropriate for some systems of 
moderate assurance, depending on their design. 

Moderate assurance systems may contain components 
that are very vulnerable to Trojan horse attacks. Con­
sideration should be given to using a low resource ver­
sion of this technique to provide some assurance that 
the development system has not introduced a Trojan 
horse. 

A final practical issue is the examination of the high 
order language source for the compiler. The technique 
described in this paper assumes that there is no Trojan 
horse in the source text of the compiler. This assump­
tion may be difficult to meet for two reasons. First, 
the source code for a compiler is usually very closely 
held by the compiler vendor. This raises the question 
of certification and of publicly available source text for 
temporary filter compilers; both are beyond the scope 
of this paper. Second, contrary to the statement in [1], 
the task of insuring that the compiler source code is 
trustworthy is non-trivial. Examination of compiler 
source code is probably the first use that should be 
made of practical automated high order language 
analysis techniques. Since the compiler source code is 
the most sensitive source code associated with the crea­
tion of a trusted system, it should be the most 
profitable place to look for high order language secu­
rity flaws. 
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Abstract: Operational experience with a tactical countries. At all sites the computers are intercon­
Army system illustrates the need for computer nected via fiber optic Local Area Networks (LANs). A 
security safeguards. Tactical environments can Wide Area Network (WAN) backbone is provided by four 
require group userids and distributed control over transportable Defense Data Network-compatible packet 
security management and. operation. Careful security switching nodes. While the entire .interconnected net­
management planning is critical. Overrun protection work is operational only during exercises, an 
might be needed. Penetrators can exist within mili ­ increasing percentage is used for normal day-to-day 
tary networks. operation. 

The most important function provided is electro­
INTRODUCTION* nic mail, which has been adapted into a message ser­

vice employing preformatted messages. The system 
The new generation of Department of Defense also provides word processing, a spreadsheet, and a 

(DoD) computer security (COMPUSEC) policy does not Data Base Management System (DBMS). The DBMS is 
explicitly address tactical systems1,2,3. This is being used in a distributed fashion, with numerous 
sometimes understood as implying that the policies do applications built upon it. 
not apply to tactical systems or that .they need to be 
"interpreted" for tactical systems, in the same way The system processes classified data. Operation 
that the Trusted Network Interpretation interprets began in .. the dedicated security mode of operation and 
the Orange Book for application to networks 2,3. is evolving to the system high security mode of 
Furthermore, in the field, there is often a belief operation4. 
that COMPUSEC safeguards are unnecessary for tactical 
systems, and that physical and communications Security requirements for the system were 
security provide sufficient·protection. Some tac­ thoroughly defined, and the system was acquired with 
tical systems thus have little or no COMPUSEC the necessary security foundation. The security 
protection. safeguards were phased into use gradually, in order 

to reduce system management complexity and avoid 
This paper examines COMPUSEC requirements for denials of service, while learning how best to employ 

one tactical Army system, based upon analysis and the safeguards. This approach has provided insights 
experiences in acquiring and operating the system. on operation with and without safeguards and on phas­
The paper reaffirms that COMPUSEC safeguards are ing the safeguards into use. 
indeed required. In fact, the incidents reported in 
this paper (e.g., a DoD penetrator) made system users 
into a community of COMPUSEC believers, and might be TACTICAL REQUIREMENTS 
of similar benefit to users of other systems. A 
further conclusion is that, for the system examined, From the above description, the system might not 
the Orange Book and its companion documents are appear to be tactical. In fact, it is one of the 
valid, but that supplementary guidance is desirable increasing number of DoD systems that must support 
on COMPUSEC management and operation in tactical both non-tactical operation (for routine peacetime 
situations. work) and tactical operation (for exercises and 

wartime). This section identifies system require­

; 
The overall purposes of this paper are to focus ments that characterize the tactical environment and 

more attention on field COMPUSEC needs and to provide that have influenced COMPUSEC requirements for the 
motivation for improving field practices. system. The tactical environment has many 

distinguishing requirements (e.g., pertaining to~tt~~~~l~~ communications, power, weight, durability, and ease 
SYSTEM DESCRIPTION of use) that greatly influence system definition and 

use; the focus of this paper is on COMPUSEC 
The Army system from which the observations in requirements. The system, then, must meet the 

this paper were drawn is a Command and Control (C2) following requirements: 
system being fielded in USAREUR. Initial operation 
was in February 1987. The system has since grown o Be transportable; support multiple moves on 
rapidly into a network. short notice. (Many sites move during exer­

cises; some sites move several times during 
By Spring 1988, the system included 63 user com­ an exercise.) 

puters operating at about 25 sites in five European 
o Support roles and functions that exist only 

*This paper is derived from work performed under in exercises and wartime, as well as roles 
contract F19628-86-C-0001 for the United States Army, and functions that exist during peacetime 
Europe (USAREUR), Office of the Deputy Chief of Staff only or during both peacetime and wartime. 
for Operations. 

118 



o 	 Support a hastily assembled and rapidly chang­
ing user community. 

o 	 Be survivable; operate despite a high rate of 
system and communication failures. 

o 	 Operate using only 300-3400 Hertz uncon­
ditioned voice channels for remote 
connections. 

o 	 Defend against violations resulting from site 
overrun. 

The remainder of this paper examines COMPUSEC require­
ments in light of these tactical requirements. 

AUTHENTICATION 

Many tactical systems do not use passwords. The 
USAREUR system also was initially fielded without 
passwords, but passwords were found to be necessary. 
Furthermore, a number of users requested a password 
capability. Passwords have since been added to the 
system. 

Army Regulation 380-380 stresses the desirabi­
lity of using individual userids4. Although the 
system has phased in passwords, individual userids 
are not used, since individual userids can be dif ­
ficult to use in tactical environments. There are 
several reasons: 

o 	 People often work in teams, sharing the use 
of workstations, such that it would be unac­
ceptably cumbersome and time consuming for 
individual users to log in and out, espe­
cially if it is necessary each time to return 
the system to its pre-login operating state. 

o 	 The user community often is hastily assembled 
and changes rapidly, making userid and 
password management difficult, especially in 
a crisis environment. 

For these reasons, group userids are used in 
exercises, and would be in wartime as well. For 
peacetime operation, however, consideration is being 
given to evolving to individual userids, because of 
needs for improved control and for individual 
accountability. Systems such as this one that sup­
port both peacetime (non-tactical) and 
exercise/wartime operation thus might have to support 
both individual and group userids. This does not 
pose technical difficulties, since userids can be 
used to support either individuals or groups. The 
issue, rather, is a management issue, regarding how 
userids are to be used. Where both individual and 
group userids are used, care is needed in integrating 
the userids with the system addressing approach 
(e.g., for mail). 

Even when group userids are used, it can be dif ­
ficult to prepare and distribute userid (and 
password) tables in situations where the user com­
munity is being rapidly assembled. Two types of 
distribution are needed: the tables must be 
installed (and tailored) on all appropriate systems 
and users must be informed of their userids and 
passwords. This process is made more difficult by 
the use of classified passwords. In one USAREUR 
exercise, users at several sites experienced substan­
tial denial of service due to delays in distributing 
and installing userids and passwords. 

passwords in a distributed manner, without reliance 
on a remote central site. This distributed manage­
ment also creates a need for a network-wide userid 
naming convention, to ensure that userids are unique. 
Of course, in avoiding denial of service delays, 
there is also an operational requirement to carefully 
plan security initialization of a network. 

In tactical situations, distributed operation 
must be supported to the greatest extent feasible, 
since connectivity might not be available. For 
example, even if userid creation normally is done via 
a security server, it should be possible for stand­
alone or isolated workstations to perform this func­
tion when the server is unavailable. Workstations 
should not be totally dependent on a server for their 
security or operation. A workstation forced to 
operate without a network or server should sacrifice· 
neither security nor local operating capability. 

Important authentication requirements for 
distributed tactical environments are that users must 
be capable of invoking the password change procedure 
on demand, and that security officer involvement must 
not be necessary. The reason for these requirements 
is that users might quickly have to change their 
passwords to react to changing tactical situations, 
and that a security officer might not be available to 
issue passwords. Both requirements are recommended 
in the National Computer Security Center's (NCSC) DoD 
Password Management Guideline5. 

A final requirement related to authentication is 
the need to authenticate the originator of trans­
actions, such as messages. Users must not be able to 
originate transactions that appear to·be from other 
users, because this capability could be used to ori ­
ginate false transactions, which might cause serious 
disruptions. The USAREUR system has had one such 
false transaction, and· its defenses have been 
bolstered to prevent reoccurrences. Other Theater 
systems also have had false transactions. On one 
system, a user, pretending to be another user, sent 
an insulting E-mail message to a third user. The 
third user responded by returning an insulting note 
to the listed originator, who was unaware of the 
initial message. Fortunately, the problem was 
identified, and audit trails enabled ·identification 
of the culprit. The point of this discussion, 
however, is that the threat is real and must be 
countered. On a related topic, it is probably the 
case that transaction integrity is more important in 
tactical than strategic systems, since tactical 
systems often require quicker response times, and 
since tactical integrity violations might prevent 
weapons strikes or cause strikes against friendly 
forces. 

ACCESS CONTROL 

It is sometimes said that there is no need for 
discretionary access controls in tactical systems. 
That is not true for the USAREUR system. Although 
the vast majority of system users sees no need to 
control "read" access to data, a small minority of 
users does require such protection. Furthermore, 
there is a strong need for "write" protection. 
During exercises and wartime, many users are highly 
stressed and might not be adequately trained. The 
system must prevent these users from accidentally 
corrupting or destroying data. Discretionary access 
controls help to provide this capability by reducing 
the number of people who can change data. 

To avoid such denial of service delays, it As was true for userid and password tables, the 
should be possible to create and manage userids and most difficult aspect of managing discretionary 
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access controls in a tactical environment is in 
ensuring that permissions are properly set when a 
large amount of equipment is initially deployed or 
when a user community is hastily assembled. 
Complicating the assignment of permissions are the 
facts that organization structures change in wartime 
and that people switch organizations. It is impor­
tant that this aspect of system operation be 
anticipated, taught, and practiced. 

During exercises and wartime, all sites in the 
USAREUR network operate at the same security level, 
i.e., the maximum allowable classification is the 
same for all systems. This simplifies interoperabi­
lity among network users. 1'here communication out­
side the network is required (with systems that 
operate at higher or lower classification levels), 
users employ a floppy disk downgrade process similar 
to that described in the National Telecommunications 
and Information Systems Security (NTISS) Advisory 
Memorandum on Office Automation Security Guideline6. 

During peacetime, many sites operate at a dif­
ferent security level than they do in exercises and 
wartime, e.g., many operate at the unclassified 
level. These sites require the capability to alter­
nate between operation at different security levels, 
in a "periods processing" fashion. This is one of 
the most important security requirements and is espe­
cially critical for exercises. 

Vulnerability to Internal Penetrators 

With the increased use and size of networks, 
more thought must be given to network security and to 
the vulnerability of the network as a whole to every 
one of its users. DoD system managers often assume 
that, because all users have security clearances, 
there is no penetrator threat. That is not true. 

During one USAREUR exercise, a person caused 
significant disruption. This person was cleared and 
authorized to access portions of the network, but his 
actions exceeded his authorizations. The first 
indication of a problem came when a site received an 
alert and found that its password table had been 
destroyed, necessitating a lengthy reboot, and 
resulting in the loss of some data. This was the 
first of three such attacks, all of which required a 
lengthy system reboot. 

With the first alert, the site called the net­
work operations center, which began to trace the 
source of the activity. Meanwhile, the person had 
broken into the operating system of one of the two 
central database servers (supporting the overall 
network), and twice attempted to reinitialize the 
large hard disk. Fortunately, both attempts failed, 
or substantial amounts of exercise data would have 
been lost. 

Network operations personnel were able to locate 
the person, and the activities promptly ceased. But 
significant disruptions had been caused, and greater 
difficulties had been only narrowly avoided. The 
point to this incident is that the threat exists. 

In this case, because the network was being ini­
tially fielded, some of the internal controls were 
not yet in place. This was intentional, to avoid 
denial of service due to improperly initialized 
security controls. The particular approaches used by 
the intruder would not have worked had the full 
security defenses been in place. 

tactical systems, the USAREUR system is based on a 
commercial operating system that is familiar to many 
users and that provides rich functionality to users 
who can penetrate the user interface, Even were the 
system trusted, vulnerability would remain. This was 
vividly illustrated by the penetration of the 
National Aeronautics and Space Administration (NASA) 
Space Physics Applications Network (SPAN), which uses 
an operating system that has received a class C2 
rating from the Ncsc7. Another example was the 
penetration during UNIX Expo 1987 of Gould's 
C2-certified UTX/32S, in which the system administra­
tor was duped into allowing an intrusionS, (Indeed, 
the system administrator might prove to be the 
Achilles' heel for many trusted systems.) 

In the USAREUR case, as increased security is 
phased in, users are informed of what is allowable 
and not allowable and of the risks they assume by 
being a member of the network. Beyond this, there 
are limits to what can be achieved. It is unlikely 
that the risks will constrain or limit network 
expansion. Like some other advanced technologies, 
networks are volatile tools that increase both system 
capability and system vulnerability. 

Overrun Protection 

A final area of access control in which tactical 
systems warrant special consideration is overrun 
protection. The threat is that an enemy might over­
run a site and access the data stored there. 

The typical defense against overrun is to physi­
cally destroy the system and media. This is 
simplified by having fewer media to destroy or by 
selectively destroying only the most sensitive media 
(e.g., those with current data pertaining to many 
sites, rather than those that contain only old audit 
data). In extreme cases, DoD policy is to use Anti­
compromise Emergency Destruct (ACED) devices to 
accomplish the destruction9, ACEDs are dangerous, 
however, and can cause substantial damage if acciden­
tally activated. 

An alternative solution to destroy data is to 
encrypt stored data, so that the data can be rendered 
unavailable (for an estimated period of time) by 
destruction ot the encryption key. This approach has 
been considered for use by the Department of State10. 
This approach could result in substantial data loss 
if the key is accidentally destroyed, but a copy of 
the key can be stored at a second site to reduce this 
risk. 

While most tactical systems probably do not have 
a sufficient overrun risk to warrant special protec­
tion, those sites that are at high risk should 
consider file encryption. The likelihood of acciden­
tal destruction must be anticipated and countered, 
however, so that the safeguard does not cause greater 
losses than the threat itself. 

A second threat associated with overrun is that 
an enemy might use the site's people and equipment to 
access other systems. One technique that can be use­
ful in defending against this threat is a "duress 
code," such as is available on the Access Control 
Encryption (ACE) cards developed by Security 
Dynamics. A duress code is a special Personal 
Identification Number (PIN) that allows access but 
sets off an alarm at the operator console. 

Even with the full defenses, however, the system 
is vulnerable to knowledgeable users. Unlike some 
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AUDITING 

Some tactical users have said that auditing 
might be desirable during peacetime or exercises, but 
is undesirable during wartime. Such users have 
stated that (1) there would be no time to analyze an 
audit trail during wartime, and (2) removal of 
auditing could increase system performance. Neither 
reason is valid. Audit safeguards serve four pur­
poses: surveillance, deterrence, damage assessment, 
and problem analysis and resolution. These purposes 
are at least as important in wartime as they are in 
peacetime. In addition, auditing should be suf­
ficiently unobtrusive that it not impede operation, 
whether in peacetime or wartime. There might be 
cases in which auditing should be changed or even 
reduced in wartime, but it cannot be discarded. Of 
course, if a choice must be made between operation 
and security in tactical wartime situations, the 
choice normally should be for operation. For 
example, take the case of workstations on a LAN, 
where the workstations regularly forward their audit 
data to a central server. If the server is not 
available and audit storage space is exhausted, the 
old audit data should be overwritten rather than 
suspending operation for want of audit storage. 

Security auditing is needed in tactical systems, 
with attention focused on how to audit most effec­
tively and efficiently. For example, unless prodi­
gious amounts of data can be stored and analyzed, the 
audit trail should not normally compile a list of all 
authorized user activities (e.g., file open, program 
initiation), but must record attempts at unauthorized 
activity and all changes to security parameters. The 
audit concept cannot assume that there is a security 
officer who sits at a console, monitoring the system, 
or who has time to search archival audit files 
looking for suspicious activity (although software 
might be used to conduct such searches). Instead, 
the concept should focus on alerts and reports. 
Alerts would be sent to the overall system operator 
or system administrator (if there is one), who would 
notify a security officer if warranted. Alerts might 
include such actions as the addition of a new userid 
or the receipt of a login from a user already logged 
in to another workstation. (In most cases these 
actions will be normal and authorized, but perhaps 
not in all cases.) Reports would be compiled from 
many events and distributed to the security officer. 
Reports are useful in identifying groups of users 
with a high error rate (who might therefore need 
guidance or training). The most requested report 
probably will be a simple daily listing of who logged 
in and out, when, and what external resources were 
accessed. 

CONCLUSIONS 

Experience with one tactical system reaffirms 
that computer security safeguards are needed, not 
only to prevent loss of sensitive data, but also to 
ensure the accuracy of data and transactions. The 
required COMPUSEC features for this tactical system 
are almost identical to those for most strategic 
systems. The main differences are in how the 
features are used. 

To help ensure that COMPUSEC features are pro­
perly used in tactical systems, the DoD should 
incorporate into overall COMPUSEC policy brief guid­
ance on COMPUSEC management and operation in tactical 
environments. AR 380-380 already includes some 
tactical COMPUSEC guidance, but could benefit from 
expansion to address points made in this paper4. 

Furthermore, requirements and procedures that pertain 
to tactical systems should be incorporated into 
Security Features User's Guides, Trusted Facility 
Manuals, Standard Operating Procedures, and Operating 
Concept documents. 

Recent improvements in DoD COMPUSEC policy and 
technology should result in improved DoD security, 
but care must be taken that the new policies and 
technologies are properly applied. This paper exam­
ines the application of COMPUSEC in a tactical system. 
Similar field reportage should be encouraged both for 
other tactical systems and in other application 
areas, so that empirical data is used to validate and 
improve upon our policies and technologies. 
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Encryption-based communications security (COMSEC) functions 
can be integrated into a network system in several ways. The "traditional" 
approach places COMSEC modules on a communications path, 
essentially transparent to the components communicating across that 
path. An alternative approach integrates COMSEC functions within a 
front end processor, interposed on a communications path yet 
participating in an explicit host-FE protocol with the host computer it 
serves. A third approach positions COMSEC functions within a 
peripheral operating under host computer control. This paper explores 
the implications of each approach, with regard to protocol layer 
placement, comprehensiveness of security services offered, applicability 
to environments, TCB boundaries and evaluation concerns, 
transparency, several dimensions of cost, and the ability of an approach 
to provide enhanced functions in support of an associated host 
computer. 

Introduction 

In order to achieve a total information security (INFOSEC) solution 
in a network environment, communications security (COMSEC) and 
computer security (COMPUSEC) techniques must be combined. These 
techniques can be combined in many ways. Each COMSEC approach 
raises a different set of COMPUSEC issues, not only with regard to a host 
computer's internal processing but also with regard to COMSEC 
component control. Many COMSEC components incorporate their own 
embedded control processors, raising internal COMPUSEC issues 
distinct from those of the host computers they serve. Some approaches 
rely on host computers to perform COMSEC control functions along with 
the user applications they support. This paper examines the implications 
which different approaches impose, both on COMSEC component 
design and on the designs of the hosts the COMSEC components 
serve. 

Definition of Alternatives 

This section defines three categories of COMSEC integration 
strategies, informally termed the transparent front end (FE) approach, the 
non-transparent FE approach, and the peripheral approach. The FE 
approaches are distinguished from the peripheral approach by being 
interposed on a host's communications path. This placement assures 
that no network communication can occur except under security 
component control; all communications are mediated through the FE. 
The peripheral approach, on the other hand, is invoked under host 
control. Its hardware structure does not guarantee that security 
component processing is invoked on all communications. The FE 
approaches are distinguished from each other based on whether the 
host explicitly requests services and/or receives results from the 
COMSEC component, or the component acts as a transparent and silent 
communications partner. 

Outboard Transparent Integration 

In the outboard transparent integration approach, an encryption 
component is interposed on a computer's communications path in a 
manner which is transparent to the computer. This allows encryption to 
provide a variety of security services without impact on existing host 
protocol implementations, but precludes the encryption component from 
providing functions which require explicit interaction with the host. As a 
result, the host computer cannot select or influence the security 
functions which the component provides. For example, the set of OSI 
security services provided by the component may be fixed when the 
component is manufactured, or may be loaded into the component as 
configuration data (with different choices for different destinations, if 
appropriate), but cannot be selected dynamically by the host for 
individual instances of communication. 

Figure 1 illustrates an example of COMSEC integration within a 
transparent front end system. The host computer is a protocol peer with 
another host computer (not shown), accessed through the network. The 
example protocol stack shows OSI layers 1-3 (physical through network 
layers) passed through the front end to the network without encryption, 
with layers 4 through 7 (transport through application) encrypted before 
transmission. This is a typical protocol layer placement for a transparent 
FE. . 

Entities 
and Host Transparent 

NetworkProtocol Computer Front End 
Peers 

Examp.le 
Protocol 
Stack 

Outboard Transparent Integration 
(Transparent FE) 

Figure 1 

Outboard transparent integration is the "traditional" approach to 
COMSEC placement, reflecting the development of COMSEC and 
COMPUSEC as distinct disciplines and consideration of COMSEC as a 
function within the communications realm rather than the subscriber 
realm. The choice of the term "outboard" to define this approach is not 
meant to imply that the encryption component must be in a separate 
stand-alone physical package from its associated host. It may, for 
example, be a circuit board which plugs into a computer's bus. The salient 
characteristic is that all network communications accesses must traverse 
the FE. 

In the past, most COMSEC components have been transparent 
link encryptors. These components operate at the OSI Reference 
Model's layer 1 or the lower part of layer 2, and treat any protocol control 
information of layers above as uninterpreted data. The internal 
processing requirements for an encryptor operating in this range of the 
protocol hierarchy are modest. Generally, the level of internal processing 
complexity in a COMSEC component increases when a component 
operates at a higher point in the protocol hierarchy. In particular, a 
transparent COMSEC component operating at the upper part of layer 2 or 
the layers above can be a significantly complex embedded computer 
system. Part of the complexity comes from the fact that a transparent 
COMSEC FE must duplicate protocol layers already present within an 
associated host. The layers below the point where encryption is 
integrated must be terminated from the host's viewpoint and regenerated 
for the network's benefit, making for a relatively complex "two-headed" 
implementation. 
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Outboard Integration wjth Host-FE Protocol 

When encryption is incorporated into an outboard component 
which participates in an explicit protocol with the host computer it serves, 
different implications arise. The host computer must act as a peer in the 
explicit protocol, meaning that the host computer's software must 
operate differently than it would operate if no encryption component 
were present. If this can be accomplished, then the encryption 
component can provide valuable services to its host which a transparently 
integrated outboard component cannot offer. As a special case, a 
non-transparent FE could be designed in such a manner that it could 
operate with reduced functionality even if no peer for the host-FE 
protocol were available. Such a hybrid would operate as a transparent FE 
if its host did not support the host-FE protocol. 

Figure 2 illustrates an example of COMSEC integration within a 
non-transparent front end system. As in Figure 1, the host computer is a 
protocol peer with another host computer (not shown), accessed 
through the network. Layers 4 through 7 of this traffic are encrypted. In 
contrast to Figure 1, this host computer also acts as a peer with the local 
host-FE protocol module in the front end system; two protocol substacks 
from layers 4 through 7 correspond to the transit (host-host) and local 
(host-FE) paths. In the example, therefore, demultiplexing between 
transit and local traffic streams is carried out using network layer 
mechanisms. 

Entities 
and 
Protocol 
Peers 

Inboard Integration as Peripheral 

When encryption is embedded in a peripheral device operating 
under host software control, many new and qualitatively different 
functions become possible. Encryption can be applied in a fashion 
specific to upper-layer protocols and can distinguish among individual 
users. The price for this flexibility is a trust requirement imposed on the 
host directing the cryptographic peripheral's operations. Invocation of 
cryptographic processing is controlled by the host computer's TCB. 
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Figure 3 

Figure 3 illustrates an example of COMSEC integration within a 
cryptographic peripheral rather than a front end system. As in Figures 1 
and 2, the host computer is a protocol peer with another host computer 
(not shown), accessed through the network. Since the interface 
between the host and the peripheral is a local matter, no explicit 
communications protocol applies between these two components. The 
host invokes the peripheral's functions in order to provide cryptographic 
protection for an application layer protocol, such as X.400 messaging or 
FTAM. While peripheral-based COMSEC integration is not confined to 
application layer uses, it offers a better approach to upper-layer security 
requirements than front end approaches can provide. 

Cryptographic peripherals can be designed in various ways, 
offering significantly different service interfaces to their associated host 
computers. Typically, a processor-less peripheral presents its host with 
an interface which allows the host great flexibility in terms of choice of 
operations but requires the host to interact with the peripheral at a low 
level. A peripheral with an onboard processor can offer a more 
constrained interface, and can group low-level primitive cryptographic 
functions into atomic operations. In all cases, any unencrypted 
encryption keys should be protected within the peripheral's physical 
boundaries and should not be accessible to the host processor. These 
techniques can help to protect the internal integrity of COMSEC 
functions. While they reduce important aspects of the trust requirements 
placed on the host processor's TCB, they do not relieve the host of 
responsibility for ensuring that COMSEC functions are invoked when 
appropriate. The host's TCB must still assure that data which should be 
encrypted is in fact encrypted. 
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Figure 2 

There are many variations of the outboard non-transparent 
approach, distinguished by the host-FE protocol's characteristics. As 
with the outboard transparent integration approach, the choice of the 
term "outboard" to describe the approach is not meant to preclude the 
encryption module from sharing common physical packaging with the 
host it serves. One variation resembles the transparent approach, in that 
the protocol layering between host and FE is the same as that between 
FE and network (except for any layers added by the FE in support of 
COMSEC functions). In this variation, the host-FE protocol is used to 
carry information such as connection requests and authentication data 
between the host and FE. In another variation, implementation of 
protocols below a given layer is delegated to the FE. Independent of 
security concerns, many communications front end processors have 
been designed in this manner in order to offload low layer protocol 
processing from a host; COMSEC integration within such a front end is a 
natural extension. 
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In a multi-level system, the input to an encryption function often 
has a higher security level than the function's output; appropriate labeling 
must be applied and enforced at the function's interfaces. In certain 
cases, it may be feasible and desirable to enforce labeling conventions 
within the peripheral's boundary. 

Even when all the functions associated with a cryptographic 
peripheral's outboard processor are considered, they are likely to be 
significantly smaller than those associated with an FE's processor. No 
local operating system or communications protocol support is ordinarily 
required. Often, processing requirements can be satisfied with a 
microcontroller rather than a full-fledged processor. 

Areas for Comparison 

This section introduces several criteria which are important in 
comparing alternative approaches, and considers the relationship 
between those criteria and the implementation options. 

Protocol Layer Placement 

This criterion measures an approach's ability to provide protection 
in a fashion specific to a broad range of protocol layers. While protection 
applied at any layer provides a measure of protection for layers above, it 
is not tailored to the special capabilities and needs of specific protocols at 
higher layers and hence can't satisfy all security requirements of a 
layered protocol architecture. For example, network layer (layer 3) 
encryption can protect the stream of traffic between a pair of hosts, but 
can't distinguish between different individual users on those hosts as 
they send interpersonal messages at the application layer (layer 7). 

The peripheral approach is most successful with regard to this 
criterion. It can be applied at any layer up to and including the application 
layer. The transparent FE approach is least successful, as it is generally 
difficult to apply above the network layer. The non-transparent FE can be 
applied above the network layer, especially if implementation of lower 
layers is delegated to the FE, but cannot be easily extended all the way to 
the application layer. 

Security Service Comprehensiveness 

This criterion measures an approach's ability to provide a 
comprehensive range of security services. While the set of appropriate 
functions varies depending on the choice of protocol into which 
COMSEC is integrated, some generalizations can be made about 
different approaches' attributes. To succeed in this criterion, an 
approach should be able to provide the full range of OSI security services 
which are appropriate to its protocol placement. 

A distinction can be made between "value-added" services and 
services which restrict a host computer's actions. 
Administratively-directed access control is a good example of the latter 
category. The FE approaches are superior to the peripheral approach in 
their ability to enforce controls restricting a host. 

On the other hand, certain services are best provided within a host. 
For example, the non-repudiation service provides message 
accountability. A host's users should not be expected to accept 
individual responsibility for an incoming message merely because it was 
acknowledged by an FE-based encryptor. User-level accountability 
should be based on a path extending all the way to a user. 

No single approach is optimal for providing all types of services. 
Certain services are best provided by extending the endpoints of 
COMSEC protection into subscriber hosts, most closely approaching the 
hosts' users. Other services are best provided by a device operating 
independently from a subscriber host and immune from its control. In 
order to evaluate an approach with regard to service 
comprehensiveness, one must first establish the set of services which 
are important in a given market sector. 

Applicability to Environments 

In some environments, a COMSEC component's primary role is to 
provide value-added security services when such services are requested 
by a subscriber host or process. Typically, this paradigm is associated 
with unclassified environments, although it may also be applicable to 
certain classified contexts, particularly when trust levels and/or access 
class ranges are uniform within a network. Such services are best 
provided by a peripheral or non-transparent FE COMSEC module; a 
transparent FE, by its nature, lacks a control interface through which an 
associated host computer can select optional services. 

In other environments, a COMSEC component assumes an 
enforcement filter function, restricting the actions of an associated host 
computer in order to enforce a network security policy. Such a policy may 
be rule-based and/or identity-based. Administratively-directed access 
control and restriction of covert channel bandwidth from a host into a 
network offer good examples of filtering functions which an associated 
security component may impose on a host. These types of functions are 
most conveniently provided by a FE module, either non-transparent or 
transparent. Integration of enforcement functions within the host at which 
the enforcement is directed imposes severe trust requirements on the 
host's architecture. 

TCB Boundaries and Evaluation Concerns 

This criterion measures the size of the trusted computing base 
concerned with COMSEC-related functions. It is an indication of the 
system-level evaluation task's scope and difficulty. In the transparent FE 
approach, COMSEC-related TCB functions are confined to the outboard 
subsystem. In general, the complexity of an embedded system such as a 
cryptographic FE (either transparent or non-transparent) is less than that 
of a general-purpose host computer, simplifying evaluation, but should 
not be dismissed as insignificant. A protocol-oriented cryptographic 
component may easily contain thousands or tens of thousands of lines of 
code. When the non-transparent FE approach is used, most 
COMSEC-related TCB functions remain in the outboard subsystem. 
Depending on the capabilities built into the host-FE protocol, 
employment of such a protocol may or may not imply the need for 
host-based trusted functions. Integration of COMSEC within a peripheral 
places a larger trust burden on the peripheral's associated host, although 
appropriate peripheral design strategies can act to bound this concern. 

Transparency 

This criterion measures the extent to which an existing host 
computer (hardware and/or software) must be modified in order to 
coexist with COMSEC. Success in this area allows a COMSEC 
integration approach to be applied in order to protect existing unmodified 
hosts. Clearly, the transparent FE approach is most successful in 
satisfying this criterion. It is followed by the non-transparent FE 
approach, typically requiring only software modification. The peripheral 
approach, typically requiring software and hardware modifications, is least 
transparent. 

The incremental costs of adding security to a network system can 
be evaluated in several dimensions. Unit purchase cost for the security 
components is the most obvious parameter, but operational support 
costs often assume dominant importance over a system's life cycle. 
Another dimension of cost deals with the security components' impact on 
overall system performance. 

The peripheral integration approach offers the potential for 
significant advantages with regard to purchase cost. When COMSEC is 
integrated within a host computer's hardware base, less duplication of 
hardware components, packaging, and software is required in order to 
incorporate security. Both FE approaches incorporate their own 
separately-packaged autonomous processors, and are therefore likely to 
be more expensive to produce than a peripheral implementation. On the 
other hand, an FE approach can be applied to a diverse range of host 
computer types, which may allow improved economies of scale for FE 
approaches. 
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The peripheral approach also offers benefits with regard to 
maintenance and operational support. When COMSEC is provided by a 
computer vendor, the vendor can maintain the COMSEC components 
along with their associated host computer. This integrated support 
improves overall system availability by reducing "finger pointing" among 
multiple vendors of different network system components. 

Different integration alternatives have different impacts on system 
performance. The peripheral approach's impact is direct; processor 
cycles used for COMSEC component control are not available to perform 
other tasks. While tangible, this burden will often be fairly minor. If 
applied indiscriminately, FE approaches can perturb the operation of 
communications protocols in ways which can impact performance 
severely. For example, introduction of added control information into 
transmitted messages can cause packets to be fragmented into multiple 
packets, increasing overhead and communications costs. Careful system 
engineering is required in order to avoid such inefficiencies. 

Enhanced Host-COMSEC Interaction 

This criterion considers the richness of a COMSEC component's 
service interface, in terms of the types of control which can be invoked 
and data which can be passed across that interface. For example, 
authentication data carried in a peer-peer protocol between COMSEC 
components can be reflected to an associated host and used by the host 
as an input to its internal access control and authentication mechanisms. 
In the other direction, host-resident data can be provided as an input to 
access authorization decisions made within a COMSEC component. 
These examples illustrate the composition of COMSEC and COMPUSEC 
into an overall INFOSEC architecture. The peripheral approach allows the 
most powerful service interface, followed by the non-transparent FE. 
The transparent FE presents no explicit service interface, and therefore 
is least attractive with regard to this criterion. 

Conclusions 

Each approach has good and bad points with respect to different 
criteria. This reflects the fact that different approaches are best suited to 
different parts of the overall COMSEC market space. 

The peripheral approach is quite flexible, offers a powerful service 
interface, and can be applied throughout the protocol hierarchy. The 
peripheral approach is poorly suited, however, to performing 
enforcement functions to restrict its associated host. Because of this 
characteristic, its cost and functionality benefits will probably first be fully 
appreciated by customers with unclassified processing requirements. 
Until highly trusted hosts become more widespread, it appears that 
FE-based protection will be required for many classified processing 
needs. It is possible, however, for FE-based approaches at lower 
protocol layers to be used in conjunction with host-based COMSEC 
providing fine granularity protection at higher protocol layers. 

The FE approaches are more costly, less flexible, and their protocol 
layer applicability is more limited. On the other hand, their encapsulation 
of functions within a separate security perimeter simplifies system-level 
evaluation. The transparent FE offers a unique benefit; it can provide a 
"security overlay" at network interfaces, protecting the traffic of existing, 
unmodified host computers. The non-transparent FE's explicit service 
interface allows it to provide better support to host-based functions than 
a transparent FE can provide. 

Acknowledgment 

I would like to thank the anonymous reviewer of a draft version of 
this paper for comments which suggested useful areas towards which to 
focus additional discussion. 

125 



Architectural Model 

of the 


SDNS Key Management Protocol 


Paul A. Lambert 

Motorola GEG 


Abstract 

The Secure Data Network System (SDNS) project has devel­
oped a security architecture within the Organization of 
International Standardization's (ISO) Open System 
Interconnection (OSI) computer network model. The 
foundation of the SDNS security architecture is based on a 
distributed key management technique that is embodied in an 
application layer Key Management Protocol (KMP). In the 
SDNS architecture the KMP provides a uniform mechanism 
for the establishment of secure communications. This paper 
describes the security services furnished by the KMP and 
examines the relationship of the KMP to the OSI reference 
model. 

Introduction 

Key management is defined by ISO as "the generation, 
distribution/issuance, storage, updating, destruction, and 
archiving of keys." The SDNS model for key management 
distributes this functionality into every security device in a 
communication system. The generation or distribution of a 
key is then the responsibility of each pair of communicating 
security devices. Before any instance of secure 
communication between SDNS systems the peer devices 
must use the Key Management Protocol to establish their 
identities and then determine a key to use for subsequent 
communications. 

Correct identification of remote systems is assured by mutual 
authentication. The authentication of SDNS security devices 
is based on the exchange of credentials. The credentials 
provide identity information and information that may be 
used for access control decisions. A drivers license or a 
credit card are good analogies to the security devices 
credentials. The credentials are issued by a central authority 
and are subsequently used without any interaction with the 
central authority. SDNS will provide a Key Management 
Center (KMC) that will be the responsible authority for the 
creation and distribution of credential material. 

The SDNS Key Management Protocol is the mechanism for 
the exchange of credentials. The basis of the KMP is a 
simple four-way handshake. Two communicating systems 
must first exchange the credentials that describe themselves. 
Each of the peer systems validates the credentials and then 
exchange messages that determine how they will 
communicate. This second pair of messages is encrypted by 
a key that each system has determined from the exchanged 
credentials. The ability of each peer to decrypt the second 
exchange tests the correctness of the key that was selected or 
formed from the credential exchange. In this manner the 
successful validation of the second pair of messages 
completes the mutual authentication of the peer devices. 

The SDNS project has defined specific cryptographic algo­
rithms and data formats. While these algorithms ensure the 
interoperability of government certified security systems, the 
definition of the architectural model and the protocols are 
independent of these algorithms. The protocols are capable 
of supporting multiple algorithms and define only the 
mechanisms for transferring information used in the key 
management operations. 

CRYPTOGRAPHIC 

ASSOCIATION 


PRESENTATION CONNECTION 

Figure 1. SDNS key management model. 

Application Layer Model 

Key management is defined within the SDNS architecture as 
an application service element. A model of SDNS key man­
agement in the application layer of the OSI reference model 
is illustrated by Figure 1. In this model, key management is 
divided into agents that support the user and a Key 
Management Application Entity (KMAE) that supplies the 
communication services. The communication services 
consist of the ISO standard Application Control Service 
Element (ACSE) and the SDNS defined Key Management 
Application Element (KMAE). In this model the Key 
Management Protocol (KMP) provides the services defined 
for the KMASE. 

The Key Management User Agent (KMUA) and the Key 
Management Server Agent (KMSA) are the local and remote 
entities that act on behalf of a user to manage the TEKs and 
credentials. These agents provide all of the authentication 
and access control services based on information provided by 
the KMAE. The KMUA and KMSA are also responsible for 
the generation of TEKs based on the credentials. The 
management of the credentials and keys is indicated by the 
management information bases (MIBs) in Figure 1. The 
establishment of a cryptographic association is used in this 
model to indicate the existence of a TEK shared between the 
agents. This association includes attributes that describe the 
intended usage of the TEK and access control limitations. 

It is important to note that the duration of the cryptographic 
association is normally longer than the duration of the key 
management association. The key management association 
and the lower layer protocols are used to establish the TEK 
and it's attributes. After a cryptographic association is 
formed the key management and application associations 
may be released. This allows the use of the TEK to be 
independent of the instance of communication used to 
establish the TEK. 

The KMP requires the services of the ISO application layer 
protocol ACSE and the presentation protocol. These 
protocols provide the means for the communication of key 
management information. SDNS has defined requirements 
on the protocols used for the application, presentation, 
session, and transport layers to ensure the interoperability of 
SDNS key management implementations. 
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Communication Protocol Requirements 

The communication protocols required by the KMP are stan­
dardized for the application, presentation, session, and trans­
port layers of the OSI reference model. OSI conformant pro­
tocols are specified by SDNS for these communication 
layers. The ACSE protocol is required in the application 
layer for SDNS key management. ACSE provides services 
for the establishment and termination of application 
associations. 

A minimal Presentation Protocol is required by SDNS key 
management. The presentation layer functions include the 
negotiation of transfer syntaxes and may provide 
transformations between the transfer and abstract syntaxes. 
SDNS key management uses a single standard transfer 
syntax. 

The Session Protocol provides services for the organization 
and synchronization of a dialog between presentation layer 
entities. The KMP requires only the kernel and duplex 
function units of the standard Session Protocol. The transport 
layer provides for the reliable transfer of data. Transport 
protocol class 4 (TP4) is required to support SDNS key 
management. Lower classes of service may be negotiated. 
For example, while TP4 is the default for interoperability, 
TPO may be used in reliable network environments. 

Dual Stack Model 

The communication architecture of SDNS key management 
allows the key management communication services to be 
separate from the user communication services. This separa­
tion of the upper protocol layers is shown in the dual stack 
model of Figure 2. Each stack represents the profile of the 
communication services required by the applications. The 
upper layers of this model are logically distinct. The lower 
layer protocols may or may 
management and user traffic. 

not be shared by key 

USER 
APPLICATIONS I KMUAI 

USER 
UPPER LAYER 
PROTOCOLS 

IAscEI IKMAEI 

PRESENTATION 

SESSION 

SP TP4 

SHARED LOWER 
LAYER PROTOCOLS 

Figure 2. SDNS Dual Stack Model 

This model illustrates a security protocol (SP) in the path of 
user communications. In the currently defined SDNS frame­
work this security may be implemented at the link layer, net­
work layer, or transport layer. When the security protocol 
needs a traffic key for its security services it makes a request 
to the KMUA. This request typically occurs when a new in­
stance of communication is to be established through a 
remote security system. The KMUA then uses the KMP to 
establish a cryptographic association with the remote KMSA. 
After all authentication and access control rules are validated, 
the KMP releases the key management association and leaves 
the cryptographic association in place. The new 
cryptographic association includes the TEK, access control 
privileges, and the security protocol that will use the TEK. 
The KMUA then returns this information to the security 
protocol which subsequently uses this information for its 
security services. 

The dual stack model allows SDNS key management to be 
used for ISO or non-ISO user traffic. It also allows for the 
support of security at intermediate systems. Intermediate 

system security may be provided by the SDNS security 
protocols SP2 (link layer) or SP3 (network layer). An 
example of the key management architecture for an SP3 
intermediate system security device is shown in Figure 3. In 
this figure the communication service requirements for the 
KMP are identical to the previous illustration. The user 
upper layer protocols are removed to a separate host end 
system. Traffic from the protected host is carried on 
subnetwork one. The ISO network layer model defines the 
roles of the Subnetwork Independent Convergent Protocol 
(SNICP), Subnetwork Dependent Convergence Protocol 
(SNDCP), and the Subnetwork Access Protocols. 

IAscEIIKMAEI 

PRESENTATION 
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TP4 

s~T~ 
SNDCP 1 

SNACP 
1 

SNDCP 2 

SNACP 1 

Figure 3. Intermediate System Key Management Model 

Key management is provided at intermediate systems in the 
same manner as end systems. An application association is 
formed between security devices whenever a new instance of 
secure communication is required. The KMP then uses this 
association to form the cryptographic association. The 
association is used to support security services between the 
intermediate systems. 

KMP Services 

The KMP provides mechanisms for the following basic ser­
vices: 

Authentication of peer devices. 

Access control based on authenticated creden­

tial information. 

Traffic key establishment and maintenance 

with other security devices. 

Rekey with the KMS to obtain new 

credentials. 

Establishment and maintenance of crypto­

graphic associations with other security de­

vices. 

Distribution of Compromise Key Lists. 


The above services are used together for three basic functions 
- the establishment of cryptographic associations, rekey to 
obtain new credentials, and the distribution of Compromise 
Key Lists. Each of these basic functions always provide 
capabilities for authentication and access control. 

Cryptographic Association 

A principle function of the KMP is the establishment of 
cryptographic associations with other security devices. A 
cryptographic association consists of a Traffic Encryption 
Key (TEK) and associated attributes that determine the usage 
of the TEK. The TEK established by the KMP may be used 
by any other security service that uses cryptography. SDNS 
has currently defined protocols that provide security services 
at the Transport and Network layers of the OSI reference 
model. Extensions are planned for protocols that will support 
Link layer security. SDNS has also defined security 
extensions to X.400 for electronic mail security. The SDNS 
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electronic mail does not require a cryptographic association, 
but may use the KMP for the rekey of credentials. 

The TEK usage is determined by an option negotiation per­
formed during the key establishment. The categories of op­
tions include algorithm options, labeling requirements, 
keying granularity, security protocols, and protocol options. 
These selections can be placed in an order to express the 
preferences of the initiating device. The responding device 
then selects an appropriate intersection if possible. This 
negotiation allows SDNS devices to support several security 
protocols or service options. Defaults have been defined to 
ensure interoperability. The negotiation enables the device to 
intemperate and where applicable provide additional services 
beyond the defaults. 

Access control attributes are an important feature of the 
cryptographic association. The cryptographic association is 
only formed if mandatory and discretionary access control 
rules based on the credentials pass appropriate checks. 
During the traffic key establishment Peer Access 
Authorization (PAA) is enforced. Within the SDNS project 
the specification of consistent access policies and access 
control label formats have been defined by the SDNS Access 
Control working group. 

Maintenance of the cryptographic association is provided for 
by a procedure to update a TEK, and by the capability to as­
sign a new TEK to an existing cryptographic association. 

Credential Rekey 

The KMP provides support for the electronic distribution of 
credential material. This capability to rekey credentials is in­
tended only to be used on an infrequent basis. The rekey of 
credentials is similar to the periodic issuance of new credit 
cards or drivers licenses. The rekey provides a mechanism 
for the re-certification of a device by the Key Management 
Center (KMC). The rekey in effect changes the expiration 
date of the credentials. It is not intended that the rekey be 
used to change the identity or access control attributes 
contained within the credentials. 

Valid credentials are required to obtain credential material 
from the KMC. To enroll a device into the SDNS system 
manual or out of band techniques are required to install the 
first set of credential material. After an SDNS device is 
enrolled all future interactions with the KMC can be 
performed through a communication network. 

In addition to the interactive rekey, the KMP supports a 
staged rekey that allows credential material to be distributed 
to security devices that may not have direct connectivity to 
the KMC. The staged rekey uses rekey agents that act as 
surrogate KMCs. The rekey agents accept requests from 
devices for new credentials and store the request for later 
delivery to the KMC. Multiple requests may then be grouped 
together into a single batch to be interactively rekeyed with 
the KMC. After an agent obtains the new credential material 
from the KMC, the KMP provides services for the delivery of 
the material from the agent to the security device that 
originally requested the rekey. Multiple agents are allowed 
between the requesting device and the KMC. The KMP, 
however, does not define an agent to agent rekey protocol. It 
is assumed in the staged rekey model that any mechanism 
that meets a systems security policy requirements can be used 
to move the rekey between agents. This allows for a variety 
of rekey material delivery techniques that include manual 
delivery on disks or data keys, or the use of electronic mail. 

Compromise Key List 

The KMP provides limited support for the management of 
access control information. In particular the KMP can be 

used to transfer lists of credential identifiers that are no 
longer valid. This Compromise Key List (CKL) can be 
compared to lists of credit card numbers at retail stores. In the 
same manner that a store clerk might check the list of credit 
card numbers to ensure the validity of a monetary transaction, 
an SDNS device can compare a credential identifier to the 
CKL to ensure the validity of a credential. 

To guarantee that SDNS security devices have the latest 
CKL, CKL version numbers are exchanged during traffic key 
establishment. This allows devices to learn the latest CKL 
version number from their peers. To obtain a new CKL, 
devices may request CKL from either peer devices or from 
the KMC. Since the KMC is the ultimate authority for the 
creation and distribution of CKL, security policy may require 
some security devices within a community to poll the KMC 
for the latest CKL. CKL is also delivered with credential 
material during a rekey operation. 

Summary 

The KMP provides a uniform mechanism for the 
establishment of secure communications in the SDNS 
architecture. The KMP establishes a cryptographic 
association that can then be used at any layer of the reference 
model to provide security services. The TEK bound to the 
cryptographic association is installed only after the identities 
of peer devices are authenticated and access control checks 
based on the authenticated information pass. Option 
negotiation performed during the key establishment allows 
security services and protocols at any layer of the OSI 
reference model to be flexibly supported. The option 
negotiation includes the ability to bind additional access 
control information to the cryptographic association. Addi­
tional capabilities are provided by the KMP to support the 
maintenance of cryptographic associations, obtain new cre­
dentials from the Key Management Center, and obtain the 
latest Compromise Key List from a peer device or from the 
KMC. 

The key management architecture is supported by 
communication requirements that define an interoperable 
stack of protocols for use by the KMP. This architecture 
supports security installed in end systems or intermediate 
systems. Although the protocols specified for use by the 
KMP are ISO conformant, user traffic does not have to be 
carried on ISO protocols. 
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ABSTRACT 
The replacement of hard-wired crypto processors by 

software- and firmware-controlled processors requires techniques 
to assure that COMSEC software meets its security require­
ments. Toward the goal of gaining this assurance, we explore the 
application of formal specification and verification techniques to 
COMSEC software. This paper identifies a class of COMSEC 
systems and a nontrivial member of the class, A Secure Voice 
Terminal (ASVT). The ASVT provides a research vehicle from 
which to study and compare verification systems to gain insight 
into their suitability for verifying COMSEC software. A formal 
specification of the ASVT in Hoare's Communicating Sequential 
Processes (CSP) demonstrates the feasibility of applying formal 
techniques to a class of COMSEC systems. The successful appli­
cation of these techniques to COMSEC software can increase 
assurance that the software meets its security requirements. 

1. INTRODUCTION 

As computers come to dominate communication systems 
and processing the reliability of software and hardware that con­
trol them becomes crucial to the security and performance of 
these systems. The replacement of hard-wired crypto processors 
by software- and firmware-controlled processors requires tech­
niques to assure that COMSEC software meets its security 
requirements.* Toward the goal of gaining this assurance, we 
explore the application of formal specification and verification 
techniques to COMSEC software. This paper identifies a class of 
COMSEC systems and formalizes a nontrivial member of the 
class, A Secure Voice Terminal (ASVT). The language selected 
for this formalization, Hoare's Communicating Sequential 
Processes (CSP), was chosen primarily for its capacity to 
describe the asynchronous operation of separate processors 
within the COMSEC system. 

The Verification Assessment Study (VAS) [8] concludes 
that example problems do not perform adequately as benchmarks 
to determine the "quality" of verification systems. The VAS 
does, however, promote their use to compare and contrast those 
systems. The ASVT provides a research vehicle from which to 
study and compare verification systems to gain insight into their 
suitability for verifying a class of COMSEC systems. Section 2 
of this paper identifies the class of COMSEC systems studied and 
a class of properties to be proved of those systems. Section 3 
informally describes the security policy and functionality of the 
ASVT. In sections 4 and 5, a subset of Hoare's CSP is presented 
and used to derive a formal specification of the ASVT. Finally, 
section 6 summarizes some lessons learned from this effort and 
the direction for future work. 

2. A CLASS OF COMSEC SYSTEMS 

The class of COMSEC systems of interest in our study are 
those systems composed of a set of devices connected by poten­
tially unreliable media that allow users stationed at different dev­
ices to communicate. Each device allows the processing of infor­
nnt~ion but does not allow its permanent storage. No storage is 
provided beyond that of temporary finite buffers. The COMSEC 

*For our t•urposes, COMSEC software is software that controls the cryptographic process, 
interfaces with the cryptographic algorithm, or implements cryptographic algorithms. 

system has no control over the integrity or privacy of data 
transmitted on the communication medium between devices. 
COMSEC security requires securing communication between 
users of a COMSEC system so that only those individuals sta­
tioned at a device properly connected to the system may enter 
information to or extract information from the system. The 
attackers of COMSEC security are those individuals who 
attempt to affect communications over the system in any other 
way. Future references to COMSEC systems refer specifically to 
the class of systems described above. 

The threats to security for information processing systems 
fall in three categories: unauthorized disclosure of information, 
unauthorized modification of information, and denial of use of 
system resources. Conventional computer security measu:es 
require control on the flow of information between t~1~ dev1ce 
and the user. The Orange Book [2] requires the defimtwn of a 
trusted computing base and a security policy identifying subjects, 
objects and a set of rules to determine whether a subject can be 
permitted access to an object. COMSEC system secunty meas­
ures, on the other hand, require control on the flow of mforma­
tion between devices. Any attacks directed at the potent~ally 
unreliable communication media may result in a release of mes­
sage contents to malicious individuals or miscommunication 
between authorized communicants. 

The basic solution to the COMSEC security problem is a 
probabilistic one, encryption. The encryption of information 
flowing across a communication medmm allows tl:e attacker to 
i!:ain data, but not useful information. Strategic Cipher methods 
exist to prevent the attacker from being able to deCJjJhC'r th· 
information intercepted in a reasonable amount of time. Unfor­
tunately encryption alone does not solve all COMSEC problems. 
Accordi~g to Victor Voydock [10] major goals in communication 
security are to (1) prevent the release of message contents, 
prevent message traffic analysis, detect message-streai? 
modification, detect denial of message service, and detect spun­
ous association initiation. Achieving these goals may require the 
use of complicated communication protocols between users of the 
COMSEC system. 

Rather than chose a communication protocol arbitrarily as 
the basis of our investigation, we have decided to concentrate on 
a class of properties called Red/Black separation that apply to a 
broad range of COMSEC systems. Red/Black separation pri­
marily deals with preventing the release of message contents. 
COMSEC systems are usually partitioned into distinct sets of 
Red functions and Black functions called the Red processing par­
tion and the Black processing partition, respectively. All informa­
tion that is plaintext is considered to be Red data and all infor­
mation that is encrypted is considered to be Black data. It is the 
responsibility of the COMSEC boundary to mediate all informa­
tion flow between the Red and Black processing partitions to 
ensure that no Red data is conducted into the Black processing 
partition of the system without first being encrypted. This pro­
perty is referred to as Red/Black separation. 

3. AN EXAMPLE OF COMSEC SOFTWARE 
The example chosen as the basis of our investigation is a 

simplification of an existing system, the Advanced Narrowband 
Digital Voice Terminal (ANDVT), which provides secure voice 
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and data processing facilities to users. [3] Although the ANDVT 
is too complex to investigate with each verification system in full 
detail, its basic functionality has been abstracted into an example 
that can be studied with candidate verification systems in a rea­
sonable amount of time. This example, called ASVT for A 
Secure Voice Terminal, enforces a security policy based on 
Red/Black separation. 

ASVT Structure and Operation 

The ASVT is split into three major blocks of operation : 
the Voice Processing Block, the Modem Processing Block, and 
the COMSEC Module. A block diagram of the system given in 
Figure 3-1 illustrates the four external interfaces through which 
voice transmissions may flow, Red Audio, Red Digital, Black 
Analog, and Black Digital. There are also three internal inter­
faces, Voice COMSEC, Voice Modem, and Modem COMSEC, 
for voirr traffic. 

The ASVT has a control panel which allows its user to per­
form \"arious operations on the terminal. The control panel 
indudrs a power switch, a Push fo Talk (PTT) button, and a 
m< de sr.lector dial. The power switch allows thr user to start up 

and shutdown the ASVT. The user may transmit information 
by depressing PTT or receive information by releasing PTT. 
The mode selector dial allows the user to choose between the 
ciphertext or the plaintext mode of operation. The ASVT also 
has a key port which allows the user to install new keys for the 
encryption/decryption of information. The terminal must be 
clear of all voice transmissions before a user may change the 
status of the control panel or install a new key. 

Five applications of the ASVT are possible for both 
transmission and reception of information. The application in 
effect at any given time is dependent on the current ASVT 
configuration. The current configuration is defined by the two 
external interfaces hooked up, and the positions of the power 
switch, the PTT button, and the mode selector dial on the con­
trol panel. The five ASVT applications are illustrated in Figure 
3-2. The Analog User, Digital User, Digital Line 1, and Digital 
Line 2 applications use the COMSEC module and may only be 
used while in ciphertext mode. There is also one Plaintext 
Application which allows the plaintext transmission and recep­
tion of information by the ASVT while in plaintext mode. Turn­
ing the power switch on brings the ASVT up in the Analog User 
Application and ready to receive data - that is, with the 

J1 - Red Audio 
Intercoms, 

Telephone 
Sets 

J2 - Red Digital 
Digital Data 
and Signaling 

Devices 

Voice Processor Block Modem Processor Block 
Voice 

Modem 
J 7 

Voice Modem 
Processor Processor 

Module 
co.ASEC 

Voice 
EC 

Modem J 6 
COiv1S 

J 3 - Black Analog 
Radios or Wireline 
Appliques 

J4 - Black Digital 
External Modems or 
Digital Networks 

Figure 3-1. ASVT Block Structure 

J1 

J2 

J7l -===== 
J3 

Voice CCMlEC Modem 
recess r Module roc.ess r 

JS JS J4 

- '---­

Analog User Application Digital User Application 

Digital Line 1 Application Digital Line 2 Application 

....---­ nl -
1 ~ J3 

Voice <XMSEC 
Modem 

rocessor 
Module 

Process r 

2 JS JS 
~ '---­ J4 

Plaintext Application 

Figure 3-2. ASVT Applications 
130 



'··-· ..·: 

RED-AUDIO and BLACK-ANALOG external interf:1ces 
hooked up, the PTT button released, and the mode selector dial 
set in the ciphertext position. 

During transmission, the Voice Processing Block performs 
Red voice processing functions to analyze voice transmissions, 
the Modem Processing Block performs Black modem processing 
functions to code important bits and modulate the resulting bit 
stream, and the COMSEC Module Block performs the encryp­
tion of voice. During reception, these functions are inverted. 
The position of the PTT button determines the direction of the 
flow of data for the ASVT in each application. In the ciphertext 
mode, depressing the PTT button allows Red unencrypted data 
to enter the Voice Processing Block from either the Red Audio 
or Red Digital interface. Releasing the PTT button allows Black 
encrypted data to enter the Modem Processing Block from either 
the Black Analog or Black Digital interface. The Plaintext Appli­
cation does not perform any transformation of information input. 
The details of the transformation each application performs on a 
message have little or no bearing on the statement of the secu­
rity policy. For ease of exposition these details are omitted. 

Those applications that use the COMSEC module require a 
key for the encryption and decryption of information. Keys may 
be inserted into the COMSEC module by the ASVT operator 
through the key port. Users at two different ASVT terminals 
may communicate through applications other than plaintext only 
if they have the same kE-y installed. All key m:cnagement and 
distribution for the ASVTs is done manually by ASVT opera­
tors; no keys are transmitted automatically between ASVTs. 
The ASVT is initially configured with a predefined default key. 

An operator wanting to transmit data, either voice or digi­
tal, on the ASVT for a given application will turn the power 
switch on, hook up the interface channels for that application, 
select the ciphertext or plaintext mode according to the applica­
tion, depress the PTT button and send the ASVT data. If the 
operator releases PTT during transmission, information may 
then be received. Likewise, an operator wanting to receive data, 
either voice or digital, on the ASVT for a given application will 
turn the power switch on, hook up the interface channels, select 
the ciphertext or plaintext mode according to the application, 
and release the PTT button. If the operator depresses PTT dur­
ing reception, information may then be transmitted. If the ter­
minal is not configured properly for one of the five applications, 
information may be neither received nor transmitted. 

ASVT Security Policy 

The security policy for the ASVT is based on the concept 
of Red/Black separation. It is split into two policies, an external 
security policy and an internal security policy. The external 
security policy treats the ASVT as a black box and specifies 
Red/Black separation on its input and output. More specifically, 
all information transmitted by the ASVT when in the ciphertext 
mode of operation must be Black, encrypted, data. Thus, the 
only way for the ASVT to transmit Red, unencrypted, data is 
when the mode selector dial is set in the plaintext mode. 

The internal security policy enforces Red/Black separation 
on the components of the ASVT. The Voice Processor Block is 
the Red processing partition and the Modem Processor Block is 
the Black processing partition. During transmission, the COM­
SEC module takes Red data and encrypts it creating Black data. 
During reception, the COMSEC module takes Black data and 
decrypts it creating Red data. Furthermore, the only way data 
may change from Red to Black or Black to Red is by going 
through the COMSEC module. The internal policy requires that, 
when in the ciphertext mode, all information transmitted to the 
modem processor, the Black partition, must be Black, encrypted, 
data. Thus, the only way for Red data to enter the Black pro­
cessing partition is when the ASVT is in the plaintext mode of 
operation. 

4. THE CSP LANGUAGE 

Process isolation reduce~ the amount of software that inte• 
faces with critical COMSEC functions. This, in turn, reduces 
the amount of software within the COMSEC boundary, a pri­
mary objective of the assurance task. Process isolation may be 
accomplished through physical means, by separating processes on 
.~,.;cmcc processors, or through logical means by sepa~ating 
processes using proper programming techniques. The highest 
degree of COMSEC assurance is gained by separating processes 
on distinct processors. Highly reliable COMSEC software, there­
fore requires the asynchronous operation of separate processors 
within the COMSEC system. The CSP process description and 
specification language [6] was chosen primarily for its capacity .to 
describe the concurrent operation of processes and properties 
about them in a formal manner. Although a thorough 
knowledge of CSP is not necessary to understand the 
specification of the ASVT, a general knowledge is helpful. T~e 
rest of this section reviews the terminology and notation that Is 
used in the CSP specification of the ASVT. 

A CSP process is the behavior pattern of some object. 
Each process has an alphabet associated with it defining the set 
of events relevant to its description. Processes are permitted to 
communicate through those channels included in their alphabet. 
The notation used in CSP aids in the description of a process in 
terms of the events in its alphabet. Unless otherwise specified, 
the following conventions are used: 

1. 	 Symbols in upper case italics letters denote distinct 
processes, e.g. A...SECURE-VOJCE_TERMINAL, 
MODEM-PROCESSOR, SKIP. 

2. 	 Symbols in upper case bold denote specifications, e.g., 
CM-RED-BLACILSEPARATION, 
INCOMING--MK. 

3. 	 Symbols in upper case roman denote distinct channels 
through which processes may communicate, e.g., 
RED-AUDIO. 

4. 	 Symbols in lower case roman are variables denoting, for 
example, channels, values of messages sent through chan­
nels, function names mapping values to new values! etc. 
The symbol s, however, is reserved to denote arbitrary 
sequences of events in which a process may engage, called 
traces. 

5. 	 Symbols in lower case italics denote event names, e.g., 
ptLoff. 

6. 	 The alphabet of a process P is denoted oP. 

Processes may communicate through channels. "CHAN­
NELl ? m" denotes the event in which value m is input on 
CHANNELl and "CHANNELl ! m" denotes the event in which 
value m is output on CHANNELL The choice operator " I " 
allows the behavior of a process to be influenced by outside 
events. If P and Q are processes and el and e2 are events, the 
process ( el --. P I e2 --. Q) behaves like process P if el is the 
'ir<t event to occur and behaves likP ~·1·0cess Q if e2 is the fir<t 
event to occur. The process P <I b I> Q is defined as P if b 
else Q. This definition is generalized to allow any arbitrary nest­
ing with binding from left to right if not otherwise specified by 
parentheses. Thus, PJ <I bl I> P2 <I b2 I> P3 is defined as 
the process if bl then PJ else if b2 then P2 else P3. 

A trace of a process is a finite sequence of events in which a 
process has engaged at some moment in time. A trace may be 
denoted by the letter s or a sequence of events enclosed in angle 
brackets, e.g., < eventl, event2, eventS>. The first event of a 
trace s is denoted by 5o and the result of removing the first sym­
bol iss', e.g., <a,b,c>0 =a and <a,b,c>' = <b,c>. 

P; Qsignifies a process that acts like the successful terminar 
tion of P followed by Q. If P does not terminate successfully then 
Q does not start. The trace of this process is s;t where s is the 
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tJ ''"" of P :w is the trace of Q. . \ process successfully ter­
m nates if ant' only if tlw process ends with SKIP. A process 
un~uccessfully terminates if and only if the process ends with 
STOP. 

Processes may be defined to run concurrently through the " 
II "operator, e.g., P II Q is a process that runs process Pin paral­
lel with process Q. Such concurrent processes require simultane­
ous participation of those events that occur in both o:P and o:Q. 
Events occurring in P's alphabet but not Q's may be engaged in 
by P independently of Q. This generalizes to the situation in 
which many processes run in parallel in the obvious way. A 
communication can occur between two processes running in 
parallel if and only if both processes have that communication 
event in their alphabets and both processes simultaneously 
engage in that event, i.e., whenever one process outputs a value 
onto the channel, the other process simultaneously inputs the 
same value from the channeL Thus, 

(CH ! v --+ P) II (CH? m --+ Q(m)) = CH . v --+ (P IJ Q(v)) 

If only one process in a concurrent combination of processes has 
the communication event in its alphabet, then that process may 
engage in the communication event independently of the other 
processes. 

The above notation is used for the procedural description of 
the behavior of processes. A specification of a process or system 
is a predicate description of the way it is intended to behave. 
The specification of processes uses the six conventions listed pre­
viously and a notation that is self-explanatory. Notation that 
may be used in the ASVT specification and procedural descrip­
ti()n i~ ~umrnarized in Table 4-1 for easy reference. 

Notation Meaning 

P&Q P and Q (both true) 
PVQ P or Q (one or both true) 
not P Pis not true 
P--+Q ifP then Q 
some x.P there exists an x such that P 
all x.P for all x, P 
Psat S process P satisfies specification S 
{a,b,c} the set with members a,b,c 
<a,b> the trace containing the events a, b 
E is a member of 
so the head of s 
s' the tail of s 
tr an arbitrary trace of the process 
C?m from channel C input rn 
C!m on channel C output value of m 
C.m a communication event of m on C 
o:P the alphabet of P 
a--+P event a then process P 
(a --+PI b --+ Q) a then P choice b then Q 
P<l bl> Q P if b, else Q 
P;Q P successfully followed by Q 
PIIQ P in parallel with Q 
SKIP a process that does nothing 

but terminate successfully 

Table 4-1. CSP Language Subset Summary 

5. CSP SPECIFICATION OF THE ASVT 

ASVT security requires enforcing both the external security 
r()lirY and the internal security policy. This section focuses on 
the CSP specification of the internai security of the system as 
dPsnibed in section 3. The complete CSP specification is 
presented in [9]. 

This section specifies an abstract model 0f secnrity for 
secure voice terminals containing three component-s- a \·oice pro­
cessor, a modem processor, and a COMSEC module. An 
interpretation instantiates the abstract model to an AS\'T­
specific modeL A functional specification of the ASVT describes 
the operation of the ASVT. Finally, an informal argument is 
given that the COMSEC module conforms to the security policy. 
In the following exposition, values of functions may be written as 
sets of ordered pairs, e.g., if f is a function then (a, b) E f if and 
only if f(a) =b. Specific fields of an n-tuple may be specified by 
the n-tuple name followed by a period followed by a field name 
for that n-tuple, e.g., if c = (fl, f2, f3, f4), the f4 field of c is 
specified ·· f4. Table 4-1 summarizes other notation used in the 
specification. 

Internal Abstract Security Model 

The ASVT internal security policy requires that the only 
way for Red data to enter the Modem Processor Block the 
Black processing partition, is when the system is in the plai~text 
mode of operation. Our goal is to state an abstract model of this 
policy in CSP. Toward this goal, let VOICE-PROCESSOR, 
COMSEC.Jv!ODULE, and MODEMYROCESSOR be the CSP 
processes of the voice terminal's voice processor component, 
COMSEC module component, and modem processor component, 
respectively. We assume the existence of the following constant 
sets, functions, and channels : 

M is a set of messages. 

MS is a set of operating modes such that plaintext EMS. 

K is a set of keys. Let initiaLkey E K be the default initial 
key. 

KCH is the communication channel over which the keys used for 
encryption and decryption are passed. 

VCHS/CCHS/MCHS 
are sets of communication channels over which 
messages pass for the voice processor/COMSEC 
module/modem processor. 

CHC is a function from VCHS UMCHS U CCHS to {red, black} 
which describes the type of messages that may be transmit­
ted over CH when not in plaintext mode, e.g., only Black 
data may be transmitted over channel CH if CHC(CH) = 
black. 

VCS/CCS/MCS 	are sets of 4-tuples describing the possible 
configurations for each component. For in-chan, 
ouLchan E VCHS/CCHS/MCHS, mode EMS, 
pusLto_talk E ( true,false ), 
(in_chan,ouLchan,mode,push_to_talk) signifies 
that for a particular value of push_to_talk, mes­
sages may come in through in__chan, go out 
through out__chan, and may bypass 
encryption/decryption if mode =plaintext. 

VTS/MTS are sets of functions from M to M describing the set of 
voice processor /modem processor message transformations. 
For all T E VTS U MTS, m E M, T(m) is the message 
output when the message m is input. 

CTS is a set of functions from M x K toM describing the set of 
COMSEC module transformations. For all T E CTS, (m,k) 
E M x K, T((m,k)) E M is the message output by the 
transformation when the message m is input with key k 
installed. 

VCT/CCT/MCT 	 are functions from VCS to VTS/CCS to 
CTS/MCS to MTS describing the transforma­
tion each component configuration performs 
on messages input Thus. for all c E 
VCS/CCS/MCS 	 c performs transformation 
VCT(c)/CCT(c)/MCT(c) on messages input. 

CDP is a function from VTS U CTS U MTS to {cipher, deci­
pher, plain} returning the type of transformation per­
formed. Thus, for all T E VTS U CTS U MTS, T per­
forms an encryption if CDP(T) is cipher, performs a 
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decryption if CDP(T) is decipher, and performs no encryp­
tion or decryption if CDP(T) is plain. 

Since the abstract voice terminal and its components can 
not, in general, decide whether data received is Red or Black, we 
must rely on the red or black mark given to each channel by the 
CHC function. The security model must ensure that only 
encrypted data flows through channels marked black and that 
only ' unecrypted data flows through channels marked red. 
Besides internal communication among the three processes, the 
voice terminal can communicate with its external environment 
through an external interface. Since we have no control on the 
external environment, we assume that, through the external 
interface, channels marked red receive only Red data and chan­
nels marked black receive only Black data . It is the job of the 
security policy model to describe the necessary data flow restric­
tions internal to voice terminal given this assumption. 

Given the above structure for our abstract voice terminal, a 
number of requirements for Red/Black separation exist. Assume 
that the terminal is not in plaintext mode and that 
VOICEYROCESSOR and MODEMYROCESSOR have no 
way of encrypting or decrypting data. Red/Black separation 
requires that MODEMYROCESSOR input and output data 
only through channels marked black. Although 
VOICEYROCESSOR may receive Red data through its exter­
nal interface, the security model must ensure that 
COMSEC..MODULE encrypt all data transmitted from 
VOICEYROCESSOR to MODEMYROCESSOR. Since 
COMSEC..MODULE requires Red data for encryption, 
VOICEYROCESSOR may input and output data only through 
channels marked red. But MODEMYROCESSOR may only 
output through channels marked black. COMSEC..MODULE 
mnst, therefore, decrypt all data transmitted from 
MODEMYROCESSOR to VOICEYROCESSOR. Finally, 
COMSEC..MODULE must neither encrypt nor decrypt data 
coming from and going to the same processor. Although the 
ASVT components may perform a transformation of messages 
received, they must not be able to construct new messages. 

A trace of a voice terminal component includes all the com­
munication events specifying the messages that have been pro­
cesser! by that component. The specification functions 
INCOMING_MSGS and OUTGOING_MSGS return, for 
tracP s, the set of messages input and, respectively, output to 
channel chan. 

INCOMING-MSGS (s, chan) = 
ifs=<> 
then{} 
else if s0 =(chan? m) 

then {m} U INCOMING-MSGS(s',chan) 
else INCOMING-MSGS(s',chan) 

OUTGOING-MSGS (s, chan) = 
ifs = <> 
then{} 
else if s0 =(chan! m) 

then {m} U OUTGOING-MSGS(s',chan) 
else OUTGOING-MSGS(s',chan) 

The specification for VOICEYROCESSOR, 
VP_RED_BLACK....SEPARATION, states that all messages 
that exit the voice processor when not in plaintext mode must be 
a proper plain transformation of a message that entered the com­
ponent through a channel marked red and must exit the com­
ponent through a channel marked red. In addition, all messages 
must enter the component only through channels marked red. 

VOICE-PROCESSOR sat VP_RED...BLACK....SEPARATION 

VP_RED...BLACLSEPARATION = 

all c. 

(c EVCS 

& not (c.mode =plaintext) 


((all ouLmessage. 
ouLmessage E OUTGOING-MSGS(tr,c.ouLchan)) 

some iil-I!lessage, t. 
(t EVTS 
& VCT(c) = t 
& ill-Illessage E INCOMING-MSGS(tr,c.in_chan) 
& t(in_message) = ouLmessage 
& CDP(t) =plain 
& CHC(c.ouLchan) =red) 

& (all ill-Illessage. 
ill-Illessage E INCOMING-MSGS(tr,c.in_chan) 

CHC(c.in_chan) =red)) 

The specification for MODEMYROCESSOR 
MP_RED-BLACK....SEPARATION, states that all message~ 
that exit. the modem processor when not in plaintext mode must 
be a proper plain transformation of a message which entered the 
component and must exit through a channel marked black. In 
addition, all messages must enter the component only through 
channels marked black. 

MODEM-PROCESSOR sat MP_RED...BLACLSEPARATION 

MP_RED...BLACK....SEPARATION = 
all c. 
(c EMCS 
& not (c.mode =plaintext) 

((all out-IIlessage. 

out-IIlessage E OUTGOING-MSGS(tr,c.ouLchan) 


some t, iiLillessage. 
(t EMTS 
& MCT(c) = t 
& in-IIlessage E INCOMING-MSGS(tr,c.in_chan) 
& t(in-IIlessage) = ouLmessage 
& CDP(t) =plain 
& CHC(c.ouLchan) =black)) 

& (all ill-Illessage. 
ill-Illessage E INCOMING-MSGS(tr,c.in_chan) 

CHC(c.in_chan) =black)) 

The specification for COMSEC..MODULE, 
CM...RED-BLACK....SEPARATION, states that all messages 
that exit the module when not in plaintext mode must be 
equivalent to the proper transformation of a message that 
entered the terminal. Furthermore, if the message entered 
through a channel marked red and exited through a channel 
marked black, the transformation must perform an encryption of 
the message. If the message entered through a channel marked 
black and exited through a channel marked red, the transforma­
tion must perform a decryption of the message. Finally, if the 
input and output channels are marked the same, the transforma­
tion must perform neither an encryption nor a decryption of the 
message. The specification functions INCOMING_MK and 
OUTGOING_MK specify, for trace s, the set of messages 
input and, respectively, output through channel chan and the key 
that was installed when each message was input or output. 
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INCOMING-MK (s, chan, key) = 
ifs=<> 

then{} 

else if s0 = (KCH ? k) 


then INCOMING-MK(s', chan, k) 
else if s0 =(chan? m) 

then {(m,key)} UINCOMING-MK(s',chan,key) 
else INCOMING-MK(s',chan,key) 

OUTGOING-MK (s, chan, key) = 
ifs= <> 

then{} 

else if So = (KCH ? k) 


then OUTGOING-MK(s', chan, k) 
else if 5o= (chan! m) 

then {(m,key)} U OUTGOING-MK(s',chan,key) 
else OUTGOING-MK(s',chan,key) 

GOMSEG-MODULE sat CM--RED-BLACILSEPARATION 

CM--RED-BLACLSEPARATION = 

all c, ouLmessage, key. 

(c E COS 
& not c.mode =plaintext 
& (ouLmessage,key) E OUTGOING-MK(tr,c.ouLchan,initiaL.key)) 

some t, ilLIIlessage. 
(t E TS 
& COT(c)= t 
& t((ilLIIlessage,key)) = ouLmessage 
& (ilLIIlessage,key) E INCOMING-MK(tr,c.iiLChan,initiaL.key) 
& ((CHC(c.ill-chan) =red 

& CHC (c.ouLchan) =black) 

-+ CDP(t) =cipher) 


& ((CHC(c.ill-chan) =black 

& CHC (c.ouLchan) =red) 

-+ CDP(t) =decipher) 


& (CHC(c.ill-chan) = CHC (c.ouLchan) 

-+ CDP(t) =plain) 


A voice terminal that is described as a concurrent combina­

tion of VOICEYROCESSOR, MODEMYROCESSOR, and 

COMSEC.Jv!ODULE and is an interpretation of the model 

described in this section guarantees conformance with the 

!led/Black separation property. 


Internal Abstract Model JnterprPt.ation 

An ASVT interpretation of the ahtract model defined 
· •W<> requires rl~finin!!: the operation~. sf>ls and fnnrtinn~ of th" 
model in terms appropriate to the the ASVT application as 
tlescribed in section 3. The operations appropriate to the process 
describing the ASVT, A-SECURE-VOICE-TERMINAL, and 
each of its components are defined by each process's alphabet. 

aA-SECURE_VOICE-TERMINAL 
= {hook....upch!,ch2, selecLmodem, ptLon, ptLoff, get....key, 

got....key, power-on, power-off, KCH.k, RED-AUDIO.m, 
RED_j)IGITAL.m, VOICE-MODEM.m, VOICE_COMSEC.m, 
MODEM-COMSEC.m, BLACK-ANALOG.m, 
BLACI<-DIGITAL.m} 

a VOICEYROCESSOR 
= {hook....upch!,ch2, selecLmodem, ptLon, ptLojJ, get....key, 

got....key, power-off, RED-AUDIO.m, RED_j)IGITAL.m, 
VOICE-MODEM.m, VOICE_COMSEC.m} 

aCOMSEC.Jv!ODULE 
= {hook....upchl,ch2, selecLmodem, ptLon, ptLojJ, get....key, 


got....key, power-off, KCH.k, VOICE-COMSEC.m, 

MODEM-COMSEC.m} 


aMODEMYROCESSOR 
= {hook....upchl,ch2, selecLmodem, ptLon, ptLo.Jf, get....key, 

got....key, power-off, BLACK-ANALOG.m, 

BLACI{_j)IGITAL.m, VOICE-MODEM.m, 

MODEM-COMSEC.m} 


where 

hook....upch!,ch2 	 connects channel chi E {RED-AUDIO, 
RED_j)IGITAL} to channel ch2 E 
{BLACK-ANALOG, BLACI{_j)IGITAL} for 
input and output, provided that such a connec­
tion results in a proper configuration for some 
application of the voice terminal. Otherwise it 
has no affect. ' 

selecLmodem 	 configures the system to operate in mode m E 
MS so that only if m =plaintext does the system 
bypass the encryption/decryption of messages. 

ptLon 	 configures the system so that messages may be 
transmitted by the user. 

ptLoff 	 configures the system so that messages may be received 
by the user. 

geLkey 	 notifies the system that a new key is about to be 
installed. 

goLkey 	 notifies the system that a new key has been installed. 

power-on powers up the system. 

power_off shuts down the system. 

KCH.k 	 is a communication event of key k over channel KCH. 

RED-AUDIO.m, RED_j)IGITAL.m, BLACK-ANALOG.m, 
BLACI<-DIGITAL.m, VOICE-MODEM.m, VOICE_COMSEC.m,. 
MODEM-COMSEC.m are communication events of message m 
over the associated channel. 

The sets and functions defined in the abstract model are refine<: 
in Figure 5-1. 

Functional Specification 

A-SECURE_VOICE-TERMINAL 1s described as three 
internal communicating processes that execute concurrently ­
VOICEYROCESSOR, COMSEC.Jv!ODULE, and 
MODEMYROCESSOR. The initial configuration of the system 
is the Analog User Application with the PTT button released. 
Thus the ASVT is set in ciphertext mode and is ready to receive 
information. This requires the initial voice processor 
configuration to be vp_receive--audio, the initial COMSEC 
module configuration to be cm_receive, and the initial modem 
processor configuration to be mp_receive--analog. Once the sys­
tem receives the power_on signal, these processes start executing 
in parallel. This concurrent activity ceases when power-off is 
signaled. The system then shuts down and waits for the 
power_on event to occur. 

A-SECURE_VOICE-TERMINAL = 

power_on-+ 


(VOICEYR OCESSORvp..receive_audio

II COMSEC.Jv!ODULEcm..receive,initiaLkey
II MODEMYROCESSORmp..receive_analog); 

A-SECURE-VOICE-TERMINAL 

The component functional specification, given in Figure 5-2, 
provides a CSP operational description of each component. The 
occurrence of each event of the component's alphabet causes 
some action to occur within the component, whether it be the 
processing of a message, the modification of its current 
configuration, or synchronization with the other components of 
the terminal. The effect each event has on the system as a whole 
is as specified previously. This formal description of ASVT func­
tionality corresponds to the informal description of its behavior 
presented in section 3. Key to understanding this functional 
specification is the fact that processes executing in parallel 
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MS = {ciphertext, plaintext} 

CHC = {(RED-AUDIO,red), (RED-DIGITAL,red), (BLACK..ANALOG,black), (BLACK-DIGITAL, black), 
(VOICE-MODEM, black), (VOICE_COMSEC, red), (MODEM....COMSEC, black} 

VCHS ={RED-AUDIO, RED-DIGITAL, VOICE-MODEM, VOICE_COMSEC} 
VCS = {vp--transmiLaudio (* = (RED-AUDIO,VOICE_COMSEC,ciphertext,true) *), 

vp_transmiLdigital (* = (RED-DIGITAL,VOICE-COMSEC,ciphertext,true) *), 
vp_transmiLplaintext (* = (RED-AUDIO,VOICK.MODEM,plaintext,true) *), 
vp_receive__audio (* = (VOICE-COMSEC,RED-AUDIO,ciphertext,false) *), 
vp_receive_digital (* = (VOICE-COMSEC,RED-DIGITAL,ciphertext,false) *), 
vp_receive_plaintext (* = (VOICE_MODEM,RED-AUDIO,plaintext,false) *)} 

VTS = {synthesize, analyze, null} 
VCT = {(vp_transmit__audio, analyze), (vp_transmiLdigital, null), 

(vp_transmiLplaintext, null), (vp_receive__audio, synthesize), 
(vp_receive_digital, null), (vp_receive_plaintext, null)} 

CCHS ={RED-AUDIO, RED-DIGITAL, VOICE_COMSEC, MODEM....COMSEC} 
CCS = {cllLtransmit (* = (VOICE-COMSEC,MODEM....COMSEC,ciphertext,true) *), 

cm_receive (* = (MODEM....COMSEC,VOICE_COMSEC,ciphertext,false) *)} 
CTS = {encrypt, decrypt} 
CCT = {(cllLtransmit, encrypt), (cm_receive, decrypt)} 

MCHS = {RED-AUDIO, RED-DIGITAL, VOICE...MODEM, MODEM....COMSEC} 
MCS = {mp-transmit__analog (* = (MODEM....COMSEC,BLACK..ANALOG,ciphertext,true) *), 

mp_transmiLdigital (* = (MODEM....COMSEC,BLACK..DIGITAL,ciphertext,true) *), 
mp_transmiLplaintext (* = (VOICE...MODEM,BLACK..ANALOG ,plaintext, true) *), 
mp_receive__analog (* = (BLACICANALOG,MODEM....COMSEC,ciphertext,false) *), 
mp_receive_digital (* = (BLACK-DIGITAL,MODEM....COMSEC,ciphertext,false) *), 
mp_receive_plaintext (* = (BLACK..ANALOG ,VOICE...MODEM,plaintext,false) *)} 

MTS = {encode_modulate, demodulate_decode, encode, decode, null} 
MCT = {(mp_transmit__analog, encode_modulate), (mp_transmiLdigital, encode), 

(mp_transmiLplaintext, null), (mp_receive__analog, demodulate-decode), 
( mp_receive_digital, decode), ( mp_receive_plaintext, null)} 

CDP ={(analyze, plain), (synthesize, plain), (encrypt, cipher), 
(decrypt, decipher), (encode_modulate, plain), (encode, plain), 
(demodulate-decode, plain), (decode, plain), (null, plain)} 

Figure 5-l. Internal Abstract \lode! Interpretation 

require simultaneous participation of those events shared by the 
process' alphabets. 

ASVT Verification 

The internal ASVT security model is the instantiation of 
the abstract internal security model with the internal model 
interpretation. Likewise, the external ASVT security model is 
the instantiation of an abstract external security model with an 
ASVT abstract model interpretation [14]. Verification of the 
ASVT requires proving that the ASVT functional specification 
conforms to both the ASVT external and internal security 
models. A manual formal verification of the ASVT using the 
CSP proof rules introduced in [6] is too long and detailed for 
presentation here. CSP does, however, simplify the task of infor­
mally arguing that the ASVT conforms to the security policy 
described by the models. 

An argument that the ASVT conforms to the internal secu­
rity policy proceeds by induction on the length of the trace of 
each ASVT component. Rather than prove that all of the com­
ponents meet their specification, we prove only the most difficult, 
COMSEC...MODULE. The proof of the other two components 
proceed similarly. Lets be the trace for COMSEC...MODULE. 

Base Case: Lets=<>. 
Then all c. 

INCOMING--MK (s, c.ouLchan, initiaLkey) = {} 
and OUTGOING_MK (s, c.ouLchan, initiaLkey) = {} 

which implies 
CM..RED-BLACICSEPARATION =true 

so trivially, 

COMSEC...MODULE sat 


CM..RED-BLACICSEPARATION<> 

Induction Step : (Let @ be the trace append operation.) 

Assume that 


COMSEC...MODULE sat 

CM..RED-BLACICSEPARATION, 

Prove that 

all cmo E aCOMSEC...MODULE. 


COMSEC...MODULE sat 


CM..RED-BLACICSEPARATION,@<cmo> 

Proof : CM..RED-BLACICSEPARATION specifies that, 
when not in plaintext mode, for all messages m (1) if m is output 
from the COMSEC...MODULE via some configuration then it is a 
proper transformation of some message input for that 
configuration, (2) if m is input through a channel marked black 
and output through a channel marked red it must be encrypted, 
(3) if m is input through a channel marked red and output 
through a channel marked black it must be decrypted, and (4) if 
m is input and output through channels with the same mark it 
must be neither encrypted nor decrypted. The only events in 
aCOMSEC...MODULE that affect INCOMING_MK (or 
OUTGOING_MK) are those that input a message (or output 
a message) or those that input a new key. Noting that events 
that input a new key only affect future messages it is trivial to 
prove that 
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l·OiaE_PROCESSORc = 

selecLmodem -+ VOICEYROCESSORc 
<I not m EMS I> 

VOICEYROCESSOR(c.in_chan,VOICE-MODEM,pla.intext,c.push-to._talk) 
<I m =plaintext & c.pusLto-talk I> 

VOICEYROCESSOR(vorcE-MODEM,c.ouLchan,pla.intext,c.push-to._talk) 
<I m =plaintext & not c.push_to-talk I> 

VOICEYROCESSOR(c.in_chan,c.ouLchan,ciphertext,c.push_to_talk) 
<I c.pusLto_talk I> 

VOICEYROCESSOR(VoiCE-COMSEC,c.ouLchan,ciphertext,c.push-to_taJk)

I ptLon-+ VOICEYROCESSORc <I c.pusLto_talk I> VOICEYROCESSOR(c.ouLchan,c.in-"'han,c.mode,true) 

I ptLoff-+ VOICEYROCESSOR(c.ouLchan,c.inAan,c.mode,ralse) <I c.push-to_talk l> VOICEYROCESSOR, 

I hook_upchl chZ -+ VOICEYROCESSORc 


' <l not (chi E {RED-AUDIO, RED_DIGITAL} & ch2 E {BLACK-ANALOG, BLACK_DIGITAL}) 
V (chl = RED_DIGITAL & c.mode =plaintext) V (ch2 = BLACICDIGITAL & c.mode =plaintext I:> 

VOICEYROCESSOR(chl,VOICE-COMSEC,c.mode,c.pusLto_talk) 
<l c.pusLto_talk & (chi= RED_DIGITAL V (chi= RED-AUDIO & c.mode < > plaintext)) I> 

VOICEYROCESSOR(chl,VOICE...MODEM,c.mode,c.pusLtO-talk) 
<l c.pusLto_talk & chl =RED-AUDIO & c.mode =plaintext 1> 

VOICEYROCESSOR(VOICE-COMSEC,chl,c.mode,c.pusUO-talk) 
<l not c.pusLto_talk & (chl =RED_DIGITAL V (chl =RED-AUDIO & c.mode <>plaintext)) l> 

VOICEYROCESSOR(VorcE...MODEM,chl,c.mode,c.pusLto-talk)
I (c.in_chan? msg-+ c.ouLchan! VCT(c)(msg)-+ VOICEYROCESSORcJ <! c EVCS 1> VOICEYROCESSORc 
I geLkey -+ goLkey -+ VOICEYROCESSORc 
I power_off-+ SKIP 

COMSEC.....MODULEc k = 

selecLmodem -+,COMSEC.....MODULEc 
<l not m EMS l> 


COMSEC.....MODULE(c.in_chan,c.ouLchan,plaintext,c.push_tO-talk),k 

<I m =plaintext I> 


COMSEC.....MODULE(c.in_chan,c.ouLchan,ciphertext,c.push-to._talk),k
I ptLon-+ COMSEC.....MODULEc,k <1 c.push-to_talk l> COMSEC.....MODULE(c.ouLchan,c.in_chan,c.mode,true),k 
I ptLojJ-+ COMSEC.....MODULE(c.ouLchan,c.in.J;han,c.mode,false),k <I c.pusLto_talk l> COMSEC.....MODULEc,k 
I hook_upchl chZ-+ COMSEC.....MODULEc k 
I (c.in__chan? msg-+ c.ouLchan! CCT(c)(msg,k)-+ COMSEC.....MODULEc,k) <! c E CCS l> COMSEC.....MODULEc,k 
I geLkey-+ KCH ? new _key -+ goLkey-+ COMSEC.....MODULEc new-key
I power-off-+ SKIP ' 

MODEMYROCESSORc = 

selecLmodem -+ MODEMYROCESSORc 
<I not m EMS 1> 

MODEMYROCESSOR(VOICE...MODEM,c.ouLchan,pla.intext,c.push-to_taJk) 
<l m =plaintext & c.push_to_ta1k l> 

MODEMYROCESSOR(c.in_chan,VOICE...MODEM,pla.intext,c.push-to_taJk) 
<l m =plaintext & not c.push_to-talk l> 

MODEMYROCESSOR(MODEM...COMSEC,c.ouLchan,cipher-text,c.push_to._taJk) 
<l c.push_to_talk I> 

MODEMYROCESSOR(c.in.J;han,MODEM...COMSEC,cipher-text,c.push-to_talk)

I ptLon-+ MODEMYROCESSORc <I c.push_to_talk l> MODEMYROCESSOR(c.ouLchan,c.in-"'han,c.mode,true) 

I ptLojJ-+ MODEM_?ROCESSOR(c.ouLchan,c.in_chan,c.mode,false) <I c.pusLto-talk 1> MODEMYROCESSORc 

I hook_upchl,chZ -+ MODEMYROCESSORc 


<1 not (chi E {RED-AUDIO, RED_DIGITAL} & ch2 E {BLACK-ANALOG, BLACK_DIGITAL}) 
V (chl = RED_DIGITAL & c.mode =plaintext) V (ch2 = BLACK_DIGITAL & c.mode =plaintext l> 

MODEMYROCESSOR(ch2,MODEM...COMSEC,c.mode,c.push-to_taJk) 
<I not c.pusLto_talk & (ch2 =BLACK_DIGITAL V (ch2 =BLACK-ANALOG & c.mode <>plaintext)) I> 

MODEMYROCESSOR(chZ,VOICE...MODEM,c.mode,c.push-tO-talk) 
<l not c.pusLto_talk & ch2 =BLACK-ANALOG & c.mode =plaintext I> 

MODEMYROCESSOR(MODEM...COMSEC,ch2,c.mode,c.push-to_taJk) 
<I c.pusLto-ta1k & (ch2 = BLACK_DIGITAL V (ch2 =BLACK-ANALOG & c.mode < > plaintext)) I> 

MODEMYROCESSOR(vorcE-MODEM,chZ,c.mode,c.push_tO-talk)
I (c.in--<:han? msg-+ c.out__chan! MCT(c)(msg)-+ MODEMYROCESSORc) <! c E MCS I> MODEMYROCESSORc 
I geLkey-+ goLkey-+ MODEMYROCESSORc 
I power_off-+ SKIP 

Figure 5-2. Component Functional Specification 
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INCOMING_MK (s@cmo, chan, key)= 
if cmo = chan?m 
then {m,key} U INCOMING_MK (s, chan, key) 
else INCOMING_MK (s, chan, key) 

OUTGOING_MK (s@cmo, chan, key) = 
if cmo = chan!m 
then {m,key} U OUTGOING_MK (s, chan, key) 
else OUTGOING_MK (s, chan, key) 

By (a3), we need to ensure only that if cmo is a communication 
event then (1 ), (2), (3), and (4) are true for all possible 
configurations of COMSEC....MODULE in which the mode selec­
tor is in the ciphertext position. (1) is true since, in the func­
tional specification of COMSEC....MODULE,,k, before 
CCT(c)(msg,k) may be output over c.ouL.chan, c must be an ele­
ment of CCS and msg must be input over c.in__chan. (2), (3), and 
(4) are true by inspection of the set CCS and the functions CHC, 
CCT, and CDP in Figure 5-1. End of Proof 

An informal argument very similar to this one can be used 
to convince oneself that the functional specification conforms to 
the external security policy. These arguments increase our 
confidence that the ASVT functional specification conforms to its 
security policy. Although we have not formally verified the 
ASVT using CSP, initial results using the Gypsy verification sys­
tem [5] suggest that it is, in fact, formally verifiable. 

6. CONCLUSIONS 

The increased use of software in the development of COM­
SEC equipment requires techniques to assure that COMSEC 
software meets its security requirements. Formal specification 
and verification provides a promising approach to meet the secu­
rity assurance needs of COMSEC software. The practical appli­
cation of this approach requires an analysis of existing formal 
specification and verification techniques to determine their suita­
bility for verifying that COMSEC software meets its security 
requirements. Rather than evaluating verification systems in 
general, we have taken the approach of comparing verification 
systems for a specific class of applications and class of properties 
to be proved. A nontrivial COMSEC system, representing the 
class of applications, and a security policy for the system, 
representing the class of properties, has been formally specified in 
CSP. The CSP specification of the ASVT demonstrates the 
feasibility of applying formal specification techniques to COM­
SEC system designs. and provides a vehicle from which to study 
and compare systems for verifying COMSEC software. 

Many computer security and verification experts agree that 
a system's security policy need be stated only in terms of the 
interface between the system and its external environment [4,81 

No reference to the internal structure of the system should be 
necessary. While computer security policies typically state 
requirements on the flow of information between the device and 
the user, COMSEC security policies typically state requirements 
on the flow of information between devices or processes. 
Specification of COMSEC security, therefore, often does require 
reference to the internal structure of the system. For instance, 
the ASVT security policy requires control on the information 
flow from the voice processor to the modem processor. 
Specification of this property requires knowledge of the internal 
structure of the ASVT. COMSEC systems, in general, must 
enforce both an external security policy, stating restrictions on 
information flows between the device and the outside world, and 
an internal security policy, stating restrictions on information 
flows between the processes internal to the device. 

Toward the goal of assuring COMSEC software security, it 
appears that formally verifying that a nontrivial CSP process 
description meets its specification is too cumbersome to carry 
through without automated assistance. A formal proof that the 
ASVT conforms to its security policy explodes into a great 
number of cases that could be handled with speed and accuracy 

using a mechanical verification system. Since our goal is to ~ur­
vey existing verification techniques, rather than engineer new 
ones, we leave formal verification up to existing automated tech­
niques. Nevertheless, there are a number of significant advan­
tages that have arisen from using CSP in this project. During 
the formulation of the ASVT example, CSP provided insight into 
aspects of the asynchronous communication of processes within 
the ASVT that were not immediately obvious from its informal 
description. The language also provided a concise medium for 
review of ASVT functionality and security policy. The CSP 
specification allowed us to informally convince ourselves that the 
ASVT process description conforms to its security policy. 

An important lesson learned while trying to formalize the 
ASVT in CSP is that the strength of CSP lies in its fundamental 
concepts and operations. Hoare's book presents the basic con­
cepts of the CSP theory in an intuitive manner and then builds 
on the theory by defining new operations from previously defined 
operations. We quickly became overwhelmed by the wealth of 
notation contained in his book. After floundering for awhile, we 
discovered that a combination of set theory, arithmetic, and the 
most fundamental concepts and operations of CSP is sufficient to 
formally specify a broad range of systems. With this realization 
progress came more readily. 

Future objectives of this project are to investigate existing 
automated formal verification techniques and to demonstrate and 
document the use of these techniques by verifying that. the 
ASVT satisfies its security policy. The CSP specification of the 
ASVT serves as a concise description from which different teams 
may pursue the formal verification of a system in parallel, with a 
high degree of confidence that they are all wor i-tn' from a com­
mon understanding of the problem. We have already begun 
specifying the ASVT using Gypsy [5], mEVES [1], and FDM [7]. 
These verification systems will be compared for their ability to 
promote COMSEC software security. 
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Abstract 

An approach to, and progress toward, the addition of Ada program 
verification capability to the State Delta Verification System (SDVS) 
are presented. In the past, SDVS has been used extensively to verify 
the microprogrammed implementation of computer instruction sets 
written in the computer description language ISPS. The generality 
and modularity of SDVS permit its convenient extension to other· 
programming languages and verification applications. A plan for the 
incremental adaptation of SDVS to a series of Ada subsets of increas­
ing semantic complexity is outlined. The simplest of these Ada sub­
sets is called Core Ada. Interfacing a new language to SDVS requires 
constructing a translator from that language into state deltas, which 
are the semantic basis of SDVS. A general strategy for constructing 
such translators via their denotational semantic specification and a 
straightforward manual translation of the specification into a Com­
mon Lisp program are presented, and the successful application of 
this strategy to Core Ada is reported. Future work on Core Ada and 
more complex Ada subsets is discussed. 

1 Introduction 

This paper describes an approach to adding Ada program verifi­
cation capability to the State Delta Verification System (SDVS). 
SDVS was developed in the Computer Science Laboratory of The 
Aerospace Corporation and a production-quality version for use in 
microprogram verification has recently been completed. That version 
of SDVS is specialized for the verification of the microprogrammed 
implementation, written in the computer description language ISPS, 
of computer instruction sets. SDVS is general and modular enough 
to be adapted, with a reasonable amount of effort, to other verifi­
cation applications and programming languages. Our plan for, and 
progress toward, adapting SDVS to Ada are presented. 

SDVS, state deltas, and the translation of Ada statements into state 
deltas are briefly described in Section 2. Next, our plan for adapting 
SDVS to Ada verification is presented in Section 3. Central to this 
plan is the incremental adaptation of SDVS to a series of Ada subsets 
of increasing semantic complexity. An overview of the simplest of 
these subsets, Core Ada, is given in Section 4. Section 5 presents our 
approach to the design, specification, and rapid implementation of 
the SDVS Ada translators, a discussion of our experience with the 
Core Ada translator, and required additions to the SDVS inference 

1Ada is a registered trademark of the U. S. Government- Ada Joint 
Program Office. 

2This research was supported by the National Computer Security Center 
under contract FO 4701-85-C-0086. 

Figure 1: Structure of the State Delta Verification System. 

engine. Finally, in Section 6 we discuss the research and implemen­
tation issues relevant to adapting SDVS beyond Core Ada, future 
prospects, and conclusions. 

2 The State Delta Verification System (SDVS) 

A good general introduction to SDVS is given in [1], even though 
some information specific to an older version of SDVS is found there. 
Some of the following description of SDVS is taken from [2], where 
much more detail about SDVS can be found. The structure of SDVS 
is shown in Figure 1. It is highly modular; the components of most 
interest to us are the simplifier and the translators, as they are the 
components most affected by the enhancement of SDVS's verification 
capability as a result of the addition of new programming languages. 

SDVS is a system for checking proofs about the course of a compu­
tation. SDVS is based on a specialized form of temporal logic whose 
formulas are called state deltas. Technically, SDVS checks proofs of 
state deltas, which provide an operational semantic representation of 
computation. SDVS can handle proofs of claims of the form "if P is 
true now then Q will become true in the future". If P is a program 
(perhaps with some initial assertions) and Q is an output assertion, 
then the above claim is an input-output assertion about P. SDVS 
can also handle claims of the form "if P is true now then Q is true 
now". In this case if P is a program and Q is a specification then the 
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claim asserts the total correctness of P with respect to Q. SDVS is 
also capable of handling proofs that one program correctly imple­
ments another, i.e., multilevel correctness proofs. 

Central to SDVS's behavioral model are places (which can be viewed 
as abstract memory locations or even program variables) that contain 
(abstract) values, the places' "contents". In its simplest form, a state 
(of a computation or a machine) is an association of places with their 
contents. SDVS's place table records a state. 

A computation is specified by a state delta or set of state deltas as 
a sequence of state changes. The application of state deltas to ef­
fect state changes is a form of symbolic execution. One can facilitate 
compact descriptions of computations by including in state deltas a 
specification of which places potentially receive new contents. Sup­
pose that a state delta induces a change from a state about which 
P is true to another about which Q is true. Then assertions true 
in the P-state about the contents of places whose contents do not 
change are still true in the Q-state. If it is specified that no places 
can change their contents as the state changes from P to Q, then 
Q must be true in the state satisfying P; this is simply the static 
assertion that P implies Q. 

The user communicates with SDVS through several languages. The 
user interface language is used for interactive proof construction. 
The proof language is used to write a proof for the system to check. 
The state delta language is used to express claims to be proven and 
to describe the relevant programs and specifications. Finally, the 
programming languages (currently ISPS and Core Ada) are used to 
express the computational objects to be verified. The translators 
function as SDVS's interface to these languages by translating them 
into the state delta language. 

The proof language consists of two parts: static and dynamic. The 
static part deals with proving that certain assumptions imply cer­
tain conclusions about a given state. For simple theories the SDVS 
simplifier can automatically prove these claims without any user as­
sistance. The dynamic part controls the state transitions made by 
the system; it contains constructs for proof by symbolic execution 
for straight-line code, proof by cases for conditional branches, and 
proof by induction for loops. 

2.1 State Deltas 

Let C be a first-order logic that includes constant symbols called 
places. C is two-sorted (with sorts place and domain); the first 
sort denotes the places and the other denotes the domain of values 
contained by the places. Let A be a two-sorted model for C in which 
the places are interpreted as themselves. A is called a base model for 
£. Further, assume that Cis augmented with names (interpreted as 
themselves) for all domain-elements of A. This provides convenient 
support for using C in applications, such as SDVS, involving symbolic 
execution. Strictly speaking, the augmented language ought to be 
called C.A, but explicit mention of A will often be omitted in the 
sequel. 

Let there be two function symbols, . ("dot") and # ("pound") 
of type place -+ domain, not in C. Let £(.) and £( ., #) de­
note, respectively, C augmented with dot, and C augmented with 
dot and pound. Dot and pound are interpreted in £(.)- and £(., 
#)-structures as functions that yield the contents of a place. 

A state delta (SD) is a special formula ofthe form [SD P, C, M, Q] 
where 

• 	P, the SD's precondition, is a boolean combination of£(.) ­
formulas and state deltas; 

• 	C and M, the SD's comodification and modification lists, re­
spectively, are lists (denoting sets) of places; 

• 	Q, the SD 's postcondition, is a boolean combination of£(.,#)­
formulas and state deltas. 

The modification and comodification lists are often called mod and 
comod lists for short. Note that this syntactic specification of SDs 
is recursive; the basis for the construction of SDs consists of those 
SDs whose pre- and postconditions contain no SDs. SDs are also 
displayed as [SD pre: P corned: C mod: M post: Q]. Pre- and 
postconditions are often represented by lists of formulas; the list 
represents the logical conjunction of its elements. The state delta 
language Csn is the set of all boolean combinations of£(. )-formulas 
and state deltas. 

State deltas are the formulas of a variant of temporal logic, in­
terpreted as follows. A computational model for CA,SD is a pair 
M = (T, {at}tET} where 

• 	T is a totally ordered set (representing time) with a least ele­
ment; and 

• for each t E T, at : Aplace -+ Adomain is a function that gives 
the contents of each place at time t. 

Tis called the time line of M. For any t E T, at is called a state 
of M, and for any place p, at(pA) = at(P) denotes the contents of p 
at time t. Note that we can write pA simply as p, since places are 
interpreted in A as themselves. 

The truth value of C.A,sn-formulas is defined as follows. Let M = 
(T, {at}tET} be a computational model for C.A,SD· A base model A 
can be extended in two fundamental ways: 

• 	 for each t E T, At denotes an £(.)-model extending A such 
that .A' = at; 

• 	 for each t1 ::; t2 E T, At,,t2 denotes an£(.,#)-model extending 
A such that •.A,,,,2 =at, and #.A,,,,2 = at •

2 

Let t1 ::; t2 E T and let [t1. t2] denote the corresponding closed (time) 
interval. A place p is T -preserved over [tb t2] if for all t1 ::; t, t' ::; 
t2,at(P) = at'(p). 

Let </>be an Csn-formula and M a computational model. Let to, t1, t2 E 
T, where t0 ::; t1 ::; t2. We now define what it means forM to satisfy 
</> at to E T, denoted I=M,to <f>. (To do this, an auxiliary notion of 
satisfaction, denoted I=M,t,,t2 </>,must be mutually defined.) Thus, 

1. if</> is an £(.)-formula, then I=M,t0 </>iff I=.A, </>;
0 

2. if</> is an £(.,#)-formula, then I=M,t 1 ,t2 </>iff I=.A,
1 

,,
2 

¢; 

3. 	if</> is a state delta [SD P, C, M, Q], then I=M,to </>iff for every 
t1 :::0: to such that I=M,t, P and all places p E CareT-preserved 
over [to, t1], there exists t2 :::0: t1 such that I=M,t1 ,t2 Q and all 
places p if. M are T-preserved over [t1, t2]; 

4. 	 I=M,t,,t, [SD P,C,M,Q] iff I=M,t, [SD P,C,M,Q]; 

5. for an arbitrary Csn-formula, I=M,to and I=M,t1,t, are extended 
over the boolean connectives in the standard way. 
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An SD is a description of a transition from one computation state 
to another. Its precondition describes a state from which the transi­
tion can be made, and its postcondition describes the state resulting 
from the transition. The times t 1 and t2 above are called the SD's 
precondition and postcondition time, respectively. An SD's mod list 
M specifies those places whose contents are allowed to change be­
tween precondition and postcondition time as a result of the tran­
sition. The truth value of any assertion about these places cannot 
be assumed to be preserved during the transition. The contents of 
places not listed in the mod list must remain unchanged during the 
state transition. The quantification "there exists t2 :2: t1 " in clause 
3 above asserts that the entity described by the SD performs its de­
scribed state transition in a finite amount of time. Thus SDs assert 
the total correctness (in the Floyd-Hoare sense) of programs whose 
transitional behavior they characterize with respect to the SD pre­
and postconditions (together with the implicit assertions that the 
places in SD mod lists preserve their contents across the associated 
state transitions). 

The role of an SD's comod list Cis more subtle and is best explained 
within the context of the SDVS system. SDVS assumes the existence 
of a computational model, and maintains a current timet and an as­
sociated current state CTt. A true SD is applicable in the current state 
if its precondition is true in the current state. If several SDs are ap­
plicable at a given time, then the prover has the option of selecting 
which of these SDs to apply. When an SD is applied, the state tran­
sition that it describes occurs and its postcondition becomes true. 
The current time is advanced to that SD's postcondition time and 
the state of the computation is updated. It is important to note the 
following facts: 

• As long as 	the contents of all places in its comod list remain 
unchanged, a true SD will remain true and thus applicable any 
time its precondition is true. 

• 	If the contents of any place in a true SD's comod list have pos­
sibly been changed, then the truth ofthat SD is not necessarily 
preserved, i.e., its truth becomes indeterminate. Since such an 
SD is not guaranteed to be true, it is no longer applicable even 
if its precondition is true. 

The foregoing definition of state deltas is essentially that of [3]. How­
ever, the SDs actually implemented in the SDVS system are more 
general. In particular, SDs and their pre- and postconditions can 
contain quantifications of individual variables of both sorts place 
and domain. Quantifications of domain-variables are used in pro­
gram specifications. The existential quantification of place-variables 
is used in SDs produced by the translation of Ada block statements to 
represent the introduction and subsequent deletion of program vari­
ables upon block entry and exit, respectively. Also, the operators dot 
and pound map places to place-values as well as to domain-values. 
The precise definition and investigation of the properties of general 
SDs are subjects of ongoing research. 

In the SDVS system, SDs known to be true are called usable; other­
wise (e.g., when their truth is indeterminate), they are not usable and 
SDVS deletes them as candidates for application. The operation of 
applying of SDs can be used to execute a computation. If a true SD 
is applied and has other SDs in its postcondition, then these latter 
SDs become true and can themselves be applied to further advance 
the computation. To execute purely sequential computations, it is 
sufficient to require that (1) when an SD is applied its truth always 
becomes indeterminate, rendering it inapplicable, and (2) the truth 
of any other SDs that were true at the same time that the applied 
SD was true also becomes indeterminate. Let ALL be a special place 
denoting (the list of) all places. Thus any usable SD whose comod 

list contains ALL and whose mod list is nonempty becomes unusable 
when it or any other usable SD is applied. To this end, the comod list 
of every generated SD is (ALL) and the mod list of every generated 
SD is made nonempty by the inclusion in it of a unique place pc that 
denotes an (implicit) program counter. Thus the truth of any usable 
SD will become indeterminate when it or any other SD is applied. 

2.1.1 Translating Core Ada Statements Into State Deltas 

Several examples of the translation of Core Ada statements into state 
deltas will be given in this section. Provided that the value of A 
is greater than zero beforehand, the conditional execution of the 
assignment statement A := A + 1 is translated into the following 
SD: 

[SD 	 pre: (.A GT 0) 

corned: (ALL) 
mod: (pc, A) 

post: (#A = .A + 1)] 

Because the assignment changes A's contents, this SD would be in­
consistent if A were not in its mod list. Once this SD is applied, it 
becomes unusable. 

Subject to the condition B [I] < 10, the assignment B [I] := B[I] 
+ 	2 is translated into 

[SD 	 pre: (.B[.I] LT 10, .I GE .B\FIRST, .I LE .B\LAST) 
comod: (ALL) 
mod: (pc, B [.I]) 
post: (#B[.I] = .B[.I] + 2)] 

This example indicates that places can be structured, with compo­
nents that are themselves places. In this case the place B has array 
structure and is indexable. The places B\FIRST and B\LAST contain 
the current value of B's lower and upper index bounds. The formulas 
. I GE .B\FIRST and . I LE .B\LAST in the precondition of this SD 
act as guards against the raising of a CONSTRAINT-ERROR ex­
ception, by making this SD inapplicable if either is false. Note that 
only the I-th element of B, rather than the entire array B, is in the 
SD's mod list, because only that element ofB is modified in this state 
transition. 

The above examples illustrate translation of statements "out of con­
text" in the sense that the larger program in which they are embed­
ded is not considered. The following examples will take context into 
account, thereby more clearly underscoring the incremental nature 
of the translation. The conditional statement if B[I] > 0 then A 
. - 0 else A : = 1 end if is translated into two SDs: 

[SD 	 pre: (.B[.I] GT 0, .I GE .B\FIRST, .I LE .B\LAST) 
comod: (ALL) 
mod: (pc) 
post: ( cont1 )] 

[SD 	 pre: (-(.B[.I] GT 0), .I GE .B\FIRST, .I LE .B\LAST) 
corned: (ALL) 
mod: (pc) 
post: ( cont2 )] 

where "-"denotes logical negation, and cont1 and cont2 are contin­
uations that generate the translations of the assignment statements 
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A := 0 and A := 1, respectively. It is important to emphasize that 
cont1 and cont2, despite their appearance in the postconditions of 
SDs, are not formulas themselves, but rather are continuations that 
generate formulas (containing SDs that thereby become usable) that 
those continuations represent. This is the sense in which the SDVS 
translators are incremental; additional translation of a portion of a 
program occurs only when that portion is "reached" by the appli­
cation of an SD and the additional translation is initiated by the 
corresponding continuation contained in the postcondition of the ap­
plied SD. If both of the above SDs are applicable and the first of 
them is applied, its postcondition, which contains cont1, becomes 
true. Thereafter, both of the above SDs become unusable because 
of the intersection of (ALL) and (pc): A similar statement can be 
made when the roles of the above SDs are reversed. The treatment 
of the above two SDs requires a proof by cases in an associated SDVS 
proof. 

The statements while A > 0 loop loop-body end loop ; next-statement 
are translated into the following SDs: 

sd1 = [SD pre: (.A GT 0) 

comod: (ALL) 
mod: (pc) 
post: ( cont1 )] 

sd2 [SD pre: (-(.A GT 0)) 

comod: (ALL) 
mod: (pc) 
post: ( cont2 )] 

These SDs. represent the two possible outcomes of evaluating the loop 
test A > 0. sd2 allows the loop to be normally terminated; the con­
tinuation cont2 initiates the the translation of next-statement. sd1 
represents the case where loop-body is executed followed by another 
evaluation of the loop test to determine whether further loop itera­
tions are required. The continuation cont1 represents the translation 
of loop-body, which may be a complex statement. The postconditions 
of the ultimate SDs in the translation of loop-body will contain contin­
uations that regenerate sd1 and sd2; in this sense sd1 is recursively 
defined. The appearance of such recursively defined SDs requires the 
use of induction in associated SDVS proofs. 

The block statement declare x: integer; begin body end; is trans­
lated into the existentially quantified SD 

sd1 (3x)[SD 	 (TRUE) 
(ALL) 
(pc) 
(ALLDISJOINT(pname, .pname, x), sd2)] 

where 

sd2 [SD 	 (TRUE) 
(ALL) 
(pc, pname, x) 
(COVERING(#pname, .pname, x), cont1)] 

Application of the state delta sd2 elaborates the declaration x: in­
teger; . The continuation cont1 represents the translation of body; 
the postconditions of the ultimate SDs of this translation contain 
continuations that represent 

sd3 [SD 	 (TRUE) 
(ALL) 
(pc, pname, x) 
(COVERING( .pname, #pname, x), cont2)] 

cont2 continues incremental translation and symbolic execution to 
the block's successor. The block statement introduces new variables 
into an Ada program, and the corresponding SD introduces new as­
sociated places. When this block is entered during execution, the 
declaration of the program variable x is elaborated. sd1 asserts the 
existence of a new place x by the suitable quantification of sd1; this 
new place x is added to the program's universe of places, repre­
sented by the unique place pname. sdl's postcondition then asserts 
that the universe of places pname, the places that it contains (de­
noted .pname), and the new place x are all mutually disjoint. sd2 
then indicates in its mod list that the contents of pname and x have 
changed, the former because of its annexation of x, and the latter 
through implicit initialization. sd2's postcondition asserts that the 
new contents ( #pname) of the universal place consists of the disjoint 
union of its old contents (. pname) and the new place x. (The reader 
is reminded at this point that all newly introduced place names are 
fully qualified by the path in the tree-structured environment that 
leads to the program unit in which they are introduced.) This pre­
vents any troublesome equality of place names. The application of 
sd3 "reverses" the introduction of the new place x. This reversal is 
an event that occurs upon block exit. To accomplish this, sd3's mod 
list indicates that the .contents of pname and x have (again) changed, 
and its postcondition withdraws x from the program's universe of 
places by asserting that the "old" universe . pname (containing x) is 
the disjoint union of the "new" universe #pname (with x withdrawn) 
and the withdrawn place x. 

The above descriptions are not a complete portrayal of the trans­
lation of loop and block statements. The potential occurrence of 
exit statements in the bodies of loops and blocks must be accommo­
dated. This is done by building an execution stack which upon loop 
and block entry receives a corresponding element that can be invoked 
to achieve the proper completion of the execution of the statement. 
Loop statements are of course the only statements that can be ex­
plicitly completed by an exit statement, but loops can contain blocks 
that must also be completed prior to. the exiting of the loops that 
contain them. The execution stack elements corresponding to blocks 
are invoked to withdraw, via the process described above, places in­
troduced at block entry. Such elements are invoked if their blocks are 
left via an exit statement, in order to effect the necessary adjustment 
of the program's universe of places. Upon loop and block comple­
tion, either via an exit statement or otherwise, the corresponding 
element ill popped from the execution stack. If an exit statement 
leaves several intervening loops and blocks, then each is left in turn, 
innermost outward, and the execution stack is appropriately popped 
as this process proceeds. The precise details of this process are too 
complex to be presented here; see [4]. 

3 Adding Ada to SDVS 

SDVS has been successfully used to verify that ISPS programs are 
correct with respect to state delta specifications of their behavior and 
to demonstrate an implementation relation between two ISPS pro­
grams. Given these successes, it is reasonable to investigate next the 
applicability of SDVS to other programming languages, in particular, 
to Ada [5]. 

The verification of Ada programs will be a new application area 
for state deltas and SDVS. Prior work on Ada verification has been 
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done elsewhere [6,7]. Our additional contribution to this body of 
research will be to apply SDVS's unique features to (a) prove the 
total correctness of Ada programs with respect to specifications, and 
(b) do multilevel verification of Ada programs. Two such levels of 
verification could be (1) proving the correctness of an Ada program 
with respect to a high-level specification, and (2) proving that the 
microprogrammed implementation of the compiled Ada program is 
a correct implementation of the Ada source program. 

3.1 Ada Verification in SDVS 

In order to apply SDVS to the verification of Ada programs, there are 
several research and implementation issues that must be addressed. 

3.1.1 Research Issues 

The principal research issues that must be addressed in adapting 
SDVS to the verification of Ada programs are (1) defining these­
mantics of Ada (more precisely, the subsets of Ada in which verifiable 
Ada programs will be written), and (2) augmenting the SDVS sim­
plifier and data-type theory repertoire with components necessary to 
support the Ada language. 

Our approach is to specify and implement translators from verification­
oriented subsets of Ada into state deltas. Moreover, the translator 
specification should be precise and straightforwardly transformable 
into a corresponding implementation. This will provide not only an 
implementation-oriented formal specification of the Ada translator, 
but also a formal semantics of the Ada subsets in terms of state 
deltas. This specification will also provide the precise and accessi­
ble documentation necessary for the construction of a reliable Ada 
verification system. An initial experiment toward these goals was 
our formal specification of the translation of ISPS into state deltas 
[8]. The associated research issues are of course writing the translator 
specification and, more fundamentally, selecting verification-oriented 
subsets of Ada to use. These subsets are discussed in more detail be­
low. 

Proving the correctness of a program written in a high level language 
must deal not only with the program's flow of control, but also with 
its data types. The above-mentioned translator deals with control 
flow, but SDVS's inference mechanism (its simplifier and data type 
theories) must deal with Ada data types. The research issue here is 

. how to determine which existing components of SDVS can be directly 
adapted to deal with Ada data types, and which enhancements to 
SDVS's inference machinery must be made. 

3.1.2 Implementation Issues 

The two principal implementation issues that must be addressed are 
(1) the construction of a translatorfrom our verification-oriented sub­
sets of Ada to state deltas and (2) the incorporation of Ada-specific 
enhancements into the SDVS simplifier and inference machinery. We 
will now discuss these issues in more detail. 

The translator that currently exists in the SDVS system transforms 
ISPS programs into their state delta equivalents, by means of two 
principal components. First a parser parses ISPS programs according 
to a concrete syntax and constructs corresponding abstract syntax 
trees. Subsequently, these abstract syntax trees are processed by a 
translation program that generates state deltas. The generation of 
state deltas can be done in two ways: incrementally, in concert with 
the step-by-step symbolic execution of the translated ISPS program, 

or from markpointto markpoint (where a "markpoint" is a program 
point marked by a label), in which the aforementioned incremental 
translation steps that occur between markpoints are composed into 
a single equivalent state delta. 

The current · ISPS translator evolved in ari ad hoc manner over a 
period of several years into its present form. In order to document · 
better the existing translator, as well as to establish a systematic 
methodology for defining and implementing translators from other 
languages to state deltas, a formal description of the current ISPS 
translator was written [8]. This formal description was intended to 
be both a reasonably precise specification and one that would be a 
guide to the implementer. The former goal was certainly met by 
the specification, but whether the latter goal was met has yef to 
be ascertained by the actual construction of a translator under the 
guidance of the specification. We are convinced that such translator 
specifications lead to the production of well-documented, correct, 
and easily maintained ·translators. 

3.2 Incremental Development 

The process of adapting SDVS to the verification of Ada programs 
will be done incrementally. The stages of development will be keyed 
to the identification of Ada language subsets of increasing seman­
tic complexity; each stage will require the implementation of cor- · 
responding capabilities in the Ada-to-state-delta translator and the 
SDVS simplifier and inference machinery. 

3.2.1 Ada Language Subsets 

Rather than trying to deal all at once with a full verification-oriented 
subset of Ada, it is more appropriate to proceed by degrees by select­
ing increasingly complex Ada language subsets to incorporate into 
SDVS. This incremental approach will lead to a more orderly adap­
tation of SDVS to a new programming language. Our preliminary 
hierarchy of Ada subsets consists of the following: 

Core Ada: Core Ada is a subset of Ada intended to facilitate the 
initial adaptation of SDVS to Ada. This core language will 
consist of assignment statements and simple expression evalua­
tion; straight-line program flow; branching (if, case), iteratiq~ 
(loop), and escape (exit) statements; simple input and output 
(via the GET and PUT procedures); block structure, scoping, 
and variable declarations; simple packages containing only vari­
able declarations and other simple packages; use clauses; and 
basic data types (integer, boolean, array). 

Stage 1 Ada: This next layer adds subprogram declarations, sub­
program calls, and record and enumeration data types to Core 
Ada. 

Stage 2 Ada: Next added are user-defined data types, and some 
higher-level data types from the set {characters, strings, fixedc 
point numbers, floating-point numbers, access types(pointers)} 

Stage 3 Ada: This final layer added to the Ada. subsets includes 
advanced features that will require considerable research. In­
cluded are exception handling, overloading, generics, real-time 
features, and tasking. 

This identification of Ada subsets is preliminary. Core Ada and Stage 
1 Ada pose no serious technical obstacles that would prevent them . 
from being interfaced with SDVS; the required technology is mature 
and well known. In Stage 2 Ada, access types (typed pointers) pose 
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the greatest technical challenge. Pointers create problems with alias­
ing (apparently distinct names that nevertheless identify the same 
object), but some research has been done on how to verify programs 
that contain Pascal pointers (9]. Finally, Stage 3 Ada constitutes a 
set of research topics, as it is not presently clear how to interface 
these Ada language features to SDVS. As our research progresses, 
the difficulty inherent in adding certain features will become more 
apparent, particularly in Stage 3 Ada. Determining when enough 
Ada language features have been incorporated into SDVS depends 
upon how difficult it is to include them and also upon how difficult 
it is to prove the correctness of programs that use those features. 

3.2.2 SDVS Inference Machinery 

Only modest modifications of and additions to the SDVS inference 
machinery are required to accommodate Core Ada. Most of these af­
fect the simplifier. Core Ada data types are integer, boolean, and one­
dimensional arrays ofthese types. Explicit declarations of these types 
must be introduced; currently only bit string declarations (ISPS's 
only data type) exist in the system. The SDVS simplifier already 
contains most of the logical axiomatization relevant to these data 
types. For booleans, knowledge must be added about the xor (ex­
clusive or) operator and about Ada's ordering on the booleans (in 
which false < true). For integers, knowledge must be added about 
the operators/, mod, rem, and abs. The SDVS simplifier already 
knows about one-dimensional arrays having a lower bound of zero; 
arrays having arbitrary lower bounds must also be accommodated. 
Finally, a mechanism for dealing with the scoping inherent in block 
structure must be added to SDVS. The unique qualification of place 
names (mentioned later) is a part of the solution. The technique 
of using existential quantification of SDs to control the set of active 
places, recently suggested by our colleague Tim Redmond, completes 
the solution of this problem. 

4 Overview of Core Ada 

Core Ada is a simple, but nontrivial, subset of Ada. Core Ada is 
intended to be the basis of a rapid initial adaptation of SDVS to Ada, 
providing early confirmation of two technically sound but untested 
techniques: formal (Ada) translator specification and specification­
directed translator implementation. 

4.1 Core Ada Language Features 

A more detailed description of Core Ada language features now fol­
lows. These features are partitioned into four groups: statements, 
expressions, declarations, and data types. 

Statements 

Core Ada statements constitute a "structured flowchart" program­
ming language. The kinds of statements included are null, assign­
ment, conditional (if), case, loop (while loops with and without 
a condition), block, exit, and simple input and output (GET and 
PUT). 

Core Ada assignment statements can perform only scalar assign­
ments; the left part,of the assignment must represent a scalar ref­
erence (it cannot be the name of an array). The exit statement 
provides a mechanism to escape from the body of a loop statement 
[especially from an infinite loop (one without a condition)]. An exit 
statement can optionally name the loop from which it escapes, and 

can also optionally have a condition that must hold in order for the 
escape to occur. Simple input and output, via the text 1/0 proce­
dures GET and PUT, are included in Core Ada to provide a means 
of formally specifying data input to, and output from, Core Ada 
programs. Standard input and output files are predeclared for this 
purpose. GET and PUT only input and output scalar values; in­
putting and outputting arrays require loops. 

Expressions 

A representative class of Ada expressions is included in Core Ada. 
These expressions contain numeric and boolean constants; simple 
names (identifiers); compound names (e.g., pkgl.pkg2.obj); array 
references (e.g., name(expr ), where mime is a simple or compound 
name and expr is an expression]; short-circuit boolean operators 
(and then; or else); relational operators(=,/=,<,<=,>,>=); 
binary boolean and arithmetic operators (and, or, xor, +, -, *, /, 
mod, rem,**); and unary arithmetic and boolean operators (+, -, 
abs, not). Compound names permit in Core Ada the concept of 
accessing items that are not directly visible. 

Declarations 

Core Ada includes declarations of objects that can be scalar and 
one-dimensional array constants and variables. Also included are 
package specifications and use clauses (the package specifications 
themselves can contain object declarations, use clauses, and other 
package specifications). These package specifications and use clauses 
are included in Core Ada to represent a simple Ada encapsulation 
mechanism. 

Data Types 

Core Ada includes only very basic data types: integers, booleans, 
one-dimensional arrays of integers, and one-dimensional arrays of 
booleans. 

5 Constructing the SDVS Ada Translators 

The construction of translators from the Ada subsets into state deltas 
will start from scratch (i.e., the existing ISPS translator will not be 
modified and used), and will include both formal specification and 
implementation. Ideally, a complete formal specification would first 
be written to guide subsequent implementation. Realistically, most 
of the formal specification would be written first, implementation 
would proceed, and then specification and implementation would in­
teract until they seem to correspond. The formal specification, ac­
companied by textual explanation, serves as an indispensable part of 
the translator documentation. 

The Ada subset translator specifications will be written by means 
of the technique used to write the formal specification of the ISPS 
translator (8]. The translators will be organized in the same way: 

Parsing: A concrete syntax will be written for each subset, and an 
abstract syntax tree for each program will be produced during 
the concrete parsing of that program. We use our own powerful 
tools to specify and implement this process. 

Static Checking: This first phase of semantic analysis, called Phase 
1, detects "static" errors such as items undeclared before their 
use, inappropriate types, and semantically ill-formed constructs. 
Provided that no errors occur in Phase 1, an environment for 
the final phase of the translator will be produced. 

Translation: This final phase of semantic analysis, called Phase 2, 
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incrementally generates state deltas that carry out the symbolic 
execution of the subject Ada program. 

Other techniques must be carried over from the ISPS experience, such 
as qualifying the same identifier used in different scopes in order to 
make their instances unique when they appear in state deltas (which 
have no scopes). 

The presence of recursive subprograms in Ada presents a new chal­
lenge. Recursive functions were not allowed in ISPS; ISPS programs 
were, in effect, block-structured flowchart programs. The SDVS sys­
tem maintained a map of the association of places with their values, 
and this map might have been updated each time a state delta was 
applied. With the introduction of recursion, new instances of places 
local to a subprogram must be created, or the association maintained 
by the place-to-value map must be made more complex. 

5.1 Translator Specification 

The formal specification of both phases of the SDVS Ada translators 
is written in a continuation-style denotational semantics [10]. Be­
cause of space limitations, the following descriptions are necessarily 
simplified and sketchy; full details will appear in a forthcoming tech­
nical report [4]. It is assumed that the reader has some familiarity 
with the principal concepts of denotational semantics as presented 
in, say, [10]. 

Phase 1 collects the environment of an entire program for subsequent 
use by Phase 2. Since Ada has scope and visibility rules· similar to 
those of Algol and Pascal, only part of this environment is visible at 
a given point in a program. Consequently, the environment must be 
tree-structured, and access to its components must be appropriately 
controlled during Phase 2. The local environments of nonoverlap­
ping blocks are made to lie on different paths of the tree-structured 
environment. If the same identifier is declared in two blocks, then 
these two instances of the same identifier can be distinguished by the 
paths leading to their respective local environments. Moreover, these 
identifiers can be uniquely qualified by being prefixed with a textual 
representation of the paths leading to their local environments. This 
technique is indeed necessary when the identifiers appear in state 
deltas in Phase 2, as state deltas have no mechanism to control the 
visibility of names. 

Continuations are used in Phase 1 of the Core Ada translator in a 
very straightforward way. They simply sequence the static check­
ing functions from one program element to the next, until the entire 
program has been checked. If a static checking error occurs, then 
an error message is produced and Phase 1 terminates. In Phase 2, 
however, continuations are used in a more explicit and sophisticated 
way. Continuations must appear in the postconditions of state deltas 
so that when a state delta is applied, more state deltas are generated 
in order that their subsequent application can advance symbolic pro­
gram execution. Continuations are also stacked to control explicitly 
the orderly completion of nested systems of loops and blocks. The 
initiation of Phase 2 of the Core Ada translation assumes that a pro­
gram has first successfully passed Phase 1. In fact, Phase 2 can be 
used as the continuation for Phase 1. 

5.2 Translator Implementation 

The SDVS Ada translators are implemented in Common Lisp. The 
translator specifications are written in a style intended to facilitate 
a straightforward manual translation into a corresponding Common 
Lisp program. We have adhered to this strategy quite faithfully in 

our implementation of the Core Ada translator, which we now briefly 
describe. Full details will appear in a forthcoming technical report 
[11]. 

The Common Lisp implementation of denotational translator speci­
fications involves the implementation of only two objects, semantic 
functions and data structures. For Core Ada, two main Common 
Lisp functions are defined, one for each of the two phases. The name 
of each such function is used to prefix the names of the remainder of 
the functions defined in that phase. Common Lisp data structures 
are defined for each of the specification's data structures, and addi­
tional data structures are defined for subtrees of Core Ada abstract 
syntax trees. 

To effect a transparent implementation of the Core Ada translator, 
the names of the Common Lisp functions are chosen to correspond 
with those of the denotational semantic functions, with a prefix to 
indicate whether the function is from Phase 1 or 2. For each semantic 
function operating on a single syntactic class, a Common Lisp func­
tion is defined to handle arbitrary syntactic objects in that class, 
with subordinate functions (whose names are appropriately suffixed) 
defined to handle the semantic equations for specific syntactic cases. 
If the objects of the syntactic class can appear in sequences, an ad­
ditional Common Lisp function is defined to implement the semantic 
function for sequences. The bodies of the Common Lisp functions 
are for the most part obtained via direct transformations of the cor­
responding semantic equations. These transformations from the de­
notational to the Common Lisp style are detailed in [11]. Some 
transformations that are not so direct, such as the representation of 
continuations by functions and the treatment of the ellipsis notation, 
are justified in [11]. 

· The translator implementor has more freedom in the choice of Com­
mon Lisp data structures than in the choice of Common Lisp function 
definitions; the Common Lisp functions must correspond more or less 
directly to their counterparts in the specification, whereas the data 
structures may be chosen for maximum efficiency. Operators defined 
on the translator specification's data structures, however, are imple­
mented by Common Lisp functions that are functionally equivalent 
to the corresponding operators, and whose names are derived from 
the operator names. 

5.3 Core Ada Achievements 

Phases 1 and 2 of the Core Ada translator have been completely 
specified, fully implemented, and successfully tested. The implemen­
tation of several Core Ada language features was tested by symboli­
cally executing the operation of programs containing those features 
on concrete input data. Our approach to translator construction 
using denotational specifications that are rapidly translated into a 
Common Lisp implementation, has been very successful. The Core 
Ada translator was produced quickly and its checkout required a 
minimum of debugging effort because of the close correspondence 
between specification and implementation. When errors occurred, 
their cause (usually a minor bug in the specification, the correspond­
ing part of the implementation, or both) was quickly determined and 
corrected. As a result, the Core Ada translator is well documented 
and very reliable. 

Additions to the SDVS inference machinery required by Core Ada are 
complete and have been successfully tested. Using these additions to 
SDVS, several Core Ada programs have been proved totally correct 
with respect to input and output specifications. Additional experi­
ence will be gained by performing more proofs. It was our colleague 
Tim Redmond who suggested that the semantics of loop statements 
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be expressed as recursive formulas; this suggestion has been incorpo­
rated into the Core Ada translator. Corresponding proof strategies 
based on fixed-point induction are being investigated [12]. 

Conclusions 

Through the language Core Ada, a modest amount of Ada program 
verification capability has been successfully added to the State Delta 
Verification System (SDVS). Research into the application of this 
enhanced capability of SDVS is ongoing. Our next goal is to specify 
and implement Stage 1 Ada, which will add Ada subprograms and 
some new data types to the verification capabilities of SDVS. 

In our Core Ada experience, our strategy of first formally specify­
ing a language translator in the style of denotational semantics and 
then translating the specification into a Common Lisp program has 
been proven successful. The resulting Core Ada translator is well 
documented, easily maintained, and very reliable. We expect contin­
ued s1:1ccess in the construction of translators for more complex Ada 
subsets. 

The generality and modularity of SDVS have shown it to be quite 
adaptable to new languages and verification applications. 

Acknowledgments 

The authors thank their colleagues Ivan Filippenko, for his contri­
bution to the definition of state delta .semantics given in Section 2; 
Tim Redmond, for generously sharing his considerable knowledge of 
state deltas; and Mike Meyer, for his expert editorial assistance. 

References 

[1] 	 L. Marcus, S.D. Crocker, and J. R. Landauer, "SDVS: A system 
for verifying microcode correctness," in 17th Microprogramming 
Workshop, pp. 246-255, IEEE, Oct. 1984. 

[2] 	 L. Marcus, "SDVS 6 Users' Manual," Tech. Rep. ATR­
86A(2778)-4, The Aerospace Corporation, 1987. 

[3] 	 L. Marcus, T. Redmond, and S. Shelah, "Completeness of state 
deltas," Tech. Rep. ATR-85(8354)-5, The Aerospace Corpora­
tion, 1985. 

[4] 	 D. F. Martin, "A formal description of the incremental transla­
tion of Core Ada into state deltas in the State Delta Verification 
System," Tech. Rep. ATR-88(3778)-1, The Aerospace Corpora­
tion, 1988. 

[5] 	 U. S. Department of Defense, Reference Manual for the Ada 
Programming Language (ANSI/MIL-STD-1815A), 22 January 
1983. 

[6] 	 D. Guaspari, C. Harper, and N. Ramsey, "An Ada verifica­
tion environment," in Proceedings 10th NBSjNCSC National 
Computer Security Conference, pp. 366-371, NBS/NCSC, Sept. 
1987. 

[7] 	 D. C. Luckham, F. W. von Henke, B. Krieg-Bruckner, and 
0. Owe, ANNA - A Language for Annotating Ada Programs. 
Berlin: Springer-Verlag, 1987. Lecture Notes in Computer Sci­
ence, Volume 260. 

[8] 	 D. F. Martin, "A preliminary formal description of the in­
cremental translation of ISPS into state deltas in the State 
Delta Verification System," Tech. Rep. ATR-86A(2778)-7, The 
Aerospace Corporation, 1987. 

[9] 	 D. C. Luckham and N. Suzuki, "Verification of array, record, 
and pointer operations in Pascal," ACM Trans. Programming 
Languages and Systems, vol. 1, pp. 226-244, 1979. 

[10] 	 M. J. C. Gordon, The Denotational Description of Programming 
Languages: An Introduction. New York: Springer-Verlag, 1979. 

[11] 	 J. V. Cook, "Implementing the formal description of the incre­
mental translation of Core Ada into state deltas," Tech. Rep. 
ATR-88(3778)-2, The Aerospace Corporation, 1988. 

[12] 	 T. Redmond, "Fixed point methods in temporal logics," Tech. 
Rep. ATR-88(8354)-1, The Aerospace Corporation, 1988. 

146 



EHDM VERIFICATION ENVIRONMENT: AN OVERVIEW 

F. W. von Henke, J.S. Crow, R. Lee, J.M. Rushby, R.A. Whitehurst 


SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025 


Abstract 

This article reports on the status of the EHDM specifica­
tion and verification system, a state-of-the art environ­
ment designed specifically to meet the needs of security 
verification. 

1 Introduction 

The EHDM system is an integrated environment for the de­
velopment and analysis of formal specifications and abstract 
programs. It has been under development at SRI's Computer 
Science Laboratory (CSL) since 1983, with sponsorship from 
the National Computer Security Center (NCSC). As its full 
name (Enhanced Hierarchical Development Methodology) sug­
gests, the development has built on SRI's experience with, and 
ideas from, previous system-building efforts, including the orig­
inal Hierarchical Development Methodology (HDM) [16] and 
STP [18]. The language of EHDM and the EHDM implemen­
tation are quite different from those earlier efforts, however; 
EHDM incorporates many modern ideas and techniques con­
cerning language design, specifications, and development en­
vironments in order to provide a state-of-the-art verification 
system. 

1.1 State-of-the-Art Verification Systems 

The capabilities expected of a state-of-the-art specification and 
verification system have been summarized in the final report of 
the Verification Assessment Study [10], sponsored by the Na­
tional Computer Security Center in 1985. That report describes 
the kind of system that could be built with the technology that 
existed in 1985 and concludes that a state-of-the-art verification 
system should include: 

1. 	A specification language based on a first-order, typed 
predicate calculus. 

2. 	 An imperative language derived from the Pascal/Algol60 
family of programming languages. 

3. A formal 	semantic characterization of the specification 
and programming languages. 

4. A verification condition generator (VCG). 

5. A mechanical proof checker with some automated proof­
generation capabilities. 

6. A (small) supporting library of (reusable) theorems. 

7. 	 A glass (as opposed to hard copy) user interface, possibly 
using bit-mapped displays. 

8. A single system dedicated to one user at a time (e.g., a 
workstation dedicated to the verification process). 

9. 	 The embedding of these components in a modest pro­
gramming environment with utilities such as version con­
trol. 

The current EHDM environment matches these expectations 
rather well and goes beyond them in some important respects. 

1. 	While the specificatiop.language is based on a typed first­
order predicate calculus, it also includes ele~ents of richer 
logics, such as higher~order logic, lambda calculus, and 
Hoare logic, for greater expressiveness. 

2. 	 Although the EHDM environment does not provide an im­
perative programming language, it does include a variety 
of constructs for expressing imperative behavior; these 
are sufficient for modeling simple imperative programs at 
a level of detail similar to Ada or Pascal (see Section 2.3). 
A concrete link to Ada is provided by a tool within the 
EHDM environment that translates imperative code-level 
specifications from EHDM into executable Ada code (see 
Section 4.3). 

3. We are developing the forma:! semantics of the EHDM spec­
ification language, as well a:s a rigorous description of the 
operations implemented in the EHDM environment, which 
together will provide a solid foundation for EHDM. · This 
work will be completed during 1989. 

4. 	The approach to reasoning about imperative features em­
ployed in EHDM is more general than the traditional VCG 
paradigm and allows users to reason directly with pro­
gram fragments (using Hoare logic). So far, there is in­
sufficient experience with this technique to determine how 
it compares to the VCG approach in practice. The equiv­
alent of a VCG is available as an additional tool for proof 
development. 

5. 	The prover component combines powerful heuristics for 
mechanically generating first-order proofs, together with 
decision procedures for standard theories. It supports 
both automated proof generation and interactive, user­
guided proof construction. Completed proofs can be cap­
tured as proof declarations for inclusion in the specifica­
tion text and subsequent "replay." 

6. 	The EHDM specification language incorporates several mod­
ern features that support reusability of specifications and 
proofs. Specifications are structured into named mod­
ules that other modules can refer to. A general form of 
module parameterization supports generic specifications; 
this feature is more expressive than, for example, generic 
declarations in Ada. The environment also provides a 
mechanism for grouping standard modules in libraries of 
reusable concepts, theorems, and proofs; such libraries 
can be shared among users and projects. 

7. 	 The standard user interface of EHDM uses the bit-mapped 
display of modern workstations and combines a display­

147 



oriented editor with multiple windows, menus, and mouse 
input. 

8. 	The current version of the EHDM environment is imple­
mented in Common Lisp and runs on Symbolics Lisp 
machines and on Sun single-user workstations and time­
shared computers. Earlier versions of EHDM also exist for 
mainframes (Multics, TOPS-20). 

9. 	 EHDM is implemented as an integrated, interactive envi­
ronment that supports all activities involved in creating, 
analyzing, modifying, managing, and documenting spec­
ification modules and proofs. An internal database and 
version control mechanism keeps track of the state of indi­
vidual modules and proofs, and of the interdependencies 
among modules and libraries. Thus, EHDM is a fairly 
complete development environment. However, since it 
does not support a particular programming language and 
has no capabilities for compiling and executing programs, 
it is, strictly speaking, not a "programming environment." 

The EHDM environment provides additional tools and fea­
tures that are not mentioned in the requirements list, but are 
equally important: 

• 	 The EHDM flow tool for analyzing multilevel security (MLS) 
is based on the noninterference model developed at SRI [8, 
7]. 

• 	 EHDM supports hierarchical structure and hierarchical 
development of specifications and proofs from high-level 
requirements to code-level specifications and Ada text 
(which can be generated from code-level specifications). 

2 	 The EHDM Specification Language 
and Logic 

The EHDM specification language is based on first-order typed 
predicate calculus, but includes elements of higher-order logic, 
lambda calculus, and Hoare logic. These enrich the expressive 
capability of the language. Higher-order terms, for example, are 
convenient for expressing induction schemas and requirement 
statements. 

The specification language is strongly typed; all entities 
must be declared with their type before use. The type system 
includes subtypes and function types. Specifications are written 

'.·.·~ 

as definitions and formulas (axioms, theorems, and lemmas). 
The expression language includes all the standard expressions 
of propositional calculus, polymorphic conditionals, and quan­
tified expressions, including quantification over functions. 

2.1 ModUles 

Modules are the basic building blocks of specifications. A mod­
ule may represent the theory describing a specification concept, 
an abstract data type, an abstract state machine, or an (ab­
stract) program. Modules are closed scopes with explicit im­
portation and exportation of names; modules can be nested. 

Modules may be parameterized by types, constants, and 
functions. Semantic assumptions or constraints on module pa­
rameters can be expressed; these entail an obligation that must 
be justified for each module instantiation. This form of mod­
ule parameterization is very general and powerful; it supports 

generic specifications and allows many complex constructs to be 
built from simple language primitives. The module inductions 
shown in Figure 1 exemplifies the use of module parameters, 
assumptions, and higher-order quantification. 

The language has been designed so that it naturally sup­
ports a high degree of reusability of specifications and proofs. 
The main vehicle for reusability are modularization and pa­
rameterization of modules. Reusability is also enhanced by the 
library facility described later. 

inductions: MODULE [dom: TYPE, first: dom, 
next: function[dom -> dom]] 

ASSUMING 

dl, d2: VAR dom 
measure: VAR function[dom ->nat] 

wellfounded: FORMULA 
(EXISTS measure : 

(FORALL dl : measure(dl) < measure(next(dl)))) 

first_is_first: FORMULA 

NOT (EXISTS dl : first = next(dl)) 


reachability: FORMULA 
d2 /= first IMPLIES (EXISTS dl d2 = next(dl)) 

THEORY 

p: 	VAR function[dom -> bool] 

induction: AXIOM 
(p(first) AND 

(FORALL dl : p(dl) IMPLIES p(next(dl)))) 
IMPLIES (FORALL d2 p(d2)) 

END inductions 

Figure 1: A Parameterized Module with Assumptions and 
Second-order Quantification 

2.2 Hierarchical Development 

An important aspect of EHDM (and its predecessor, HDM) is 
the support of hierarchical development of specifications and 
proofs. In a hierarchical development, a system module is spec­
ified abstractly at one level of the hierarchy and implemented 
using the operations provided by the next-lower level. The idea 
of structuring system designs in this manner has been discussed 
and used (in the form of "abstract machines") since the late 
1960s (cf. [14]); an early form of associated proof techniques 
is presented in [15]. The EHDM language supports hierarchi­
cal structuring of specifications from requirement specifications 
through (usually several) levels of abstractions down to a level 
of code specifications. The links between modules at adjoining 
levels of abstraction are established by mappings, which gen­
eralize the notion of implementation. Demonstration of cor­
rectness of mappings between levels is supported by the proof 
system. The traffic light example, developed in Appendix A.1, 
demonstrates the use of hierarchical development in EHDM. 
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2.3 Code-level Specification 

A sublanguage is provided for modeling operational behavior 
and imperative programs, based on the notions of state object 
and operation. State objects correspond to "program variables" 
in programming languages. Operations express state transfor­
mations; they have an effect on state objects by possibly chang­
ing their values. The language also includes constructs for com­
posing operation expressions that correspond to the common 
control structures of programming languages. The combina­
tion of all these features forms a sublanguage that is essentially 
equivalent to a simple subset of the Ada programming language; 
an example is shown in Appendix A.2. The semantics of oper­
ations are defined by Hoare formulas, which express properties 
of the states before and after the state transformation denoted 
by the operation. 

3 The Theorem Prover of EHDM 

The theorem-prover component of EHDM combines powerful 
heuristics for mechanically generating proofs in first-order pred­
icate logic with efficient decision procedures for the combination 
of the following standard theories [19]: 

• 	 Ground formulas in propositional calculus 

• 	 Equality over uninterpreted function symbols 

• 	 Presburger arithmetic, i.e., linear arithmetic with the usual 
ordering relations. 

Proofs (more precisely, proof steps) are declared in the proof 
part of a module; they are expressed as a conclusion to be 
proven and a list of formulas (axioms and lemmas) from which 
the conclusion can be deduced. Proof declarations may also 
specify ground terms to be substituted for the free (technically, 
non-Skolemized) variables in formulas. A fully-instantiated proof 
(one for which all necessary substitutions have been provided) 
can be checked for validity by the ground decision procedures 
without further input from the user. An example of such a 
proof (using the induction axiom from Figure 1) is shown in 
Figure 2. 

the_result: PROVE closed_form FROM 
induction 

{p <- (LAMBDA z -> bool: 
2*sigma(z) = square(z)+z), 

d2 <- iCC}, 
basis, 
inductive_step {i <- dlCPl} 

Figure 2: A Fully-Instantiated Proof 

Proofs that are not fully instantiated can often be completed 
by the high-level prover (also known as the "instantiator"). The 
high-level prover employs powerful heuristics in an attempt to 
construct suitable substitution instances for the formulas in­
volved; this process can be completely automatic, or it can 
be performed in interaction with the user. Completed proofs 
can be captured in augmented proof declarations and included 

in the specification text for later replay as fully instantiated 
proofs. A proof-chain analysis tool checks for completeness of 
larger proof trees and helps keep track of dependencies. 

Equational reasoning similar to the use of rewrite rules is 
specially supported by the high-level proof procedure. The 
prover also implements the main reduction rules of lambda cal­
culus and a fragment of higher-order logic; however, the char­
acterization of the exact extent of this support is still under 
investigation. 

A special procedure for reasoning about state transforma­
tions has built-in knowledge of the meaning of Hoare formu­
las, state objects and state transformations. This procedure 
provides the main support for code-level verification. It per­
mits users to reason directly with Hoare formulas, without 
the traditional intermediate step of translating annotated pro­
grams into verification conditions (VCs); the procedure also 
supports reasoning about program fragments, as opposed to 
complete programs units (like subprograms). In these respects, 
the paradigm that is implemented by the procedure is more 
general than the traditional "verification condition generator" 
(VCG) paradigm. However, a tool equivalent to a VCG is avail­

able in the EHDM environment for use in proof development. 
Examples of proofs with Hoare formulas are included in Ap­
pendix A.2. 

4 The EHDM Environment 

The EHDM environment is implemented as an integrated, inter­
active system that supports all activities involved in creating, 
analyzing, modifying, managing, and documenting specification 
modules and proofs. The standard user interface of EHDM uses 
the bitmap display and combines a display-oriented text edi­
tor (customized and enhanced EMACS) with multiple windows, 
menus, and mouse input. (A less enhanced editor-based inter­
face is available for remote operation.) All operations can be 
invoked directly from the editor, including the basic operations 
of parsing, prettyprinting, and typechecking specification text, 
invoking the theorem prover, and requesting status informa­
tion. In addition to these basic operations, the system provides 
a number of further support tools, including: the MLS Checker 
(described in Section 5), the context and library tools, the con­
figuration control support, and the EHDM-to-Ada translator. 

4.1 The Context and Library Manager 

The system maintains an internal database for keeping track of 
the state of individual modules and proofs (referred to as the 
working context) and of the interdependencies among modules 
and libraries; the user can manipulate this working context or 
switch between contexts. Modules are the basic entities around 
which the EHDM system is organized, and the context feature 
virtually insulates the user from the underlying file system. The 
EHDM system creates and manages private files, which the user 
can ignore completely since all file manipulation happens as a 
side effect of user interaction with the EHDM system. 

The library mechanism permits users to group standard 
modules in libraries of reusable concepts, theorems, and proofs. 
The environment offers tools for creating and maintaining mod­
ule libraries and supports sharing of libraries among users and 
projects. 

Contexts and libraries have been designed so that the novice 
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user can completely ignore these facilities. A user always works 
within a context, but when a user starts EHDM for the first 
time·; the system automatically establishes a working context; 
later, when the user leaves EHDM,the system saves the context 
and restores it when work is resumed. Users need to .know 
about contexts only when they want to work in more than one 
context; similarly, they can ignore libraries until they want to 
make use of that facility. 

4.2' The Configuration Control Tool 

A configuration and version control mechanism ensures that 
consistent versions of modules are used; status checks report on 
the status of modules and proofs, and on dependencies among 
modules and proofs..At any given time, a. module specification 
may be in one of several states. When a module is typechecked 
or a proof performed, a "version check" is made to see that the 
typecheck information (type tables) recorded for the transitive 
closure of all referenced modules is still valid. For example, 
if module A uses module B, then changes to module B will 
invalidate the type table for module A. This invalidation will be 
discovered when module A is accessed during the typechecking 
of a module that uses A, or during the construction of a proof 
from A or a module that uses A. 

4.3 The EHDM-to-Ada Translator 

Hierarchical development of specifications and proofs from re­
quirements down to the code-level is complemented by an ex­
perimental facility for translating code-level specifications or 
"abstract algorithms" from the BHDM language into Ada. The 
EHDM -to-Ada translator has been developed to investigate a 
paradigm of code verification in which the code written in the 
programming language is regarded as the target of a systematic 
development, in contrast to the traditional view that regards it 
as the starting point ofa verifi~ationeffort. 

The traditional approach is to start with program code, aug­
ment it with annotations or "assertions," and attempt to deduce 
properties of the code. Thus, verification occurs after a piece 
of executable code has been written. In contrast to the tradi­
tional approach, a key idea behind hierarchical development as 
embodied in EHDM is that actual, executable' code is the result 
of a development process that involves several layers of abstrac­
tions and refinements. Thus, the EHPM way to develop verified 
programs is to carry out the necessary reasoning at the design 
level, before actual program text is considered. The advan­
tage of this approach is that most, if not all, reasoning is done 
in the specification language rather than in the programming 
languag.e, thus avoiding the language complexities that typi­
cally result from design considerations such as compiler speed 
or runtime efficiency. ·Furthermore, this approach leads to a 
more natural integration of verification into the process of soft­
ware development. 

The experimental EHDM-to-Ada translator automatically 
extracts the "operational content" of an EHDM module and 
translates it into Ada code wrapped in a package. An example 
of the use of the .translator is shown in Appendix A.2. The 
translator is. based on a detailed comparison between the two 
languages. In many respects, EHDM lends itself to translation 
into Ada, since central Ada constructs like packages and gener­
ics have a direct counterpart in the EHDM language (modules 
and module parameters). On the other hand, the differences 

between the two languages are substantial. Many features of 
Ada that are important for verification cannot be modeled di­
rectly in EHDM. For a tool based on this paradigm to become 
really practical, the specification language must be much closer 
to Ada than the .current EHDM language; for example, it must 
take such features as the Ada type system and exceptions fully 
into account. 

5 The Multilevel Security Tool 

EHDM provides a tool that analyzes specifications for compli­
ance with a notion of multilevel security (ML S). This MLS Check­
er is based on the noninterference model of security [8,7,17] de­
veloped by Goguen and Meseguer at SRI. This is the main tool 
in EHDM that is specific to security applications. 

The MLS Checker examines certain types of specifications 
and generates formulas (called verification conditions), which, 
if true, establish that the specification complies with the non­
interference formulation of security. The verification conditions 
are collected together in the THEORY section of a new module 
generated by the MLS Checker, and a simple PROVE or sc ver­
ify declaration for each verification condition is placed in the 
PROOF section of the new module. Often, these mechanically 
generated PROVE declarations are sufficient to establish their 
corresponding verification conditions. If not, the user must de­
velop suitable proofs in a separate module: modifications to the 
module containing the verification conditions are not allowed. 

The verification conditions generated by the MLS Checker 
ensure that: 

1. 	The result of an operation depends only on the values 
of objects whose security classifications are dominated by 
those of the caller of the operation 

2. 	 An operation potentially changes the values of only those 
objects whose security classification dominate that of the 
caller 

3. Values assigned to an object depend only on the prior val­
ues of objects whose security classifications are dominated 
by that of the object assigned to. 

These three properties guarantee that a specification is secure 
in the sense that it does not require an unsecure implementa­
tion; they do not prove that it will not allow an insecure imple­
mentation. Furthermore, since security is a negative property 
(it is concerned with what must not happen), a conventionally 
verified Implementation of a secure specification need not be 
secure! The properties established by the form of flow analysis 
embodied in the MLS Checker are therefore quite limited and 
should not be mistaken for a "proof of security" [9]. Nonethe­
less, this is a very useful class of tool and the only one capable 
of detecting covert storage channels [3]. 

6 Applications of EHDM 

6.1 SEAVIEW 

Currently, EHDM is used primarily in the Sea View project, 
jointly conducted by SRI and Gemini, which is developing a de­
sign for anAl multilevel secure database system [6,4,5]. In this 
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project, a formal top-level specification of "secure distributed 
data views" is being developed using EHDM as the specification 
language. 

This project has considerably advanced the state of the art 
in multilevel database security. Prior to Sea View no demonstra­
bly viable approaches to multilevel database security existed. 
Sea View's approach combines element-level labeling with A1 
assurance- a feat that was considered impossible as recently as 
a year ago. 

Among Sea View's major achievements are: 

• 	 A security policy that defines what security means for a 
database system 

• 	 An interpretation of the security policy demonstrating 
how SeaView applies the security policy to a relational 
database system 

• 	 A multilevel relational data model that defines extensions 
to the standard relational model to specifically accommo­
date element labels 

• 	 A formal security model that includes security properties 
that define secure state and transition properties that fur­
ther restrict state transitions (to rule out systems such as 
"System Z" [12]). 

The exercise of formally specifying the Sea View properties 
in the EHDM language resulted in the discovery and clarification 
of many ambiguities and imprecise or incomplete statements in 
the original description of the model. Through this exercise, 
numerous mistakes in the properties of the model were also 
identified and corrected. 

6.2 Other Application Areas 

An early version of the EHDM system was used at SRI to extend 
the design verification for the SIFT fault-tolerant multiproces­
sor [13] previously carried out with the STP system. This ef­
fort involved the specification and verification of rather subtle 
properties; the transcripts of the specification and proof of the 
system occupy more than 700 pages. 

EHDM is currently also being used to specify and verify the 
functional behavior of hardware and to formalize completely 
the published proof of a clock synchronization algorithm [11]. 

7 Conclusion 

The EHDM system as described here has reached a stage where 
it can support serious specification and verification efforts. How­
ever, the development of EHDM is still continuing. We have 
already mentioned the ongoing work on clarifying the formal 
basis of EHDM ; both language and system are expected to be 
refined as a result. 

The EHDM system is perceived by some as hard to under­
stand and difficult to use. We are aiming at overcoming these 
difficulties by developing tutorial materials that complement 
the existing user documentation [2,1] and that describe the 
styles and "idioms" of specifications and proofs in EHDM . A 
library of specification modules for standard concepts is being 
developed as EHDM is being used more extensively both inside 
and outside SRI. 
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A Examples 

This appendix presents some simple examples to demonstrate 
the features of EHDM that have been described in the text. 

A.l Traffic Light 

The first example demonstrates the use of hierarchical specifi­
cation and verification. We present a very abstract characteri ­
zation of a safe intersection controlled by traffic lights, a more 
concrete realization of such an intersection, and a proof that 
the one is a valid interpretation of the other. 

The module colors introduces color as an uninterpreted 
type and green, yellow and red as constants of that type. 
In this elementary example, we do not include the requirement 
that these colors should be distinct. 

The module traffic_light introduces the uninterpreted 
type intersection, and the constant initial of that type. 
Eastwest and northsouth are functions whose intuitive pur­
pose is to return the current color of the light in their respective 
directions, while change_lights is the function that changes 
these colors. 

The module safe_intersection is a requirements state­
mentfor a safe intersection. It defines the predicate safe_lights 
to be true if a red light is showing in at least one of the 
directions of the intersection, and it requires that the ini ­
tial configuration of the intersection should be safe and that 
change_lights should preserve safety. 

The module light_sequence defines a particular sequencing 
of colors, while the module pairs defines the theory of pairs, 
with first and second as the selectors, and make_pair as the 
constructor. Both these modules use equational specifications, 
which simplify the subsequent proofs. 

The module traffic_light_adt provides a concrete real­
ization of an intersection (as an Abstract Data Type, or ADT). 
An intersection is realized as a pair of colors, whose first 
component is that showing in the eastwest direction, and whose 
second component is that showing in the northsouth direction. 
The change_lights function provides a particular sequencing 
of lights at an intersection, using the sequencing of colors de­
fined by the next function from the light_sequence module. 

Finally, the module safe_lights_adt establishes a map- , 
ping or interpretation from the modules traffic_light and 
safe_intersection onto the more concrete traffic_light_adt. 
A valid mapping requires that the axioms of the higher level 
modules become theorems of the lower one. This is demon­
strated in the PROOF section of safe_lights_adt. Because 
all the relevant properties have been defined equationally, the 
high-level prover is able to complete these proofs without fur­
ther input from the user. 

traffic_light_adt : MODULE 

USING colors, light_sequence, pairs[color,color] 
EXPORTING intersection, eastwest, northsouth, 

initial, change_lights 

THEORY 

intersection: TYPE IS pair 

p: VAR intersection 

corner: VAR intersection 


eastwest: function[pair->color] = first 

northsouth: function[intersection->color] = second 

initial: intersection = make_pair(red,green) 

unsafe: intersection 


change_lights: function[intersection->intersection] 
(LAMBDA corner -> intersection: 

IF eastwest(corner)=red THEN 
IF northsouth(corner)=yellow THEN 

make_pair(next(eastwest(corner)), 
next(northsouth(corner))) 

ELSE make_pair(eastwest(corner), 
next(northsouth(corner))) 

END 
ELSIF northsouth(corner)=red THEN 

IF eastwest(corner)=yellow THEN 
make_pair(next(eastwest(corner)), 

next(northsouth(corner))) 
ELSE make_pair(next(eastwest(corner)), 

northsouth(corner)) 
END 

ELSE unsafe END IF) 

END 	 traffic_light_adt 

152 



safe_lights_adt: MODULE 

MAPPING traffic_light, safe_intersection 

ONTO traffic_light_adt 


THEORY 

traffic_light.intersection: TYPE 

IS traffic_light_adt.intersection 


traffic_light.eastwest: 
function[traffic_light_adt.intersection->color] 

= traffic_light_adt.eastwest 
traffic_light.northsouth: 

function[traffic_light_adt.intersection->color] 
= traffic_light_adt.northsouth 

traffic_light.initial: traffic_light_adt.intersection 
= traffic_light_adt.initial 

traffic_light.change_lights: 
function[traffic_light_adt.intersection 

-> traffic_light_adt.intersection] 
= traffic_light_adt.change_lights 

PROOF 

USING light_sequence, pairs[color,color] 

WITH light_sequence, pairs 

safe_initially_pr: PROVE safe_initially 

remains_safe_pr: PROVE remains_safe 

END safe_lights_adt 

safe_intersection: MODULE 

USING colors, traffic_light 

EXPORTING safe_lights 


THEORY 

corner: VAR intersection 

safe_lights: function[intersection -> boolean] 
(LAMBDA corner -> boolean: 

eastwest(corner) = red 
OR northsouth(corner) = red ) 

safe_initially: FORMULA safe_lights(initial) 

remains_safe: FORMULA safe_lights(corner) 
IMPLIES safe_lights(change_lights(corner)) 

END safe_intersection 

light_sequence: MODULE 

USING colors traffic_light 
EXPORTING next 

THEORY 

c: VAR color 

next: function[color->color] 

nl: AXIOM next(green) yellow 
n2: AXIOM next(yellow) red 
n3: AXIOM next(red) green 

END light_sequence 

pairs: MODULE[firsttype, secondtype: TYPE] 

EXPORTING pair, first, second, make_pair 

THEORY 

pair: TYPE 

first: function [pair->firsttype] 

second: function [pair->secondtype] 

make_pair: function [firsttype,secondtype -> pair] 


x: VAR firsttype 
y: VAR secondtype 
p: VAR pair 


mdefl: AXIOM first(make_pair(x,y)) = x 


mdef2: AXIOM second(make_pair(x,y)) = y 

END pairs 

traffic_light: MODULE 

USING colors 
EXPORTING intersection, eastwest, 

northsouth, initial, change_lights 

THEORY 

intersection: TYPE 
initial: intersection 

eastwest: function[intersection->color] 
northsouth: function[intersection->color] 

change_lights: function[intersection->intersection] 

END traffic_light 
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colors: MODULE 

EXPORTING color, green, yellow, red 

THEORY 

color: TYPE 
green, yellow, red: color 

END color 

A.2 Binary Search 

The second example, the module Binsearch, demonstrates code­
level specification and proof by means of a binary search algo­
rithm. Notice how the text of the algorithm (the operation 
bsearch) is broken into smaller pieces, which facilitates rea­
soning about fragments of the code; for example, the invariant 
of the loop body (lemma Inv) is verified separately (InvPr) and 
then used in establishing the main property (Main). 

The module Binsearch uses two other module that are not 
displayed here: IntArrays declares the type IntArray, arrays 
of integers; Ordintervals introduces the predicates ordered 
and is_in on integer arrays and gives their relevant properties 
in lemmas IL1, IL2 and IL3. 

Binse.arch: MODULE [N: int] (* binary search module *) 

USING IntArrays, Ordintervals 
EXPORTING bsearch 

THEORY 

A VAR IntArray 
key, i, VAR int 
lb, ub state [int] 
index, x VAR state [int] 

div function [int,int->int] 
mean function [int,int->int] 

=(lambda i,j -> int: div(i+j,2)) 

newindex: 	operation 
BEGIN index .- mean(lb,ub) END 

newindex_Leml: LEMMA 
O<=lb AND lb<ub newindex lb<=index AND index<ub 

body: operation 
BEGIN 

newindex; 
IF key > A(index) THEN 

lb ·= index + 1 
ELSE 

ub .- index 
END IF 

END 

bsearch: operation [IntArray, int, state[int]] 

bsform: FORMULA 

bsearch(A,key,index) 


BEGIN. 

lb := 1; 

ub ·:= N; 

WHILE lb<ub LOOP 


body 

END LOOP 


END 


Inv: LEMMA 
{ ordered(A) AND O<=lb AND lb<ub AND 

(is_in(key,A,l,N) IMP~IES is_in(key,A,lb,ub)) } 
body 

{ O<=lb AND lb<=ub AND 
(is_in(key,A,l,N) IMPLIES is_in(key,A,lb,ub)) } 

Main: THEOREM 

{ N>O AND ordered(A) } 

bsearch(A,key,index) 


{ lb=ub AND 

(is_in(key,A,l,N) IMPLIES key=A(lb)) } 


PROOF 

newindex_Lem2: LEMMA newindex CHANGES index 

prl2: VERIFY newindex_Lem2 

InvPr: VERIFY Inv 

FROM newindex_Leml, newindex_Lem2, 


ILl {ky<-key, B<-A, i<-lb@Pl, 

j<-ub@Pl, k<-index@Pl}, 


IL2 {ky<-key, B<-A, i<-lb@Pl, 

j<-ub@Pl, k<-index@Pl} 


MainPr: VERIFY Main 
FROM bsform, Inv, 

IL3 {ky<-key, B<-A, i<-lb@C, j<-ub@C} 

END Binsearch 
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A.3 Example of a Translation into Ada 

The binary search module also serves as an example of the 
translation from EHDM into Ada. The translation ignores the 
Hoare formulas and proof declarations, which do not convey 
"operational content." The function div has a "separate body" 
since no body has been given for it. Note that the operations 
body and newindex, which merely denote code fragments, do 
not appear in the Ada text; they have been expanded in the 
loop body. 

WITH IntArrays; USE IntArrays; 

WITH Ord!ntervals; USE Ord!ntervals; 


GENERIC 

N : Integer; 

PACKAGE Binsearch IS 
PROCEDURE bsearch (A : IntArray; key : Integer; 

index: in out Integer); 
END Binsearch; 

PACKAGE BODY Binsearch IS 
lb Integer; 
ub : Integer; 

FUNCTION div (a_O, a_1 Integer) RETURN Integer 
IS SEPARATE; 

FUNCTION mean (i, Integer) RETURN Integer IS 
BEGIN 

RETURN div(i + j, 2); 

END mean; 

PROCEDURE bsearch (A : IntArray; key : Integer; 
index : in out Integer) IS 

BEGIN 

lb := 1; 

ub := N; 

WHILE lb < ub LOOP 


index:= mean(lb, ub); 

IF key > A(index) THEN 


lb . - index + 1· 

ELSE 


ub .- index; 

END IF; 


END LOOP; 


END bsearch; 

END Binsearch; 
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Abstract 

The formal concept of implementation correctness and its embodi­
ment in the State Delta Verification System (SDVS) are briefly de­
scribed. Described are important features added to a prototype ver­
sion of SDVS as a result of experience with a substantial implementa­
tion-correctness-verification effort. The result is a usable version 
of SDVS that can be applied to increase confidence in micropro­
grammed computer implementations; this version is also being ex­
panded to verify the implementation correctness of programs and 
hardware [1]. 

1 	 Formal Computer Descriptions and Verifi­
cation 

A computer system design is hierarchical; that is, descriptions of 
the system components are developed at different levels ( algorith­
mic, programming, architectural, register transfer, gate, circuit, and 
integrated-circuit mask) that vary in the amount of detail they in­
corporate. The tools used in the design process often need a formal 
description of the design at the appropriate level, as the following 
illustrate: 

• 	 A programming language is used at the programming level to 
specify the input to the compiler. 

• 	 A Boolean-level description language is used to specify the in­
put to logic minimization programs. 

• 	 A geometry-oriented language is used for each layer at the 
integrated-circuit-mask level to specify the input to the pat­
tern generator. 

These formal descriptions may also be used to verify the correctness 
of the design,i.e., that it is consistent with the specifications of the 
computer system. This verification process is especially important 
in systems for which a design error is costly, such as in applications 
in which security is vital or in space borne applications. 

With most verification systems, the descriptions of a computer sys­
tem are rewritten by the designers or verifiers in the language under­
lying the logic of the verification system. Unfortunately, specification 
errors creep into this process and thereby increase the cost of the ver­
ification effort and reduce the confidence in the results. 

tfhis research was supported in part by The Aerospace Corporation and 
in part by the National Computer Security Center under contract F04701­
·s5-C-0086-POOO 16. 

The State Delta Verification System (SDVS), developed in the Com­
puter Science Laboratory of The Aerospace Corporation [2], takes 
a different approach. By using the design language rather than the 
language of the verification system, SDVS has an intrinsic advantage 
over other verification systems in that it is easily integrated into the 
design process. SDVS reduces specification erroro by translating the 
designer's descriptions automatically into state deltas, which com­
prise the underlying logic of the SDVS system. Currently, SDVS 
supports portions of the design languages ISPS [3] and Ada [4]. 

The remainder of this paper discusses (1) the formal concept of im­
plementation correctness as it is embodied in SDVS, (2) how SDVS 
supports implementation-correctness proofs, (3) how SDVS has been 
applied to a formal proof, and ( 4) how SDVS is being enhanced to 
support implementation-correctness proofs at multiple levels of de­
sign. These enhancements will result in increased confidence in the 
correctness of the design throughout the design cycle. 

2 	 Implementation Correctness Using SDVS 

Correctness proofs at high levels of design abstraction (e.g., program 
verification) involve verifying the consistency of a particular design's 
representation with respect to input and output assertions. As dis­
cussed above, these assertions are normally written in the language 
of the underlying logic of the verification system. Implementation­
correctness proofs in SDVS differ from the traditional paradigm in 
that they deal with two representations of the design at different lev­
els of detail. The levels of abstraction we are considering for imple­
mentation correctness correspond to computer program, computer 
instruction set, computer microprogram engine, and gate-level de­
sign. All of these levels can be handled within the implementation­
correctness paradigm. 

Informally, one says that a lower-level specification S1 implements 1 

a higher-level specification s2 if the significant state changes that s2 
makes are also made by S1 (usually by a sequence of more primitive 
state changes). This concept is very general and can be applied to any 
pair of levels of the computer-system hierarchy. The implementation 
relation is not necessarily symmetric; there may be state changes of 
sl that have no corresponding significant state changes in s2. 

This informal notion of implementation correctness is best captured 
in a formal correctness theorem. Because, in general, the two de­
scriptions will have different data structures and internal states, the 
key to the implementation-correctness theorem is to provide the cor­
respondence between upper-level and lower-level data and state uni­
verses. This correspondence, called mapping in SDVS [6], is the 
means through which state changes at one level correspond to state 
changes at the other level. 

1 Sometimes the term "simulates" [5] is used for what we call "implements"; 
however, we prefer the latter term because the former connotes a testing method­
ology and it is primarily used for a specific portion of the computer-system 
hierarchy. 
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To begin this formalization process, we build a semantic base for 
computation and for the implementation of one computation by an­
other computation. During a computation, the program variables 
take on values from the computational domain; we capture this con­
cept formally below. 

Definition 1 (A,£, D) is a computational domain if and only if 

• 	 A is a model for the typed first-order language £, where £ 
has types place, domain, and architecture, where the type 
architecture represents a Boolean algebra. £ contains none 
of the symbols., #, "-", li, or II* II; and 

• 	 D isafinitesetofstatementsfrom£(.), where"." isafunction 
symbol from type place to type domain. All occurrences of "." 
in sentences from D are applied to constant place symbols from 
the language £. 

The sentences in D are called declarations. The objects of type place 
are in a one-to-one correspondence with the variables of the compu­
tation; we think of these objects as being actual places or registers 
in a machine. The variables take on values that are the objects of 
type domain. 

Definition 2 (T, ( Ut)tET) is a computational model over a com­
putational domain (A,£, D) if and only if 

• 	 T is a linearly ordered set with a minimal element, and 

• 	 for each t E T, Ut is a function from the elements of A of type 
place to the elements of A of type domain. 

Tis called the timeline of the computational model. For any t E T, 
u 1 is called a state in the computation. 

For any t E T and any object p of type place in £, the "contents 
of pat timet" refers to the value of u1(p). 

The following definitions make formal what we mean by an instance 
of a lower-level machine implementing an upper-level machine. 

Definition 3 (M 1 , Mu) is a mapping model from the upper do­
main (Au,£u) to the lower domain (A1,£1) if and only if 

• 	 M 1 and Mu are computational models over the lower and upper 
domains, respectively, and 

• 	 the timeline of Mu is a subset of the timeline of M 1• 

A mapping from an upper domain (Au ,£u) to a lower domain (A 1 , £ 1) 

is a set of mapping models between those same domains. 

Example 1 Suppose that the upper domain and the lower domain 
differ only in that the places in the upper model Au are a subset of 
the places in the lower model A 1• Then there is a unique mapping 
consisting of mapping models 

((T1, ( ui)tET' ), (Tu, (uf)tET")) 

that satisfy 
Tu = yl 

'<It E Tuuf = uiiPu 

where pu is the set of ob.iects in Au of type place. 

Roughly speaking, in the mapping of Example 1, one can obtain the 
upper computation from the lower computation by forgetting the 
contents of the places not in the upper domain. 

The mapping comes into play in different ways in the two parts of 
the theorem of implementation correctness [7]: 

• 	 The declarations of the upper-level variables, including attributes 
such as bitstring length, range of arrays, and disjointness, must 
be implied by the declarations associated with the correspond­
ing lower-level variables. 

• 	 The semantics of the image of the upper-level description under 
the mapping must be implied by the semantics of the lower­
level description. In SDVS, the semantics are defined by the 
underlying logic of the verification system. 

Whenever we are discussing computational models over the upper 
and lower domains, we will use Mu = (Tu' (untET") and M 1 = 
(T1

, ( ul)tET') as the defaults, respectively. We will also use the state 
delta logic to describe the lower and upper computational models. 
We will use 1ru (1r

1
) to represent sets of sentences from the upper 

(lower) logic. 

Now we are ready to define formally the notion of implementation. 

Definition 4 1r
1 implements 1ru with respect to the mapping Jl, de­

noted by 
J1 f- 7rl '-+ 1ru 

iff for any (M 1,Mu) in 11 one has 

[MI I= r.IJ ___. [Mu I= 1ru] 

From [7], we know that implementation satisfies reflexivity (with 
respect to the identity mapping, any sentence implements itself) and 
transitivity (if 111 f- 1r1 '-+ 1r2 and 112 f- 1r2 '-+ 1r3 then /13 f- 1r1 '-+ 1r3, 

where 113 is the relational composition of 111 and p 2 .) 

SDVS takes as input formal descriptions of the lower level, the up­
per level, and the mapping function, and automatically creates an 
implementation-correctness theorem in the underlying mathemati­
cal logic of SDVS. This theorem represents the claim that the lower 
level implements the upper level via the mapping. The command 
that does this work is called implementation; it encapsulates the fact 
that, under the right restrictions on the mapping, a proof of im­
plementation can be carried out entirely in the lower-level language 
and logic. This new command embodies a more general and formal 
mapping definition than that used in previous versions of the system 
[8]. Having the implementation theorem introduced by the system 
rather than by the user leads to more reliable proofs, and using the 
more general mapping leads to broader applicability. 

Other verification systems also deal with the issue of correspondence 
between levels. For example, in FDM, Ina Jo produces a theorem 
of implementation based on a mapping in a manner similar to that 
used by SDVS; see [9] for an informal description. 

Figure 1 illustrates how SDVS interfaces to the implementation­
correctness process. These elements are discussed briefly in the fol­
lowing sections. 

2.1 State Deltas 

SDVS checks proofs of state deltas [10]. For example, SDVS can 
handle proofs of claims of the form "if P is true now, then Q will 
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of upper machine 
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machines and states v Valid 

s Proof? 
Y/N 

ISPS description TR 
of lower machine 

Proof outline 

Figure 1: Implementation-Correctness Verification as Performed by 
SDVS. The user provides the two ISPS descriptions and "TR" trans­
lates them into state deltas. The user constructs a mapping from 
variables and states of the upper-level description to variables and 
states of the lower-level description. SDVS creates the implementa­
tion-correctness theorem and the user inputs the outline of the proof, 
which the system completes and. checks for validity. 

become true in the future." If P is a program (perhaps with some 
initial conditions) and Q is an output condition, then the above claim 
is an input-output assertion about P. SDVS can also prove claims of 
the form "if P is true now, then Q is true now." In this case, if 
P is a program and Q is a specification, then the claim asserts the 
correctness of P with respect to Q. 

A computation (a sequence of state changes) is specified by a state 
delta or set of state deltas. In order to facilitate compact descriptions, 
the user specifies which variables change value as the state changes 
from one in which P is true to one in which Q is true. Thus, the true 
statements involving variables that do not change will remain true 
in the new state. In particular, if it is specified that no variables are 
allowed to change as the state changes from P to Q, then Q must be 
true in the state satisfying P, and the meaning is simply the static 
claim that P implies Q. 

This discussion provides only an intuitive notion of state deltas. For 
a rigorous definition and examples, see the SDVS user's manual [11). 

2.2 Describing the Levels of Implementation to SDVS 

The mechanics of verifying implementation correctness using SDVS 
involve the automated translation of specifications written in a pro­
gramming language to the underlying formal logic. Thus, SDVS can 
take as input the actual description used by the computer design­
ers, as well as the actual program to be executed on the computer. 
Other systems require that the description or associated comments be 
written in the underlying language of the verification system. While 
SDVS currently only accepts descriptions written in ISPS [12) (which 
is suitable although not ideal for microprogram verification), were­
cently developed a formal technique for specifying the SDVS transla­
tion of other languages [3], and are applying it to programming and 
hardware-description languages. 

2.3 Proving the Theorem of Implementation 

Because there is no general procedure for deciding the truth of the­
orems in computer verification, many proof strategies are possible. 
An important characteristic of SDVS is that its proof strategy is 
a practical compromise between completely automated proofs and 
completely manual proofs. A powerful proof system that requires 
no guidance by the user can waste a lot of time trying approaches 
that an experienced mathematician would easily see are inappropri­
ate. Alternatively, a system that checks step-by-step proofs input by 
the user executes very quickly, but the tedium of dealing with every 
minor step of the proof wastes the user's time. With SDVS, the user 
provides a high-level proof strategy, additional facts useful for the 
proof, and "hints" to aid the system in specific proof steps, while the 
system handles the details of the proof automatically. This compro­
mise strategy is also successfully used by other formal proof systems 
[13)[14). SDVS makes this strategy particularly effective by allowing 
the user to interact with the system. The interface to SDVS was 
significantly enhanced in the latest version, giving the system the 
ability to act as a data-base manager for proofs. 

The proof language itself is divided into static and dynamic parts. 
The static part deals with proving that certain assumptions imply 
certain conclusions about a given state. The dynamic part controls 
the state transitions made by the system. It includes constructs for 
proof by symbolic execution (corresponding to sequential execution), 
proof by cases (corresponding to branching), and proof by induction 
(corresponding to loops). When execution has arrived at a new state, 
a static proof may be needed to verify that new relations do in fact 
hold (in order to show that the postcondition is true and the goal is 
reached, or to show that a precondition is true and a new state delta 
may be applied). 

For simple theories where efficient decision procedures exist and are 
implemented, SDVS derives all conclusions without any user-input 
proof. Examples of such theories are equality over uninterpreted 
function symbols and some fragments of naive set theory. For more 
complicated domains, the system allows the user to write proofs by 
having the system notice more and more difficult conclusions, where 
the newly verified conclusions are saved and used as lemmas on which 
to base the next conclusion. The derivation from a given set of 
lemmas to the next conclusion may be automatic in some cases, or 
it may require the user to designate that an axiom or a previously 
proved lemma is to be applied. 

SDVS provides an abstraction mechanism for combining a sequence 
of state changes into a single state change [15). This is crucial to 
managing large proofs. The system may be run in intera.ctive mode, 
in batch mode, or (as in most real applications) as a combination of 
the two. In the interactive mode the user writes the proof in SDVS 
with help from system prompts, the system executing each proof 
command as it is written. Expressions are written in standard infix 
notation (e.g., x + y). In the batch mode the proof is written by 
means of the editor and is then executed by SDVS with no further 
user interaction. Most commonly a proof is written interactively, 
stored, and later rerun in batch mode. 

3 A Case Study 

Although several examples were developed and verified (e.g., [16]) 
during the development of a prototype version of SDVS, the first 
significant application of SDVS was the C/30 Microprogram Veri­
fication Project, begun in October 1984. This project, which was 
completed in November 1986 [17), used SDVS Version 5 to develop a 
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formal correctness proof of 118 of the 128 instructions (implemented 
by over one thousand microinstructions) in the C/30 repertoire. Six 
C/30 instructions were found to have been implemented incorrectly 
by the microprogram. These errors were confirmed by the respon­
sible engineer (they were corrected in a later release of the C/30 
microprogram). 

The C/30, specifically designed to serve as a packet switching node 
on the Defense Data Network (DDN), is one of a family of com­
puters developed by Bolt, Beranek, and Newman (BBN). The C/30 
is a 16-bit/word machine with 64K words of addressable memory 
and three addressing modes. It has a number. of special-purpose 
and general-purpose registers, and a set of 128 instructions, includ­
ing sophisticated instructions for manipulating queue data structures 
and controlling multiprocessing. It also operates a polled interrupt 
system, with clock, I/0, and scheduling interrupts. The ISPS de­
scription of the C/30 (approximately 30 pages of text) was based on 
the reference manual and validated through simulation. Ten of the 
128 instructions in the C/30 instruction set were not considered for 
verification, including instructions that manipulate the I/0 system 
of the C/30 (these instructions were incompletely documented and 
thus difficult to specify formally). As there was not enough time, 
four other instructions were not verified. 

The C j30 is implemented by a microprogram that executes on BEN's 
Microprogrammable Building Block (MBB) processor [18). The C/30 
implementation was chosen for verification because of an interest in 
verifying certain aspects of DDN, and because of the existence of a 
formal ISPS description of a version of the MBB. This description 
(coincidentally also approximately 30 pages of text) was partially 
in existence at the time, and was validated through simulation and 
through discussions with BBN. 

The C/30 implementation correctness theorem is a formula that de­
scribes how the C/30 is implemented by the MBB. Using SDVS Ver­
sion 5, we constructed this theorem by hand. Its major compvncnts 
are as follows: 

1. 	 the behavior of the C/30 in state deltas (the translation d the 
ISPS description into state deltas) 

2. 	 the behavior of the MBB in state deltas (the translation of the 
ISPS description into state deltas) 

3. 	 the actual microprogram in binary form 

4. 	 a mapping of the corresponding registers and other storage 
elements (called carriers in ISPS) of the C/30 description to 
those of the MBB description 

Figure 2 illustrates the functional relationships of the elements of the 
theorem. 

Writing the theorem of implementation and the high-level proof in 
the interactive mode required about 9 MTS-months of effort. A final 
check on the validity of the proof was made by SDVS in the batch 
mode. This SDVS validation of the proof executed for approximately 
85 hours on a Symbolics 3640 Lisp Machine. Even without subse­
quent improvements that were incorporated into SDVS and upgrades 
to the Symbolics system, these figures demonstrate the feasibility of 
verifying large and complex microprograms. If this process were to 
be integrated into the development cycle of microprogrammed ma­
chines, it would greatly improve current debugging/testing practice, 
which often continues into the applications phase of the product. 

Machine~
Instructions 	 M"l Design 1croprogram 

Translation SDVS 6 
Translation 

~ 
State 

Proof State 
Deltas ·I I· 
 Deltas 

Figure 2: Microprogram Verification Using SDVS. Computer design­
ers implement a computer instruction set by designing a computer (a 
set of data paths and associated control hardware) together with a 
microprogram that controls the movement of data within this com­
puter. Descriptions of this instruction set and its implementation 
are translated by SDVS into formal state-delta semantics. The proof 
of the implementation theorem is performed in the mathematical 
domain of state deltas. 

4 	 Towards Implementation Correctness at 

Multiple Levels of Design Detail 


Because errors may be introduced at any level of refinement, a veri­
fication system that concentrates on a specific level of design detail 
is necessary but not sufficient for the design methodology of criti­
cal applications. During any refinement step it should be possible to 
verify that the new, lower-level specification that has been developed 
is consistent with the higher-level specification. 

To date, formal verification systems have focused on specific steps in 
the refinement process. As we saw above, SDVS was developed to 
verify the microprogrammed implementation of computer instruction 
sets. Other formal verification systems in use have concentrated on 
verifying the refinement step of going from an abstract specification 
of behavior to a system-level design. 

Figure 3 illustrates the process we envision of applying a further 
enhanced version of SDVS to verifying implementation correctness 
throughout the design cycle. The right arrows in the figure rep­
resent steps in the computer-system-implementation (synthesis) pro­
cess. Some of these steps are performed by means of automated tools 
(e.g., by the compilation of Ada programs into machine language) 
and some are performed manually (e.g., by the implementation of· 
microinstructions by means of data paths and associated control). 
For every synthesis step there is a corresponding implementation­
verification step. The SDVS approach allows this verification step 
to be performed using the actual representation of the design levels 
that were used in the synthesis process. 

We envision the use of formal top-level specifications, Ada programs, 
ISPS hardware descriptions, and HDL circuit descriptions. We suc­
cessfully tested the following assumptions in the C/30 case study, 
and expect that they readily extend to the multilevel verification 
environment: 

• 	 The translation of the design representations into state deltas 
is faithful. 

• 	 The mapping between levels of design representation is expres­
sive enough to capture the correspondence at each level. 

• 	 The correctness theorem produced by the implementation com­
mand represents the formal notion of implementation. 
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Figure 3: Multilevel Verification Process in SDVS. Each step in the 
implementation process is verified by a process similar to that in 
Figure 2, except that the domains of the descriptions correspond to 
the particular level of detail. 

If we apply our microprogram verification approach to developing 
the implementation-verification environment in other domains, then 
multilevel verification within the design environment is feasible. 

Conclusions 

Since its inception SDVS has focused on microprogram verification 
and has been successful in that endeavor. The tangible results are the 
SDVS tools, which have been applied to verifying the implementation 
of the C/30. Such a proof of implementation correctness is important 
in secure or critical applications in which the discovery of errors as 
late as the operational stage is especially costly. 

By its general design SDVS is amenable to implementation proofs 
at multiple levels of design detail. Such proofs are made feasible by 
our efforts to expand the set of description languages processed by 
SDVS [19]. Achieving this expansion will enable SDVS to take as in­
put the actual formal design description used in the CAD or CASE 
system for the synthesis of the computer. SDVS adds logical rigor 
to this description by translating it automatically into the underly­
ing formal logic of SDVS, and thus implementing a formal semantic 
definition of the description language. The implementation theo­
rem is also produced automatically by SDVS to reduce reliance on 
manual construction of the correctness criteria. Finally, the outline 
created by the user to guide SDVS through the proof of the imple­
mentation theorem can be followed by a sophisticated reader. Thsse 
features make SDVS a promising tool for increasing the confidence 
in the correctness of a computer design and its embedded programs 
throughout the overall life cycle. 
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Unlike many hard core verification people, I believe higher 
level verification is important in order to derive the relevant. 
code level specifications and relate them to systelil proper­
ties. I don't believe any existing system does a good job 
of this at all. vVithout formal support for such modeling, 
analyses, and proofs how does one know what one needs to. 
prove at lower levels? Also, higher level verification might 
show which program units need to be verified to ensure a 
given property. Why verify more than you need to? 

High level verification. is not really distinct from code veri­
fication. In both cases, there is some mathematical object 
representing "the system", some formal axioms on that ob­
ject representing what is known or being assumed about "the 
system", and some formal statement of what one wants to 
prove about "the system". The difference between what 
I'm calling high level verification and code level verification 
is that at the code levd, one has more axioms about the 
system than one has at the high level (namely, a formaliza­
tion of the axiom "the system is running the following code 
... "). I see verification as a continuum from high levels 
of abstraction to low levels (where by "lmv levels" I mean 
microcode and hardware, not just programming. language 
code). The problem with a lot of "high level verifications'' 
in the past is not that they're too high level, but that the 
axioms which were assumed about the system at the high 
level were simply not ·true of the actual system. (Of course, 
doing everything at a high level does make it harder to see 
when your axioms are false). 

The danger with code verification is that it's hard to see at 
the code level whether the properties you're proving about 
your code are the ones you're really interested in. With 
high and low level verification in a continuum, the prop­
erties of the system that the verifier really ~ants can be 
written down, and the proof of this property can be reduced 
to establishing certain facts about the code which, at the 
high level, are assumptions. Code level verification then 
discharges these assumptions on the basis of other assump­
tions about compilers, microcode, etc. The other benefit of 
such a process is that the verifier might find· that he can es­
tablish the desired high level property without making any 
assumptions about certain parts of the code. He then knows 
that he need not verify those parts. 

My answers to the specific questions proposed will focus 
on those about the value of verification and about the best 
places to put our efforts. 

Is Code Verification Desirable? 

Yes, as long as we know what we're proving. Code verifica­
tion should not be a source of false confidence. 

Is Code Verification Feasible? 

A number of attempts to verify code (the Gypsy EPL and 
Message Flow Modulator to name two) .and others to verify 
hardware have been successful. As has been pointed out 
before, the chief proble!'n with many of these projects is 
not that they weren't su~cessful but that the resulting code 
never got used and compared with unve~·ified code to do the 
samejobs. I think these p~·ojects demonstrate the feasibility 
of code and even lower level verification. 

What are Suitable Applications for Code Verification? 

I don't know what appli~ation~ are most suitable. It's clear 
that certain ones such as hard real time and floating point 
data types have received only limited attention. In the area 
of verifying security properties, something smaller than a 
full operating system, like a network gateway, would be a 
prime c~didate. . ' 

Other Questions 

How close are we? The key word in your question is useable. 
Useable by who? Unlike you, I won't go on record at this 
point. 

When could something useable be available? I think that 
is largely a question of funding and the latter is largely a 
question of how people pe!ceive the benefits. 

There is no doubt in my mind that if IBM were to Lhink ver­
ification was important we would have very use~ble systems 
in five years and none of the people you addressed 
your call to would have worked o'n them. It's all a 
question of perceiving the value. Perhaps we should add to 
your list the question: 

-What kind of near term demonstrations would positively 
affect the evaluations of verification within? 

The issues of integrating verification into software engineer­
ing environments is important but demands an hour itself. 
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What is "Code Verification"? 

Formal verification of programs started in the 1970s as verifi­
cation of programs (or subprograms) written in a programming 
language such as Pascal and augmented by specification con­
structs; thus, program verification originally meant verification 
of program code. Later, the main focus of verification work 
shifted to the specification and formal analysis of software at 
more abstract levels, and it became common to make a distinc­
tion between design verification and code verification. 

For the purpose of this position paper, I want the term 
code verification to mean "formal consistency analysis of exe­
cutable, operational code, usually with the help of mechanized 
tools." This implies that code verification deals with real pro­
grams written in a programming language in use for production 
software. The actual language may be a "higher-level" language 
like Ada, or a language closer to the machine, like C or even an 
assembly language. 

In contrast to code verification, I use code-level verification 
to include formal analysis of programs in a setting that is more 
idealized, either by reducing the programming language to an 
impractical (and unrealistic) subset, or by using a language that 
has been designed specifically for verification purposes, usually 
in conjunction with, or as part of, a specification language. For 
example, the EHDM language [1] includes constructs that closely 
model the main imperative features of (sequential) Ada, such as 
objects, assignment, and control flow constructs. 

Why Code Verification? 

Code (or code-level) verification provides the link between de­
signs and design specifications and what gets actually executed 
on a computer. Thus, code-level verification is clearly desirable 
and needed. On the other hand, code-level verification by it­
self is not very meaningful. The specifications against which the 
code is to be verified must have been derived from the require­
ments on the system and the system design. Indeed, most of the 
modeling and analysis of system properties (such as security) 
should happen at higher (i.e. design) levels; code-level verifica­
tion should be restricted to those aspects that cannot be dealt 
with at more abstract levels, but are sufficient to ensure that 
the operational code indeed possesses the properties derived at 
the higher levels. Code-level verification also assumes that the 
programming language in which code is written has a formal 
semantics on which the formal analysis can be based. Moreover, 
the compiler of the language must faithfully implemented that 

, semantics, so that execution of the object code reflects the se­
mantics of the verified source. In short, code-level verification 
is one of several levels in the specification and verification of a 
system that ideally extend from the top-level requirements to 

the computer hardware. 

Feasibility of Code-Level Verification 

The basic technology for code-level verification has been in ex­
istence since the late 1970s when the first verification systems 
became operational. (In my opinion, little progress has been 
made since then in the verification of code.) Thus, in an elemen­
tary sense, code-level verification is "feasible," and has been for 
quite a while. On the other hand, it would be highly unrealistic 
to claim that the present state-of-the-art allows us to take an 
arbitrary program written, say, in Ada and ''verify" it. There 
are quite a number of areas that still require extensive research 
and development efforts; for example: 

• Likely application areas for code-level verification, such 
as real-time behavior and distributed systems, are lacking 
the mathematical foundations for formal specification and 
reasoning and/or the mechanical support for substantial 
verification efforts. For concurrent and distributed sys­
tems, a substantial body of theoretical results exists, but 
none of the existing verification systems that I am aware 
of adequately supports reasoning about such systems. 

• 	 Code-level verification must support more realistic subsets 
of the actual programming language. 

• Tools and techniques need to be refined, based on extensive 
experience, to make them really practical. 

In short, substantial research and development efforts are still 
required for realistic code verification. 

In addition, alternatives to code verification need to be ex­
plored further. For example, the approach taken in the EHDM 
system [1] is to avoid formal reasoning about actual program 
text completely. Instead, the specification language itself in­
cludes constructs sufficient to specify concrete algorithms at the 
same level of detail (and, if desired, in the same imperative style) 
as actual code, and all formal analysis is carried out within the 
same formal system as the design verification. -Once such a code­
level specification or "abstract program" has been demonstrated 
to be consistent with higher-level specifications, it can be con­
verted into Ada text by a. translator provided in the EHDM en­
vironment. 

Such an approach appears more in line with a systematic 
development process that involves design specifications and ver­
ifications; the programming language code is regarded as the 
target of a systematic development, in contrast to the tradi­
tional view that takes it as the starting point of the verification 
effort. However, this approach does not eliminate the inher­
ent complexity of code-level verification; what can be avoided is 
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having to deal with some of the idiosyncrasies of programming 
languages designed for efficiency (of compilation or execution) 
rather than logical clarity. (The current EHDM-to-Ada trans­
lator is an experimental tool and far from being practical, in 
particular since the Ada subset that can be modeled in EHDM 
is still unrealistically small.) 

Like all formal verification, code-level verification is very ex­
pensive. I doubt that this will change in the near term, even with 
substantial efforts to develop better tools and techniques. Ver­
ification deals with semantic issues, which are inherently com­
plex (and often intractable, i.e. unsolvable, in full generality). 
Thus, fully automated tools that can be used as easily as a com­
piler will be developed only for small, well-understood - and 
well-formalized - areas, and formal verification will remain an 
interactive, labor-intensive activity. 

This inherent cost obviously reduces the usability of formal 
code-level verification. If much of the formal analysis has been 
carried out at higher (i.e. design) levels, the additional expected 
benefit derivable from formally verifying the code may not be 
large enough to justify the cost, except for small, crucial code 
segment. For example, correct behavior of the separation kernel 
in a secure system is critical and should be subject to formal ver­
ification. This example indicates that it may be more important 
to focus code-level verification efforts on low-level programming 
languages, which are more likely to be used for critical code 
segments than higher-level languages such as Ada. 

For general applications, a more cost-efficient alternative 
may be to use less formal, but nevertheless rigorous, methods 
such as IBM's Clean Room methodology or VDM. Experience 
with these methods demonstrates the importance of educating 
the potential users for the usefulness and acceptance of formal 
methods. 

Code-Level Verification and Software Develop­
ment 

It is obvious that the real benefit is derived from formal specifi­
cation and verification when it is part of the general system de­
velopment process and when the verification tools are integrated 
with the software environment. As a last step in a development 
based on formal specifications, the specifications derived at the 
lowest design level can be used to guide the production of the ac­
tual code; consistency between the code and the specifications 
can then be checked by code-level (or code) verification. I'd 
hope, however, that future development of formal methods and 
associated support tools will shift the perspective from analytic 
to synthetic approaches, so that code will be constructed from 
low-level specifications and code verification in the traditional 
sense will become obsolete. 
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The following are my responses to the questions 
that were posed to the panel. 

Is code level verification feasible? Desirable? 
There is no doubt that code level formal 

verification is feasible. Unfortunately, the conclusion 
that I made after working on the formal verification of 
the UCLA Data Secure Unix project in 1978 still holds. 
That is, the techniques necessary for formal 
verification (both design level and code level) are 
available; what is needed is engineering to produce 
production quality formal verification systems. What I 
realize now is that to achieve a production quality 
product will require a profit oriented company to 
decide that they are interested in formal verification. 

The answer to the desirability question is an obvi­
ous yes. Of course it is desirable to increase one's 
assurance that a piece of code will perform as 
expected. 

What applications are most suitable for code 
level verification? 

Formal specification and verification should be 
used in all software development projects. This does 
not mean that it is necessary to use a formal 
verification system, but that one should reason about 
their programs and use formal notation as their design 
documentation. Many of the problems that occur in 
software development projects are the result of pro­
grammers rushing off and generating code without 
thinking about the design. By using formal notation 
for the design documents one can reason rigorously 
about the design (again not necessarily with the aid of 
a verification system) before writing any code. When 
the code is finally produced, they can then formally 
verify that the code is consistent with its 
specifications. 

How close are we to having usable verification 
systems for code level verification? 

As was mentioned in the response to the first 
question, the necessary techniques have been available 
for more than a decade. However, what is needed is 
an interested party, that is willing to take the research 
tools and turn them into a product. None of the exist­
ing formal verification tools can be considered to be a 
product (whether they can accommodate code level 
verification or not). 

I am not necessarily suggesting that one of the 
existing tools be used as a base, but rather that the 
experience gained from using these tools be applied 
to a new product. I also feel that this will be carried 
out by a profit oriented corporation and not by one of 
the research groups that are responsible for the exist­
ing tools. The stress here is on "development". The 
know-how already exists, what is needed is the 
development of a friendly human interface, good 
documentation, production quality packaging, market­
ing, etc. 

Regarding the time, three to five years is needed 
to produce a product. However, what is needed first is 
the desire to have a product or the vision to see its 
marketability. 

How will code level verification fit into the 
software development process? 

As was mentioned in the response to the first 
question, the only way to develop systems is to use 
formal specifications as the design notation. This can 
be in the form of a rigorously defined language whose 
specifications are machine checkable or in more gen­
eral notation, such as the set notation of Z, which is 
not currently machine checkable. These formal 
specifications allow the designers to rigorously answer 
questions about their designs. The higher level design 
specifications should be refined as the design 
progresses. Finally, the lowest level design should be 
used to generate the necessary entry and exit asser­
tions for the code. This would be similar to the 
approach I used for the secure terminal with Ina Jo 
(See the Verification Assessment Report Volume IV.). 

How expensive will it be in people time, machine 
time and money? 

I believe that one of the biggest expenses will be 
in training software developers to use formal tech­
niques. However, once they are trained the increased 
reliability of the software will counter any added 
development cost. In addition, when the system is in 
the maintenance phase the cost of maintenance should 
be reduced due to the availability of the unambiguous 
formal documentation. Therefore, the cost over the 
lifetime of the system should not increase 
significantly, if at all. 
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Afterthought 
I believe it is worth mentioning that one can not 

expect to take an already existing piece of code and 
formally verify that it does what it is supposed to. If a 
system is to be formally verified it is necessary to plan 
for the formal verification from the start of the pro· 
ject. Before any code is written it is necessary to sit 
down with the developers and discuss the coding 
practices that should be adhered to to simplify the 
formal verification process. For instance, if the 
developers are planning to use pointers in their imple­
mentation the cost of formally verifying the code is 
going to increase, and if they plan to use pointer arith­
metic the task may be infeasible. In like manner, using 
a language feature like the Pascal variant record will 
increase the cost of the formal verification process. 

166 



How Soon for Code Level Verification? 

Stephen D. Crocker 


Trusted Information Systems 

11340 Olympic Blvd. 


Los Angeles, CA 90064 


Twenty years have passed 

This panel was born out of sense of frustration and wonder. It's 
been two decades since Floyd published his landmark paper on 
program verification. [Floyd 67] Shortly thereafter, King 
completed the first working program verification system [King 69], 
and the field was in full bloom. Further landmark work followed 
from Hoare, e.g. [Hoare 69] and a number of verification systems 
were built. With that start, we might expect that twenty years later 
program verification would be an established technology. However, 
to my knowledge, not a single program operating in the field has 
been verified at the code level! 

To be fair, there has been considerable progress in verification over 
the past twenty years. A very substantial fraction of the financial 
and intellectual resources of the field have been focused on two 
particular aspects of verification, design verification and 
programming language semantics. 

"Design verification", as most of this audience knows, is verification 
of the consistency between an abstract design of a system and a 
formal statement of the security policy the system must adhere to. 
Code level verification can only prove the consistency between the 
code and a specification. If the specification is incorrect, the code 
level proof will not be of much use in establishing the 
trustworthiness of the code. 

One community that recognized the importance of verification was 
the security community. The key concern within the security 
community is that systems protect information that is entrusted to 
them. Hence, no matter what else the system is supposed to do, it is 
obligated to protect the information in it.. It is no surprise, then, that 
considerable attention was given to the assuring that the overall 
design of a system adhered to the security requirements in particular. 

This attention to design level verification has been so substantial that 
it completely overshadowed the original focus on code level 
verification. When the Trusted Computer System Evaluation 
Criteria [TCSEC] was drafted, the technology to support design 
level verification appeared mature enough to include in the criteria, 
but code level verification technology was not. The Criteria 

contains a place holder called "Classes Beyond Al." The criteria 
applicable to these classes have not been determined fully, but 
verification down to the code level is clearly expected: "The TCB 
must be verified down to the source code ... " [TCSEC, page 53] 

The verification community also turned its attention to the semantics 
of programming languages. Fortran, Cobol and PL/1 dominated the 
set of programming languages in common use in the late 1960s and 
early 1970s. Different branches of DoD were using languages of 
their own invention-- JOVIAL, CMS-2, CS-4, TACPOL, etc. In all 
cases, the semantics of the languages were difficult to formalize. 
The only definitive authority for the meaning of a particular 
program was how it executed when compiled by a particular 
compiler and executed on a particular computer. A fraction of the 
verification community focused on how to formalize the definition 
of programming languages and how to design programming 
languages with precise semantics. It is perhaps instructive to note 
that while these efforts have yielded major new insights into the 
mathematical foundations of programming languages, the two most 
widely used new languages are Ada and C, neither of which is 
widely regarded as having a significantly better defined semantics 
than older programming languages. 

Meanwhile, experience has been gained with using design 
verification to provide assurance that a computer system will protect 
information entrusted to it. The experience is mixed, and some 
question whether the process adds much assurance at all. See, for 
example, [Schaefer 88] for a discussion of this point. But 
disregarding the question of whether it's beneficial, the process is 
undeniably expensive and error-prone. Design verification is 
necessarily disconnected from the code. This means that efforts to 
maintain correspondence depend on a great deal of labor and a great 
deal of discipline. And, of course, even with full attention and 
discipline, the formal basis for the design and the code semantics 
may be incompatible in some respects, That is, the assumptions in 
the formal design may not match the facilities provided by the 
hardware and/or compiler. 

Focus of this panel 

With this background, it is perhaps time to re-examine the original 
vision of code level verification. To stimulate discussion on this 
point, I proposed this panel and invited a number of leading 
verification researchers to participate. The invitation included the 
following: 
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How Soon for Code Level Verification? 

The exciting payoff for verification will be its 
application to code level proofs where it will provide 
strong correspondence between operational code and 
top level specifications. The purpose of this panel is 
to bring together practitioners of the art -- particularly 
verification system developers -- and to describe the 
steps toward achieving wide-spread, efficient code 
level verification. Contrary views, e.g. code level 
proofs are impossible, code level proofs are 
undesirable, code level proofs will always be too 
expensive, will also be explored. To provide a 
coherent basis discussion, each panel member will 
address the same set of questions. The floor will then 
be open for the panel members to debate with each 
other and to respond to questions from the floor. The 
common questions include: 

0 	 Is code level verification feasible? 
Desirable? 

0 	 What applications are most suitable 
for code level verification? 

0 	 How close are we to having usable 
verification systems for code level 
verification? 

0 	 How will code level verification fit 
into the software development 
process? 

o 	 How expensive will it be in people 
time, machine time and money? 

I asked further that prospective panelists agree to prepare short 
position papers, and that some discussion and debate take place prior 
to the conference so that we would present related and comparable 
views, although hopefully not blandly identical views. 

Each of the panelists has played a major role in the development, 
assessment and/or use of verification systems in recent years. 
Specifically: 

Dan Craigen has been leading the development of the 
m-EVES program development system and 
previously participated in the development of Euclid. 

Dick Kemmerer worked on a major effort to verify a 
version of Unix, has contributed various techniques 
for analysis of information flow properties and 
analysis of Ada programs, and led an extensive effort 
to assess the current technology in verification, 
resulting in a five volume report [Kemmerer 86]. 

Richard Platek is the founder and president of 
Odyssey Research Associates (ORA). Under his 
direction, ORA has become a major builder of 
verification systems. 

Friedrich von Henke is the prime architect of the 
Enhanced HDM (EHDM) at SRl International, and 
has been a leading contributor to the theory and 
development of verification systems for several years. 

The views of these people are sketched in their position papers in 
these proceedings. Many other researchers have strong and relevant 
views, but the limitations of space and time restricted us to this 
panel. If the issues discussed by these panel members are deemed 
appropriate for further discussion, perhaps the debate will continue 
in another forum. 

My own view 

It should come as no surprise that I am optimistic about the 
prospects for code level verification. 

Is code level verification feasible? Desirable? 

The "desirable" part is easy, and answered in part in the description 
of design verification. A very large class of bugs will cease to exist 
when code is verified before it is fielded, and the resulting increase 
in reliability will be extremely valuable. 

How feasible is code level verification? I take the somewhat radical 
view that programmers, on the average, know why they write the 
code they do, and that their knowledge, although informal and often 
unexpressed, constitutes the elements of a proof. Therefore, only the 
"trivial" task remains to provide tools to these programmers to 
express their knowledge in a formally acceptable way. 

This view has a number of ramifications. First, it implies that the 
vast set of existing programs are fair game to specify and verify. 
The argument often heard that only programs written in new 
languages and following new paradigms are verifiable is 
misdirected. The fundamental reasoning processes for 
understanding programs already exist within the minds of 
work-a-day programmers. New languages and new paradigms may 
provide modest help, but the more useful challenge is to find ways to 
express what programmers already know. 

Another ramification is that it is both possible and necessary for 
program verification systems to work with the same languages that 
programmers use to build real systems. If the verification 
community insists that new languages are needed, it has taken on the 
extremely hard problem of convincing the entire programming 
community to use those languages. Generally -- Ada excepted -­
programming languages have been widely adopted only when they 
have provided a new level of expressive power and have had 
efficient translators. 
Third, it seems entirely possible that "ordinary" programmers will 
use verification systems. Verification specialists -- at least in the 
sense of people who prepare specifications and proofs for 
verification systems -- may not be necessary in the future. 
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What applications are most suitable for code level verification? 

Given that the central issue in verification is explicating and 
formulating the knowledge programmers bring to bear in the design 
of their programs, it makes sense to start with the domain of 
programs that embody the least knowledge: systems programs. All 
programs embody considerable knowledge of computers and 
computing. Applications such as weather prediction, inventory 
control, stock market analysis, etc. also embody considerable 
knowledge about domains well outside of computer science. System 
programs, on the other hand, have far less connection with the real 
world and are much more easily formalized. 

How close are we to having usable verification systems for code 
level verification? 

First, it is important to understand what's meant by "usable." I have 
in mind criteria similar to the use of a compiler or other tool. A 
verification system is usable only if... 

.. .It can verify programs written in widely used programming 
languages, with essentially no restriction on the use of the language, 
i.e. without restricting the programming language to a weak subset. 

.. .It comes with a specification language that permits pleasing and 
concise expression of the important behavioral and performance 
properties of programs. 

...It comes with an algorithmic, i.e. predictable, proof system of 
sufficient power to keep the proofs short. 

Interactive theorem provers may be helpful for the same 
reason that interactive program development systems are, but 
a programmer should never be in doubt as to whether the 
proof system is smart enough to see the trust of a particular 
assertion in a given context. At the same time, it is not 
acceptable to achieve predictability and lose conciseness. A 
proof system that requires the user to supply every modus 
ponens and every instantiation is not usable. 

.. .It is fast enough to be used unhesitatingly, i.e. as often as the user 
would ordinarily use the compiler. 

In specific terms, this means a modern day verification 
system needs accept a combination of specification, code and 
proof and check the proof within a factor of 3 or so as fast as 
the compiler would compile that program. I haven't check 
the speed of modern day compilers, but I believe they 
compile tens to hundreds of lines per minute. The factor of 
three is my rough guess as to what the user will perceive as 
comparable to the speed of compilation. Perhaps the factor 
should be less than 2 or as much as 10. In any case, a 
verification system is llQt usable if it takes hours to verify a 
program that compiles in minutes or seconds. 

With all of these provisos, I believe it is possible to build usable 
verification systems in three to five years. To do so, it is important 
to limit the attention to existing programming languages and not 
design a new language in tandem with designing the verification 
system. It is equally important to set as a ground rule that the 
verification system will be predictable. Many important algorithms 
are known for implementing decision procedures, and many more 
are yet to be discovered, but these are, I believe, less important than 
providing an understandable interface for the programmer. 

The last two questions, how will code level verification fit into the 
software development process and how expensive will it be to use 
such systems, have been answered at least partly. Well constructed 
verification systems will fit into the software development cycle at 
the same place and in the same manner as compilers. Code will be 
verified as it is written or changed, and if desired, reverified as part 
of acceptance procedures. More people and money may be needed 
to formalize what programs are supposed to do, but NO additional 
time or money should be needed to verify programs as they are 
being written. And, of course, the increase in quality of programs 
will lead to a substantial decrease in the cost of maintenance of 
programs. 
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The first point that struck me about the description of the 
problem to be discussed is the apparent merger of two orthogonal 
concerns: the use of formal methods during the programming 
development process, on the one hand, and the application of 
systems, which support the application of formal methods, on 
the other. 

It is my belief that any self-respecting computing scientist 
should be able to informally (but rigorously) justify that their 
program satisfies the specification describing their task. Tech­
niques have been available for well over a decade and new ways 
of reasoning about programs are continually being developed. 

From this first perspective I would answer the four relevant 
questions thusly: 

• 	 Is code level verification feasible? Desirable? Yes and 
Yes. 

• 	What applications are most suitable for code level 
verification? Most work to date has been based on vari­
ants of the pre-post form of verification. Other techniques 
such as CSP, CCS and Constructive Type Theory, are ex­
tending our manipulative capabilities. More work needs to 
be performed! 

• 	 How will code level verification fit into the software 
development process? There is nothing antithetical to 
good software development processes in the application of 
formal methods. One expects a powerful synergism. 

• 	 How expensive will it be in people time, machine 
time and money? I would expect that disciplined and 
rigorous development of systems would be more cost effec­
tive. However, I do not know of any studies which have 
investigated this contention. 

On whether we should be applying verification systems to code 
level proofs. This is a more contentious issue and generalizes to 
whether current verification systems should be used at all. In 
other papers [1] it has been argued that the application of verifi­
cation systems have three (putative) benefits: soundness, magni­
fication and tracking. These properties are not as fundamental as 
the advantages that should accrue from disciplined thought but 
are, nevertheless, important. 

So, returning to the listed questions: 

• 	 Is code level verification feasible? Desirable? With 
currently endorsed tools, both the feasibility and desirability 
is questionable. Desirability is for the customer to make an 
informed decision based upon their organization's mission. 
It is obvious that more powerful tools are necessary; espe­
cially in terms of specification and programming languages, 
mathematical logics, and supporting mechanized proving 
systems. 

• 	What applications are most suitable for code level 
verification? Most work to date has been based on vari­
ants of the pre-post form of verification. Other techniques 
such as CSP, CCS and Constructive Type Theory are ex­
tending our manipulative capabilities. More work needs to 
be performed! 

• 	 How close are we to having usable verification sys­
tems for code level verification? Obviously, I have my 
own axe to grind here [1]. It is my contention that some 
current developments are moving towards systems which are 
based on sound mathematics and apply state of the art tech­
niques in theorem proving and language design. Undoubt­
edly, since fixed formalisms and languages are chosen there 

will be problems which either cannot be addressed or will 
be handled in an unwieldly manner. 

• 	 How will code level verification fit into the software 
development process? Verification systems must be inte­
grated with general software development tools. 

• 	 How expensive will it be in people time, machine 
time and money? I do not know of any studies that have 
investigated this issue. 

Finally, while I have responded in terms of the panel, I should 
note that it is clear that there is more to formal methods than 
specification and code proofs. Formal Methods can be viewed as 
the application of mathematical discipline to the entire system 
development process. One of the more interesting projects taking 
this view is the Trusted Systems work at Computational Logic, 
Inc., with their work on micro-Gypsy, Piton and the FM8501. 
Others are better qualified to report on that work. 
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Abstract 

This paper describes a demonstration, 
implemented as application code executed by 
untrusted subjects in the environment 
provided by a high-assurance security 
kernel (GEMSOS) that provides multi-level 
database management services using a 
significant subset of the entity­
relationship data model. The demonstration 
includes the essential data management 
services one would expect to find in the 
run-time nucleus of a DBMS, supporting the 
concept of entities, relationships between 
entities, and the ability to merge data (as 
viewed by the user) from all visible 
sensitivity partitions. The merged data is 
logically integrated into a single data 
model for query and manipulation 
(consistent with the security policy) by 
the user. The significance of the 
demonstration is that this is one of the 
earliest demonstrations proving that 
significant programs managing complex data 
structures containing data of differing 
sensitivities can be efficiently 
implemented as an application executed by 
an untrusted subject constrained by a 
genuine high-assurance security kernel. 

1. Introduction 

The Multilevel Secure Entity-Relationship 
DBMS Demonstration (ER/DBMS) is a 
demonstration of certain of the technical 
concepts developed for the Secure Entity­
Relationship Database Management System 
design produced by AOG Systems, Inc. and 
Gemini Computers, Inc. under contract to 
the Rome Air Development Center, (RADC), 
United States Air Force (Contract F30603­
86-C-0117). The technical goals of the 
demonstration were as follows: 

• 	 To demonstrate that untrusted 
applications can share and manipulate 
data in the form of complex, 
multilevel, dynamic data structures 
with a high apparent granularity of 
classification. 

• 	 More specifically, to implement the 
critical components of the multilevel 
GTERM data model [1], including a 
demonstration of entities with 
attributes of differing sensitivity, 
relationships between entities of 
differing sensitivities, maintenance 
of an index structure for types of 
entities (namespaces), and the 
polyinstantiation of attributes (that 
is, support for multiple versions of 
the same attribute, visible to 
appropriately cleared users only). 

• 	 To demonstrate the transitions between 
a user's interaction with a Trusted 
Computer Base (TCB), untrusted 
applications, and trusted 
applications, including use of a 
trusted path, secure login and logout 
procedures, and changes in session 
level. 

• 	 To gain experience in the design of 
screen-oriented human interfaces 
implemented as an untrusted 
application presenting, to the user, 
data copied from repositories of 
various sensitivities. 

As important to the design of the 
demonstration as its objectives are those 
capabilities chosen not to be demonstrated. 
The design simplifications chosen included 
the following: 

• 	 The database uses a fixed schema of 
three entity types and two 
relationship types representing a 
typical application: there is no 
capability to modify the schema. 

• 	 Only a single user is supported, so 
that concurrent manipulations of the 
database are not encountered. 

• 	 The database is low-volume (a maximum 
of 100 items of each type is 
supported) so that storage management 
is very simple. 

• 	 The only concern with algorithm 
selection and data structure design 
for processing efficiency was to avoid 
a demonstration that appeared slow. 

• 	 No support for multiple, concurrent 
transactions is provided: 
essentially, each logical query, 
update, or addition is treated as an 
atomic, sequentially-executed 
transaction. 

• 	 No support for the deletion of data is 
provided. 

• 	 Only two levels of data sensitivity 
(SECRET and TOP SECRET) are supported. 
Thus, issues related to the potential 
existence of very large numbers of 
access classes are avoided. 

• 	 No discretionary access control policy 
is supported. 

Although many of the design simplifications 
chosen allowed issues to be avoided that 
are clearly of concern for the design of a 
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commercial quality multilevel DBMS, 
(notably, the need for concurrency and 
transaction support) the selection of those 
capabilities to be demonstrated, and those 
not, was deliberately made to support the 
primary goal of the demonstration -- to 
explore data structure solutions allowing 
data of multiple sensitivities to be re­
assembled into an integrated view for an 
appropriately cleared user, and to allow 
the data structure to be consistently 
updated without violating the security 
constraints by an untrusted subject. 

Some of the design simplifications (such as 
those avoiding concurrency controls) were 
made because we felt that adequate 
solutions are already known-- e.g., 
controls based on the use of eventcounts 
and sequencers or their equivalents ([2], 
[ 3 ] , and [ 4] ) • 

Other problems not examined (e.g., the 
ability to deal with large numbers of 
potential access classes) are important, 
but are not DBMS-specific problems and are 
currently being explored in other contexts. 

In particular, untrusted algorithms for 
accessing and manipulating complex data 
structures containing data of varying 
sensitivity, linked into a complex semantic 
network, have not previously, to our 
knowledge, actually been implemented using 
untrusted processes executing on top of a 
genuine security kernel. At the time the 
demonstration was designed, it seemed 
of greatest engineering importance to 
demonstrate the feasibility of such 
algorithms. 

The importance of actually implementing 
such algorithms on a genuine security 
kernel, is that one may be sure that no 
hidden assumptions or programming 
"workarounds" invalidating the design have 
been introduced into the demonstration 
code, thereby gaining a high degree of 
confidence that the algorithms and ideas 
being demonstrated are valid. 

Our criterion of success for meeting this 
goal we defined as the ability to 
demonstrate the central features that 
differentiate the entity-relationship data 
model from other data models: namely, its 
presentation to the user of a "reference" 
from one item to another (rather than the 
implicit linking of data records by means 
of common data values), and its ability to 
present polyinstantiation in a natural way 
as an attribute with multiple values 
(rather than, as needed for the multilevel 
relational model, by introducing additional 
tuples with replicated data in the non­
polyinstantiated fields). Thus, although 
only a subset of the data model was 
supported, it was that subset that includes 
the core concepts of the data model 
(entities, data representing relationships 
between entities, and the use of references 
to link together data items) and that 
distinguish it from the relational model. 

The remainder of the document is divided 
into the following sections. The section 
entitled "Functional Architecture" provides 
an overview of the complete system. The 
section entitled "User View" summarizes the 
operations and capabilities of the 
demonstration from the users' point of 
view. The section entitled "DBMS Modules" 
describes the database management modules 
themselves in enough de·i.:ail to provide a 
basic understanding of how data of 
different access classes is distributed 
into physical segments of the right access 
class and efficiently re-assembled in 
response to user queries. The final 
section contains our conclusions. 

2. Functional Architecture 

The demonstration was targeted for a 
single-processor Gemini system running the 
GEMSOS Mandatory Security Kernel, 
configured with a single user's terminal. 

The demonstration was developed in the 
(untrusted) Unix V programming environment 
running on Gemini hardware. Although this 
is now the standard programming environment 
provided with Gemini systems for the 
development of GEMSOS applications, at the 
time the demonstration was implemented the 
Unix V environment was still under 
development (in fact, our project was the 
first "user" of the Gemini Unix V 
environment.) As the work necessary to 
provide the full run-time support needed 
for C programs in the GEMSOS environment 
was in progress at the time the 
demonstration was implemented, the 
demonstration software includes some 
components that would now be unnecessary 
because their functionality is available in 
the form of run-time library functions. 

As an established goal of the demonstration 
was to embed the DBMS human interface in 
the context of a realistic "trusted" 
interface managing logon/logout, trusted 
path interactions, and so on, a relatively 
large subset of the demonstration software 
is devoted toward providing this 
functionality. As the DBMS is actually 
executed by genuinely untrusted subjects, 
much of this TCB functionality is "real" 
(although not meeting the rigorous software 
engineering standards expected for a Class 
Al or B3 system), in the sense that a 
complete environment must be maintained 
that allows the DBMS subjects to execute 
without trust. For example, the terminal 
port had to be configured as a single-level 
device (i.e., not capable of associating 
labels with input-output data) with a 
multilevel range (as both SECRET and TOP 
SECRET sessions must be available from at 
the terminal.) 

Because all interactions with the terminal 
are mediated by a genuine security kernel, 
and we needed to be able to have the 
terminal place its input data in either a 
SECRET or TOP SECRET input buffer 
(depending upon current session level) so 
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that inter-process communication with the 
current untrusted DBMS would work, the 
correct labeling of the terminal port could 
not be "faked". Similar considerations 
pervaded the design of the "supporting 
environment" for the DBMS, and for all 
practical purposes, this environment may be 
regarded as a "real" TCB from a functional 
point of view. Although the pragmatic 
requirement to develop a "mini-TCB" for the 
security kernel was not specifically DBMS­
specific work, it proved valuable in 
allowing the resulting demonstration to be 
used to demonstrate various issues 
concerning trusted path, login, and session 
level changes as a side benefit. 

2.1 Process and Subject Structure 

The demonstration is implemented using four 
processes. They are: 

• 	 an initial process (in execution as 
the kernel comes out of 
initialization); 

• 	 a (trusted) TCB process, which manages 
the terminal, provides input/output 
services to the DBMS processes, and 
manages all direct user interaction 
with the TCB (e.g., for logon/logoff); 

• 	 an (untrusted) SECRET DBMS process, 
which provides user access to the 
database during SECRET sessions, and 

e 	 an (untrusted) TOP SECRET DBMS 
process, which provides user access to 
the database during TOP SECRET 
sessions. 

Both the initial and TCB processes exist 
for the lifetime of the demonstration 
(i.e., from the time the system is booted 
to the time it is turned off.) The SECRET 
and TOP SECRET processes exist only for 
the lifetime of an untrusted session (i.e., 
from the time the user requests such a 
session to the time the "secure attention 
key" is pressed). Although their stacks, 
code, and data segments are reused, 
logically when a new SECRET session is 
begun, a new SECRET process is begun: the 
previous SECRET process (if there was one) 
was actually terminated at the end of the 
last SECRET session. 

The initial process is essentially a loader 
setting up the initial segment structure in 
main memory for the remainder of the system 
and spawning the TCB process, then 
deactivating. It will not be described in 
further detail here. 

The TCB process is trusted over the range 
SECRET to TOP SECRET. The TCB process 
attaches and controls the terminal during 
the lifetime of the system: all I/0 
requests from an active untrusted process 
are served by the TCB process using 
interprocess communication and shared 
buffers of the appropriate sensitivity. 
Between untrusted sessions the TCB process 

provides a direct interface to the user in 
order to manage logons, logoffs, and 
requested changes in session level. When 
the user requests an untrusted session, the 
TCB process creates a child process of the 
requested level (consistent with the user's 
clearance) and acts as an I/0 server for 
the child process. When the user presses 
the secure attention key this is detected 
by the TCB process, which orchestrates an 
orderly shutdown of the child process 
before returning to the user for a trusted 
interaction. 

The untrusted session processes (whether 
SECRET or TOP SECRET) are event-driven 
transaction processors, providing complete 
access (consistent with session level) to 
that portion of the database the user is 
authorized to view and/or update. Both the 
SECRET and TOP SECRET processes execute 
exactly the same code: the sensitivity 
level of the process itself is available at 
run-time as an entry parameter to the 
process. Although the untrusted processors 
use this information to "navigate" through 
the usable segments of the database, they 
are not responsible in any way for 
enforcing the accessibility of data. If, 
for instance, the SECRET untrusted process 
attempted (erroneously or maliciously) to 
access a segment containing TOP SECRET 
data, the underlying security kernel would 
simply refuse the request. (In fact, a 
fair amount of debugging time consisted of 
determining why such a trap had occurred and 
modifying the untrusted process code to 
remove the offending request.) 

Terminal input/output requests are passed 
to the TCB process for service when needed. 
The result of any request for service 
(whether input or output) may be an 
indication from the TCB that the trusted 
path was invoked -- in effect, notification 
to shut down. When this happens, the 
untrusted process swaps the database back 
to secondary storage and conducts an 
orderly shutdown. GEMSOS provides the 
mechanisms required for handshaking between 
child and parent to coordinate process 
termination. Although the untrusted 
process has responsibility for helping 
perform an orderly termination of itself, 
failure to meet these responsibilities are 
not insecure (they lead, at worst, to a 
denial of service or loss of data.) Once 
trusted path has been invoked, the TCB 
process will not perform I/0 until the 
shutdown is complete. 

3. User View 

In this section, we present a brief summary 
of the view of data and human interface 
presented to users by the demonstration. 
Although many viewers of the demonstration 
(who have never actually operated a high­
assurance TCB) found the operation of the 
"trusted path" with regard to boot operator 
authentication, user login/logout and 
authentication, and session-level 
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negotiation fairly interesting, only the 
capabilities presented to the user .during 
an untrusted DBMS session will be 
described, as it is these capabilities that 
are central to the demonstration goals. 

3.1 Data Schema 

As previously discussed, the schema for the 
data managed by the demonstration is not 
modifiable. Three types of entities 
(ordnance, aircraft, and city) and two 
types of relationships between entities 
(aircraft-carries-ordnance and aircraft ­
attacks-city) are supported. The data 
schema (presented in an ad hoc data 
definition language) is detailed in the 
Figure 1. 

Although the schema is relatively self­
explanatory, a few words about the entity­
relationship data model seem in order. An 

define entity type AIRCRAFT 

primary key SIDE NUMBER 

attribute CLASS 

attribute PILOT 


end AIRCRAFT 

define entity type ORDNANCE 

primary key ID 

attribute EXPLOSIVE 

attribute TYPE 


end ORDNANCE 

define entity type CITY 

primary key NAME 

attribute POPULATION 

attribute LATITUDE 

attribute LONGITUDE 


end CITY 

define relationship ARMED-WITH 

role AIRCRAFT 

role ORDNANCE 

attribute NUMBER 


end ARMED-WITH 

define relationship ATTACKS 

role AIRCRAFT 

role CITY 

attribute DATE 


end ATTACKS 

Figure 1. Data Schema 

"entity" is meant to represent an "object" 
(real or abstract) with a unique name (used 
much as is a primary key in queries) and 
some number of attributes. In the 
multilevel version of the data model, we 
allow each attribute to be 
polyinstantiated: that is, different 
values may exist in the database for a 
given attribute for an entity, 
corresponding to different sensitivities. 
(The name of an entity is always understood 
to implicitly contain a sensitivity -- so 
there may be distinct entities with the 
same name in the database, at different 
access classes, as well.) 
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A "relationship" is meant to represent the 
association of one distinct entity with 
another. In our version of the data model 
attributes may be associated with instance~ 
of relationships, as well. Each particular 
instance of a relationship has its own 
sensitivity (that of the subject inserting 
it into the database), and its attributes 
may be polyinstantiated. Thus, the 
collection of relationship instances a user 
will see as existing in the database will 
depend upon the session level the user has 
specified. The relationship instance is 
uniquely defined by the particular entities 
it refers to: thus, even though there 
might be two entities with the same 
apparent name (because of 
polyinstantiation), internally a given 
relationship instance will refer to just 
one of them. (This is rather more 
convenient than the analogous case for the 
relational model, where data is "linked" 
only be means of common, stored data 
values.) 

The human interface presented to the user 
is screen-oriented and interactive. 
Essentially, the user may insert or update 
individual records (for a single entity or 
relationship instance) or cause the entire 
visible contents of a whole entity or 
relationship type to be printed on the 
screen at once. Data may only be updated 
(and/or inserted) at the user's current 
session level: if the user attempts to 
update an attribute at a lower level, the 
attribute is polyinstantiated instead. 

A typical display that might exist for a 
user cleared to TOP SECRET, and in a TOP 
SECRET session, when the AIRCRAFT table is 
printed is shown in Figure 2. 

AIRCRAFT Session Level: TOP SECRET 

I Side Nr. I Class I Pilot 

I 304 ( s) I B-52 ( s) I Kelly (S) 

I 320 (TS)I Stealth (TS) I O'Hara (TS) 

I 
327 (S) I B-52 (S) 

Stealth (TS) 
I Murphy (S) 

(a) in TOP SECRET session 

AIRCRAFT 	 Session Level: SECRET 

I Side Nr. I Class I Pilot 

I 304 ( S) I B-52 ( S) I Kelly ( S) I 

1 327 (S) I B-52 (S) I Murphy (S) I 

(b) In SECRET session 

Figure 2. Initial Views of AIRCRAFT 

These views are what we would intuitively 
expect: the SECRET view of the database 



looks like the TOP SECRET view, but with 
all of the TOP SECRET data filtered out. 
It is emphasized, however, that what is 
really going on is that the (untrusted) 
DBMS is assembling this view based upon all 
of the AIRCRAFT data it can find -- it is 
the security kernel underneath that makes 
it impossible for the DBMS to find any TOP 
SECRET data during a SECRET session, 
because that data is stored in TOP SECRET 
physical segments. Thus, with high 
assurance, there is no way the SECRET view 
can encode or allow the value of any TOP 
SECRET data to be inferred -- nor does the 
DBMS code itself need to be analyzed in 
order to know this. 

The views presented in the last figure also 
illustrate a few points of interest. 
Flight 304 represents a SECRET flight -­
that is, all of the data about this flight 
was entered by some user during a SECRET 
section. Similarly, Flight 320 is a TOP 
SECRET flight. Flight 327 is more 
interesting: at a SECRET level, the Flight 
appears to be an ordinary SECRET Flight. 
However, at a TOP SECRET level (viewable 
only to users with TOP SECRET or greater 
clearances) we see that the "Class" 
attributed is polyinstantiated: that the 
aircraft class is "B-52" is (apparently) a 
"cover story": the aircraft's real class 
is "Stealth" -- a TOP SECRET datum. This 
database state could be reached in the 
following order by a user cleared TOP 
SECRET. First, the user asks for a SECRET 
session and enters the SECRET record using 
the "cover" data. Then, that user obtains 
a TOP SECRET session and enters the TOP 
SECRET information as an update to the 
SECRET record. The database 
polyinstantiates the value (because it is 
untrusted, it would be unable to modify or 
delete the SECRET attribute in any event.) 

Let us now suppose that there is a change 
of pilots for Flight 327 from Murphy to 
O'Neil. A user cleared SECRET is 
responsible for entering this update. That 
user (who has no idea that there is TOP 
SECRET data associated with this flight) 
obtains a SECRET session and makes the 
update in the expected way -- by calling up 
the record for Flight 327 and changing the 
pilot data. The new view of the record is 
as shown in Figure 3 for SECRET and TOP 
SECRET users. 

The most important point to note is that 
although the data modified is SECRET, the 
change is instantly propagated to the view 
of data given to the TOP SECRET user. The 
point is that we are dealing not with 
replicated data, but with one version of 
data properly arranged by access class 
being integrated dynamically by the DBMS in 
response to queries. It is our belief that 
to be useful, a "multilevel" DBMS must have 
exactly this sort of semantics on update: 
the ability for a "multilevel record" as 
viewed by a high-level user to respond 
"instantly" to changes made to its lower­
level components. 

AIRCRAFT Session Level: TOP SECRET 
---- .... ----------------------------- -.---­
I Side Nr.l Class I Pilot 

I 327 (S) I 8-52 (S) I O'Neil (S) 
Stealth (TS) 

(a)' In TOP SECRET session 

AIRCRAFT Session Level: SECRET 

I Side Nr. I Ciass I Pilot 

I 327 (S) I B-52(S) I O'Neil 

(b) In SECRET session 

Figure 3. Updated views of Flight 327 

Similar examples drawn from a relationship 
type will not be given here, as 
relationship data and modifications to it 
work in a similar way. 

4. DBMS Module Descriptions 

In this section, the heart of the 
demonstration system (the untrusted 
application modules responsible for 
actually maintaining and retrieving 
information from the database) are 
described, essentially in "bottom up" 
order. Details concerning those untrusted 
modules responsible for providing I/0 and 
high-level term:Lna.t serv:Lces,, as well as 
modules of the TCB emulation, are available 
in the technical report describing the 
system, [5]. 

4.1 Kernel Interface Module 

The lowest level module, called the Kernel 
Interface Module, hides much of the detail 
of how GEMSOS segments are named and 
accessed from higher level modules. The 
primary goal in designing this module was 
to provide a means for performing unit 
tests of the remainder of the DBMS in the 
UNIX environment, as project contention for 
the target development machine was 
relatively high. The module represents the 
database as a small number (eight) of 
fixed-length, numbered segments. Functions 
are provided to open, close, read, and 
write each segment. The UNIX version of 
the module maps each segment to a file. 
"Reading" a segment means that the file is 
copied into a local array and the physical 
address of the array passed to the invoking 
function. The GEMSOS version of the module 
"opens" a segment by making it known 
(translating the number into a preassigned 
pathname) and "reads" it by swapping it in 
and returning its address. All of the 
segments are "opened"' and "read" by the 
main program during the initialization 
phase of the process, and "written" and 
"closed" when the process is terminated. 
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4.2 EN Table Manager 

The next layer of the DBMS software manages 
tables (stored in segments) representing 
entities and their names (keys). 

Logically, there is a separate "entity 
table" (E Table) for each access class. 
The E table may be thought of as a table of 
descriptors, with one descriptor for each 
entity currently in the database. The 
descriptor for a given entity is stored, of 
course, in the particular E Table for the 
access class of the subject that added the 
entity to the database, so any entities 
added by a SECRET subject are represented 
by descriptors in the SECRET E Table, while 
any entities added by a TOP SECRET subject 
are represented by descriptors in the TOP 
SECRET E Table. 

The "internal identifier" for an entity has 
two components: the access class of the E 
Table it is found in, and the index into 
the table for the entity's descriptor. 
Throughout the implementation, the numerals 
0 and 1 were used to encode the two access 
classes supported, SECRET and TOP SECRET, 
respectively. Given the pair <access 
class, index>, finding the actual record 
representing a particular entity is 
straightforward. (For a SECRET process, a 
"unique id" of the form <TOP SECRET, x> is 
not useful as attempting to access the TOP 
SECRET table will result in a trap. Each 
function in the DBMS is written to check 
the validity of input parameters, including 
access class, to avoid such traps.) 

Each E Table descriptor contains two 
fields. The first is a numeral encoding 
the type of the entity. The second is an 
index to an N Table descriptor. 
There are also two N Tables, one for SECRET 
and one for TOP SECRET. Each N Table entry 
is a descriptor representing the (human­
readable) name of an entity. (From the 
point of view of the data model, the name 
of an entity is the value of a designated 
property of the entity, depending on its 
type.) Each N Table descriptor contains two 
fields: the name (key) value itself, and 
an index to the E Table record for the same 
entity. 

Taken together, the E table and N table 
records for a given entity may be thought 
of as doubly-linked parts of a single 
logical record. This whole record, as a 
consequence of the data model definition, 
has a uniform access class so these parts 
can be stor·ed in the same physical segment. 
Knowing where either part is, the other 
part can quickly be found by following a 
link. 

The motivation for separating an entity 
descriptor into two physical parts was the 
following: downward references to some 
entity records will be made (for instance, 
TOP SECRET properties for SECRET entities 
may be entered). The records representing 
such properties, which must be stored in a 
TOP SECRET physical segment, will contain 

an <access class, E Table index> reference 
to the particular E Table record 
representing the entity having the 
property. No SECRET process can be allowed 
to move the E Table descriptor from one 
place to another within the SECRET E 
Table, because that would invalidate the 
downward reference. There is no way that 
the SECRET process could modify the 
downward reference to reflect a new 
location for the E T~ble descriptor, 
because the SECRET process cannot read or 
write a TOP SECRET table. Therefore, the 
E Table descriptors, once entered, are 
never moved: they serve as stable targets 
for downward references to the entity they 
represent. 

On the other hand, in order to provide for 
the rapid location of entities by (human­
readable) name, some sort of index must be 
provided into the E Table. This is the 
function of the N Table. Its records are 
maintained in alphabetical order by name. 
(A more sophisticated indexing technique 
would be used in a genuine DBMS, but the 
principle is the same.) That is, as new 
entities are entered, the N Table is 
rearranged and both the forward and 
backward links to the E table are updated 
as required. This is always possible 
because the two parts of the entity record 
(a motionless one in the E table, and a 
movable one in the N table) are always of 
the same access class. If a process is 
allowed to move the N table record, it is 
allowed to update the E table record to 
match the new position in the N table. 

Functions provided to maintain and use the 
E and N Tables (in concert) include a 
function to add a named entity, a function 
that locates an entity given its access 
class and name, and a function that locates 
an entity given its access class and E 
Table index. 

4.3 Relationship Tables 

The next layer of the DBMS software 
implements "Relationship Tables", or R 
Tables. As for E and N Tables, there are 
two R Tables, one for SECRET relationships 
and one for TOP SECRET relationships. Each 
relationship is represented by a record 
containing an integer representing the type 
of the relationship, and a reference to 
each of the two entities related. Each 
such reference has two parts: an access 
class code and an E Table index. The 
access class is required because a 
reference may be downward: it may be that 
a TOP SECRET relationship exists that 
relates a SECRET entity to another entity. 
Without the access class field, it would 
not be possible to tell whether the E Table 
reference in a relationship was to be 
applied to the SECRET E Table or the TOP 
SECRET E Table. 

As an implementation choice, no index was 
created for relationships as the technique 
had already been demonstrated for entities. 
One could easily conceive of tables 
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indexing the R Table by their effective 
keys (the two references), just as the N 
tables serve as indexes into the E tables, 
that would function in much the same way. 
Functions provided for manipulating R 
Tables include one to add a new 
relationship, and to locate a relationship 
given its access class and references. 

4.4 Property Tables 

Entities in the demonstration database have 
non-naming properties as well as names, and 
relationships have properties as well. For 
the demonstration schema, polyinstantiation 
of non-naming properties and properties of 
relationships is allowed: that is, there 
may be both SECRET and TOP SECRET values 
for a given non-naming property of a SECRET 
entity, or for a property of a SECRET 
relationship. 

Non-naming properties, or properties of 
relationships, were uniformly stored in 
one of two Property Tables, or P Tables. 
The approach taken was "brute force": a 
record was preallocated corresponding to 
each possible entry in each E or R table 
for each access class. As non-naming 
properties were entered, their values were 
simply stored in the appropriate slot. A 
more compact representation would have 
involved explicit references to the entity 
or relationship having the property 
(possibly a downward reference), and an 
index into the property table so that the 
properties of a given entity or 
relationship could be located quickly. 

4.5 DBMS Interface Module 

The topmost layer of the DBMS consisted of 
an interface module that mapped the defined 
programming interface for a selected subset 
of the entity-relationship data model to 
the appropriate sequence of calls to the 
the EN, R, and P table managers. 

5. Summary and Conclusions 

It is our belief that the demonstration 
meets or exceeds all of its objectives. In 
particular, it demonstrates and exercises 
techniques for creating and maintaining 
downward references from one data element 
to another of lower sensitivity, and the 
provision of high apparent granularities of 
classification by storing small data 
elements in large repositories. 

(It must be emphasized that intrinsic to 
this approach is that the security 
indicators presented to the users are not 
safe with respect to downgrading.) All of 
the data presented in a TOP SECRET session 
must be treated as TOP SECRET. However, 
this is not as cumbersome a property as 
may, at first, appear. If, for instance, 
a user with a TOP SECRET clearance is 
browsing the·database with a session level 
of TOP SECRET, and, as the result of 
issuing a query, decides that a "sanitized" 
version of that query should be prepared 

for release at a SECRET level, the user can 
simply press the "Secure Attention" key to 
negotiate a session level of SECRET and 
re-issue the desired query. (It might be 
noted that there is no requirement, even in 
the demonstration, to logout and login 
again, as the TCB is designed to "remember" 
the clearance of the currently logged-in 
user.) 

The demonstration also serves, in our 
opinion, as a proof of concept that an 
adequate degree of functionality for a 
multilevel DBMS can be attained by 
implementing the DBMS as an untrusted 
application on an existing TCB. The major 
criterion, we suggest, that a "multilevel 
DBMS" must meet to be useful is that a user 
should be able to view all of the data 
classified at the user's session level or 
below, and that it must be possible to 
relate high-sensitivity data with data of 
lower sensitivity in such a way that when 
the lower sensitivity data is modified, 
these modifications are reflected in the 
higher level view of the related data. 

For instance, if a SECRET data item (say a 
Flight with a particular Pilot) has a TOP 
SECRET property, (say its cargo), and the 
SECRET item is modified (say the Pilot is 
changed), the change ought to be reflected 
in the TOP SECRET view (the TOP SECRET 
cargo ought to remain associated with the 
modified SECRET item). This requirement 
precludes implementations that make 
redundant copies of low sensitivity data 
for high sensitivity subjects but cannot 
then maintain those copies. The 
demonstration is specifically designed to 
show that meeting these requirements with 
an untrusted DBMS is possible. 

The following observations resulting from 
our experience in implementing the 
demonstration might also be of general 
interest. 

• 	 The implementation effort involved 
programmers not familiar with the 
implementation and design of trusted 
systems. By designing the DBMS as an 
application to be built on top of a 
DBMS, this lack of specialized 
expertise was finessed. In effect, 
the use of a security kernel as a 
"virtual machine" transforms the 
problem of designing and implementing 
a provably secure system into the much 
easier problem of designing and 
implementing an "ordinary" application 
that will function as specified. 
Working within the limitations of the 
Basic Security and Confinement 
properties was not a great deal more 
difficult than working within the 
limitations imposed by a run-time 
environment that does dynamic bounds 
checking on arrays. 

• 	 It also was not particularly difficult 
finding specific data structure and 
algorithmic solutions to the problems 
posed by the demonstration 
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requirements (e.g., how to represent a 
"downward reference"). The knowledge 
that the use of a "trusted process" to 
perform any critical functions was 
forbidden was a useful and immediately 
productive discipline. 

• 	 The most troublesome aspect of the 
design and implementation was in the 
area of human interface design. This 
we attribute to a fairly ambitious 
desire to provide a screen-oriented, 
event-driven interface with 
insufficient thought given to its 
abstract specification. The resulting 
interface, while reasonably nice for 
this particular demonstration, does 
not scale up in any reasonable way to 
support for large numbers of potential 
access classes. 

• 	 Polyinstantiation proved easy to 
implement (you just let it happen) but 
hard to deal with from a DBMS 
application point of view. 
Application logic that deals with 
polyinstantiated properties on a 
case-by-case basis is difficult to 
write, particularly for a semantically 
"rich" data model such as the entity­
relationship model. This suggests 
that high level operators that deal 
with potentially polyinstantiated 
items and properties need to be 
devised for use by applications. The 
generalization of report generators 
and screen generators to cope with 
polyinstantiated values is likely to 
be quite difficult. 
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Abstract 

A distributed architecture for a multilevel secure 
database management system, based on the distri­
buted architecture developed at the 1982 Air Force 
Summer Study on "Multilevel Data Management 
Security", is presented and described in terms of 
how it implements the relational operators. There 
are two notable aspects of this architecture. First, 
it factors the effect of the security class of the 
query into the classification of derived data. This 
allows tuple level labels to be safely used for man­
datory access control. Secondly, it provides reli­
able tuple level labeling without requiring the rela­
tional operators to be trusted. This makes this 
architecture a suitable basis for a near-term solu­
tion to multilevel database management using 
existing DBMS components to implement the rela­
tional operators. 

1. Introduction 

The majority of the databases in the Department of Defense 
(DOD) and the intelligence community are computerized. 
These databases commonly contain data that are classified at 
multiple security levels and must be restricted for different 
levels of user access. The most common means of restrict­
ing access to these data is to store them in an untrusted data­
base management system (DBMS), and operate the system 
in system-high mode. In this mode, every user is cleared to 
the level of the most highly classified piece of information 
in the system, and all data leaving the system are assigned 
the highest classification until a human reviewer assigns the 
proper classification. Since all users must be cleared to 
system-high, the cost of system operation and the risk of a 
security breach is much greater than it might be. 

The 1982 Air Force Summer Study on "Multilevel Data 
Management Security" made several recommendations on 
the development of multilevel database management sys­
tems [1]. Group 1 of the study focused on near-term 
solutions to multilevel database security. One of the recom­
mended approaches was a Distributed DBMS (D-DBMS) 
architecture that utilized one untrusted DBMS per security 
level supported. It was recognized that, by employing phy­
sically separate, untrusted DBMSs, a D-DBMS architecture 
could provide a high level of security and performance in 
the near-term, while lowering development costs and risk. 

Unisys is currently involved in an effort, funded by the U.S. 
Air Force, Rome Air Development Center (RADC), to 
design a Multilevel Secure (MLS) DBMS that meets the 
requirements for a Class B3 trusted computer system [2]. 
Our approach is a variation on the D-DBMS approach 
recommended by Group 1. This paper describes the Secure 
D-DBMS (SD-DBMS) architecture that was developed as a 
first step in our design. Although discretionary security was 
an important consideration in the development of this archi­
tecture, this paper will focus primarily on the enforcement 
of mandatory security. 

In this paper, it is assumed that the reader is familiar with 
the relational data model [3, 4] and the concepts of mul­
tilevel security [5, 6]. 

2. Security Classes, Subjects, and Objects 

The SD-DBMS is being designed to support a set of three 
security classes. These security classes can be hierarchical 
levels (e.g., TOP SECRET, SECRET, and CONFIDEN­
TIAL), non-hierarchical categories (e.g., NATO, NOFORN, 
NUCLEAR), or a combination of the two. The design can, 
however, be easily extended to support four or more security 
classes. The limiting factor is that the design requires one 
DBMS per security class supported. Note that the set of 
security classes does not necessarily form a lattice, as 
described in [7]. For example, if the system is configured to 
support three non-hierarchical categories (e.g., A, B, and C), 
then data from different categories cannot be mixed since 
the result would constitute a new (fourth) security class. 
The set of security classes is partially ordered by a relation 
called dominates. If C 1 and C 2 are security classes, C 1 is 
said to dominate C 2 if and only if the hierarchical 
classification of C 1 is greater than or equal to that of C2, 

and the categories in C 2 are a subset of those in C 1. C 1 is 
said to strictly dominate C 2 if and only of C 1 dominates but 
is not equal to C 2• 

Mandatory security is enforced in terms of subjects and 
objects. In the SD-DBMS, subjects are assigned two secu­
rity classes called a read class and a write class. A subject's 
read class must dominate its write. class. A subject is per­
mitted to read an object at a particular security class if the 
read class of the subject dominates the security class of the 
object. A subject is permitted to write an object at a particu- • 
lar security class if the security class of the object dominates 
the write class of the subject, and the read class of the sub-. 
ject dominates the security class of the object. If a subject's 
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read class strictly dominates its write class, it is said to be a sidered when determining how to label derived data~ For 
trusted subject. this reason, in the SD-DBMS the query is a labeled object, 

When it does not cause a loss of generality, the discussions 
and examples in this paper will use the terms high and low 
to refer to any two security classes where the first strictly 
dominates the second. 

3. Multilevel Relations 

The function of the SD-DBMS is to manage and control 
access to multilevel databases. A multilevel database is 
defined to be a collection of logically related multilevel rela­
tions. 

Definition 3.1: A multilevel relation R is defined 
as having two parts: a time-invariant schema 
R (A 1, A 2, ... ,An, SC), where A 1, A2, ... ,An are 
attributes over some domains D 1, D 2, ... , Dn, and 
SC is an attribute over a set of security classes CL; 
and a time-varying set of tuples T, such that 
T r;;;, D 1 X D 2 X . . . X D n X CL. The set CL is 

called the range of R. 

Note that the schema for a multilevel relation includes a 
security class attribute. For each tuple in the relation, this 
attribute is used to indicate the classification of the data con­
tained within the tuple. This information is used by the sys­
tem to enforce mandatory access control. 

The above definition permits tuples to be polyinstantiated. 
Polyinstantiation refers to the simultaneous existence of 
multiple data objects with the same name, where the multi­
ple instantiations are distinguished by their security class 
[8, 9, 10]. In the SD-DBMS, this means that there may be 
two or more tuples in a multilevel relation with the same 
primary key. These tuples are uniquely identified by the 
combination of their primary key and their security class. 
Although it presents an integrity problem, polyinstantiation 
must be supported in an MLS DBMS in order to prevent the 
appearance, disappearance, or perceived presence of data 
from being used as an inference or signaling channel. 

When a relational operator is applied to one or more mul­
tilevel relations, the result is another multilevel relation, 
called a derived relation. An important consideration is how 
the tuples in a derived relation are labeled. One possible 
approach is to label each tuple at the least upper bound of 
the security classes of the tuples that entered into its deriva­
tion. For example, when a tuple is selected or projected, its 
security class is unchanged; when two tuples are joined, the 
resulting tuple is labeled at the least upper bound of the 
security classes of the original tuples. This is the approach 
taken in the SeaView effort [9]. However, as pointed out in 
Appendix A of [9], these labels do not accurately reflect the 
security classes of parameters embedded in relational 
expressions, or the security classes of data upon which the 
decision to evaluate a particular expression might have been 
conditioned. This led the Sea View project to the conclusion 
that tuple level labels are inherently advisory. Our conclu­
sion differs in that we believe that tuple level labels can be 
perfectly reliable if the security class of the query is con-

and each tuple in a derived relation is labeled with the least 
upper bound of the security classes of the tuples that entered 
into its derivation and the security class of the query. 

Since queries are labeled objects, there must be a way to 
determine the security class of a given query. If the query is 
submitted by a untrusted application program, its security 
class is set to be that of the application (i.e., equal to its read 
class and write class). This nas the effect that, for all 
untrusted applications, results are returned at the security 
class of the application. It should be noted that, if there is a 
need for advisory labels, they can be explicitly stored in 
relations as an additional column. If the query is submitted 
by a multilevel application, the multilevel application can 
supply the SD-DBMS with the security class of the query 
(providing it falls within the application's security class 
range). The correctness of these labels can be verified 
through an information flow analysis of the application pro­
gram [6]. 

An important special case occurs when the application is an 
interactive user interface. In this case, users enter queries 
directly. If the interface is untrusted, the level of the query 
must be taken to be the level of the interface. If the inter­
face is trusted (multilevel), the user can supply the SD­
DBMS with the security class of the query. This would 
require that the interface include a mechanism that permits 
the user to reliably communicate the security class of the 
query. It is assumed that the user is aware of the security 
class of the query being entered. This assumption is con­
sistent with those made about users of multilevel operating 
systems. 

The above approach to labeling tuples is attractive for two 
important reasons. First, it is firmly based on an informa­
tion flow model of security (i.e., it accounts for information 
flows that can result from sequences of the relational opera­
tors, parameters in relational expressions, and flows in 
application programs). This allows tuple level labels to be 
safely used for mandatory access control. Second, it main­
tains the important closure property of the relational model 
(i.e., the result of all relational operators are multilevel rela­
tions). 

4. SD-DBMS Abstract Architecture 

The SD-DBMS architecture, shown in figure 4.1, consists of 
three types of components: User Programs, the Data 
Manager, and back-end DBMSs. A User Program is a user 
interface or application program permitted to issue queries 
against a multilevel database. User Programs can be trusted 

(i.e., multilevel) or untrusted (i.e., single level). Trusted 
User Programs are permitted to issue queries at multiple 
security levels and receive multilevel results. 

The Data Manager is a trusted component that performs the 
reference monitor functions in the SD-DBMS. A reference 
monitor is an abstract machine that mediates all accesses to 
objects by subjects [2]. In the SD-DBMS, the subjects are 
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User Programs and the objects are tuples in multilevel rela­
tions and user queries. The Data Manager component also 
performs query decomposition and execution control func­
tions. These functions, most of which can be implemented 
in untrusted code, are discussed in detail in section 5. 

Finally, the back-end DBMSs are untrusted single-level 
relational DBMSs used to store and process portions of the 
multilevel database. There is one back-end DBMS per secu­
rity class supported by the system. 

User 
Programs 

Data 

User 
Programs 

Manager 

High Low 
DBMSDBMS 

Figure 4.1. SD-DBMS Abstract Architecture 

The SD-DBMS stores multilevel relations by horizontally 
partitioning them into single-level fragments, which are then 
stored under the appropriate back-end DBMSs. When a 
user creates a multilevel relation, the system creates a set of 
single-level fragments in which to store the relation. This is 

done using the following algorithm. 

Algorithm 4.1: Given a multilevel relation 
R (A 1, A 2, ...,An, SC), with a range CL, for each 
security class c e CL, create a fragment 
Rc (A 1• A 2• ... ,An) on the back-end DBMS with 
security class c. 

For example, a multilevel relation R with a range {high, 
low} would be mapped into two fragments, Rhigh and Rzow. 

The fragment Rhigh would be created on the high DBMS 
and used to store the high tuples in R, and the fragment Rzow 

would be created on the low DBMS and used to store the 
low tuples in R. The multilevel relation R is part of an 
example multilevel database, summarized in table 4.1, that 
will be used in examples throughout this paper. 

Relation Primary Key Range Fragments 

R(x,a) 
S(x,b) 
M(x,c) 

X 

X 

X 

{low,high} 
{low,high} 
{low} 

Rzow,Rhigh 

Szow, Shigh 

Mzow 

Table 4.1. Example Multilevel Database 

To retrieve data from a multilevel database, subjects (User 
Programs) submit queries to the Data Manager. The Data 
Manager decomposes each query into a sequence of 
subqueries that operate on single-level fragments. This 
decomposition is done in such a way that each subquery 
produces a single-level result, and the union of these single­
level results forms the result of the original query. To 
decompose queries in this way is not difficult since all rela­
tional operators, except for union, produce single level 
results when applied to single level fragments. The motiva­
tion for this decomposition strategy is that, if the relational 
operators always return single level results, the back-end 
DBMSs that implement them can be untrusted. 

Once a query is decomposed into subqueries, each of the 
subqueries is executed on the back-end DBMS having the 
same security class as its result. Since queries executed on 
the high DBMS often require access to low data, the SD­
DBMS supports the transmission of data from the low to the 
high DBMS. To assure that no data flow in the opposite 
direction, all such transfers are constrained to go through the 
reference monitor (implemented as part of the Data 
Manager). Once the execution of the subqueries is com­
plete, the Data Manager retrieves the results and labels them 
at the security class of the back-end DBMS on which they 
were computed. The reference monitor then mediates the 
return of these results to the user. 

5. Query Decomposition and Execution 

The previous section presented an architecture for the SD­
DBMS. This section presents a notation for describing 
query decomposition and processing algorithms, an algo­
rithm for the recovery (recomposition) of multilevel rela­
tions, and algorithms and examples that describe how the 
relational operators are implemented within the architecture. 

5.1 Notation 

We have adopted the following relational algebra notation to 
express the queries processed by the SD-DBMS [3]: 
1ta r.a , ••• ,a. ( R ) denotes the projection of the relation R, on 

2

the attributes a 1, a 2, ... , an; crp ( R ) denotes selection (res­
triction), where P is the selection predicate; R x S denotes 
cross product; R uS denotes union; and finally, R - S 
denotes difference. The operator ~ is the relation assign­
ment operator. These relational operators can be nested to 
reduce the need for temporary relations and to form more 
compact expressions (e.g., 1ta,b ( R x S )). 

To express update queries, we use the following notation 
which is a modified version of that used in the query 
language SQUARE [11]. The insertion operator has the 
form: JR (a 1, a 2, · · · , an; v 1, v 2, ... , vn ) denoting the 
insertion of a tuple into R, where a 1, a 2, · · · , an are attri­
butes of R, and v 1, v2, ... , vn are values for those attributes 
in the inserted tuple. The deletion operator has the form: 
iR ( P ), where Pis a predicate. The relation R is searched 

for tuples that satisfy P, and all matching tuples are deleted. 
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The modify operator has the form: 
~R (a 1 =expr 1, a 2 =expr2, ... ,an =exprn; P ), where 
a 1, a 2, ···,an are attributes of R, expr1, expr2, ... , exprn 
are expressions (possibly involving a 1, a 2, ···,an), and P 
is a predicate. The relation R is searched for tuples that 
satisfy P, the specified attributes in each of those tuples are 
replaced with the result of evaluating the corresponding 
expression. 

Since a basic function of the SD-DBMS is distributed query 
processing, two operations have been defined to describe the 
distributed execution of queries and dynamic routing of 
results. The operation exec ( Q , C ) is used to execute 
query Q at component . C. The operation 
trans ( R , C 1, C 2 ) is used to transfer (copy) relation R 
from component C1 to component C2. The components of 
the architecture are indicated by: L for low DBMS, H for 
high DBMS, D for Data Manager, and U for User Program. 

The above notation is summarized in table 5.1. 

Symbol Meaning 

1t Project. 
cr Select 
X Product 
u Union 
- Difference 
~ Assignment 
J, Insert 
i Delete 
~ Modify 
trans Data Transfer 
exec Subquery Execution 

Table 5.1. Notation Summary 

5.2 Recovery of Multilevel Relations 

The execution of a relational operator results in the creation 
of a new multilevel relation. This multilevel reliition can be 
an intermediate or final result. Intermediate results are rela­
tions that are to be used as operands in subsequent relational 
operations. Final results are relations to be returned to the 
subject. The last step in processing any query is to recover 
the final result (multilevel relation) and return it to the sub­
ject. A multilevel relation is recovered by copying each of 
its fragments to the Data Manager, labeling the tuples in the 
fragments at the security class of the back-end DBMS from 
which they were retrieved, unioning the fragments together, 
and sending the result to the requesting User Program. This 
recovery process is given by the following algorithm. 

Algorithm 5.1: Given a retrieval request on a mul­
tilevel relation R, let FR be the set of fragments Ri 
of R such that i is domin~ted by the read class of 
the subject. For each fragment Ri e FR , copy Ri 
from the back-end DBMS c to the Data Manager, 
where c is a security class that is the least upper 
bound of i and the level of the retrieval request. 

Then execute the query Tml ~ u Ri on the 
R; E FR 

Data Manager, where Tml is a temporary relation, 
and return the result to the subject. 

Since this union operation returns a multilevel result it must 

be trusted. This is indicated by the star in the symbol u. It 
should be noted that (depending on the security class of the 
query) algorithm 5.1 may require fragments to be 
transferred from a low to a high back-end DBMS. This will 
occur when c dominates i. As mentioned in section 4, such 
transfers are constrained to go through the reference monitor 
to assure that no data flow in the opposite direction. 

The recovery of a multilevel relation is illustrated by the fol­
lowing example. This example, and the other examples in 
this section, assume the security class of the submitted 
query is low. In appendix A, examples are given with 
queries at different security classes. Suppose a subject with 
a read class of high submits a query that results in a request 

for multilevel relation R to be returned. The system would 
recover R as follows. 

trans ( Rzow• L, D ) (l.la) 

trans· (Rhigh• H, D ) (1.2a) 

exec ( Rmz ~ Rzow uRhigh, D ) (1.3a) 

trans ( Rmz, D , U ) (1.4a) 

If the same query were submitted by a subject with a read 
class of low, the system would recover R as follows. 

trans ( Rzow• L, D) (l.lb) 

tran,s ( Rzow• D, U) (1.2b) 

5.3 Retrieval Operators 

There are five basic relational operators: select, project, 
product, union, and difference -- from these, other useful 
relational operators can be derived (e.g., join, intersection, 
and division). This section discusses the five basic opera­
tors. (since all other operators can be derived from them) and 
a generic alpha operator used to illustrate the handling of 
aggregate operators (e.g., MIN, MAX, and AVG). Query 
decomposition and processing algorithms for these opera­
tors that assure correct labeling of derived results are 
presented in the following sections. 

5.3.1 Select. A select on a multilevel relation is processed 
by decomposing it into a set of selects on single-level frag­
ments. 

Algorithm 5.2: Given a select query crp ( R ), 
where R is an n-ary multilevel relation, and P is 
the select predicate, let FR be the set of fragments 
Ri of R such that i is dominated by the read class 
of the subject. For each fragment Ri e FR, if Tc 
exists, create the subquery Tc ~ Tc u O'p. ( Ri ); 
otherwise, create the subquery Tc ~ O'p ( Ri ); 
execute the subquery on the back-end DBMS c, 
where c is the least upper bound of i and the secu­
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rity class of the query. 

When the execution of these subqueries is complete, the 
answer to the original query is the multilevel relation T. T 
can be recovered (using algorithm 5.1) and returned to the 
user, or it can be used as an operand in further relational cal­
culations. 

The decomposition and processing of select queries is illus­
trated by the following example. Suppose a subject with a 
read class of high submits the query cra=lO ( R ). The sys­
tem would decompose this query into the following set of 
subqueries and operations: 

exec ( Tzow ~ O"a=lO ( Rzow ), L ) (2.1a) 

exec (Thigh ~ O"a=lO ( Rhigh ), H ) (2.2a) 

If the same query were submitted by a subject with a read 
class of low, the system would decompose it into the follow­
ing subquery: 

exec ( Tzow ~ O"a=lO ( Rzow ), L ) (2.1b) 

5.3.2. Project. A project on a multilevel relation is pro­
cessed by decomposing it into a set of projects on single­
level fragments. 

Algorithm 5.3: Given a project query 1tA ( R ), 
where R is an n-ary relation, and A is a set of pro­
ject attributes, let FR be the set of fragments Ri of 
R such that i is dominated by the read class of the 
subject. For each fragment Ri e FR, if Tc exists, 
create the subquery Tc ~ Tc u 1tA ( Ri ); other­
wise, create the subquery Tc ~ 1tA ( Ri ); execute 
the subquery on the back-end DBMS c, where c is 
the least upper bound of i and the security class of 
the query. 

When the execution of these subqueries is complete, the 
answer to the original query is the multilevel relation T. 

The decomposition and processing of project queries is 
illustrated by the following example. Suppose a subject 
with a read class of high submits the query 1tx,a ( R ). The 
system would decompose this query into the following set 
of subqueries and operations: 

exec ( Tzow ~ 1tx ,a ( Rzow ), L ) (3.la) 

exec ( Thigh ~ 1tx ,a ( Rhigh ), H ) (3.2a) 

If the same query were submitted by a subject with a read 
class of low, the system would decompose it into the follow­
ing subquery: 

exec ( Tzow ~ 1tx ,a ( Rzow ), L ) (3.1 b) 

5.3.3. Product. The product of multilevel relations is pro­
cessed by decomposing it into a set of products of single­
level fragments. 

Algorithm 5.4: Given the product query R x S, 
where R and S are n-ary relations, let FR be the set 
of fragments Ri of R such that i is dominated by 

the read class of the subject, and Fs be the set of 
fragments Si of S such that i is dominated by the 
read class of the subject. For each pair of frag­
ments, Ri e F R , s1 e F s , if Tc exists, create the 
subquery Tc ~ Tc uRi x S1; otherwise, ·create 
the subquery Tc ~ Ri x S1; execute the subquery 
on on the back-end DBMS c, where c is the least 
upper bound of i, j, and the security class of the 
query. 

When the execution of these subqueries is complete, the 
answer to the original query is the multilevel relation T. 

The decomposition and processing of product queries is 
illustrated by the following example. Suppose a subject 
with a read class of high submits the query R x S. The sys­
tem would decompose this query into the following set of 
subqueries and operations: 

exec ( Tzow ~ Rzow X Szow, L ) (4.1a) 

trans ( Rzow• L, H ) (4.2a) 

trans (Sz0 w,L,H) (4.3a) 

exec ( Thigh ~ Rzow X Shigh, H ) (4.4a) 

exec (Thigh ~Thigh u ( Rhigh X Szow ), H ) (4.5a) 

exec ( Thigh ~ Thigh u ( Rhigh X Shigh ),. H )(4.6a) 

If the same query were submitted by a subject with a read 
class of low, the system would decompose it into the follow­
ing subquery: 

exec ( Tzow ~ Rzow X Szow• L ) (4.1 b) 

5.3.4. Union. The union of multilevel relations is processed 
by decomposing it into a set of unions of single-level frag­
ments at a single security level. 

Algorithm 5.5: Given a union query R uS, 
where R and S are n-ary multilevel relations, for 
each security class i e range(R) u range(S) that is 
dominated by the read class of the subject, if Tc 

exists, create the subquery Tc ~ Tc u ( Ri u Si ); 
otherwise, create the subquery Tc ~ Ri u Si; exe­
cute the subquery on the back-end DBMS c, where 
c is the least upper bound of i and the security 
class of the query. 

When the execution of these subqueries is complete, the 
answer to the original query is the multilevel relation T. 

The decomposition and processing of union queries is illus­
trated by the following example. Suppose a subject, with a 
read class of high submits the query R u S. The system 
would decompose this query into the following set of 
subqueries and operations: 

exec ( Tzow ~ Rzow U Szow • L ) (5.la) 

exec ( Thigh ~ Rhigh u Shigh, H ) (5.2a) 

If the same query were submitted by a subject with a read 
class of low, the system would decompose it into the follow­
ing subquery: 
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exec ( Tlow f- R10w U Slow, L ) (5.1 b) 

5.3.5. Difference. The difference of two multilevel rela­
tions is processed by decomposing it into a set of differ­
ences. 

Algorithm 5.6: Given a difference query R - S, 
where R and S are n-ary multilevel relations, let 
FR be the set of fragments Ri of R such that i is 

dominated by the read class of the subject, and Fs 
be the set of fragments si of s such that i is dom­
inated by the read class of the subject. For each 
fragment Ri E FR, if Tc exists, create the 
subquery Tc f-Tc u (Ri- u Sj ); otherwise, 

S1 E Fs 

create the subquery Tc f- Ri - u Sj; execute 
S1 E Fs 

the subquery on the back-end DBMS c, where c is 
the least upper bound of i, the security classes of 
the fragments in Fs, and the security class of the 
query. 

When the execution of these subqueries is complete, the 
answer to the original query is the multilevel relation T. 

The decomposition and processing of difference queries is 
illustrated by the following example. Suppose a subject 
with a read class of high submits the query R - S . The sys­
tem would decompose this query into the following set of 
subqueries and operations: 

trans ( R10w, L, H) (6.la) 

trans ( Slow , L , H ) (6.2a) 

exec (Thigh f- R 10w - (Slow u Shigh ), H ) (6.3a) 

exec (Thigh f- Thigh u ( Rhigh - (6.4a) 

(Slow u Shigh ) ), L ) 

If the same query were submitted by a subject with a low 
read class, the system would decompose it into the follow­
ing set of subqueries: 

exec ( Tlow f- Rlow- slOW' L ) (6.lb) 

5.3.6. Aggregate. An aggregate computed on a multilevel 
relation is processed by computing the aggregate over the 
single-level fragments of the relation and labeling the result 
at the least upper bound of the fragment security classes and 
the security class of the query. 

Algorithm 5.7: Given an aggregate query a ( R ), 
where a is an aggregate operator and R is an n-ary 
multilevel relation, let FR be the set of fragments 

Ri of R such that i is dominated by the read class 
of the subject. Execute the subquery 
Tc f- a ( u Ri ) on the back-end DBMS c, 

Ri E FR 
where c is the least upper bound of the security 
classes of the fragments in FR and the security 
class of the query. 

When the execution of these subqueries is complete, the 
answer to the original query is the multilevel relation T. T 
consists of a single fragment at the security class of the least 
upper bound of all the data used in its derivation. 

The decomposition and processing of aggregate queries is 
illustrated by the following example. Suppose a subject 
with a read class of high submits the query a ( R ). The 
system would decompose this query into the following set 
of subqueries and operations: 

trans ( R10w, L, H ) (7.la) 

exec (Thigh f-a ( Rlow u Rhigh ), H ) (7.2a) 

If the same query were submitted by a subject with a low 
read class, the system would decompose it into the follow­
ing subquery: 

exec ( Tlow f- a ( Rlow ), L ) (7 .lb) 

5.4. Update Operators 

The three basic update operators are insert, delete, and 
modify. This section covers algorithms for these operators 
that assure that updates get reflected in the appropriate frag­
ments. The fragments to be updated depends of the level of 
the update, which is indicated by the security class of the 
query. Examples are not given for these algorithms since 
their operation is straightforward. 

5.4.1. Insert. An insertion into a multilevel relation is pro­
cessed by inserting the data in the appropriate fragment of 
that relation. The fragment in which to insert the data is 
determined by the security class of the query. Note that the 
security class of the query always dominates the write class 
of the subject. 

Algorithm 5.8: Given an insert query 
.1-R (a 1,a 2, ···,an;v 1,v 2, ... ,vn),whereRis 

a multilevel relation, execute the subquery 
.1-Rc (a 1, a 2, ···,an; v 1, v2, ... , vn) on back­

end DBMS c, where c is the security class of the 
query. 

5.4.2. Delete. A deletion from a multilevel relation is pro­
cessed by deleting tuples in the the appropriate fragments. 
These are the fragments having a security class that dom­
inates the security class of the query and is dominated by 
read class of the subject. 

Algorithm 5.9: Given a delete query i R ( P ), 
where R is a multilevel relation, and P is a predi­
cate, let FR be the set of fragments Ri of R such 
that i is dominated by the read class of the subject, 
and i dominates the security class of the query. 
For each fragment Ri E FR, execute the query 
iRi ( P ) on back-end DBMS i. 

5.4.3. Modify. A modification to a multilevel relation is 
processed by modifying the tuples in the appropriate frag­
ments. These are the fragments having a security class that 
dominates the security class of the query and is dominated 
by read class of the subject. 
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Algorithm 5.10: Given a modify query 
~R (a 1=expr 1, a 2=expr2, ... , an=exprn; P ), where 
a 1, a 2, · · · , an are attributes of R, 
expr 1, expr2, ... , exprn are expressions (possibly 
involving a 1, a 2, · · · , an), and P is a predicate, 
let FR be the set of fragments of Ri of R such that 
i is dominated by the read class of the subject, and 
i dominates the security class of the query. For 
each fragment Ri E FR, execute the query 

~Ri (a 1=expr 1, a 2=expr2, ···• an=exprn; P ) on 
back-end DBMS i. 

6. Data Replication 

The query processing performance of the SD-DBMS archi­
tecture is likely to suffer because of the need to tran.sfer)Qw 
fragments to the high back-end DBMS in order to process 
queries. In order to lesson or eliminate this performa11ce 
penalty, the SD-DBMS permits some or all of the low frag­
ments to be replicated on the high back-end DBMS. Low 
fragments replicated on the high back-end DBMS can be 
used in high queries instead of fetching a new copy from the 
low back-end DBMS each time it is needed. Partial replica­
tion (i.e., replicating the low fragments of some, but not all, 
relations) is considered to be a viable alternative because it 
is expected that certain low fragments will be needed on the 
high back-end DBMS more frequently than others. The 
decision of which fragments to replicate could be based on 
statistics collected by the SD-DBMS. If a particular low 
fragment is frequently needed on the high back-end DBMS, 
then the overhead of replicating it is justified. However, if a 
particular low fragment is infrequently (or never) needed on 
the high back-end DBMS, then replication is not justified, 
and the fragment should be transferred to the high back-end 
DBMS on an as-needed basis. Thus, the partial replication 
approach provides a method of tuning the physical database 
structure. 

The main disadvantage of replicating data (besides the obvi­
ous storage overhead) is the problem of synchronizing 
updates between replicated copies of low data. The solution 
to this problem in the SD-DBMS is to make one copy (the 
low copy) the primary copy, and all other copies secondary 
copies. Only the primary copy is permitted to be updated by 
users. User updates to the primary copy are then propagated 
to all secondary copies by the system. This technique 
avoids the problem of simultaneous updates to replicated 
copies of the data resulting in an inconsistent database. 
Sirice all updated must be applied to the primary copy first, 
the concurrency control mechanisms on the low back-end 
DBMS can prevent conflicting user updates. Using this 
approach, if a serious loss of synchronization should occur, 
it could always be corrected by removing the replicated 
fragment and recopying the (low) primary copy. 

7. Covert Channels 

A serious problem with back-end DBMS architectures is 
that a Trojan horse in a high user program could use queries 

sent to the low back-end DBMS as a high bandwidth covert 
storage channel [1]. This attack could take a number of 
forms. The most highly recognized, and potentially the 
most devastating, is that a Trojan horse in a high user pro­
gram could encode arbitrary high data in the qualification 
portion of the selection query to be leaked to the low back­
end DBMS. A cooperating Trojan horse in the low back­
end DBMS could then extract the high data from the query 
and release it to a low user. The following example, bor­
rowed from Rinke [12], illustrates this problem. Suppose 
the following query is submitted from a high user program: 

retrieve NAME where ADDRESS= "504 Pershing Square". 

If this query is directed to the low back-end DBMS, the 
Data Manager cannot determine whether it is a legitimate 
query asking for employees at a particular address, or 
whether it has been sent by a Trojan horse in the user pro­
gram, with the intent of leaking the Top Secret fact that 504 
pershing missiles are to be deployed. This threat is not lim­
ited to selection queries, since other types of queries (e.g., 
projections, joins, etc.) can potentially be used as a covert 
leakage channel when sent down in security class (e.g., by 
modulating the attribute and relation names in the query). 

The architecture presented in this paper does not suffer from 
this vulnerability. This is because in SD-DBMS architec­
ture assigns each query a security class and strictly enforces 
the constraint that a query is never executed on a back-end 
DBMS strictly dominated by its security class. In the exam­
ple above, since the query was entered from an untrusted 
high user program, the level of the query would be high, and 
therefore the query would be executed on the high back-end 
DBMS and the results would be returned as high. However, 
if the high user program were trusted, it could reliably com­
municate to the Data Manager the level of the query as low, 
and the query could be sent to the low back-end DBMS to 
return low results. 

It should be noted that a covert channel may still exist. The 
execution of queries that access low data on the high back-

end DBMS requires that data be copied from the low to the 
high back-end DBMS. These copy requests can be used as a 
covert channel, albeit one of substantially lower bandwidth. 
This channel can be eliminated by fully replicating the low 
data on the high back-end DBMS thereby eliminating the 
need to copy data. This approach eliminates the covert 
channel at the cost of increasing the overhead of propagating 
updates. Another approach would be to use partial or no 
replication, and simply audit the channel and prevent it from 
exceeding some predetermined threshold (e.g., by metering 
the flow of copy requests within the Data Manager). 

9. Summary and Conclusions 

This paper presented a distributed architecture for multilevel 
database security. The architecture was defined in such a 
way that it provides trusted tuple level labeling without 
requiring the relational operators to be trusted. This permits 
a near-term implementation of this architecture that uses 
existing DBMS technology to implement the majority of 
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database operations. Another important aspect of this archi­
tecture is that it recognizes the role the query plays in the 
security class of derived results. Reflecting the security 
class of the query in the security class ofresults allows this 
architecture to provide tuple level labels that can be safely 
used in mandatory access control decisions. 
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Appendix A 

Query Processing Examples 

This appendix presents three query processing examples that 
illustrate how a simple query is decomposed and processed 
in the .architecture. The examples were selected in such a 
way that they also illustrate the effect of the security class of 
the qti'ery, and data replication, on query decomposition and 
processing. All three of the examples are based on the 
query shown in figure A.1. The multilevel database used in 
these examples is the database shown in table 4.1. 

1ta,b,c ( O"a=lO ( R X S ) ) 

Figure A.l. Example Query. 

A.l 	Example 1: High User/Low Query 

This example illustrates how the query, shown in figure A.1, 
would be processed if it were entered by a high subject and 
was labeled low. Note that, for a query to be entered by a 
high subject and be labeled low, the subject would have to 
be trusted (multilevel). 

exec (Tzow ~ 1ta,b,c (O"a=lQ(Rzow XSzow)),L) (1.1) 

trans ( Rzow• L, H ) 	 (1.2) 

trans ( Sz0 w,L, H ) 	 (1.3) 

exec (Thigh~ 1ta,b,c ( O"a=lO ( Rzow X shigh) ), H) (1.4) 

exec ( Thigh ~ Thigh u. 	 (1.5) 

( 1ta,b,c (cra=lO ( Rhigh X Szow ) ) ), H) 

exec ( Thigh ~ Thigh u 	 (1.6) 

( 1ta,b,c (cra=lO ( Rhigh X Shigh ) ) ), H) 

trans ( Tzow• L, D ) (1.7) 

trans ( Thigh• H, D ) (1.8) 

exec ( Tmz ~ Tzow u Thigh• D ) (1.9) 

trans ( Tml, D , U ) (1.10) 
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In step 1.1 the low part of the result is computed. This 
result is stored in the fragment Tzow· In steps 1.2 and 1.3, 
the low fragments of R and S are transferred to the high 
back-end DBMS so that they can be used to compute the 
high part of the result. Note that, if the data were fully repli­
cated, steps 1.2 and 1.3 could be eliminated. In steps 1.4­
1.6, the high part of the result is computed. This result is 
stored in Thigh. At this point, the execution of the query is 
complete and the result is the multilevel relation T. This 
multilevel result was possible because the read class of the 
subject (high) strictly dominated the security class of the 
query (low). In steps 1.7-1.10, T is recovered and returned 
to the subject. 

A.2 Example 2: High User/High Query 

This example illustrates how the the query, shown in figure 
A.1, would be processed if it were entered by a high subject 
and was labeled high. In this case, either the subject could 
have been untrusted (single-level) and the query was taken 
to be its read class, or the subject could have been trusted 
(multilevel) and could have indicated to the Data Manager 
that the security class of the query was high. 

trans (Rzow•L,H) (2.1) 

trans ( Szow• L, H) (2.2) 

exec (Thigh f-- 1ta,b,c ( O"a=lO ( Rzow X Szow) ), H ) (2.3) 

exec ( Thigh f-- Thigh u (2.4) 

( 1ta,b,c (cra=lO ( Rzow X Shigh ) ) ), H) 

exec ( Thigh f-- Thigh u (2.5) 

( 1ta,b,c (cra=lO (Rhigh XSzow)) ),H) 

exec ( Thigh f-- Thigh u (2.6) 

( 1ta,b,c (cra=lO ( Rhigh X Shigh ) ) ), H) 

trans ( Thigh• H, D ) (2.7) 

trans ( Thigh• D, U ) (2.8) 

In this example, the entire result will be high because the 
security class of the query (high) is equal to the read class of 
the subject (high). In steps 2.1 and 2.2, the low fragments of 
RandS are transferred to the high back-end DBMS so that 
they can be used to compute the high part of the result. 
Note that, if the data were fully replicated, steps 2.1 and 2.2 
could be eliminated. In steps 2.3-2.6, the high part of the 
result is computed. At this point, the execution of the query 
is complete and the result is the multilevel relation T which 
consists of the single fragment Thigh· In steps 2.7 and 2.8, T 
is recovered and returned to the subject. 

A.3 Example 3: Low User/Low Query 

This example illustrates how the query, shown in figure A.1, 
would be processed if it were entered by a low subject. In 
this case, the query obviously must be labeled low. 

exec ( Tzow f--1ta,b,c ( O"a=lO ( Rzow X Szow) ), L ) (3.1) 

trans ( Tzow• L, D ) (3:2) 

trans ( Tzow• D, U ) (3.3) 

In this example, the result will be low since the low user can 
only see low data. In step 3.1, the low (and only) part of the 
result is computed and stored in Tzow. At this point, the exe­
cution of the query is complete and the result is the mul­
tilevel relation T which consists of the single fragment Tzow. 
In steps 3.2 and 3.3, T is recovered and returned to the sub­
ject. 
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A Summary of the 

RADC Database Security Workshop 


Teresa F. Lunt 

SRI International, Computer Science Laboratory 
333 Ravenswood Ave., Menlo Park, CA 94025 

1 Introduction 

On May 24-26, 1988, Teresa Lunt of SRI led a database 
security workshop at Vallombrosa Conference and Retreat 
Center in Menlo Park, California. About 25 researchers 
working on multilevel security for database systems at­
tended. The workshop was the first extended techni­
cal interchange among those participating in the following 
projects, most of which were inspired by the 1982 Air Force 
Summer Study [1]: SRI's and Gemini Computer's SeaView 
A1 multilevel relational database system [2]; TRW's A1 Se­
cure Prototype DBMS [3]; the Unisys B3 secure database 
system project; Honeywell's LOCK Data Views (LDV) 
project [4]; MITRE's Kernelized Trusted DBMS project; 
the Naval Research Laboratory's Secure Military Message 
System [5]; AOG Systems' secure entity-relationship (E-R) 
project [6]; MITRE's Integrity Lock project [7]; and the 
Hinke-Schaefer secure database project [8]. 

The workshop began with short presentations on the 
research projects currently under way, and most of the rest 
of the sessions were devoted to discussions of the advantages 
and disadvantages of the various approaches to multilevel 
database security that have been tried, difficult issues that 
have resisted solution, and new approaches to multilevel 
database security. Below we review some of the discussions 
on these topics. 

2 Labels 

The group debated the issue of trusted versus advisory la­
bels for data. Some projects (e.g., SeaView) return an ad­
visory label with the data because, according to the star 
property, the data returned to a user are classified at the 
subject class; moreover, any internal labels on the individ­
ual data elements have been handled by untrusted (relative 
to mandatory security) code, so they cannot be guaran­
teed to be correct for the stored data. Some projects le.g., 
TRW's A1 prototype) do not return any labels with the 
data, on the theory that advisory labels could be harmful 
if they cannot be guaranteed to be correct. Other projects 
(e.g., the Unisys project) return a trusted label, with the 
mandatory TCB extending out to the user's screen. 

The participants expressed diverse opinions about these 
approaches. Some said the lack of labels could be confus­
ing if data are polyinstantiated. Others believed trusted 
labels are essential for trusted multilevel applications, and 
yet others doubted that users would make any use of trusted 
labels, whether returned directly by the database system or 
through a trusted application, because trusted applications 
are too complex and difficult to build. 

3 Aggregation 

The aggregation problem arises when a set of items of in­
formation, all of which are classified at some level, become 
classified at a higher level when combined. The group de­
bated the approaches taken in LDV and SeaView. The LDV 
approach is to store all the data forming the aggregate at 
the low level, detect when the aggregate has been retrieved, 
and mark up (or withhold) the result. In the SeaView ap­
proach, all (or some) of the items forming the aggregate 
are stored at the aggregate-high level, and subsets can be 
retrieved at the lower level only through sanitization. Some 
participants agreed that storing all the aggregate data at 
a level lower than the aggregate level may not be safe. In 
addition, one attendee noted that withholding data from 
one file when a related file has been accessed (as in LDV) 
can create an unnecessary denial-of-service problem. 

Another issue between LDV and Sea View is that many 
of the so-called aggregation problems that LDV is designed 
to detect can be readily solved through appropriate data 
design. When the intent is to hide sensitive relationships 
between data items that individually are not sensitive, the 
data can be stored at a low level and the sensitive relation­
ships can be stored at a high level. The data are thus avail­
able to low subjects while the sensitive relationships are 
automatically protected by the underlying mandatory se­
curity mechanisms, without relying on complicated trusted 
software to detect violations. With adequate database de­
sign tools (such as the inference control tool proposed by 
Matt Morgenstern of SRI [9]), a proposed database design 
can be analyzed for such problems and restructured to elim­
inate or minimize the problems. 

4 Discretionary Security 

Dorothy Denning raised the question of whether a database 
could be partitioned by discretionary permissions as well 
as by classification. If so, stored data (i.e., storage objects) 
could be appropriately marked with their access control 
lists, and the discretionary authorizations for relations and 
views would be derived from those of the underlying stor­
age objects. This offers the possibility of achieving greater 
assurance for discretionary security than if discretionary se­
curity attributes are associated with views because of the 
complex mechanism involved in view evaluation. Views do 
not partition a database because they may overlap, and 
views defined using conditional clauses may map to chang­
ing subsets of the database as the data are modified. Helena 
Winkler of Sybase explained that Sybase's secure database 
product (currently under development) associates access 
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control attributes not with views but rather with the base 
relations, which are mapped directly to storage objects. 
Sybase believes that although access to the program im­
plementing the view could be controlled, because the view 
compiler is untrusted no assurance exists that the compiled 
view maps to the same set of data that is described in the 
view definition. 

Some participants believed that partitioning the 
database with discretionary security attributes would mean 
that a repartitioning would be required when authoriza­
tions were granted and revoked. Others pointed out, how­
ever, that no repartitioning or modifying access control lists 
is necessary if users are moved in and out of groups. 

Lunt raised some other discretionary security issues for 
A1 and B3 database systems that stem from the require­
ments in the Trusted Computer System Evaluation Crite­
ria [10] for support for group authorizations and specific de­
nial of authorizations. Because the set of users and groups 
authorized for an object is independent of the set denied 
authorization, apparent conflicts between the two sets may 
exist, raising the questions: What does denial of autho­
rization mean, and how do we reconcile the authorizations 
granted to users individually and as members of groups? 

Denial of authorization can be used merely as a conve­
nience in forming access control lists. For example, granting 
group G authorization and denying user U in G authoriza­
tion can make the object in question available to everyone 
in G except U. With this interpretation, if user U is denied 
authorization by one user but is later granted authoriza­
tion by another, then U becomes authorized. A stronger 
interpretation of denial is that denials take precedence over 
authorizations: One user's denial operation could not be 
negated by another's later grant operation. 

In some applications, a user may belong to more than 
one group. In assigning privileges to subjects acting on 
behalf of a user, one must decide whether the subject should 
operate with the union of the user's individual privileges 
and the privileges of all the groups the user belongs to, 
whether the subject should operate with the privileges of 
only one group at a time, or whether some other policy 
should be adopted. These questions should be examined 
further [11]. 

5 The Homework Problem 

Experience with applying MITRE's Integrity Lock secure 
database system to a particular secure database application 
motivated Rae Burns of Kanne Associates to devise a home­
work problem, which she posed to the group. The group 
broke up into three teams to work on it; They worked late 
into the evening and on the following morning animatedly 
discussed the homework problem, as the team leaders pre­
sented their approaches to the problem. Many of those at­
tending considered the homework problem the single most 
valuable part of the workshop. The homework problem is 
appended to this paper. 

6 Classification Semantics 

Gary Smith of George Mason University led a discussion 
on the semantics of data classification. Smith believes that 
information should be classified at a level that reflects its 
contents, not its derivation. He introduced three dimen­

sions to security semantics: content (e.g., flights to Iran can 
be classified because of the value 'Iran'), description (e.g., 
the fact that flights to Iran are classified may itself be clas­
sified), and existence (e.g., the existence of a flight to Iran 
may be classified, or the existence of classified flights may 
be classified). For data, he enumerated the following secu­
rity semantics: data values classified by themselves (e.g., 
self-describing data or implicit associations), data values 
classified in association with an attribute name, multiple 
attribute associations, functional dependencies, temporal 
associations, and quantity aggregations. 

The group also discussed automatic classification of 
text. Smith graded the following tasks from easy to hard: 
keyword search, classifying simple references, classifying 
disambiguated text, classifying text in limited domains, and 
classifying free-form text. Some argued that systems such 
as Classi, an automated text classification system proposed 
by Lunt and Berson [12], should be pursued because hu­
mans are not as consistent as machines that classify text 
and because systems like Classi could address the under­
supply of qualified human experts. Others cautioned that 
such consistency may lead to a false sense of security if the 
inconsistency of the humans can be attributed to rules that 
were not captured by the expert system. They warned of 
the risk that the expert system may be used outside its 
domain of expertise, in which case the system should rec­
ognize this and answer, "I don't know." Untrusted subjects 
in the expert system classifier could tamper with the classi­
fication rules. In addition, many ways of signaling through 
text (e.g., modulating the space width) would be extremely 
difficult to detect by automatic classifiers or downgraders. 
Although some participants believed it might be reasonable 
to assume that Classi would not operate in a hostile envi­
ronment, these issues underscore the need to investigate 
how to achieve a high degree of assurance for AI systems, 
such as Classi, that are used to assign access classes to text 
or data. In the absense of high assurance, a human may 
still be needed in the loop, but, as the group noted, putting 
a human in the loop is not an answer either. 

7 Assurance 

7.1 Balanced Assurance 

Balanced assurance has been proposed in Sea View (and 
earlier by Roger Schell of Gemini Computers and others 
in formulating the Trusted Network Interpretation [13]) as 
a means of achieving A1 (or B3 or B2) assurance for the 
system as a whole by applying all the A1 (or B3 or B2) as­
surance techniques to the portion of the system enforcing 
mandatory security and less stringent assurance measures 
(comparable to Class C2) to those portions of the TCB en­
forcing the less critical security properties, such as database 
consistency and discretionary access control [ 14]. Accord­
ing to Schell, the idea of applying balanced assurance to 
database systems stems from a question raised by Dorothy 
Denning at the NCSC's Invitational Workshop on Database 
Security in June 1986 [15]. Her contention was that al­
though views are not appropriate as objects for mandatory 
security, views could provide an extremely flexible mecha­
nism for discretionary security, especially for content- and 
context-dependent controls. At that time, she felt strongly 
that the use of views for discretionary security in IBM's 
System R [16] pointed to the direction that database sys­
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terns would take in the future and that requirmg A1 assur­
ance for discretionary security mechanisms would rule out 
view-based discretionary controls because of their complex­
ity. (Denning has since begun to examine whether discre­
tionary controls should be applied to storage objects rather 
than to views for some applications.) 

The argument for balanced assurance is as follows. A 
system X meets the assurance requirements for Class C2 
and operates in system-high mode at class c. Suppose sys­
tem X is connected across a single-level connection at class 
c with system Y, an A1 system whose range of classes in­
cludes c. In the resultant system, we have A1 assurance 
that only information whose class is dominated by c can 
flow to system X. Because system X's C2 assurance was 
good enough to enforce its (nonmandatory) security policies 
before the connection was made, no further threat is coun­
tered by applying additional assurance techniques, such as 
formal analysis, to the C2 system. Thus, the overall sys­
tem (comprising the A1 and C2 components) should meet 
the assurance requirements for Class Al. If we consider a 
Class A1 multilevel database system to be a collection of 
several single-level "virtual machines" (one for each class), 
each enforcing discretionary and consistency policies, each 
having C2 assurance, and each executing on an underlying 
A1 mandatory security kernel, the balanced assurance ar­
gument wou1a oe that the overall system is Al. The C2 
portions of the system are constrained by the underlying 
mandatory security kernel and thus can introduce no com­
promise to mandatory security. 

The discussion of balanced assurance, led by Bill Shock­
ley of Gemini, was animated. Although some believed that 
users will not want systems that are "A1 here and C2 
there," Shockley emhasized that balanced assurance does 
not mean just "slapping a C2 on anAl." Rather, the over­
all system should be well engineered. Just what system 
engineering requirements should be adhered to still needs 
to be defined. 

7.2 TCB Subsetting 

The balanced assurance argument goes hand in hand with 
the TCB subsetting argument [17]. TCB subsetting is a 
term introduced by Bill Shockley, drawing on earlier work 
by Marv Schaefer and Roger Schell on extensible TCBs [18], 
to mean structuring a TCB in layers, with each layer enforc­
ing its own policies and with each layer constrained by the 
policies enforced by the lower layers. If a previously evalu­
ated TCB is used for the lowest layer, as in SeaView's use 
of GEMSOS, TCB subsetting allows the addition of a new 
layer to form an extended TCB without disturbing the ba­
sis for the evaluation of the original TCB. With this layered 
approach, a mandatory security kernel as the lowest layer 
enforces mandatory security for the entire system without 
the need to verify the entire extended TCB for mandatory 
security. 

Several workshop participants argued that TCB sub­
setting is the way of the future. The TCB subsetting 
approach allows third-party vendors to build independent 
products to extend a system's TCB to enforce additional 
non-mandatory policy without having to verify mandatory 
security. TCB subsetting also allows one to build a sys­
tem that enforces different discretionary policies in differ­
ent domains, with the underlying kernel providing domain 
isolation. For example, a mandatory security kernel could 
support three different domains- one for a file system, one 

for a database system, and one for a mail system - with 
each domain enforcing its own discretionary security pol­
icy. Thus, an underlying global discretionary policy need 
not be enforced by the operating system. 

7.3 Layered TCB 

The Unisys project is designing a layered TCB (composed 
of a system TCB plus component TCBs). Honeywell's LDV 
also has a layered TCB, with the LOCK TCB underneath, 
plus an additional LDV TCB on top, designed to facilitate 
proving properties about the LDV TCB. Sea View has a 
layered TCB, with the GEMSOS TCB underneath and a 
lesser-assurance TCB enforcing database consistency prop­
erties and discretionary access controls on views and mul­
tilevel relations on top. Some participants were concerned 
about enforcing the nonbypassability of the database sys­
tem. LDV uses the LOCK type-enforcement mechanism 
and "trusted pipelines" for this; Sea View uses the GEM­
SOS ring mechanism. Other participants pointed out that 
a Biba integrity category could also be used. Another al­
ternative is a dedicated database machine. Several noted 
that discretionary access controls in the underlying TCB 
could not guarantee that the database system could not be 
bypassed. 

8 New Approaches 

The group discussed several new approaches to multilevel 
database systems. George Gajnak of AOG described a secu­
rity model for entity-relationship systems and engendered 
a lively discussion contrasting his work with the Sea View 
model. Gajnak introduced what he called the determinacy 
principle, which requires that references be nonambiguous. 
He used an example to demonstrate the principal advantage 
of his secure E-R model over a relational model, namely, 
that in the relational model, one cannot avoid referential 
ambiguity when data is polyinstantiated. The problem is 
due to a fundamental weakness of the relational model. Be­
cause the relational model matches on value rather than es­
tablishing specific references for specific entities, when new 
data are added, new possibly inappropriate relationships 
are automatically formed. In AOG's secure E-R model, 
even though entities may be polyinstantiated, no referential 
ambiguity exists because a reference is not a relationship 
but applies to a particular tuple or value in the entity- that 
is, an explicit link to particular data is required. Thus, un­
like the relational model, when a new entity is added in the 
E-R model, the old references do not apply to it. In the 
relational model, the higher the access class, the greater 
the ambiguity. 

Another of the new approaches was presented by Bha­
vani Thuraisingham of Honeywell. In her talk, "Founda­
tions of Multilevel Databases," she advocated applying for­
mal logic to develop a theoretical foundation for multilevel 
databases. Cathy Meadows discussed multilevel security 
for an object-oriented data model and sketched how NRL's 
Secure Military Message System might be modeled as an 
object-oriented system. 

Rae Burns presented what she calls a practical database 
security policy, that calls for certain features to be built into 
multilevel database systems to accommodate the require­
ments of the applications that will be built on top of them. 
These features include an interface for trusted applications 
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that would provide trusted labels for elements and/or tu­
ples (depending on the classification granularity), transac­
tion authorization controls (as in the Clark-Wilson model), 
automatic classification and sanitization, automatic en­
forcement of classification of related data based on foreign 
keys (that is, the data that the foreign key refers to are 
constrained to be at least as high as the foreign key itself), 
no polyinstantiation, and enforcement of entity and refer­
ential integrity inside the DBMS kernel (that is, ordinary 
entity and referential integrity, not multilevel versions of 
them). For example, she feels that if a low user tries to 
insert a tuple when a high tuple with the same key already 
exists, he or she should be told that the data cannot be ac­
cepted. Although some of these requirements (namely, the 
automatic classification of related data, the prohibition of 
polyinstantiation, and the enforcement of ordinary entity 
integrity) may be in conflict with multilevel security and 
lead to potentially high-bandwidth covert channels, Burns 
s&id she would rather live with the covert channels than 
inflict polyinstantiation on the applications with which she 
is familiar. 

On the whole, the group had many reservations about 
her requirements. First, automatic initial classification of 
data must be distinguished from automatic reclassification: 
Automatically reclassifying related data can create high­
bandwidth covert channels. Also, the advantage of polyin­
stantiation is that low subjects need no access whatsoever 
to high data; thus, rejecting a low subject's request based 
on the existence of high data is not even an option. More­
over, the existence of multilevel secure database systems 
may change the way world does its business. Instead of 
mimicking the current way of doing business in the ex­
ternal environment and translating the paper world's. low­
bandwidth information flow channels into high-bandwidth 
covert channels, we should be building secure systems and 
requiring the external environment to adjust to achieve se­
cure operation. In other words, today's research projects 
should create possibilities for the future rather than build 
around today's limitations. 

Classifying Metadata 

The group discussed how to classify metadata and views. 
The group examined whether a query is a labeled object 
and whether the data in a query, especially strings entered 
by the user, have classifications. The group agreed that a 
query is a labeled object classified at the subject class and 
that a user operating in a range of levels should be able to 
specify the level of the query. Then the level of the tuples 
returned should dominate the level of the query object. The 
group also agreed that a view definition is a labeled object 
with a classification at least as great as any relation or view 
it refers to, as in SeaView, and possibly also dominating the 
level of any strings it contains or the level of the subject 
that created the definition. A classified view definition is 
like a classified program: In order for a subject to execute 
the query defining the view, its access class must dominate 
the class of the view definition. The group also debated 
whether the level of the view definition or of the strings 
in the view definition should contribute to the level of the 
result of any query using the view. In the Unisys system, 
the level of the view definition is a lower bound for the result 
of any query against the view. In addition, in the Unisys 
system, if a user specifies a level L1 for a tuple to be inserted 

through a view V whose definition has access class L2 > 
L1, the operation is denied because there is information 
flow from the view definition to the data inserted through 
the view. Consequently, SECRET tuples cannot be inserted 
through a TOP-SECRET view, for example. 

Asked who should be permitted to browse the descrip­
tions of relations and views in the database, the group 
agreed that if a user is not cleared for a relation or view, 
he or she should not be able to read the description for the 
relation or view (the description is the names and types 
of attributes, as opposed to a view definition, which is the 
query defining the view). The group also believed that if a 
user does not have discretionary authorization for a relation 
or view, the user should not be able to read the descrip­
tion (because it would violate least privilege). A separate 
'browse' or 'list' access mode, as in SeaView, can be used 
to allow users to be independently authorized to list the 
descriptions of relations and views they are cleared to see 
in a database. 

The group agreed that metadata (such as integrity con­
straints and classification constraints) are classified at least 
as high as the relation(s) to which they refer. 

10 Conclusions 

The state of the art in multilevel database security has ad­
vanced considerably since the Air Force Summer Study, 
and the past few years have in fact made the findings of 
that study obsolete. Projects such as SeaView, originally 
inspired by the Summer Study, have demonstrated that 
many of the directions suggested by that study are un­
workable. This is not bad news, however, because today's 
research projects have made possible the introduction of 
high-assurance multilevel database products in the near fu­
ture. Moreover, the new research directions suggested at 
this workshop open up exciting new possibilities for the 
future. 

The general consensus was that this was an extremely 
productive and successful workshop. Proceedings of the 
workshop will be published at the end of this year. Readers 
wishing to purchase copies of the proceedings should send 
their names to Teresa Lunt, SRI International, Computer 
Science Laboratory, 333 Ravenswood Ave., Menlo Park, 
CA 94025. A second workshop is planned for February 
or March 1989. 
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Appendix: 

The Homework Problem 


HI-TECH University Final Exam (Take Home) 
Database Security I Due Date: April 1, 1988 

The example database for this exam is taken from our pri­
mary textbook, Date's An Introduction to Database Sys­
tems, Volume 1, Chapters 16 and 27 (p. 279 in the third 
edition), Addison-Wesley, 1981. The description from the 
text is as follows: 

In this example we are assuming that the com­
pany maintains an education department whose 
function is to run a number of training courses. 
Each course is offered at a number of different 
locations within the company. The database 
contains details both of offerings already given 
and of offerings scheduled to be given in the fu­
ture. The details are as follows: 

• 	 For each course: course number (unique), 
course title, course description, details of 
prerequisite courses (if any), and details of 
all offerings (past and planned); 

• 	 For each prerequisite course for a given 
course: course number and title; 

• 	 For each offering of a given course: date, 
location, formate (e.g., full-time or half­
time), details of all teachers, and details of 
all students; 

• 	 For each teacher of a given offering: em­
ployee number and name; 

• 	 For each student of a given offering: em­
ployee number, name, and grade. 

Each exam question is based on this database application; 
each succeeding questions builds on the answers to the prior 
questions. You are advised to read the entire exam first and 
then to proceed to answer each question in turn. 

1. 	 (5 pts) Develop a data model diagram or an entity­
relationship diagram· for the education database de­
scribed above. 
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2. 	 (5 pts) Design a relational schema for the database. 
Include primary keys, foreign keys, and attribute data 
types. Use an "SQL-like" syntax, with any extensions 
that seem appropriate. 

3. 	 {30 pts) Using an "SQL-like" syntax, express the fol­
lowing application security policy, based on the re­
lational schema developed in question 2. The policy 
statements assume only two levels of security: UN­

CLASSIFIED and SECRET. 

(a) 	 Some courses are SECRET; all information about 
a SECRET course (including details of offerings, 
teachers, and students) is SECRET. 

(b) 	 All course offerings at location "Pentagon" are 
SECRET. 

(c) 	 If a course has a SECRET prerequisite, then the 
course is also SECRET. 

(d) 	 Course information may be inserted, modified, 
or deleted only by a course administrator. At 
least one course administrator is cleared for SE­
CRET data. 

(e) 	 A course clerk enters offering, enrollment and 
student grade information; however, once en­
tered into the database, such information may 
be modified or deleted only by a course adminis­
trator. No course clerks are cleared for SECRET 

data. 

(f) 	 If a student has taken a SECRET offering, then 
the student's transcript is SECRET. 

(g) 	 A student's grade point average (GPA) is UN­

CLASSIFIED but may be accessed only by a 
course administrator. 

4. 	 {10 pts) Briefly discuss the implications and ambigu­
ities of at least two of the security policy statements 
above. 

5. 	 {10 pts) Specify two additional, or alternative, secu­
rity policy statements that would be appropriate for 
the corporate education database. 

6. 	 {40 pts) Informally map four of the application­
specific security policy statements from the previous 
questions (3 and 5) to a general DBMS security pol­
icy model. Discuss the relative success of the DBMS 
model in expressing and enforcing the application­
specific policy. Address at least one data entry oper­
ation. 

EXTRA CREDIT! 

The , extra credit question is based on the article by 
Morgenstern ("Controlling Logical Inference in Multilevel 
Database Systems," Proceedings of the 1988 IEEE Sympo­
sium on Security and Privacy, April1988, pp. 245-255). 

Define the sphere of influence (SOl) for the corporate ed­
ucation database. Localize and describe the sources of in­
ference channels, Revise the database schema design and 
security statements as needed to remove any open inference 
channels. 
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Introduction 

This paper provides a snapshot of ongomg support for the 
National Computer Security Center to produce Environments 
Guidelines for the Trusted Network Interpretation of the Trusted 
Computer System Evaluation Criteria (TNI) [1]. The TNI 
Environments Guidelines (TNIEG) document identifies minimum 
security protection required in different network environments. Its 
relation to computer networks parallels the TCSEC Environments 
Guidelines [2] relation to stand-alone computer systems. The definition 
of environment is the same in both documents: "The aggregate of 
external circumstances, conditions, and events that affect the 
development, operation, and maintenance of a system." 

&,tckground 

This section briefly describes Department of Defense computer 
and network guidance and processes. 

The NCSC is responsible for establishing and maintaining 
technical standards and criteria for the evaluation of trusted computer 
systems. As part of this responsibility, the NCSC is developing 
guidance on how new security technology should be used. There are 
two objectives to this guidance: 

a. 	 Establishing a metric for categorizing systems according to the 
security protection they provide. 

b. 	 Identifying the minimum security protection required in different 
environments. 

The Trusted Computer System Evaluation Criteria (TCSEC) [3] 
satisfy the first objective by categorizing computer systems into 
hierarchical classes based on evaluation of their security features and 
assurances. The TCSEC Environments Guidelines [2] satisfy the second 
objective by identifying the minimum classes appropriate for systems in 
different risk environments. These two documents, however, apply to 
stand-alone computer systems. 

The TNI [1] satisfies the first objective by interpreting the 
TCSEC for networks. The TNI also provides guidance for selecting 
and specifying other security services (e.g., communications integrity, 
denial of service, transmission security). The TNI divides computer­
communications networks into two groups: those which can be 
evaluated as a Single Trusted System (also called a network system) 
according to Part I, and those which cannot. Part I of the TNI is an 
interpretation of the stand-alone operating system orientation of the 
TCSEC for networks. These network systems can range from isolated 
local area networks to wide-area internetworks and are accredited as 
single entities by a single accrediting authority. Those computer­
communications complexes that cannot be evaluated using Part I of the 
TNI are called Interconnected Separately Accredited Automated 
Information Systems, or Interconnected AIS. Interconnected AIS 
contain multiple systems (some of which may be trusted) which have 
been independently accredited. In these interconnected AIS networks 
the accreditor(s) may be forced to accept the risk of assessing network 
security without the benefit of an evaluation against the TCSEC 
principles contained in Part I of the TNI. 

Purpose 

The overall purpose of the TNIEG is to provide guidance to 
program managers, system security officers (SSO), designated 

This work was sponsored by the National Computer Security Center under contract 
Fl9528-86-C-0001. The contents of this paper do not necessarily represent the posi­
tion of the National Computer Security Center. 

approving authorities (DAA), and others concerned with selecting and 
operating trusted computer networks. For brevity, this audience is 
referred to as security managers. 

Since the TNI treats network systems and interconnected AIS 
differently, but includes other security services which are applicable to 
both views, the TNIEG has several particular purposes. For network 
systems, one purpose of the TNIEG is to provide security managers 
with guidance as similar as possible to the TCSEC Environments 
Guidelines. For security managers of interconnected AIS, one purpose 
is to explain when systems can be interconnected and what data 
sensitivity levels are permitted on the connections. For all security 
managers, one purpose is to provide guidance as to which other 
security services (from Part II of the TNI) are required for their 
specific network. Since the guidance for the last two purposes must be 
less structured than . TCSEC guidance, another purpose is to give 
security managers sufficJ~Il:t l?aterial to follow the guidance. 

Scope 

The TNIEG describes an environmental assessment process that 
determines the minimum level of trust recommended for specific 
network environments. The primary focus of this document (and also 
of the TNI) is on the hardware/software aspects of security; therefore, 
neither the TNIEG nor the TNI addresses all the security requirements 
that may be imposed on a. network. Depending on the particular 
environment, communications security (COMSEC), emanations 
security, physical security, personnel security, administrative security, 
and other information security (INFOSEC) measures or safeguards 
may also be required. This document applies to DoD networks that 
are entrusted with the pr9tection of information, regardless of whether 
or not that information is classified, sensitive, or national security 
related. 

Two Views of the Network Environment 

We begin by . considering a series of increasingly complex 
networks, starting with an Automated Information System (AIS), and 
ending with complex networks of interconnected systems. This section 
enables security managers to determine whether to treat their network 
as a network system or as an interconnected AIS. 

Individual Automated Information System (AIS) 

The term Automated Information System (AIS) is used in several 
ways. Two definitions bound the uses. The first, narrower, definition 
which comes from the TNI states that AIS are "trusted commercially 
available automatic data processing (ADP) systems." The TNIEG 
calls such AIS individual AIS. An individual AIS may be formally 
evaluated against the TCSEC and given an evaluation class. An 
individual AIS has a coherent security architecture and design, and it 
has a trusted computing base (TCB). 

The second broader definition, which comes from DoD Directive 
5200.28 [4], Security Requirements for Automated Information 
Systems, states that an AIS is "an assembly of computer hardware, 
software, and/or firmware configured to collect, create, communicate, 
compute, disseminate, process, store, and/or control data ~r 

information." The directive also states that AIS include "stand-alone 
systems, communications systems, and computer network systems ... ; 
associated peripheral devices and software; process control computers; 
embedded computer systems; communications switching computers; 
personal computers; intelligent terminals; word processors; office 
automation systems; application and operating system software; 
firmware; and other AIS technologies .... " 
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The reader is cautioned that any particular use of the term AIS 
may apply only to an individual AIS, to any system satisfying the 
broader definition, or to some, perhaps unspecified, subset of the 
systems satisfying the broader definition. 

The Single Network System 

A more complex environment, including several AIS networked 
together with a coherent network security architecture and design, is 
called a network system or a single trusted system. A network system 
has a network trusted computer base (NTCB). The NTCB is 
partitioned among the components of the network, where a component 
is any part of a system that, taken by itself, provides all or part of the 
required functionality. A component may or may not have an NTCB 
partition. The essential point is that the NTCB as a whole satisfies 
the security architecture and design. Network systems may be 
evaluated against Part I of the TNI and may be given class evaluations 
like individual AIS evaluated against the TCSEC. 

Network systems commonly provide security services that 
normally do not arise in individual AISs. These include communication 
integrity, denial of service countermeasures, compromise protection, 
and supportive primitives such as encryption and protocols. These 
services cannot be given a security rating class. They are, instead, 
evaluated against Part II of the TNI. The Part II evaluation is 
dependent on the Part I evaluation, in the sense that a Part II 
evaluation has low assurance if the Part I rating class is low. 

The type of network that may be defined as a network system 
includes, for example, a group of departmental AIS having the same 
architecture connected by a local area network. Any component that 
does not enforce the full implementation of all policies must be 
evaluated as a component, not as a full network system. 

Interconnected AIS 

The most complex environment is referred to as interconnected 
accredited AIS, or simply, interconnected AIS. The term AIS, in this 
context, may be an individual AIS, a network system or even an 
interconnected AIS; i.e., it may be any system satisfying the broader 
definition given above which has communication capability and which 
has been previously accredited. Another way of stating the difference 
between network systems and interconnected AIS is that a network 
system exhibits a common level of trust at all external interfaces, while 
interconnected AIS do not. Therefore, interconnected AIS cannot be 
evaluated and given rating classes. Instead, they are accredited using 
Appendix C of the TNI to determine what sensitivity levels can be 
exchanged between the AIS. Part II evaluation applies to all networks. 

There are several circumstances that would dictate using the 
interconnected AIS view, instead of the single trusted system view. 
These include connecting AIS with different architectures, connecting 
with an individual AIS that has not been evaluated, and connecting 
two previously accredited AISs. There are other circumstances where 
the evaluatorjaccreditor has a choice: consider one AIS a component 
of another AIS, and evaluate the whole system; or evaluate each AIS 
separately and connect them using the interconnection rules (Appendix 
C of the TNI). 

Security Requirement Determination 

The TNIEG guides the security manager in determining the 
recommended minimum security requirements for the network. 
Following the TNI, the security requirement computation is divided 
into two parts. During the first part, the security manager determines 
the type of network and the level of trust required for the given 
environment. For a network that can be evaluated as a single trusted 
system, the output is a TCSEC class. For a network that can~ot be 
evaluated as a single trusted system, the output will be gmdance 
concerning interconnection and a list of other possible concerns. During 
the second part, the security manager determines requirements for 
additional security services. The second part provides a list of 
functionalities, strengths of mechanisms, and assurances for TNI Part 
II concerns. 

Protocol Layer Approach 

The TNIEG use the Open Systems Interconnection (OSI) 
reference model [5] because it provides a well-understood terminology. 
The TNIEG, however, are independent of the actual protocol reference 
model used; they are applicable to all protocols. 

A network system must fully implement all policies; but its 
NTCB need not be implemented in all protocol layers. The precise 
security services and their granularity will depend on the highest 
protocol layer at which the NTCB is implemented. For example, a 
Network Layer (layer 3) network such as DDN can, at best, distinguish 
among host addresses in providing discretionary access control. The 
Secure Data Network System (SDNS) [6], current!!, being designed, is 
expected to provide end-to-end encryption (E ) systems at the 
Network, Transport and Application Layer. A proposed electronic 
mail specification expects to use SDNS at the Application Layer to 
provide access control that can distinguish among individual users. 

The network system evaluator may be faced with the choice -of 
evauating a single trusted system or accrediting the interconnection of 
AIS. There is an advantage to evaluating a group of components as a 
network system: the design may provide a distributed NTCB where 
one can show that untrusted or less trusted components provide 
services that are not critical to security. In contrast, accrediting 
interconnected AIS is often constrained by the weakest (least trusted) 
AIS. 

Network System Evaluation Guidance 

This section provides Part I environmental guidelines for network 
system, and discusses TNI Appendix C environmental factors for 
interconnected accredited AIS. 

Single Trusted System View We now describe the process for 
determining the appropriate class of network system (evaluated under 
Part I) for a particular environment. They can be evaluated against 
the TNI in the same manner an AIS is evaluated against the TCSEC, 
and therefore the TCSEC Environments Guidelines applies as well. 

To apply the TCSEC Environments Guidelines guidance, the 
security manager must determine the following: 

a. 	 Maximum sensitivity of data processed by the network 

b. 	 Whether the network security environment is open or closed. 
(Open or closed security environment refers to the conditions under 
which applications programs outside the TCB are developed. Open 
and closed environments are defined in [2]. ) 

c. 	 Minimum clearance or authorization of the network system users 
The term "user" must be interpreted broadly in a network system. 
It can include anyone who may be able to obtain cleartext 
information from a network and will ordinarily include operational 
personnel and users on attached hosts. 

A table for mapping user clearance and maximum sensitivity of 
data into Rmin and Rmax respectively is contained in [2]. The 
algorithm for determining a Risk Index is: 

Risk Index = Rmax - Rmin 

Finally, the reference includes a table that maps Risk Index to an 
evaluation class of the TCSEC [3]. 

A special situation occurs when E3 is present in the network. 
MITRE believes that two possible Risk Indexes should be considered 
and the larger of the two should be used in determining the required 
evaluation class for the network. It should be noted, however, that 
NSA has not yet endorsed this approach. 1 

As indicated in the TNI, an encryption mechanism is evaluated 
differently than other mechanisms. Evaluating encryption mechanisms 
has a long history predating the TNI, to which the TNI defers. 
Evaluation of an encryption mechanism is part of communications 

lDr. Robert Shirey of the MITRE Corporation is acknowledged for contributing his 
thoughts on this matter. 
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security (COMSEC). Customarily encryption mechanisms receive a 
rating of the highest level of classified information which may be 
protected using that mechanism. The TNI and the TNIEG respect 
that rating scheme. Therefore, the only rating applicable to an 
encryption mechanism is the classification level of the information 
protected. This classification level also establishes the requirement. 

A more complicated situation exists when E3 is employed above 
the Link Protocol Layer, layer 2. At layers 3 and 4 the protocols are 
concerned with the end systems or intermediate systems (e.g., hosts, 
network switches) that the links connect. Higher layers are concerned 
with other peer entities. 

An E3 system may be provided as (part of) an NTCB. When the 
E3 system is integral to the NTCB, it requires evaluation under the 
TNI. 

The TNI evaluation must consider (1) the Risk Index between the 
highest classification of data on the network and the lowest clearance 
of user with access to the network, and (2) the Risk Index for the 
bypass in the E3 device. 

a. 	 The range of sensitivity levels across the network. This 
Risk Index is concerned with the difference between the highest 
level of information on any host attached to the network and the 
lowest clearance of a user that could potentially get access to that 
information. Depending on the characteristics of the network, this 
Risk Index could be larger or smaller than b. The worst case 
scenario occurs when some users have lower clearances than the 
level at which the network backbone is physically protected. For 
example, there are currently plans to allow some uncleared users on 
the DISNET segment of the DDN [7] which will be physically 
protected at the Secret level. In that case, the Risk Index for the 
bypass works the opposite of the normal case-the ciphertext side 
will be the higher of the two ratings. 

b. 	 The bypass. In an E3 system, protocol control information must 
be sent around the encryption unit through a bypass. The software 
and hardware to implement the bypass must be trusted not to send 
user data through the bypass. A Risk Index can be computed based 
on the difference between the sensitivity level of the cleartext 
information and the sensitivity level of the untrusted components of 
the network. 

The components which perform access control and key 
distribution must also be concerned with this risk range since improper 
key distribution could lead to compromise across the entire network. 
An erroneous distribution could potentially permit the lowest cleared 
user to access the highest classification of information. 

Automated Information Systems (AIS) Interconnections 
Interconnecting AIS is a certification and accreditation issue rather 
than a commercial product evaluation issue. Accreditation is the 
management decision that a system can operate with acceptable risk in 
a particular environment; the TNIEG assist the security manager in 
the decision process. The interconnected AIS do not receive an 
evaluation; instead, guidance 1s g1ven to the accreditor of 
interconnected AIS. 

Three factors affect the range of sensitivity levels permitted to 
flow over an interconnection. 

a. 	 Accreditation range of AIS 

b. 	 Bidirectional or Unidirectional flow 

c. Global considerations 

Accreditation Range of AIS Each AIS is accredited to 
operate over a particular range of sensitivity levels. These sensitivity 
levels are used to determine if communication between AIS is 
permitted. The accreditation range refers to the information being 
communicated. 

Bidirectional or Unidirectional Flows If bidirectional flow is 
permitted, any permitted messages must have a sensitivity level within 
the accreditation range of each AIS. As explained below, this is 
necessary so that messages can be acknowledged without causing a 
write-down (viz, writing information at a lower sensitivity level-

normally a security violation). It follows that no information can flow 
over an interconnection unless it is in the accreditation range of both 
AIS. For example, if an AIS accredited to process TS-C data is 
connected to an AIS permitted to process TS-S data, information 
permitted over the interconnection must be labeled TS or S. 

When only unidirectional communication (no acknowledgement) 
is utilized between two AIS, write up is permitted if each sensitivity 
level in the source AIS is dominated by some sensitivity level in the 
destination AIS. The receiving AIS must change the sensitivity level of 
the message when the message is received. Although write-up over a 
communications line is theoretically possible, it is not recommended in 
general because acknowledgements of packets are a write-down and 
must be prohibited. A preferred approach is to perform the write-up in 
a AIS which is accredited for both levels. 

Global Considerations There are two global considerations 
that effect accreditation. The first is called propagation of local risk, 
discussed below in conjunction with accredited but unevaluated AIS. 
The other global consideration that may reduce the range further is the 
"cascading problem". The Cascading Problem has been discussed 
elsewhere [1, 8] and will not be addressed further in this paper. 

When an accredited AIS is interconnected with a second 
accredited AIS, the first AIS treats the second as a device under the 
TNI. Each AIS is responsible for importing and exporting only 
messages which are permitted. The permissions depend on the 
evaluation level and sensitivity levels of the AIS. Finally, the AIS must 
be connected in such a way that no cascading problem exists. 

Managing Propagation of Local Risk Connection of AIS 
under the jurisdiction of different accreditors requires agreement 
between these accreditors. This agreement is recorded m a 
Memorandum of Agreement (MOA). This MOA effectively constitutes 
a joint accreditation of the interconnected AIS. Interconnection of two 
or more AIS under the jurisdiction of a single accreditor is a special 
case, where the MOA may by replaced by a similar accreditation 
document. 

Homogeneous Unevaluated AIS Homogeneous networks may 
be formed by interconnecting replicated identical unevaluated AIS. The 
accreditor may decide that no propagation of local risk problem exists 
within the set of homogeneous AIS. These homogeneous unevaluated 
AIS may be connected together in a closed network community, thus 
obviating the propagation of local risk problem. The closed community 
may be established by physical connection or cryptographic separation. 

Hierarchically Related Accreditors As described above, the 
MOA documents a decision between peer accreditors. Another 
common case is hierarchically related accreditors. We will refer to one 
accreditor as the network accreditor and the other as the AIS 
accreditor. The network accreditor sets the rules to which the AIS 
accreditor must conform. The network accreditor is responsible for 
ensuring that each attaching AIS conforms to this set of rules. The 
responsibility of the network accreditor is analogous to a fiduciary in 
protecting the security of the attached AIS. The AIS accreditor permits 
his or her AIS to attach to the network based on an assumption that 
all other attached AIS conform to the same set of rules. Individual AIS 
accreditors do not have generally have the opportunity to approve any 
new AIS attaching to the network. Attaching a non-conforming AIS to 
the network would jeopardize the security of all attached AIS. 

In the special case of a common user network such as DDN, it 
may be necessary to provide communications capabilities among non­
conforming AIS. In general, these non-conforming AIS would be 
segregated into closed commumt1es which could not directly 
communicate with conforming AIS. This approach is discussed in 
detail in [7]. 

It may be the case that operational necessity overrides the 
security needs of the attached AIS. The difficult question is: who 
makes. the decision? One solution would be to require approval by 
cognizant authorities of all attached AIS. Alternatively, the question 
could be escalated to higher levels of command, until a single individual 
with authority over all attached AIS was reached. DDN, for example, 
requires JCS approval for such attachments. 
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TNI Part II Security Services 

Part II of the TNI describes additional security concerns and 
services that arise in conjunction with networks that do not normally 
arise in stand-alone computers, and are not amenable to the detailed 
feature and assurance evaluation prescribed by the TCSEC. These 
security services provide communications security, denial of service 
transmission security, and include supportive primitives, such ~ 
encryption mechanisms and protocols. 

These concerns differentiate the network environment from the 
stand-alone computer environment. Some concerns take on increased 
significance in the network environment; other concerns do not exist on 
stand-alone computers. Some of these concerns are outside the scope 
of Part I; others lack the theoretical basis and formal analysis 
underlying Part I. For example, the TCSEC is based on a well­
founded reference monitor concept and formal design methodology; 
there 1s no counterpart for this in Part II of the TNI. Part II of the 
TNI describes services responsive to these concerns and provides a 
qualitative means of evaluating their effectiveness. This section 
provides guidance on selecting security services for specific risk and 
applications environments. 

Specification and Evaluation of Security Services 
Specifying and evaluating Part II security services is quite different 
from a Part I evaluation even though both parts are concerned with 
the same three aspects of security services or capabilities: functionality, 
strength of mechanism, and assurance. For clarity these terms are 
defined as follows: 

Functionality refers to the objective and approach of a security 
service; it includes features, mechanism, and performance. Alternative 
approaches to achieving the desired functionality may be more suitable 
in different applications eiwironments. 

Strength of mechanism refers to how well a specific approach 
may be expected to achieve its objectives. In some cases the selection 
of parameters, such as number of bits used in a checksum or the 
number of permutations used in an encryption algorithm, can 
significantly affect strength of mechanism. 

. Assurance refers to a basis for believing that the functionality 
w!ll be achieved; it includes tamper resistance, verifiability, and 
resistance against circumvention or bypass. Assurance is generally 
based on analysis involving theory, testing, software engineering, 
validation and verification, and related approaches. The analysis may 
be formal or informal, theoretical or applied. 

Evaluation Ratings Part II evaluations are qualitative, as 
compared with the hierarchically-ordered ratings (e.g., Cl, C2, ... )from 
Part I. The results of a Part II evaluation for offered services are 
generally summarized using the terms none, minimum, fair, and good. 
For some services, functionality is summarized using none or present. 
The term not_ offered is used when a security service is not offered. 
For example, if a certain network did not include non-repudiation as 
one of its security services, that network would be rated "not offered" 
with respect to non-repudiation. Table 1 represents the evaluation 
structure of Part II as a matrix. It identifies a set of security services. 
It also shows the possible evaluation ranges for each service in terms of 
its functionality, strength of mechanism, and assurance. 

Selecting Security Services Part II enumerates representative 
security services that an organization may choose to employ in a 
specific situation. Not all security services will be equally important 
for a ·specific environment, nor will their relative importance be the 
same among different environments. Selecting security services is a 
management decision, to which the TNIEG provide input. The TNIEG 
first address strength of mechanism and assurance, following which 
there are a series of questions that help the security manager select 
minimum levels of functionality. 

. For example, .consider the selection of communications integrity 
serviCe to prov1de protection against message stream modification. A 
functionality decision is to select error detection only, or detection and 

correction; also one may select whether it is sufficient to detect a 
spec1f1c number of bit errors, error bursts of specified duration or a 
specified probability of an undetected error. ' 

Strength of Mechanism Strength of mechanism is based on a 
Risk Index similar to that applicable to Part I of the TNI. One 
significant difference is that Rmin may be different than the Part I 

Table 1 
Evaluation Structure for Network Security Services 

Network Security Service 

Communications Integrity 
Authentication 

Communications Field Integrity 

Non-repudiation 

Denial of Service 
Continuity of Operations 

Protocol Based Protection 

Network Management 

Compromise Protection 
Data Confidentiality 

Traffic Flow Confidentiality 

Selective Routing 

Criterion Evaluation 
Range 

Functionality None I present 
Strength None to good 
Assurance None to good 

Functionality None to good 
Strength None to good 
Assurance None to good 

Functionality None I present 
Strength None to good 
Assurance None to good 

Functionality None to good 
Strength None to good 
Assurance None to good 

Functionality None to good 
Strength None to good 
Assurance None to good 

Functionality None I present 
Strength None to good 
Assurance None to good 

Functionality None I present 
Strength Sensitivity level 
Assurance None to good 
Functionality None I present 
Strength Sensitivity level 
Assurance None to good 
Functionality None I present 
Strength None to good 
Assurance None to good 

Rmin. If the network is protected from access by unauthorized persons, 
the Rmin will be based on the lowest cleared user. In general, this 
means that all end sy8tem8, switching processors, and communications 
lines must be physically protected from unauthorized users. If this 
condition cannot be met, e.g., because communications lines are in 
areas open to the public or because the network is attached to other 
networks with uncleared users, then the minimum clBarance is assumed 
to be Uncleared (U). In this case Rmm=O. 

As an example, assume a guarded building with a local area 
network. The LAN has processors at the Secret level and only those 
individuals with Secret and higher clearances are able to use the 
terminals. The LAN is not connected to any other networks or 
communications lines outside the building. Only. persons with at least 
a Confidential clearance are permitted into the building without an 
escort. In this case, an Rmin of 2 (corresponding to the unescorted 
Confidential personnel) is used. In Part I evaluations of this system, an 
Rmin of 3 (corresponding to Secret) would be used. 

Table 2 now gives the strength of mechanism requirement based 
on the Risk Index calculated as 

Risk Index = Rmax - Rmin 
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Table 2 	 Table 4 
Minimum Strength of Mechanism Requirement 	 Part ll Assurance Rating 

Risk Strength of 
Index Mechanism 

0 None 
1 Minimum 
2 Fair 

>2 Good 

Part II Minimum Part I 
Assurance Rating Evaluation 

Minimum C1 
Fair C2 
Good 82 

The Part II Risk Index for the system described above is 3 ­
2 = 1. According to the Table 2, a minimum strength mechanism 

would suffice. If the scenario described above were changed to include 
an unprotected communication line between buildings in an open space, 
the Rmin would be 0. The new Risk Index is 3 - 0 = 3, and a good 
strength of mechanism is required. 

Assurance Assurance is a very important concept in the TCSEC 
and TNI. This section discusses the need for assurance and the ways 
in which it may be achieved. 

One· salient property of trusted network systems is the reliance on 
an NTCB. In addition to its other responsibilities, the NTCB prevents 
unauthorized modification to objects within the network system. In 
particular, the NTCB maintains the integrity of the programs which 
provide security services, thus ensuring that their assurance is 
continued. The NTCB provides an execution environment that is 
extremely valuable in enhancing the assurance of security services. 
Discretionary and mandatory access controls can be employed to 
segregate unrelated services. Thus, service implementation that is 
complex and error-prone or obtained from an unevaluated supplier can 
be prevented from degrading the assurance of other services 
implemented in the same component. Furthermore, an NTCB ensures 
that the basic protection of the security and integrity information 
entrusted to the network is not diluted by various supporting security 
services. 

The relationship of the Risk Index to the required assurance is 
expressed in Table 3. 

Table 3 
Minimum Assurance Requirements 

Risk Part II 
Index Assurance Ratine: 

0 None 
1 Minimum 
2 Fair 

>2 Good 

Assurance of the design and implementation of Part II 
mechanisms is also related to the assurance requirements in Part I 
because service integrity depends on protection by the NTCB. Table 4 
expresses this dependency. The second column identifies the minimum 
Part I evaluation which supports the Part II assurance requirement. 

The reader should note that it is not valid to attempt to join 
Tables 3 and 4 to relate the Risk Index to a Part I rating class because 
Part I requirements, as expressed in Table 3, include functionality, 
strength of mechanism, and assurance, while Table 9 only addresses 
assurance. Furthermore, recall from the previous section that the Rmin 
for Part II may be different from that of Part I since many of the Part 
II protections are oriented towards outsiders rather than other users. 

Functionality of Specific Security Services 

This section provides questions about each of the security services 
contained in Part II of the TNI. It devotes a series of questions to each 
security service. These questions are designed help the security 
manager identify the functionality required for each security service. In 
considering these questions, the security manager may wish to 
substitute a weaker noun for "requirement." The questions should be 
answered in sequence, unless the answer to one question contains an 
instruction to skip ahead. 

Authentication 

1. 	 Is there a requirement to determine what individual, process or 
device is at the other end of a network communication? 


If no, skip to Communications Field Integrity. 


2. 	 Can you identify the basis for this requirement in a policy, concept 
of operations, or similar document? 


If not, you should confirm and document the validity of this 

requirement. 


3. 	 Do you have a requirement to identify and authenticate the specific 
hardware device at the distant end-point involved in the network 
communication? 

If yes, then you have a functionality requirement for authentication. 
This functionality may be implemented at one or more protocol 
layer. For example, a specific control character, ENQ (enquiry or 
who-are-you) may be used to immediately return a stored terminal 
identifier. 

4. 	 Do you have a requirement to identify and authenticate the location 
of the hardware at the distant end-point or in any intermediate 
system involved in the network communication? 

If yes, then you have a functionality requirement for authentication 
at protocol layer 2, the Link Layer or layer 3, the Network Layer. 

5. 	 Do you have a requirement to identify and authenticate the specific 
operating system or control program at the distant end-point or in 
any intermediate system involved in the network communication? 

If yes, then you have a functionality requirement for authentication 
at protocol layer 4, the Transport Layer. 

6. 	 Do you have a requirement to identify and authenticate the subject 
(process/domain pair) at the distant end-point involved in the 
network communication? 

If yes, then you have a functionality requirement for authentication 
at protocol layer 4 or above. 

7. 	 Do you have a requirement to identify and authenticate the 
application or user at the distant end-point involved in the network 
communication? 

If yes, then you have a functionality requirement for authentication 
above protocol layer 7, the Applications Layer. The Applications 
Layer provides an interface to the application. Authentication 
information may pass over this interface. Authentication of a user 
is addressed in Part I of the TNI. Application process 
authentication is outside the scope of the OSI Security 
Architecture, but does fall within the scope of TNI Part II Security 
Services. 
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Have you chosen to use some mechanism other than encryption to 
provide authentication? If so, your strength of mechanism is shown 
in Table 2. 

If your authentication mechanism is encryption based, see the 
appropriate encryption authority (e.g., NSA for the DoD). Even if 
encryption is used some supporting processes may need to satisfy 
the strength of mechanism shown in Table 2 (depending on the 
architecture). For example, a database that relates encryption keys 
to specific users may need to be trusted. 

Communications Field Integrity 

1. 	 Do you have a requirement to protect communication against 
unauthorized modification? 

If no, skip to Non-repudiation. 

2. 	 Are your protection requirements the same for all parts of the 
information communicated? 

If no, then you should identify the separate parts and answer the 
rest of the questions in this section separately for each part. Each 
part is known as a field. 

There are two major fields: protocol-information, wherein the 
network is informed of the destination of the information and any 
special services required; and user-data. Not every protocol-data­
unit (PDU) contains user-data, but protocol-information is 
necessary. Each of these fields may be divided in to additional 
fields; depending on your application, protection requirements for 
fields may cliffer. 

3. 	 Do you have a requirement for detecting unauthorized modification 
to part or all of a PDU? 

If yes, you have a requirement for at least minimum functionality. 

3. 	 Do you have a requirement for detecting any of the following forms 
of message stream modification: insertion, deletion, or replay? 

If yes, you have a requirement for at least fair functionality. In 
addition, your functionality must be incorporated in a connection 
oriented protocol. 

4. 	 Do you require that, if message stream modification is detected, 
recovery (correction) should be attempted? 

If yes, you have a requirement for good functionality. In addition, 
you must implement integrity in a reliable transport (layer 4) 
mechanism. 

Non-repudiation 

1. 	 Do you have a requirement to be able to prove that a specific 
message transfer actually occurred? 

If no, skip to Continuity of Operations. 

2. 	 Do you have a requirement for proving that a specific message was 
sent? Specific message means that the identity of the subject 
sending the message, the host computer and/or mail agent/server, 
time and date, and contents are all uniquely and unalterably 
identified. 

If yes, then you have a functionality requirement for non­
repudiation with proof of origin. 

3. 	 Do you have a requirement for proving that a specific message was 
received? Specific message means that the identity of the subject 
to which the message was delivered, the host computer and/or mail 
agent/server, time and date, and contents are all uniquely and 
unalterably identified. 

If yes, then you have a functionality requirement for non­
repudiation with proof of delivery. 

Continuity of Operations 

1. 	 Do you have a requirement to assure the availability of 
communications service or to determine when a denialcof-service 
(DOS) condition exists? A denial-of-service condition is defined to 
exist whenever throughput falls below a pre-established threshold, 
or when access to a remote entity is unavailable, or when resources 
are not available to users on an equitable basis. 

If no, skip to Protocol Based DOS Protection. 

2. 	 Do you have a requirement to detect conditions that would degrade 
service below a pre-selected minimum and to report such 
degradation to the network operators? 

If yes, you have a requirement for at least minimum continuity of 
operations functionality. 

3. 	 Could failure of the system to operate for several minutes lead to 
personal injury or large financial loss? 

If yes, you have a requirement for at least fair continuity of 
operations functionality. 

4. 	 Do you have a requirement for service resiliency that would 
continue-perhaps in a degraded or prioritized mode-in the event 
of equipment failure and/or unauthorized actions? 

If yes, you have a requirement for at least fair continuity of 
operations functionality. 

5. 	 Could failure of your system to operate for several minutes lead to 
loss of life? 

If yes, you have a requirement for good continuity of operations 
functionality. 

6. 	 Do you have a requirement for automatic adaptation upon 
detection of a denial-of-service condition? 

If yes, you have a requirement for good continuity of operations 
functionality. 

Protocol Based DOS Protection 

1. 	 Do you have a requirement to probe or test the availability of 
service? . 

If no, skip to Network Management. 

2. 	 The TNI suggests that the number of protocol based mechanisms 
could be used as the basis for determining the required 
functionality. Do you have an alternative basis for establish 
functionality requirements? 

If yes, you should employ this alternative basis and skip to Network 
Management 

3. 	 Do you have a requirement to detect a Denial of Service condition 
which cannot be met by the protocols used as part of normal 
communications? 

For example, you may require priority schemes that some protocols 
to not provide. 

If not, you do not have a functional requirement for protocol based 
DOS protection and should skip to Network Management 

4. 	 The TNI suggests the following protocol based mechanisms: 

o 	 Measure the transmission rate between peer entities under 
conditions of input queuing, and compare the measured 
transmission rate with a rate previously identified as the 
minimum acceptable; 

o 	 Employ a request-response polling mechanism, such as "are­
you-there" and "here-l-am" messages, to verify that an open 
path exists between peer entities. 

Have you identified any additional mechanisms required for your 
system? 

If so, include these additional mechanisms in your list of required 
mechanisms. 

5. 	 Based the previous question, how many protocol based mechanisms 
do you require? (Continue with the next question.) 

6. 	 Do you require that any protocol based mechanism be designed to 
not aggravate a Denial of Service condition? 

For example, request-response and poling mechanisms have been 
known to crash or overload packet switching networks. 

If so, add one (1) to your sum of protocol based mechanisms. 

The relationship of number of mechanisms and functionality 
requirement is shown in Table 5. 
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Network Management 

1. 	 Do you have a requirement for (at least) detecting a denial of 
service condition that affects more than a single instance of 
communication, or attempted communication? 

If no, skip to Data Confidentiality. 


If yes, you have a functional requirement for network management 

denial of service protection. 


Table 5 
Protocol Based DOS Functionality Mechanism Requirements 

Number of Functionality 
Mechanisms Rating Requirement 

0 None 
1 Minimum 

2-3 Fair 
>3 Good 

Data Confidentiality 

1. 	 Do you have a requirement to protect any part of transmitted data 
from disclosure to unauthorized persons? 

If no, skip to Traffic Flow Confidentiality. 

2. 	 Is your requirement for confidentiality limited to selected field of 
user-data within a PDU? 

If no, then you require confidentiality for the entire data portion of 
each PDU. Continue with Traffic Flow Confidentiality. 

3. 	 Is there a reason to encrypt only selected fields (e.g., cost savings, 
legal requirements)? 

If yes, you require selected field confidentiality. If no, you require 
full confidentiality on the data portion of each PDU. 

Traffic Flow Confidentiality 

1. 	 Do you have a requirement to prevent analysis of message length, 
frequency, and protocol components (such as addresses) to prevent 
information disclosure through inference (traffic analysis)? 

If no, skip to Selective Routing. 

If yes, you have a functional requirement for traffic flow 
confidentiality. 

Selective Routing 

1. 	 Do you have a requirement to choose or avoid specific networks, 
links, relays, or other components for any reason at any time? 

If yes, you have a functional requirement for selective routing. 

Conclusions 

This paper has discussed ongoing work being done for the 
National Computer Security Center by MITRE. Plans call for a 
distribution of a draft version to a few dozen reviewers during the 
Summer of 1988 followed by revision and distribution of the document 
to the various services and agencies before the end of the calendar 
year. Depending on the nature of comments, a final version may be 
available in the Spring of 1989. 

The prefered approach for accrediting systems is to evaluate a 
network system that includes end systems and intermediate systems, 
i.e., the full seven layers OSI plus the applications. The evaluation 
process of a single trusted system under Part I of the TNI is very 
similar to that of a standalone system and the environmental guidlines 
are similar as well. One important difference is that Rmin may be 
based on users or operations personnel. The presence of E3 requires 
that the Risk Index for maximum classification and minimum clearance 
be compared to the Risk Index for the encryption bypass; the larger of 
the two is used for environmental calculations. 

Although a single-trusted-system approach is prefered, it is 
recognized that, at least for the near term, existing accredited AIS will 
be part of many networks. Since it is unlikely that these systems can 
be part of a single trusted system, a set of more-lenient interconnection 
rules has been established. These rules require the exchange of MOAs 
between cognizant accrediting authorities who are willing to accept the 
risk of attaching their systems to each other. In the case of a common 
user network, a network accreditor is under a fiduciary responsibility 
to protect the other AIS that have been attached previously. Any need 
to attach an AIS that does not satisfy the network attachment 
standards must be weighed carefully against the additional security 
threat which may be propagated to other AIS. 

Part II of the TNI is more qualitative than Part I. Its 
requirements do not have the strong mathematical bases behind the 
Part I criteria. Part II applies to systems evaluated as a single trusted 
system as well as to systems of interconnected AIS. Part II uses the 
Risk Index as does part I, however the Part I and II indexes may differ 
for the same system because in some cases the Rmin is different. To a 
large extent, Part I criteria protect users from other system users, 
while Part II requirements protect users from outsiders. Providing 
environmental guidance was difficult. Quite frankly, the guidance was 
based on measures that seemed right to the authors. It is the authors' 
hope that readers will consider the measures in terms of their own 
systems and they will provide the authors with feedback about whether 
the measures seem right to them in a sort of informal Delphi 
methodology. 
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ABSTRACT 

Security in the standards arena is emerging as a pressing topic 
for discussion and for imminent standardization. The 
International Standards Organization/Open Systems 
Interconnection (ISO/OSI) protocols are being implemented 
and accepted as the future standard for all communications 
networks. The need to provide security for each participant in 
an open system has emerged as one of the important riddles 
which must be solved before OSI will be used whole-heartedly. 

This paper summarizes the security activities, as of May 1988, 
of the various standards bodies which are developing security­
related standards within the context of the ISO/OSI reference 
model. In order to provide a coherent description of the 
various activities, the structure of the standards organizations 
is shown, the interactions among the organizations are 
explored, and the work progressing within each organization is 
summarized. In addition to a description of the security work 
progressing in the official standards organizations, an overview 
of programs within the DoD which are promoting the 
standardization of ISO/OSI security is provided. Finally, 
conclusions are drawn about the progress of standardization of 
security. 

1.0 INTRODUCTION 

There are several international and national United States 
standards bodies as well as United States government 
organizations which are working to develop security standards 
for the OSI Basic Reference Model [1]. All of the organizations 
exchange information about their work through specific, well­
defined channels. Figure 1 shows the various organization and 
their official working relationships. 

The international standards organizations which are working 
on the security aspects of open systems are the International 
Standards Organization (ISO), the European Computer 
Manufacturer's Association (ECMA), and the International 
Telegraph and Telephone Consultative Committee (CCITT). 
ISO has been a major contributor in the area of security with 
standards for security architecture and for security 
management. ECMA and CCITT have parallel committees to 
those in ISO; they contribute to the development of ISO/OSI 
security standards via liaisons. 

The United States' national organizations which are associated 
with. the ISO security work are the American National 
Standards Institute (ANSI), the Manufacturing Automation 
Protocol/Technical Office Protocol (MAP/TOP), and the 
National Bureau of Standards (NBS) Implementor's Workshop. 

ANSI is the formal U.S. representative to ISO. Within ANSI, 
there are parallel committees to those in ISO. Each committee 
is the formal U.S. representative to the corresponding ISO 
committee. 

The Manufacturing Automation Protocol/Technical Office 
Protocol (MAP /TOP) has user organizations world-wide and 
has the status of official contributor to the ISO committees. 

MAP, representing a consortium of factory automation users 
headed by General Motors, and TOP, representing the office 
automation community headed by Boeing, are developing 
specifications of specific subsets of ISO standards. In areas 
where ISO standards are not yet fully mature, the 
corresponding MAP/TOP committees are trying to accelerate 
the process of defining OSI standards by developing 
MAP/TOP solutions which are being fed into the appropriate 
ANSI committee. In addition, MAP/TOP is drawing on the 
standards being developed at the NBS Implementor's 
Workshop and using the Implementor's Agreements. 

The NBS Implementor's Workshop has much the same goals as 
well as the same participants as MAP/TOP. The goals of the 
workshop are to promote multi-vendor interoperability quickly 
by developing Implementor's Agreements for a specified subset 
of international security standards' options. These agreements 
will form the basis for security capabilities within the 
Government OSI Profile (GOSIP), which are the specific 
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Figure 1. International and U.S. Organizations Working on 
ISO/OSI Security 
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subsets of international standard protocols to be procured by 
the Federal government. 

GOSIP is being developed by the Defense Communications 
Agency (DCA) for use in the Internet. The other United 
States government agency which is developing security 
standards based on the OSI model is the National Security 
Agency (NSA). Their program is the Secure Data Network 
System (SDNS) program. 

Both the international and United States national standards 
organizations are composed of committees which are devoted 
to particular topics. Within ISO, the Technical Committees 
(TCs) which have significant security activities are Information 
Technology Standards and Banking. Recently, the 
International Electronical Commission (IEC) has formed a 
specific liaison with the ISO TC97 committee (Information 
Processing) to sponsor the Joint Technical Committee 1 
(JTCl). The IEC is an adjunct of ISO which addresses the 
standardization for electrical and electronic ene:ineerine: 
equipment. 

The five Subcommittees (SCs) within these TCs which have 
active security subgroups are Lower Layers, Data 
Encipherment, Architecture, Information Interchange, and 
Electronic Funds Transfer. Figure 2 lists these groups showing 

Information Processing Banking 
(TC68);}TC\ 

Lower Data Architecture 
Layers Encipherment (SC21) 
(SC6) (SC20) 

Text and Office 
Systems Electronic Funds Information 

Transfer Interchange(SC18) 
(SC2) {SCS) 

Figure 2. ISO Committees Working on ISO/OSI Security 

which subcommittees belong to each technical committee. The 
Working Groups (WGs) within these SCs which specifically are 
addressing security issues in OSI are shown in Figure 3. 
Within ANSI, there are several groups which contribute to the 
ISO Working Groups addressing security. Figure 4 lists those 
ANSI groups, showing the corresponding ISO Working Group. 

.·v,·.·-·.·­

The list of groups working on OSI security issues is extensive. 
However, the groups do make attempts to work together so~\1~\~~\ 
that work is not duplicated unless such duplication is 
necessary. Thus among the various groups, there are many 
liaison efforts which are progressing security standards. Figure 
5 and Figure 6 show the major, current liaison activities of 
each group as of May 1988. 

The following sections summarize the particular security 
activities of each working group in the context of their 
international or national organization, and give a brief 
summary of any standards which the group is developing. 

Jnformatjon Technology Standards 

(JTC1) 

Lower Layers Text and Office Systems 

(SC6) 	 (SC18) 

1. 	 Message Handling Systems 
Security 

1. 	 Transport Layer 4 Security (WG4) 

Data Encipherment 	 Architecture 
(SC20) 	 (SC21) 

1. 	 Secret Key Systems(WG 1) 1. ArcMecture (WG1) 
2. Public Key CryptoSystems (WG2) 2. Management (WG4) 
3. 	 Layer 4 Security (WG3) 3. Directory (WG4) 

4. 	 Upper Layers (WG6) 

.i!..mltlD5l 
(TC68) 

Electronic Finds Transfer Information Exchange 
(SC2) (SC5) 

1. Wholesale Banking (WG2) 1. Smart Cards (WG4) 

Figure 3. ISO Working Groups Security Activities 
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Figure 5. ISO/JTCl Liaisons 
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2.1 Information Technology Standards (JTC1) 

The purpose of JTCl is standardization, including 
terminology, in the field of information processing systems 
including, but not limited to, personal computers and office 
equipment. Figure 7 shows the organization of JTCl security 
activities. The following sections describe the activities of each 
Working Group within each subcommittee (SC) as shown in 
Figure 7. 

2.1.1 	Telecommunications and Information 
Exchange Between Systems (SC6) 

2.1.1.1 Transport, Layer 4 Security (WG4) 

The working group is developing protocols which incorporate 
data protection services at the transport layer. The model for 
this protection of transport data will be taken from the work 
being done in SC20 or SC21. The members of SC6 do not 
intend to develop the model in their group. 

2.1.2 Text and Office Systems (SC18) 

The SC18 group works with ECMA TC32 and with CCITT on 
the Message Handling System (MHS) standards. The security 
portions of these standards present a security policy [2], a 
security model [3], a security service definition for the message 
transfer service [4], and a security service definition for the 
message store [5]. 

Standards 

Lower Layers 
(SC6) 

Systems 
(SC18) 

Message Handling 
Data Encipherment Systems Security 

(SC20) 

Secret Key Systems(WG 1) 

Public Key CryptoSystems (WG2) 

Layer 4 Security (WG3) 


Architecture 

(SC21) 

Figure 6. ECMA Liaisons 

2.0 	 INTERNATIONAL STANDARDS 
ORGANIZATION (ISO) 

The goal of the Open Systems Interconnection activity of the 
International Standards Organization (ISO) is to promote 
standardization of those functions needed to support 
communication between open systems. ISO is a voluntary 
organization whose voting rights are given to the national 

standards bodies of participating countries. For example, 
ANSI is the United States representative to ISO. 

Architecture (WG1) 
Management (WG4) 
Directory (WG4) 
Upper Layers (WG6) 

Figure 7. ISO/JTCl Security Activities 

2.1.2.1 Standards for Message Handling 
Systems 

The Message Handling System standards are a set of standards 
which define the systems and services which allow users to 
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exchange messages using a store and forward architecture. 
The basic functional entities of the Message Handling System 
are the User Agents (UAs), the Message Transfer System 
(MTS) which is composed of Message Transfer Agents (MTAs) 
and the Message Store (MS). The User Agents are application 
processes which submit and receive messages on behalf of the 
user. The Message Transfer Agents transfer messages and 
deliver messages to the destination specified by the user via the 
User Agents. The Message Store, which is an optional 
function, can by used to store and to permit retrieval of 
messages between the User Agent and the Message Transfer 
Systems. The security model for the system defines services 
which would allow these entities or components to be 
protected. 

The security model has two views: Secure Access Management 
and Administration and Secure Messaging. Secure Access 
Management and Administration addresses "the establishment 
of an authenticated association between adjacent components 
and the setting up of security parameters for that association." 
Secure Messaging "covers the application of security features to 
protect messages in the Message Handling System m 
accordance with a defined security policy [2]." 

The services provided for Message Handling security are based 
on ISO 7498/ Part 2 [1]. These classes of services are: message 
origin authentication, report origin authentication, probe origin 
authentication, proof of delivery, proof of submission, secure 
access management, content integrity, content confidentiality, 

message flow confidentiality, message sequence integrity, non­
repudiation of origin, non-repudiation of delivery, and non­
repudiation of submission. 

The services within each class are defined in detail in X.402 [3] 
and are listed in Figure 8. The security parameters for the 
services provided by the Message Transfer system and the 
Message Store are defined in X.411 [4] and X.413 [5] 
respectively. The classes of threats which these services 
address are access threats, inter-message threats, intra-message 
threats, and data store threats. 

The treatment of security in the Message Handling System is 
one of the most thorough definitions and set of services in any 
of the ISO standards. 

2.1.3 Information Processing Systems Data 
Cryptographic Techniques (SC20) 

The security activities in ISO/JTCI/SC20 are taking place in 
WGI, WG2, and WG3 in the areas of protocol development 
and algorithm registration. The ISO executive committee has. 
voted that algorithms cannot be standardized by ISO 
committees, thus the work in SC20 may be slowing down. 
Although there is work progressing in the areas of Secret Key 
Algorithms and Applications (WGI) and in Public Key 
Cryptosystems and Mode of Use (WG2), these activities are 
similar to those of ISO/TC68 in the banking community. 

2.1.3.1 Use of Encipherment Techniques in 

Communications Architectures (WG3) 


The security activities of WG3 are the definition of a 
procedure for registering algorithms and the development of 
standards for cryptographic techniques in connection-oriented 

protocols and for public key encryption. The following 
sections summarize each of these efforts and point out areas 
where work is still to be done or perhaps redone. 

2.1.3.1.1 ISO Register of Encipherment 
Algorithms. A set of procedures is being defined for 
registering algorithms. The following list is a first draft 
definition of what comprises the registration of an algorithm. 

1. Unique Identification (assigned by SC20) 

Origin Authentication 
Message Origin Authentication 
Probe Origin Authentication 
Report Origin Autthentication 
Proof of Submission 
Proof of Delivery 

Secure Access Management 
Peer Entity Authentication 
Security Context 

Data Confidentiality 
Connection Confidentiality 
Content Confidentiality 
Message Flow Confidentiality 

Data Integrity Services 

Connection Integrity 
Content Integrity 
Message Sequence Integrity 

Non-Repudiation 
Non-repudiation of Origin 
Non-repudiation of Submission 
Non-repudiation of Delivery 
Message Security Labelling 

Security Management Services 

Change credentials 

Register 


Figure 8. Message Handling Security Services 

2. Proper Name 

3. Range of Application (services provided) 

4. Modes of Operation 

5. Cryptographic Interface 

6. Test of Words 

7. Patent Information 

8. References to Standards 

9. Name of Sponsor 

Information describing the algorithm and the strength of 
algorithm is not required for registration. 

The work to be done in this area is to define completely the set 
of procedures as well as to define the terminology, such as 
''Encipherment Algorithm." 

2.1.3.1.2 Standard for Data Cryptographic 
Techniques. The first working draft of the standard for 
data cryptographic techniques was developed as of September 
1986 and as the introduction states, "the text is provisional 
and subject to radical change [6]." This standard will apply to 
the connection-oriented protocol specification DIS 8073 and 
will define all elements of cryptographic based data protection 
mechanisms except for the cryptographic algorithms. The 
work being done in the group is evolving toward a transport to 
network interface where encryption is a sublayer between the 
transport and network layers. 
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The intent of the standard as it is currently drafted is to 
provide mechanisms to support the security services defined in 
DP-7498/2. These services include peer-entity authentication, 
connection confidentiality, and connection integrity with and 
without recovery all at layer 4. 

The elements of procedure or facilities which provide the 
mechanisms are listed below. 

Connection Establishment 
Peer-Entity Authentication 

Data Encipherment 
Integrity 
Unique Sequence Numbers 

The classes of end-to-end transport protocol layer services to 
which the standard applies are 1, 2, 3, 4. Class 0 is not 
included because it is designed for minimal functionality and 
the required cryptographic parameters cannot be 
accommodated in the variable header. The following lists the 
types of cryptographic protection for each transport protocol 
class. 

a. Class 1: Basic Error Recovery Class 

Unilateral Peer-Entity Authentication 
Confidentiality of User Data 

b. Class 2: Multiplexing Class 

Mutual Peer-Entity Authentication 
Confidentiality of User Data 
Manipulation Detection for all 

types of Transport Protocol Data Units 
Replay, insertion, and deletion detection 

for normal data stream 

c. Class 3: Error Recovery and Multiplexing Class 

Mutual Peer-Entity Authentication 
Confidentiality of User Data 
Manipulation Detection for all types 

of Transport Protocol Data Units 
Replay, insertion and deletion detection 

for all user data. 

d. Class 4: Error Detection and Recovery Class 

Same services as for Class 3 
Recovery from detected integrity errors 
is provided using mechanisms from class 
4 checksum failures 

The data cryptographic techniques to be defined in this 
standard are for end-to-end protection of the data. Although 
no algorithms are specified, only certain algorithms are suitable 
for use with these techniques (those relevant to protectiOn on 
an individual end-to-end connection basis). In addition, the 
techniques defined are only as secure as the security inherent in 
the management of the cryptographic keys. 

· 2.1.3.1.3 Standard for Public Key Encryption. 
The standard for public key encryption is DEA 2 which 
specifies the algorithm to be used for public key encryption 
protocols [7]. 

2.1.4 Information Retrieval, Transfer, and 
Management for OSI (SC21) 

The security activities in SC21 are being addressed in the 
w9rking groups WG1, WG4, and WG6 in the areas of security 

architecture, security management, directory security, and 
security in the upper layer protocols such as presen tatJon layer 
protocols. 

There is a proposal for new work to develop an ISO 
Authentication Framework. Four areas would be investigated 
for this Meta-Architecture definition: Authentication (WG6), 
Access Control (WG1), Security Audit (WG4), and Non­
Repudiation (WG1) with WG6 trac~ing the effor_ts f<:r 
consistency. WG6 has done some prehmmary work m th1s 
area which led to the decision that there is a need for a 
framework in this area. 

The current efforts in security standards are listed m the 
following sections. 

2.1.4.1 OSI Architecture (WG1) 

WG1 addresses the architecture aspects of OSI. Their present 
effort is to develop an OSI security architecture. 

2.1.4.1.1 OSI Security Architecture Standard. 
The standard for the OSI security architecture [8] is intended 
to extend the field of application of ISO 7498, the Basic 
Reference Model for Open Systems Interconnection, to cover 
secure communications between open systems. The standard 
has progressed to the level a Draft International Standard, DIS 
7498-2 as of May 1987. this document is being revised to 
progre~s to full International Standard (IS) status in 1988. 

The security architecture for the Reference Model is define_d in 
terms of the security services and the related mechamsms 
which can be provided within the Reference Model framework. 
The definition and placement of these services and mechamsms 
form the core of the document. In addition, the security 
architecture standard defines the architecture for security 
management as well as providing a tutorial on security, a 
justification of security service placement in p~rticula~ larers, 
and a guide for placement of encipherment m apphcat1ons. 
The security architecture and the security management 
architecture are discussed here. 

The security architecture supports the following categories of 
serv1ce. 

Authentication 
Access Control 
Data Confidentiality 
Data Integrity 
Non-Repudiation 

The allocation of these categories of service to each layer is 
shown in Figure 9. 
Within each of these categories, specific services are defined. 

Much of the differentiation between services is to accommodate 
connection-oriented versus connectionless service provided by 
an underlying layer. These. ·services are listed, but not 
described in Figure 10. 

The types of mechanisms which can be invoked by the security 
services are: 

Encipherment 
Digital Signature 
Access Control 
Data Integrity 
Authentication Exchange 
Traffic Padding 
Routing Control 
Notarization 

The mapping of the mechanisms to the categories of services 
which are allowed to invoke each mechanism is shown in 
Figure 11. 
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Layer 7 
Application 

Layer 6 
Presentation 

Layer 5 
Session 

Layer 4 

Transport 

Layer 3 

Network 

Layer 2 

Data Link 

Layer 1 

Physical 


Authentication, Access Control, 
Data Confidentiality, Data lntegrtty, 
Non-repudiation 

Data Confidentiality 

Authentication, Access Control, 
Data Confidentiality, Data Integrity 

Authentication, Access Control, 
Data Confidentiality, Data lntegirty 

Data Confidentiality -

Data Confidentiality 

Figure 9. Allocation of Categories of Services to Layers 

Authentication 

Peer entity authentication 

Data origin authentication 

Access Control 

Data Confidentiality 

Connection confidentiality 

Connectionless confidentiality 

selective field confidentiality 

traffic flow confidentiality 

Data Integrity 

connection integrity with recovery 

connection integrity without recovery 

selective field connection integrity 

connectionless integrity 

selective field connectionless integrity 

Non-repudiation 

Non-repudiation with proof of origin 

Non-repudiation with prood of delivery 

There are some additional mechanisms which do not provide 
any particular service at a given layer, but which are defined 
as "pervasive." These pervasive security mechanisms which 
appear· to apply to, or would be used by, services provided by 
security management are: 

Trusted Functionality 
Event Detection 
Security Audit Trail 
Security Recovery 

The basic framework for Security Management is included in 
the standard to guide the development of subsequent more 
specific standards on managing security [9]. Security 
management. is defined as the management aspects of OSI 
Security that are concerned with those operations which are 
outside normal instances of communication, but which are 
needed to support and control the security aspects of those 
communications. 

There are four categories of OSI security management activities 
which are defined. 

1. System Security Management 
2. Security Service Management 
3. Security Mechanism Management 
4. Security of OSI Management 

System security management is concerned with the 
management of the security aspects of the overall OSI 
environment such as security policy or event handling. This 
type of management controls the pervasive mechanisms which 
apply to all layers, not a particular layer. 

Security service management and security mechanism 
management are concerned with the management of particular 
services and mechanisms respectively. The management of 
services and mechanisms also applies to the circumstances 
under which a service is allowed to invoke a mechanism. 

Security of OSI management protects all OSI management 
functions and the communication of OSI management 
information. This type of management may be the 
embodiment of Trusted Functionality and can be defined as 
the environment. 

~ m Authentication 
Access 
Control 

Data 
Confidentiality 

Data 
lntegrhy 

Non-Repudiation 

Encipherment y y y 

Digital Signature y y y 

Access Control y 

Data lntegrKy y y 

Authentication 
Exchange 

y 

Traffic Padding y 

Routing Control y 

Notarization y 

Figure 11. Mapping of Mechanisms and Services 
Figure 10. List of Specific Security Services 
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Although the Security Architecture standard is declared to be 
ready to progress to the status of a fuJi international standard, 
there is some work which would make the standard more 
useable. Currently, the security architecture is described in 
terms of security services, mechanisms those services can use, 
and the layers in which the services may be available. There is 
no attempt to describe which combinations of services provide 
a particular level of security. For example, if reliable 
authentication is a goal of the system, then not only is the 
layer 7 service of peer authentication desirable, but the layer 4 
service of connection confidentiality is useful to assure that no 
one has unauthorized access to the authentication information 
as it is transferred across the network. 

Thus there is a need for an appendix or an accompanying 
guideline to provide some recommendation of how to combine 
security services within layers and at different layers to achieve 
secure communication among open systerns. 

2.1.4.2 OSI Management (WG4) 

The two security efforts within WG4 are standards for security 
management services and for security in the directory services. 

2.1.4.2.1 Standard for Security Management 
Services. The Security Management Standard [9) defines the 
specific services required to manage and to control OSI 
security. Currently, a working draft of the eventual standard 
exists and is being developed within the Security Management 
ad hoc group. It is expected to progress to a Draft Proposal 
(DP) in 1988. The security services are being defined so that 
they can use the Common Management Information Protocol 
(CMIP) [10) for information exchange. 

The basic definitions and the architectural concepts used in the 
standard are based on the Security Architecture Standard [8). 
The way the service definitions are structured is along the 
categories of management activities defined in the Security 
Architecture Standard as 

1. System Security Management 
2. Security Service Management 
3. Security Mechanisms Management 
4. Security of OSI Management . 

For the activities of System Security Management and Security 
Mechanism Management, the following aspects are defined: a) 
the facilities used to manage those activities, b) the functional 
units (general service capabilities), c) the primitives and 

parameters required by the service. The current list of specific 
activities which the group is investigating is listed below. 

Event Handling management 
Security audit management 
Security recovery management 
Key management 
Encipherment management 
Access control management 
Data integrity management 
Authentication management 
Traffic padding management 
Routing control management 
Notarization management 
Digital signature management 

The activities of Event Handling Management and the Security 
Audit Management have very similar definitions. Either the 
activities will be combined or Event Management may be for 
the control and reporting of events and Security Audit may be 
for the logging of events and the controlling of groups of 
related event reports. 

Currently, the Management Information Service Definition for 
security only addresses the management of system security and 
security mechanisms. The omission of Security Service 

Management needs to be discussed in the group. The omission. 
of Security of OSI Management is legitimate as this type of 
management includes 'J:rusted Functionality which will be 
specific to each system. Other items to be included in the 
service definition, but on which work has not been completed 
are: a) model for security management; b) conformance 
requirements; and c) annexes which provide background on the 
concepts and requirements of security management. 

2.1.4.2.2 Standard for Directory Security 
Services. The Directory is "a collection of open systems· 
which cooperate to hold a logical database of information 
about a set of objects in the real world [11)." These objects are 
application entities, people, terminals and distribution lists. 
The services offered by the Directory are service qualification, 
directory interrogation, directory modification, and error· 
messages. 

The service qualification serv1ces address the security 
requirements of a directory service. There are three services 
which make up the .service qualification. One service is service 
control which sets limits on the use of resources such as the 
extent of a search requested. Another service is security. 
parameters which protects directory information by indicating 
security level or type of protection a user wishes. The third 
service is the filter service which defines conditions that must· 
be satisfied so that information may be returned to the user. 

The directory interrogation service provides . for reading, 
comparing, listing, searching, and abandoning a query. The 
directory modification service supplies services for adding. 
entries, removing entries, and modifying entries. The error. 
messages are errors and referrals to another service when one 
service fails. 

Two directory protocols are defined. One is the Directory 
Access Protocol (DAP) which defines the communication 
between users and the directory. The other protocol is the 
Directory System Protocol (DSP) which defines th~ 
communication within the directory; this protocol addresses a 
distributed directory service. 

The specific security standards being developed for the 
Directory Service are not currently included as part of the set 
of standards, but are in an annex. The -rationale for keeping 
the security portions out of the standard is that security can 
be considered as a local matter which depends on the 
particular security policy of the local system. This justification 
appears to cover up a lack of knowledge about security. Effort 
needs to be expended to define a· useful and useable set of 
services. 

The model of security as proposed currently [12) consists of 
two aspects: access control and authentication. The control of 
user access to information is based on the use of access control 
attributes such as user/application. identity, authentication 
information, or labels and the use of access conditions which 
relate the attributes to user operations on information. 

For access control, no particular services are defined. However, 
mechanisms are suggested. These mechanisms are information 
on access conditions and access control lists; authentication 
information such as passwords; capabilities; and labels. 

For authentication, three types of services are defined: no 
authentication, simple authentication, and strong 
authentication. For both access control and authentication, an 
operator defined as BIND is to be used. The BIND operator 
appears to associate the user-supplied credentials with the 
user's identity and deny orgrant access as appropriate. 

More work needs to be done to define a security model and an 
appropriate set of security services for the Directory. 
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2.1.4.3 OSI Session, Presentation, and 
Common Application Services (WG6) 

Within WG6, there are two standards activities. One activity 
is a proposed security addendum to the Presentation Layer 
Standards. The other activity has been the development of an 
authentication framework. 

2.1.4.3.1 Standards for Security at the 
Presentation Layer. The Security Addendum to the 
Presentation Layer [13] presents an argument for placing data 
encryption at the presentation layer. This proposed addendum 
is a preliminary discussion paper. The paper asserts that data 
encryption is a legitimate concern of the presentation laver. 
The service offered by the presentation layer is protected data 
transfer. The mechanism suggested for supplying this service 
is encryption. 

The issues which the paper raises are the following. 

1. 	 The encryption function should be invoked on all user 
data in a specific presentation context rather than on 
all user data on the presentation connection. 

2. 	 The transfer syntaxes and mechanisms should be kept 
separate. 

3. 	 Compression should be accomplished before 
encryption so that data is not duplicated. 

4. 	 Well-known algorithms for compression and 
encryption should be registered. 

2.1.4.3.2 Standard for Authentication. The 
purpose of this standard is to add services for authentication 
to ISO 8649 which is the Association Control Service Element 
(ACSE) definition. This first draft [14] outlines the definition 
of a framework for authentication by providing a model and 
specific services required for authentication. This draft also 
will be incorporated into the Authentication Framework. The 
review of this document is applicable to the Authentication 
Framework. 

The scope of the standard, as stated in the draft document, is 
to specify the OSI communication services necessary to support 
Application Layer authentication for connection-oriented 
operation. The authentication services will be available for use 
with association establishment and authentication on already 
established associations. Four levels of authentication are 
meant to be supported: no authentication; identification of the 
remote peer entity only, without verification; simple 
authentication (passwords); and strong authentication 
(verification using cryptographic techniques). 

The problem which this addendum to ISO 8649 needs to 
resolve is the close binding of services with mechanisms. The 
definition of the services includes the definition of the 
mechanisms the services should invoke. If the definitions of 
services and of mechanisms can be separated, then the 
standardization of authentication services should be much 
simpler. 

2.2 Banking (TC68) 

The security efforts by the banking community are well 
advanced and moving into new areas of technology. They 
have addressed the use of encryption for protection of data 
and are looking at mechanisms for authentication such as 
smart cards. Figure 12 shows the organization of TC68 
security. The following sections describe the activities of each 
workir.g group within each subcommittee (SC). 

2.2.1 Electronic Funds Transfer (SC2) 

The security activities in ISO/TC68/SC2 are taking place m 
WG2. 

Banking 

(TC68) 

/
Electronic Rinds Transfer 

(SC2) 

Wholesale Banking (WG2) 

Information Exchange 

(SC5) 

Smart Cards (WG4) 

Figure 12. TC68 Security Activities 

2.2.1.1 Wholesale Banking (WG2) 

WG2 has produced two standards for security to define 
message authentication using encryption and encryption 
algorithms to be used for the message authentication. They 
are working on key management to distribute the encryption 
keys. 

2.2.1.1.1 Message Authentication Standard. 
This standard [15] specifies how the Message Authentication 
Code (MAC) is calculated. The standard succinctly defines a 
MAC as "a data field attached to a set of data (i.e., message) 
passing between correspondent financial institutions and 
transmitted along with that set of data." Essentially, the 
authentication code is an encrypted checksum. 

The level of security protection provided by this MAC depends 
on the protection of the authentication key and the strength of 
the algorithm used for the encryption. 

2.2.1.1.2 Message Authentication Algorithm 
Standard. This standard [16] specifies the Data Encryption 
Algorithm (DEA) to be used in the calculation of the Message 
Authentication Code. The DEA is also published as ANSI 
X3.92 which is known as the Data Encryption Standard (DES). 

2.2.1.1.3 Wholesale Key Management 
Standard. WG2 is using the ANSI standard for key 
management [17] which specifies the key management for 
wholesale financial institutions. Included is a specification of 
management of encryption keys and distribution of encryption 
keys. 

2.2.2 Information Exchange (SC5) 

This subcommittee has no drafts of documents available. 
However, some documentation of the work should be 
forthcoming in six months. The two areas in which SCS is 
working are applications for financial messages and security in 
relation to smart cards. 
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3.0 5.0 AMERICAN NATIONAL STANDARDS 
MANUFACTURER'S ASSOCIATION (ECMA) INSTITUTE (ANSI) 

EUROPEAN COMPUTER 

ECMA is a regional organization in Europe. Its forty-five 
members are European computer vendors. The security 
activities within ECMA are paralleling those of ISO. The 
current focus of security in ECMA is within ECMA TC32. 
The groups within TC32 which are doing security work are 
listed below. 

TG2- Security Aspects of Distributed Interactive Processing 
TG4- Security Aspects of OSI Management 
TG5 - Security in Distributed Office Applications 
TG6 & TG7 - Security Facilities at Lower Layers of OSI Model 
TG9 - Security Framework for Open Systems 

Other elements in ECMA which are addressing security are 
listed below. 

TC22 - Security of Data Base Systems 
TC29- Security Aspects of Documents 

ECMA has stated their goals of establishing liaisons with the 
ISO groups of JTC1/SC18, JTC1/SC20, and JTC1/SC21 and 
with CCITT to provide security standards [18]. 

The most visible aspect of the ECMA work in ISO has been 
their proposed security addendum to ISO 7498 [1] to address 
general security services required by distributed applications. 
The purpose of this work is to define general services in order 
to avoid the extensive security definitions which had to be 
done for the specific distributed applications of Message 
Handling System and Directory Service. 

ANSI is the United States industrial standards organization. 
ANSI does not create standards, but does accredit 
organizations and committees which develop the standards. 
These committees are American National Standards 
Committees (ANSCs). There are four ANSCs: the Computer 
and Business Equipment Manufacturers Association (CBEMA), 
the Exchange Carriers Standards Association (ECSA), the 
Electronics Industry Association (EIA), and the Institute of 
Electrical and Electronic Engineers (IEEE). The security 
activities which support ISO are taking place in CBEMA in the 
X3 committee. 

5.1 Data Communications (X3S3) 

X3S3 is responsible for developing standards at the lower 
layers, transport and below. 

5.2 Text: Office and Publishing Systems (X3V1) 

X3V1 is responsible for standards which have to do with the 
office environment, such as message handling. 

5.3 Systems Technology, Data Encryption (X3T1) 

X3T1 develops standards for secure systems based on 
encryption mechanisms. 

5.4 Information Processing Systems (X3T5) 

X3T5 is the standards committee responsible for Open Systems 
Interconnection (OSI). X3T5 corresponds to JTC1/SC21 and 
is organized in to task committees which parallel the SC21 
organization. 

4.0 	 INTERNATIONAL TELEGRAPH AND 
TELEPHONE CONSULTATIVE 
COMMITTEE (CCITT) 

CCITT is collaborating with ISO to produce a series of 
documents which would form parts of a multi-part 
International Standard in ISO, and a series of 
Recommendations in CCITT. The current focus has been on 
the directory. The security aspects of the directory work have 
concentrated on the authentication framework for the 
directory. 

4.1 Authentication Framework for the Directory 

The Convergence Document for Directory Security [19] 
describes the role the directory plays in user authentications by 
providing credentials to users. There are two aspects to this 
authentication: services must be authenticated by the 
directory in order to obtain credentials of a user and the 
credentials obtained from the directory are used to 
authenticate the user. 

Two types of authentication are defined: simple 
authentication and strong authentication. Simple 
authentication is defined as the use of a user name and an 
unencrypted password. Strong authentication is defined as the 
use of public key cryptography, specifically the cryptosystem 
specified in DP 9307, more commonly known as RSA (named 
after the authors Rivest, Shamir, and Adelman [20]). 

Although the title of the document is authentication 
framework, the document only describes two particular 
mechanisms for authentication, a simple one and a strong one. 
Within the definition of the mechanisms, the types of 
mechanisms the directory would be required to supply are 
defined. There is no separate definition of services or of which 
services the directory could supply. 

5.4.1 OSI Architecture (X3T5.1) 

X3T5.1 is responsible for the development of OSI Architecture. 
X3T5.1 corresponds to ISO/JTC1/SC21/WGI. The current 
concern of X3T5.1 in security is to assure that the 
development of security standards continues and makes the 
best use of the limited security expertise in networking. To 
this end, X3T5.1 has suggested that security expertise should 
be consolidated into a single security group, in the form of a 
security rapporteur's group, in SC21/WG6. The meetings of 
this group should be located wherever current work is 
occurring in security. At present, the work in security services 
occurs in upper layers in X3T5.5 and SC21/WG6 [21]. 

5.4.2 OSI Management Protocols (X3T5.4) 

X3T5.4 is responsible for the development of OSI Management 
Protocols and vocabulary for OSI management. X3T5.4 
corresponds to ISO/JTC1/SC21/WG4 and works on any issues 
which surface in WG4. Currently X3T5.4 is submitting 
revisions to the Security Management Service Definition, Part 
7 [9]. 

5.4.3 Application, Presentation, and Session Layers 
(X3T5.5) 

X3T5.5 is responsible for the development of protocols at the 
upper layers of the OSI architecture. X3T5.5 corresponds to 
ISO/JTC1/SC21/WG6. 

6.0 	 MANUFACTURING AUTOMATION 
PROTOCOL/TECHNICAL OFFICE 
PROTOCOL (MAP/TOP) 

Currently, there is a group within MAP/TOP which is 
organized to look at security, but it has no output and is not 
very active. 
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7.0 	 NATIONAL BUREAU OF STANDARDS 
(NBS) IMPLEMENTOR'S WORKSHOP 

Within the Implementor's Workshop is a Security Special 
Interest Group, the Security SIG. The goal of the Security 
SIG, as stated by the group, is to develop an overall OSI 
Security Architecture which is consistent with the OSI 
refer~nce model and which economically satisfies the primary 
secunty needs of both the commercial and Government sectors. 

The areas currently being addressed by the Security SIG are a 
general security model (extension to DIS 7 498-2), a security 
management model, security activi.ties at the various layers 
such as the proposed Security Protocol addendum to DIS 8073 
for transport security, and application security. The areas of 
application security are the Message Handling System 
application and the Directory Systems application. 

The ~essage Handling System standards, according to the 
Secunty SIG's review, will provide a comprehensive 
specification for message handling comprising any number of 
cooperating open systems. The Message Handling System and 
services enable users to exchange messages on a store-and­
forward basis. 

The Directory Systems standards, according to the Security 
SIG's review, facilitate the interconnection of information 
proc~ssing systems. to provide directory services. The directory 
provides. the directory capabilities required by OSI 
apphcatwns, management, other OSI layer entities and 
telecommunications services. ' 

The area where work is complete is the listing of the 
desirability of the security services defined in DIS 7 498-2 in 
each layer. A rating of High, Medium or Low is determined for 
each service at each layer. The matrix whi~h describes the 
desirability can be used as a guide for choosing the appropriate 
services for various applications. 

The Security SIG has the opportunity to influence the security 
of all the ISO standards. The SIG has established a core of 
people to follow the work in various areas and to keep the SIG 
apprised of any developments while they work on the security 
standards to be included in the OSI Implementor's Agreements 
[22]. 

8.0 DOD PROGRAMS 

The DoD programs which are going to lise ISOjOSI protocols 
have only committed to use the security architecture 
document, DIS 7498-2. Thus they are committed to the basic 
premise of the security architecture, but not to the spe-cific 
standards being developed within this architecture. In the face 
of no commitment, it is presumed that the DoD programs Will 
develop their own security standards. 

8.1 Secure Data Network System (SDNS) 

SDNS is a research program which promulgates the design of 
the next generation of secure computer communications 
net~orks. The current efforts are the architecture, the 
services, the protocols, and the products. The SDNS products 
will be developed and fielded under NSA's commercial 
COMSEC Endorsement Program (CCEP). 

SDNS is defining standard security services in layers 2, 3, 4, 
and 7; these service definitions are claimed to be consistent 
with those defined in ISO 7498-2. There are many working 
groups within the SDNS project trying to resolve the various 
issues such as access control, key management, and protocol 
definition. The intent is to promote SDNS in the OSI arena so 
that cleared United States' vendors will build SDNS products. 

8.2 Internet and DDN 

The Internet and DDN are required by DCA to transition to 
OSI protocols by 1990. The vehicle for DoD transition to OSI 
protocols is the Government OSI Profile (GOSIP). This profile 
is to be the standard reference for all Federal Government 
Agencies to use when acquiring and operating ADP systems or 
services and communications systems or services intended to 
conform to the OSI protocols. Currently GOSIP (Version 1, 
April 1987) includes two applications: File Transfer and 
Management (FTAM) and Message Handling (CCITT X.400) 
and four networking technologies: long-haul network 
connectivity (CCITT X.25), CSMA/CD (IEEE 802.3), Token 
Bus (IEEE 802.4), and Token Ring (IEEE 802.5). The specific 
options and parameters specified for each protocol are based on 
agreements reached at the National Bureau of Standards 
Implementor's Workshops. 

9.0 SUMMARY OF ISSUES 

Standards for security based on the ISO/OSI model are a 
fledgling area. Work has begun on these standards, but there 
is much left to do before security standards reach the 
International Standard status. Figure 13 summarizes the 
current activities in security standards for the organizations 
shown in Figure 1. Many of these standards are in preliminary 
draft paper form; there is additional work to be done before 
they can be useful even as a guide for how security can be 
integrated into the Basic OSI Reference Model. 

~ r ISO ECMA CCITT ANSI 
MAP/ 
TOP NBS DCA NSA 

•Application • • • • •
Presentation • • •
Session 

Transport • • • •
Network •
Data Link •
Physical 

Figure 13. Security Standard Activity Summary 

The areas which have not yet been addressed are: LAN 
Security and any specific security concerns which are different 
from Long Haul networks and Network Layer Security or at 
least little work has been done here except by the United 
States' DoD. 

The areas which need more work are: at the application layer: 
Security Management, Directory Security; at the presentation 
layer: more analysis of what security at this means although 
this does appear to be the appropriate layer in which to 
perform encryption as it is meant to translate from one 
representation of data to another; at the architecture level: 
frameworks or models of the security services. 

The work in security standards which is progressing well is the 
Message Handling Security which makes a valiant attempt at a 
thorough definition of security. The ECMA work for security 
service definition of distributed applications is a much-needed 
effort which should be an area for immediate concentration. 

The Banking community has made the most progress at 
addressing security problems in the area of encryption and in 
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protecting their data using encryption techniques. The 
Information Processing area should follow their lead in 
addressing manageable problems and not try to solve 
everything. 

The overall status of standards for security based on the 
ISO/OSI model is reflected in the NBS Security SIG whose 
purpose is to develop Implementor's Agreements. The Security 
SIG is instead discussing models of secure services, because 
there are no standards on which to base Agreements. This 
area is moving quickly, but more expertise is needed to 
contribute to the efforts. 
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ABSTRACT 

Sun Microsystems is currently developing enhancements to its SunOS operating system to create a 
Trusted Computing Base (TCB) to be evaluated at the Bl level. Since the Sun system is a 
distributed collection of workstations and servers connected by a network, network security. is a 
crucial part of the design. This paper describes the problems addressed and solutions found for 
secure packet routing and for passing mandatory access control labels over a network while 
remaining compatible with the existing SunOS system and with existing networking standards. 

1. Introduction TCB Perimeter 
Sun Microsystems is currently working on a secure version of the 
SunOS operating system to be evaluated at the B 1 level. In this 
system, security labels are used to provide mandatory access con­
trol (MAC). This paper discusses Sun's solution for passing MAC 
labels over a network. The Secure SunOS architecture considers a 
collection of workstations as a single distributed TCB. For evalua­
tion purposes, an entire configuration of Secure SunOS Hosts is 
considered to be a single "system", all of whose hardware must 
be physically secure. The mechanism used for network communi­
cation in this system is sockets. A socket is an end-point for com­
munication that will have a MAC label. Just as MAC in accom­
plished in the file system by labeling the files, so will labeling the 
sockets facilitate MAC for networking. In fact, sockets contribute 
to the single system image of the Sun OS system. 

Because the system is distributed, there are problems to be 
addressed that do not need to be addressed by single host systems. 
While the end-points for communication across the network (the 
sockets) may be easily labeled, the problem of getting this label 
information across the network needed further investigation. 

While researching secure networking, Sun also found that custo­
mer acceptance imposed conditions on the design. A major issue 
is that of trusting foreign (non-Sun) hosts on a network. Sun has 
received numerous requests from customers who wish to attach 
other vendor's hardware in a secure way to the Secure SunOS sys­
tem. This configuration would not be covered by the NCSC 
evaluation but it is a highly useful and desired product feature. By 
attaching foreign hosts, customers have an easy migration path 
from the existing equipment to an evaluatable Secure SunOS sys­
tem. However, this addition does raise serious new problems 
which must be dealt with in order to maintain a secure system. 

Figure 1: The Evaluated Configuration 

SunOS and NFS are registered trademarks of Sun Microsystems, Inc. 

UNIX is a registered trademark of AT&T. 
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Another desirable feature is the ability to limit the level of trust of 
a network. For the evaluated configuration, all networks would be 
trusted at the entire range of security labels in the Secure SunOS 
system (system-low to system-high). Other configurations may 

;find it useful to be able to reflect differing degrees of trust on dif­
ferent networks. For example, a network completely made up of 
Secure SunOS Hosts might have a higher degree of trust than a 
network which contains Foreign Hosts. Again, this raises new 
issues. One such issue is secure routing. Given that different net­
works have different levels of trust, how does one machine send a 
packet through several gateways (IP routers) to a remote destina­
tion and guarantee that all intervening networks and hosts are 
allowed to carry a packet at that level of security? 

2. The Overall Problem 

The Secure Sun OS TCB is made up of a collection of workstations 
as shown in Figure 1. It is very difficult to ensure security on a 
system which is distributed over several hosts. Performing access 
control decisions between processes on the same host is relatively 
easy since the operating system has all the information necessary 
to make such decisions. For processes on different hosts, this is 
not true. The current SunOS system uses sockets and the 
ARPAnet standard low-level protocols (TCP, UDP, and IP) to do 
network communications. The operating system on one host 
knows about the socket on the other host but does not know about 
the remote process and its label. This label information must be 
transmitted from one host to the other. Compounding this ''labels 
over the network" problem is the issue of Sun's stated corporate 
objective of standards adherence. Thus there are constraints posed 
by the goals of the Secure Sun OS system. 

2.1. The Goals of SECURE Sun OS 

A summary of the goals of the Secure SunOS system are listed 
below. The goals also formed design constraints. As presented in 
[Sun87], these goals are 

[1] Conformance With NCSC B 1 Criteria 

[2] Conformance With IEEE P1003 (POSIX) 

[3] Conformance To Standard SunOS 

[4] Maintenance of UNIX "Look And Feel" 

[5] Functionality in Government and Commercial Applications 

[6] Minimal External Changes 

[7] Operation In Standard Sun Network 

[8] Extensibility To Future Security Offerings 

2.2. Constraints Driven By These Goals 

These goals are in conflict with each other. For example, a POSIX 
conforming secure system which is backwards compatible to the 
existing SunOS system with the same UNIX "look and feel" and 
minimal external changes may not be possible. 

The Secure SunOS system must conform to the standard SunOS 
system and there must be minimal external changes. The current 

. system uses sockets and the ARPAnet low-level protocols, yet the 
protocols currently defined are not sufficient for a B 1 system. The 
current protocols do not provide the label information necessary to 
make the correct access control decisions. However, a mechanism 
must still be found to pass labels across the network using these 
existing mechanisms. In particular, customer applications which 
use sockets must be made to run securely with NO modifications. 

To compound the problem it must be possible for privileged 
se!"ers (part of the TCB) to bypass the access control decision of 
the socket mechanism and instead make access control decision on 
their own. In other words, label-cognizant servers must have a 
way to handle multiple clients at different labels. Finally, it is 
highly desirable to have unprivileged servers be able to respond to 
multiple clients where the clients may be at different labels, and 
these servers should be able to run securely with no modifications. 

At the time of this writing, Sun knows of no available products 
that overcome these problems and accomplish these goals. 

3. Original Solutions Which Were Rejected 

Sun looked at and rejected several solutions to the problem of pro­
viding MAC information across sockets. This paper will briefly 
touch on some of these. 

3.1. Restricting Socket Usage To Privileged Processes 

One of Sun's first proposals was to restrict sockets to privileged 
processes only (only the super-user could use sockets). This would 
have allowed some important SunOS programs to continue work­
ing (NES, rep, rlogin, etc.), though in those cases the server and 
client programs would have needed to be modified to do a label­
checking handshake before performing the requested operation. 
This was not considered a serious problem, since those clients and 
servers are already privileged and would have required 
modification regardless of the approach chosen. 

The disadvantage of this simple restriction was that it broke (A) all 
unprivileged users of the Yellow Pages (YP) global database 
look-up services (such as !s), (B) suntools and Sun View in general, 
which use sockets to communicate among window-using 
processes, and (C) all miscellaneous unprivileged uses of sockets 
(perfmeter, user telnet, lpr, Unify, Alis, etc.). More importantly 
this solution directly conflicted with the goals of conformance to 
standard SunOS and minimal external changes. 

3.2. Restricting Socket Usage To Single Hosts With a 
"Forwarding Daemon" 

This proposal required that the operating system associate a label 
with each socket (the label being that of the process that created 
the socket), and check that this label was equal to the label of any 
process connecting or sending to the socket. This check would 
have been performed only for actions performed by unprivileged 
processes, and unprivileged processes would only have been per­
mitted to communicate with sockets on the same host. In this case 
since both processes would have been on the same host, the operat­
ing system would have had all the information it needed. 

To extend this mechanism beyond a single host, a ''forwarding 
daemon" was proposed which would have been a privileged pro­
cess which allowed communication between hosts by doing the 
mediation itself. The disadvantage of this proposal is that applica­
tions would have had to change to use the "forwarding daemon". 

3.3. Restricting Socket Usage to system-low Processes 

This proposal built on the proposal above by allowing multi-host· 
socket usage if both processes were running with the system-low 
label. This permitted existing applications to run as long as the 
users or processes were at system-low. While this was seen as an 
improvement to the above proposals, it was unduly restrictive and 
of limited utility. 
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4. Chosen Solution 

To overcome these restnctlons, the chosen solution associates 
labels with packets. Thus, the label information is provided to the 
operating systems on both hosts. Since the IP standard already 
provides for options in the packet header, this mechanism has been 
chosen. The security label is put into a new label option in the IP 
packet header. This label option is a requisite for secure commun­
ications. 

Sun's solution sets a label in the socket to the label of the process 
which creates it. This label is appended to the packets as an IP 
label option. The destination host then checks the label on the 
packet. If the received packet label is equal to the label of the des­
tination socket (the target process), the packet is delivered; other­
wise, it is dropped. If the packet is dropped, an audit message is 
generated, and the sending process is notified that access is denied. 
All socket communication is considered to be bi-directional in 
some sense (either explicitly, or in the form of acknowledge­
ments), so unprivileged processes may only communicate via 
sockets if their labels are equal. Figure 2 shows communication 
between processes on two hosts. Only the two processes running 
at the same label are allowed to communicate. 

Host A HostB 

Figure 2: Unprivileged Socket Communication 

As mentioned earlier, it is necessary for privileged servers (part of 
the TCB) to be able to make access control decisions themselves 
instead of being constrained by the socket label. For example, the 
network file system (NFS) needs to be able to respond to clients at 
any label regardless of its own socket label. For this reason, 
privileged processes are allowed to override the access control 
decisions made by the socket code by setting anew socket option, 
the unconstrained option. A privileged process is trusted to make 
the appropriate access control decision. A privileged processes is 
also allowed to send packets at any label. New system calls are 
provided to send at-a different label than the label in the socket. 
New systems calls are also provided to return the label from the 
packet so that the privileged process has the information to make 
the . proper access control decisions. The existing routines get­
sockopt() and setsockopt() are modified to set and get the socket 
label and the new unconstrained option. Communication with a 
privileged process is shown in Figure 3. 

It is also desirable for unprivileged servers to be able to respond to 
clients at varying labels. In the SunOS system, there is an existing 
server, inetd, which connects servers and clients. As it exists, 
inetd gets information about servers from a configuration file. 
Inetd listens for connections to the services in this file. When a 
connection is found, it invokes the server daemon specified. In the 

Host A HostB 

Figure 3: Privileged Socket Communication 

Secure SunOS system, inetd is modified to use the new uncon­
strained option on its sockets. It gets the label from the packet sent 
by the client and invokes the appropriate server daemon at that 
label. Thus, any application listed in inetd's configuration file will 
be able to securely communicate with clients at multiple labels 
with no change to the existing code. In Figure 4, inetd is used to 
allow communication between an rlogin client and its server. 

Host A HostB 

Figure 4: Multilevel Socket Communication Using Inetd 

This solution requires no changes to either existing user or server 
applications. All applications may run if the processes on either 
side of the socket are at the same label. For servers that serve 
clients at different labels, again no changes are necessary, since 
inetd will do the access control decision for the application. 

This solution has the advantage of using well-understood protocols 
with fairly localized extensions. This solution will have the look 
and feel of the UNIX system. The only difference seen by users is 
that they will get errors if there is a label mismatch between two 
processes wishing to communicate. 

5. Non-evaluated Extensions 

The solution stated above is necessary for the evaluated 
configurations but not sufficient for the existing customer base. 
Customers require that investment in existing hardware be 
preserved. In particular, the Secure SunOS system must work 
safely when connected to other vendors' gear (Foreign Hosts). 
·The desired configuration is shown in Figure 5. 
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Figure 5: Extensions For Connectivity 

Another desired feature restricts the label range of a network. This 
allows customers to restrict communication with an environmen­
tally less safe network. Communication over the restricted net­
work would only be allowed for originators within its range. 
Packets at labels outside the network range would never go onto 
the network. 

Both these features raise new issues. The following sections will 
discuss the issues and how they are dealt with. 

5.1. Foreign Hosts 

5.1.1. The Problem 

Foreign Hosts will not know how to send or receive labeled IP 
packets. Thus, Secure SunOS Hosts will need to communicate 
with these hosts without using packet labels: The Secure SunOS 
Hosts will need to know what label of information to use for each 
Foreign Host and will need to only send and receive information at 
this label. Figure 6 shows the desired result of communication 
between a and a Foreign Host. 

HostB 
label b Host A 

Figure 6: Communication With a Foreign Host 

Obviously adding a Secure SunOS system to a network does rtot 
make Foreign Hosts secure. There are rules that Foreign Hosts 
must follow in order to be considered safe. They are trusted not to 
read packets which are not addressed to them. They must act 
benignly if a labeled packet is sent to them. Foreign Hosts are also 
trusted not to communicate with each other if they are at different 
labels. Foreign Hosts are trusted to be well-behaved in general: 
they should not pretend to be another host and should not try to act 
as a server to Secure Sun OS Hosts which are booting or asking for 
Yellow Pages information. Despite these assumptions about 
Foreign Hosts, the problem of how to coexist safely with hosts that 
do not understand the IP label option needed further investigation. 

5.1.2. Rejected Solutions 

The first solution considered for this problem was to define that 
Foreign Hosts were always at system-low. This seemed unduly 
restrictive. It also did not address the real problem of determining 
which ·hosts were Foreign Hosts and which were Secure SunOS 
Hosts. Since it was already necessary to keep information about 
which hosts were the Foreign Hosts, label information about those 
hosts could also be kept. In fact, information about all the hosts 
had to be kept in order . to. distinguish between Foreign Hosts, 
Secure Sun OS Hosts, and hosts which were unknown. 

This raised the new problem of how to keep this information. The 
next solution was fairly obvious: keep a database which had iilfor­
mation 'about every host on the internet. This was also quite res­
trictive since it meant that a host could only communicate with 
hosts in its database. Adding a host anywhere on the internet 
would have required updating every other host. Along with being 
an administrative nightmare, this restriction would have meant that 
connection to the ARP Anet would never have been allowed since 
it would have been impossible to have a database of all other hosts 
on the ARP Anet. 
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5.1.3. Chosen Solution 

Sun's solution allows broader freedon of communication. Each 
host is not required to know about all the other hosts on the inter­
net. Instead it uses the Secure SunOS gateways to take care of 
access control decision for all hosts to which it is not directly con­
nected. If Host A is not on the same network as Host B, Host A 
will send a labeled IP packet to a gateway. This gateway will for­
ward it on to any additional gateways until the packet reaches a 
gateway which is directly connected to Host B. That gateway will 
determine whether Host B is a Foreign Host. If Host B is a 
Foreign Host, the gateway will determine whether communication 
with Host B is allowed at the label in the packet's IP label option. 
If communication is allowed, the IP label option will be stripped 
from the packet, and the packet will be delivered to Host B. If 
communication is not allowed, the gateway will return information 
to Host A that the packet was not delivered. Finally, if the gate­
way determines that Host B is a Secure SunOS Host, then it will 
forward the packet to Host B where the appropriate access control 
decision will be made. 

HostB 
Host A label b 

Figure 7: Communication With a Foreign Host 

Through a Gateway 


Correspondingly, if a Secure SunOS gateway receives a packet 
from a Foreign Host, it will add to the packet an IP label option 
with the label of the Foreign Host. It will then forward the packet 
through intermediate gateways until finally it reaches a gateway 
directly connected to the destination host. This gateway will make 
the access control decisions as described in the paragraph above. 
Note that if there is just one gateway between two Foreign Hosts, 
the gateway would not need to add an IP label option and then 
strip it. 

This allows Foreign Hosts to act aS single-labeled gateways. 
Since Foreign Hosts are trusted to only communicate with other 
Foreign Hosts at their own labels, Secure Sun OS Hosts can assume 
that any packet received from a single-label gateway should only 
be accepted for processes running at the corresponding label. 
These Secure SunOS Hosts will also only send information at the 
gateway's label through the single-label gateway. 

Hosts are not required to keep information about every host on the 
internet. Instead, a host only needs to know about hosts on its own 
network. Gateways provide the needed access control checking 
for other hosts. The following decision is made by each host and 
gateway in determining whether to add an IP label option to the 
packet: if the immediate destination of the packet is a Foreign 
Host, do not label the packet, otherwise label it. The immediate 
destination is the final destination if the hosts are on the same net­
work, otherwise the immediate destination is a gateway. 

One interesting point is diskless machines. When a diskless 
machine is booting, it has no knowledge of any hosts including 
itself. This is solved by treating diskless machines as Foreign 
Hosts at the system-low label while they are booting. Once the 
diskless machine has sufficient knowledge about labels, it is 
rettlnled to _its status as a Secure Sun OS Host. 

5.2. Secure Routing (Allowing Networks With a Restricted 
Label Range) 

The other desired extension to the Secure SunOS system is the 
ability to restrict the range of communication allowed on a net­
work. This feature might be used for a network which includes a 
Foreign Host. It might also be used for a link between two build­
ing networks as shown in Figure 8. 

Network A 

System-low 
to 

System High 

Network C 

System-low 
to 

System High 

Figure 8: Extensions For Restricted Networks 

5.2.1. The Problem 

When an IP packet is transmitted from a host, the lowest layer 
software module must choose a network interface to use. This is 
easy if the packet is addressed to a host attached to a local net­
work. If the sending host does not have a direct connection to the 
destination network, it must select another host to use as a gate­
way. This choice is more difficult: there may be several candidate 
gateways, each able to correctly deliver the packet, but some of 
these may provide better (shorter) paths to the destination than oth­
ers. 

A routing protocol is used to help make these decisions. Routing 
daemons on every host exchange information about known routes 
at short intervals. When these daemons start up, they only know 
about networks to which they are directly attached. This informa­
tion is gradually dispersed among all the routers in an internet so 
that each router eventually learns about routes to all networks. 

In the existing SunOS system, Sun uses the distance to a host, or 
hop count, as a measure of the cost of a route. Sun can use this 
information to reduce the size of local routing information, by only 
storing the best route to a network. 

In the Secure SunOS system, each network has a label range asso­
ciated with it. Hosts attached to the network are only prepared to 
accept traffic which contains a label within the network range. 
Herein lies the routing problem in a secure network: a packet 
which is sent along an otherwise correct route may be discarded 
before getting to the destination because it encountered a network 
whose label range did not include the label of the packet in transit. 
As illustrated in Figure 9, a packet labeled f sent from Host A to 
Host B will be dropped by Host Y, so it must be sent through Host 
X. Since both paths have the same cost, the existing route protocol 
will only know about one of the paths. 
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Figure 9: The Routing Problem 

5.2.2. Rejected Solutions 

Initially, Sun thought the problem could be solved by making all 
gateways trusted, in some sense. This would have enabled them to 
pass traffic, which would otherwise not have been allowed, along 
into the host containing the gateway. Forwarded packets would 
never have been passed to higher level protocol modules, or out of 
the operating system, so a user process could never have acquired 
them. 

The problem with this approach was that it disallowed isolation of 
physical networks using purely software constructs. If an internet­
work had a small set of networks which required strong security 
measures, such as hardware encryption, it would have been neces­
sary to take such steps on all reachable networks. Since the gate­
ways· would have forwarded packets in an uncontrolled manner, a 
fault in one of these secure networks might have caused traffic to 
be redirected through another, less secure, network. For the exam­
ple shown in Figure 9, traffic from Host B to Host A at label f 
should go through Host X. Using trusted gateways, it might have 
gone through Host Y. There would have been no way to isolate 
Network2. 

Another approach was to use static routes. Each forwarded packet 
could have used the IP source route option, which would have 
fully specified the path to be taken. An administrator would have 
been required to set up routes for particular label ranges. This 
scheme was quickly discarded due to its inflexibility. If a gateway 
along a fixed route had gone down, packets would still have been 
sent to it, and lost, even though an alternate path might have 
existed. 

5.2.3. Chosen Solution 

It soon became obvious that the existing routing protocol could 
also be used to propagate the label range of each reachable net­
work. The routing daemon will initially know the ranges of all 
directly attached networks and these ranges can easily be distri­
buted to all daemons in an internet. 

Each time a router passes along a route that it has learned, it incre­
ments the hop count metric, reflecting the extra network that must 
be traversed. The same idea can be used with label ranges. In this 
case a new metric is created, which Sun shall call the "route label 
range". This range is the most restrictive range of all networks 
along the path; that is, the intersection of each network's label 
range. 

The routing protocol must save all routes to a given network which 
have different route label ranges. When a packet must be for­
warded through a gateway, its label is compared to the ranges of 
all possible routes. In this way an appropriate gateway can be 
selected for the next leg. 

Network Label Gatewliy 
Network 1 a 
Network 2 a-f 
Network 3 a Host X, Host Y 
Network 3 a-f Host X 

Figure 10: The Routing Table for Host B in Figure 9. 

This scheme is very flexible. Each gateway is free to make new 
routing decisions, reflecting local conditions near that gateway. 
Therefore, a poor choice of initial gateway need not mean that the 
packet will be discarded. 

The new routing protocol will be backward compatible with exist­
ing Sun routers, so that coexistence with Foreign Hosts is possible. 
When routing information is received from such a host the single­
label label of that host can be attached to all paths through it, 
reflecting the restriction placed on the use of Foreign Hosts as 
gateways. 

6. Conformance to Proposed Security Additions to IP 

As mentioned above, Sun is using an IP Option to include security 
label information in the IP packet header. There is a draft under­
way for revised Internet Protocol Security Options; however, these 
options are not appropriate for Sun's use. Both of the standard 
security option specifications ([DoD83] and [RFC88]) use part of 
the option to indicate an accrediting authority and use the rest of 
the option as defined by this specified authority. Since the Sun 
label option would need to be usable by any or all of the authori­
ties, it is not appropriate to chose a particular authority's 
configuration for the label. 
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Sun plans to provide translation functions which will allow map­
ping between the internal label and the security information for 
each authority. Any mapping which is specified in an RFP can be 
supported. Note that the label option is only used internally in the 
Secure SunOS system. The translation would only need to occur 
for communication with external systems. 

7. Summary 

Sun Microsystems is committed to excellence and standards. In 
this particular project, the standards involved are POSIX, the 
ARPAnet low-level protocols, and most importantly the Depart­
ment of Defense Trusted Computer System Evaluation Criteria 
[DoD85]. In many cases at the start of the project, these sta_ndards 
seemed at odds with each other. In particular, TCP and IP were 
not designed with security in mind. Thus, backwards compatibil­
ity and emerging technology became serious design problems. 
With considerable effort and help from. a number of areas within 
Sun, the Secure SunOS system has come up with a unique solution 
which fits into existing environments. 
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Abstract 

Local area networks (LANs) are being widely used for a large 
number of applications. However, LANs are vulnerable to several 
security threats including wiretapping, masquerading, modification 
of data, and denial of service. 

This paper describes Ethernet Enhanced-Security System, a 
system that can help provide security for an Ethernet or extended 
Ethernet. The Ethernet is secured at the Data Link Layer and the 
system is transparent to network software operating at a higher 
layer. The system consists of Digital Ethernet Secure Network 
Controllers and VAX Key Distribution Center software. A DESNC 
controller is an encryption device that provides node 
authentication and privacy and integrity of Ethernet frames. The 
KDC software manages the DESNC controllers on an Ethernet or 
extended Ethernet and enforce a LAN access control policy. If the 
access control policy allows, nodes protected by controllers can 
communicate with nodes not protected by controllers. 

LAN Security Threats 

Ethernet[!] and other Local Area Network (LAN) technologies 
provide the means to interconnect computer systems conveniently. 
LANs are used in many environments, but there are many 
situations where they cannot be used because of the requirement 
for a higher level of security than that provided by any 
commercially available LAN. Some LAN security threats are: 

Wiretapping: The most obvious LAN security problem is 
wiretapping. This security problem is most serious for broadcast 
LANs where every node connected to the LAN is able to read all of 
the data that is transmitted on the LAN. It is easy to attach a 
LAN traffic monitor to any broadcast LAN and read all traffic on 
the LAN. In addition, some LAN architectures define a mode of 
operation, typically referred to as 'promiscuous mode', which 
allows a node to receive all data frames transmitted on the LAN 
regardless of the destination address of the frame. LAN adapters 
that implement this feature make eavesdropping easy to 
accomplish and difficult to detect. 

The wiretap threat can be addressed either by physical security 
for the LAN or through encryption. However, physical security 
requires close monitoring of the LAN components, including all 
cables inside and between buildings, and cannot protect against 
unauthorized monitoring of the LAN by nodes authorized to use 
the LAN. For Ethernet and other broadcast LAN technologies, 
standard Data Link Layer encryption techniques cannot be used to 

Copyright @1988 by Digital Equipment Corporation 

All Rights Reserved. 

The following are trademarks of Digital Equipment Corporation: 

DESNC, VAX KDC, DEC, DECnet, Thin Wire, VAX, and VMS. 


prevent wiretapping because a large number of nodes all 
communicate over a common medium. 

Masquerading: LANs are also vulnerable to masquerading 
attacks. It is easy for an unauthorized node connected to a LAN, 
or for a node that is authorized to use a LAN but which is 
untrusted or compromised, to masquerade as another node. Many 
LAN adapters allow the source address of LAN frames to be 
selected or changed by the node, making it easy for a node to 
perform a masquerading attack. 

Protection against masquerading attacks requires the 
authentication of frames transmitted on the LAN. Physical security 
on a LAN would only protect against masquerading by intruders, 
not by nodes that are allowed some access to the LAN. 

Modification: Another possible attack on a LAN is the 
modification of data. Nodes may modify frames sent on the LAN 
and transmit the modified versions. This attack can be used to 
compromise communication between trusted nodes, even when 
some level of authentication is used. 

Protection against modification attacks requires integrity checks 
on frames transmitted on the LAN. These checks should be 
cryptographic functions of the frame, or cryptographically 
protected. As with masquerading, physical security would only 
protect against against attacks made by nodes not authorized to 
use the LAN. 

Denial of Service: The operation of a LAN can be prevented or 
slowed with denial of service attacks. Denial of service includes 
such attacks as physical damage to LAN components (e.g., cutting 
the cable), disrupting communication by not using the correct LAN 
protocol (e.g., sending the wrong signals, or sending signals at the 
wrong time), or overloading the LAN by flooding it with traffic. 

Protection against denial of service attacks requires physical 
security for the LAN components to prevent physical damage. It is 
also necessary to use LAN adapters that are trusted to follow the 
correct LAN standard, and to monitor the LAN for attempts to 
disrupt communication by flooding the LAN with traffic. 

LAN Security Strategies 

While all LAN technologies have these vulnerabilities, and 
especially all broadcast LANs, Digital's LAN strategy is centered 
around Ethernet. For this reason, Digital has developed the 
Ethernet Enhanced-Security System consisting of Digital Ethernet 
Secure Network Controller hardware and VAX Key Distribution 
Center software. 

There are three security strategies that could be used to protect 
aLAN: 
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ClientClient 
NodeNode 

Unencrypted Frames 

Encrypted Frames 

i Ethernet 

Figure 1: Simple Network Diagram 

Physical Security: Maintaining tight controls on access to the 
LAN communication medium does prevent access by unauthorized 
nodes, but the security becomes hard to maintain in extended LAN 
environments and it does nothing to prevent wiretapping, 
masquerading, modification, or denial of service attacks by 
authorized users of the LAN. 

Separate LANs: Partitioning a LAN into physically separate 
LANs for different user groups does prevent attacks from nodes 
assigned to other security levels, but it does not prevent attacks 
from nodes with a security level and it places limits on 
communication that are not practical in many environments. 

Encryption: A well-designed scheme for distributing keys and 
encrypting communication on a LAN can prevent wiretapping, 
masquerading, and modification attacks, and allow a flexible LAN 
access control policy to be implemented. Unless all equipment on 
the LAN is designed to encrypt and decrypt frames, additional 
hardware is required to implement the encryption. It is also 
necessary to have a facility for generating and distributing the 
encryption keys necessary for encrypting the frames. 

Approach 

Of the strategies mentioned above, encryption is the only 
alternative that authenticates nodes connected to the LAN and 
allows a flexible access control policy to be implemented. For this 
reason, encryption is the only reasonable approach to addressing 
most LAN security threats. 

The DESNC controller is a hardware device that sits between a 
node and the Ethernet and encrypts frames transmitted by the 
node and decrypts frames received by the node (see figure 1). The 
frames are encrypted using the DES encryption algorithm. A 
manipulation detection code (MDC) is added to the frames when 
they are encrypted and verified when they are decrypted. The 
controllers also verify the source address on each frame transmitted 
by the node. Because of the frame processing required, controllers 
are store-and-forward devices. 

Controllers have one port that is connected to the LAN and four 
ports that are connected to nodes. The four node ports on a 
controller are separate security domains. A node attached to one 
node port cannot read frames transmitted to a node on another 
node port. Multiple nodes can be connected to one node port. The 
four ports can support up to 20 nodes in any combination. 

The interface used by the ports is standard Ethernet (or 
IEEE 802) format frames. DESNC controllers are designed to 
interoperate with any equipment that uses the Ethernet or 
IEEE 802 standards. The controllers operate at the Data Link 
Layer, and are transparent to any network software operating at a 

higher layer. For example, DECnet or TCP /IP software does not 
require modification to be used in a LAN protected by DESNC 
controllers. 

The controllers are managed by VAX KDC software running on 
specially designated KDC nodes on the Ethernet. These KDC 
nodes must be running the VAX/VMS operating system. KDC 
nodes do not perform all parts of the KDC operations, they require 
the support of an attached DESNC controller. These KDC 
controllers are physically the same as other DESNC controllers, 
but they store more information and perform additional functions. 

Under normal operating conditions, a node protected by a 
controller can only communicate with other nodes when the 
communication is approved by a KDC. When a node attempts to 
communicate, the controller that receives the first frame requests 
an 'association' from a KDC node for the pair of nodes that want 
to communicate. Associations always allow communication in two 
directions. 

Up to five KDC nodes are allowed on an Ethernet or extended 
Ethernet. Multiple KDCs increase the reliability and availability of 
the LAN because they increase the probability that a controller 
will be able to communicate with a KDC when the controller wants 
to set-up an association. 

If an extended Ethernet is used, spreading the KDCs over the 
extended LAN also improves availability. If a problem causes the 
extended LAN to be segmented, it is more likely that each 
controller will be able to communicate with some KDC if the KDC 
nodes are distributed across the extended LAN. 

Protection Against LAN Security Threats 

The Ethernet Enhanced-Security System protects against 
masquerading, wiretapping, and modification attacks, and, to a 
limited extent, some denial of service attacks. 

Masquerading: Nodes protected by controllers are not allowed 
to masquerade as other nodes because the controllers check the 
source address of transmitted frames. Because communication 
must be approved by a KDC, controllers will detect masquerading 
attempts by nodes not protected by a controller. 

If multiple nodes are attached to one node port on a controller, 
the controller will not be able to distinguish between the nodes nor 
be able to detect attempts by one of the nodes to masquerade as 
another. For this reason it is recommended that only one node be 
attached to each node port, but mutually trusted nodes can be 
chained on one port. 

Wiretapping: Controllers ensure the privacy of communication 
between any two nodes attached to DESNC controllers by 
encrypting the Ethernet frames sent between the nodes. 

No attempt is made to hide the length of encrypted Ethernet 
frames. Because the original header of the Ethernet frame is useful 
for LAN management, it is sent in unencrypted form on the 
Ethernet. However, the header is protected against modification by 
placing another copy of the header in the encrypted portion of the 
message. 

Modification: The manipulation detection code that controllers 
add to Ethernet frames when the frames are encrypted allows the 
controllers to detect attempts to modify an Ethernet frame. In 
addition to the unencrypted copy of the header of each Ethernet 
frame, the header of each Ethernet frame is also included in the 
encrypted portion of the frame exchanged between controllers, so 
the header is protected by the manipulation detection code. 

The MDC is a 16-bit CRC, but the MDC value is transmitted in 
the encrypted portion of the Ethernet frames. Because the 
information being protected and the MDC value are both 
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encrypted with DES, deterministic changes cannot be made to the 
encrypted data or the MDC. This means that there is a low 
probability that an intruder will be able to modify an encrypted 
frame without the modification being detected when the frame is 
decrypted and the MDC field checked (i.e., a huge number of 
attempts will be required before one frame is successfully modified). 

Denial of Service: DESNC controllers are not intended to 
provide protection against denial of service attacks. However, 
nodes protected by controllers are isolated from the LAN and so 
the effect of any attempts by these nodes to jam the Ethernet or 
disrupt the Ethernet by not obeying the Ethernet standard will not 
be allowed to affect nodes other than the nodes protected by that 
particular controller. 

Access Control Policy 

The network security manager for an Ethernet secured by 
controllers can determine which pairs of nodes are allowed to 
communicate. The ability to communicate is determined by an 
access class range for the nodes and by the ability of a node to 
communicate unencrypted. 

The network assigns an access class range to each node on the 
LAN. The access class ranges are from a Bell and LaPadu!a[2]/ 
Biba[3] secrecy and integrity lattice, with 256 secrecy and integrity 
levels and 64 secrecy and integrity categories. 

Trusted nodes may be assigned a range of access classes, but 
untrusted nodes are assigned a single access class. Two nodes are 
only allowed to communicate if they operate at the same access 
class, or if the access class ranges for the nodes overlap in at least 
one common access class. 

The access class ranges alone determine if two nodes protected 
by controllers are allowed to communicate. However, if only one 
node is protected by a DESNC controller then an additional factor 
is considered: The network security manager can specify which 
nodes are allowed to communicate with nodes that are not 
protected by controllers and which nodes can only communicate 
when the transmitted frames will be encrypted. 

Bypass Operation 

For normal operation, controllers must be able to communicate 
with at least one KDC. If a controller cannot communicate with 
any KDCs, it will not be able to determine which pairs of nodes 
should be allowed to communicate. 

To handle situations where the KDCs on an Ethernet are not 
operational, a DESNC controller can be placed in Bypass state. 
This is done by pressing a Bypass pushbutton on the front panel of 
each controller. 

When the Bypass pushbutton is pressed, a controller will enter 
Bypass state if ·it cannot communicate with any KDCs. Nodes are 
only allowed to send and receive frames when the controller is in 
Bypass state if the controller has previously been informed by a 
KDC that the node is allowed to communicate in Bypass state. 
When a controller is in Bypass state it will not encrypt any 
Ethernet frames. Even in Bypass state, the controllers check the 
source address of frames transmitted by a node and only send a 
node the Ethernet frames that are addressed to the node. 

The network security manager may choose which nodes are 
allowed to communicate when the controller that protects them is 
in Bypass state. The network security manager should determine, 
for each node, if it is more important for the node to be able to 
communicate whenever possible (allow communication when the 
controller is in Bypass), or to be secure whenever possible (disallow 
communication when the controller is in Bypass). 

Multicast Frames 

Because frames sent to a multicast (or broadcast) destination 
address are intended to be read by many, if not all, of the nodes on 
a LAN, it is not possible to encrypt multicast frames in the same 
manner as other Ethernet traffic. DESNC controllers do not 
encrypt multicast frames. 

Controllers pass multicast frames without any modifications, but 
they allow, at the request of a KDC, a node to be prevented from 
transmitting multicast frames. In some network environments, it is 
necessary to allow all nodes to transmit multicast frames because 
many network protocols depend on multicast frames for correct 
operation. 

Because DESNC controllers are designed to work on LANs 
where only some of the traffic is encrypted, it would not be 
possible to simply encrypt multicast messages with a common 
Ethernet-wide key-it would be necessary to send the messages in 
unencrypted form as well as encrypted form to reach the nodes 
that were not connected to DESNC controllers. 

Trust 

With any security system, it is important to know which 
components must be trusted, and the degree of trust required. 
Ethernet Security-Enhanced System was designed to limit the 
degree that an individual DESNC controller needs to be trusted. 

The compromise of a DESNC controller may compromise the 
nodes protected by the controller, but will not compromise any 
other controllers or nodes on the LAN. This means that a 
controller must be protected as well as any of the nodes protected 
by the controller. 

If multiple nodes are connected to the same node port of a 
controller, the nodes can masquerade as each other. This means 
that the multiple nodes must be mutually trusting. If this is level 
of trust is not appropriate, a site can use DESNC controllers with 
only one node attached to each of the four node ports. 

If a KDC node or the controller that supports a KDC node is 
compromised, the security of the LAN can be compromised. This 
means that KDC nodes and KDC controllers must be protected as 
well as any node on the LAN. While KDC nodes. can be used for 
multiple purposes, the security of the network is improved if the 
KDC nodes are limited to network management functions and 
access to the nodes is limited to trusted individuals. 

Ethernet Enhanced-Security System 

Architecture 


Encryption Keys 

Messages exchanged among DESNC controllers and KDCs are 
encrypted using the Data Encryption Standard (DES) encryption 
algorithm[4,5]. The messages are encrypted using the Cipher Block 
Chaining mode of DES. 

Several different types of DES encryption keys are used by 
controllers and the KDC software. 

KDC Master Key: This key is used to encrypt keys that are 
stored on KDC nodes. This key is only known by the network 
security manager and the KDC controllers. 

Key Generation Key: If keys are generated, this key is used as 
part of the process to generate the keys. This key is only 
known to the network security manager and the KDC 
controllers. 
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Initialization Key: Initialization keys are used to initialize a 
controller. These keys are used to distribute the master and 
service keys for a controller, and are then never used again. 
These keys are only known by the network security manager, 
the controller initialized with the key, and the KDC that 
initializes the controller. 

Master Key and Service Key: These encryption keys are used 
to communicate between controllers and KDCs. A different set 
of keys is used for each controller. The key for a controller is 
only known by the controller and the KDCs, and they are only 
stored in encrypted form on KDC nodes. These keys are never 
handled by any person in unencrypted form. 

Association Key: These keys are used to encrypt communication 
between nodes protected by controllers. A different association 
key is used for each pair of nodes that communicate. 
Association keys are distributed by KDCs when controllers 
request associations. 

KDC controllers will generate encryption keys as needed by the 
KDC nodes, or the network security manager can have the KDC 
nodes acquire the keys that they need from a user-supplied source. 
A small amount of user programming is required to use a 
user-supplied key source, as well as a large supply of keys. 

Initializing Controllers 

Before a controller can operate, it must be initialized. To initialize 
a controller, the following steps are required: 

• 	 The network security manager enters information about the 
controller and the nodes protected by the controller into a 
KDC node. This information includes the addresses of the 
controller and the nodes and the access control policy for the 
nodes. 

• On 	the request of the network security manager, the KDC 
node selects an initialization key for the controller. The key is 
either generated or taken from a supplied key source. 

• 	 The network security manager enters the initialization key in 
the controller. 

• 	 The controller communicates with the KDC and the master 
encryption key for the controller is distributed. This message 
is encrypted with the initialization key that was entered into 
the controller. The initialization key is not used after this step. 

• 	 The controller communicates with the KDC and the KDC 

distributes the information that the controller needs to 

operate. This information includes: 


The duration of associations between nodes. 


The name of the firmware that the controller should be 

using, and a cryptographic checksum for tlie firmware 

image. 


The addresses of the key distribution centers on the LAN. 


The addresses of the nodes supported by the controller. 


Information about the supported nodes. This includes 

such information as whether each node is allowed to 

communicate when the controller is in Bypass state. 


A list of the events that the controller should audit. 


After these steps, the controller is operational. The controller 
can now communicate with any KDC on the LAN. Once a 
controller is initialized it is not necessary to manually enter any 
additional information. If the distributed information needs to be 

changed, the changes cari ·be dorte remotely !rom any KJJC, 
DESNC controllers retain the distributed information during 
power-off or power interruptions for a minimum of 72 hours. 

Operational controllers will request associations from KDC node 
as necessary, and encrypt and decrypt Ethernet frames sent by 
nodes. 

Downline Loading Controllers 

The operational firmware images used by DESNC controllers is 
downline loaded over the Ethernet using the same mechanism used 
by other DEC products. This allows the controllers to be downline 
loaded by the same downline load servers that load other products 
on the Ethernet. The integrity of the images (and the security of 
the LAN) is protected in the following manner: 

1. 	 When a new firmware image is installed on the network, a 
KDC generates an encryption key and a cryptographic 
checksum for the image. The KDC generates a different key 
and checksum for each controller on the Ethernet. 

2. 	 When a controller is initialized, the KDC distributes the name 
of the firmware image and the appropriate checksum 
information to each controller. If the image changes after a 
controller is initialized, any KDC may distribute the new 
image name and checksum information to the controller. 

3. 	 When a controller needs to be downline loaded, it requests the 
appropriate image. After the image is received from a 
downline load server, the controller calculates the checksum 
for the image and compares the value against the stored value. 
If the received image does not have the correct checksum then 
that image is ignored and a new image is requested. 

4. 	 The DESNC controller stores the checksum in memory that is 
preserved over power failures. Because of this is is not 
necessary to distribute checksum information to all controllers 
after a power failure. 

Associations 

When two nodes try to communicate by exchanging Ethernet 
frames over the LAN, controllers will not allow the communication 
unless the 'association' is allowed by a KDC. These associations are 
granted upon demand by KDCs. 

There are three different types of associations: 

• 	 Associations between two nodes protected by different 

controllers. Frames sent under these associations are 

encrypted while they are on the Ethernet. 


• 	 Associations between two nodes protected by the same 
controller. Frames sent under these associations are never sent 
on the Ethernet so there is no need for them to be encrypted. 
The controller only sends the frame to the node port where 
the destination node is attached. 

• 	 Associations between a node protected by controllers and a 
node not protected by a controller. Frames sent under these 
associations are not encrypted (because there is no second 
controller to decrypt the frame), but communication is not 
allowed unless approved by a KDC. 

Examples of these three types of associations are shown in figure 2. 
When two nodes communicate directly (without any intervening 
DESNC controllers), controllers and KDCs. are not involved in the 
communication. 
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Figure 2: Types of Associations 

Association Set-Up: The protocol exchange used between 
DESNC controllers and KDCs to set-up associations is similar to 
the protocol used in Voydock and Kent[6]. Here is an example of 
how an association would be established between two nodes that 
are both connected to DESNC controllers. 

Consider the LAN shown in figure 2. Setting up an association 
between node 7 and node 8 (with node 4 acting as the KDC node) 
involves the following steps: 

1. Node 7 sends an Ethernet frame to node 8. 

2. 	 Controller C receives the Ethernet frame and verifies the 

source address of the frame. 


3. 	Controller C requests an association from the KDC (node 4). 

4. 	The KDC checks the access control policy and determines that 
nodes 7 and 8 are allowed to communicate and sends an 
Association Open message to controller C. The Association 
Open message is encrypted with the master key of 
controller C. The message contains an association key, either 
generated by the KDC controller or taken from supplied keys. 

5. 	 Controller C sends an Association Forward message to 
controller D. The Association Forward message is encrypted 
with the master key of controller D and was generated by the 
KDC and included in the Association Open message sent to 
controller C. 

6. 	Controllers C and D communicate and determine that they 

share a common association key. 


7. 	 Controller C encrypts the message sent in step 1 with the 
association key and sends the encrypted frame to controller D. 

8. 	 Controller D receives the encrypted frame, decrypts the frame, 
checks the manipulation detection code, and transmits the 
frame to node 8. 

Once the association is established, no further interaction with 
the KDC is required and all communication between nodes 7 and 8 
is encrypted with the association key until the association expires. 
At that point, another association is requested by the controllers. 
The duration of associations is determined by the network security 
manager. If an association is active and approaching expiration, 

the controller that originally requested the association 
(controller C in this example) will request another association 
before the first association expires. 

Encrypted Frame Format 

When Ethernet frames sent by nodes are encrypted by DESNC 
controllers, the frames are protected in several different ways: 

• 	 The frames are encrypted to prevent disclosure of the 

contents, and also to prevent predictable modification. 


• 	 Sequence numbers are included in the encrypted portion of the 
frame to detect replay and reflection (sending frames back to 
the sender with the source and destination addresses swapped). 

• 	 A Manipulation Detection Code (MDC) is appended to the 
frame before it is encrypted. This field is checked when the 
encrypted frame is decrypted to determine if the frame was 
modified. 

Several other changes are made to the format of the frames when 
they are encrypted: 

• 	 A new IEEE 802 header is added to the start of the frame. 
The protocol identifier in the frame header allows DESNC 
controllers to determine which of the frames it receives are 
encrypted. 

• 	 A message type is placed after the header to distinguish 
encrypted frames sent by nodes from other encrypted control 
messages. A copy of the message type is placed in the 
encrypted portion of the frame to allow changes to the 
message type to be detected. 

• 	 An encryption identifier is also added to allow the controller to 
determine which encryption key should be used to decrypt the 
frame. (This is just a performance optimization, it would be 
possible for the controller to determine the appropriate key 
from the frame addresses and the message type.) 

• 	 Two copies of the original frame header (other than the 
Ethernet addresses) are placed in the frame. One copy is 
unencrypted and can be used by LAN management tools, the 
other copy is encrypted so that any attempts to modify the 
header will be detected. 
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Figure 3: Encrypted Frame Format 

• 	 The encrypted portion of the frame is padded to a multiple of 
the DES block size to allow the frame to be encrypted using 
CBC mode. The padding is removed when the frame is 
decrypted. 

• 	 The correct Ethernet Frame Check Sequence (FCS) is 
appended to the newly created frame. The original FCS will 
be used when the frame is transmitted to the destination node. 

The format of an encrypted frame is shown in figure 3. 
Everything from the sequence number to the MDC is encrypted. 

Fragmentation: Because additional fields are added to frames 
by DESNC controllers, frames that are close to the maximum 
length will be extended beyond the maximum allowed length for 
Ethernet frames. To handle this situation, DESNC controllers 
'fragment' long Ethernet frames and transmit them in two 
encrypted Ethernet frames. 

This fragmentation and reassembly affects the performance of 
communication, but the fragmentation is handled by controllers 
and transparent to the nodes involved. Ethernet performance can 
be improved for a node if the network software on the node is 
modified to always send frames that are shorter than 1480 bytes. 

Auditing 

Controllers and KDCs generate security related audit events. 
Controllers and KDCs always count significant events as they 
occur, and detailed information about some events is recorded by 
the KDC server. The stored events can be displayed by the 
network security manager. 

The level of auditing can be selected by the network security 
manager by choosing which controllers and KDCs record which 
classes of events. There are 18 auditable events including: 

• 	 Controller status messages and state changes. 

• 	 Association requests. 

• 	 Rejected associations requests. 

• 	 Invalid frame addresses, sequence numbers, or MDCs. 

The network security manager can select which events are 
included in audit reports, and it is possible to have the KDC server 
send selected classes of events to a physical alarm device (e.g., a 
terminal or a printer). 

Software Design 

The VAX KDC software is a layered product that runs under the 
VAX/VMS operating system. There are two parts to the 
VAX KDC software: 

• 	 A KDC Server that runs continuously. This program responds 
to association requests for the controllers on the LAN and 
records audit events generated by controllers and the KDC 
software. 

• 	 A KDC User Interface that is used by the network security 
manager to enter and display configuration information, 
manage controllers, and review controller status and audit 
information. 

The following data files are used by the KDC software: 

LAN Configuration File: This file contains information about 
the configuration of controllers, KDCs, and other nodes on the 
LAN. All KDC nodes must have the same information in their 
configuration files for correct operation. 

Controller Status File: This file contains information about the 
status of controllers and their communication with this KDC. 
A separate file is maintained by each KDC. 

Audit History File: This file contains all of the audit events 
recorded by this KDC. The level of auditing can be selected 
separately for each controller or KDC. 

KDC DESNC Controller 

The software works together with the DESNC controller attached 
to the KDC node to function as a KDC. Using this KDC DESNC 
controller to help the KDC node has several advantages: 

• 	 Messages sent by the KDC node are encrypted by the KDC 
controller. This is much faster than using software encryption. 

• 	 Except for the key that is displayed when a controller is 
initialized, there are no 'red' keys stored on the KDC node. All 
encryption keys are encrypted when stored on the KDC node. 

When a key is used, it is decrypted by the KDC controller 
using a key that is only known to the KDC controller. This 
prevents someone with read-only access to the information on 
the KDC node (e.g., access to backup tapes) from 
compromising the security of the network. 

• 	 The KDC controller generates encryption keys for the KDC as 
they are needed. This also prevents unencrypted keys from 
being present on the KDC node. 

Hardware Design 

A DESNC controller can be considered to be a combination of an 
encrypting Ethernet bridge and a ThinWire Ethernet concentrator. 
The concentrator on the node side of a DESNC controller is design, 
unlike a normal concentrator, so that a frame transmitted on one 
node port is not automatically transmitted on the other ports. 
This allows the controller to enforce the LAN access control policy 
between nodes on different ports. 

Controllers are compatible with the Ethernet and IEEE 802.3 
standards to allow interoperability with any products that conform 
to those standards. 

Controllers contains a Motorola 68000 CPU chip and ROM 
containing the code that is executed when a controller is first used. 
There are also various memories to store downline loaded code, 
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information about associations code in ROM, RAM for code, RAM 
for association storage, and RAM for packet storage. 

Some of the memory in a controller is preserved over power 
failures of less than 72 hours through the use of capacitors. This 
memory is used to preserve enough information so that the 
controller does not have to be manually initialized after a power 
failure. The preserved information includes the master key for the 
controller, sequence numbers used between the controller and the 
KDCs on the LAN, and the cryptographic checksum for the 
downline loaded image. If a DESNC controller is opened, power is 
removed from this memory to reduce the chance that the 
information will be used to compromise the nodes attached to the 
controller. 

The front panel of a DESNC controller contains lights that 
indicate the state of the controller, a keypad that is used to 
initialize the controller, and a key switch that is used to activate the 
keypad. There is also a Bypass pushbutton that can always be 
pressed to request that the controller enter Bypass state. 

DESNC controllers execute complete self-test code when they 
start operation, and several tests are run regularly during 
operation of a controller to detect any failures before the security 
of the nodes connected to the controller. 

Relationship to the 

Trusted Network Interpretation 


Although the Ethernet Enhanced-Security System was not 
designed specifically to satisfy cryptographic requirements for the 
protection of classified information, the architecture and security 
policy of the system permits an evaluation in accordance with the 
Trusted Network Interpretation[7] (TNI) in a variety of different 
ways. (Even if the system is evaluated, it would only be useful in 
environments where it is appropriate to use DES encryption.) 

Network Evaluation: A LAN consisting of DESNC controllers, 
a set of KDCs, and several single-user workstations can be viewed 
as a single trusted system, where the subjects are the users of the 
workstations and the only supported objects are Ethernet frames. 
Such a network system satisfies many of the TNI requirements at 
the B1 class. 

In support of mandatory security, users (and their nodes) are 
assigned explicit secrecy and integrity levels. Ethernet frames do 
not contain explicit secrecy and integrity labels-the labels are 
implicit in the key used to encrypt the frame. Because keys are 
selectively assigned on a node-pair basis the fact that the users of 
two workstations can communicate means that they are authorized 
for a common secrecy and integrity level. The sensitivity level of a 
given frame can thus be determined by examining the source and 
destination addresses in the frame in conjunction with information 
stored in the KDC database. [When multilevel nodes 
communicate, it may not be possible to determine the level of 
frames exchanged, depending on the access control policy used by 
the LAN. In these cases, it is only possible to determine a possible 
range of levels for each Ethernet frames.] 

Discretionary access control is supported in the sense that 
DESNC controllers will prevent a frame from being received by any 
workstation other than the destination node requested by the 
transmitter. 

Specific Security Services: In addition to receiving a rating, 
the LAN described above contains features that are useful in 
obtaining positive evaluations for various specific security services 
including Authentication, Communication Field Integrity, Data 
Confidentiality, and Traffic Flow Confidentiality. 

Component Evaluation: An individual DESNC controller can 
be viewed as a network component of type 'MA', providing 
functionality for MAC and audit. It should satisfy the minimum 
B1 class requirements for MD components. If the component is 
restricted to connecting one single-user workstation to each port, it 
would also provide functionality for DAC and identification and 
authentication, and therefore satisfy the minimum B1 class 
requirement~ for MIAD components. 

As an alternative, DESNC controllers and a set of KDCs can be 
viewed as a network component to provide the same functionality. 
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ABSTRACT 
Trusted distributed systems differ from trusted monolithic systems in that the medium linking 
the components of the distributed system may be subject to wiretapping threats. This has 
led to a misconception that the primary concern in covert channel analyses of distributed 
systems should be the misuse of protocol fields as a means to covertly signal information to 
wiretappers having access to the communications medium. Depending upon the network's 
environment this may not be a problem at all. However, all networks do have internal host­
to-host channels that must be analyzed in order to satisfy the assurance requirements of 
distributed systems at the 82 level and higher. This paper describes a layered approach for 
analysis of these internal channels that is consistent with the way in which communications 
networks are actually designed and built. Additionally, the use of embedded, network-based 
access controls is proposed as a means to prevent certain host-to-host channels. 

1. Introduction 
This paper addresses two distinct ways in which information 
contained within a secure distributed system or network can 
be covertly compromised. The first, the threat of 
wiretapping or compromise of the network medium has 
been discussed in the literature although it does not seem 
to fit the traditional definitions of the covert channels. It is 
pointed out that networks, especially Local Area Networks 
(LANs) are not necessarily subject to this threat, but if they 
are, the threat may require the redefinition of the term 
covert channel as well as changes in the ways that such 
systems are modeled. 

The second mechanism is the traditional covert channel in 
which a system resource not normally used as an object to 
contain information is used to signal information between 
subjects or users of the system. Both the desire to evaluate 
components for use in building network systems and the 
complexity of such systems (and even the components) 
makes it difficult to analyze networks effectively with 
traditional covert channel techniques. Further, the 
interconnection of multiple trusted computer systems raises 
the possibility that a flaw in one system can be exploited by 
users in other systems leading to the possibility of a covert 
channel that spans the network. 

A layered method of analysis is proposed that closely 
follows the ways in which such systems are designed and 
constructed in practice. If such channels must be 
considered, techniques are available to reduce their 
bandwidth. This section concludes with the discussion of 
one such method based on the introduction of host to host 
access controls. 

2. Background 
The National Computer Security Center has developed the 
Trusted Network Interpretation (TNI) [1], to be used in the 
evaluation of trusted network systems and their 
components. The TNI reflects two different, and sometimes 
conflicting, perspectives on the overall security problem: 

(1) 	 an extrapolation of the trusted system principles 
from the Trusted Computer System Evaluation 
Criteria (TCSEC) [2] into a distributed environment, 
and 

(2) 	 a communications security perspective that is 
concerned with protecting the integrity and secrecy 
of communications within potentially hostile 
environments. 

The TNI addresses both areas, with Part I ratings defining 
the security policy, authentication, assurance and 
documentation requirements for loosely-coupled distributed 
computing systems, and Part II ratings addressing the 
security of the interconnecting communications paths. 

The differing emphases of these perspectives has lead to 
confusion in the area of covert channel analysis. The TNI 
continues the requirement to address covert channels within 
the individual computing systems and observes that there 
are additional instances of covert channels associated with 
eommunications between components: i.e., the exploitation 
of network protocol information. 

The evaluation of trusted systems must provide for the 
analysis of both overt and covert channels. Within trusted 
comouter systems, overt channels result from the use of the 
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system's protected data objects to transfer information 
directly from one subject to another. Analysis of the system 
must lead to the conclusion that all overt channels conform 
to the system's security policy. 

On the other hand, covert channels use entities not 
normally viewed as data objects to transfer information from 
one subject to another in violation of the system's security 
policy. Storage channels result from an exploitation of a 
shared storage resource, while timing channels result from 
the modulation of the system's response time. 

The TCSEC and TNI provide the following definitions of 
such channels: 

Covert Channel 
A communications channel that allows a process to 
transfer information that violates the system's security 
policy. A covert channel typically communicates by 
exploiting a mechanism not intended to be used for 
communication. 

Covert Storage Channel 
A covert channel that involves the direct or indirect 
writing of a storage location by one process and the 
direct or indirect reading of the storage location by 
another process. Covert storage channels typically 
involve a finite resource (e.g., sectors on a disk, device 
status flags, etc.) that is shared by two subjects at 
different security levels. 

Covert Timing Channel 
A covert channel in which one process signals 
information to another by modulating its own use of 
system resources (e.g., CPU time) in such a way that 
this manipulation affects the real response time 
observed by the second process. 

Historically, most methods for dealing with covert channels 
within computer systems have been ad hoc. [3] describes 
the approach used for performing a covert channel analysis 
during the Honeywell Multics evaluation. Mechanical covert 
channel analysis tools have been developed for systems 
characterized by formal top level specifications. These 
tools, typified by the SRI MLS Flow Tool [4], are based on 
the assignment of security levels to each TCB resource 
attribute and the generation of formulas which, if proven to 
be true, ensure that all information transfers within the 
specification conform to the system's security policy. The 
Shared Resource Matrix (SRM) methodology proposed by 
[5] is an intermediate approach (between the ad hoc 
methods and information flow tools) that can be used at a 
variety of different levels of abstraction. 
The development of covert channel analysis methods, such 
as those mentioned above, results from the TCSEC 
requirement to perform covert channel analyses beginning 
at the B2 assurance level. Since there are only two local 
area network components known to be under evaluation by 
the NCSC at the time this paper was written, there is not a 
significant amount of literature available on the subject of 
covert channels in LANs. 

3. The Wiretap Threat 

The TNI seems to assume that the primary covert channel 
threat to networks results from attacks on the network 
communications medium by wiretappers who are not 
"subjects" of the network. Both of the references cited by 
the TNI in this area, mention the existence of covert 
channels from an untrusted subject to an external 
wiretapper. [6] addresses the inability of end-to-end 
encryption hardware to protect against malicious use of 
address, length, and timing information by untrusted host 
software. [7] defines the same three mechanisms within a 
LAN environment and describes the results of an 
experiment to measure the bandwidth of the addressing 
channel. 
As 	 described in the following sections, we believe this 
emphasis on covert channels involving wiretappers is 
somewhat misleading. Within LAN environments, at least, 
wiretap threats can be addressed in the same way that they 
are addressed in 	 any other trusted facility: by physical, 
procedural, and administrative security mechanisms. 
The mechanisms identified by [6] and [7] involve the 
modulation of protocol fields or other externally visible 
aspects of the communications packet. Girting identifies the 
following three methods of exploiting conventional LAN 
interface devices to covertly signal information to a 
wiretapper: 

LAN Address 	 A covert storage channel is possible 
when a high-level host process can 
address packets to multiple 
destinations and a wiretapper can 
observe the sequence of packets. 

Packet Length 	 A covert storage channel is possible 
when a high-level host process can 
determine the length of outgoing 
packets and the wiretapper can 
observe the lengths of these 
packets. 

Inter-Packet Delay 	 A covert timing channel is possible 
when a high-level host can 
modulate the delay between 
outgoing packets and a wiretapper 
can observe and measure these 
delays. 

3.1. Bandwidths 
Both [6] and [7] point out that the bandwidths of such 
channels may often be in excess of 100 bits per second. It 
appears that these estimates understate the potential 
bandwidths that could be achieved using current LAN 
devices. 

(1) 	 The IEEE 802.3 specification defines a six-byte 
destination address field and packet lengths from 
64 to 1518 octets. Assuming all addresses can be 
generated without detection, the width of the 
address channel bandwidth is potentially 48 
bits/packet. 
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(2) 	 The increased performance of readily available 
LAN hardware means that information can be 
compromised at a proportionally higher rate. 
Ethernet boards are available with typical 
throughputs of 500 Kbps, and should be able to 
generate packets continuously at a rate of 50 
packets per second. 

From such assumptions, the bandwidth of the address 
channel in an Ethernet-like LAN could be on the order of 
2400 bits/second. As higher throughputs become 
commonplace, the potential bandwidth of these channels 
will further increase. 

That such signaling mechanisms exist is not in dispute. 
Whether they need to be considered in every network 
system is open to question. If the system or component 
being examined is subject to a wiretap threat, there may be 
implications that require modification of the system security 
policy and the definition of a covert channel. 

3.2. 	 Is the Threat Universal? 
Are some networks exempt from a wiretap threat? We 
believe that this is certainly true for some LANs, but it may 
not be the case for geographically distributed network 
systems. LANs operating within a physically controlled 
environment or routed through protected wireways should 
be relatively immune to wiretap attacks. 

In order to clarify this issue, consider a series of four 
different systems 1 , as follows: 

(1) 	 A trusted monolithic computing system, as addressed 
by the TCSEC. 

(2) 	 A trusted tightly-coupled multi-processor, multi­
programmed computing system, as described in 
Appendix 8.4.3 of the TNI. 

(3) 	 A trusted, loosely-coupled distributed computing 
system, with individual host computers operating at 
potentially different security levels. The host computers 
are interconnected by a conventional IEEE 802.3 LAN, 
and the computers and medium are maintained within 
the same protected facility. 

(4) 	 A trusted, loosely-coupled distributed computing 
system, with individual host computers operating at 
potentially different levels, but with each host computer 
separately protected. 

For each architecture, consider the implications of allowing 
an anonymous wiretapper, with arbitrary equipment, access 
to the backplane of each of the four systems. Does this 
access constitute a potential for a compromise of 
information, a violation of the system's security policy? 
Using the broad definition of "policy", the answer would 
certainly have to be "yes". Clearly, each example provides 
the potential for unauthorized disclosure and modification of 
data. 

1 The TCSECfTNI terminology is used here, so that the term 
"system" refers to a collection of computer and communications 
hardware, software, and firmware that performs all of the functions 
defined in Part I of the TNI. Specifically, a system is capable of 
identifying and mediating access at the human user level. 

The significant point is that in the first two cases the vendor 
and the NCSC assume that the system will be operated 
according to the assumptions in the vendor's Trusted 
Facility Manual. If the monolithic computer system can be 
considered a degenerate case of the general computer 
system, the corresponding intrusion would be tantamount to 
the removal of the cover from the computer system, and 
allowing the wiretapper access to bus signals and other 
backplane activity. 

If the operators of any trusted facility allow unlimited access 
to the internals of their system, then there is significant risk 
of data compromise at a very high bandwidth. Conversely, if 
it can be assumed that the facility and its equipment are 
properly protected, then the covert channel analysis can be 
limited to potential channels between authorized subjects 
operating under control of the TC8/NTC8. 

3.3. 	 Security Compliant Communications 
The TNI references appear to make the assumption that 
networks are necessarily subject to wiretap threats, and 
ignore the traditional physical, procedural and administrative 
solutions to physical tampering used in trusted computer 
facilities, but Appendix 8 of the TNI describes three 
different methods for ensuring security-compliant 
communications. 

(1) 	 Documenting constraints in the Trusted Facility 
Manual, thereby deferring an assessment of 
compliance to accreditation. 

(2) 	 Providing suitable end-to-end communications 
security techniques. 

(3) 	 Administrative restriction of use of the channel. 

If the assumption is made in the Trusted Facility Manual 
that the network is operated in a protected environment, 
there should be no need to consider covert channels to 
wiretappers. This explicit assumption is made implicitly in 
the evaluation of trusted computer systems. For local area 
networks, in particular, it appears to be a reasonable 
assumption to make, considering cost and benefit tradeoffs. 

3.4. Policy Implications 

This still leaves open the question of whether or not 
information flows from a subject (user) of a system to a 
wiretapper constitute covert channels in the usual sense of 
the term. The answer depends upon the definition of 
security policy, since a covert channel is defined as "a 
communications channel that allows a process to transfer 
information in a manner that violates the system's security 
policy". The TCSEC further defines security policy as " ... 
the set of laws, rules and practices that regulate how an 
organization manages, protects, and distributes sensitive 
information". This appears to categorize theft of computer 
tape containing classified information as being a covert 
channel; however, that is clearly not what is intended for 
the covert channel analyses performed by system vendors. 

Covert channel analyses focus on the use of entities not 
normally viewed as data objects to transfer information from 
one subject to another [subject] [5]. Subjects, in turn, are 
entities that operate within the control of the TC8 (or NTC8) 
on behalf of human users. This appears to have at least 
one of the following implications: 
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(1) 	 The wiretapping threat is unrelated to the subject of 
covert channel analysis (and requires a physical, 
communications, or administrative security 
solution); or 

(2) 	 Wiretappers can be "subjects", and consequently 
must be addressed by the security policy model for 
the network system; or 

(3) 	 The manner in which covert channel analyses have 
been done for monolithic computer systems must 
be changed to include threats to the physical 
security of the system. 

We dismiss the third alternative as unduly overloading the 
notion of covert channels. For a system to be secure, a 
wide variety of potential threats must be countered. When 
the evaluation and accreditations are properly carried out, 
this will be done in such a way as to cover operational and 
environmental threats as well as architectural ones. There 
is no need to include all such threats under the umbrella of 
"covert channel analysis". The choice between the first two 
alternatives is less clear cut. 

At the 82 level of evaluation, both the system's security 
policy model and the covert channel analysis are rather 
informal. The search for covert channels is usually based 
on the system's Descriptive Top Level Specification (DTLS) 
which may be somewhat imprecise. At the A1 level, covert 
channel analysis is conducted with respect to the system's 
Formal Security Policy Model (FSPM) and Formal Top 
Level Specification (FTLS) using "formal methods", usually 
with the aid of mechanical tools. In either case, both the 
security policy and the system specification must define the 
domain of the analysis. If the covert channel analysis is to 
include wiretap threats then the policy and specification 
must include wiretappers. We know of no cases to date in 
which this issue has been explicitly addressed in network 
security policy models or specifications. 

These observations lead to a conclusion that while 
information compromise via wiretap channels can be 
performed using techniques similar to those used for covert 
channels, the mechanisms are not covert channels under 
the definition quoted above with the usual policy definitions 
and specification paradigms. In this case, the fault lies with 
the policies and specifications. If a system or component 
will be subject to a wiretap attack and it is desired to 
evaluate the threat as a part of a covert channel analysis, 
the policy for the system must clearly consider the 
existence of wiretappers and define the extent (if any) to 
which they are permitted access to information contained in 
the system. A system specification subject to covert 
channel analysis must also explicitly consider wiretappers 
as potential subjects and describe their accesses in relation 
to other system entities. These additions will clearly impact 
the usual security analysis of the system as well as its 
covert channel analysis. 

4. Covert Channels Between Network Subjects 

This section describes a method for identifying and 
resolving the remaining internal covert channels within a 
network system. Within a distributed system, internal 
channels tend to be between processes existing on different 
hosts, where such channels would occur on a single host in 
a monolithic computer system. The level of complexity 
resulting from interconnecting arbitrary hosts running 
arbitrary applications programs may appear unmanageable 
at first, because of the potential for large numbers of 
interactions between heterogeneous host computers, 
operating systems and processes that must be considered. 

4.1. Layering and Abstraction 

Fortunately, most communications systems (even untrusted 
ones) are designed and built in a highly-structured manner 
that can be used to reduce the complexity of covert channel 
analyses. The ISO Reference Model of Open Systems 
Interconnection (OSI) provides a framework for defining 
communications protocols. The actual layers of protocol 
that are implemented differ from network to network, 
however, the purpose of each layer is to offer certain well­
defined services to the higher layers, shielding those layers 
from implementation details. Figure 1 depicts the network 
architecture used in this paper, based upon the OSI 
reference model. 

Name of Unit 
Layer Exchanged 

Application Protocol
7 Message 

Presentation Protocol 
6 Message 

Session Protocol 
5 Message 

Transport Protocol 
4 Message 

Network Protocol 
Packet 

3 

Link Protocol 
2 Frame 

Bit 

Host A Host 8 

Figure 1. Network Reference Model. 

Without going teo far afield, it is helpful to review the basic 
principles that are used in the design of communications 
networks, for these same principles can, and should, be 
applied to the development of trusted network systems. As 
described in [8], the identification of protocol layers is based 
primarily on the need to deal with a different level of 
abstraction, with each layer performing a well defined 
function. Strict layering is usually observed, in order to 
encapsulate the services that are performed and to provide 
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some degree of protocol independence. Without such 
abstractions and layering, it is unlikely that a network as 
complicated as the DoD Internet could ever be made to run. 

In the following discussion, layer-n protocols exist between 
peer-level entities, while service interfaces exist between 
layer n and (n+1) entities. 

4.2. Trusted Protocol Design and Implementation 
Unfortunately, the emphasis on protocol layering and 
abstractions in the communications world is not readily 
apparent in the TN1 2 . However, such a layered protocol 
view of the world is not inconsistent with the TNI, and 
indeed provides an excellent model for analysis of trusted 
network systems. 
Consider a trusted implementation of a layered network 
component. From a communications perspective, this 
component would implement protocol layers 1 through n, 
which would provide layer-n services to layers (n+1) and 
above. From a trusted system perspective, this component 
would have its own security policy (and model), which 
would define access of layer-(n+1) subjects to objects 
existing at the service interface between layers n and (n+1). 
For example, a trusted network layer (and below) 
implementation would mediate access of transport layer 
subjects to network packet objects. Processes and files do 
not exist at the network layer of abstraction; only transport-
layer protocol entities and packets (or datagrams) 3 . 

It must be realized that many networking implementations 
do not necessarily use a separate process for each 
individual layer of the protocol hierarchy. For example, 
UNIX systems commonly implement TCP/IP within a single 
process rather than as separate processes. When a single 
process is used to implement more than one protocol layer, 
the combined layers must be treated as a single layer for 
the purposes of covert channel analysis. 

4.3. Covert Channels Within Protocols 
This same model can be used for performing covert 
channel analyses of trusted network systems. Each 
success1ve layer ot the protocol stacK could be analyzed 
with respect to the covert channels that exist within that 
layer and lower layers. For example, an layer-n analysis 
would concentrate on the existence of covert channels 
through the layer-n implementation that can be utilized by 
the various layer-(n+1) entities (subjects) through the 
service interface. 

The covert channel analysis for a trusted layer-n component 
would be concerned only with the identification and analysis 
of unauthorized information channels between pairs of 
layer-(n+1) subjects. It would not provide for the 
identification of covert channels within higher layers, and it 
can not be responsible for auditing or resolving any 
channels that might exist within higher layers. It is a basic 
rule of layered protocol design that a lower-level protocol 
should not read or modify the contents of higher-level 
protocols. Similarly, higher-level protocols should not 

2 For example, Appendix A (Network Components) does not 
include an example of a layered, distributed component, but rather 
shows monolithic "boxes" interconnected with wires. 

3 Consequently, it is not possible for a trusted network-layer 
implementation to qualify as a TNI "system", since it does not deal with 
the identification and mediation of human-user entities. 

access or modify resources used by lower-level protocols, 
except through the vocabulary of operations provided by the 
protocol interface. 

4.3.1. Layering Within LAN Systems 

Most distributed systems in use today rely on a combination 
of physical and logical separation at the interfaces between 
certain layers in the protocol hierarchy. A typical LAN 
architecture (Figure 2) consists of multiple hosts, each 
having a dedicated LAN co-processor board that performs 
packet transmission, reception, limited error control, etc. 
These boards generally implement the physical and link 
layers, and sometimes the network and transport layers as 
well. The traditional rationale for this separation has been 
performance rather than security. 

Host A Host B 

User Processes User Processes 

Network O.S. Network O.S. 

Higher Higher........................... 
Protocol 

LAN Co-processor A 

Protocol 

LAN Co-processor B 

Lower Lower ........................... 
 . ......................... . 

Protocol Protocol 

Layers Layers 

Figure 2. Typical LAN Architecture. 

Such physical separation provides assurance that host 
processes do not have direct access to the physical 
transmission medium or any data associated with the 
protocol layers implemented on the co-processor, unless 
the co-processor interface explicitly provides such access. 
User-level processes do not have any other means of 
accessing the internal registers of the co-processor board, 
observing the contents or addresses of individual packets, 
etc. The net effect of this separation is to limit the available 
mechanisms for covert communications among legitimate 
hosts on the network. 

Given an appropriate software architecture in which 
processes are permitted to communicate only through 
carefully controlled mechanisms managed by the TCB, the 
same degree of assurance should be possible using logical 
separation. In either case, careful definition of the service 
interface between layers is required and the implementation 
must ensure that it is not possible to bypass this interface. 
Note that the mechanisms used to implement a layered 
protocol securely will have much in common with those 
used to implement TCBs. 
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4.3.2. Analysis Techniques 

If the Shared Resource Matrix (SRM) methodology [5] is 
used, we believe the SRM operations can be identified by 
closely inspecting the service interface between the trusted 
layer-n component and the external layer-(n+ 1) subjects. A 
variety of resources must be considered, both those visible 
at the service interface and those embedded within the 
layer-n component. However, it is not necessary to 
address any internal resource whose attributes are invisible 
to the higher-level protocols. For example, it would not be 
necessary to address the number of retransmissions 
required to reliably send a packet to a remote peer entity, if 
the number of retries is hidden within the abstraction of the 
lower protocol layers. The possibility of composing 
matrices at the individual levels to provide system level 
analysis is an interesting subject for further research. 

4.4. Host-to-Host Channels 

The preceding discussion has presented a general 
approach to addressing internal covert channels within 
individual layers of a trusted network system. However, 
protocol layers may be addressed as a group having a 
common hardware platform or run-time services, for 
example, the lower level protocols that normally reside on 
an Ethernet LAN interface board or the higher-level end-to­
end protocols (e.g., FTP, Telnet) that normally reside with 
the software of individual hosts. Thus, within local area 
network systems having dedicated LAN hardware, it makes 
sense to consider separately the covert channels4 that may 
exist within the underlying network layers from those within 
the individual hosts. If this approach is taken, one can then 
categorize inter-process covert channels as either intra-host 
or inter-host: 

Intra-Host 	 Covert channels that exist between subjects 
on the same host computer can be identified 
and resolved within that host, independent of 
any host-to-host connections. The 
identification of such covert channels is 
extensively treated in the literature. If a 
mechanism is identified as providing a 
potential covert channel, then that mechanism 
should not be used either within the host or in 
conjunction with network transfers. 

Inter-Host 	 Covert channels between subjects on different 
hosts can be addressed in two steps, with 
host-to-host channels addressed at the lower 
layer, and process-to-process channels 
addressed (as above) within each host. 

It is possible that a security flaw that has been deemed 
acceptable within a single host may not be acceptable 
when the host is connected to a network. This is because 
the overt communications channels between hosts can be 
used to extend the number of processes that can take 
advantage of such a flaw. Consider Figure 3, which shows 
a covert channel between Processes P1 and P2 in Host A. 
If Host A is then interconnected with Host B, and peer-level 
communications protocols are established between the 

4 This is the case if the underlying network is being developed as a 
trusted component, and is also probably true even if untrusted LAN 
components are being used with trusted host software. 

hosts, it is possible that information could be covertly 
signaled from P1 to P3, using the allowable 
communications path from P2 to P3. Extended channels 
such as this (involving multiple transfers) are equivalent to 
those described by [5] involving multiple attributes, and it is 
believed that they could be identified by the same method, 
i.e., a transitive closure of the overall network matrix. In the 
analysis of covert channels it is not sufficient to determine 
the security flaw that allows information to work, one must 
also be concerned with the nature of information that may 
be leaked through this flaw and the places in the overall 
system where the information might be extracted. 

?\...u 

~ 

Single Host 

Network System 

Figure 3. Example of an Extended Covert Channel. 

..:ven with these additional possibilities for extended covert 
channels, the layered approach described above has the 
advantage of being conceptually easier to follow than 
attempting to address all the channels within a distributed 
network system at the same level of abstraction. By 
dividing the potential covert channels, a separation of 
concerns may be made, and the two distinct cases may be 
solved individually. As a result of this separation, it is 
possible to use network-based controls within trusted 
lower-level protocols to significantly reduce the ability of 
higher-level protocol subjects to interact in a way that 
violates the system's security policies. 

5. Network-Based Controls 
The fundamental problem to be solved in the covert 
channel analysis of a network system is to prevent arbitrary 
host processes from interacting in ways that may violate 
security policy. As described above, this process is 
potentially complex because of the need to address 
channels between arbitrary processes running in arbitrary 
host computers. · 
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One way of solving a significant part of this covert channel 
problem is to embed network-level access controls within 
each LAN interface board, so that only certain host-to-host 
interactions are allowed. If a particular pair of hosts is not 
allowed to communicate (at the packet level), then it follows 
that covert channels cannot exist between processes in 
those hosts. 

This mechanism will suffice by itself in single-user 
workstation environments where all processes within each 
communicating workstation are cumulatively allowed (or 
disallowed) to communicate with all processes in another 
workstation. However, if some (but not all) of the 
processes within a host are allowed to communicate with 
some of the processes within another host, the covert 
channel analysis must then include an analysis of the 
mechanisms available within each host system. If there 
exists a mechanism within one of the hosts that can be 
used as a covert channel within that host, then the same 
mechanism can also be used in conjunction with an overt 
channel provided by the network to covertly signal 
information to a process in a remote host. This is not a 
flaw in the proposed method of network-based controls, but 
rather an unrealistic expectation for the network layer of 
abstraction. 

The use of embedded access controls within the network 
can also be used to reduce the potential address channel 
bandwidth in unprotected LAN environments (i.e., to 
wiretappers). As described in Section 3, the LAN address 
channel mechanism is possible when a high-level host 
process can address packets to multiple destinations and a 
wiretapper can observe the sequence of packets emanating 
from this host. Reducing the number of authorized 
destination addresses available to a particular host (and its 
processes) reduces the width of the channel from the width 
of the LAN address field to the number of bits that can be 
signaled using authorized destination addresses. For 
example, if there are 16 authorized destinations, then only 
four bits can be signaled per packet, as opposed to the 48 
bits otherwise available in the LAN address field. As 
pointed out in [9], in the absence of ways to force 
misdelivery of packets on the LAN, there appear to be no 
host-to-host covert storage channels within the network 
component itself. 

6. Conclusions 

This paper has provided an architectural basis for the 
definition of covert channels within local area network 
environments. Covert channel analyses for trusted LAN 
systems must provide for identifying channels between 
individual host applications running on top of the distributed 
NTCB. The composition of a network system covert channel 
analysis from the analyses of individual network and host 
components is expected to be the primary area of 
investigation for local area networks that operate in 
physically protected environments. 

In addition, if the network must operate in unprotected 
environments, the developers should provide mechanisms 
to protect against covert channels between internal 
applications and potential external wiretappers. However, in 
no event should these external channels be the only area of 
investigation during a secure LAN covert channel analysis. 

The architecture of LAN-based systems lends itself to 
implementing access controls within the network hardware 
itself in order to prevent unauthorized host-to-host packet 
flows. This reduces the scope of potential covert channel 
interactions that must be considered in a network system 
analysis, Once this capability is provided, it has the 
additional benefit of eliminating most or all protocol-based 
covert storage channels by preventing individual host 
application processes from having direct access to the 
packets on the LAN medium. 
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Abstract 

The iKGM-1 00 1 , Tepache, Advanced Key Generation 
Module, is a member of the National Security 
Agency's family of standard embedded COMSEC 
products. The attached application example ties 
the iKGM-1 00 module with lnt~l's iNA 960 and 
Microsoft's networks (MS-NET) software to 
support a COMSEC local area network (LAN). One 
of the key advantages of using the iKGM-1 00 is 
its high-performance, open architecture. In 
COMSEC LANs, datagram and virtual circuit 
communications are key to a network's successful 
implementation. The iKGM-1 00, as compared to 
other competitive products, can handle the high 
demand of LAN communications as well as support 
datagram and virtual-circuit service 

Background 

As a result of a "National Security Directive" 
NSDD 145 signed by President Reagan in 1984, the 
National Security Agency was given the charter of 
securing the Nation's tele and data 
communications network. As a result of this new 
charter the NSA created the "Commercial 
Communications Security Endorsement Program" 
(CCEP). The mission of the CCEP is to provide 
Communications Security (COMSEC) equipment to the 
market as quickly as possible. Traditionally, 
the designs and development of COMSEC equipment 
was done in total by the NSA, through contract 
awards. The traditional approach required a 7 ­
1 0 year evaluation effort before the product 
reached the market. The goal of the CCEP is to 
reduce that time to less than 2 years. The iKGM­
100 is ~ne of the first NSA endorsed CCEP 
devices. 

The purpose of this article is to describe how a 
personal computer (PC) workstation can be 
integrated into a secured communications network 
using the iKGM-1 00 module. The iKGM-1 00 
integrated component must provide six basic 
functions for data communications. These 
functions are; 1) a security fault architecture 
with complete complements of cryptographic 
alarms, 2) an optimal architecture to support 
packet switch and local area networks 
applications, 3) a controlled cryptographic 
bypass, 4) a robust instruction set to support 
key distribution and management functions, 5) a 
key cache for simultaneous open cryptographic 
associations and 6) a low development integration 
and product cost. The key to obtaining NSA 
endorsement is minimizing the additional security 
firmware/software to interface the COMSEC 
component. The iKGM-1 00, an NSA endorsed device, 
is fully compliant with this criteria. 

The direction of the secured networks is to 

support commercially available protocols. Even 

though the mature protocols for LAN's are based 

on TCP/IP, there is a need to provide secured LAN 

communications implemented on International 

Standards Organization (ISO) protocols. The 

focus of this example is to review Intel's iKGM­
100 as it applies to a Type I secured data 

network architecture. 


This application example integrates the iKGM-1 00 
into the iNA 960 (Intel's Networking 
Architecture) software structure to provide a 
secure architecture as it relates to an personal 
computer networking environment. The objective 
of this application is to use an ISO based LAN 
with Microsoft's Networking Software (MS-NET). 

Overview 

The iKGM-1 00, Advanced Key Generation Module, is 
a member of the National Security Agency's family 
of standard embedded COMSEC products. The 
attached application example ties the iKGM-1 00 
module with Intel's iNA 960 and Microsoft's MS­
NET software to support a COMSEC LAN environment. 
One of the key advantages of using the iKGM-1 00 
is its high-performance open architecture. In 
COMSEC LAN environments, datagram and virtual 
circuit communications are a key to a LAN's 
successful implementation. The iKGM-1 00, as 
compared to other competitive products, can 
handle the high demand of LAN communications as 
well as support datagram and virtual-circuit 
service 

Intel's communications software supports the Open 
System Interconnection Model (OSI) at all layers. 
The MS-NET software is an a~cepted standard of 
data communications for Xenix , Unix System V, 
MS-DOS and iRMX (Intel's Real Time Multitasking 
Executive software). The MS-NET protocols provide 
transparent access to files anywhere in the 
network. The MS-NET software is similar to the 
MAP 3.0 upper layer protocols and represents 
layers 5-7 of the Open System Interconnection 
(OSI) model. 

Intel's ISO certified (International Testing 
Institute validated) software is MAP 3.0 or TOP 
3.0 compatible. The ISO software from Intel is 
available in two forms; MAP (layers 5-7), or iNA 
960 software executes on any Intel processor 
(8086, 80186, 80286 or 80386). The MS-NET 
software communicates with Intel's iNA 960 !SO­

complaint software. 

This application example is based on a smart PC 
LAN board. The PC LAN board uses the standard 
MS-NET software and provides a NETBIOS interface. 
Modifications are made to the iNA 960 software 
base to allow the incorporation of the iKGM-1 00 
module into a smart LAN design. Figure 1 shows 
the implementation of this module. 

Hardware Architecture 

Four areas need to be addressed in the hardware 

design. These four areas are: 


- Split internal bus design using the iKGM­
1 00 (inline design) 
Duplication of the bus interface to be 
compatible with PCLINK2 

- Maintain or improve system performance. 
Maintain software compatibility. 
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The overriding architectural design criterion was 
to maintain software compatibility where 
possible. In order to fully understand the 
hardware requirements, each of these areas will 
be reviewed. 

ETHERNET LAN USING iKGM-100 

REDS!DE­ - BLACKS!DE­

FIGURE1 

In-Line Design: 

There are two methods that can be used in a 
design with the iKGM-1 00 Key Generation module. 
The. ~ossible methods are a co-processor mode and 
an 1nline mode. The co-processor mode is for 
trusted systems where the module is use as part 
of t_he communications kernel. The trusted system 
environment controls all communications and 
levels of access. Hence the system environment 
has the level of trust necessary for the 
communications traffic. In trusted environments 
there isn't the need monitor all traffic from the ' 
computer system to the network. 

The inline mode is used for systems that do not 
provide a trusted environment. The inline 
implementation blocks un-authorize access from 
transferring data to the communications medium. 
Hence an inline design need not concern itself 
with the classification of the user, since 
classification is a function of the key access. 
In all cases, the iKGM-1 00 module blocks the user 
access is to the outside world for clear text. 
In some cases, there is a need to transfer clear 
text, the iKGM-1 00 management facility allows 
accountability by controlling the data with 
bypass features of the module. The iKGM-1 00 
module is designed in such a way that the level 
?f. _cl~ssi_fication is a function of the key 
1nltlalizat1on process. Typically, with out 
pow~r supplied to the iKGM-100 module, the device 
IS v1ewed as controlled cryptographic product, 
that meets Type I applications. Classification 
of the device exists once the system is 
initialized with its key. 

The inl~ne design essentially splits the bus 
separat1ng clear text (Red side) from encrypted 
text (BLACK side) with the iKGM-100 module. In 
the PC design, the bus split is accomplished on 
the PC-controller card (figure 2). The bus split 
allows the division of hardware between the 
Controller card and the Datalink card. The 
Controller card contains the iKGM-100 module. 
The inline design does not allow the iKGM-1 00 
module bus access. All data traffic to the 

datalink card must flow through the iKGM-1 00 
module. The CPU on the controller card is an 
Intel 80386 with an integrated protection 
architecture and the appropriate interface 
devices to the iKGM-1 00 module.3 

The controller card design has enough horsepower 
to handle the secured communications software 
overhead, and the iKGM-1 00 interface. The 
addition of the direct memory access (DMA) unit 
may allow the use of a less expensive CPU. 
However, due to the nature of the hardware 
architecture, a CPU with a built-in protection 
architecture is key to this design's success. 
One of the main security functions of the 
controller card is to handle the key 
manipulations to/from the iKGM-1 00 module, and to 
control any unauthorized access to the module. 
The 80386 and 80286 central processing units 
(CPU) meet protected code requirements, providing 
instruction trap faults when illegal operations 
are performed. 

The datalink monitor card contains the ethernet 
component (82586) and a 12Mhz 80186 device. This 
board is designed to handle the reception and 
transmission of data packets from the Ethernet 
network and the iKGM-100 device. There isn't a 
need for a fast CPU at ttiis end, only for a CPU 
that can handle the network layer and routing 
overhead. The split bus design using the iKGM­
100 allows the ideal separation of processors on 
the BLACK and the RED side. 

Each of the CPU designs contain RAM and EPROM. 
The control software may be ROM resident or RAM 
r~sid~nt. The hardware design can support both 
Situations, but do to the environment, the 
software is implemented in ROM. Figure 2 shows 
the proposed implementation using the iKGM-1 00 
module in a split PC board design. 

SECURED COMMUNICATIONS 

~---;;;;-1 ~ DATALINKENGINE,......--._ I 

TEPACHE +CONTROLLER i 

,-­
~ OOOM I ,__. 

SPLIT BUS LAN DESIGN WITH iKGM-100 

FIGURE2 

System Performance: 

}he s~stem performance must 
1f the 1KGM-1 00 module does 

appear to 
not exist. 

the 
The 

user as 
dual 

processor design allows for the maximum system 
performance. The dual processor implementation 
uses an Intel 80386 at the RED side to handle bus 
communica_tion~, iKGM-1 00 management and transport 
packet red1rect1on. The BLACK side contains the 
12Mhz 80186 processor. If needed the BLACK side 
processor could be changed to an Intel 80286 or 
80386 which is object code compatible with the 
80186 device. 

One of the additional features of using an Intel 
80386 is the capability to isolated security 
features from the network applications code. In 
any endorsement activity, the speed of achieving 
endorsement is a function of isolating the iKGM· 
100 access code. The Intel 80386 CPU allows high 
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performance and a protected architecture that 
isolates application code, and improves the 
overall efficiency of the communications system. 

Software Compatibility: 

The main issue for software compatibility is to 
support MS-NET, NETBIOS and ISO standard 
software. Figure 3 contains an IBM PC compatible 
ethernet communications card's (PCLINK2) software 
architecture. The PCLINK2 architecture allows 
applications programs to communicate 
transparently with a network based communications 
server. This means that any software program 
that uses NETBIOS or MS-NET on PCLINK2 may 
execute across the network using ISO standard 
communications protocols. 

The PCLINK2 architecture will be the basis for 
the secured data network design. Using the 
PCLINK architecture, current directions in 
communications security places the data 
communications encryption engine below ISO 
transport layer. By using a software 
architecture as shown, user applications are 
guaranteed 100 % software compatibility. Hence, 
any hardware changes to the IBM-PC environment 
would be restricted to the front end processor. 
The user would be able to access any off-the­
shelf software packages without affecting the 
security capability of the secured personal 
computer. 

PCLINK SW R3.0 Architecture 
Application 1 Network OS 

(IBM PC NET, NOVELL, MSNET etc) 

Net/ Minses 

RCB NCB 

Host(DOS.OS/2, UNIX 
RMX)PCLINK SW R3.0 Driver 

[==~~~~~~IN~KOO~A§L~~M~H~-~y~~~~;;~lPCLINKNIA(2,3,... ) 

PCLINK R3.0 Pre/Post
Processor/Memory Manager 

"­
RB Mapper 

•• I 
iNA960 Transpon ( TP4) 

FIGURE3 

The software compatibility may be simply 
redefined as a hardware communications 
architecture that does not affect any PC software 
application packages. The split bus design with 
the iKGM-1 00 has successfully isolated the 
hardware architecture from the applications 
software. 

Software Architecture 

The major design effort required is in the 
communications software. Intel's Networking 
Architecture (iNA) allows a simplified approach. 
The iNA design is around a kernel, with separate 
protocol units performing the transport and data 
link functions. Figure 4 shows the protocol 
environment of iNA 960, a subset of iNA. iNA is 
the key software design architecture required to 
implement a secured networked workstation. 

The objectives in the software implementation of 
the secured network are as follows: 

maintain programmatic interface to 
MS-NET and NETBIOS. 
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- m1n1m1ze software that interfaces to 
the iKGM-100 

- minimize software required for 
endorsement 

- provide a platform for SONS 
development 

- absolutely no host operating system 
changes 

Each of the above objectives require that the 
communications software be flexible; to meet the 
secured data network requirements for today and 
tomorrow. In order to fully understand the 
implication of the design, each area will be 
reviewed. 

iNA 960 PROTOCOL MODEL 
REQUEST BLOCKS 

TL EDL 
UPPER 


NMF i LAYER 


NL DL 

- ' 

-­i 

FIGURE4 

Programmatic Interface: 

One of the few areas that users tend to ignore is 
the maintenance of the programmatic interface. 
All MS-NET, NETBIOS and LAN-Manager 
implementations are fully compatible with this 
design. The application software must be able to 
execute on the system without any changes. For 
example, in a networking environment, the DBASE 
Ill or Word Perfect software packages must be 
able to make NETBIOS calls, and access data 
without any problems. In order to accomplish 
this, the programmatic interface must remain 
unchanged. 

Intel's PCLINK2 Release 3 software allows this 
capability. The user will have full access to 
all of the NETBIOS features. This means that the 
IBM-PC networks program must be able to execute 
without any errors. Hence, the user will be able 
to use any applications software from the user 
community. 

Software required for the iKGM-100: 

The iNA 960 architecture allows the creation of 
user tasks to perform functions. Figure 5 shows 
the iNA 960 architecture. In this diagram, the 
iNA 960 software was split. One processor 
handles the transport layer, the other processor 
handles the network layer. The iKGM-100 module 
sits between the RED and BLACK sides. 

The software required to communicate to the iKGM­
100 may be separated into two different tasks. 
One task, on the RED side, handles all of the 
communications to the modules as well as key 
initiation and management. The Applications 
Programmatic Executive (APEX) task coexists with 
iNA 960 and performs any needed communications to 
the iKGM-1 00 module. The RED side task is 
simplified, handling only the data input to the 
iKGM-1 00 module. In the software design, the 
80386 CPU rinq protection module is used to 



further segment the user access. The actual 
network communications software on the RED side 
is contained in the lowest protection level of 
the processor. This access level grants all 
users access to the communications facilities. 
The highest level of protection is given to the 
iKGM-100 management functions. In figure 5, the 
level 0 privilege functions are shown on the RED 
side, and level 4 privilege functions are given 
to the ISO communications software (Intel's iNA 
960). 

iNA960 Architecture with iKGM-100 

FIGURES 

The second task, located on the BLACK side, is 
responsible for transferring information from the 
iKGM-100 module to the network layer. The BLACK 
side task is also responsible for handling any 
re-synchronization with the iKGM-1 00 module. 
This entails the transfer of network management 
information, encrypted keys and data received 
from the network layer. The BLACK side task does 
not need to have the same level of trust do to 
the structure of the inline design. An example 
of the software architecture is shown in figure 
4. 

The final area is the issue of Key management. 
The structure of iNA 960 allows different 
application tasks to exist. The key management 
task executes as a function under the APEX 
kernel, in the 80386 privilege level 0 and 
outside of the ISO protocol as much as possible. 
A simplified view shows key management as a 
function of network management. 

Endorsement: 

The major advantage of using iNA 960 is to 
minimize the endorsement process for the secured 
LAN product. The COMSEC boundary, (shown in 
figure 5), limits the software required for 
endorsement to the RED and BLACK tasks. The RED 
and BLACK tasks are structured to handle iKGM-1 00 
management and various encryption management 
utilities. Due to the communications structure 
of iNA 960, all communications protocols are 
limited to distinct task architecture. Hence, 
the only endorsement that is required is for the 
interface software to the iKGM-1 00 module. This 
is the case due to the development of the iKGM­
100 as an endorsed NSA CCEP device. 

In contrast, if a non CCEP module is used, the 

COMSEC boundary may be extended to the entire 

software task structure identified in figure 4. 

As a result of the new COMSEC boundary being 

defined, the endorsement process will be longer. 

For example, if a product like iNA 960 was used 

on a module that is not endorsed by the CCEP 

program, the complete ISO protocol implementation 
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and the hardware performing the data encryption 
would need to be endorsed. As a point of 
reference, iNA 960 contains 20 person years of 
code development. (18,000 lines of source code). 
In general, a design that has not been evaluated 
to the rigorous security analysis, must 
eventually be evaluated to that standard. The 
current evaluation standard is a time consuming 
process and any error noted will require a 
redesign plus reevaluation of the product. 
Potential products submitted to NSA that do not 
conform to the CCEP standards, may take up to 1 0 
years to receive the officially NSA endorsement. 

Secured Network Platform: 

The secured network communications architecture 
requires flexibility. The goal of the secured 
network architecture is to support current 
communications technology and the next generation 
systems. In order to meet the flexibility 
requirements, the software architecture must 
allows the testing of different communications 
hypotheses. Flexibility requires that the 
encryption module must be configurable to support 
today's communications needs as well as 
tomorrow's. Intel's products, iNA 960 and the 
iKGM-100 key generation module are extremely 
flexible in their design. iNA 960 allows 
multiple user tasks to interact with the software 
protocols. The iKGM-1 00 supports multiple data 
encryption schemes for Qreater software 
flexibility. 

The secured data network implementation needs to 
be able to create a management task, (as shown in 
figure 5) to perform COMSEC functions. The ISO 
software product, iNA 960, allows the user to 
create multiple management tasks. In the 
creation of these tasks, the user may integrate 
multiple applications based on transport address 
ID's. Likewise the network service access ID's 
may be used on the BLACK side as well. In 
addition to communicating to the protocol 
modules, the secured network implementation 
architecture needs to use a dual tasking 
architecture. In the COMSEC boundary, one APEX 
task (transport and network management) can 
execute on the RED side and the other on the 
BLACK side (network and datalink). 

The use of iNA 960 together with the iKGM-1 00 
module allows maximum flexibility. Any secured 
network implementation may be readily prototype, 
tested and put into production. iNA 960 and 
iKGM-1 00 meet the needs of any secured 
communications development. 

No Host Operating System Changes: 

The major objective of the software design was to 
not to change the host operating system MS-DOS. 
All additional commands necessary to initialize 
the communications module may take place as 
application software running under MS-DOS or 
Windows-386. The application implementation 
described allows the user to purchase an off-the­
shelf personal computer, with the COMSEC module, 
and connect it into the network. The goals in 
this design are simplicity and flexibility. 
Since the communications software is restricted 
to the intelligent LAN board, all software 
changes are contained on the COMSEC module. Off­
the-shelf application software packages may be 
used to access network information. The 
applications would only see the MS-NET or NETBIOS 
interface (figure 3), not the iKGM-100 module. 



Summary 

Overall, a design with iNA 960 and the iKGM-100 
allows the greatest flexibility in a secured data 
network. Due to the iNA 960 internal design, 
splitting the communications software can be 
easily accomplished. The iNA 960 software 
executes under an APEX kernel. The transport and 
network interfaces are isolated to a few 
procedural calls (buffers, information, and 
packets etc.). These procedural calls may be 
easily broken down into their individual parts, 
specific to the communications implementation. 

The software environment of the PC would remain 
unchanged. There would be new utilities for key 
management, but the base operating system would 
not be touched. This is extremely critical. The 
user that would execute software on this 
workstation would be able to use any off-the­
shelf MS-DOS product. Hence, the secured network 
objectives could be reached with an architecture 
similar to PCLINK2 which would incorporate the 
iKGM-100 module; that is a Secured PC LAN card, 
easy to use, with minimum performance loss, and a 
cost effective solution. 

iKGM-1 00, iNA 960 and PCLINK2 are a trademark 
of Intel Corporation. 

2 MS-NET is a trademark of Microsoft Corporation 

3 	 The iKGM-1 00 Advanced Key Generation Module, 
in addition to providing an NSA developed 
encryption/unencryption capability, also has a 
robust set of Agency endorsed Security 
Features. These features are outlined below: 

Internal Storage - The iKGM-1 00 has 
vol_atile storage for up to 255 keys. 
Th1s feature allows simultaneous 
connections in supporting various key 
management schemes. 

Key External Storage - In addition to 
having storage on-board the iKGM-1 00 
allows external storage of the keys in ' 
the host. This feature allows keys to be 
stored in the host for later use. As 
with key storage this feature is useful 
in key management schemes. 

Remake Keys - The iKGM-100 has the 
ability to electronically distributes 
initialize vectors to remote users. This 
feature is useful in key management of 
geographically dispersed environments. 

Cl~. Support - Support for a "Crypto 
lgn1t1on Key" is available on the iKGM­
_1 00. This feature is particularly useful 
1n the workstation environment. It 
allows a COMSEC environment to be locked 
and unlocked cryptologically. 

High Bandwidth - The iKGM-100 has 6 
cryptographic operating modes plus a 

. Message. Authentication Code (MAC) mode. 
The ~ax1mum thruput is 7 Megabits/second. 
The 1KGM-1 00 transfer rate is based on 
the cryptographic mode selected. In the 
application _discussed in this paper the 
cryptographiC mode selected will operate 
at 2.87 Megabits/second. 
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Alarms - The iKGM-100 provides security 
protection in the form of internal alarms 
to detect intrusion and internal 
failures. These functions can be 
utilized in various methods to insure 
system security. 

Controlled Bypass - a particularly useful 
feature incorporated into the design of 
the iKGM-1 00 is "controlled bypass". 
This feature is used to bypass clear text 
such as header information or control 
characters. 

All of the Features discussed above have been 
endorsed by the National Security Agency for 
all levels of classified communication. By 
utilizing the iKGM-100 in COMSEC designs a 
majority of the security design criteria have 
been approved as implemented. This is the 
major reason for choosing the iKGM-1 00 for the 
Secured PC LAN controller. 

4 The current implementation of the Tepache 
module does not support a firefly exchange. 
This capability is being reviewed for the next 
generation module. The goal of the design is 
to allow firefly exchanges to be processed in 
less than a second. 

5 Xe~ix. is a trademark of Microsoft Corporation. 
Umx IS a trademark of AT&T Corporation; 
~S-D"C?S is a trademark of Microsoft Corporation. 
1RMX IS a trademark of Intel Corporation. 

6 
PC/XT and PC/AT is a trademark of International 
Business Corporation. 
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ABSTRACT 

The Gemini family of high assurance trusted highly-assured, trusted components that can 
computing base (TCB) products is described. be used as stand-alone systems or as parts
The manner in which these TCB products, of more complicated trusted systems, or 
which are designed to be Class Al, address which can be modified or extended by third 
different operational requirements is party vendors with a minimum impact on re­
addressed. A selected list of current evaluation. (In particular, the security
applications and projects in which the kernel itself rarely needs to be modified, 
currently available products are being used and can be treated as a high-assurance 
is presented, in addition to a description "sealed unit".) We call this concept an 
of several research projects that "open security architecture". 
illustrate the product's current potential 
and future directions. Because of the importance of the open 

security architecture for the design of 
GEMSOS, the next section discusses our 

INTRODUCTION reasons for believing that the concept is 
appropriate for a commercial product. We 

The purpose of this paper is to provide an then present a technical overview of the 
overview of the GEmini Multiprocessing GEMSOS architecture, followed by a selected 
Secure Operating System (GEMSOS) product list of applications and projects in which 
line, which includes a variety of hardware the security kernel has already been used. 
and system software components. The major This is followed by a description of 
components offered commercially are a several research projects that indicate 
family of hardware systems in a variety of more advanced intended applications for the 
configurations, a high-performance GEMSOS TCB, emphasizing projects intended 
multiprogrammable, multiprocessor security to provide some measure of compatibility 
kernel [1] to control the hardware systems, with existing standard (non-secure) system 
and a TCB designed to meet Class Al that interfaces. 
includes the security kernel and hardware 
systems. This family of products has been PRODUCT STRATEGY 
under developmental evaluation for several 
years as the design and implementation has We view our corporation as a supplier of 
proceeded. Advance versions of the primary high-assurance (Class B3 and Al) 
hardware base and security kernel have been components to system integrators requiring 
available as commercial, off-the-shelf such components to meet the needs of their 
products for several years and have been end-users. We believe that for a viable 
selected for incorporation as part of high-assurance TCB market to exist, it must 
several development projects that will be be based upon the shared use of the 
independently evaluated as Class B3 or Al critical technical component required for 
systems. We anticipate entering the formal any high-assurance system, a security 
evaluation process with the entire TCB kernel. In order to be useful as the basis 
within a few months, with completion of a for a self-sustaining vendor/user 
successful formal evaluation later in 1989. community, that security kernel must 

support a wide range of applications, be 
As for any family of commerical products, cost-effective from the standpoint of 
key architectural characteristics common to performance, support the construction of 
the entire family can be discerned that distributed and networked systems, and be 
reflect the beliefs of the designers as to available to, and usable by, value-added 
what will be needed for a commercially and third party commercial vendors so that 
viable system. In the case of GEMSOS, an the creation and maintenance of a large 
emphasis has been placed on the use of an body of usable application software can be 
identical security kernel throughout the fostered. 
current and future product line, the 
achievement of a low cost/performance ratio Our overall strategy, then, for 
using a multi-microprocessor hybrid CPU participating in the market for high­
architecture, the careful structuring of assurance systems has been to first, 
the TCB into separable, and independently develop a security kernel with the required 
evaluatable TCB subsets [2] enforcing technical and commercial characteristics; 
orthogonal security policy components, and second, to build a TCB based upon this 
the use, wherever feasible, of industry­ kernel and complete its evaluation at Class 
standard components and interface Al of the Trusted Computing System 
specifications. The result is a family of Evaluation Criteria [3], and third, to 

foster its utilization by as wide a variety 
of vendors, system integrators, and 
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software developers as possible. We have 
completed the first task, are engaged in 
the second, and intend to continue the 
third as vigorously as possible. 

Because our security kernel is the key 
technology around which the remainder of 
our product and most of our technical 
activities are organized, it is worth 
taking a broad look at its design 
characteristics before proceeding into a 
more detailed discussion of our activities. 
The GEMSOS security kernel SP (which 
includes the hardware as well as a software 
component) is: 

• 	 always invoked, (that is, cannot be 
bypassed by any non-kernel programs or 
by users); 

• 	 tamperproof, 

• 	 small enough, and well-structured 
enough, to support evaluation at Class 
Al; 

• 	 built, for the most part, from 
industry standard hardware components 
(Intel 80286/80386 processors, 
Multibus I backplane with third-party 
circuit boards, IBM PC/AT hardware, 
etc.); 

• 	 supports, as feasible, industry 
standard interfaces (RS-232, Ethernet, 
X.25, EGA, Centronix, etc.); 

• 	 is, therefore, portable; 

• 	 organizes the remainder of the 
software system into eight 
hierarchical protection rings which 
makes it extensible, (i.e., TCB 
subsets enforcing additional access 
control policies and supporting 
policies can be erected "on top"); 

• 	 has a low cost-performance ratio 

(because it utilizes inexpensive 

microprocessors); 


• 	 has flexible capacity with a high 
maximum performance (because it 
utilizes up to eight processors in a 
proprietary architecture that reduces 
bus traffic substantially); 

• 	 is accompanied by a UNIX * programming 
environment providing the basic tools 
needed to program the system using 
modern high-level languages (Pascal, 
c); 

• 	 and, last but not least, is done. 
(The security kernel has been 
available and delivered as a 
commercial, off-the-shelf product, for 
over two years.) 

* 	UNIX is a trademark of AT&T 

The complete GEMSOS TCB, which is currently 
under development, is, of course, based on 
the GEMSOS security kernel. Our product 
line, which includes hardware components 
and the security kernel, and soon will 
include the remainder of the TCB as well, 
is designed to support four major 
categories of use: 

• 	 a dedicated application market, 
comprising custom applications written 
to serve a specific end-user 
installation or requirement, (i.e., 
for a sponsored development project), 

• 	 a value added market, comprising 
customers who wish to add significant 
software applications (e.g., message 
handling systems, file servers, 
communications software, DBMS 
software) as secure applications to 
the TCB, without disturbing the 
internals of the TCB in any way; 

• 	 a second source market, comprising 
customers who wish to market their own 
TCB but avoid the cost of developing 
their own security kernel. 

• 	 an embedded component market, 
comprising customers who need highly~ 
assured components for larger systems 
applications (e.g., network 
components). 

All of these potential markets have 
differing needs: the one thing they have 
in common is the need for a highly-assured 
security kernel whose development expense 
is already being amortized. 

The dedicated application market needs a 
wide range of configuration and performance 
options, so that the delivered system can 
be tailored to the precise needs of the end 
application. In addition, a custom 
application typically will require 
customized discretionary, identification,· 
authentication, or audit policies, or a 
combination of these. The GEMSOS kernel is 
therefore designed to support a wide range 
of hardware and peripheral options in both 
loosely-coupled and tightly-coupled 
configurations, and the GEMSOS TCB is 
composed of subsets so that individual 
policy components can be modified without 
disturbing the software or evaluation 
evidence already available for the rest. 

The value-added market needs a widely-used 
equipment base with a stable interface so 
that there is a viable market for third­
party applications. A secondary (but 
often, important) need is the ability to 
bypass general-purpose operating system 
functions in order to attain performance 
goals. By making the details of the TCB 
interface available to third-party 
developers, both of these needs are 
fostered: this is the "open software 
architecture" policy which has been widely 
successful in the microcomputer industry. 
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The dubious benefit of "locking in" end 
users to a sole supplier (by concealing the 
details of important system interfaces) is 
foregone in favor of fostering the 
development of third-party add-ons and 
applications in order to build a self­
sufficient community of users and vendors. 

The second source market is served by 
making our technology available under 
license. If, for instance, a vendor 
believes that there is a marketable "better 
way" to provide discretionary controls than 
we supply, or can beat our price, it is at 
least straightforward to procure the 
requisite OEM license in order to use the 
security kernel as the basis for a 
competitive TCB. Licenses for the 
utilization of our technology are available 
under a variety of different business 
arrangements, including source code 
licenses for the security kernel itself. 

Finally, the embedded component market is 
served by providing a high-performance 
security kernel based on commonly available 
microprocessor technology that can be 
ported to new hardware environments. The 
intrinsic portability of the kernel has 
already been demonstrated by porting it to 
the IBM PC/AT * hardware environment, which 
proved to be a relatively inexpensive 
effort. Should the end-user community 
provide sufficient demand for a lightweight 
(aerospace) or tempested enclosure, for 
example, the technology could be licensed 
to a prime contractor or commercial vendor 
and ported to a "design to specification" 
enclosure. 

PRODUCT DESCRIPTION 

The Gemini family of computer systems 
provides a powerful combination of 
multilevel security and multiprocessing 
capabilities. The adaptability of GEMSOS 
makes the Gemini systems attractive as a 
trusted base for a wide range of concurrent 
and real-time computing applications 
including command and control, 
communication, intelligence, weapons, 
networks, and office automation end uses. 

Within each enclosure, tightly coupled 
multiple microcomputers communicate through 
shared memory segments to provide high­
throughput performance. Up to 8 Intel 
80286 or 80386 based microcomputers can be 
served by the same Multibus to provide the 
required amount of processing power. GEMSOS 
avoids bus contention by locating data and 
code segments in local memory of each 
microcomputer whenever possible. 

Between loosely coupled enclosures, 
processes communicate via ethernet, X.25, 
or RS-232 based multilevel channels. 

* PC/AT is a trademark of IBM. 

GEMSOS Security Kernel 

The GEMSOS security kernel supports 
multiprocessing as well as 
multiprogramming. The kernel virtualizes 
all system resources, providing service 
calls for the required process management, 
segment management and device management. 

The GEMSOS security kernel enforces a 
label-based Mandatory Access Control 
policy. The commercially-available GEMSOS 
kernel supports both secrecy and integrity 
access class components, each with 16 
hierarchical levels. GEMSOS also supports 
64 non-hierarchical secrecy categories and 
32 non-hierarchical integrity categories. 
For licensed or OEM systems, the non­
discretionary security module of the 
Security Kernel can be customized to 
support any lattice security policy, 
including Clark-Wilson [4], trusted 
pipelines [5], or policies needing multiple 
secrecy and/or integrity hierarchies or 
extended numbers of non-hierarchical 
categories. 

Hardware Configurations 

A "Gemini System", in the most general 
case, consists of multiple loosely-coupled 
hardware enclosures. A typical 
configuration might consist of one or more 
Gemini central host processors, together 
with as many secure workstations as 
required, communicating via Ethernet or 
RS-232 communications channels. Where the 
cost of an "intelligent" secure workstation 
could not be justified, a smaller Gemini 
host configured as a terminal concentrator 
could be utilized to support communications 
between multiple "dumb" terminals and the 
central hosts. A low-end, multi-user 
configuration might consist of a single 
Gemini central host, accessed by means of 
"dumb" terminals connected directly to the 
host processor. 

A single Gemini enclosure is either a 
Multibus-based, tightly-coupled host 
processor, or a MLS-AT workstation, which 
is the GEMSOS configuration that executes 
on PC/ATs and selected compatables. 

The Multibus-based systems are designed to 
offer a wide range of configurable options: 
three enclosure sizes are offered, offering 
support for from one to eight processors 
(Intel 80286 or Intel 80386). Together 
with memory options, the throughput rates 
available span a range of from 0.5 to 24 
Million Instructions Per Second. A variety 
of secondary storage and I/0 options are 
currently implemented. An "open 
architecture" approach has been designed 
into the system from the beginning: 
industry-standard components and non­
proprietary Multibus I boards allow 
customized and tailored applications to be 
considered. The single Gemini proprietary 
board for the Multibus system is the Gemini 
System Controller, which uses proprietary 
technology to enhance bus performance as 
well as providing certain peripheral 

240 



devices (e.g., hardware DES encryption 
support) required by the TCB. 

The Gemini Multibus I systems provide 
access to supported peripherals through 
(possibly tailored) third-party interface 
boards directly connected into the 
Multibus. Under GEMSOS control, 
microcomputers share all devices interfaced 
to the Multibus. The system supports 
various combinations of hard and floppy 
disks as well as streaming and half-inch, 
9-track tape. Non-volatile memory is 
available for "core resident" applications. 
Additional devices include 8-port RS-232 
serial I/0 cards, ethernet and HDLC. Each 
Gemini system includes a real-time clock 
with battery, a data encryption device 
using the standard NBS-DES algorithm, and a 
system-unique identifier. The system also 
contains battery backed up CMOS for storing 
operator passwords and encryption keys. 
Business arrangements are available for 
technology licensees to add application­
specific device drivers to the system: the 
range of commercially available device 
drivers supported by the kernel is, of 
course, continually expanding as Gemini 
adds device drivers to the repertoire of 
supported interfaces. The TCB and kernel 
device drivers are typically low-level (as 
required by a "minimized" TCB architecture 
for Class B3 and above). 

Each single-board CPU includes local memory 
(allocated and controlled by GEMSOS) as 
well as a bus interface unit, and several 
local I/0 ports. GEMSOS virtualizes the 
hardware configuration by making the 
allocation of local and global memory to 
segments transparent to applications: it 
is also relatively straightforward to 
construct multiprogrammed applications that 
are independent of the number of processors 
available as well. Inter-process 
synchronization is identical for processes 
executing on the same processor and 
processes allocated to different 
processors. The TCB supports the creation 
of remote processes (in a different 
enclosure) with the same mandatory and 
discretionary attributes as the creating 
process in order to support distributed 
applications without impacting the validity 
of the system security controls. 

Gemini's family of TCB products includes a 
MLS AT Workstation, which is a 
configuration of GEMSOS that executes on 
IBM PC/AT hardware (and selected 
compatibles). The intended use of this 
configuration is to provide a low-cost 
alternative where a secure, "intelligent" 
workstation is required by a system 
architecture. Although the specific I/0 
devices available at the workstations 
differ in detail from those available for a 
Multibus I enclosure, in all other respects 
the MLS AT Workstation is simply a single­
processor GEMSOS system at the programmer's 
interface. This GEMSOS configuration 
includes support for the standard Enhanced 
Graphics Adapter (EGA), keyboard, serial 
I/0 ports and the Centronix parallel 

printer port. 

NON-KERNEL TCB DEVELOPMENT 

Gemini is currently implementing the GEMSOS 
non-kernel TCB elements, which include 
discretionary access controls, 
authentication, security administrator 
support, audit and support for inter­
enclosure communications over multilevel 
channels. 

Multi-ring Architecture 

The extensible nature of the GEMSOS 
Security Kernel provides designers great 
flexibility in the design and 
implementation of trusted computing base 
capabilities on top of the kernel [6]. 
Gemini has separated the non-kernel TCB 
functions into five distinct protection 
domains (rings) [7]. In addition to the 
obvious "least privilege" benefits, this 
approach allows Gemini to offer customers 
the ability to tailor specific non-kernel 
TCB functions with minimum impact on the 
basis of evaluation for the functions 
allocated to other rings. In particular, 
the basis for evaluation of the most 
demanding component of a high-assurance 
TCB, the security kernel, is completely 
preserved. The intended use of this 
architecture is to support the capability 
to tailor discretionary, identification, 
authentication, and audit functions to 
specific installations or applications 
(e.g., for a dedicated aerospace or 
military application) without incurring the 
complete cost of building a special-purpose 
high-assurance TCB from scratch. 

In addition to the five rings dedicated to 
the evaluated TCB, three additional rings 
(for a total of eight) are made available 
to the applications. Nominally, Ring 5 is 
allocated to operating system or major 
system applications (such as DBMS run-time 
modules), Ring 6 to "approved" applications 
(i.e., those that have passed site-specific 
criteria for correctness of behavior), and 
Ring 7 to "ad hoc" applications (i.e., 
those that are under construction, or whose 
trustworthiness is unknown). It would be 
possible, in many cases, to enforce site­
dependent security controls (time of day, 
separation of duty, etc.) in Ring 5 as a 
refinement to conventional discretionary 
and mandatory controls without disturbing 
the evaluated TCB in any way whatsoever. 

The GEMSOS Security Kernel uses the four 
hardware privilege levels of the 
80286/80386 to enforce the ring constraints 
on a process-by-process bases. Each 
process may have only three of the eight 
available rings active at any given time: 
a typical "application process" will have 
available two rings for the application 
code with the most privileged of the three 
rings dedicated to the TCB. Thus, within 
the address space of each process one finds 
code for accessing services through the 
TCB, code for operating system services, 
and the application code. Service requests 
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are typically handled without the need for 
expensive inter-process communication or 
context-switching between processes. 
Transfers to and from secondary storage are 
handled (transparently to application 
programmers) in the course of making 
segments accessible. 

Multilevel server processes (such as 
terminal servers and multilevel channel 
servers) have two active TCB rings and one 
active ring available to non-TCB functions. 
The active single-level non-TCB ring in 
multilevel server processes will typically 
contain non-security relevant operating 
system device driver functions that can be 
customized without effecting the TCB. 
Application processes communicate with 
multilevel servers via inter-process 
communication. Single level devices can be 
directly attached by application processes. 

Distributed TCB Interface 

Programs external to the TCB gain TCB 
services via a program interface with the 
ring containing the discretionary access 
control mechanisms. This ring is referred 
to as the "distributed TCB" in that it is 
distributed (in the address space) of each 
of the system's processes. The TCB 
supports a high degree of concurrency so 
that more than one application process can 
be "in" the TCB at the same time where 
multiple processors are available. 

Inter-Enclosure Data Communications 

The GEMSOS non-kernel TCB supports 
communication between enclosures using 
multilevel communication channels. These 
multilevel channels are used for both TCB 
and non-TCB communication between 
enclosures. 

The GEMSOS TCB provides applications with 
an interface that allows an application 
process in one enclosure to send and 
receive information to other application 
processes executing in Rnother enclosure. 
The TCB also supports the remote creation 
of application processes with the same 
security attributes as the creating 
process: thus, it is straightforward (from 
the application programmer's point of view) 
to provide a remote processing capability, 
while the security enforcement of the 
distributed system is not compromised. If, 
for instance, audit logging is centralized, 
the creation of a remote process and its 
subsequent activity will be correctly 
logged by the TCB and associated with the 
user identified with the original process 
by the TCB without the application designer 
having to make any special provisions for 
this to happen. 

The abstract inter-enclosure communications 
capability provided to applications 
programmers may be described as an 
enclosure-to-enclosure, connection­
oriented, transaction based communications 
system appropriate for use in a distributed 

architecture. The evaluatable design does 
not specifically address the needs of more 
dynamic networks of enclosures linked by 
unreliable, or physically insecure, 
communications channels, though the 
underlying design is extensible to support 
such systems. 

The non-kernel TCB uses the inter-enclosure 
communications functions for TCB 
communications among enclosures within a 
system. In distributed systems (viz., those 
containing more than one enclosure), 
certain TCB databases can be centralized in 
an enclosure that provides TCB services to 
the remaining system enc-losures. Audit 
records are collected at a central point, 
and the difficult problems associated with 
concurrent user permission databases are 
avoided. 

Distributed systems containing multiple 
loosely-connected enclosures inter­
connected by multilevel channels can be 
viewed as a single trusted system having a 
single TCB. Thus, a distributed Gemini 
system possesses a coherent Network 
Security Architecture and Design, as 
defined in the Trusted Network 
Interpretation [8]. The anticipated formal 
evaluation for compliance with the Class Al 
of the TCSEC [3] will be for a generalized 
multi-enclosure, distributed architecture 
so that the evaluation results will be 
immediately applicable for applications 
making no modifications to the TCB, but 
requiring a distributed architecture (e.g., 
if MLS AT workstations are used). 

EXISTING AND PLANNED APPLICATIONS 

Unisys Defense Systems 

In his oral presentation at the 1988 IEEE 
Symposium on Security and Privacy [9], 
Clark Weissman of Unisys stated that the 
GEMSOS security kernel was used by Unisys 
Defense Systems in their design and 
implementation of a federal communications 
system called Blacker, meeting the 
requirements for Class Al. 

In his presentation at the lOth National 
Computer Security Conference, Jon Fellows 
of Unisys stated that the GEMSOS kernel, 
along with other trusted components, is 
used as the basis for trust for critical 
cryptographic and key distribution 
functions that maintain communications 
separation by cryptographic means. [10] 

SACLANT 

Multiprocessor Gemini systems and 50 MLS AT 
Workstations configured in a "star" network 
were included in the accepted CDR presented 
by Contel Federal Systems as part of 
Contel's contract to develop the SACLANT 
Command and Control Information System for 
NATO. The design includes the GEMSOS 
security kernel and a subset of the GEMSOS 
non-kernel TCB elements [11]. 
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IBERLANT 

A configuration of Gemini computer systems 
similar to that used in the SACLANT 
architecture was part of Contel Federal 
Systems' winning proposal to develop the 
IBERLANT Command and Control Information 
System for NATO. 

Message Editing and Preparation 
Demonstration 

Astronautics Corporation of America (ACA) 
has developed a multilevel secure message 
editing and preparation demonstration on 
the MLS-AT Workstation configuration of the 
GEMSOS security kernel and a subset of the 
GEMSOS non-kernel TCB. This demonstration 
includes message creation with message 
masks, message editing, transmission and 
reception of messages over multilevel 
communication channels and message 
printing.[l2] 

Grumman Data Systems 

At the 1988 AFCEA International Conference 
and Exposition, Grumman Data Systems 
developed and demonstrated a front end 
secure communications processor that 
provides users at terminals access to 
information at multiple levels while 
maintaining a single system view for the 
user. The secure communications processor 
allows users to connect to one of multiple 
back end host computers that run at 
different security levels. Users may also 
establish multiple sessions with hosts at 
different access classes through the use of 
multiple "logical terminals". 

The demonstration included security 
administrator support, system manager 
support and auditing. 

Martin Marietta Information and 
Communications Systems 

Martin Marietta has been using Gemini TCB 
products for over three years for their 
internal multilevel security development 
effort, and has developed the following 
demonstrations and capabilities: 

Trusted Network Access Processor with 
Trusted Ethernet Interface 

Trusted Terminal Gateway 

Trusted File Transfer 

The following projects are in development 
at this time: 

Trusted End-to-End Protocol 

Trusted Guards 

Integration of Gemini Trusted Products 
with a Secure Local Area Network 

CURRENT RESEARCH 

In addition to supporting applications­
oriented projects such as those described 
above, Gemini is involved in several 
projects oriented towards increasingthe 
number and range of environments supported 
by the same underlying security kernel. 
The projects described below differ from . 
routine product maintenance and enhancement 
because they are oriented toward expanding 
the base of customers interested in using 
trusted systems, .Primarily by providing 
standard system interfaces emulated using 
an unmodified underlying security kernel. 

Oracle 

Oracle, Incorporated, has undertaken an 
internal research and development.effort to 
upgrade their relational DBMS product to 
Class C2 and to investigate a further 
upgrade to the B division. As part of this 
effort, it is expected that a prototype 
version of the C2 Oracle DBMS will be 
ported to the GEMSOS TCB. Later, a 
follow-on port of the B division prototype 
will be ported to the GEMSOS TCB. Oracle 
engineers have also been reviewing the 
design documentation prepared for the 
SeaView Secure Data Views project, an Air 
Force-sponsored effort awarded to SRI 
International and Gemini ·to design a Class 
Al multi-level secure DBMS. The near-term 
design produced under this project features 
the utilization of an architecture similar 
to that which is expected to result from 
the Oracle port to provide enhanced 
security functionality. 

If completed, this architectural approach 
will provide multilevel relational DBMS 
functionality to customers requiring a 
Class Al level of assurance in the form of 
a conventional Oracle DBMS executing as a 
secure application on the GEMSOS TCB. 

UNIX 

Gemini is currently developing a UNIX 
emulation that will present the Unix kernel 
interface to application programs. The 
GEMSOS TCB has been designed from the onset 
to include those specific features needed 
to support an efficient .UNIX kernel 
implementation. The UNIX kernel functions 
will execute in a ring less-privileged than 
the underlying TCB but tamperproof with 
respect to UNIX application programs. 
Because the UNIX kernel functions are less 
privileged than the TCB, they do not 
compromise the evaluation of the underlying 
TCB. Because they are more privileged than 
applications, the integrity of the UNIX 
kernel cannot be compromised by application 
programs, just as one would expect for a 
conventional UNIX-based system. 

It might be noted that at Class B3 and 
above, the TCSEC requirement to make the 
TCB "minimal" precludes the competing 
architectural approach of lower classes of 
making the Unix kernel and TCB interfaces 
the same interface: many Unix kernel 
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functions are not security critical and 
must be implemented outside of a Class B3 
or Al TCB. 

MS-DOS 

Gemini is currently developing an 80386­
based virtual machine monitor and BIOS 
emulation that will allow selected standard 
MS-DOS applications to execute in the 
environment of a dedicated MS-DOS virtual 
machine. While this approach has some 
intrinsic limitations (MS-DOS applications 
that bypass BIOS will not execute 
correctly) the availability of executable 
applications is believed to be sufficiently 
broad, and to encompass a sufficiently wide 
range of functionality, that this is 
believed to represent a cost-effective 
approach to obtaining access to a broad 
commercial software base for Class Al or B3 
systems. The intended application of this 
capability would be to (in effect) make a 
DOS PC/AT workstation, supporting a set of 
selected DOS applications, available to the 
user of an MLS AT workstations, at whatever 
authorized session level the user 
negotiated. A change in session level 
would appear, in most respects, to the user 
as if a new dedicated PC/AT workstation was 
now in use. Volumes at the same or lower 
access classes can be shared. 

SUMMARY 

The Gemini product line is based upon the 
use of a single, high-performance, 
general-purpose security kernel designed to 
be evaluatable at Class A1. The security 
kernel has been commercially available for 
several years and is currently being used 
for 	a number of important government 
communication, command, control, and 
intelligence applications. It has also 
been found useful by a number of vendors in 
support of their internal programs to stay 
in the forefront of trusted systems 
technology. The usability of the security 
kernel for such purposes well in advance of 
the 	availability of an evaluated, complete 
Gemini TCB is a direct design consequence 
of the underlying product decision, made 
well before the kernel was started, to 
pursue a market strategy based upon an open 
and 	extensible architecture, serving a 
growing community of third-party and 
value-added customers. This decision led 
in turn to a design based upon a TCB 
composed of subsets with independently­
evaluatable layers, the most-privileged of 
which is the security kernel itself. 

In addition to allowing the security kernel 
to be independently implemented, tested, 
and marketed before completion of the 
remainder of the TCB, such a subsetted 
design allows customers to use unchanged, 
modify, or replace the remainder of the TCB 
as warranted by their needs, with a minimum 
impact on the magnitude of the re­
evaluation task. We expect this subsetted 
architecture, along with the 
cost/performance advantage intrinsic to a 
multiple microprocessor capability, to be 

our major advantages as competing Class Al 
and B3 systems emerge. 

We hope to concretely demonstrate the 
additional potential of an extensible 
security architecture through some of the 
research efforts described above. 

Our product plan includes a UNIX emulation 
implemented on top of the commercial TCB. 
At the current time, we also expect to port 
the Oracle DBMS directly to the TCB 
interface (not the Unix emulation 
interface), primarily so that the good 
performance characteristics of the TCB are 
made available to the Oracle DBMS. 
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Abstract 

A major challenge facing the Strategic Defense 
Initiative (SDI) program and tqe development of the 
Strategic Defense System (SDS) is the use and 
distribution of reusable software. The need for 
reusable software has clearly been established by the 
ever increasing cost of software versus the cost of 
hardware. This cost disproportion is magnified in a 
program with the scope of the SDS. A SDS Software 
Library will be created in which reusable software can 
be cataloged, accessed, and distributed. A key 
attribute of this library is security. The software 
in the SDS Software Library must be protected from 
unauthorized access and modification. This paper 
demonstrates the need for a secure SDS Software 
Library and the means by which this can be achieved. 

Introduction 

The Strategic Defense Initiative (SDI) program is 
an impetus to technology developments on a wide 
variety of fronts. Two of these fronts are computer 
hardware and software development, The SDI program is 
computationally intensive, requiring tomorrow's 
supercomputers today. This technological pace must be 
matched by equally intensive software development. 
The trend over the past decades has· shown us that 
software technology always lags behind hardware 
technology. Total software costs are rapidly growing 
as machines become less expensive, and as we uncover 
more and more problem domains that demand an automated 
solution [1]. Second and third generation software is 
hosted on fourth generation machines. Furthermore, 
when new hardware demands new software solutions, old 
software is frequently "patched up." More often than 
not, systems fail in their promise to be extensible 
and maintainable. In response to this software 
crisis, the Department of Defense sponsored the 
development of the Ada programming language and with 
it, the true potential of reusable software. 

The SDI program will make great use of reusable 
software. There is neither the time nor the money to 
develop a software system "from scratch" for each new 
project, In addition to developing new, reusable 
software, the SDI program will make great use of 
legacy software, especially in the initial phases of 
the program. The use of Ada is only a partial 
solution to the problem of software reuse. No amount 
of software, whether written in Ada or FORTRAN, will 
encourage reuse if it is not accessible. For code 
reuse to be attractive, the overall effort to reuse 
code must be less than the effort to create new code 
[2]. Reusable software must be organized in a central 
repository to which authorized software developers 
have ready access. It must be organized in such a 
manner as to provide rapid response to requests for 
reusable modules to meet the requirements of software 
developers. Otherwise, software developers will 
design expensive, single application systems rather 
than waste time and manpower scouring the countryside 
for a module that may or may not do the job. This 
requirement for a repository where reusable software 
modules are accessible to the SDI software development 
community has resulted in the Strategic Defense 
Initiative Organization (SDIO) mandating the 
establishment of a SDS Software Library at the 
National Test Facility. [3] 

The purpose of this paper is to focus on the need 
and method of achieving a secure SDS Software 
Library. This will be addressed in the remaining four 
sections, each presenting the security issues in 
succeedingly finer levels of granularity. First, the 
requirements for a secure library is examined. 
Second, a conceptual model outlining the required 
operational capabilities is, presented. Third, an 
implementation is suggested. Finally, the previous 
material is summarized. 

Security 

The success of the SDS Software Library can only 
be assured by the proper application of proven 
security measures. A failure to do this will result 
in a library where hostile agents can siphon national 
secrets without detection. The library will contain a 
concentrated data base of software revealing a great 
deal of the capabilities. and vulnerabilities of the 
Strategic Defense System. This concentration of 
defense software in one location makes the SDS 
Software Library a high visibility target. The data 
tables that are included in many classified simulation 
software packages are a high motivator for illegal 
penetration into the library. Unauthorized access to 
the SDS Software Library can result in the compromise 
of information or corruption of software, thereby 
resulting in a severe impact to national security. 

In a recent tutorial [4], a majority of papers 
addressed the design and structure of software for 
reusability. A lesser number were concerned with the 
actual implementation of a software library. Not a 
single paper addressed security. 

One reason that security is not a principal 
concern of software library developers is that the 
principal beneficiaries of reusable software are the 
software developers themselves. The savings may be 
passed on to the buyer (i,e., the government), but the 
actual software development and savings through 
reusability are an "in house" issue, 

If the particular software project is classified, 
the development is usually accomplished at the system 
high level where all users are cleared to the highest 
level of the data. The programmers and the 
development system are collocated adding to the amount 
of security which can be enforced through physical 
means. The situation in the SDS Software Library is 
quite different due to its handling of material of 
various classification levels and its distributed user 
base, therefore making a system high implementation 
inefficient. 

The software stored in the library and the users 
of the library will span a wide range of 
classification levels. The flexibility necessary for 
the library to be responsive to all classification 
levels eliminates the option of system high 
operation. Since the SDS Software Library does not 
actually execute programs, the security treatment is 
different from that of other computer systems. The 
true problem is how to enforce security when such a 
large number of users have access to such a wide range 
of storage. 
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Conceptual Model 

The SDS Software Library is a storage facility 
for reusable software serving a widely distributed 
network of users. The library enables the SDI 
software development community to efficiently produce 
complex software systems by providing access to an 
existing software base. The library is the central 
point of access to these reusable software modules. A 
conceptual model of the library is an enumeration of 
the services. and functions the library must provide. 
The services and functions exist independently of the 
library's actual physical configuration. It is, 
however, difficult to create an abstract functional 
concept without first defining the physical components 
that constitute a software library. The following 
will briefly describe the physical elements of the 
library. 

The core of the software library is the computer 
system, its software, and the associated storage 
system. The computer system provides on-line library 
services to the users by executing an application 
program referred to in this paper as the Software 
Library Management System (SLMS). The SLMS is the 
user interface to the information stored in the 
library and is the system by which the administrative 
personnel operate the library. The SLMS provides such 
services as cataloging, tracking, version control, and 
integrity verification of software items. 

It is important to note that the library is not 
exclusively an electronic storage facility. As in a 
conventional library, information can be maintained in 
the form of printed material or microfilm. A user 
could request the mailing or in the case of extremely 
sensitive information, the transfer by courier of the 
requested material. This nonelectronic extension of 
the library divides the storage media into two 
groups: on-line and off-line, Material in on-line 
storage is accessible to the users through the SLMS. 
Material in off-line storage is transmitted through 
more traditional means. 

The administrative personnel of the library serve 
two purposes. The first is in the computer system 
operating staff. The second function is the entry 
point for software submitted to the library. 

So far, we have viewed the library as an 
information source. Prior to being a source, the 
library must acquire software items. This acquisition 
phase is a continuing process. The SLMS is the filter 
for information flowing from the library to the 
users. The filter for material being submitted to the 
library is the administrative personnel. The reasons 
for a nonautomated mechanism are both technical and 
philosophical. Current technology does not enable the 
creation of a system which can examine a piece of 
code, analyze it, assess its worth in terms of 
usefulness and reusability, and intelligently catalog 
it. The second reason involves the human element. 
The degree of confidence users would have in software 
obtained from the library is dubious if there is not 
some intuitive assurance that a human has at least 
reviewed the software for content and potential. 

A conceptual model of the library is derived from 
a detailed look at the services and functions required 
of the library to operate smoothly and efficiently. 
This is formally expressed by a set of required 
operational capabilities. The required operational 
capabilities are a functional decomposition of the SDS 
'software Library. They state what services the 
library provides to its users and specifies the 
interaction between the users and the library. The 
required operational capabilities determine the system 

level requirements for the library. They are not an 
all inclusive listing of functions and services. 
However, the required operational capabilities must be 
comprehensive so that additional requirements support 
the composite system without compromising any 
individual operational capability or degrading one 
another, The following is a listing of the minimal 
required operational capabilities. 

Fundamental Capabilities 

Most computer operating systems enforce a 
relationship between the users and objects such as 
files and programs. These relationships are usually 
expressed as read, write, and execute capabilities. 
In essence, the SDS Software Library is a system with 
a large number of users and objects. As a top level 
specification, the fundamental access capabilities 
apply as follows: 

Read: The library users and administrative 
personnel will have read access capabilities as 
specified by their individual access rights. 

Write: Only the administrative personnel shall 
have write access capabilities as specified by their 
individual access rights. 

Append: This is a limited write capability to 
allow the addition of information to an existing 
package. The SLMS will account for updates. 

Execute: The SDS Software Library shall not have 
the capability to execute any software item stored in 
the library. The SDS Software Library is a software 
repository, not a software development center. The 
only software the library will execute is the SLMS. 

Access.Modes 

The users of the SDS Software Library shall have two 
modes of access to the library: system and retrieve. 

System: In this mode, the user communicates with 
the SLMS. A typical function in the system mode is 
accessing the SDS Software Library Catalog. This mode 
may however have access limitations (e~g., an 
unclassified user will not be able to scan classified 
summaries of classified items). 

Retrieve: This mode grants the user direct read 
access to a software item, Notice that read access is 
a defacto retrieve mode since it is impossible to 
control a situation where a user at a remote terminal 
chooses to download the information appearing on his 
terminal. 

Access Paths 

The SDS Software Library shall support the 
following means through which users may access the 
library: 

Local: Authorized users at the library facility 
should have direct access to the library. 

Remote: Authorized users will be able to access 
the library via commercial telecommunication links. 

Dedicated: The SDS Software Library shall 
support dedicated electronic communications links. In 
the case of classified material, these links will be 
encrypted. 

Other: Authorized users may be able to 
communicate with the library via telephone, mail, 
courier, and other nonelectronic means. 
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Access Controls 

In accordance with the Department of Defense 
Trusted Computer System Evaluation Criteria (TCSEC) 
[5], the library shall incorporate discretionary and 
mandatory access controls and labels for an Al 
system. There will be some differences between the 
TCSEC and the implementation in the library due to the 
fact that the library users have no write capability 
and that the library is not capable of executing 
stored software items. 

Accountability 

The SDS Software Library shall incorporate 
mechanisms to enforce the identification, 
authentication, and audit requirements as specified 
for an Al system by the TCSEC. 

Integrity Controls 

The SDS Software Library shall maintain software 
integrity. Integrity mechanisms ensure that the state 
of a software item is identical (i.e. has not been 
modified) to its state at a previous time. The proper 
use of access controls and integrity locks ensure that 
software is maintained and updated under strict 
control. 

To ensure that data integrity is maintained, the 
access to that data must be controlled. The SDS 
Software Library access controls are taken from the 
TCSEC. David Clark and David Wilson, in an IEEE 
paper, "A Comparison of Commercial and Military 
Computer Security Policies," argue that the military 
security policy only protects information from 
unauthorized disclosure. If, however, a user is 
authorized to access a particular data item, there is 
no restriction on how that data can be manipulated 
[6]. The protection from unauthorized modification 
can be implemented in one of two ways. The first is 
to place integrity protection mechanisms between the 
user and the information. This protection would be in 
addition to existing access controls. The second is 
to eliminate the user's ability to modify 
information. The latter method is inherent in the 
read only functionality of the library. 

Integrity locks determine if information has been 
modified. An integrity test can be performed to 
verify that the present state of a software item is 
unchanged from some previous state. Additionally, 
after a software item is distributed to one or more 
users, the same capability must exist at the remote 
location to verify that the state of that item matches 
the state of its parent in the library. 

Storage 

The SDS Software Library will be required to 
store software modules having different levels of 
classification (i.e. multilevel secure storage). 
Also, certain items may be under strict control 
independent of classification level. Items under less 
stringent control should have a wide availability 
while those under strict control must have very 
limited distribution. 

Since the SDS Software Library is a software 
storage facility, not a software development center, 
all storage will appear to be of the 
write-once-read-many type. 

Software Entry 

Software items are entered into the SDS Software 
Library only by the administrative personnel. The 

submitter of the software item must provide the 
following: 

Header: The header contains the authors, 
organization date, language, system, and system 
configuration on which and for which the software item 
was developed. 

Pedigree: A clear and detailed development 
history of the module. This will specify the current 
version number as well as previous versions, 
independent of whether or not those previous version 
exist in the library. The pedigree shall also state 
the program for which the item was developed and the 
test and verification/validation history. 

Functional Specification: A textual document 
detailing the precise function of the software item. 

Interface Control Document (ICD): A formal 
document indicating all entry and exit points, data 
structures, data types and any other operational 
requirements necessary to execute the software item 
per its specifications. 

Current technology does not permit the formal 
verification of software at the code level. The 
ability to automatically analyze software and 
determine if it contains trojan horses, viruses, or 
other malicious functionality is still years away. 
This leaves no other alternative but to distrust all 
software entered into the library. The saving grace 
of this bleak fact is the nonexecutable nature of the 
library. Programs containing a virus cannot propagate 
to other programs stored in the library since they 
will not be executed in the library. It is the user 
who assumes responsibility for the correct or 
incorrect functioning of a software item obtained from 
the library. 

Distribution 

Software distribution is the transmission of a 
software item to one or more authorized users via an 
approved access path. The library shall provide for 
trusted distribution of software. 

Catalog 

The library will maintain a catalog of all 
software items stored in the library. "The library 
shall contain procedures that help construct queries 
and evaluate the retrieved sample for potential 
reusability." [2] 

Physical Security 

The SDS Software Library central host computer 
system must be situated in a physically secure area. 
Protection must be offered to prevent unauthorized 
access to information and to prevent the malicious 
destruction of hardware, software, or other library 
elements in an attempt to deny service. 

Implementation 

In order for the SDS Software Library to 
simultaneously process information of different 
sensitivity levels the Department of Defense requires 
the library to be a trusted system. The TCSEC defines 
a trusted system as "A system that employs sufficient 
hardware and software integrity measures to allow its 
use for processing simultaneously a range of sensitive 
or classified information." [5] The SDS Software 
Library must be designed as a secure system while 
preserving the required functionality. What will be 
presented here is an informal implementation outline. 
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This implementation fulfills the operational 
requirements through the proper application of 
information security mechanisms. It will examine only 
the electronic portion of the library. The 
nonelectronic areas are addressed by existing policies 
for the handling of classified material. 

At the center of the library is the computer 
system which controls all of the information between 
the users and the storage. No user has direct access 
to the library storage facility. All access is 
mediated by the central computer system. In addition 
to enforcing access controls, it incorporates other 
security relevant functions such as audit trails and 
user authentication. As stated previously, the fact 
that the library users and the information stored in 
the library span all classification levels mandates 
the central computer to be a trusted system. 

The requirements for the type of trusted system 
are derived from the publication Guidance for Applying 
the TCSEC in Specific Environments [7]. This standard 
provides guidance to determine the minimum evaluation 
class required for a system in specific 
implementation. The evaluation class determination is 
based on three factors: the minimum use clearance, 
the maximum data sensitivity, and the type of system 
(i.e., open or closed). In the case of the SDS 
Software Library, the minimum user clearance is 
unclassified. We will assume the maximum data 
sensitivity to be top secret. The type of system to 
be used in the library will be considered a closed 
system. This means the library will not execute 
applications software from outside sources. The only 
application software which the library will actually 
execute is the SLMS. This will be developed by 
cleared personnel under a tight, configuration 
controlled environment. Applying the guidance 
standard to these factors results in a criteria class 
requirement of an A1 system. 

The SLMS is the application package hosted on the 
trusted system. The SLMS is the interface through 
which the users and administrative personnel access 
and manage the library. Its functions include those 
library procedures not inherent in the operating 
system of the trusted computing base. These 
procedures include the cataloging, tracking, and 
overall control of the software items stored in the 
library. The security feature of the SLMS is the 
integrity locking of all information in the library. 
There is currently no standard algorithm or device 
available to perform an integrity lock. When an 
algorithm or device becomes available, it would be 
integrated into the software library by either 
software or hardware. 

.. ··-·_·<.: An A1 system affords the data separation 
.::~~-:-:::::! necessary to allow an algorithm to be implemented 

directly within the SLMS. This procedure could append 
a cryptographic authentication code to all software 
items entered into the library. The alternative is a 
hard.ware sealing system in line between the computing 
system and the library storage facility. Any 
nonsealed item passing from the system to the storage 
is appended with an authentication code. When an item 
is transferred from the storage facility it must pass 
through the hardware system where an integrity test is 
performed. Any item failing the integrity test would 
be flagged and-rendered unavailable until some 
corrective action is taken. 

.l\\f[~\1\\~ 

The final level of security to consider is the 
communication channels linking the user to the 
library. These links must be secure in order to 
transfer classified information. This requires the 
use of secure gateways to the library. One 
possibility is to locate the library within an 
existing classified data communications system. 
Sections of the National Test Facility provide this 
capability. Locating the SDS Software Library within 
the National Test Facility will provide the SDS 
Software Library with secure data communication. 

Conclusion 

In this brief treatment of a complex subject, we 
have stated the necessity for an SDS Software Library, 
cited its required operational capabilities, and shown 
the mandatory role that security must play to create a 
successful system. A software library is the only 
method by which the SDI program, or any program of 
such magnitude, can accomplish its challenging 
software development tasks. The notion of reusable 
software demands a central access facility. A 
software library must provide a broad range of 
services to entice software developers to make good 
use of reusable code. None of these services should 
be degraded unnecessarily by the proper incorporation 
of security. 

The SDS Software Library must be a secure, 
trusted system to allow the library to handle 
software of various sensitivity levels. This places 
stringent requirements on the system as a whole 
spanning the areas of A1 level trusted mainframes to 
creating and standardizing secure and verifiable 
integrity locking mechanisms. There are many 
challenges to be met in achieving a secure SDS 
Software Library. Failure to commit to the security 
of the SDS Software Library will result in unusable, 
or even malicious, rather than reusable software. 
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Abstract 

The multilevel secure automated exchange of directives and whether controls are correctly
military messages has been the subject of much implemented. Reference [1] proceeds to describe
research over the past fifteen. years. During the three deficiencies of the Bell and LaPadula model
last decade, several attempts to implement military that prevented the model from providing this 
message systems with Bell and LaPadula security guidance to SIGMA users, implementors, and
models have been characterized by security kernels certifiers. Those deficiencies, as described in
with poor performance and a resulting security model [1], .are as follows:
which does not accurately describe the real 
behaviour of a military message system. Prohibition of write-downs. The * (star)
Consequently, the Naval Research Lab (NRL} has property prohibits the writing down of information 
developed, and is promoting, an alternative approach to a lower classification level. However, under
that includes an application based security model some circumstances this action would be secure for a
for military message systems [1]. These facts have military message system. It was assumed that user
prompted Magnavox to pursue the development of confirmation by SIGMA would prevent security
verifiable security kernel alternatives capable of violations when this action was needed but because
enforcing application based security models. so few understood the security policy (a phenomenon

derived from the numerous exceptions forced by the
Our resulting product is the Trusted Military nature of the application) users tended to always

Message Processor (TRUMMP} and the Military Message permit these actions without understanding why they
Embedded Executive [(ME2)]. The TRUMMP is the had been questioned.
hardware base that provides the performance and 
isolation characteristics necessary for the (ME2}. Absence of multilevel objects. The model
The (ME2) is a security kernel alternative that has recognizes only single-level objects when in
as.goals: enforcement of "configurable" application reality, objects for a military message system are
based security models, and real-time performance. inherently multilevel. An example is the multiple 
At the heart of the (ME2}'s ability to provide paragraphs of a message, each of which has its own
enforcement• of a "configurable" application based classification. By treating a multilevel object as
security model is a state machine architecture that a single level object, some information is treated
provides for rigid domain separation and strongly as more classified than it really is.
typed data flows over secure connections. 

No structure for application dependent security 
rules. The model contains no structure for 
application dependent rules. A military messageINTRODUCTION 
system typically must enforce some security rules 
that are unique to its application. An example is aThe Military Message Experiment (MME) was a 
rule that allows only users with authority to invokejoint research effort sponsored by the Navy, Defense a release operation. Advanced Research Projects Agency (ARPA) and the 

Commander-in-Chief Pacific (CINCPAC) to produce and 
evaluate the feasibility of developing multilevel Reference [1] continues by stressing the 
secure military message systems. That project deficiencies of approaches that attempt to fit an 
produced SIGMA, an operational system that was used application on top of the general purpose Bell and 
by military officers and staff personnel. Later LaPadula model. The need for application based 
evaluations of the system by the NRL demonstrated security models, as opposed to Bell and LaPadula 
the serious deficiencies that arise when a military derivatives, is emphasized. Such a policy is 
message system is implemented with a Bell and defined for a military message system.
LaPadula model. For background, a brief summary of Implementations are purposely omitted so that 
the NRL findings and their solutions are presented implementors may use current technologies [1]. Our 
here. Our description of the NRL findings are taken product is one such method that may prove useful in 
from [1]. the. implementation of application based security

models. 
Reference [1] argues that a security model 

should enable users to understand how tn operate the 
system effectively, implementors to understand what 
security controls to build, and certifiers to Magnavox is coordinating with the NSA(NCS~ ~s 
determine whether controls are consistent with. to the certification of TRUMMP and which cr1ter1a 1s 
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to be used. The evolution of our product suggests 
an interpretation of the TCSEC or TN! that is 
"unique" to the processing requirements of military 
message systems that contain multiple embedded 
mi 1itary message processor!!. As a result, -our 
security architecture group has prepared a technical 
report detailing issues associated with an 
interpretation of the TCSEC for this type of system
[7]. In any event, using the context of the TN!, as 
a minimum, our goal is a component rating of M 
(Mandatory Access Control) implying the product to 
be applicable to the B1 through A1 divisions of the 
TCSEC. Verification issues are not addressed in 
this paper but we have a security verification and 
validation group that is working along with us to 
assess the security assurance aspects of our 
development [6]. 

This paper is organized into six major
sections: (1) the functional and security
requirements of military message systems; (2) an 
overview of attempts to implement these requirements 
with security kernels; (3) definition of a security
kernel alternative; (4) implementation of this 
alternative in the Military Message Embedded 
Executive [(ME2)], including discussion of data and 
process security enforcement; (5) a description of 
the Trusted Military Message Processor (TRUMMP); and 
(6) our conclusions and future plans. 

1. FUNCTIONAL AND SECURITY REQUIREMENTS 

Systems that are used to process military 
messages are concerned with the handling of 
different message types. One type, the formal 
military message, is at the heart of Command, 
Control, Communications and Intelligence (C3I) 
systems. Nearly all military operations and 
policies are communicated through a formal military 
message [4]. Military standards which govern the 
format of these messages typically require a TO, 
FROM, INFO, DATE-TIME-GROUP, TEXT, SECURITY, and 
PRECEDENCE field for each message. A formal 
military message must be maintained for long periods
of time and be capable of being quickly retrieved. 

Another type of military message is the 
informal message. In contrast with formal messages,
informal messages generally do not have the same 
storage and retrieval requirements. 

The systems used to process these messages
consist of both embedded processors and non~embedded 
processors. An embedded processor refers to those 
processors that do not contain a direct 
human-machine interface (HMI) but are still a vital 
processing component (e.g. a message switch).
While most non-embedded processors are concerned 
with the unauthorized disclosure or unauthorized 
modification of information to users (data
security), the embedded processor must also enforce 
what [3] refers to as process security~ 

For an embedded military message processor, a 
process security requirement might be related to the 
precedence of the message. In a military message,
the precedence specifies the maximum delivery time 
for a particular type of message. Consequently, a 
process security requirement for a military message 
system might state that higher precedence message
processing will preempt lower precedence message 

_	processing. Enforcement of this process security
requirement by the embedded computer allows the 
system to respond to high priority traffic as 
quickly as possible. In a C3I environment 

enforcement of this process security requirement is 
as important as the security requirements related to 
the unauthorized disclosure and unauthorized 
modification of data. 

Survivability is another fundamental process
security requirement for a military message system.
Each computer resource, embedded or non-embedded, 
must continue to function/recover in the presence of 
simultaneous jamming, destruction, and nuclear 
blackout. Ironically, it is in the face of these 
very conditions that the system will undoubtedly
face the largest volume of formal message traffic. 
Performance under these stressful conditions becomes 
a process security requirement for the embedded 
computer resources. An important derivative of this 
process security requirement is denial of service 
protection. Denial of service protection ensures 
that no one process monopolizes resources so as to 
delay or prevent other system functions. 

Finally, the objects of a military message 
system must reflect the multilevel nature of a 
military message. A military message is often 
composed of paragraphs of differing classification 
with the overall classification for the message
equal to the highest classification of any part of 
the message. To treat the entire message as 
classified as the most sensitive portion causes some 
information to be treated as more classified than it 
really is. As a result, an information structure 
that is capable of representing the multilevel 
nature of a military message is required. Reference 
[1] refers to this type of information structure as 
a "container". 

2. EXPERIENCE ~ITH SECURITY KERNELS 

Until very recently the security kernel, a 
reference monitor implementation, has been promoted 
as an appropriate foundation for meeting nearly a11 
security requirements. By enforcing a multilevel 
security policy, the security kernel creates an 
abstract machine upon which it is impossible for an 
application program to commit compromise. By
restricting the role of security enforcement to a 
small and simple mechanism such as a security
kernel, security verification is much more tenable. 

In a military message environment, however, the 
first attempts to implement military message systems 
were faced with a practical problem related to the 
nature of the application. Although many of the 
required actions are commonly defined as secure, 
they violate the general purpose axioms of the 
security kernel (i_,e, the *-property). An example 
is the classification of the message header 
information at security levels lower than that of 
the associated message text. To solve the problem,
these systems relied on numerous trusted subjects
which are effectively exceptions to the gener~l 
purpose axioms. 

Security kernel performance was an additional 
problem. Some kernels yielded performance as low as 
10-25 percent of their non-trusted counterparts [2]. 
With good performance a critical requirement,
security kernels did not yield adequate results. 
Yet another drawback of security kernels was their 

develop a special purpose security kernel that will 

absence of 
requirements 

attention to the 
that are present 

process
in DoD 

security
embedded 

computers. 
Thus, 

enforcement 
some 
in a 

alternatives for security 
mi 1 i tary message system are: 1) 

enforce a model tailored to military message 
systems, 2) use a Bell and LaPadula model with 
numerous trusted subjects, or 3) use a security 
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kernel alternative [5]. The first alternative is 
extremely costly, and the second alternative yields
a product with the problems that SIGMA experienced.
As a result, TRUMMP uses a security kernel 
alternative, (ME2), pronounced as "ME TWO", to 
implement application security models specifically
tailored to military message systems. Fundamental 
to our approach is the concept of a state machine 
architecture. 

3. ~ SECURITY KERNEL ALTERNATIVE 

The security kernel alternative that (ME2) will 
use to enforce an application security model is 
based on the concept of a network of communicating
finite state machines (CFSM) that operate under the 
control of a State Machine Executive (SME) [5] . In 
our development the (ME2) is the state machine 
executive that provides domain concurrency, domain 
separation, inter-domain communication via message
passing, as well as enforcement of application based 
data security and process security requirements. 
The general architecture is referred to as a State 
Machine Architecture (SMA). 

3.1 Definitions 

The following definitions are provided to 
establish the required terminology for discussion of 
the Military Message Embedded Executive (ME2). 

Processing Nodes - The nodes of the graph in figure
1. These nodes represent a processing domain. In 
the context of a military message system a 
processing node might represent the processing 
domain responsible for displaying a message while 
another node might represent the processing
associated with the network interface. 

Connections - The arrows of the graph in figure 1. 
These arrows represent the communication channels 
between processing nodes. Connections may be 
external or internal. An internal connection refers 
to a connection that has a processing node for both 
its source and sink points. Connections that do not 
have a processing node for sink and source are 
external connections. 

Source Station - The head of each arrow in figure 1. 
Data is sent from a source station to a sink 
station. A connection attached to a source station 
of a node is called a sink connection for that node. 

GENERIC 
CONNECTION 

CONTROL 
CONNECTION 

NV-80-101-105 
2M 060888 

Figure 1. A State Machine Architecture 

Sink Station - The tail of each arrow in figure 1. 
Data is received on a sink station from a source 
station. A connection attached to a sink station of 
a node is called a source connection for that node. 
Each sink station represents an unbounded FIFO 
queue, the tail of which acts as the sink point for 
source connections, while the head acts as a source 
station for sink connections. 

Workstation - The heads of the queues associated 
with the sink stations of each processing node. 

Container - A typed information structure that is 
categorized as single-level or multilevel based on 
its typed value. For example, a message container 
is a multilevel information structure while a 
control container is a single-level information 
structure. 

Data Security Labels - Container labels which 
indicate the level of damage that might result if 
the container information is subjected to 
unauthorized disclosure or unauthorized 
modification. 

Process Security Labels Process labels and 
container labels that are used to enforce the 
process security requirements. 

In the State Machine Architecture, the heart of 
security is the domain separation mechanism known as 
the State Machine Executive. In our implementation
the State Machine Executive is the (ME2). The (ME2)
is the foundation that supports the enforcement of 
application based security models. In addition to 
supporting application based security models, (ME2)
allows an implementation that enjoys performance 
advantages over traditional security kernel 
implementations. 

4. THE MILITARY MESSAGE EMBEDDED EXECUTIVE 

The Military Message Embedded Executive 
[ (ME2)], pronounced as "ME TWO", is an 
implementation of the state machine executive 
described in the previous section. This section 
describes the (ME2) implementation of each of the 
state machine architecture concepts described above. 

4.1 Processing Nodes 

Processing nodes, also called logical 
processors, are the components of the state machine 
architecture that refer to processing segments which 
operate independently of each other. In a military 
message system, one processing node might represent
the processing associated with display of a message
while another node might represent the processing
associated with a network interface. The 
fundamental requirement that must be supported in an 
implementation of a processing node is domain 
isolation. The resources of each processing node 
must be isolated. In a single computer
implementation, this means that the (ME2) must 
insure that the computer registers, flags, memory,
and code of one node are physically inaccessible to 
another node. Not only must the (ME2) establish 
domain isolation but it must also ensure that once 
established that the processing node cannot alter 
the domain isolation characteristics. 

Usually, hardware support for domain isolation 
and domain switching has been rare. Time consuming
operating system software has traditionally been 
required to save the current processor domain in 
memory and to establish or load a new domain. The 
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overhead associated with this single, but frequent, 
operation has been cited as the source of many
performance problems in previous security kernel 
implementations. 

Furthermore, the security assurances placed in 
the system are rooted in the correctness of the 
software used to implement the domain isolation 
principles. The more complicated this software, the 
less likely we can be certain that the software is 
implemented correctly, and the less likely that the 
software is worthy of our trust. 

To combat these problems, the Intel 80286 
microprocessor was chosen as the TRUMMP CPU. The 
Intel 80286 is unique for its ability to provide
single instruction, firmware based, domain switching
in as little as 16 microseconds. With the Intel 
80286, the (ME2) can perform an entire domain 
switching operation by executing a single privileged 
instruction designed to change the current task 
register (see figure 2). 

As shown in figure 2, the Task State Segment
(TSS) is a hardware recognizable, and hardware 
manipulated structure that defines the contents of 
al~ machine registers, flags,code, and memory that 
are physically visible at any one time. In the 
(ME2), each processing node has an associated TSS 
that completely defines the node's domain. 
Contained in the TSS is the address of another Intel 
80286 data structure called the Local Descriptor
Table (LDT). The LDT is the TSS component that 
defines the memory resources and code segments that 
are associated with a particular processing node. 
The TSS and LDT data structures are made invisible 
to applications in two ways. First, these critical 
data structures are contained exclusively within 
(ME2) LOTs. Second, their access is governed by a 
hardware protection mechanism that restricts access 
to "privilege level 0" code, i.e. (ME2) code. 
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Figure 2. Intel 80286 Domain Isolation 

4.2 Connections 

Connections, also called virtual channels, are 
the communication mechanisms for process nodes. 
Controlled data flow over these connections is 
fundamental to the (ME2) enforcement of application 
based security models. Our implementation of 
connections requires the (ME2) to enforce strong 
typing rules over the connection, as well as data 
and process security rules. Verification that data 
flows are maintained according to typing rules is 
expected to be useful for verifying certain types of 
data integrity. 

In the (ME2) implementation of connections, 
each connection has several associated attributes 
which describe the size of data that the connection 
accepts, the type (e.g. control, data, or message
type) that the channel accepts, and whether or not 
the connection is internal or external. In addition 
the container has data and process security labels 
that must dominate the data and process labels of 
the sink before a transmission can occur. In the 
(ME2) implementation, the connections and their 
associated attributes are contained within a (ME2)
data base that has been burned into Read Only Memory
(ROM). 

4.3 Source Stations, Sink Stations, and Workstations 

At the (ME2) implementation level, source and 
sink stations are the heads and tails of data 
queues. Because the (ME2) provides
first-in-first-out (FIFO) processing of queued data, 
a source station is always the queue head while sink 
stations are always the queue tail. Workstation is 
a more general term that refers to a data depository 
at which a queue element (the sink station, the 
source station, or some other element) is 
accessible. 

In the (ME2), a workstation is implemented as a 
permanent entry within a process node's local 
descriptor table. Effectively, this permanently
defines the virtual address of a workstation. To 
access data contained at the data depository (i.e. 
a particular queue element), application programs 
access the virtual address of the workstation. As 
an analogy, consider the workings of a photographic 
slide projector. A queue of slides, present in the 
slide projector, are viewed individually by the 
projector's movement of a slide through the lens 
path. In much the same way, the (ME2) must make 
individual containers visible at a fixed virtual 
address for viewing by process nodes. 

The descriptor table based memory management of 
the Intel 80286 microprocessor provides the 
efficient mechanism for making a new queue element 
visible at the workstation. Because the local 
descriptor table is actually a table of physical
addresses and access rights associated with each 
virtual address, the (ME2) can efficiently make a 
new queue element visible at a workstation by
copying the physical address of the queue element to 
the local descriptor table (see figure 2). As a 
consequence, the elements of a queue might be at 
many non-contiguous physical memory segments, but 
are viewed, because of the actions of the (ME2),
through a workstation at a fixed virtual address. 

The (ME2) implements application based 
restrictions on workstation access according to the 
access rights declared for the queue. A workstation 
may be declared as read only, write only,
read-write, or no access. (ME2) provides these 
access restrictions by writing the applicable value 

253 




to the local descriptor table entry associated with 
the particular workstation. 

In the (ME2) implementation, because each work 
station of a process node implies a unique local 
descriptor table entry for that process node, the 
number of work stations is physically limited by the 
maximum number of local descriptor table entries 
(approximately 8000}. However, we expect the number 
of workstations to vary greatly based on the input
and output requirements of the node. For example, a 
node responsible for message storage might segregate 
messages based on data and process security labels 
and thus require a large number of workstations, 
while another node might only require one 
workstation for an internal data structure. 

4.4 Containers 

As previously described, a container is broadly
categorized as either a single-level or a multilevel 
information structure that is transmitted over a 
connection. Like the connections that they are 
transmitted over, containers have attributes that 
describe their size, type, data security, and 
process security attributes. Examples of container 
types include message containers, control 
containers, and data containers. 

In the (ME2), containers are implemented
according to user configurable allocations of 
physical memory based on container type and size. 
Consequently, a container is actually a contiguous 
segment of physical memory that contains data of the 
type declared for the container as well as data and 
process security labels. Potentially multilevel 
containers, such as message containers, contain a 
data and process security label for each individual 
unit of information. 

The (ME2) distributes containers to 
workstations based on the value of a workstation 
attribute known as the auto-refill attribute. If a 
workstation is defined as an auto-refill 
workstation, the (ME2) will associate an empty
container with the workstation at system
initialization and at any future time that all 
workstation containers have been transferred over a 
connection. An empty container is def~ned as a 
container whose contents have been set to zero or 
some other innocuous value by the (ME2). At sYstem 
initialization, all containers are empty. Later, 
used containers are emptied by the (ME2) and become 
available for reuse as they are sent from the 
application back to the (ME2). 

4.5 Data Sensitivity Labels 

In (ME2}, data sensitivity labels are 
implemented with a secrecy component and an 
integrity component. The secrecy component of the 
label provides up to sixteen hierarchal levels and 
sixty-four non-hierarchal compartments within each 
level. Integrity types will, of course, be 
different among applications. Specific definition 
is dependent on a particular application based 
security model. Two integrity levels, high and low, 
are supported. As mentioned earlier, (ME2)
enforcement of strong typing rules is also expected 
to be useful for verification of certain types of 
integrity. 

The assignment of values to a data sensitivity
label differs depending on whether the data 
sensitivity label is for a container or a 
workstation. The data sensitivity labels for 
workstations are static. They reside in the 
read-only portion of the (ME2) data base and result 

from a system design based on a state machine 
architecture. Because the system design is based on 
isolating data flows and processing, the set of 
possible data security labels that a workstation may 
accept is known pre-runtime. 

On the other hand, because containers are 
reusable, the values for the data sensitivity labels 
of a container must be assigned as the container is 
used. Initially, at the time the (ME2) provides a 
container to an auto-refill workstation, the data 
sensitivity labels of the container have a value 
known as obscure. That is, the (ME2) and all 
process nodes recognize that the container in 
question has not been labelled. Certain process
nodes may request the (ME2) to change the value of a 
data sensitivity label for a· container from obscure 
to some other value. The (ME2) will perform such a 
label change if and only if such a change is 
consistent with the process security requirements. 
That is, just as only certain individuals have the 
authority to downgrade a military message, the (ME2) 
ensures that only certain process nodes may change a 
container label. 

From a (ME2) implementation perspective, data 
sensitivity labels are always contained in memory
that is accessible only to the (ME2). Consequently,
data sensitivity labels are only changeable if the 
process node is trusted and the change is requested
through the appropriate (ME2) service request. 

4.6 Process Sensitivity Labels 

Process security requirements ensure the 
prevention of undesirable and potentially
catastrophic events in an embedded computer system.
A general example is the requirement that a certain 
weapon system be fired only after a sequence of 
controlled events has been implemented. An example
taken from military message system domains is the 
requirement that the processing of more important 
messages preempt the processing of less important 
messages or the requirement that among equal
priority messages, messages should be processed in a 
first"in-first-out (FIFO) manner. 

The Naval Research Lab suggests that one 
approach for enforcing process security requirements 
is the approach that is currently used for enforcing 
data security requirements. Specifically, the NRL 
suggests that to enforce process security, a system
be structured into a set of functions that affect 
process security and a set that do not [3]. By
verifying that the functions that have the 
capability to violate process security do not 
violate it (they are trusted}, process security can 
be assured. 

This approach is the one we have taken with the 
(ME2). As a result, the (ME2) is the function that 
enforces data security and process security. As 
mentioned, an important process security requirement 
is that the processing of more important messages 
preempt the processing of less important messages, 
and that among equal priority messages, messages are 
processed in a first-in-first-out (FIFO) manner. 
Just as the (ME2) provides sensitivity labels to 
enforce data security requirements, a similar label 
is used to designate the relative importance of a 
message so that process security requirements can be 
enforced. In the (ME2), this label is referred to 
as the container's "Necessity". Five necessity
values are supported in the (ME2). The structure of 
these values is application configurable. 
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By assigning necessity labels to each 
container, containers may be segregated according to 
message necessity. This eliminates the need for a 
shared queue of multiple necessity levels. As with 
data security labels, the (ME2) uses the necessity
labels to restrict the flow of containers over 
connections. The (ME2) will transfer a container 
over a connection only if the necessity label of the 
container dominates the necessity label of the sink. 
Consequently, the segregation of containers coupled 
with the (ME2) process node preemption based on ·the 
arrival of a container at an empty workstation 
provides assurance that the data that has arrived is 
of greater importance than current processing, and 
that the arrival will cause preemption. This 
enforces the process security requirement that 
higher priority message processing preempt lower 
priority message processing. 

The other type of process security label that 
the (ME2) provides is a command label which lists 
all of the authorized (ME2) commands that a process
node can request. An earlier example illustrated 
how the command label is used to prohibit all nodes, 
except the authorized nodes, from changing the data 
security labels of a container. 

The final type of process security provided by 
the (ME2) is denial of service protection. Denial 
of service protection is provided through
application configurable parameters for each process
node and a TRUMMP interval timer. 

4.7 The (ME2): A Summary 

The Military Message Embedded Executive [(ME2)]
is an executive which also contains a security 
enforcing foundation based on the data and process
security requirements of military message systems.
The key to security in the (ME2) is a state machine 
architecture which divides the system into process 
nodes. Information is stored in strongly typed
containers which are transferred over connections to 
strongly typed workstations. The (ME2) implements
traditional data security labels as well as process
security labels. The deficiencies, as described in 
[1], of SIGMA, a security kernel for the Military 
Message Experiment (MME), do not exist. 
Specifically, (ME2) provides the capability for 
authorized downgrade, implements multilevel objects
(containers), and provi des a structure for 
implementation of application dependent security
requirements. 

5. THE TRUSTED MILITARY MESSAGE PROCESSOR 
When complete, the Trusted Military Message

Processor (TRUMMP), pronounced as "TRUMMP" as in 
playing Bridge, will be a militarized microcomputer
specifically designed to support the Military 
Message Embedded Executive [(ME2)] and its 
applications. Design objectives include high
performance, architectural features that directly 
support (ME2) functions, and minimum physical size 
and weight. Mil-Spec and ruggedized versions will 
be available. TEMPEST and HEMP requirements can be 
accommodated. 

At the heart of the TRUMMP is an Intel 80286 
microprocessor. The Intel 80286 is a high
performance 16 bit microprocessor that provides on 
chip memory management, descriptor based segmented
virtual addressing, and physical memory addressing 
to 16 megabytes. These attributes support the 
functional requirements of a military message 
processor. From an INFOSEC perspective, the Intel 
80286 was chosen for its unique capability to 
provide the type of efficient hardware enforced 

domain isolation that is at the heart of the (ME2).
Specifically, the Intel 80286 defines data 
structures that allow the microprocessor to perform
firmware based domain switching in as little as 16 
microseconds. The TRUMMP also contains interval 
timers, and interrupt controllers. 

Because the usual application of the TRUMMP is 
intended to be as an embedded processor, particular
attention to the expected operational environment is 
required. Figure 3 illustrates a sample
environment. In the figure, the TRUMMP is the 
primary trusted computer resource responsible for 
sending and receiving military messages to and from 
the telecommunications network(s). 

Figure 3 shows the expected subsystem
interfaces that the TRUMMP accommodates. To meet 
performance objectives and to simply the external 
interfaces to the TRUMMP and (ME2), as figure 4 
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shows, an iAPX-188 component is responsible for References 
polling and buffering data to and f~om each.of the 
serial channels. The iAPX-188 commun1cates w1th the 
TRUMMP and the (ME2) over the Multibus system bus. 

6. CONCLUSIONS and FUTURE PLANS 
This paper has described the progress of 

Magnavox research into the multilevel secure 
automated exchange of military messages. This work 
represents new approaches to "designed in se~urity" 
that are not based on the security kernel and 
Bell/LaPadula model approaches that have dominated 
military message systems and the industry for the 
past fifteen years. Instead, the approach is based 
on the concept of a set of communicating finite 
state machines. The (ME2) is an efficient 
implementation of this concept that corr~c~s ~he 
security kernel and Bell/LaPadula model def1c1enc1es 
that have been cited for military message systems
through frequent use of these traditional 
techniques. 

Beyond its security kernel alternative, we 
believe the (ME2) is additionally unique for its 
attention to the process security requirements [3]
of embedded computers. With the annual maintenance 
and development costs of DoD embedded computer 
resources expected to exceed$ 40 billion by 1990 
[3], we believe that its time to understa~d and 
enforce the security requirements that are un1que to 
these computers. Security in these systems is more 
than protecting files from users. In the (ME2)
development, we have begun to address these 
requirements. In referring to these requirements, 
we have used the same terminology as the Naval 
Research Lab, process security [3]. 

We are currently testing our concepts with 
(ME2) and TRUMMP prototypes in our System Security
Engineering lab. Our next major milestone is the 
evaluation of our development against either TNI, 
TCSEC, or some other standard [7]. Beyond these 
goals, we expect to address verification issues in a 
future report [6], and to evaluate our concepts with 
different hardware and different application
domains. 
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Abstract. In computer systems designed for high levels 
of security assurance, sensitivity labels are used to protect 
sensitive data. As multilevel secure distributed computer 
systems increasingly replace sensitive hardcopy documents 
with softcopies and automate their processing, the more 
comprehensive mechanism of a security profile will be 
needed. We illustrate the problems that security profiles will 
address with three popular but rarely valid assumptions about 
labels: 1) labels on data (classifications) and labels on people 
or processes (clearances) are drawn from the same partially 
ordered set, 2) labels are relatively simple, having only an 
hierarchical part and a non-hierarchical part, and 3) 
sensitivity labels and their associated rules suffice to insure 
correct handling of the data so labeled. Practitioners in the 
computer security community are becoming aware of the 
inapplicability of these assumptions outside defined contexts. 
We seek to increase that awareness and to explore the 
implications for future more ambitious systems. 

1. Overview and Definition 

1.1 Introduction. Institutions and individuals have a 
need to protect sensitive information from unauthorized 
disclosure, modification, degradation, destruction, and misuse, 
while, at the same time, allowing those who have been 
identified as trustworthy and are so authorized, to read, write, 
manipulate, store, retrieve, and selectively transmit or share 
such information according to their legitimate needs to do so.1 

In some contexts, documents containing sensitive 
information may be identified as such by simply attaching 
warning statements. A more elaborate scheme is to classify 
information according to sensitivity and to "classify" personnel 
according to trustworthiness. Only the more trustworthy 
personnel with an identified need to know are allowed access 
to the more sensitive information. 

In current government and some commercial computer 
systems, the protection mechanism may involve associating 
with data, sensitivity labels that indicate the degree 
(hierarchical level) of sensitivity and the category(ies), 
compartment(s), or "subject area(s)" of the corresponding 
information. One sensitivity label is said to dominate another 
if its hierarchical component is greater than or equal to the 
hierarchical component of the other and its set of 
compartments contains the set of compartments of the other 
[3, 4]. Typically, in the absence of privilege, a secure 
computer system allows data to flow from one subject/object 
to another only if the sensitivity label on the recipient 
dominates the sensitivity label on the sender. (This is a 
necessary, not:). sufficient, condition.) For example, Secret­

1. 	 Although the goal of information security is to protect information, 
this is usually accomplished by protecting data, whose correct or 
approximate interpretation yields the information deemed sensitive, 
and this in turn may be achieved by controlling signals that transmit, 
or patterns that convey, the data. It is customary to blur these 
distinctions. 

A/B dominates Confidentiai-B, while neither is comparable 
with Secret-E/C. An untrusted (normal) process running at 
the first level could receive data from an untrusted process 
running at the second level, but not vice versa. Neither 
process could send or receive from an untrusted process at the 
third level. An "object" (e.g., file) containing data at each of 
these levels would have to have an overall classification of at 
least Secret-A/B/C.2 In other words, the classification of a 
document must be at least the least upper bound of the 
classifications of data in the document. 

The hierarchy scheme is usually associated with 
government classification systems (in some communities, 
"classified" = "government classified"), but it is also used by 
large corporations for their proprietary information. For 
example, IBM classifies their internal information as Public 
(unclassified), Internal Use Only, Confidential, Confidential 
Restricted, and Registered Confidential.3 Most of the 
following is based on the government classification program, 
but the requirements are just as applicable to a commercial 

5and/or proprietary program. 4 , 

1.2 Markings. The classification of a document is not 
the only security-related information needed to handle a 
document properly. When marking hardcopy documents, the 
applicable classification labels with modifiers must appear on 
the pages and portions, and all other markings may be placed 
on a "title page", which must also be marked with the overall 
classification label. The other markings (notations and 
statements) are usually referred to as the title page markings. 
These include warning notices, information about control 
channels for dissemination, classification authority, 
declassification date, etc. 

Of course, the title page should also have a title and other 
means (Document Number) of identifying the document. The 
title, itself, must be labeled with a classification label and, 
wherever possible, be unclassified. 

The Industrial Security Manual for Safeguarding 
Classified Information (ISM)6 requires the following 

2. 	 Unfortunately, in computer security, assuming an "object" is only a 
passive object is problematic. Given a string of bits in a computer, it 
is difficult, at best, to determine whether that string is potentia.!ly data 
or process or both. In a Bell-and-La-Padula-like computer security 
model [2], an executable "object", when executing, is presumably a 
subject, or at least a surrogate thereof, and thus, as a string of bits, is 
both data and process [12, 13]. 

3. 	 These are the hierarchical levels suggested in "Good Security Practices 
for Information Ownership and Classification," G360-2705-0, IBM, 
Nov. 1986. We believe these suggestions are based on IBM's practice. 

4. 	 We also consider primarily sensitivity to disclosure rather than to 
destruction or modification. 

5. 	 The emphasis in information security programs is usually placed on 
the upper levels of a hierarchical system, as is appropriate. However, 
there is a large amount of information that is not identified by any 
classification scheme that still requires protection because of some 
legal, business, or ethical requirement. 

6. 	 DoD 5220.22-M, September 1987. 
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markings "for all classified information, regardless of 
the form in which it appears":7 

1. 	 Identification Markings. 

a. 	 Name and address of facility responsible for 
preparation of material. 

b. 	 Date of preparation. 

2. 	 Overall Markings. (Classification of document.) 

3. 	 Page Markings. 

4. 	 Component Markings. (Each appendix, attachment, 

etc.) 


5. 	 Portion Markings. (Section, paragraph, illustration, 

photograph, figure, graph, etc.) 


6. 	 Subject and Title Markings. 

7. 	 Downgrading/Declassification and "Classified by" 

Markings. 


8. 	 Additional Markings. (if applicable) 

a. 	 RESTRICTED DATA Notation. 

b. 	 FORMERLY RESTRICTED DATA Notation. 

c. 	 INTELLIGENCE SOURCES OR METHODS 
Notation. 

d. 	 DISSEMINATION AND REPRODUCTION 
NOTICES. 

e. 	 FOREIGN GOVERNMENT INFORMATION. 

f. 	 THIS DOCUMENT CONTAINS NATO 
INFORMATION. 

For our purposes, it is helpful to reorganize the 
above as: 

A. 	 Classification Labels (2-6 above) 

B. 	 Notations 

1. 	 Warning Notices 

2. 	 Instructions 

3. 	 Control Channels (Dissemination) 

C. 	 Authority Statements 

1. Classification Statements (Classified by 
... ) 

2. 	 Declassification Statements 
(Regrade/downgrade j declassify to 
by <date/event>) 

D. 	 Ownership (Must approve dissemination or 

justify classification) 


1.3 Security Profiles. Sensitivity labels provide, at 
most, the information in A above. But no piece of 
information in a Marking is superfluous. For every 
component of a Marking, there is some action that may be 
taken on or with the hardcopy document that requires that 
component (possibly in conjunction with others) in order to 
maintain security and ultimately to prevent unauthorized 

7. 	 Ibid., 11-b., p. 52. 

disclosure. (We provide examples below.) Automating these 
actions in a secure computer system will, therefore, require 
more information than is contained in sensitivity labels. This 
information, in a computer system, we refer to as a security 
profile.8 (The reader is warned that where we use the term 
"security label", we always mean a complete security label, 
i.e., a security profile, not a sensitivity label.) 

Definition. The security profile of a softcopy document 
is the softcopy equivalent of the complete set of Markings for 
the corresponding hardcopy document.9 

1.4 Problems with Hierarchical Levels. For 
classified information, possible U.S. ,hierarchical levels are: 
Unclassified < Confidential < Secret < Top Secret. Possible 
non-U.S. hierarchical levels are: Unclassified < Restricted < 
Confidential < Secret < Top Secret. The U.S. translation of 
''Restricted" is typically ''Handle as Confidential" (label and 
clearance required for [read] access) even though the physical 
storage requirements may be more akin to FOUO (see below). 
Some countries have only two levels: Secret < Top Secret. 10 

Therefore, any U.S. Confidential document (in whatever 
medium) provided to those countries might have to be 
upgraded (in their possession or access) to an hierarchical level 
(their Secret) equivalent to (U.S.) Secret. Of course, it would 
also retain its U.S. Confidential label. The actual 
equivalences and translations of labels is per the security 
agreements between the countries involved. Automating this 
may require a Multinet Gateway (MNG), a Trusted Network 
Interface (TNI), or Trusted C~mputing Base (TCB) to "know" 
such security agreements. 

A label that is not really part of the U.S. classification 
scheme is ''For Official Use Only". Abbreviated as "(FOUO)" 
for portion (paragraph) marking, FOUO is used for 
information that is not classified but still requires some degree 
of protection: it's for official business, not for general 
distribution or publication.n. 12 Some documents specify that 
unclassified extracts must be marked ''For Official Use Only". 
An unclassified document that contains portions extracted 
from a classified COMSEC document, where all portions 
extracted were marked "(U)", must be marked ''For Official 
Use Only", while the extracted portions must be marked 
"(FOUO)"P (See fig. 1.) In a secure automated information 
system (AIS), this means that extracting a labeled portion 
may require changing the label of that portion when it is 
imported into another file and changing the security profile 
of the receiving file, even when the receiving file remains 
"unclassified". Since, by definition, the security profile of a 
document includes all markings, the insertion of a labeled 
portion constitutes a change in the security profile; the point 

8. 	 Woodward [14, 15] exploits the dual nature of sensitivity labels: (1) 
sensitivity indicator and (2) Mandatory Access Control LabeL AB 
separate labels, the latter must dominate the former. Both, however, 
are "sensitivity labels", not security profiles. 

9. 	 This definition assumes that inherent in any portion marking is an 
indication of what portion the marking applies to. 

10. E.g., Finland. 	 Sweden has the one word '1Iemlig" (Secret), which may 
be bounded by a double red border (Top Secret). Haiti has only 
Confidential and Secret. 

11. Some agencies just say "Official Use Only" and "(OUO)". 

12. FOUO could be used as an added label for classified information, but 
such use would be superfluous: classified information is, by definition, 
for official use only, i.e., need-to-know. 

13. From a practical standpoint, FOUO could be positioned between 
Unclassified and Confidential in the U.S. hierarchy; however, it's more 
a subset of Unclassified than a separate leveL 
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here is that the overall document marking must change as 
well. As we shall see, such extraction-import problems tend 
to be more difficult and, ipso facto, more serious, with higher 
levels of classification. 

UNCLASSIFIED SECRET 
[ COMSEC] 

~Unclassified}--
portion. (U) 

Unclassified 
portion. (U) 

UNCLASSIFIED SECRET 

For Official Use Only 


Unclassified 

portion. (FOUO) 


For Official Use Only 


Figure 1. 	 Receiving file remains unclassified, but 
markings on imported portion and on the 
file must change. 

Also, declassified information, marked or unmarked, must 
still be protected; it's not for public release, unless so 
authorized by the agency responsible for it. By unmarked, we 
mean it is not apparent that it was once classified. If it is 
unclassified, but not releasable tO"'the public, there obviously 
needs to be some indication: e.g., "For Official Use Only" or 
"Limited Distribution". 

2. Erroneous Assumptions. 

One way to illustrate some of the problems that security 
profiles will address is to consider three popular but rarely 
valid assumptions about labels. We refer to these 
assumptions as ELA 1, 2, and 3. ''ELA" (pronounced ''Ella") 
= ''Erroneous Label Assumption". 

Erroneous Label Assumptions: 

( ELA 1 ) 	Sensitivity labels on data (classification) 
and on users and their processes 
(clearances) are drawn from the same 
partially ordered set; 

( ELA 2 ) Security labels are relatively simple, having 
only an hierarchical part and a non­
hierarchical part (partially ordered by set 
inclusion); 

( ELA 3 ) 	Sensitivity labels and their associated rules 
suffice to insure correct .handling of the 
data so labeled. 

Whether these EL.As are erroneous or rather, if you will, 
how erroneous, depends on context, i.e., the demands placed 
upon a given AIS. We are not saying that the computer 
security community as a whole is unaware of problems with 
these assumptions. Rather, we hope to increase that 
awareness and believe this is essential as the demands on 
secure AIS increase. Finally, the above assumptions, even 
when erroneous, are sometimes conceptually useful 

simplifications, when focusing on other security mechanisms. 
But not even Dorothy could remain forever in Kansas. We 
propose, instead, to tell the truth and nothing but the truth. 

Notice we do not propose to tell the whole truth. An 
exhaustive treatise on the way security profiles and 
clearances really work would be longer than the Greater 
Armageddon phone book and duller than tofu. Such a 
treatise might also be cla..."Bified. Nevertheless, we provide 
sufficiently detailed examples to bring home the most 
outstanding and interesting (not to say amazing) ways in 
which each of the three assumptions above fails, singularly 
and collectively. 

Not surprisingly, the three EL.As are related. After all, 
they provide three views on why secure AIS's will need to use 
security profiles. Thus, if a real security label, one that 
suffices to insure correct handling of data so labeled (in other 
words, a security profile), is complex, contrary to ELA 2, 
then the simpler mechanism of a sensitivity label does not 
suffice, contrary to ELA 3. 

.2.1 ( ELA 1 ) Sensitivity labels on data (classification) 

and on users and their processes (clearances) 


are drawn from the same partially ordered set. 


2.1.1 Clearance & Sensitivity Labels. The degree of 
trust and degree of sensitivity markings are usually expressed, 
within an hierarchical scheme, with the same labels: 
Clearance Label =Classification Label. E.g., a Top Secret 
clearance is authorized access to Top Secret information. 
Because of the hierarchy scheme, the higher clearance level 
can also access (read) lower classification levels, but the lower 
clearance level cannot access (read) higher classification levels. 

2.1.2 Clearance Labels. However, life would be dull 
without exceptions. Clearance Levels can be modified by 
labels that have no equivalent classification labels. For 
example, a clearance can be modified as an interim clearance. 
(We think you're OK, and you can have some limited access, 
but not to the good stuff until we finish checking you out.) 

A person with an interim Secret clearance cannot access 
information classified, under the authority of the Atomic 
Energy Act, as Restricted Data (RD) or Formerly Restricted 
Data (FRD), but a person with either a Secret or interim Top 
Secret clearance can access both types of information at the 
Secret Level or lower [7]. DOE 5631.2 (Chapter I, Section 8) 
permits a very restricted form of interim access authorization. 
According to a reliable DOE source, DOE does not recognize 
interim clearances. But the DoD does. Hence, it appears that 
a person with an interim TS clearance might be granted 
access to S-CNWDI (a subset of RD) by the DoD. Whether 
this actually happens we cannot say. The clear and 
important point here is that usually no label on a classified 
document specifies whether a person with an interim 
clearance can access the document; i.e., there is no ''interim" 
classification label corresponding to an interim clearance. 
There might be a Notation that prohibits interim access, 
however. (See Section 2.3.2 and the Appendix.) 

Similarly, persons with contractor-generated confidential 
clearances cannot have access to classified foreign government 
information, RD, FRD, or ACDA (Arms Control and 
Disarmament Agency) classified information. Again, there is 
no contractor-generated confidential classification level. 
These situations are handled by other administrative 
procedures: just learn the rules-unless "you" are a computer 
system. 
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The new Limited Access Authorizations (LAAs) that are 
now issued to immigrant aliens and foreign nationals impose 
very strict access and need-to-know limitations. An 
individual's access under an LAA must be determined on a 
case-by-case, almost document-by-document, basis. In effect, 
there are no clearances for non-(U.S.) citizens, only access 
authorizations for specific purposes. A noncitizen contractor 
employee could require government authorization for access 
to specific information, as determined by need-to-know based 
on job requirements, for a specific contract only. 

2.1.3 DOE Example. The Department of Energy 
(DOE) uses classification labels that are not identical with 
clearance labels. 14 From the following table, clearances and 
classifications clearly differ at least in name. 

Table 1. Source: DOE 5631.2/11-13-80. 

Highest Classification (Read) 
Accesses Permitted 

Clearance 

Top Secret RD, FRD, & NSIQ-sensitive 

Top Secret FRD & NSI 
Secret RD 

Q-nonsensitive 

Top Secret NSI & FRDTop Secret 

Secret NSI & FRD 
Confidential RD 

L 

Secret NSI & FRDSecret 

Secret RD 

(as specified in the access permit) 


Q(X) 

Confidential RD 

(as specified in the access permit) 


L(X) 

We illustrate the accesses permitted with various 
clearances in figure 2. Of the three clearances-Q-Sensitive, 
Top Secret, and Secret-each can be described in the usual 
way by a level and a set of compartments. Two 
clearances-Q-nonsensitive and L-however, cannot be so 
described. Thus clearances and classifications differ more 
than in name. 

RD FRD NSI RD FRD NSI 
a. Q-Sensitive b. Q-Nonsensitive 

EJEJ
00 00 00

GG GGG GG 


Neither the ISM nor DOE 5631.2 is transparent. 
According to our DOE source, the distinction between QS and 
QN is largely irrelevant. Most people neither know nor care 
which Q clearance they have. The difference is not in the 
background investigation done, but who did it: an Office of 
Personnel Management (OPM) investigation can yield a QN 
clearance; a QS clearance requires the FBI. Since the Walker 
case, the situation is even simpler: DOE Branch Chiefs and 
above get QS; everyone else gets QN. (We infer that Branch 
Chiefs and above have had FBI investigations.) The 
operational difference between QS and QN is not whether TS 
access is granted, but how often. (Imagine trying to automate 
this.) 

Consistent with Table 1, we have also been assured that 
the difference between QS and QN is unimportant because 
"DOE doesn't generate (small grain of salt here) TS-RD." 
Any TS-RD document is almost surely a compilation of RD 
(Secret or below) with data that was already TS for some 
other reason. The portion markings make clear how the 
amalgamation was formed. DOE does not do portion 
marking of strictly RD documents. 

The DOE has to distinguish between RD /FRD 
information classified under the authority of the Atomic 
Energy Act and NSI (National Security Information) classified 
under Executive Orders. You figure it out-unless "you" are a 
computer system. DOE also has to protect Unclassified 
Controlled Nuclear Information (UCNI). The nonparallelism 
between clearance and classification labels is caused in part by 
the overlapping, nonhierarchical nature of these classification 
requirements-which brings us to the next ELA. 

2.2 ( ELA 2 ) Security labels are relatively simple 
with an hierarchical part and a non-hierarchical part 

(partially ordered by set inclusion). 

2.2.1 Nonhierarchical Systems. Unclassified National 
Security-Related (UNS-R) (pronounced "unser") information is 
a broad category of information that is considered to be 
unclassified but sensitive and, in the interests of national 
security, should be protected, especially when being processed 
in AIS or telecommunications systems that are vulnerable to 
monitoring by unfriendly interests. There is no label for 
UNS-R information-but perhaps there should be in 
computer systems. Such information, of course, can have 
other labels or notations such as Proprietary, FOUO, etc. ­
some of which could be hierarchical. Large proprietary or 
private systems could be considered equivalent to ''UNS-R 
Systems". 

Level Modifiers. In many cases, the level label must be 
modified to show owner or added sensitivity of the 
information: 

2.2.2 Ownership Modifiers. In friendly foreign 
relations, whereby countries or international pact 
organizations exchange classified information, the document 
must identify the owner of the information. For example, if 
the U.S. should be provided with a United Kingdom Secret 
document, the level label should indicate: UK-Secret. NATO 
documents, for another example, must be labeled COSMIC 

14. Practitioners, and even more so, researchers, in DoD secure computer FRD NSI RD FRD NSI FRD NSI 
systems should not object to a DOE example. Members of one 

c. Top Secret d.L e. Secret community need to be aware of the practices of the other. Moreover, 
we believe the trend is toward multilevel secure distributed systems ofFigure 2. Some DOE clearances are not just a level once isolated communities that will communicate with each other 

with compartments. through Multinet Gateways. 
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Top Secret, NATO Secret, NATO Confidential, or NATO 
Restricted, as applicable. Notice that modifiers may be 
inconsistent: Top Secret is modified by "COSMIC", not 
"NAT0".15 It's a little like learning an irregular verb-unless 
"you" are a computer system. 

A modified level does not necessarily transfer when a 
document portion is copied into another document. For 
example, if NATO Secret information is copied into a U.S. 
document, the U.S. is obliged to classify the document Secret 
(at least), but not NATO Secret. Instead, the U.S. document 
must bear the warning notice: "THIS DOCUMENT 
CONTAINS NATO INFORMATION"; and the portion 
containing the NATO information must be labeled "(NATO­
S)". (See fig. 3.) To import a portion from one "file" into 
another, you learn the rules-unless "you" are a computer 
system. Such rules involve more than sensitivity-which is 
our final ELA. 

SECRET 

Other title markings 
----fortion. (S)-­

SECRET 

SECRET 

[NATO] 

Portion. (S) 

SECRET 

l 

SECRET 

SECRET 
Other title markings 

THIS DOCUMENT 
CONTAINS 

NATO Portion. (NATO-S 
INFORMATION. 

SECRET 

I SECRET 

Figure 3. 	 Importing Secret Portion from NATO File 
into U.S. Secret File. 

2.3 ( ELA 3 ) Sensitivity labels and their 
associated rules suffice to insure correct handling 

of the data so labeled. 

2.3.1 Sensitivity Modifiers. As some of the previous 
examples illustrate, sensitivity labels by themselves do not 
suffice for a variety of reasons, such as the inclusion of various 
modifiers, document notations, and the interdependencies of 
ownership and classification authorities. Frequently, 
classification labels must be modified to show that the 
information is extra sensitive and requires additional 
protection. 

In the COMSEC world, encryption keys are considered 
ultra-sensitive. Material containing a key must be labeled 
with the appropriate classification level modified by a 
CRYPTO label: · Top Secret Crypto, Secret Crypto, or 

15. DIAM 65-19, item 3-07: "COSMIC is a caveat applied to NATO TOP 
SECRET documents. The caveat denotes requirements for specific 
procedures in handling and disseminating documents so marked." Our 
description characterizes practice. 

Confidential Crypto. This requirement even extends to 
unclassified material: Unclassified Crypto and For Official 
Use Only Crypto. And, of course, the requirement applies to 
all marking levels: document, page, and portion; e.g., "(U­
Crypto)". 

Restricted Data (RD) is another label that modifies 
classification labels. Moreover, this label indicates both 
ownership and .sensitivity. Restricted Data is applied to 
information classified under the Atomic Energy Act, and thus 
"owned" by DOE-even if it is also proprietary to and 
"owned" by a contractor. RD also indicates that the 
information is extra sensitive and requires additional access 
restrictions. The same is true for Formerly Restricted Data 
(FRD ). RD and FRD modify not only document and page 
labels, but also portion labels: TS-RD, S-RD, C-RD, TS-FRD, 
S-FRD, and C-FRD. There is no unclassified RD or FRD. 
As previously mentioned, however, there is an Unclassified 
Controlled Nuclear Information (UCNI) label. Generally, RD 
is physics, and UCNI is facilities and operations. UCNI 
(Section 148 of the Atomic Energy Act) is a Congressional 
response to the fact that OUO provides no legal standing in 
resisting a Freedom of Information Act request. UCNI 
protects sensitive, but unclassified, information about facilities 
and operations that would previously have been marked 
ouo. 

A subset of RD is Critical Nuclear Weapons Design 
Information (CNWDI). CNWDI is always labeled Top Secret 
Restricted Data, Secret Restricted Data, or Confidential 
Restricted Data. At the document or page level of marking, 
there is no label for CNWDI; there is a CNWDI notation 
required on the document.l6 (More on notations later.) 
However, CNWDI can be used as a label to modify clearance 
labels. A person can be cleared TS-CNWDI; i.e., has a TS 
clearance with a CNWDI access authorization (and briefed). 
There is a formal access authorization procedure that must be 
completed prior to a person's having access to CNWDI. Thus 
one might understandably infer the hierarchy: FRD < RD < 
N. In fact, in the subset sense, FRD < RD and N < RD, 
but FRD and CNWDI are generally incomparable. According 
to our source, DOE transclassifies RD to FRD when it needs 
to be shared with foreign partners and trarnclassifies RD to 
CNWDI when it needs to be shared with the DoD. Since 
FRD does not preclude access by DoD (DoD has "tons" of 
FRD), we infer that CNWDI, like RD, precludes access by 
foreign nationals. 

ATOMAL is another label associated with Restricted Data 
and Formerly Restricted Data. ATOMAL is an exclusive 
designation used by NATO to identify Restricted Data or 
Formerly Restricted Data information released by the U.S. to 
NATO. Therefore there has to be a method for translating 
RD or FRD to ATO.tv1AL: TS-RD +--->-COSMIC TS­
ATOMAL; S-RD ......_..NATO S-ATOMAL. 

In message traffic, the ''Unclassified" label can be modified 
by EFTO, which stands for Encrypted For Transmission Only 
(but can be stored in plain text). Apparently, you have to 
explain why unclassified information is taking up space in a 
classified environment. EFTO can also act as a reminder that 
the plain text could serve as a source for cryptanalysis. 

16. At the portion granularity (paragraphs, etc.), portion labels must be 
modified with the CNWDI label "(N)": (TS-RD)(N), (S-RD)(N), or (C­
RD)(N). "N", however, appears to be an artifact of the ISM not used 
by the DOE. 
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Some other labels that may be used to modify 
classification labels include: NOCONTRACT P 
PROPRIETARY,18 and LIMDIS. 19 

Compartments usually have access labels that modify 
classification labels that modify classification labels. Special 
Access Programs (SAPs), Special Access Required (SAR) 
programs, and Sensitive Compartmented Information (SCI) 
programs usually have code words or other designators that 
modify the classification: Top Secret/codeword or Top 
Secret/ codeword/ codeword/ · · · , where each instantiation 
of "codeword" is distinct. Usually, these markings are either 
classified or, if unclassified, considered very sensitive, and 
protected accordingly. Hence, no samples.20 

NOFORN is a label modifier that is sometimes used (e.g., 
Secret-NOFORN), and stands for No Foreign Nationals. 
When NOFORN is used, the document should be marked 
with some notation that specifies that access is limited to U.S. 
citizens and exceptions must be approved by such-and-such 
agency. Other possibilities are the exclusion, inclusion, or 
both, of a group of nationals. For inclusion, the group may 
consist of one country; e.g., NOCONTRACT /REL 
AUSTRALIA.21 

The label modifier WNINTEL is sometimes used to label 
information subject to the warning notation 'Warning Notice 
Intelligence Sources or Methods Involved." When used, this 
modifier is usually at the portion level (granularity); e.g., (S­
WNINTEL). 

The relationships between compartmented classification 
labels and clearance labels can be very complicated. (See 
Appendix.) Compartmentalization is consistent with need-to­
know. It helps prevent all but the most trusted from getting 
the big picture. In the commercial world, compartments 
could be considered equivalent to separation-of-duties 
requirements. 

2.3.2 Notations. Notations are document modifiers. 
They place some warning, restriction, or explanation on a 
document. Notations are not labels or label modifiers per se. 
There is no such thing as Secret/Notation. The notation 
must appear once on the document, usually on the cover 
and/or title page, and "merely" provides additional 
instructions on how the document is to be protected. (This 
poses problems for computer systems.) Some notations, 

17. Not releasable to contractors/consultants no matter what their 
clearances. 

18. Proprietary: Government does not own the information. Approval 
must be obtained from owner for further dissemination. 

19. Limited Distribution: Distribution is limited to some specified control 
channel or program. LIMDIS should be accompanied by some 
notation that specifies what distribution is acceptable. 

20. 	Nor can we offer examples of codewords that are no longer used. To 
do so might result in this document's being classified. While we are on 
the subject of who-huh-what-label?, there exist compartments, that we 
can or could mention, that have always been unclassified and whose 
meaning we now can or could provide, although at one time their 
meanings were classified. But, while we can discuss such 
compartments and their meanings in an unclassified document, if we 
were to do so, we might not be permitted to indicate that their 
meanings were once classified. The fact that the meaning of a specific 
compartment has been declassified tends to be classified or, at least, 
sensitive. 

21. We are unaware ·of any one-country exclusion group. However, as an 
(hypothetical) example with (real) labels: NOOONTRAOT/REL 
AUSTRALIA/ NEW ZEALAND/ UNITED KINGDOM could be 
upgraded to the more restrictive NOOONTRAOT/REL 
AUSTRALIA/ UNITED KINGDOM. (Such an upgrade could be 
driven either by a change in the document's contents or by external 
events.) 

however, are specifically required in addition to certain label 
modifiers. If data or information is extracted from a 
document to which such a notation applies, then the 
notation(s) must accompany the extraction. Some of the 
current notations required by the ISM are as follows: 22 

(a) Restricted Data requires the following notation on the 
containing document: 

RESTRICTED DATA 

This material contains RESTRICTED DATA 

as defined in the Atomic Energy Act of 1954. 


Unauthorized disclosure subject to 

administrative and criminal sanctions. 


(d) The following Notice that reproduction of any portion 
of a document is absolutely prohibited without permission 
may require knowing a chain of command-which might 
prove difficult for a computer system: 

REPRODUCTION REQUIRES 

APPROVAL OF ORIGINATOR 


OR HIGHER GOVERNMENT AUTHORITY 


(e) FOREIGN GOVERNMENT INFORMATION. 
Where appropriate, this marking on U.S. documents ensures 
that such information is not declassified prematurely or made 
accessible to nationals of a third country without the consent 
of the originator. Importing a portion that contains such 
information into a "file" that did not, poses for a computer 
system at least the two problems emphasized by the italics: 
correcting the declassification date (see below) and correcting 
the dissemination controls. 

The notation for COMSEC material is contained in DoD 
4220.22-S-1, a supplement to the ISM. The current 
requirements for COMSEC material include: 

a. Keying material requires the caveat CRYPTO. 

b. Otherwise, the Notation: COMSEC Material ­
Access by Contractor Personnel Restricted to 
U.S. Citizens Holding Final Government 
Clearance. 

CRYPTO is a label; it modifies a classification. COMSEC 
is a Notation; thus there is no Secret/COMSEC, for example. 
Yet in an AIS, such a label may be needed. For clearances, 
COMSEC is a label (ELA 1). A contractor employee must 
have a Secret/COMSEC clearance (Secret clearance with 
COMSEC access authorization) to access Secret documents 
containing COMSEC information. A government employee 
currently would need only a Secret clearance and a need-to­
know. (Will computer systems know what kind of employee 
each of us is?) COMSEC access also requires U.S. citizenship 
and a final clearance; no interim clearances, except an interim 
Top Secret, can have access to S- or C-COMSEC. COMSEC 
access authorization includes access to CRYPTO; there is no 
longer a CRYPTO label for modifying clearance labels (ELA 
1 again). 

A Notation required when information is believed to be, or 
should be, or it is believed it should be classified, is: 

CLASSIFICATION DETERMINATION PENDING. 
PROTECT AS THOUGH CLASSIFIED 

[appropriate classification label]. 

22. DoD Industrial Security Manual for Safeguarding Classified 
Information, DoD 5220.22-M, September 1987, paragraph 1l.b.(8) 
ADDITIONAL MARKINGS. The Notations themselves are verbatim, 
the rest paraphrased from the ISM. 
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Once notated, the document must be protected at the 
designated classification level, but it does not have to have 
any other labels, although it could be marked with 
appropriate private or proprietary labels. Any apparent 
parallel between a pending classification and an interim 
clearance is purely illusory. 

A Notation required on some documents (e.g., COMSEC) 
is: Not releasable to the Defense Technical 
Information Center per DoD Instruction 3200.12. 
(Will computer systems act on the basis of such Notations?) 

2.3.3 Authority Statements. Classified documents 
must be marked with a statement that specifies what 
authority classified the documents. Usually this authority 
statement and the declassification statment are combined into 
one statement, but here we shall treat them separately. 

2.3.3.1 Classification Authorities. Various 
components of the government are designated classification 
authorities, some by law (e.g., DOE under the Atomic Energy 
Act) and some by Executive Order.23 There are Original 
Classification Authorities and Derivative Classification 
(Authorities). The latter is (are) required to respect original 
classification decisions and to carry forward any assigned, 
authorized markings. 

Anyone who wants to know how many original 
classification authorities there are can read the Federal 
Register and then try to determine how many other officials 
have been delegated the authority. Or they can ask the 
Information Oversight Office in General Services 
Administration (GSA): In FY84, the number was 6,900. 24 

"Classified by" line. Original classification authorities 
are responsible for developing classification guidelines for the 
derivative classifiers, who actually produce most of the 
classified information~FY84: 4% original, 96% derivative. 
These guidelines should specify the classification authority 
statement to be used on documents created under its 
authority. For contractors the statement should be provided 
via the Contract Security Classification Specification (DD 
Form 254). Each classified document (regardless of medium) 
is required to have a marking: Classified by 
<something>, where something could be the name of an 
agency, the name of a classification guide, multiple sources~ 
i.e., too many to list (but a record must be kept 
somewhere~a potential problem for computer systems, 
especially distributed ones)~ aDD 254 for Contract <ID>, 
dated <date>, or, in the case of message traffic, nothing. 
Messages do not have to have a "Classified by" line; the 
sender, by default, is considered to be the classification 
authority for the message. 

2.3.3.2 Ownership. Each classified document is 
required to be marked with the name and address of the 
originating agency or facility and the purpose (e.g., Contract 
number) for which it was generated. Ideally, especially in 
contractors, the document should indicate both the preparer 
and whom it was prepared for. 

2.3.3.3 Control Channels. When applicable, 
classification authorities may designate certain control 

23. Executi_v~ Order 12356 provides for Original Classification 
Aut~ont1es-Pres1dent, Agency Heads and officials designated by the 
President m the. Federal Register, Officials delegated this authority 
pur~uant to Seetwn 1.2(d) of the order, and Exceptional cases-and 
Denvat1ve Classification. 

24. 	"Annual Report to the President FY1984" Information Security 
Oversight Office, GSA, April 26, 1985. ' 

channels for the distribution of their information. When 
deemed appropriate, documents in these channels may be 
required to be labeled with a statement specifying the channel 
required, such as Handle via XYZ Control Channels 
Only. Control channels can be implicit: some COMSEC 
material is controlled through the COMSEC Material Control 
System, but this is usually not explicitly labeled as a 
requirement on the material. (It may need to be explicitly 
labeled in a computer system.) 

2.3.3.4 Accreditation Authorities. Accreditation 
authorities should not be confused with classification 
authorities. Classification authorities determine what is 
classified; accreditation authorities ( accreditors) determine 
whether a particular system can process classified information 
and at what level. Once a system is accredited, the 
accreditor is responsible for ensuring that any classified 
information processed is appropriately protected and for 
issuing the appropriate security rules for operating the system. 
A system can be accredited by more than one authority. 

Some accreditors may be responsible for accrediting all 
systems that process a particular category of information; 
such accreditors may also be the original classification 
authority for the information.25 

2.3.3.5 Declassification Statements. All classified 
material should be marked with downgrading and 
declassification instructions, as appropriate. 

Downgrade to <level> on <date or event>. 
Declassify on <date or event>. 

Abbreviations include: DNG/S/<date or event> and 
DECL <date or event>. 

If there is no date or event, the notation "Originating 
Agency's Determination Required" or OADR should be used. 
Importing from one "file" into another may pose problems for 
a computer system if the declassification statements differ. 
For documents derived from or based on multiple sources, the 
new documents must be marked with the most restrictive 
determination. 

When material is downgraded or declassified, the 
classification labels and other markings will be changed as 
appropriate. Material that has been declassified must still be 
provided some degree of protection. Declassification does not 
mean releasable to the public. Public release is a separate 
determination. 

Another marking required on classified documents is the 
Date of Origination. This date obviously forms a base line for 
any downgrading or declassification. 

3. Interdependencies of Security Label Components 

Relations among security label (profile) components (figure 
4) can be implicit or explicit. Implicit: Change in one item's 
label can cause a change in another item administratively but 
without a change in label. Explicit: Change in one item will 
cause a label for another item to change also. Implicit 
relations can be handled easily enough by manual operations. 
For electronic operations, however, implicit relations may 
have to be changed to explicit ones~but not necessarily in all 
cases. 

25. Examples of accreditors include the four listed in the IP Revised 
Security Option (MIL-STD 1777). Accreditors are usually owners of 
control channels. 
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Authority Regrade/Declass 
----------..-;;.S'tatement & DateStatement _______... 

Levels 

Ownership~N 1. ~Sensi ivity 

MOOilim~~r~~:c 

Channel - Modifiers 

Figure 4. Which Security Label Components Affect 

Which? 


For example, a Warning Notice of Restricted Data implies 
(1) that the Atomic Energy Act is included in the 

Classification Authority, (2) that DOE is included in 

Ownership, and (3)that the hierarchical level (Classification) 

may also be affected.26 Thus, in a computer system, 

importing an S-RD portion into a "file" may affect all these 

components of the receiving file's security profile. 


Because of the interdependencies of components, either 
transclassifying or· downgrading a document (or "file") can 
complicate its ultimate declassification (fig. 5-b) in the same 
way that amalgamation often does (fig. 5-a), namely, by 
including more owners and classification authorities. The 
DOE could directly "declassify" an RD document to OUO. If, 
however, DOE transclassifies the document ("file") to FRD or 
CNWDI, then "declassification" to OUO may require the 
approval of both the DOE and DoD, where (if) FRD or 
CNWDI implies that DoD is included in ownership and 
classification authority.27 From a DoD viewpoint, 
"declassifying" a CNWDI document may be more complicated 
simply because the DOE is the originating agency, as 
indicated by the required Restricted Data notation, and 
"OADR" applies even if it does not appear explicitly on the 
document. 

S-RD 

/
(DOS~NWDI 

TS -RD (OADR) 
(DoD) (DOE) DOE & \oD) 

(Downgrade) ou ouo 
(DOE & DoD) (DOE) (DOE & DoD) 

a. Amalgrunation Can b. Transclassification May 

Complicate Downgrading. Complicate Declassification. 


Figure 5. 	 Expanding Ownership Complicates 
Re-Classification. 

26. A common misconception outside the DOE is that RD or CNWDI 
implies at least Secret. There is plenty of C-RD and S-RD, and 
relatively little TS-RD. CNWDI can also be C, S, or TS. In addition, 
CNWDI may be categorized as Sigma 1 (thermonuclear), Sigma 2 
(fission), etc. 

27. For brevity, we use the portion labels for the document labels. 

4. Further Implications for Computer Systems 

4.1 Messages. In messages, the title page and portion 
markings are usually considered text: the author is required 
to include them in the body of the message. The page 
markings are also in the text, top and bottom, but the highest 
page marking must also be attached to the container, 
envelope, packet, etc. that transmits the message. In other 
words, major portions of what may eventually need to be part 
of a (trusted) security profile and therefore may need to 
reside in (and be controlled by) the TCB, resides, with current 
implementations, in the contents of the message. Ideally, 
computer security and specifically the avoidance of 
unauthorized disclosure should not depend on automated 
message contents, i.e., data integrity. 

4.2 Distributed Systems. In a distributed computer 
system, users may be able to access remote resources. 
Labeling requirements will vary according to the granularity 
of transfer. We illustrate the problem in figure 6. Importing 
a portion of a "file" into another (on a different host or file 
server) may result in the loss of that security-related 
information and control provided by the title markings 
associated with the "sending file". While the same problem 
could occur in a monolithic computer system, it seems almost 
inevitable in a distributed system, and its solution more 
remote (no pun intended). 

~fit -----8 
File = Complete Document 

Secret File Secret File 

mela1l\1 ~~e[a1l\'J 
NO PROBLEM 

User Resource 

~Secr.et
Portion 

Portion has Portion Labels Only 

PROBLRM: No title. oa~e markings
apolictao!e,_to t1ie oortJon re cameo 

·to· che nle created by t e user. 
Resource 

Figure 6. 	 Loss of Security Label Components in a 
Distributed System. 

We illustrate the problem more concretely in figure 7. 
The context could be monolithic or distributed. The "file" 
resulting from the import may have its Classification 
Authority expanded to the union of the two separate 
authorities. The owner might remain the same if no 
proprietary information, special requirements, or 
interdependencies (as in our DOE/DoD example) apply. The 
resulting Control Channel will be per agreement among all 
channels involved. The resulting Declassification Statement 
will be the more restrictive. (We assume OADR is more 
restrictive than 2 years.) Finally, any Notation applicable to 
the imported portion must be included in the result. 
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SECRET 

A/:)thor~.YJ)C 
C~trp,fiJ~annel: Y ec ass: · years 

Secret 

[ No Notations ] Portion 

SECRET 

SECRET 

.I Al)thor~yjf 

C':I:YJ~f~~kX 

Warning Notice: 

I~lilie~ce Sogr,ce~or et o s Invo ve . 

'\ 
SECRET 

1 
Exa.egt for rfr~rietar.t info~mationSECRET _,ali erta1 c es or epen enc1es. -

Aut~rity: ~;:;--
---.P-er agreement between X andY.ho45~c!~i~ ~ _..., __ 
----More restrictive Declass applies. 


Warning Notice: 


Int~p!Re~c1Jlo~rc'ff: ----- If applicable to the portion. or e o s vo ve . 

SECRET 

Figure 7. Problem even in a Monolithic Computer 
System. 

5. Conclusions 

We hope it is abundantly clear that security labels are 
not simple. They provide more needed security-relevant 
information than sensitivity alone. Even sensitivity is 
nontrivial. Neither do classifications and clearances 
necessarily map directly, one to the other. The implications 
for secure computer systems may be profound, especially for 
those systems that will seriously and distributively attempt to 
replace, as far as possible, manual operations on hardcopy. 

Of course, if one never generates any documents (in 
whatever medium) of any significant longevity; if all one's 
actions are "quick and dirty" and simple (and on a monolithic 
system), then getting the Declassification Statement wrong on 
a sensitive document may never actually result in the 
document's unauthorized disclosure. Under these limiting 
conditions, perhaps some of our other examples go away as 
well. But "quick and dirty" contradicts security; and simple, 
monolithic systems are the past, not the future. 

We hope to discuss in detail, in a future paper, our 
thoughts on possible solutions to some of the problems 
presented here. At present, however, in our judgement, the 
community is not "ready" for general solutions. There is not 
just a lack of consensus on what the problems are or on what 
some reasonable candidates for solutions might be. There is 
not yet even much perception that a general solution is 
needed. Each agency understandably tends to view its own 
classification and security procedures as relatively sane and 
simple. (Familiarity with procedures encourages this view 
whether it is well-founded or not.) As one person at DOE 
stated, "The complexity of the issue is in DOE's interactions 
with the DoD and other foreign governments, not within the 
department." Here "other" is a redundant synonym for 
"foreign", but the unintended suggestion that the DoD is a 
foreign government underscores the person's point that the 
difficulty lies at the boundary. Currently the DOE exchanges 
files with DNA, a DoD agency. While the DOE admits that 
"file handling is messy and the [file] headers are HUGE", they 
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have confidence in the security of the exchange and remain 
comfortable with a distinction between sharing files and 
sharing documents. Of course, the DOE is just one example 
that interfaces with the DoD. As automated, inter-agency 
traffic increases (both the traffic and number of sharing 
agencies), each agency may understandably become more 
concerned about what agencies the agencies they share with 
share with. A general, standardized security mechanism such 
as security profiles may then be demanded by such agencies 
or mandated from above; and the distinction between sharing 
documents and sharing files may no longer be viable. 

At the top level and for monolithic computer systems, one 
solution may be stated simply enough: Identify all gaps 
between security procedures for clearances and classified 
hardcopy, on the one hand, and current AlS practice on the 
other; then close these gaps by including the required 
information in a genuine security label mechanism. 
Obviously, this is easier said than done. 

Simply what constitutes a complete list of gaps is not, in 
general, known or agreed upon. The ''list" given here can be 
expanded. Thus, as a parting shot, consider the retention 
problem. Classified hardcopy may be associated with a 
specific contract, identified, say, as number N. Said contract 
has an estimated expiration (completion) date, EED ( cf DD 
form 254). Depending on contractual relations and whether 
data is to go from one company to another, permission may 
or may not be needed to export data from the document to a 
document associated with a different contract. Customarily, 
at the EED, either the EED is extended or the document 
must be destroyed within a specified time, typically 90 days. 
Destruction of hard or soft copy under a different contract 
(including data imports) may be someone else's problem, but 
destruction of contract-N identified copy must include all 
copies, including automatically generated backups. (We say 
nothing here about the problem of (magnetic) remanence.) 
The contract number and the date of the most recent 
applicable DD form 254 may be indicated in the "Classified 
by" marking of a hardcopy document, but the EED itself is 
not on the document. Here again automation may require the 
security profile of the softcopy to contain even more than the 
full set of markings on the corresponding hardcopy. 

While solutions to the problems broached here may be 
tailored to a specific application on a monolithic computer 
system, such an ad hoc approach seems inefficient from a 
software development view. Neither does such an approach 
lend itself to verification of either the formal or less formal 
kind. 

For distributed systems, we expect the same problems to 
be harder. Communications protocol standards are only now 
being agreed upon which leave no room for all the additional 
data that would be needed to hold a full-fledged security 
label. 
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The following table shows classification components 
vs. some clearances. 

TS lnt 
TS 

s lnt 
s 

cu lnt co 
cu 

TS + + - - - - -
s + + + + - - -
c + + + + + + + 
RD + s + - + - -
FRD + s + - + - -
NWSC + * + * + * -
ACDA + + + + + + -
SCI + s + - + - -

COMSEC + s + - + - -
NATO COSMIC s + - + - -
NATO Restr. + + + -? + -? + 
Foreign + ? + ? + ? -
Domestic + + + + + + -

+ Access granted 

- Access denied 

* Authors lack need-to-know. 

? No specific rules. We assume this means "as per agreement 
with the Government." May be similar to NATO. 

-? Access denied according to the ISM, but this might be 
challenged based on the fact that lower clearance (C 0 ) can 
have access. 

Int = Interim 

NWSC =Nuclear Weapons Security Program 

ACDA =Arms Control Disarmament Agency 

C 0 = Confidential clearance granted by Government 

C 0 = Confidential clearance granted by Contractor 
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INTRODUCTION 

Accreditation: A policy decision by the responsible 
Designated Approving Authority (DAA) resulting in a 
formal declaration that appropriate security 
countermeasures have been properly implemented for 
the computer (ADP) system or network. 

The process involved in p~eparing for the accreditation 
of a computer system or facility is, in many ways, akin to 
doing your federal income taxes -- it is a labor intensive 
process, requires a mass of supporting documentation, and is 
almost certain to frustrate the most eventempered 
participant. In fact, it seems that the less organized you are, 
the more frustrating an experience you will have -- in both 
taxes and accreditation! 

The primary intent of this paper is to help others avoid 
unnecessary frustration by sharing some of the lessons that 
we have collectively learned -- some the hard way - ­
through direct participation in a variety of different 
accreditation experiences. We share a common concern 
gained through our involvement in computer security as civil 
servants, military personnel, and consultants who have helped 
accredit systems for the Department of Defense, selected 
U.S. civilian agencies, and the Department of Energy. Based 
on these experiences, we believe that the success of a 
computer system accreditation (or certification) is, in very 
large part, dependent upon the way it is managed from the 
start. 

Because of the many different agencies and departments 
we have either served in or supported, it is hoped that there 
is broad applicability to the the lessons presented here. They 
should be useful to anyone inside or outside the government 
who finds him- or herself involved in planning, managing, or 
participating in any portion of the accreditation process. The 
desire to save money and reduce waste is also another reason 
for this paper: it is hoped that dollar depleting 
wheel-spinning can be avoided by applying some of the 
lessons offered. Finally, while accreditation is an experience 
that the defense community has lived with for a long time, 
the civilian agencies have not, for the most part, had to 
comply with its many requirements. Risk assessment, annual 
loss expectancy, contingency planning, security tests and 
evaluations, etc., may be foreign to many of the federal 
government's unclassified yet, critical computer operations. 

But the climate appears to be changing and concern for 
computer security in this sector is slowly increasing. It is 
therefore also our intent to share our experience with those 
in that community who are gearing up for an accreditation or 
certification. The paper is organized according to the key 
phases involved in the accreditation process: initial 
preplanning, risk assessment, security test and evaluation, 
and the final phase of preparing and presenting the formal 
accreditation package. The remainder of this paper 
highlights many of the most frequently cited problem areas 
that can hamper each of these phases, and offers suggested 
approaches for avoiding these glitches in future accreditation 
efforts. 

THE PLANNING PHASE: 

LAYING THE FOUNDATION FOR SUCCESS 


Solid, up-front planning establishes the foundation for a 
smooth and successful accreditation experience. While this 
may seem intuitively obvious, there are enough "war-stories" 
around of accreditation snags and mix-ups to indicate that 
the rudiments of this phase are frequently only given lip 
service or are altogether ignored. 

(1) 	 Define the Roles and Responsibilities of All 
Participants 

Accreditation requires the participation of numerous 
people. Those most intensively involved are the 
accreditation team leader and team members. The assembly 
of a multidisciplinary accreditation team is essential if all 
facets of accreditation are to be addressed with a high level 
of confidence. The team should, at minimum, have expertise 
in the following areas of security: computer, physical and 
environmental, communications, and emanations (TEMPEST). 
The team leader should be definitive about who will be 
responsible for each of these areas throughout the process. 

But aside from the accreditation team, there are a 
number of other key people who must be identified early on 
in the process and with whom accreditation requirements 
must be precoordinated. Senior decision makers responsible 
for approving budget expenditures and labor assignments 
should be briefed at the start with regard to resource 
requirements, milestones, and any special needs that the 
team anticipates. If that individual or group of individuals is 
not fully conversant with accreditation specifically and 
security generally, a brief overview of the process is also 
worthwhile. This is particularly true if accreditation 
resource requirements are larger than the allocated security 
budget (which in most cases is true since security is rarely a 
dollar-rich line item in the operating budget). 

Other key individuals with whom early contact must be 
established include the: 

Computer facility manager and principal system 
operators (to coordinate scheduling of the risk 
assessment and ST&E with the objective of 
minimizing system down times, as well as to 
collect all system/facility background information 
relevant to the accreditation) 

System security officer (SSO), if one has been 
selected (to participate on the team or to assist 
the team in collecting all necessary data during the 
survey, risk assessment, and ST&E phases) 

Agency or headquarters security office (principally 
for coordination on physical and environmental 
security concerns and threats) 

Agency or headquarters engineering office . (to 
address facility-related desig;t, constructiOn, 
environmental, and electrical issues and/or 
quest 'ons throughout the process) 
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Local law enforcement agenc1es or representatives 
(in the event that additional threat data is 
necessary) 

Nearest Military Intelligence (MI) Group (for 
up-to-date TEMPEST threat and espionage data 
and survey/test assistance). 

Since formal TEMPEST surveys are generally scheduled based 
on the importance of the computer facility· s operations, this 
last point is particularly crucial if accreditation must be 
achieved within a certain period of time. One team leader 
briefed his supervisor that accreditation could be 
accomplished in 4 months. only to discover that there was a 
significant waiting period for the required survey! 
(Fortunately there was a happy ending to this story -- he was 
able to piggyback his survey with one that had been scheduled 
for a nearby facility with a higher priority operation.) 

(2) Precoordinate and Preschedule As Much As Possible 

Based on the preceding discussion of roles and 
responsibilities, it is clear why precoordination and 
prescheduling are worthwhile. From the standpoint of the 
accreditation team, it also provides for well-coordinated 
interfaces with the numerous offices and personnel with 
whom they will have contact. No one likes to answer the 
same questions repeated by different members of the team, 
nor do they appreciate redundant requests for data which 
could have been provided during one, single session. In other 
words, it is critical· to pre-plan all survey questions to be 
asked by each team member in order to minimize repetition, 
unneeded back/tracking, and successive, costly site visits. 

The development of a comprehensive schedule and a 
companion accreditation "diary" is also integral to a 
well-planned effort. They serve to provide a clear 
understanding of the accreditation timetable along with the 
agreed-upon responsibilities of each person involved. The 
diary should include dates when precoordination meetings or 
contacts took place, the name(s) of the individual(s) with 
whom the arrangement(s) were established, and the date(s) of 
the planned meetings, the survey, risk assessment, ST&E, 
etc. Advance scheduling of critical meetings or events is 
especially important, particularly when they involve senior 
decision-makers or entail a significant occurrence such as a 
system shutdown for the ST&E. And finally, a word to the 
wise: all meetings should be confirmed a day or two in 
advance to ensure all key attendees will be available as 
planned. One team member made a very long trip only to 
find that a key point-of-contact was on leave for the week; 
an advance phone call might have saved the day. 

(3) Make Use of The Fruits of Others' Labors 

In many instances, a computer facility facing 
accreditation is located in the same building or on the same 
base or center where an accreditation has recently taken 
place. It is perfectly acceptable to coordinate with the 
participants of the previous accreditation activity to solicit 
data and information that is pertinent to the ongoing effort. 
In many cases the threat data that pertained to the 
accredited facility are applicable to the other. and can be 
massaged to fit current accreditation needs. It is advisable 
to precoordinate this step with the DAA · s representative to 
ensure that he/she does not object to this time-saving 
approach. 

In this same vein, it is important to acquire as much 
available data and "history" about the computer 
facility/system as possible. Of interest would be any records 
on major and/or minor system down-times and their causes 
1. VC failure, electrical outages, weather-related problems, 
etc.); security ''track-records" and incident reports: and all 
system mission- and organization-related data. This type of 

information, assembled as part of the daily operational 
regimen of a facility, can be invaluable to the accreditation 
team. 

(4) Collect, Read, and Analyze All Applicable 
Instructions, Regulations, and Standards in 
Their Entirety Early On · 

While this statement also seems so patently obvious that 
it should not merit discussion, war-stories dictate otherwise. 
To avoid surprises, it is prudent to cullect and thoroughly 
read all documented requirements that pertain to the 
accreditation of the given system before doing anything else. 
This early familiarization period allows the team manager 
and members to identify whether methodologies and 
approaches set forth in the documentation fit the "reality" of 
their particular accreditation situation. Additionally, it 
allows them to pinpoint any areas where guidance is 
ambiguous or non-existant. This will also allow the team to 
strategize in advance regarding how they will address any 
special accreditation issues that are not specifically covered 
in their respective agency· s accreditation guidance. Finally, 
in those cases involving multiple agencies, agency-specific 
accreditation standards must be integrated into a 
memorandum of understanding that sets forth the agreed 
upon accreditation needs of the multi-user system. 

(5) 	 Use the "Tools of the Trade" to Maximize 
Efficiency 

The accreditation team can vastly simplify its task if it 
plans in and precoordinates the use of selected accreditation 
., tools." For instance, if permissible during the site survey, 
the use of a hand-held dictaphone for note-taking greatly 
speeds up an otherwise tedious process. The use of a 35mm 
camera has also proven to be useful in certain situations. 
Photos are not intended for publication in the final package 
as a rule, but rather are used by team members to jog their 
memories when developing survey and assessment results. It 
can also be invaluable in tracking the progress of major 
system changes over time that have an impact on security, 
and provides a head start on the system's accreditation or 
certification. 

The team should also avail itself of the latest Evaluated 
Products List (EPL) which inventories all computer security 
products approved for use by the DOD Computer Security 
Center, as well as the latest Datapro reports which list all 
available computer products and their capabilities, to include 
security features for given releases of software. 

Finally. the team may find that instructional videos. 
similar to one that we recently produced for the Navy, can 
simplify many facets of the accreditation process. help 
explain key roles and responsibilities to prospective team 
members and other participants, and provide a cost-effective 
security training tool for use by the SSO throughout the 
lifecycle of the system. 

THE RISK ASSESSMENT PHASE: STAYING IN THE 
DRIVER. S SEAT 

Perhaps the most frequently mentioned liability during 
this phase of the accreditation process is the tendency to let 
the documentation drive you rather than the other way 
around. The applicable regulations and instructions provide 
policy and guidance on how best to determine and measure a 
system· s vulnerability to speci fie risks. But the 
accreditation team is responsible for actively managing the 
overall process, and is afforded a certain degree of latitude 
in meeting this responsibility. 

While the degree of latitude in selecting a risk 
assessment methodology may vary depending upon whether 
the system will process classified information, the team can 
generally: 
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Select the best risk assessment methodology for 
the given system (e.g., qualitative versus 
quantitative) 

Determine whether an automated risk assessment 
package makes sense for the accreditation 
situation at hand and, if so, make an appropriate 
selection 

Select the most suitable format and "packaging" 
strategy for all documentation prepared as part of 
this and subsequent phases 

Consider any planned system enhancements in 
selecting the methodology in order to facilitate 
future risk assessments. 

Finally, if the team is considering use of anything 
''exotic", it is strongly advisable to touch base with the 
DAA' s representative to determine whether the approach 
under consideration is acceptable -- before digging in too 
deeply. In one instance a system developer toyed with 
designing his own add-on security software package, 
assuming that this was an acceptable approach to managing 
the system's risks. The DAA had other ideas on this subject, 
however, and use of only a few software packages with solid 
security performance records was considered acceptable for 
this particular classified system configuration. Luckily the 
question was asked first. 

THE SECURITY TEST AND EVALUATION (ST&E) PHASE: 

PLANNING TO ADDRESS THE OMITTED 


AND UNMENTIONED 


Once the risk assessment is completed and all 
recommended countermeasures have presumably been 
implemented, the ST&E team is responsible for ensuring that 
the system· s security countermeasures exist and serve their 
intended purpose. The accreditation team manager can 
provide a thread of continuity between these two phases, 
since, as a rule, survey/risk assessment team members do not 
participate in the ST&E to ensure full objectivity. 

Because a separate team is involved in the ST&E 
process, the problems that are frequently encountered during 
this phase are associated with continuity. Specifically, the 
ST&E team must hope that the risk assessment report. which 
they will use extensively in preparing for the ST&E. addresses 
all system deficiencies and associated countermeasures. 
Frequently, the risk assessment addresses only those 
countermeasures identified as part of the assessment and 
omits mention of any that were already in-place and 
effective. Thus, the ST& E team should plan on fully 
immersing itself in all available documentation -- not only 
the risk assessment. but also system mission statements, 
standard operating procedures, etc., to ensure that all 
countermeasures are tested and discussed in the final ST&E 
report. This is critical since the report is used by the DAA to 
make the final accreditation decision. 

The need for a:nple precoordination prior to and during 
the ST&E 1S also cntlcal. The necess1ty for prescheduling the 
ST&E itself has already been emphasized above. As the date 
approaches. the test director should coordinate test activities 
with all involved site personnel. Moreover, any special 
requirements for the ST&E should be discussed in detail with 
the system manager (e.g., color changes. system 
shutdown/start-up, etc.) The test director should also 
require that each ST&E team member prepare a schedule 
showing the sequence of their specific test activities. This 
will cause team members to critically review and plan their 
tests, eliminate back-tracking, and expedite the test. 

Presentation of the ST&E results is the final major 
hurdle in the ST&E phases; it can also bring the process to a 
standstill if (1) the ST&E uncovers a deficiency which must 
be corrected before the DAA will accredit the system, and 
(2) in order to correct the deficiency. addi tiona! resourcPs 
are required. Since accreditation is frequently regarded as 
"that time-consuming irritant that senior decision maker· s 
learn to live with" -- few team leaders feel comfortable 
making a presentation that concludes with a request for more 
money. In the final analysis, this presentation is a sales 
pitch, not a results briefing that the team leader or his 
supervisor must present. It should be viewed as such and the 
content of the presentation must be on- target, high-level in 
perspective (versus forcing-feeding a busy decision maker 
endless tactical details), and as upbeat in tone as possible. 
While this suggested approach will not guarantee a 
commitment of additional resources, it will hopefully make it 
more likely. 

TYING UP LOOSE ENDS AND OTHER FINAL REMARKS 

The last major hurdle to cross in the accreditation 
process is effectively organizing all the team· s findings and 
supporting documentation into one document that will 
comprise the formal accreditation package. A word to the 
wise here -- the importance of a well-organized presentation 
and report cannot be over-stressed. The presentation should 
include a detailed table of contents that serves as a 
"road-map" for the DAA in his/her review effort. Again, 
this will not ensure accreditation of the system, but it will 
certainly establish a good first impression regarding the 
team· s overall professionalism and performance. 

In the final analysis, a well-managed accreditation 
effort provides an excellent learning opportunity for all those 
that it involves, facilitating a greater appreciation for the 
many risks to which a computer system is exposed and the 
ways in which such risks can be minimized. However, when 
the process is unmanaged or ill-managed, it can be a costly 
and nightmarish experience for all concerned. Hopefully the 
lessons set forth here will help those who might face such 
involvement to turn the experience into the positive 
management challenge that it can and should be. 
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Abstract 
This paper addresses two multilevel security problems 

that appear to require write-down of data. However, such 
write-down would incur risks since it makes visible to users 
data that is derived from information for which the users 
are not cleared. The proposed approach essentially avoids 
write-down in both cases, thereby increasing the level of 
assurance of the system. The first case arises in a multi­
level rule-based expert system, where we need to ensure 
that a low-level user will not be given grossly inconsis­
tent or harmful advice due to higher level rules and data 
not being available. The second case arises from use of 
rules to assign classification labels to new data entering a 
multilevel database system. 

1 	 Consistency for Multilevel Rule-Based 
Systems 

Rule-based Expert Systems currently operate at a single classi­
fication level. However, there will be increasing need for rule­
based systems in which the rules themselves may have classifi­
cation labels, as well as the data on which these rules operate. 
Examples are discussed by Berson and Lunt [2]. Only rules at 
or below the user's clearance level would be invoked on behalf 
of the user, and only data at or below the user's level could be 
utilized by the rules. 

An important problem which arises for such multilevel rule-based 
systems is the consistency of the results. By consistency, we 
mean that these results would not seriously conflict with require­
ments of the application. Such consistency could be achieved, 
but at the expense of security, if the results were initially pro­
duced with the system running at system-high and then an at­
tempt were made to sanitize these high results. However, run­
time sanitization generally would not be acceptable due to the 
complexity of such a sanitization process and the need for- it to 
handle a very wide range of information. It is not likely that 
such complex sanitization could be sufficiently trusted. 

We propose a method which we call spiral consistency enforce­
ment to essentially avoid this write-down problem. A key aspect 
of this method is independent execution of two similar expert 
system processes at two different classification levels. The sepa­
rate results are then compared by a verification process to ensure 
that the recommendations formed at the user's level are safe and 
consistent with the technical requirements of the application. 

For example, the expert system should not propose a mission 
with advice to use sunglasses (a glare shield) when in fact the 
more highly classified details of the mission actually require thick 
lead radiation shielding. It would be far better for the system 

to simply not propose the mission at all, than to risk human 
life. The verification process has the responsibility to determine 
whether the result computed at the user's level is valid or invalid, 
and to produce a yes/no decision as to its use. The primary 
stages needed for this enforcement of consistency are: 

Spiral Consistency Enforcement: 

1. 	Primary Process: Execute the rule-base of the expert 
system at the classification level of the user, generating 
what we call the primary result P. Since this process omits 
rules and data that are not dominated by the user's level, 
the primary result satisfies all security requirements (as­
suming the original classification labels on existing data 
and rules were assigned properly). 

2. 	System Process: In a separate process, execute the rule­
base at system-high or at the highest level deemed nec­
essary to ensure that the secondary result S produced by 
this step is completely consistent and acceptable from the 
viewpoint of the application- i.e., that critical application 
requirements are satisfied. Call the level of this result Ls. 

3. 	Verification Step: At this higher level Ls, execute aver­
ification process V whose task is to determine whether the 
primary result P produced at the lower level violates any 
essential constraints of the application relative to the more 
complete secondary result S. This process V only com­
pares the two results but makes no changes to either. The 
sole output of V is a binary yes/no indication of whether 
it is acceptable to release the primary result to the user. 
For example, if the primary result is so far afield that it 
could endanger human life, then it would not be released. 

4. 	Release of Results: If this verification fails (i.e., indi­
cates 'don't release') then either no result is produced by 
the system or, perhaps, a cover story result is presented. 
If the verification succeeds, then just the primary result 
P - which already is at the user's level - is presented 
to the user. It is important that these four steps operate 
as an atomic unit, in that no data is released except at 
the proper completion of this final step. Any system inter­
rupt or suspension of processing during these steps must 
be safeguarded to not release data directly or indirectly. 

This approach avoids the direct use of the higher level rules in 
creating the mission plan, thereby avoiding a potentially serious 
downgrading problem. When primary results are released to the 
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user, we know that they were generated only from use of the 

lower level rules.1 

Thus this procedure for spiral consistency enforcement avoids the 
problem of downgrading or major sanitization while at the same 
time providing essentially the same application safeguards. The 
verification process cannot release data above the user's classifi­
cation level. Its purpose is to ensure that the recommendations 
in the primary result are safe and consistent with the technical 
requirements of the application. While the verification process 
does operate at the higher level, its output is through the very 

narrow yes/no channel. 

In particular, the only data that is a candidate for release is 
the primary result P, and it was generated at the user's level. 
When the primary result is not deemed consistent or safe, then 
it would be withheld. Furthermore, if the simple absence of 
output is itself a covert channel of concern in the application, 
then a cover story could be offered. 

A cover story is an explanation that can be presented at a low 

classification level to explain conditions that actually arise from 
higher level data. Such a cover story must be generated by a 
trusted subject. For example, if flights to Iran are not visible 
due to their being classified at a higher level, some explanation 
might be offered to divert attention from the actual reason that 
such flights are not shown. The cover story might be that the 
airfield for Iran is undergoing repair. In general, a prespecified 
set of cover stories might be used, with limited run-time tailoring 
done by a trusted subject. It is worth noting that the use of cover 

stories is similar to sanitization via adding noise (perturbing the 
data). 

2 	 A Rule-Based System for Multilevel Clas­

sification 

As multilevel database systems become available, the process of 
classifying large volumes of data at appropriate levels will be­
come increasingly complex. Not only will the initial database 
need to be given classification labels, but new data entering 
the system will require classification. Manual classification of 
massive amounts of new data likely will not be feasible. Thus 
automated techniques will be needed. 

A good framework for such automated techniques would be a 
rule-based system in which the rules recommend classification 
labels based upon the type of data, its source, value, and pos­
sible relationships to other data. Such rules have been called 
classification rules by Denning in the SeaView project [3]. We 
call the overall system which produces classification labels for 
data the Classifier Tool. This Classifier could assist a security 
officer or database administrator with the classification process. 
An analysis of other aspects of such a tool, including the prob­
lem of accounting for logical inferences by users, can be found 
in Morgenstern [4]. 

1 Although we are addressing mandatory security here, this procedure can 
be generalized to include discretionary security. The primary result P depends 
~pon data and rules to which the user legitimately has access, while the 
verification process can operate at a higher classification and with additional 

access privileges. 

This Classifier would determine which of the potentially large 
set of classification rules may be applicable to data about to en­
ter the database, and would evaluate each rule to determine a 
classification label for the data. In particular, it could find that 
several such rules apply, and that different rules recommend dif­
ferent labels- thereby giving rise to the problems we investigate 
below. 

The problem of write-down will arise if the tool consults data 
at several classification levels, or if classification rules are them­
selves assigned classification levels. In these cases, the tool may 

need to operate at the least upper bound (lub) of such levels. If 
the too]. assigns a classification that is less than this lub, then 
writing the label at a lower level would be a form of write-down, 
which might be considered. a potential violation of security. 

2.1 Classification Rules 

Classification rules may apply to data objects at several lev­
els of granularity, including relation, tuple, or element level. 
Mandatory security requires that in order for information D to 
be available to user U, the authorization of U must dominate 
the classification label of· D - which may be represented as 
U.level :0:: D.level, where U.level denotes the authorization level 
of user U and D.level denotes the classification of data D. The 
term level is traditional terminology although it should be noted 
that the set of classification "levels" actually forms a lattice due 
to compartmentalization of data. 

We assume completeness of the classification rules, so that at 
least one rule is applicable. The new data to be classified will 
be referred to as the target data. To determine which rules. need 
to be executed for some new target data, relevant rules first are 
selected based upon the nature of the target data, such as the 

the type of the data, etc. Rules are selected as relevant without 
referring to current data values stored in the database. Then 
the condition part of each relevant rule is evaluated relative to 
actual data. In general, the condition parts for only some of these 
rules will be fully satisfied- these are the executable rules. We 

assume here that several rules could be executed for one data 
object. 

If the executed rules access existing data at different levels - or 
if the rules themselves are classified differently- then additional 
questions arise: 

• 	 If high level rules and data need to be consulted to rec­
ommended a lower level classification label, we have the 
problem of writing down when generating the low label. 
Can this write-down be avoided? 

• 	 If the recommended labels are different, which label or 
combination of labels should be used? Generally, taking 
the least upper bound of the labels would be appropriate, 
although other possibilities might be to prioritize the rules 
or to signal an inconsistency requiring manual intervention. 
The decision may be specific to the application. 

In the next section, we focus on the first question above, namely 
can we avoid write-down when high level rules and data need to 
be consulted to determine that a lower level classification would 

be appropriate? 
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2.2 The Write Down Problem 

Since the Classifier will need to write labels at all levels including 
system high, one might wish to operate the Classifier at system 

high. However, writing labels at lower levels then would present 

the write-down problem. 

There are two cases where the classification process may need 
to operate at a high level in order to properly determine that 

the label for some data should be at a lower level. For the first 
case consider that all the rules are unclassified. If a rule is given 
some target data, then the label it assigns may depend upon the 

classification levels of related data that the rule needs to access. 
Thus if the rule is run at a low level, it may not be able to see 

such related data, and thus may incorrectly conclude that the 
label should be low. 

It might seem necessary then, for the rule to be run at a higher 
level, so that it could detect this related data and make the 
correct decision to assign a high label to the target. However, 
if the rule is run at this higher level but there is no high data 
which is related, then the rule may appropriately recommend 

a low level label. Since the rule is operating at a high level, 
generation of a low level label creates the write-down problem. 

The second case arises if the classification rules themselves are 
classified, with different rules having potentially different clas­

sifications. For example, sensitive values may be represented 

in some rules in order to assign higher labels when these val­
ues arise. Such rules might be classified higher than other rules 

because of the contents of these rules. 

In this case then, the relevant high level rules must be invoked to 
determine if their value-dependent conditions are satisfied and 

whether they recommend a high label. If such rules do not rec­
ommend a high label, writing a lower label would be a form of 

write-down from this higher level process. 

The approach presented below addresses both of these cases. It 

considers the level at which the classification process is execut­

ing, regardless .of whether this arises from the level of related 

data which needs to be inspected or whether the rules them­
selves are classified at this level. 

2.3 The Spiral Classification Process 

One might consider as a first step in addressing the write-down 

problem the creation of a separate Classifier process at each se­

curity level. Each Classifier process would be allowed to write 
labels only for its current level of operation. A Classifier pro­
cess could utilize rules and access data at lower levels but not at 

higher levels [3]. 

However, this approach does not solve the write-down problem. 

First, the decision as to whether some target data warrants a low 
or a high classification could logically depend upon the presence 
or absence of higher level data. Secondly, the labeling decision 
may depend upon whether any higher level rules exist that ;tpply 

to this target data. That a low level rule is applicable does not 

prevent a higher level rule from knowing more and mandating a 
high label. 

In both cases only a high level process can determine whether 

high level data and/or high level rules apply. Hence it would 

still appear that write-down from a Classifier process operating 
at a high level is needed to fully ensure that the labels assigned 
to data take into account all relevant classification criteria. 

We propose a spiral classification procedure which essentially 
avoids the write-down problem. Since it executes a classifier 

process at successively higher levels, starting with the lowest , 
level, it creates a "spiraling" effect. The properties necessary for 
spiral classification are: 

Spiral Classification: 

1. 	Monotonicity: A classifier process is executed first at 

the lowest classification level, and then executed at each 
of the other classification levels. The order of considering 

the levels must be in a monotonically non-decreasing or­
der in the classification lattice. That is, each subsequent 

classification level to be examined must either dominate or 

be non-comparable with each preceding classification. A 

separate executable process could be created at each clas­

sification level. 

2. 	Atomicity: The data to be classified is not made available 

to users until the entire spiral classification procedure is 
completed at all levels. This requirement will be satisfied 
if the overall process is atomic. That is, either it completes 

without error, or else the system ensures that there is no 
evidence of an incomplete execution. Atomicity ensures 
that if high level rules assign a higher classification label 
than previously executed lower rules, then this higher level 

label will take precedence before any data access is allowed. 

This approach maintains the tranquility property of Bell 
and LaPadula [1], because users will be presented with an 
unchanging classification for each data object. 

3. 	Least Upper Bound: When the classifier recommends 

a new classification label, it should be at the level the clas­
sifier is then operating at. Thus there is no write-down 
from any iteration of the classifier. If the data already has 

a current label (c), then the least upper bound (lub) of the 

new label (h) and the current label (c) should be used. If 
we have a strict hierarchy of levels, or if the h dominates 
c, then the lub is just h. Thus any writing of classification 

labels by the classifier raises the data object to at least the 

level at which the classifier is executing. 

4. 	Trusted Kernel: Since each iteration of the classifier is at 

a single level there is no write down. The outermost super­

visory process that initiates each iteration must be trusted 
to execute the levels in monotonically non-decreasing or­

der, to prevent release of data during the process, and to 
allow labels to be revised only upward. 

We observe that atomicity guarantees that data is not released 
until it has been given the highest level label that is applicable, 
and then it is released only at that level. The trusted kernel 

guarantees that intermediate stages of the iterative process do 
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not release data. Thus lower level rules do not release data, 
they only could cause the classification labels of the data to rise. 

We also note that the trustworthiness of a rule is essentially the 

integrity level of the rule rather than its sensitivity. 

The spiral classification process can be applied during initial 
loading of the database to label all the data. During run-time 

it can be reexecuted periodically to label new data- each such 

execution must be in a trusted partition and must be atomic. An 

external concern is that new data should arrive through a secure 

route so that it is not accessible until it is classified appropriately 

(for example, sensor data could be encrypted at the source and 
decrypted when it enters the classifier). 

Thus far it has been assumed that a new Classifier process is 

created at each level. One might wish to iterate a single Classi­

fier process at successively higher levels, rather than creating a 
new process at each level. Since the spiral is upward to higher 
levels, it might be considered adequately safe for some systems. 

However, due to the partially ordered nature of the classification 

lattice, care must be taken regarding non-comparable levels. In 
particular, use of the same process at such non-comparable lev­
els creates the danger of write-across - which is the counterpart 
of write-down but for non-comparable classifications. 

3 Conclusion 

Both spiral classification of data as well as spiral consistency of 
output from rule-based expert systems share the spiral process 

of iteratively executing at two or more levels. The monotonically 

non-decreasing order of executing the levels ensures that data is 

not passed from a high level to a low level because the higher 
level executes later. 

The spiral process further decomposes the computations at dif­

ferent levels in such a manner that interactions among levels are 
essentially eliminated. Only the trusted kernel persists over the 
multiple iterations. 

We have discussed how the spiral process can ensure consistency 

of the results from a multilevel expert system in that a low level 
user will not be given grossly inconsistent or harmful advice due 
to lack of access to higher level rules and data. This spiral pro­
cess executes at two levels, the user's level and a higher system 
verification level. We noted that the remaining low frequency bi­

nary (yes/no) channel, with one bit per problem solution, could 
be further reduced by use of cover stories. 

We then considered how a spiral process could be utilized to 

execute classification rules without write-down so as to assist a 

security officer or database administrator by generating classifi­

cation labels for data. 
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Abstract 

Issues relevant to construction of a security monitor for 
use as Intrusion Countermeasure Equipment to detect sys­
tem intrusions and abuse by legitimate users are presented. 
The monitor compares current activity against adaptive 
user work profiles and system security policy, and alerts 
the security operator to any significant deviations. This 
approach discriminates data aggregation attacks and in­
sider abuse as effectively as it detects intruders, and also 
supports a standard commercial system as well as a system 
customized for security. Design details cover principles of 
an analysis engine to extract system policy violation and 
historically abnormal usage patterns from the audit trail, 
a high level design of the security monitor, a discussion 
of installation specific concerns, and directions for semi­
automatic application as a detective device. 

1 Introduction 

While the technology needed to design and verify secure machines is 
advancing steadily, there now exists a massive installed base quietly 
and efficiently performing the everyday tasks needed to support the 
government and commercial infra-structure. It is not practical to re­
place all sensitive systems subject to intruder or aggregation threats 
with secure systems, yet neither is there much hope for retrofit security 
on commercial operating systems. Integrating a reference monitor [1] 
which is pervasive enough to prevent bypass is difficult and disruptive, 
robbing both performance and functionality. 

The challenge is to develop peripheral Intrusion Countermeasure 
Equipment (ICE) for the mainstream DP shops which has a minimal 
impact on the system, yet is deeply rooted in the system to discour­
age bypass. Analysis of the information provided by existing audit 
facilities fits these criteria. Modification of the operating system or 
hardware is not required, performance is not degraded severely, and 
the mechanisms are extremely hard to bypass; accounting information 
is collected deep within the operating systems and has been supported 
by special hardware features for decades. This is especially appro­
priate for installations with sensitive data vulnerable to aggregation 
attacks but with scant resources to spare. 

The authors have worked on design and development of two audit 
analysis ICE systems. This paper contains our thoughts on building 
a security monitor with adaptive user work profiles, based upon our 
research and experience and considering the fine work of our peers 
presented at this and other forums[lO]. The goal of this paper is to 
lend ideas and assistance to current and future development of security 
monitors or ICE. 

2 Approach 

This paper presents a design for ICE based upon a usage monitor 
which compares current activity against adaptive user work profiles 
and system security policy. Profiles of work patterns characterizing 
individual users can be derived from audit trail analysis. Deviation 
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from these work prpfiles may indicate an intrusion or insider abuse. 
The monitor constructs and maintains the historical work profiles for 
each user and compares them with current activity in real time. The 
system security policy is regarded as a universal profile to which all 
users must conform. 

Users have recognizable usage patterns which leave a distinctive 
signature on the audit trail. Naturally some users are more regular 
than others, but for some large percentage of users the patterns will 
be clear enough to be extracted by some analysis engine[6] [9]. Unfor­
tunately, detecting intrusions and insider abuse by analysis of audit 
trails is not a trivial exercise. A human cannot readily review a sys­
tem audit trail and isolate characteristic user work patterns. What is 
needed to make audit trails useful for security purposes is ICE to assist 
in the detection of anomalous activity. Ideally such a tool would reli­
ably alert the operator when intrusion or abuse was actually occurring 
on the computer system. Realistically, the tool will alert the security 
operator to improper or abnormal activity, in close to real time, and 
assist in review and investigation of anomalous events. 

Review of statistically deviant activity is tractable and manageable 
for large systems in real time. An analysis engine performing this 
task can detect abnormal or improper behavior by 1) checking the 
audit records for direct violation of the system security policy and 
2) comparing a statistical analysis of the audit trail against historical 
work profiles. A user work profile might consist of a broad description 
derived from his or her job description, augmented with a continually 
updated summary of the user's individual historical activity. There 
may also be group or system wide usage profiles. Some actions or 
sequences are implicitly suspicious, clearly deserving the operator's 
attention without reference to the user profile. 

Audit analysis ICE should allow the security officer to create tem­
plates defining the filters and statistical measures to apply to the au­
dit trail, and the relative significance of deviations. Further, the basic 
analysis engine built for audit reduction and profile updating can serve 
as a powerful detective tool for investigation of suspicious activity. 

The realm of information useful to a comprehensive audit reduction 
and analysis tool can be separated into the following five categories: 

System Specific 

/devfttya is connected to a call out modem. 

/lib is a directory of read-only libraries. 


Policy 

passwd is a security-related command. 

Users may not send system data files to a printer. 


User Activity 
Ms. Smith has never previously logged in late at night. 
Mr. Jones, in accounting, has never used the compiler before. 

User Specific 

Mr. White is on a three week vacation. 

Mr. Black is terminated as of July 4th. 


Worldly 
The company will be closed over the Christmas Holiday. 
Research dept. is finishing up a proposal, expect late nights. 
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3 	 Theoretical Framework 

Audit trail analysis ICE allows a System Security Officer to develop a 
rule base describing system policy, user job descriptions, and templates 
for construction of historical user profiles. These rules define a set of 
conditions which match some audit records, what data is desired from 
these records, how to interpret this data, and where to record the 
derived information. A rule base for ICE need not be the colossal web 
of experience that is seen in an expert system, and the rules can be laid 
down at a high level which is accessible to human review or discussion. 

3.1 Characterizing Intrusions and Insider Abuse 

Intrusion and insider abuse is defined here as the use of a computer 
system's resources from which you would normally be prevented or 
for which you do not have privilege and ethical reason to use. The 
following is a taxonomy of misuse we are concerned with: 

Trespassing Access the system 

tourist hacker breaks in as hobby 


Browsing Look at the system 

passive 

active scavenging with goal in mind 

aggregation accumulation increases value 

inferencing distillation increases value 


Malfeasance Misuse the system 

leakage of classified data 

non-work related use of system 


Theft Steal from the system 
general software 
specific sensitive data 

Modification 	 Change the system 
data 


data diddling 

false data entry 


programs 

Trojan horses, logic bombs 

round-off at tacks 

viruses 

system behavior 

access rights/password files 

ownership 

accounting 


Destruction Destroy the system 

data 

programs 

accounts 


Denial of service Degrade service 

locking accounts 

degradation of system response 


Note that misuse may be accidental. A system flaw may give un­
expected access to a well meaning user. Mistyping could produce an 
unintentional malicious result. A new user may even be unaware of 
certain aspects of the system policy. We make no attempt to divine 
intent or malevolence; the System Security Officer must use the inves­
tigative tools to determine this. 

3.2 Features 

Identifying these kinds of misuse requires a sophisticated review of the 
audit trail. The idea is to measure particular features of the audit trail, 
and compare these measurements with the historical activity record 
for the same user. This comparison does not directly reveal misuse, 
but rather indicates a degree of concern or a warning count~ Some 
combinations of violations are cause for more concern than the sum of 
the parts would indicate, so detected features should be considered in 
context. 

This list describes the kind of activities which should be recognized, 
measured, and evaluated for detection of intrusion or insider abuse. 
These features are examples, not as a definitive list or a taxonomy. 

Time 
time activity takes place 
time of day off shift, lunchtime 
day of week or month status reports 
date end of quarter activity 
length of session 
time between actions 

last use of this conunand 
last action in a class 
last action of any type idle time 

Command 
first use of a command 
frequency of a command in a session 
job rate 
job mix 

ratio of one command versus another 
ratio of one conunand versus total activity 

multiple login 
specific command sequences 
access to certain files or directories 
other common command sequences 
permission denied, file or command 
login denied 
invalid password 
unusual terminal 
multiple login 

Resource Usage 
CPU cycles per minute 
CPU cycles per command 
Disk space 
Virtual memory 
Printers 
General I/0 

3.3 An Abstract Model for the Analysis Engine 

The key to successful audit trail analysis is constructing an applicable 
system security policy and locating the key discriminators in user work 
histories. Building a successful analysis engine requires a broad, rich 
language for description of general system activity. Our effort started 
out with an approach laid out by Denning [3] and we adapted it to fit 
our experience on actual systems. This work outlines a small language 
for processing of audit records, including definition of variables which 
apply some statistical analysis to audit records selected by pattern 
matching. The variables describe which features of the audit trail we 
want to measure and evaluate. The reader should be familiar with 
Denning's work to get the most out of this section. 

Our initial research was based on our knowledge of audit informa­
tion available under Unix and IBM MVS systems, considering a dozen 
scenarios of intrusion and insider abuse. We found that analysis of 
individual actions (single audit records) would not reliably discrimi­
nate many of our sample scenarios. We reworked the feature defini­
tion language to better support sequences, combinations, and timing. 
These capabilities extend the descriptive power to effectively deal with 
problems one encounters during system modeling. We also added his­
tograms, a special storage class to capture historical time relevance. 

3.3.1 Events 

Events are the actions which may be measured. Events are composed 
from audit records. Events may be represented by a single audit record 
or a sequence of records. 

Single. 	Records will be treated as events when one or more of the data 
fields match a specified pattern. The pattern description must 
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be flexible, including wildcards, character ranges, and alternates. 

Sequence. Sequences are meant to capture a single event which is 
broken into many audit records. Some systems associate a string 
of actions with a single parent process, and this information may 
be available in the audit trail. 

3.3.2 Metrics and Measures 

Metrics are the "yardsticks" for various events we are interested in. 
Measures are numbers which quantify activities. Applying a metric to 
a record sequence produces a measure, a single number indicating how 
much or how many. 

Counter Cycle. A counter metric tallies the occurrences of an event 
within a time period (see Cycle Structure). A counter could track 
sessions during a day, number of times a transaction is executed 
during a session, or failed logins during three minutes. 

Quantity Cycle. A quantity metric measures the amount of resource 
consumed by events of a specified type during a time period (see 
Cycle Structure). Resources are reported in a variety of units. 
Quantities are in like units, for evaluating anything from CPU 
milliseconds to printer page counts. 

Ratio Cycle. Ratio of one record type compared with another over 
a time period or session (see Cycle Structure). 

Cycle Structure. A cycle structure is the structure used to store coun­
ters and quantities. A cycle refers to the occurrences of some event 
within a repeating time interval. These intervals are expected to be 
stored as segments within a cyclic period such as hours in a day, days 
in a week, months in a year. A cycle may also be the variable length of 
time between login and logout called a Session. The period is divided 
into equal segments, and a measurement is made for each of these seg­
ments. We often refer to these as Histograms because the structure is 
easily displayed or conceived as a strip chart. 

3.3.3 Models 

Models are the functions which compare the profile value with the 
measured values, and produce a violation. The violation is multiplied 
by the Weighting (below) to produce a scaled warning count for the 
time period. Separate time periods in the cycle are added together to 
produce the feature warning count. 

Limit. The measure value for each feature is compared against the 
value in the profile. 

Deviation. The basic average is maintained to determine deviation 
from the mean. To save space, a close approximation can be 
computed with the old average and the new value. The length 
of the history needs to be recorded to ensure proper weighting 
of the new value into the average. 

Variance. Variance is a computation of consistency over time. 
Whereas Deviation compares the measure for one time slot 
against the profile value, Variance compares the time slot 
against adjacent time slots. 

3.3.4 Profile Updates 

Fixed. A fixed value may be used for Limit processing. 

High Water Mark. A fixed value may be used for Limit or Vari­
ance processing. Remember that the SSO is expected to verify 
substantial changes. Useful for locating reasonable fixed limits. 

Decaying. A decaying value may be used for Limit or Variance 
processing. A decaying value is a high water mark that slowly 
moves back down. 

Average. The average over time is maintained for Deviation or 
Variance processing. 

3.3.5 Evaluation 

Evaluation displays violations, determines degree, and provides 
weighting between the features. 

Violation. There is a violation when a measure exceeds the profile. 
The warning count of the violation increases as the measure 
grows. 

Weighting. When a violation occurs, the significance is computed by 
a simple formula. This formula includes a scaling factor, which 
takes into account the domain of the measure and the relative 
importance in this installation of the violation. The weighting 
formula produces the warning count for each feature. 

Alarms. Some violations deserve more than simply increasing the 
significance. Alarms are presented separately, in addition to the 
warning count. 

Grouping. Metafeatures work with the computed warning counts of 
other features, compared against limits. This grouping of fea­
tures allows increasing the warning count when multiple related 
violations are in evidence. Grouping increases the session warn­
ing count whenever several features in a set are present. 

3.4 Writing system and user profiles 

Constructing and updating profiles of user work patterns and the sys­
tem security policy is a sophisticated and detailed task. A database 
query language such as SQL is convenient for setup and investigation, 
but the overhead of a database query language is too high for run­
time analysis and profile updating. The installation and maintenance 
of this design needs a small language for definition of the desired fea­
tures. The paragraphs below are not a complete language, but a terse 
presentation of the concepts involved. 

The elements of profile description are audit records, event defini­
tion, feature definition, group definition, and profile definition. These 
elements build upon each other as follows: 

The structure of an audit record is: 
Subject: [user] [terminal] [modem] 
Objects: [files] [directories] [ports] [peripherals] 
Action: [command] [parameters] [error codes] 
Resources: [CPU time] [I/0 counts] [page counts] etc. 

The structure of an event definition is: 
[Event-name] [Field(s):Pattern(s)] ... 

or 
[Event-name] [Event(s)] ... 

The structure of a feature definition is: 
[Feature-name] [Event] [Metric] [Model] [Update] 

[Cycle] [Period] [Weighting] [Initial] 
or 

[Feature-name] [Feature(s)] ... 
The structure of a group definition is: 

[Group-name] [Feature(s)] ... 
The structure of a profile definition is: 

[User- name] [Feature( s )-or-Group ( s)] ... 

Audit records are reformatted by the ICE before processing. Pattern 
matching on audit record fields is not relevant; the authors prefer 
the extended regular expressions familiar to users of UNIX egrep, but 
should include wildcards, character ranges, and full regular expression 
alternates. The first form of an event pattern matches one or more 
fields in an audit record. The second form is a sequence of audit 
records, each defined as an single record event. A group is an alias 
for multiple features (features may be in several groups). The profile 
definition is used to create the actual profile data structure. This data 
structure is then maintained by the profile updater. 

A new user profile contains a list of the features and a copy of 
the Limits referred to in the profile definition. These limits may be 
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changed over time by the Profile Updater, depending upon the Up­
date field from each feature definition {see Profile Updates). The profile 
also contains a running total of the warning count in evidence at the 
end of each session, which is decayed over time and usage in the same 
manner as a Decaying profile update. 

The session warning count is the sum of all feature warning counts 
during a session. This value indicates the calculated significance of all 
profile violations. The further out of profile a user is on any particular 
feature, the higher that feature warning count will be. Out of profile 
is defined as being over Limit, outside Deviation from historic mean, 
or excessive Variance from adjacent time periods, depending upon the 
Model. Since these differing counts are summed for evaluation, the 
Weighting of each feature serves two purposes: weighting indicates 
the relative significance of each feature and also converts each feature 
to the same scale. 

3.5 Sample Feature Definitions 

Login Time, System Policy. Users at Acme Widget, Inc. login 
during shift hours only, but may log in and out several times a day. 
This feature watches for the extraordinary late night login. The event 
is the time stamp from a login record. The measure is a counter, on 
a daily cycle, half hour periods. The update is decaying, so that the 
profile adjusts to the work habits. The model is variance because we 
are searching for a an event well away from other recorded events. The 
weighting is high, as this is expected to be a strong discriminator on 
the target in question. A login at a new time but close to the historical 
times would be flagged, but with a lower warning count; thus a worker 
who stays a bit late one day to finish one last thing will be noticed, 
but not heavily stressed. 

Job Frequency, Accounting. The accounting staff at Acme uses 
the database for inventory control and does a far amount of report gen­
eration, but they are not sophisticated computer users. This feature 
monitors the transaction rate per minute, looking for out of profile 
work. The event is any job or process. The measure is a counter, on 
a session length cycle, twenty minute periods. The update is average, 
so the profile adjusts the mean and standard deviation automatically. 
The model is deviation, looking for significant difference from the 
user's norm. The weighting is low, because the users may deviate 
from their routines somewhat on occasion and we are not interested in 
minor violations of this limit. If a trojan horse was activated invisibly, 
scanning the file system for executables which it might attach itself to, 
the transaction rate would soar and the feature warning count would 
go high. 

Job Mix, Order Entry. Order entry at Acme is a dull job. The 
procedure is pretty much the same all the time: query the inventory 
database once or twice, fill out the order form online, and post an 
inventory transfer request. This feature looks for extreme variation in 
the routine. The events under scrutiny are the queries versus the order 
entry sequence. The measure is a ratio, on a 60 minute cycle, ten 
minute periods. The update is fixed, because we know the pattern. 
The model is a limit, fixed at 3; under no circumstances should the 
ratio of queries to orders exceed 3 over a ten minute period. The 
weighting is medium. If an intruder found his way into the system, 
and began doing a large number of queries into the inventory database, 
the feature warning count would jump. 

3.6 Summary 

A rule base for ICE is determined by defining the system security 
policy and finding discriminating features in user work patterns. This 
process is crucial to successful ICE installation, yet remains difficult 
and subtle. In general the content of the audit trail will affect the rule 
base. 

The audit trail can be used to construct and update a distinctive 
profile for each user, characterizing both personal work habits and 
tasks normally performed on the job. Minor deviation from a work 

profile is more common and of less concern than a combination of 
violations. The more stable a user's system usage pattern is, the more 
likely that any aberrance from this pattern is evidence of intrusion or 
abuse. Users in a production environment more likely to exhibit these 
consistent and stable work patterns. 

The audit data collected on most computer systems is not useful in 
its raw form for manually identifying intrusions. Existing commercial 
audit facilities are difficult to bypass, but are a possible burden for the 
target system; expect to negotiate with the system administrator. 

The audit trail features described above cannot be derived from a 
quick reading of the audit records. The audit trail must be distilled, 
summarized, and cross referenced to derive useful information. Locat­
ing features which best discriminate users from intruders (or proper 
use from abuse) is more difficult still (see Usage: Installation). 

4 A Design: PUMICE 

The design of an ICE usage monitor is demonstrated through pre­
sentation of a Proper Usage Monitor for Intrusion Countermeasure 
Equipment, or PUMICE. "Proper" implies compliance to system pol­
icy and user historical norms. Design objectives for PUMICE are: 

Interactive Usage Analysis. A graphic and flexible user interface 
that alerts an operator to suspicious activity and facilitates ef­
fective investigation. A summary of system activity, policy vio­
lation, and anomalous user work patterns coupled with a flexible 
means in which to investigate anomalous activity - for instance 
the ability to graphically compare current versus profiled activ­
ity. 

Evolving Profiles and Rulebase. Continuous aging and updating 
of user profiles to reflect evolution of the user work pattern. As 
the operator learns more about the system characteristics and 
the users' habits, the rulebase and profile templates may be fine 
tuned. 

Minimal Impact on Target. No modifications to the target 
machine's operating system, and minimal modifications to tar­
get machine's auditing mechanism. There should be little per­
formance degradation on the target machine. 

The high level design (Figure 1) shows subjects as ovals and ob­
jects as boxes. Audit Format interprets the target system audit trail 
and enters it into the long term Audit Database. The audit records are 
checked against system policy by Policy Review and compared with 
each user's profile by Profile Review. Both review processes modify the 
session summaries in the Summary Database. A summary is created 
when a user opens a session and is updated until the session closes. 
The Profile Updater processes each normal session as it closes and 
updates that owner's profile in the Profile Database. Anomalous ses­
sions must be manually approved before the profile can be updated. 
Extreme deviant behavior may activate Countermeasure. The opera­
tor can access all four of the databases, and may choose to initiate (or 
inhibit) countermeasures. 

4.1 Audit Data 

By using existing accounting and audit facilities, PUMICE invokes no 
changes to the target system. Because these facilities are well estab­
lished (especially in production environments), they do not present 
a formidable political hurdle if a system without them already in­
stalled is encountered. Also, because these accounting facilities are 
old technology, they have settled deep into the operating system, and 
are reasonably robust and tamper proof in their data collection. 

The audit trail produced by the target system will not be just as 
desired for our analysis engine. The Audit Format process transforms 
the raw audit trail to a more suitable format. Performing this work 
on PUMICE is more secure {see Hardware Requirements.), lessens the 
impact on the target, and allows the monitor to be installed for various 
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Figure 1: A high level design for PUMICE 

machines with minor software modification. Sometimes an enhance­
ment of the audit trail may be in order. On some IBM systems, the 
audit records are associated with a control job instead of a user; the 
Audit Format could associate job IDs with user IDs in the formatted 
audit trail. The information available in the audit trail will of course 
affect the nature of the rule base. 

4.2 Hardware Requirements 

PUMICE is designed to run on a workstation class machine with high 
resolution grapltics, a mouse, and windowing support. These are re­
quirements for this particular design, not ICE or this approach in 
general. The use of PUMICE as an investigative tool is greatly en­
hanced by a strong graphical interface. The hardware should have 
enough power to perform most or all of the analysis in real time for 
the best countermeasure capability. By running the security monitor 
on a separate processing platform, security is enhanced and the target 
system is not burdened. PUMICE must have a solid communications 
channel to the target system, since the analysis is only as strong as 
the audit trail. 

4.3 Database 

The database requirements differ substantially in two phases, system 
analysis/installation and monitor operation. During system analysis a 
large audit trail database is surveyed for usage patterns which discrim­
inate between proper usage and abuse. Possible features which show a 
small variance over time are entered into the rule base. This phase is 
facilitated by the high level database query language SQL. During the 
operational phase, processing proceeds at a much lower level. Com­
putational overhead inhibits use of database mechanisms and puts a 
high premium on usage summaries and simple indexing for retrieval 
of related records. Several database packages support both high level 
analysis and high speed indexed access to the same database records. 
For performance gains, the analysis engine may be implemented in 

more aerodynamic access method code instead of at the traditional 
SQL programming level (thus escaping all the requisite baggage of a 
full DBMS). 

4.4 Analysis Engine 

The analysis engine accesses the DBMS at a low level and checks cur­
rent activity records against limits (absolute as from policy statement, 
or derived from the profile). Current user activity is compared sta­
tistically against the users' respective profiles and any deviations are 
reported to the PUMICE operator for review. The analysis engine 
updates profiles as high water mark, average, or deviation from the 
mean. System behavior is kept on a site, group, and user specific ba­
sis. ·The profiling must be initialized by running in a learning mode 
over an appropriate quantity of data. New users to the system need 
to be given a generic profile from users with similar job responsibili­
ti~s, and watched closely as their profiles harden. User sessions and 
histograms are used as the basis for counts and percentages. 

4.5 PUMICE Security Precautions 

Although it is presumed that at most sites the system console will be 
physically secured, security features have been designed into PUMICE 
itself. Each operator is issued a unique account and password that is 
used for access mediation and for auditing the activity of the oper­
ators. An appointed system manager periodically reviews operator 
activity. Non-privileged accounts are dedicated to run only the mon­
itoring software, and do not permit access to sensitive files or any 
other workstation resource. When an operator takes a break from ac­
tive monitoring, he/she may lock the console screen without closing 
the session. This locked screen displays a non-specific dynamic indi­
cator of the security of the target: if particularly anomalous activity 
occurs on the target, keyboard bells and the locked screen reflect that 
the immediate attention of an SSO is required. An SSO must re-enter 
his/her password to unlock the console. Locking of the console screen 
also occurs automatically if the keyboard/mouse remain idle for some 
configurable number of minutes. PUMICE maintains a complete audit 
trail of significant activity on the security monitor itself. The audit 
trail includes both SSO activity and frequent posting of the system 
and display status. 

4.6 User Interface 

The manner in which to best distill information on hundreds of users 
over thousands of audit records and tens of features to one console 
screen is directly related to the success that a PUMICE operator has 
in discriminating anomalous activity. Effective analysis of anomalous 
activity for intrusionary intent is dependent upon evaluating this ac­
tivity against the assimilated knowledge of what is truly abnormal for 
the target system. 

The design of the user interface must direct full attention to ab­
straction of information, human engineering and effective visual pre­
sentation, ease of use, and flexibility to meet differing environments. 
The powerful windowing environment afforded by current workstation 
technology is essential to an effective console screen interface. The 
following concepts optimize the human interface so that the SSO may 
quickly and effectively assess the security status of the host machine: 

Abstraction of information. PUMICE may be viewed as an audit 
reduction tool, which implies that there will be activity flagged 
that is not alarmingly abnormal and which is not evidence of an 
intrusion. Suspicious activity is ordered on warning count, and 
site specified alarm thresholds enforced so as not to completely 
inundate the SSO with a console screen full of false alarms. 

Direct access to target system audit trail. If an SSO 
believes that a user does represent a potential intruder, he/she 
is able to easily examine this user's activity in detail down to the 
transaction level (regardless of whether PUMICE believes it to 
be suspicious). 
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Multiple windows. Separate windows permit simultaneous access 
to system status, complaints of abnormal activity, and results of 
querying the database for investigative information. 

Stockpiling events until manual release. The SSO can not be 
expected to be present at ail times to immediately investigate 
flagged activity. PUMICE displays and saves all suspicious ac­
tivity until the SSO directs a manual release. If the SSO comes 
back from lunch, he/she should be able to glance at the monitor 
console and quickly assess to what degree the system has been 
subjected to abnormal activity. Activity flagged as being sus­
picious is not used to update the user's profile unless the SSO 
manually releases it. 

User files. A description of each user including: job description, de­
partment, physical description, location, phone number, man­
ager, etc. is available. The SSO may append notations charac­
terizing the user's usage habits. 

Investigative capability. A flexible means in which to graphically 
compare current versus profiled activity, and the ability to issue 
manual queries against the d~tabase is available. 

Online help. PUMICE provides access to localized help facilities 
from within each window. A new operator should require only a 
short supervised training period to become proficient. 

PUMICE's windows are designed to quickly focus the operator's 
attention to the most suspicious activity on the target without dis­
tracting the operator with details about normal or only slightly out of 
profile activity. The windows use screen layout, color, and highlight­
ing to display information in a quickly comprehensible form. Activity 
considered potentially serious enough to present a threat of system 
compromise is energetically highlighted to alert the operator to take 
immediate action and hopefully confront the user in question while still 
in the act or at least the facility. If the operator requires more infor­
mation about a session flagged as demonstrating intrusionary activity, 
elements in the windows may be expanded by clicking on them with 
the workstation mouse. Feature weighting and system variables may 
be configured to meet the requirements of a particular installation. 

Operations are separated into a number of windows that are ini­
tiated by clicking a mouse on the appropriately labeled button of a 
main option window. PUMICE may be considered to have two basic 
modes: a monitoring mode that displays status and security relevant 
information generated by current activity on the target system, and 
an investigative mode for when the SSO requires additional informa­
tion from the target or from the audit DBMS in order to investigate 
discovered deviant behavior. Any combination of these windows may 
be opened on the console at one time and positioned or overlapped as 
the SSO desires. 

4.6.1 Monitoring Windows 

The Security Summary, Feature Grid, Selected Session, and User Data 
windows of this mode are closely tied to each other (Figure 2). When 
a cell on the Row column of the Security Summary window is mouse 
clicked, the related session row is highlighted in this window, as well as 
the matching column of the Feature Grid window. A summary of the 
features that have been flagged for the selected session is summarized 
in a Selected Session window, and information on the owner of that 
session is displayed in a User Data window. 

Security Summary. This window displays an ordered list of ses­
sions that are flagged as diverging from their owners' respective pro­
files. Sessions are flagged as suspicious and displayed in this window 
when the session count, total count, or any individual feature count 
exceed the threshold established by the system administrator. 

The first field of each row displays an index number for that session. 
The second and third fields display the session ID and how long that 
session has been closed, or that the session is still active. The fourth 

md fifth fields display the warning counts accumulated for that session 
and for the owner over all sessions. The sixth field displays an interest 
value (Note) manually tagged to the owner of the session. The seventh 
field gives the ranking of that session over all current flagged sessions 
based on the session warning count. The Security Summary window 
is normally updated every 10 seconds, but this value may be adjusted 
by the· administrator. The screen may be locked during investigation 
to prevent reordering of the display. 

Ordering of the Security Summary may be based on session warn­
ing count, total warning count, session name (alphabetical), imposed 
interest level, or time of last warning count update. This window is 
normally configured to order the flagged session rows on session warn­
ing count, and maJ' be scrolled up. and down using the workstation 
mouse or keyboard. The ordering of the session list may be changed 
by clicking on any of the middle five column headings to cause reorder­
ing on that respective field (e.g., clicking on Session Status causes the 
sessions to be ordered on time of last warning count update). The 
ordering chosen is signified by highlighting of the respective column 
heading. Clicking on the SPLIT button in this window splits the twenty 
row list into two ten row lists, each with their own scroll bar·mecha­
nisms. Initially both new lists are exactly the same, displaying the top 
ten rows of the original twenty row list ordered in the same manner. 
Clicking on a column heading now, however, only affects the top list of 
ten sessions. Any pair of orderings is possible by choosing an ordering 
for the entire list, splitting, and then choosing a new ordering for the 
top half. 

The PUMICE operator may investigate any flagged session, but 
the row in this window and the. session data destined for the Profile 
Updater may not be released until that session is closed by the owner. 
A closed session may be released by clicking on the Row cell of a session. 
In releasing a session, the operator will have the opportunity to tag 
the owner with an interest value and attach comments to his record. 
Subsequent sessions by users with non-zero interest values will always 
be flagged regardless of whether they fall outside of profile or policy 
rules. This mechanism allows for increased monitoring of users who 
are new or who are thought to present an increased risk for external 
reasons. If the operator believes that the session reflects an intrusion 
attempt (particularly a masquerade), or if the session is verified to be 
atypical yet valid, the operator will not release the session data to the 
Profile U pdater so as not to skew the user's profile. 

Feature Grid. This window is a matrix displaying features down 
the left side and sessions displayed in the Security Summary window 
across the top. It consists of a grid made up of colored cells labeled 
with warning count values for each feature of the flagged sessions. The 
higher the feature warning count, the wa~mer the cell is painted. Ses­
sions that have been selected and highlighted in the Security Summary 
window are also highlighted in this window. Clicking on a feature cell 
in this window opens a subwindow containing the results of a query 
to the database for a summary of the transactions in this session that 
increased that feature's warning count. 

Selected Session. This window summarizes the flagged features of 
a session highlighted in the Security Summary and Feature Grid win­
dows. Each feature listed specifies the last time that it caused an 
increase in that session's warning count due .to transactions found to 
be out of profile by this feature. This provides immediate information 
on when intrusionary activity last occurred. 

User Data. The User Data window displays general information 
about the owner of the currently selected session. This information 
includes such items as name, office location, phone number, manager, 
and authentication data. This window might even display a digitized 
picture of the user's face. 

Nota Bene. This window acts as a warning window of activity that 
clearly violates established limits, either from system security policy 
or from the user work profiles. Explanatory text is printed to this 
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lime Related: 

HOME: 1943 Transylvania 
PHONE: 303-1872 

Time of Login 
Time of Day 
Time Request Print-out 

(10) 
~22)
20) 

BADGE#: 666 Resource Usage: 
MANAGER: Elvira Lee 

PHONE: 505-8789 
Printer XX (23) 

POSIDON: Consultant File Related: 

CO:M).!IENT: Works night shift 
Peculiar Accent 

Unusual File Access 
File Access Denied 

(10) 
(1) 

Figure 2: Sample Monitoring Screen 

window chronologically. Upon review the operator can send individual 
nota bene items to be archived. It should be fairly rare that nota bene 
items are discovered, but a scrolling mechanism assures that all can 
be viewed. 

4.6.2 Investigative Windows 

Upon discovery of anomalous activity, the System Security Officer uses 
these windows to investigate (Figure 3). 

Graphical Display. PUMICE supports the construction of graphi­
cal comparisons between current activity vs. profiled norms, bar graph 
displays of Deviation features, or strip chart histograms of Limit fea­
tures such as number of transactions per minute. Specifications for 
different graphs may be drawn on top of each other and color-coded. 

The following are possible graphs for a feature: over the user's 
current session, over a recent or long term profile of that same user, 
over that user's group's profile, over another user's current session or 
profile. Any of these might be compared against each other or the 
feature might be compared against another similar feature. 

Database Query. This window permits direct interface to the 
DBMS. Canned queries are provided for expected common requests 
for analysis of past system usage. These include displaying a user's 
profile vs. current session parameters, displaying all audit records of 
a user from some starting time, and displaying reported anomalies 

by useriD, warning count, and feature. Highly specific individualized 
queries into the database may also be issued from this window. This 
window is non-graphical and more appropriate for such comparisons 
as terminal IDs against a user's profile, and for sequences. 

Terminal Emulation. This window allows an operator to open a 
session onto the target machine from the PUMICE console. Investiga­
tion and necessary immediate action to prevent damaging intrusionary 
activity may be made directly from a (privileged) account on the tar­
get. 

4.6.3 Other Windows 

System Administration. This window permits the PUMICE ad­
ministrator to configure intrusion threshold values, the time between 
screen updates of the Security Summary and Feature Grid windows, 
length of idle time before the console is locked, update times of fea­
tures, transactions that will always be flagged as possible security 
hazards, specifying users whose sessions will then always require man­
ual release regardless of their accumulated warning count, fields to 
be masked in the audit records coming from the target machine that 
have no applicability to this target machine, the number of raw audit 
data records that are to be accumulated before records are copied to 
archive, and initialization profiles. Database maintenance tasks are 
also performed using this window. Note that the PUMICE admin­
istrator has control over the functionality of the security monitor; it 
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USER: Bela Lugosi 

LOCATION: #52, Building B 
North Tower 

Heartless Laboratories 
PHONE: 555 - 1212 

HOME: 1943 Transylvania Turnpike 
PHONE: 303-!872 

BADGE#: 666 

MANAGER: Elvira Lee 
PHONE: 505-8789 

POSITION: Consultant 

COMMENT: Works night shift 
Peculiar Accent 

Figure 3: Sample Investigative Screen 

may be desirable to separate the operator and administrator jobs at 
some sites. 

Memo and Report. This window supports the informal noting of 
expected future deviant behavior as foretold by the user ("I'll be work­
ing over the weekend.") or circumstance ("Group X will be exchanging 
office space with Group Y, so expect many terminal ids to be flagged 
as abnormal for members of these groups"). This window also sup­
ports the more formalized reporting of witnessed abnormal behavior 
or the status of ongoing investigations from one shift's SSO to the 
next, or external information ("Employee A. Waters resigned and will 
leave at the end of this week"). It is expected this latter reporting has 
representative usage standards in the traditional facilities guard arena. 

Status. The Status window provides general operational informa­
tion about PUMICE and the target system and is designed to display 
information that is not constantly required for the security functions. 
This reduces the clutter and optimizes the performance of the other se­
curity monitoring windows. The Status window is normally examined 
when the operator returns from an absence and wants to check that 
both PUMICE ar{d the target system have been operating without 
problems. 

Information displayed in the Status window includes the date and 
time that the security monitor became operational, the time that the 
last console activity occurred (other than activity within this window), 

and the time that a Status window was last invoked. Statistics on 
the total number of audit records received, the total number of audit 
records rejected (because of line noise or encryption problems), and 
the total number of audit records that have been processed, and the 
number of audit records received, rejected, and processed since the 
last time a Status window was opened are displayed. The window 
also displays information on the target machine, operating system, 
and particular configuration, and how long the target system has been 
operational. 

5 Usage 

This section describes how to use a security monitor like PUMICE 
once it is fully implemented and connected to a live target. A version 
of this intrusion countermeasure equipment may be tailored to a wide 
range of targets if an appropriate rule base is constructed. We envision 
ICE applications for Unix development environments and IBM main­
frame MIS and dedicated airline reservation systems. ICE is even an 
appropriate tool to monitor the security of a network: with the nar­
rowed functionality and more tightly constrained usage standards of a 
network, the profiling would be simpler and more reliable. 

5.1 Installation 

Installing PUMICE requires establishing an initial rule base, formaliz­
ing system policy, entering system data, collecting initial profile infor­
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mation, setting thresholds, and defining generic profiles by job descrip­
tion and group. The trail from an appropriate period of auditing of 
the target system will need to be run through PUMICE to be learned. 
Additional tuning using SQL will be required to customize PUMICE's 
understanding of what is desired to be considered normal for the tar­
get. 

The initial installation should not be expected to fit perfectly with 
the target system and user base. False alarms are normal until adjust­
ments, both manual and automatic, are well underway. Features with 
no alarms should be reviewed, even if expected to be good discrimina­
tors, as the limits may be set too high for appropriate triggers. 

The security monitor will increase in effectiveness the longer that 
it is operational because the user and command profiles develop. The 
local system security officer also continues to gain experience and be­
come more proficient at the "art" of distinguishing innocuous abnormal 
system activity from truly offensive activity for this site. The expe­
rience the SSO's gain from their investigations will gradually become 
embedded in the system policy and profile templates as the rulebase 
is fine tuned. Training of new operators to the nuances of PUMICE 
and site specifics is important. 

5-2 Operation 

ICE should be expected to change and adapt as the targeted system 
and the activity on it changes. The initial rule base and thresholds 
should also be expected to develop and mature as the administrator 
gains experience with the user base and job mix on the target system. 

Intrusion attempts may progress slowly over months of activity. 
The bookkeeping of separate events of deviant behavior in the Memo 
and Report Window may well prove valuable as an evidence gathering 
tool and as an aid to subsequent legal action. 

5.3 Vulnerabilities 

The PUMICE operator must be well versed in the vulnerabilities inher­
ent to the adaptive user work profile approach and the dependence on 
the integrity of the target's audit data. Weak profiles allow too much 
latitude for the user work patterns. In addition to attentive installa­
tion of limits and thresholds, the SSO must be cognizant of how the 
profiles change over time. The investigative windows support display 
of the profile limits, averages, and deviations. These dis'plays should 
be cross checked with a variety of users to detect profiles that have 
worn loose over time. Individuals who must have a loose profile due 
to the variety of their work should be watched more carefully because 
their accounts are more vulnerable to intrusion and masquerade. 

The sophistication of an intruder is of course a major factor in the 
probable success of an attempted intrusion. The following ordering 
may be made on increasing potential that an intruder can keep within 
the profile associated with an account: familiarity with system, fa­
miliarity with particular installation, familiarity with particular user 
account, familiarity with particular usage pattern. 

The central concept of our approach to audit trail analysis is that 
intrusion and insider abuse look different than established legitimate 
use. This admittedly will not be the case for all incidents of intrusion or 
abuse. Our experience indicates that artful development of system and 
user profiles produces a security monitor applicable to a broad range 
of systems, detecting many different kinds of misuse or intrusionary 
attacks. Detection of intruders is more certain on machines with a 
stable and consistent user base. 

5.4 Countermeasure Capability 

When ICE discovers anomalous activity it may be instructed to re­
spond with different levels of autonomy. We have presented PUMICE 
as foremost an investigative tool that first alerts the SSO to sessions 
with summaries of anomalous activity and then provides him/her with 
the tools for further investigation. PUMICE is not designed to nor­
mally run unattended with expert system software making Orwellian 
decisions about proper usage. Our approach does not assume that 

anomalous activity will always be understood entirely from data avail­
able on the target system. We believe that external verification such 
as phone calls to the offenders {"George, is that you working late?"), 
their managers ("Has Jane been assigned work on Project X?"), etc. 
will be standard procedure. 

Nevertheless, many sites may desire ICE with the capability to 
take action on its own if system activity attains an overwhelming level 
of deviance and there is no human authority available. If ICE runs 
unattended at night it may be instructed to take action to prevent 
system compromise while attempting to alert off-site personnel. The 
following is a list of possible responses: 

• ·challenge the user to confirm identity. 
• Slow system response. 
• Pretend to e~ecute commands. 
• Lock the account. 
• Lock the entire system. 

5.5 Privacy 

PUMICE is bound to raise privacy issues especially if users learn of the 
active profiling. Privacy is an especially valid concern when macro­
scopic conclusions about users become readily apparent ("J. Biafra 
isn't as fast a worker because he posts 70% fewer transactions than 
H. Rollins."). A possible solution to this is to map usernames to 
pseudonyms up until intrusionary activity forces unveiling. Legalities 
may be addressed by having users sign consent forms when they apply 
for the account. 

6 Related Work 

Auditing computer systems and reviewing the resulting trails has a 
well established history - though primarily for the purpose of account­
ing and job charging purposes, and generally by manual means. In the 
past year, interest in intrusion detection has increased greatly with a 
number of separate efforts being funded. In March, 1988, SRI In­
ternational facilitated round table discussion between these efforts by 
hosting a workshop: there was a healthy exchange of ideas and further 
workshops are scheduled. 

Sytek Automated Audit Analysis This project was conducted 
in 1984-5 and was funded by the Space and Naval Warfare Command. 
It used audit data collected at the Csh level of a research environment 
UNIX machine. Sytek's research established the legitimacy of profil­
ing user work patterns constructed from simple and readily collectible 
audit data. It demonstrated the ability to discriminate between nor­
mal and abnormal system usage[6][7][8]. This project also showed the 
utility of using database tools for hand analysis, prototyping, and in­
vestigation of suspicious activity. 

A set of features was defined, with each feature, made up of one or a 
combination of audit data parameters, describing an aspect of system 
usage. An Automated Audit Analysis tool was developed using an 
Ingres DBMS to evaluate the viability of user profiling and to choose 
the feature set. Hard ranges from a "learning period" were used instead 
of ongoing profile updating and statistical analysis. A set of intrusion 
scenarios was developed and performed on the audited machine, and 
the resulting data from the simulated intrusion attempts examined. 

SRI Real-Time Intrusion Detection SRI's Intrusion Detection 
Expert System effort showed the practicality of audit trail analysis per­
formed in real time on a separate, dedicated computing platform[5][9]. 
Modifying a TOPS-20 operating system to collect audit data, the SRI 
implementation examined three features: source terminal location, 
length of a user's session, and number of sessions in each of three work 
shifts, and displayed the amount of anomalous activity system wide. 
Analysis and reporting is organized by feature rather than by user. 
Their results show that much can be gained from modest data collec­
tion efforts. The effort found a graphical interface to be an effective 
means of highlighting intrusions. 
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Tracor Haystack Tracor Applied Sciences, Inc. is developing an 
audit trail analysis system called Haystack for the Air Force Crypto­
logic Support Center at Kelly Air Force Base. Audit trail volume is 
about one million events per week generated by Sperry 1100/60 main­
frames running 1972 vintage operating systems. Haystack processes 
audit trail events using statistical measures and pattern recognition, 
and classifies violations with deterministic and heuristic rules. 

TRW Discovery TRW Information Services Division is developing 
Discovery, an expert system based design for "detective and preventive 
control in the on-line environment"[ll]. TRW's goal is to review daily 
inquiry activity and detect unauthorized inquiries (out of some 400,000 
inquiries per day from a base of 120,000 customer access codes). TRW 
has found Discovery to be useful for non-security purposes such as 
marketing and risk analysis. 

NCSC MIDAS The National Computer Security Center is devel­
oping the Multics Intrusion Detection and Alerting System (MIDAS) 
to take audit data from a Multics system and compare it to statisti­
cal user profiles maintained in LISP structures. Forty heuristic rules 
in an expert system shell define straight limits, expected user behav­
ior, expected system-wide behavior, and sensitive command sequences 
(similar to known attacks). MIDAS runs on a Symbolics machine using 
archived audit tapes. 

Conclusions 

A standalone security monitor with adaptive user work profiles and 
policy rules is a powerful, low-impact means for addressing the threat 
of intrusions and insider abuse. By using existing auditing facilities, 
disruption of the target operating system is avoided, and demands 
on host performance and resources are minimized. Implementing the 
ICE on a separate workstation platform provides security advantages 
as the audit data is immediately moved off of the target system, and 
the monitor software is isolated. 

The more narrowly directed the activity on the audited system 
and the more regulated the user population, the more stable the re­
sulting user profiles will be; a production environment presents less 
of challenge to this approach than does a research environment. So­
phisticated profiling is facilitated by an information rich audit trail, 
but even very limited audit trails have been shown to be successful in 
flagging intrusionary work patterns. 

The intelligent compounding of feature violations offers much more 
information than the respective individual component elements. The 
system's discriminatory capability will improve over time as the user 
profiles mature. Statistical methods to mimic the evolution of a user's 
work profile over time and job task changes are necessary for adaptive 
profile updating. 

Profiling will not detect a break-in if the intruder does not diverge 
noticeably from the account's normal pattern of system usage, or if 
the host auditing mechanism is subverted. The ICE may not be able 
to discern an intrusion that is performed so gradually that the user's 
work pattern is never divergent enough from his/her evolving profile 
so as to be found suspicious. The ICE approach will not be able to 
catch an insider familiar enough with normal patterns and the data 
elements that might be audited, that he/she is successful in avoiding 
exceeding thresholds. 

The design presented for a system called PUMICE demonstrates 
the summary and investigative aspects possible with this approach. 
Techniques to best condense a large amount of analysis to abbreviated 
displays of anomalous activity that are held for later review are aided 
by the window and graphical capabilities of workstations. Interactive 
tools enable immediate investigation of anomalous activity. Knowledge 
of active profiling may in itself act as a deterrent. 

"Bobby was a cowboy, and ice was the nature of his game, 
ice from ICE, Intrusion Countermeasure Electronics ... Le­
gitimate programmers never see the walls of ice they work 
behind, the walls of shadow that screen their operations 
from others, from industrial-espionage artists and hustlers 
like Bobby Quine .... Bobby was a cracksman, a burglar, 
casing mankind's extended electronic nervous system, 
rustling data and credit in the crowded matrix, mono­
chrome nonspace where the only stars are dense concentra­
tions of information, and high above it all burn corporate 
galaxies and the cold spiral arms of military systems." 
- Burning Chrome, William Gibson 
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ABSTRACT 

In performing verification tasks on 
several different secure software projects, 
the authors have been required to address 
issues concerning software quality, size and 
complexity. Many lessons were learned in the 
course of these efforts about how to 
efficiently specify and verify operational 
systems. Additionally, while evaluating 
characteristics of both programming and 
specification languages, we have identified 
syntax and style that either enhances or 
obscures security analysis. In the real world 
of large, complex systems where documentation 
often provides imperfect inputs to the 
verification process, we have devised methods 
for clarifying specification style, automating 
security analysis, and improving the 
communication that must occur between designer 
and verifier. Much of this work has focused 
on the use of Ada both as a POL and as an 
implementation language. 

The authors used the COMPUSEC Verifica­
tion Toolset to formally verify both the 
Army/Air Force AN/GSC-40 Series Command Post 
Terminals, and the Army's Regency Net system 
(under contract to Magnavox's Northern 
Virginia Systems Division). For Regency Net, 
this involved generation and then analysis of 
a hierarchy of software design documentation 
consisting of three tiers of specifications as 
required by MIL-STD-490. Ada was used as a 
program design language at both the B5 and C5 
levels of specifications. A combination of 
automated and manual methods were used to 
rigorously analyze Ada POL. For this system, 
the "distance" between the verified C5 and the 
Pascal implementation code was very small. 
This leads us to believe that the subset of 
Ada analyzed in this C5 POL could be expanded 
into one sufficiently rich to be used for 
verification of Ada implementation code. We 
are currently pursuing this line of research 
under Air Force Small Business Innovation 
Research (SBIR) contract F19628-86-C-0203. 

APPLICABILITY of AUTOMATED VERIFICATION TOOLS 

We have developed a methodology for 
formal verification of MLS properties based on 
the HOM methodology and the work of Richard 
Feiertag [1]. Variations of this methodology 
are being used to verify both the AN/GSC-40 
Series Command Post Terminals and Regency Net 
to achieve levels of assurance approaching 

those described at the A1 level of the 
Criteria [2]. This methodology has been 
applied to the preliminary design, detailed 
design, and deployment life-cycle maintenance 
phases of system development. Several 
iterations of a combination of automated and 
manual steps were used to find logical 
inconsistencies in design documents at each 
phase. Extension of this methodology to cover 
both MLS and proof-of-correctness analysis of 
either Ada POL or source code is currently 
under development [3]. 

Verification methodology development has 
been an evolutionary process. Automated 
portions were developed in an attempt to 
circumvent both human and resource limitations 
while meeting project deadlines. Manual 
efforts required comprehensive training and 
were best applied to fails analysis. Both 
extensive explanations of the causes of failed 
proofs as well as justification of the methods 
employed were often required in the face of a 
skeptical attitude towards the worth of formal 
verification. The timeliness and relevance of 
both input documentation guidelines and output 
discrepancy/failure reports were also often at 
issue. Much has been learned in the process. 

We believe that the feedback loop between 
software designer and verifier must be 
shortened so that more iterations of the 
verification process can economically occur at 
each stage of the software life-cycle. It is 
expected that responses to security feedback 
reports will act to increase software quality 
assurance while reducing cycles of formula 
generation and therefore ultimately reducing 
the number of failed proofs. Once fails have 
been located, it is the job of fails analysis 
to then quantify the bandwidth of the channels 
discovered and determine the degree of risk 
vs. the cost of a fix. 

Automated tools are particularly valuable 
when they allow achievement of greater 
accuracy and throughput than is possible using 
manual analysis. We utilize automation at a 
variety of points in the overall verification 
process. Descriptions of several currently 
used elements of our verification toolset 
follow: 

copyright 1988 COMPUSEC, Inc. 
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VERIFICATION TOOL DESCRIPTIONS 

COMPUSEC-Enhanced HDM. The HDM tool set (also 
called "old HDM") was originally developed by 
SRI International. Initially intended to 
structure the overall software development 
process, it has found a specific application 
in MLS security analysis. HDM includes the 
language SPECIAL (SPECification and Assertion 
Language), a theorem prover, and the MLS 
formula generator for multilevel security [1]. 
We have ported HDM from the Digital Equipment 
Corporation's TENEX operation system to 
VAX/VMS. We also modified the user interface 
to the MLS tool, added a label propagator, and 
corrected how the Verifier counts failed 
proofs. 

ATOS. ATOS (Ada-to-SPECIAL) works as a 
security cognizant Ada parser/translator. In 
addition to translating a subset of MIL-STD­
1815A Ada into an FTLS (Formal Top Level 
Specification) written HOM's specification 
language SPECIAL, ATOS generates valuable 
discrepancy reports that provide feedback 
relevant to software quality assurance. 
Problems identified include: 

• Parsing problems 
• Undefined subprograms 
• Undefined types 
• 	 Undeclared variables 
• Type mismatches 
• Formal and actual parameter mismatches 
• Illegal assignments to constants 
• Missing referenced files 

ATOS also identifies local and global 
scopes of data items in preparation for 
further processing by the Labeler tool. ATOS 
handles security ramifications of Ada's 
modularity: The constructs "with" and 
"separate" are addressed in a consistent way 
by searching both current and configuration 
management directories for the referenced 
files. Once a match is found, it is then 
instantiated into the correct scope. To 
account for capabilities not easily 
represented in Ada, ATOS recognizes 
annotations in the Ada PDL. Annotations 
include representations of the data items 
transported in low-level procedures and the 
locations of referenced files. 

BTOS. BTOS (Bubble-to-SPECIAL) is used for 
data flow analysis and produces FTLS from data 
flow diagrams [4]. Data flow diagrams (DFDs) 
can be developed from the top-level PDL in 
order to show the definition of the functional 
interfaces of the system. Given DFDs that~~l~i:~~~~ reflect all information flow for these 
interfaces BTOS identifies the following:~~~~~~~~~~~~ 

• The shortest path between two nodes 
• All possible paths between two nodes 
• 	 Paths between two nodes that contain 

labeling conflicts 

Discrepancies are identified as they occur, 
and DFD components can be adjusted 
dynamically. When labeling conflicts occur, 
BTOS examines the security attributes of the 
entities involved and either relabels them 
through use of a label propagation algorithm, 
or shows an unresolvable conflict. If only 
external inputs and outputs of a module are 
given labels, the setting of all internal 
labels to the system's least-dominant level 

followed by propagation of these labels across 
the DFD allows BTOS to find the least-dominant 
conflict-free set of labels of all entities in 
the module under analysis. 

TAT. TAT (Trustedness Analysis Tool) is used 
to determine allocation of trust in a secure 
system design. Given an input of formatted 
tables representing all possible paths between 
components in the system, TAT will identify 
which components of the system need to be 
trusted with respect to secrecy and integrity. 
The formatted tables that are used by TAT are 
consistent with the Ada PDL and reflect all 
inter-component flow of data specified in the 
PDL. TAT performs a data flow analysis of 
these tables that includes checking of inter­
and intra-component I/O consistency as well as 
consistency with Data Dictionaries. TAT 
determines which design modules potentially 
violate the system security policy and 
therefore must be trusted to carry out their 
functionality in a secure manner. Other 
modules are secure by induction. 

Labeler. The Labeler accepts as input an 
unlabeled SPECIAL FTLS and local and global 
Data Dictionaries, and produces , labeled FTLS 
as well as discrepancy reports. It determines 
the scope of data items and assigns correct 
labels to them based on definitions found in 
the local and global dictionaries. 
Discrepancy reports identify problems with 
consistency in the Data Dictionary itself, as 
well as disconnects between the Dictionary and 
the FTLS. If errors of omission or commission 
exist between records and their components, 
the Labeler flags these cases and then 
relabels record components according to rules 
which preserve the meaning of the security 
model. The Labeler can also format the Data 
Dictionary and its security labels into a file 
suitable for processing by the TAT tool. 

Labeler-Propagator. We added a propagator 
tool to HOM's environment for use in 
conjunction with HOM's MLS tool. The 
Propagator assigns security labels to data 
items not assigned fixed labels in such a way 
as to minimize security conflicts. The 
Propagator assigns default security labels to 
any data items within the FTLS which were not 
already assigned labels by the Labeler. It 
then uses a data-dependency recognition 
algorithm and a property violation algorithm 
equivalent to those implemented by Compusec­
Enhanced HDM in recognizing potential security 
violations. The Propagator writes a new FTLS 
file in which all data items have been 
propagated. It also reports labeling 
conflicts that occur any time data flows 
between data items with incompatible security 
labels. Use of the Propagator has proven to 
be quicker and more accurate than previous 
efforts using manual propagation. 

Splitter. The Splitter has enabled us to 
handle the formal verification of a large 
system in a timely manner. If an FTLS module 
is too large to be processed by HDM within 
system memory constraints, it must be broken 
down into appropriate subunits. The Splitter 
allows verifier-defined limits to be put on 
the size of these units while maintaining an 
~ccurate representation of the original large 
module. The Splitter correctly preserves 
seeping and interdependencies and produces the 
following: 
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• 	 Hierarchical Structure - This shows how 
the module is split and enables ease 
in seeing relationships between high. and 
low level procedures. 

• 	 Recursion Identification - HOM's MLS 
tools do not accept recursive functions. 
Instances requiring manual response are 
identified. 

• 	 Smaller SPECIAL Files - Resulting files 
are not only more manageable, but they 
remain parseable. 

STOF. The Source-to-Formulas tool provides an 
integrated verification environment that 
operates on Ada code or PDL. STOF directly 
translates code or PDL into provable formulas. 
It also translates security policy into axioms 
and rules. The security policy to be applied 
to analysis of the code or PDL can specify 
desired system behavior with respect to either 
multilevel security or correctness. 

Multilevel Security Concept. STOF's 
verification of MLS properties is based on use 
of its security-cognizant parser in 
conjunction with a labeling mechanism. The 
parser extracts type and seeping information 
from the source input and creates unique names 
that are formatted in its parse tree. The 
parser recognizes subjects and objects and 
performs path analysis to determine the 
shortest path between any subject/object 
pairs. The collaborating labeling mechanism 
allows data dictionary information to be added 
to path information. The data dictionary used 
supplies all fixed security labels. Labels 
themselves may be multi-attribute and of a 
project-specific format. The labeling 
mechanism transcribes the fixed labels to each 
instance of that data item found in the parse 
tree. Once all fixed labels have been 
transcribed, remaining unlabeled or floating 
label data items are subjected to label 
propagation. Propagation is a multi~pass 
operation that attempts to find the least 
dominant conflict-free path between .~11 
subject/object pairs. The number of 
propagation passes corresponds to the radius 
of a call graph of the system. Unresolvable 

conflicts are flagged as potential security 
violations. 

Proof-of-Correctness Concept. STOF's handling 
of proof-of-correctness is based on definition 
of a desired transformation that can be 
described using formal notation. Source is 
analyzed by deriving and then formally 
notating its properties. Proofs involve 
demonstrations showing that valid translations 
of source properties imply only the desired 
transformation. 

STOF Components and User Interface. STOF is 
currently implemented in SUN/Ada and runs on a 
SUN Microsystem Model 3/60. Inputs, outputs, 
and major components are shown in Figure 1. 
Low-level commands to STOF treat operations as 
predicates to be evaluated. Although a PROLOG 
syntax and semantics are sufficient to 
describe all operations, a visually-oriented, 
window-based user interface is under 
development for ease of use. 

Example: Star Network Simulator (SNS). STOF 
has been tested and demonstrated by using it 
to verify a small network simulator program. 
SNS models identical terminals as an array of 
Ada tasks managed by a terminal controller 
that is a single Ada task. Terminal tasks 
request a security level at login. From this 
point on, the terminal controller handles 
message input and output in a secure fashion 
and issues an audit trail. The current simple 
security model only allows terminals at the 
same level to pass messages. A known security 
violation exists in the SNS in that all 
message passing occurs using the same 
routine WRITE WIRE. The "wire" is unprotected 
and therefore has been labeled at level 11 1 11 

11 2 11(low). When SNS handles messages at level 
(high) , a violation occurs because messages 
are sent over the level "1" wire. STOF 
discovers and .reports this by processing input 
SNS source code and a simple data dictionary. 
Figures 3 6 contains fragments from SNS 
source and STOF output that demonstrate 
discovery of this security violation. 

Ada 

STOF 
Ada Security Verification 

Security _. Graph -)I Condition I-

Analyzer Generator Generator 

... 	 .. 

---~· FORMULAS 
Code H ~ 

SECURITYor POL 
FEEDBACK 
REPORTS 

~ 

Any 

Theorem 


Prover 


FIGURE 1. STOF Inputs, Major Components, And outputs 

Requirements Prelim. Detailed Coding and Integration Deployment-)IAnalysis ~ ~Design Design r" Unit Testing r+ and Testing Life-Cycle 
Maintenance 

STOF STOF STOF 	 STOF 

Figure 2. Life-cycle Applicability of STOF 
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--// WRITE WIRE: function FIND_ACCESS (MESSAGE in SHORT STRING) 
--II return L0NG_INTEGER is 
--11 Writes data to the simulated wire, in a real RESULT LONG INTEGER 
--11 application this routine would interface to a begin 
--11 low level output routine. 

case MESSAGE (2) is 

--// MESSAGE is output to the DESTINATION_TERMINAL 

--11 wire. when '1' => 

--II RESULT .- ACCESS_ONE 


--II 

procedure WRITE WIRE ( when '2' => 

-DESTINATION TERMINAL : in LONG INTEGER RESULT ACCESS_TWO 


MESSAGE : in SHORT STRING ) is-

begin when others => 


WIRE (DESTINATION TERMINAL) MESSAGE ; RESULT .- NO ACCESS 

end WRITE_WIRE ; ­

end case 

STOF PARSE TREE: 


return (RESULT) 

procedure body(write wire,null, 

{in((destTnation teriinal),name(long integer),null), end FINO ACCESS 

in((message),naie(short string),null)], 

[J. STOF PARSE TREE: 

statement(null, function body(find access,(long integer,null), 
name(wire,args(name(destination terminal))) [in((mesSage),name(short string),null)], 

:= ilame(message))), [variable decl((result),name(long integer),null)], 
null) [ - ­

statement(null, 
case(name(message,args(integer(2))),FIGURE 3. Ada Source and STOF Parse Tree for 

[Procedure WRITE WIRE ( (character(49)), 
[ 

statement(null,name(result) := name(access_one)))), 
((character(SO)), 

[ 
statement(null,name(result) :• name(access_two))]), 

((others), 
[statement(null,name(result) := name(no access))])])), 
statement(null,return statement(name(result)))], 

null) ­

FIGURE 4. Ada Source and STOF Parse Tree 
for Procedure FIND ACCESS 

--// P~OCESS_SEND_MESSAGE: 
--II 
--11 Determines if a send is valid, in this simple model only 
--11 terminals at the same level are allowed to pass messages. 
--II 
procedure PROCESS SEND MESSAGE ( 

- - SOURCE TERMINAL : in LONG INTEGER; 
MESSAGE : in SHORT STRING) is 

DESTINATION TERMINAL : LONG_INTEGER ; ­
begin 

DESTINATION_TERMINAL := CHARACTER'POS (MESSAGE (2))­
CHARACTER'POS ('0') 

if (DESTINATION TERMINAL < MIN TERMINAL) or 
(DESTINATION TERMINAL > MAX TERMINAL) then 

PUT LINE ( "Se(ver: reads bad-destination address" & 

-LONG INTEGER'IMAGE (DESTINATION TERMINAL) & 
" frOm terminal" & ­

LONG INTEGER'IMAGE (SOURCE TERMINAL)) ; 
SEND-BAD DESTINATION MESSAGE (SOURCE TERMINAL) 

elsif (TERMINAL ACCESS (DESTINATION TERMINAL) = 
TERMINAL ACCESS (SOURCE TERMINAL)) and 
(TERMINAL ACCESS (SOURCE TERMINAL) > NO ACCESS) then 

SEND FROM HiADER (SOURCE TiRMINAL, ­
- - DESTINATION_TERMINAL) ; 

--11 This message is okay to send to the destination 
--11 terminal. Server puts the message on the wire 

WRITE WIRE (DESTINATION_TERMINAL, MESSAGE) ; 

--11 server notifies the destination terminal of the 
--11 incomming message with the entry point "receive message". 
--11 A real system might use handshake lines, or othir 
--11 signals here. 

TERMINALS (DESTINATION_TERMINAL).RECEIVE MESSAGE 

else 
PUT LINE I 

"ierver: Terminal" & 
LONG INTEGER'IMAGE (SOURCE_TERMINAL) & 
" to-terminal" & 
LONG INTEGER'IMAGE (DESTINATION TERMINAL) & 
" send message request denied bicause of access violation." 
) ; 

SEND_NOT_ALLOWED_MESSAGE (SOURCE_TERMINAL) 
end if ; 

end PROCESS SEND MESSAGE 

FIGURE 5. Ada Source for Procedure PROCESS_SEND_MESSAGE 
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% parse('demo.ada',X). 
X = [null, 

procedure body(demo,null,[],
[ ­

constant_decl((min_terminal),name(long_integer),integer(O)), 


More? 

no 

% consult('demo_translations'). 

yes 

% consult('demo_labels'). 

yes 

% propagate(X). 

Analyzing flows for: [demo,controller,process message] 

Analyzing flows for: [demo,controller,find access] 

Analyzing flows for: [demo,controller,process send message] 

Analyzing flows for: [demo,controller,write wire] ­
Analyzing flows for: [demo,controller] ­
Analyzing flows for: [demo,terminal task] 

Analyzing flows for: [demo] ­
Pass: 1 


Get label for: object(message,[demo,controller,write_wire])2 

Get label for: object(wire,[demo])l 

Comparing: message(2) -> wire(l)

**** unresolvable conflict **** : 


message, declared in [demo,controller,write_wire], label 2 -> 
wire, declared in [demo], label 1 

Get label for: object(k!,[ ])0 
Get label for: object(destination terminal, 

[demo,controller-;-process send message])l 
Comparing: k!(O) -> destination_terminal(I) ­

Label changes: 9 
Unresolved 1 
Pass: 2 

Label changes: 3 
Unresolved 1 
Pass: 3 

Label changes: 0 
unresolved : 1 
X= propagate results([ 

label-change(object(terminal,[demo, send bad destination message]),l,2), 
label-change(object(destination terminal-;-[demo, send from header]),l,2), 
label-change(object(source terminal,[demo, send-from-header]),l,2), 
label=change(object(terminal,[demo,_access=levei_change_message]),l,2), 

label change(object(my terminal number,[demo,terminal task]),l,2), 
label-change(object(terminal,[demo, create terminal])-;-1,2), 

label change(object(console,[ ]),0,2)1, ­
[ ­

object(message,[demo,controller,write_wire]) -> object(wire,[demo])]) 
More? 
no 
% logout. 

FIGURE 6. EXTRACTS from STOF MLS Analysis of SNS 
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CONCLUSIONS 

Secure system development has only 
recently become a practical, applied science 
[5]. Two major categories of methodology 
enhancement need to be pursued: 1) The 
semantics and logical consequences of certain 
Ada statements with respect to both MLS and 
proof-of-correctness properties must be 
specified. 2) Additional automated 
verification support tools that shorten the 
designer/verifier feedback loop must be 
developed. Achievement of these objectives 
will result in the means to both quantify and 
evaluate the level of assurance of operational 
software development projects requiring higher 
reliability and quality. 
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ABSTRACT 

This paper describes a suite of tools 
used in evaluating software for security 
certification. The tools are currently being 
used on software for secure Electronic Funds 
Transfer, but could be applied to other appli­
cations as well. 

it can only be done by a trained analyst who takes1. Introduction 
the time to understand the source code. Software 

One of the valuable services provided ])y govern­ tools can improve the process by helping reveal the 
ment agencies is certification of commercial products. 

structure of the system and by performing certain 
Familiar examples include the certifications of food mechanical checks on syntax and control/data flow 
and medicine performed by the Food and Drug 

(e.g. as provided by lint [John78]). UNIX* tools such 
Administration. To support the need for secure elec­

as lint, . grep '[BSDSOJ and awk [Aho78] are heavily
tronic funds transfer (EFT) of both industry and its used in the evaluations, but this paper will present 
own bureaus, the U.S. Treasury Department initiated only new tools that have been developed to supple­
a program for certifying EFT equipment [Ferr87, 

m~nt UNIX utilities and other commercially available 
Trea86J. To assist in this effort, the National Bureau tools. 
of Standards (NBS) has been developing source code 
analysis tools to assist in the evaluation of software 

1.1. Prototype Tools 
used in EFT equipment. This paper describes some of 

The tools described in this paper are designed tothe tools that have been developed and work that is 
help the security analyst understand the system beingcurrently in progress. 
evaluated. The information. they provide could be 

The EFT equipment being certified provides 
gathered without tool support, but to do so would 

ANSI X9.9 Message Authentication capability 
take considerably longer. An additional advantage is 

[ANSI86] and ANSI X9:17 Key Management functions 
that the tools provide a variety of views of the sys­

[ANSI84]. The equipment typically includes a secure 
tem. Documentation is expected to contain much of 

microprocessor and a chip to perform encryption using 
the information, "but one goal of the tool suite is to 

the Data Encryptiop. Standard [NBS77]. Software assist in checking consistency and correctness of docu­
controls access to the various functions through either mentation. Many of the functions provided by tools 
password protection or magnetic cards. The software described in this paper are available from other tools. 
is usually small, approximately 4,QOO lines of source 

code. The paper will point out features of our tools that are 
not provided by others. 

Commercial developers supplying EFT equipment 
The tools that have been developed are designed to the Treasury Department are required to develop 

for use on C source code [Kern78]. C is an appropri­
it according to specifications given in [Trea86b]. The 

ate target language for the prototypes because C is a
specifications mandate security features recommended 

popular language ·for micro-processor applications.
in · [NSA86J and include requirements to aid in 

Most of the source code for the EFT equipment is C, 
verification suggested by [NBS82]. One job of the 
security analyst is to review the source code to ensure 

although various assemblers are used as well. The 

that access control checks are performed properly and 
that critical data are not accessible· to unauthorized *UNIX is a registered trademark of A'{'&T 
users. This review clearly cannot be fully automated; 
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tools are written in C and are modular so that it is 
relatively easy to modify them to support other 
languages. In one case the code for the equipment 
being evaluated was written entirely in Z80 assembler 
and the parser was modified in an afternoon to handle 
the assembly code. 

1.2. 	Tool Design 

Most of the tools follow a common design, shown 
in Figure 1. The pre-processor is a simple parser that 
recognizes functions or macros defined in the source 
code but ignores common library routines such as 
print!() or scan!(}. (An alternate pre-processor can 
include all functions called.) Function names are 
stored in namefile which is then used by the parser in 
each tool to recognize routines of interest. This 
design allows the analyst to remove names of routines 
that are not security-relevant, such as math library 
functions. The output of a tool (e.g. a call tree) will 
then consider only security-related routines, simplify­
ing the analysis. Of course, judgement is required to 
determine what functions can be safely ignored. 
Namefile can be edited repeatedly to provide different 
views of the system being studied. 

Figure 1. 

2. 	 Ccalls: Call Tree and Logical Nesting 

The first task of the security analyst is to under­
stand the program that is being evaluated. The first 
step in doing this is to look at the functions of indivi­
dual routines and the calls they make to other rou­
tines. In addition to the calls that occur in the pro­
gram, the analyst will be interested in the indirect 
relationships among routines. If routine A calls rou­
tine B, and B calls C, then a change to A may affect 
C, or a change to C may affect A through parameters 
passed in calls. This relationship can be traced from 
the call tree, but if a program contains many routines 
the call tree may be spread across several pages of 
paper, making it awkward to analyze. The tool 
presented in this section, called ccalls simplifies the 
analysis of these relationships. Several tools are avail­
able to perform some of the functions of ccalls, but 
ccalls is apparently the first such tool to identify logi­
cal nesting in C source (see Section 2.7). It also 
appears to be the only tool to extract an indirect calls 
matrix from C source code, although it is possible to 
trace indirect calls manually using a call tree. 

2.1. 	 Operation 

Ccalls has two phases. First a file of routine 
names and the file where they are defined is produced. 
The second phase reads this file and begins parsing 
the C source code. An adjacency matrix D is built, 
where D; .i is 1 if routine i calls routine j and is 0 
otherwise. In other words, D is simply a matrix 
representation of the program's call graph. After D is 
completed, ccalls builds a matrix I = D', the transi­
tive closure of D. D is called the direct call matrix 
and I is called the indirect call matrix, since I 
represents the indirect relationship between routines 
through calls. In the example discussed above, 

D - 1 	 and D = 1 since A calls B and B calls C. 
A B - ' B,C ' 

Al~o, IA ,c == 1, because of the indirect relationship 

between A and C. 

2.2. 	 Call Tree 

After the call matrix is built, a call tree is easily 
produced. A portion of one is shown Figure 2. Ccalls 
only expands a subtree fully the first time a routine is 
encountered. Thus in the example in Figure 2, if 
'prt_line' were called elsewhere, the tree would not be 

Tool Design 

expanded to show 'get_name' as a subroutine of 
'prt_line'. This helps keep the call tree display to a 
reasonable size. 

The UNIX System V utility cfiow provides a 
similar call tree but lists calls to library functions such 
as print!() and getchar(}. This results in extremely 
large call trees which may make it harder to recognize 
the structure of the program. Ccalls was designed to 
eliminate this "information overload" by ignoring 
library routines and printing calls within routines only 
once. If desired, a different pre-processor can be used 
with ccalls to include all functions, whether they are 
defined in the system under study or are library func­
tions. 

The call tree lines are of the form routine 
name:file in which routine is defined and may be fol­
lowed by an asterisk if the routine represents the root 
of a logically nested subsystem (as explained in Sec­
tion 2.7). 

2.3. 	 Call Matrix 

Rather than present a large square matrix of ls 
and Os, ccalls provides, for each routine in the pro­
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gram, lists of the routines that it calls directly and 
indirectly and lists of routines that call it directly and 
indirectly. An example is shown in Figure 3. 

2.4. 	Statistics 

Ccalls also provides some statistics that may be 
useful in estimating the complexity of the program 
being evaluated. Figure 4 shows an example. The 
value Functions is simply a count of the C functions 

main:main.c * 

closure:matrix.c 

copy_array:matrix.c 

init_array:matrix.c 

out_matrix:matrix.c * 


count_interfaces:matrix.c 
do_call_tree:matrix.c 


main_rtn:proc.c 

prt_line:matrix.c 


get_name:proc.c 
prt_tre:matrix.c 

add_item:set.c 
prt_line:matrix.c 
prt_tre:matrix.c 
set_mem:set.c 

Figure 2. Example of Call Tree 

or routines in the entire program. Interfaces is a 
count of the interfaces between routines. For exam­
ple, if A calls B three times and calls C twice, there 
are two interfaces: A to B and A to C. The Number 
of Calls in this example is of course five. 

The ratios provide some information on the 
branching factor of the call tree. The main routine, 
main in standard C, is not included in the count, 
only subroutines. Both ratios thus have minimum 
values of 1.00, since every routine but main must be 
called at least once. (ccalls can identify routines not 
called.) 

2.5. 	Uncalled Routines 

Routines that are never called are easily 
identified using the direct call matrix D. The routine 
indexed by J is unused if D;,; = o for all i. These 

routines are listed on the analysis report. The UNIX 
tool lint can detect uncalled routines, but some rou­
tines may be called yet still be unreachable. For 
example, routine d in Figure 5 is uncalled and 
unreachable. Routines e and f are unreachable but 
not uncalled. Ccalls can detect these unreachable 
routines, as explained in the next section. 

do_call_tree: From file: matrix.c 

Calls: 

Directly: 

main_rtn prt_line prt_tre 
Indirectly: 

add_item get_name main_rtn 
prt_line prt_tre set_empty 
set_mem set_union subsys 

Called By: 
Directly: 

out_matrix 
Indirectly: 

main out_matrix 

Figure 3. Display of Call Matrix 

-------------- STATISTICS ---------------------­

Functions: 34 

Interfaces: 36 

Calls: 49 

Interfaces/Function: 1.06 

Calls/Function: 1.44 

Figure 4. Example of Statistics 

Figure 5. Uncalled and Unreachable Routines 
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2.6. 	Unreachable Routines 

Some routines that are never called may call 
other routines. These other routines will not appear 
on the list of uncalled routines even though there may 
be no possible execution of the program in which they 
could be called. Recall that I = D'. Therefore I;,; = 1 

if and only if there is some call sequence from i to j. 
Unreachable routines can be identified simply by 
finding those which cannot be reached by any calling 
sequence from main, i.e., the routine indexed by j is 
unreachable if Imain,; = 0. Note that it is always true 

that 

{uncalled routines} s::; {unreachable routines}. 

Unreachable routines are listed on the analysis report. 

Routines that are called only through function 
pointers will be listed as uncalled and unreachable. 

The analyst must check that each such routine is 
used and that it is possible for a function pointer to 
be instantiated with the routine's address. 

2.7. 	Logical Nesting 

A useful feature of ccalls is the identification of 
logically nested subsystems, marked with an asterisk 
in Figure 2. Block structured languages such as Pas­
cal and PL/I allow routines to be nested, to explicitly 
show their hierarchical relationship. The C language 
does not provide this feature, so hierarchical arrange­
ments of subroutines must be deduced from the cal­
ling structure. Ccalls saves time by performing this 
task for the analyst. The value of recognizing a logi­
cally nested subsystem is that one can study the sub­
system independently from the rest of the code. 

We define a logically nested subsystem as a group 
of routines, headed by a root node, none of which is 
called by any routine that is not part of the subsys­
tem. Thus leaf nodes, i.e. routines that do not call 
other routines, are trivially subsystems. The 
definition is stated formally in Figure 6. The 
definition indicates if a particular node, r, is the root 
of a logically nested subsystem. E is a set of routines 
'external' to the subsystem (if one exists headed by 
node r), C is the set of routines called by routines in 
set E, and r and j are indices of routines in the pro­
gram. Ccalls prints an asterisk adjacent to any rou­
tine that is the root of a logically nested subsystem. 

A program will typically contain 'library' routines 
that are used in many places. Ccalls allows the user 
to eliminate these library routines from consideration 
when checking for logical nesting. 

2.8. 	 Data'Access 

An option allows global variables to be included 
in the analysis. Heavy use of global variables is poor 
programming practice. However, there are cases where 

S = 	 Ir,• - { r} 

E =U-S 

(S nc = 0)""" r is the root node of a logically nested 

subsystem 

where 

U = the set of all reachable routines in the program 
Ir,• 	= the set of routines called indirectly by r, 
corresponding to row r of matrix I. 
D;,, 	= the set of routines called directly by i, 
corresponding to row i of matrix D. 

Figure 6. Logically Nested Subsystem Identification 

they can be used sensibly. For example, a common 
way to implement an abstract data type in C is to 
define a data structure and all functions that access it 
in a single file. The data structure must be global to 
all the functions in the file. Ccalls allows global vari­
able names to be treated as "functions" and appear in 
the call tree (as leaf nodes) so the analyst can examine 
the different ways in which functions accessing a glo­
bal variable can be reached. The system should per­
form necessary validations on all calling sequences 
which can reach critical variables. Including global 
variables as leaf nodes in the call tree can make it 
easier to trace what happens on the way to a function 
that accesses a critical data item. Another tool, 
described in the next section, unravels the call tree 
into all possible calling sequences to make it easier to 
trace events along paths to critical functions and data 
items. 

3. 	Paths: All Calling Sequences 

One check that must be made is to ensure that 
preconditions for routines are established and/or 
maintained by routines higher up in the calling 
sequence. This is particularly important in assembler 
language where parameters are passed in registers or 
global variables. To verify that preconditions are met 
before a routine is called, the analyst must trace 
upward through all possible paths in the call tree by 
which a routine can be reached and ensure that regis­
ters are set up correctly on all paths. This process is 
made easier by generating all possible calling 
sequences in which bottom level routines can be 
reached. The list of all sequences is restricted to those 
that contain the routine of interest by passing the tool 
output through grep. The analyst can then check 
each of the call sequences as far up as necessary to 
verify preconditions. An example is shown in Figure 
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--------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------

7. Lists start with lowest level routines and move up 
the tree from left to right. For example, the first list 
shows that main calls csm_errproc which calls 
send_esm and so on. 

key_setup<-csm_macproc<-gen_edc < -putedc <­
send_esm < -csm_errproc <-main 

key_setup<-csm_macproc < -gen_edc < -putedc <­
send_esm < -csm_errproc < -pl_csm_parse<­
getcsm<-main 

key_setup<-csm_macproc < -gen_edc < -putedc <­
send_esm <-main 

Figure 7. Calling Sequences 

4. Layers: An Alternative View of Program 
Structure 

We have been experimenting with different ways 
of displaying program structure. One interesting 
approach is shown in Figure 8*. The matrix was 
created by dividing the program into layers according 

to calling structure. The top layer L 0 is defined to be 
{main}. Other layers can then be defined as 

L;. = {functions called from layer L,_1 not assigned to a 

layer m, m < n }. 

More formally, 

L 0 = {main}, 

L, = { j :for some i E L,_1, i calls j, j f:. Lm for 

all m < n }, 

where i and j are functions. 

A call from routine i to routine j is shown by 
"XX" at position i, j in the matrix. The index 
numbers are keyed to function names and are 
displayed on a separate page or another workstation 
window. 

This type of presentation is useful not only as a 
way to give a complete cross reference on one page 
(for the size. of systems under evaluation) but also to 
convey information about the structure (or lack 
thereof) of the system. In particular it shows the 

o1 1 2 3 4 5 6 7 81 910111213141516171819120212223242526127282930313233343536371383940414243441 
o IXXXXXXXXXXlOOOO I I I I I 

1 I XX I I I 
2 I I I I 
3 I I I I 
4 I IXXXX I I 
5 lXX I I I 
6 lXX XX I I I 
7 I XX I XXXXXXXXXXXXXX I I 
8 I I XXXXI I 

9 I XX lXX I I 
10 I I xxxx I I 
11 I XX I I I 
12 I I XX I I 

· 13 I I XX I I 
14 I I XX I I 
15 I I XX I I 
16 I I XX I I 
17 I XX XX I I I 
18 I I I I 
19 I I XX XXI I 

20 I XX Ixxxxxxxxxx I 
21 I I I 
22 I I I 
23 IXX XX I :XXXXXXXXXX I 
24 I I XXI 
25 I I I 
26 I I I 

27 I I 
28 I I 
29 I I 
30 I I 
31 xxxx IXXXX I 
32 I I 
33 XX XXI I 
34 XX I XX I 
35 XX I I 
36 xxxx I XX XXXXXXI 
37 xxxx I XXI 

38 1 I 
39 I I 
40 I XXXX XX XXXX I 
41 I I 
42 I I 
43 I I 
44 I I I 

.. ... .. 

~~~~~~~% 
:~:~:::::::: 
~;::::~:::~ 

Figure 8. Example of Layers 
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________________________ 

o1 1 2 3 4 5 6 7 e 910 111121314151617181920212223242526272829303132333435363738394041424314445464748495051525354551565758591' 

0 pOOOOCXXXXXXXXXXXXXXXI . _---- ----- _--- --- ---- !________________________!________! -~-- j------------------­ -~--- --------------­ ________ ____ ________ _______ 
I I 

2 1 xxxx xx Ixxxxxxxx I I 
3 lXX xxxx XX I xxxx I I 
4 1 I I I 
5 lXX XX I XXXXXX I I 
6 1 XX I xxxxxxxxxxxx I I 
7 lXX XX I I I 
8 lXX XX XXXXI XX XX XXXXlOOOOOOOOOO I I 

I XX XX I I

=~--!~----~----~------!----~------------------------------------------------------~! ! -------­
111 
12 1 
13 I 
14 1 
15 I 
16 1 
17 lXX XX 
18 1 XX XX 
19 lXX XX XX 
20 1 

21 1 

22 lXX 
23 1 

24 1 
25 1 

26 1 XX XX 
27 lXX XX 
28 lXX 
29 I XX 
30 1 XX 
31 1 XX 
32 1 
33 1 
34 1 
35 1 XX 
36 1 Xi( 
37 1 XX 
38 lXX 
39 1 
40 lXX XX XX 
41 1 
42 1 XX XX 
43 lXX XX 

44 

I 
I 
I 
I 
I 
I 

XX 'xx IXXXXXX 
XX XX I 

xxxxxx 	 I 
I 
I xxxx 
lXX 
I 
I 
I I 

XX XX XXIXXXXXX I 
XX 	 lXX I 

I IXX 
XX XX lXX I 


JOe XXI I 

XX I I 


I 	 I 
XX 	 I I 

I I 
XX 	 I I 

I I 
XX XX I XX I 

XX I I 


XX XX I I 

I 	 Ixxxxxx 
lXX xxxx I 
I I 
I 	 XXXXI 

I 	 I II I45 	 xxxxxx I II 
46 I 	 I xxxxxx I II I 	 I47 	 I II 
48 I 	 I I II 
49 lXX XX XXI XX XX XX poe XXXXIXXXX I 
50 I 1 r I I 
51 I I I I I 
52 lXX XX I 	 I I XXXXI 
53 lXX XX I I I I 
54 lXX XX XX I II 	 I55 	 I II I ---------------------------------------------------------------------- -----------------------­
~~--~---------------------	 I 

1 I 
XXI I 

58 1 1 I I 
57 lXX XX 	 1 

~:__!_______________________________________________________________________________________!__ _ I I 

Figure 9. Example of Layers 

dependence relation among routines. The relation is More recently it has been argued that the same 
very similar, but not equivalent, to the USES relation arrangement supports security concerns, especially 
defined by Parnas [Parn74, NRL80, Neum86] because verification [Neum86]. 
it is derived purely from static analysis of source code Well designed systems are often organized into 
which can only recognize syntactic uses of functions. layers, and as 	a result it is often helpful in under­
Nevertheless, we have found it helpful in recognizing standing 	a system to categorize subroutines by func­
levels of 	abstraction that may not be immediately tional layer. Of course, many routines may be used in 
apparent from source code packaging, a problem that several places (e.g. math subroutines). These can be 
occurs in many evaluations, particularly in secure considered general-purpose library routines rather 
UNIX implementations [Sibe87]. than members of any particular layer. From running 

An important principle of software engineering the tool on many different systems, it appears that 
holds that reliability is enhanced by organizing a sys­ most tend to show a layered arrangement even when 
tem into a hierarchy of layers [Dijk68]. Each layer of this was not an explicit design requirement. 
subroutines provides a virtual machine whose func­ The layers in Figure 8 correspond to nesting lev­
tions are used 	to implement the next higher layer. els at which routines first appear in the call tree, i.e. 

main which first appears at nesting level 0 is layer 0, * Figures 8 and 9 are small utilities used for illustration. 
functions that first appear at nesting level 1 are in 
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layer 1 and so on. Calls from functions at lower levels 
to higher levels (level i +1 considered "lower" than 
level i ) appear in the lower left corner of the 
diagram. Calls of this type may be an indication of 
poor structuring. 

Figures 8 and 9 show an interesting contrast. 
The system in Figure 8 is nicely layered. To gain an 
understanding of this system, the analyst can proceed 
by studying routines in increments of reasonable size. 
In the system in Figure 9, 44 of the 60 functions are 
called within the first two layers. The analyst must 
study almost 75% of the functions at once to see how 
the system works. In addition, this system contains 
many routines that are called from several layers, 
where the one in Figure 8 has only a few such rou­
tines. 

5. Assert: Assertion Recognizer 

Treasury Department requirements [Trea86b] 
specify critical events that must be performed by the 
EFT equipment, e.g. "Inhibit interrupts for crypto 
processing", "Perform RAM test." To make it easier 
to check that these functions are being performed 
properly, source code is required to contain numbered 
assertions that help the analyst recognize important 
points in the code. The following assertions are 
required: 

1. 	 module name, 

2. 	 global data items, 

3. 	 local data items, 

4. 	 module housekeeping prior to return, 

5. 	 requirements performed prior to module entry, 

6. 	 requirements performed during module process­
ing, 

7. 	 other modules accessed during processing of given 
module, 

8. 	 other modules that can access the given module. 

For example, the assertion format for item 5 
above is 

ASSERT 4 5 <category of event> <event>. 

The categories and events are specified and num­
bered in the requirements, so, for example, "MID gen­
eration" would be indicated by 

ASSERT 4 5 1 1. 

The evaluation suite includes a tool to recognize 
assertions and write out the assertion, line number on 
which it starts, and the file in which it occurs. The 
same function may also be performed with the UNIX 
tool grep if the assertions are not broken across two 
or more lines. Using additional UNIX tools such as 
awk, sort, and uniq simple scripts check that all 
required events have been asserted in the code. The 
analyst must then verify that they are being per­
formed correctly and at the proper times. 

6. Ccomments: Condensed Source Listing 

Often, the best way to get an idea of what a pro­
gram does is to proceed in a top-down fashion, deter­
mining the function of the top-level routine, then 

looking for calls to other routines and determining 
their functions. The important points to consider 
about the routines are the parameters, and com­
ments in the source code telling what the routine 
does. 

A 'condensed source listing' is provided that 
abstracts this information from the source code to 
provide a summary of the program. The condensed 
source listing is designed to make it easier to study 
the functions in a large program. It gives comment 
header blocks and the call interface to each routine. 
The call tree provided by ccalls provides a 'road map' 
of the program's structure and serves as a guide to 
using the condensed source listing. An example is 
shown in Figure 10. 

7. Metrics: "Quality Metrics" 

One important consideration in evaluations is the 
degree to which good programming practices have 
been followed. Interesting characteristics include 
lengths of routines, number of comment lines, number 
of declaration lines, ratio of comments to executable 
code, and "complexity metrics" such as McCabe's 
cyclomatic number metric [McCa76]. Another tool in 
the evaluation suite checks and reports on these sur­
face characteristics. It also gives warnings at user 
determined thresholds for lengthy routines, insufficient 
comments, or cyclomatic number greater than a user­
specified value (typically 10). 

8. Trace: Function Call Trace 

It is important that asserted events be performed 
in the proper order. The tool set also includes one 
dynamic analysis tool that instruments C source code 
to print the name of a routine whenever it is exe­
cuted. This makes it possible to test a system and 
check that critical functions are being performed in 
the correct order by examining the trace of function 
calls. 

9. Future Work 

9.1. Windowing Environment for Certification 
Tools 

We will be developing a prototype of an 
integrated windowing environment in which the 

security analyst can operate the previously developed 
tools or any others that are available from other 
sources (e.g. standard UNIX utilities) or may be 
developed in the future. 
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!**********************************************************************!
I* Source File name = CSMUTIL.C - X9.17 Utility functions *I 
!**********************************************************************/ 

!**********************************************************************/
I* Parse KDIKKI*KK, etc. field and extract subfields *I 
!**********************************************************************! 
k_field_parse (buf_offset, key_area) 

int 	buf_offset; 
struct key_field *key_area; 

/**********************************************************************!
I* Parse KID field in a G$K Pseudo Message - get subfields *I 
!**********************************************************************! 
kidfield_parse (buf_offset, kid_area) 

int 	buf_offset; 
struct kid_field *kid_area; 

/**********************************************************************/
I* Parse SVR field and extract subfields *I 
!**********************************************************************/ 
svr_field_parse (buf_offset, svr_area) 

int 	buf_offset; 
struct svr_field *svr_area; 

Figure 10. Condensed Source Listing 

The environment will 	 To assist the security analyst in evaluating EFT 

1. 	 Provide up to four windows simultaneously, with software, a tool is being developed that will accept a 

each window able to display or edit a file gen­ specification of event sequences from the analyst and 

erated by the tools. determine through static evaluation if the sequence 
constraint is met. The following types of event2. 	 Execute a tool from any window. 
sequences can be checked for: 

3. 	 Provide a menu of functions to perform and tools 
to execute. 

1 - Does A ever occur before B? 
4. 	 Allow escape to the UNIX shell without leaving 2 - Does A always occur before B? 


the environment. 
 3 - Does A ever occur after B? 
5. 	 Be able to reconfigure the windows from one to 4 - Does A always occur after B? 

four and change their sizes as desired by the 5 - Does A ever occur immediately before B? 
security analyst. 6 - Does A always occur immediately before B? 

6. 	 Create files and directories to store results of a 7 - Does A ever occur immediately after B? 

session. 8 - Does A always occur immediately after B? 

9.2. Sequence Analysis Tool 
To make the analysis practical, the events should 

Among the requirements for the EFT software 
correspond to functions (or subroutines) in the source 

are 	requirements that certain security critical opera­
code. This should be a reasonable constraint, since

tions are performed in a specified sequence, in addi­
the development requirements [Trea86b] specify that a

tion 	to the operations that perform the encryption 
subroutine should perform only a single function and 

and decryption [Trea86b]. Examples include the 
also require assertions to be placed in the source code 

checking of critical routines before they are executed 
to assist the analyst in determining where critical 

and 	 the clearing of sensitive data from temporary 
functions are performed. It should then be possible 

storage after use. The critical operations must be per­
for the tool to answer questions given above based on 

formed in proper sequence on all paths through the 
syntactically possible sequences of subroutine calls. 

program. 

By 	using data and control flow analysis tech­
niques developed for optimizing compilers, it is possi­ 10. 	Conclusions 
ble 	 to determii\e if many sequencing constraints are 

The tools described in this paper are experimen­
met 	[Olen86],[McLe84]. In addition to use in optimiz­

tal. 	 All appear to be useful, but more experience is 
ing compilers, analysis of this type has been used in 

required to determine those that are most effective in 
evaluation of software reliability [Fosd76]. It may 

aiding evaluations, and to determine features that are 
also be of value in evaluating software security. 

missing. We would like to obtain good data flow 
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analysis tools for C, to supplement the fairly basic 
capabilities of lint and our own tools. Although the 
tools are now being used on relatively small systems, 
the Department of Treasury has very large systems 
that process sensitive data. Another goal of our 
current work is to determine how the tools can be 
applied to large systems. 
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Abstract 

This paper describes how a software-based security 
architecture can protect itself against programs that attempt to 
compromise system security. Methods of program 
containment are explained, using an example of a software­
based security architecture: the Unisys A Series with the 
MCP/AS operating system and InfoGuard security 
enhancements. The presentation focuses on issues involving 
creation and protection of program code and the extent to 
which compilers are included in the Trusted Computing Base 
(TCB). 

Introduction 

System security is usually considered "stronger" when based 
upon a hardware architecture that enforces TCB constraints. 
Therefore, techniques for building a software architecture that 
enforces TCB constraints are less widely discussed. ·A security 
architecture that relies in large part on a software TCB 
requires that novel methods of pro~ram containment be 
developed. The threat of system secunty being compromised 
by user-written programs must be analyzed carefully in an 
environment where the hardware is supfortive of, rather than 
primarily responsible for, enforcement o security. 

The next section of this paper surveys the central role played 
by program code in threats to a software-based security 
architecture. The subsequent section introduces the Unisys 
A Series architecture as an example of a software-enforced 
TCB. Then the largest section of the paper is devoted to an 
examination of the A Series protection methods that provide 
program containment; the issues covered include the nature 
and extent of trust in compilers, as well as the controls that 
must be placed on both compilers and the programs they 
create. The term "code file" is used throughout m the A Series 

·.· .. ·' sense, referring to a file that contains compiler-generated, 
machine-executable code. 

~~~~ 	 This introductory section concludes with a very brief overview 
of the Unisys A Series. The basic architecture was introduced 
in the late 1960s with the Burroughs B6500 (which was itself 
based on the earlier B5500) and evolved through the other 
B6000 and B7000 systems to the A Series line. Although each 
new step in the evolutionary process provides object-code 
compatibility between new and predecessor systems, the 
hardware and software architecture does indeed change over 
time. 

At a high level of abstraction, the Unisys A Series operating 
system, Master Control Program / Advanced System 
(MCP /AS), is primarily responsible for enforcing the A Series 
security policy with respect to users, files, programs, and 
processes (some secunty enhancements are enabled by 
InfoGuard, a Unisys software product that is integrated with 

MCP/AS); high-level protection incorporates the principles of 
Discretionary Access Control (DAC), Identification and 
Authentication, Audit, Object Reuse, and Least Privilege as 
required for Class C2 of the Trusted Computer System 
Evaluation Criteria [DoD85]. At a low level of abstraction, 
central-memory objects are protected by a combination of 
hardware, microcode, the MCP /AS security "kernel", and 
compilers; low-level protection is accomplished by structural 
containment (i.e., access is limited by the structure of the· 
environment). 

Although A Series processors do not define a privile~ed 
execution state, they do provide a number of protectwn 
features: a 4-bit ta~ is associated with each 48-bit memory 
word; tag values discriminate data from code and various 
processor control words. Code and critical control words have 
odd tags and are thus protected from access or modification by 
the instructions normally used to manipulate data. Memory is 
managed in segments defined by spectal control words called 
descriptors. All accesses to data segments (e.g., arrays) are 
automatically bounds-checked. A sophisticated stack-based 
addressing mechanism allovys each item declared in a block­
structured program to be assigned a static address at compile 
time; the addressed location may contain a simple variable 
(tag 0 or 2) or a tag-differentiated item such as an array 
descriptor (tag 5), a pointer to a character (tag 5), an entry 
point to a procedure (tag 7), or a reference to another item 
(tag 1). 

The environment of any process consists of its own code and 
data plus any other items that are provided to it for 
communication with other processes or the operating system. 
Because each item can be separately described, the 
architecture permits controlled sharing of information at an 
arbitrarily fine level of detail. Thus each instance of a process 
(actually, each procedure invocation) has its own execution 
domain in an A Series system; hardware changes context 
automatically on procedure invocations across process 
domains. Indeed, it is just this flexibility of domain structure 
that justifies involving software in protection enforcement, 
rather than relying exclusively upon simple isolation 
mechanisms in hardware. (For an illustration of process 
domains, refer to the Appendix.) 

Ancestral versions of the architecture are described by Hauck 
and Dent [Hau68], Creech [Cre69], Or~anick rorg73], and 
Doran [Dor79]. The most significant arch1tecturaf departure in 
the A Series Advanced System Architecture is the introduction 
of Actual Segment Descriptors (ASDs) to extend the virtual 
and physical addressing space: the virtual segment descriptors 
that define data and code segments refer to an ASD rather 
than directly to a memory address [Mem87]. 

Potential Problems with Code Files 

In hardware architectures that support two execution states, 
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privileged and non-privileged, the processor enforces 
containment of non-pnvileged code by permitting dangerous 
operations only in privileged state. However, if the hardware 
supports only one execution state, the system software must be 
responsible for supporting privileged and non-privileged 
operations, while protecting the boundaries of the TCB. Those 
parts of the system software that create and maintain a self­
protecting domain of execution must therefore be trusted, 
mcreasing the size of the TCB. 

If the hardware has a single execution state, arbitrarily 
constructed code sequences are capable of subverting system 
security. In such an architecture, one of the most critical 
aspects of TCB protection is the control of executable program 
code. Several vulnerabilities relating to program code must be 
considered and neutralized in order to preserve the integrity of 
a software-enforced TCB. 

Access to Assembly Language 

The most obvious vulnerability of a software-enforced TCB is 
the ease with which assembly language programs are able to 
subvert system security. Without hardware controls, any 
system is inherently insecure if an assembler is available that 
can create arbitrary, executable, machine-language programs. 

Coercion of Valid Compilers 

Limiting programmers to use of high-level languages is nut a 
sufficient means of guaranteeing the integrity of a software­
enforced TCB. As Gligor points out [Gli83], 

"Attempts to force programmers to use only high-level 
languages, ... which would obscure the processor 
instruction set, are counterproductive because arbitrary 
addressing patterns and instruction sequences can still be 
constructed through seemingly valid programs; i.e., 
programs that compile correctly." 

If a compiler provides a user with an overt capability to 
generate arbitrary code sequences, perhaps via specific 
language constructs, the TCB is once again vulnerable to 
subversion. 

However, a language specification that does not provide an 
overt means for generation of arbitrary code sequences may be 
implemented by a compiler with less obvious vulnerabilities. 
According to Landwehr [Lan87], 

"In practice, it is difficult to prevent users from 
generating, via a certified compiler, programs that violate 
security, because compilers can often be subtly coerced 
into generating and initiating execution of arbitrary bit 
strings." 

From the above arguments, it becomes more evident that trust 
in a compiler is a critical aspect of a software-enforced TCB. It 
follows that creation and installation of a compiler are points 
of vulnerability that require serious consideration. 

Landwehr cites an example [Wil81] of how the software 
controls failed to prevent users from creating their own 
compilers to generate insecure assembly language programs. 

Code Modification 

Modification of program code after compilation presents 
another vulnerability (see Figure 1). Changing program code 
in memory creates a temporary (or dynamic) capability to 
circumvent system security. If the modification can be made to 
code stored on tape, disk, .or any other storage medium, 
security can be compromised more permanently. In the 
example cited by Landwehr, the key to user creation of a 
compiler was actually the ability to modify a code file stored on 
magnetic tape. 
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Figure 1. Code is vulnerable to modification. 

Memory Vulnerability 

Constraints on the construction (compilation) of code would be 
of no avail if the code were subject to modification while being 
executed in memory. Code-modifying programs provide a 
more serious threat to software-protected systems than to 
other systems. A program might appear benign on disk, 
waiting until it is actually executed to modify its own code in a 
dangerous way. Such a program might also modify the code of 
another process that is resident in memory, thus infecting other 
processes with dangerous code. A way to stop this type of virus 
is needed. 

Tape Label Vulnerability 

User-Created Compilers 

If a user is allowed to create his own compiler, he has the 
ability to generate any code sequence desired. Likewise, if the 
user IS able to introduce a compiler to a system from off-line 
storage or from another host, he may go to a less secure 
system, alter an otherwise valid compiler or hand-craft his own 
compiler, and then import it into the system, perhaps as a 
TroJan Horse. 

Landwehr [Lan87] points out that Burroughs systems have 
relied on software controls that allow users to program only in 
higher order languages compiled by certified compilers. 

A system that depends upon tape label records is vulnerable to 
any mechanism that permits the label records to be read and 
written as ordinary data. Such abuse of "unlabelled" tape 
access was essential to the penetration of a Burroughs B6700 
system described by Wilkinson [Wil81]: 

"An ordinary unprivileged user with sufficient knowledge 
of the system needs only the ability to be able to modify 
machine-code in order to penetrate the system 
completely. This ability is provided because the system 
allows code files to be loaded from storage on magnetic 
tape. Tape is a standard medium for transferring data 
between computer systems but has no security structures 
to protect it." 
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"Although the Burroughs software which transfers files 
between tape and disk storage does use complex 
protective structures, there is nothing to prevent a 
knowledgeable user from imitating these structures and 
creating arbitrary code files which the Burroughs system 
will load and execute." 

Wilkinson presented a step-by-step method for penetrating the 
system. An important step was the validation of an illegal 
compiler, which was accomplished with a program that took 
advantage of unlabelled tape access: the program read a tape, 
altered critical records to validate the intended program as a 
compiler, and then wrote the altered information to a second 
tape. Another critical step involved copying the illegal 
compiler from tape to disk. 

Imported File Vulnerability 

Even if a system tightly controls the structure of locally created 
magnetic tapes, the threat remains that an attacker with access 
to another system can create a tape with any desired contents. 
Other off-line media, such as removable disk packs, offer much 
the same threat, as does any network or other data 
communications facility that permits files to be transferred into 
the system. 

Hardware Vulnerability 

Given the vulnerabilities described above, one may ask 
whether any options remain once an attempt is made to exploit 
a vulnerability. Is there a final line of defense in the 
hardware? Can the hardware protect against faulty or suspect 
code generated by a compiler or programmer? 

Single-state hardware can be designed to help maintain proper 
separation of user domains and help protect the TCB domain 
(see Figure 2). However, such hardware enforcement relies 
on registers, interrupt vectors, or other control information 
being properly initialized. If an executable code sequence 
(whether compiler-generated or assembly-coded) fails to 
supply correct values for base-bound registers, memory 
descriptors, or code pointers, the hardware cannot provide 
meaningful enforcement. In fact, when aberrant control 
information is intentionally supplied, not only is the integrity of 
the TCB violated, but system security is easily subverted. 

Assembler User-created 

Compilers 


Figure 2. Traditional hardware-enforced TCB. 

The problem of hardware enforcement being dependent upon 
software-supplied control information is not unique to single­
state hardware architectures. Dual-state hardware is also 
vulnerable in this way. In an official interpretation [Arc87] 

regarding the Bl System Architecture requirement of the 
Trusted Computer System Evaluation Criteria [DoD85], the 
National Computer Security Center made the following 
general observation: 

"Hardware receives information from software, and 
based on that input it determines what actions are 
necessary. Therefore, hardware is as trusted as the 
software providing the input." 

Having considered several vulnerabilities concerning execution 
of code, it appears that software controls, particularly with 
regard to executable code, must play an important part in a 
general-purpose, secure system. 

A Software-Enforced TCB 

The Unisys A Series is a worked example of a software­
enforced TCB. The hardware architecture supports only one 
execution state, making the system software responsible for 
supporting privileged and non-privileged modes of execution, 
while protecting the boundaries of the TCB. Those parts of 
the system software that create and maintain a self-protecting 
domain of execution include the MCP IAS operating system, 
compilers, Message Control Systems, system libraries, and 
privileged programs. 

The Unisys A Series MCPIAS with InfoGuard security 
enhancements has been evaluated by the National Computer 
Security Center [Fin87] as meeting the requirements for Class 
C2 of the Trusted Computer System Evaluation Criteria 
[DoD85]. In the process of evaluating the A Series security 
architecture, the viability of a software-based, two-state 
architecture was formally addressed for the first time. As a 
result, NCSC issued the following official interpretation 
[Arc87]: 

"Software-based architectures are able to provide process 
separation and a two-state architecture with sufficient 
assurance to meet the Bl level requirements for System 
Architecture. Simply because a two-state architecture is 
provided and maintained primarily by software should 
not lead to the assumption of its being less secure than 
hardware in implementing security features." 

For a discussion of how A Series meets the specific Class C2 
and Bl system architecture requirements, refer to the Final 
Evaluation Report [Fin87]. (Although there has been no 
attempt to demonstrate compliance with additional 
architectural requirements at Class B2 and above, the size and 
complexity of a software-enforced TCB would increase the 
difficulty of that task.) 

Unisys A Series is a viable, software-based, multi-domain 
architecture because cooperation between compilers and the 
operating system makes extensive software controls possible. 
One of the more critical aspects of TCB protection is the 
control of executable program code: only authorized 
compilers are trusted to generate executable code files. 

The nature of the software controls employed by A Series and 
the integration of compilers, operating system, and hardware to 
protect against potential threats to the TCB are explained 
below. 

Protection Methods 

Language design and compiler implementation are both 
critical to the protection of a software-enforced TCB. 
Languages generally available to users must constrain data 
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manipulation and program flow control to a level of 
abstraction that cannot threaten TCB integrity. Manipulation 
and control at the potentially threatening lower level must be 
purposely designed out of user languages. 

However, in order to build, maintain, and enhance a system, 
we recognize the need for systems programming capability. 
Because languages for systems programmers do provide access 
to potentially subversive constructs, access to the compilers for 
such languages must be carefully controlled. More 
importantly, the programs generated by such compilers must 
be subject to controls. 

Because TCB integrity is at stake, we cannot depend upon a 
user who writes his own compiler to adhere to safe principles 
of language design and compiler implementation. For that 
reason, the ability to install a valid compiler on the system 
must be carefully controlled. 

Controls on Compilers and Code Files 

As stated in the NCSC evaluation of Unisys A Series [Fin87]: 

"Compilers in A Series are expected to perform the same 
functions as compilers on any other system. Compilers 
are expected to accurately implement the constructs of 
their language. It is the constructs within these languages 
that provide capabilities to users." 

Therefore, a key protection objective is to limit the availability 
of compilers that implement constructs capable of subverting 
security. Unisys A Series uses several methods to accomplish 
this objective. 

Unisys-supplied compilers for A Series are of two types: user­
language compilers and systems-language compilers. User­
language compilers (not to be confused with user-created 
compilers) implement languages designed with no constructs 
capable of subverting security. Systems-language compilers 
implement languages extended for the purpose of system 
software development; some of the extended constructs are 
considered "unsafe" because they could be used to subvert 
security. 

Due to the implications of this language design strategy, the 
controls necessary for the two types of compilers, and for their 
generated code files, differ markedly. 

The Unisys compilers are designed to make the most 
advantageous use of the hardware enforcement mechanisms 
present in the A Series architecture. The A Series stack 
mechanism is well-suited for support of block-structured 
languages, but the tagged architecture of A Series especially 
enhances the software's ability to provide TCB protectwn; the 
hardware supports the use of tag values to strictly separate 
code and control structures from data [Fin87]. 

No Assembly Language 

The most dangerous language capability that could be offered 
to programmers is assembly language, with its unlimited 
capacity for controlling and subverting a system. Unisys 
A Series avoids the dilemma of policing assembly language by 
not providing an assembler, thus continuing a philosophy 
established for the predecessor Burroughs Large Systems as far 
back as the B5000. Working under the assumption that 
software-based systems allowing assembly language 
programming can never be truly secure, Umsys A Series 
provides no way to escape to low-level code generation, 
requiring that programming be done exclusively in high-level 
languages. 

As a result of this high-level approach, compilers are trusted to 
properly structure accesses to TCB-protected objects (see 
Figure 3). The compilers are responsible for building correct 

references to data items, ensuring use of valid descriptors for 
the various kinds of files, and invoking the necessary interfaces 
for access to database items. Although compilers are not 
responsible for access checks on objects, they are responsible 
for emitting code that employs the defined MCP IAS interfaces 
to protect objects [Fin87]. 

UseV.ted 

C~rs 

User-language 
Programs 

Figure 3. A Series software-enforced TCB. 

Benign User Languages 

By design, the Unisys-supplied user languages (e.g., COBOL, 
ALGOL, FORTRAN, Pascal, RPG) do not contain constructs 
that can be exploited to subvert security. In these languages, 
the user is allowed unlimited access to only the 48 data bits in 
some even-tagged words. The tags themselves and the data 
bits of other words can be accessed "only with compiler­
determined code sequences that precisely support the high­
level language semantics" [Fin87]. 

Not only are the user's code and data strictly separated, but the 
compiler provides access to only those MCP IAS interfaces 
intended for use by ordinary users [Fin87]. Compilers control 
the calling sequence and parameter evaluation code, thus 
ensuring that a user is never given unconstrained access to 
MCPIAS procedures. Therefore, software restrictions are not 
required for the use of user-language compilers or the code 
files they generate. Because the entire A Series system is 
geared toward high-level language programming, much of the 
system software, including the compilers, is written in user 
languages (primarily ALGOL). 

Controlled Systems Programming Languages 

The systems programming languages (i.e., DCALGOL, 
DMALGOL, NEWP) on A Series are extended dialects of 
ALGOL. DCALGOt includes some srstem control and data 
communications interfaces. DMALGO is further extended to 
include special constructs for database-management and 
transaction-processing software. NEWP includes low-level 
constructs for 110 control, memory and processor 
management, and other operating system functions. These 
systems programming languages may also be used to write 
ordinary executable programs composed only of safe 
constructs. 
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Using unsafe NEWP constructs, a programmer can manipulate 
all 52 bits of a word, including the tag. Nevertheless, these 
systems programming languages do not facilitate generation of 
completely arbitrary code sequences. Even at the level of 
unsafe constructs, the compiler imposes conformance with 
appropriate abstractions (e.g., descriptor semantics). 

Conferral of Code File Privileges 

Because the systems-language compilers for DCALGOL, 
DMALGOL, and NEWP offer these additional interfaces for 
system software implementation, it is possible to write 
programs that subvert security. However, not all the code files 
generated by systems-language compilers are dangerous. To 
avoid placing overly stringent controls on such code files, three 
mechanisms are used to identify, authorize, and control 
potentially dangerous programs. 

1. 	 DCALGOL code files are dangerous only in the 
sense that they may attempt to access system 
control interfaces in MCP IAS. However, those 
MCPIAS entry points protect themselves by 
requiring that the calling process be privileged. A 
process is frivileged only if executed by a privileged 
user or i its associated code file was marked 
privileged via the system command PP (Privileged 
Program) or by virtue of being a properly defined 
Message Control System (MCS). A compiler 
cannot create a privileged code file, and only a 
trusted user can perform the PP command. 
Creation of an MCS also requires trusted user 
intervention. 

2. 	 NEWP or DMALGOL code files that use unsafe 
constructs are marked non-executable when created 
by the compiler. To enable execution of such a 
code file, a trusted user must perform the system 
command XP (eXecutable Program) or SL (System 
Library). 

3. 	 Certain unsafe NEWP code files can be executed 
only via the system command CM (Change MCP), 
wh1ch is available only to trusted users. 

In each of the three cases described above, potentially 
dangerous code files cannot be executed without an extension 
of trust to the programs using those interfaces. However, the 
greater the number of users trusted to perform such enabling 
actions, the greater the vulnerability to human error or 
malfeasance. 

InfoGuard on an A Series system can erect multiple security 
barriers to control the introduction of unsafe code to the 
system. Even though a single barrier would normally suffice, 
multiple barriers provide additional protection in the event 
that trust (of programs or people) is rmsplaced or violated. 

On a non-InfoGuard A Series system, there are two classes of 
users: privileged and non-privileged. Normal DAC 
mechanisms can make systems-langua~e compilers inaccessible 
to unauthorized users. However, a pnvileged user is trusted to 
bypass file security checks and to exercise system control. 
Therefore, privileged users can access systems-language 
compilers, compile unsafe code files, and install (or make 
executable) such code files. 

On a system using InfoGuard, a security administrator role can 
be defined, thus removing security-critical control functions 
(e.g., PP, XP, SL) from the privileged users. Even though a 
privileged user can still access systems-language compilers to 
create unsafe code files, he is unable to execute or otherwise 
install those code files because the necessary control functions 
can only be performed by a security administrator [SAG87]. 
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FILEKIND Controls 

In the control of compilers and code files, MCP IAS uses the 
FILEKIND attribute as an important discriminator. 
FILEKIND is an attribute of a disk file that denotes its 
purpose and, to some extent, its internal structure. Subranges 
of the FILEKIND values are reserved for special purposes: 
system files (such as disk directories), code files, program 
source files, and data files. 

Unique FILEKINDs are provided for programming languages 
and dialects, as well as textual data, so that the editing format 
and appropriate compiler can be inferred. For example, the 
value ALGOLSYMBOL indicates program source written in 
ALGOL, while the value PASCALCODE indicates a code file 
created by the Pascal compiler. COMPILERCODEFILE is a 
special value in the system-file subrange that indicates an 
authorized compiler. 

The assignment of a FILEKIND value to a file is controlled by 
MCPIAS. Only authorized system software may assign values 
in the system-file subrange, including the 
COMPILERCODEFILE value. Only compilers may assign 
values in the code-file subrange (thereby creating code). Users 
are allowed to assign values only in the program-source or 
data-file subranges. A user can chan~e the FILEKIND of a 
code file to an unprotected (e.g., data-f1le) value only if the file 
is not currently being executed by any process. 

Trust and Authorization of Compilers 

To prevent the user from generating arbitrary code sequences, 
the ability to create code is reserved to authorized compilers 
on A Series. An authorized compiler is recognized by 
MCPIAS according to its FILEKIND. Althou~h this approach 
eliminates concerns about the code integnty of ordinary 
programs, it requires that a great deal of trust be placed in the 
compilers. For this reason, the ability to authorize a compiler 
must be carefully controlled. 

Trusted Compilers Enforce Protection Rules 

In their role as emitters of code, compilers function at a low 
level of abstraction -- next to the hardware. Because the 
programmer has no access to the machine language of the 
A Series processor, the compilers can play an important role in 
ensuring the integrity of the system. However, for software 
controls to be adequately enforced on single-state hardware, 
compilers must complement the hardware reliably. 

When a compiler is granted the privilege to create executable 
code files, it is trusted to rigorously enforce a number of 
protection rules. A few examples of those rules are 
summarized below: 

Consistent semantics for data abstractions: 
Emit valid object addresses; emit code sequences 
appropriate for manipulating the type of object at 
each address; enforce type matching on all 
procedure parameters and results. 

Benign interfaces: 
Employ defined interfaces for construction and 
destruction of memory se~ments; use only benign 
code sequences in creatmg or operating upon 
references. (Safe, properly constructed, A Series 
code is characterized not just by the absence of 
particular instructions but also by the use of some 
potentially harmful instructions only in valid ways.) 

Referential integrity: 
Avoid dangling references by refusin~ to store 
reference words in places where they mlght outlast 
their referents and by storing references only where 
they can be found systematically if necessary. 



Controlled branching: 
Emit valid branch addresses; properly limit the 
range of dynamic code selections (e.g., CASE or 
SWITCH statements). 

Structural containment: 
Limit the potential impact of one process on 
another by allowing a process to refer only to other 
processes that are structurally related to it, either 
ancestors (including self) or declared task variables 
within its own addressing scope; constrain 
references to objects according to the structure of 
the environment. 

In general, a compiler is expected to conform to its language 
specification and to adhere to architectural principles that 
enable the hardware to preserve TCB integrity. 

Compiler Authorization 

In order to authorize a compiler, the system command MC 
(Make Compiler) must be executed to request that MCPIAS 
change the FILEKIND of an existing code file to 
COMPILERCODEFILE. The MC command may only be 
executed by a trusted user. In a non-InfoGuard system, that 
trust is extended to operators and privileged users. However, 
in an InfoGuard system, the circle of trust can be considerably 
smaller; when the security administrator role is defined, the 
MC command may be executed only by a security 
administrator [SAG87]. 

Due to the FILEKIND controls enforced by MCPIAS, an 
ordinary user program is prevented from creating a code file. 
Furthermore, a user program residing on the system cannot 
become a compiler Without the approval or cooperation of an 
appropriately authorized person. However, to guard against 
Trojan Horse attacks, an authorized person must be cautious 
about executin~ programs that IDight attempt to use a 
programmatic mterface to authorize a compiler. Only 
DCALGOL and NEWP provide access to such a programmatic 
interface, but successful use of that interface requires that trust 
be extended to the program either explicitly via the PP system 
command or implicitly when a properly privileged person (e.g., 
the security administrator) executes the program. 

No Code Modification 

By preventing a user from creating or importing a compiler, 
we are assured that the user cannot directly create a code file. 
However, we must also be sure that a user cannot arbitrarily 
modify code whether it resides in memory or in an existing 
code file on disk. The Unisys A Series systems rely upon a 
combination of hardware and software mechanisms to prevent 
a user from modifying code. 

The fact that existing code files cannot be modified on an 
A Series system provides additional protection against viruses 
and Trojan Horses. When compiler validation is properly 
controlled, viruses cannot be injected into existing code files, 
and Trojan Horses cannot be added to existing code files. In 
short, virus propagation is prevented. 

Separation of Code and Data 

The tagged architecture of A Series makes strict separation of 
code and data possible (see Figure 4). Code words and code 
pointers in memory are protected by odd tag values, meaning 
they cannot be fetched or stored by the hardware instructions 
that normally operate upon data. The user is thereby 
prevented from reading or writing code words in memory. 
Because the hardware executes only words with odd tags 
(specifically, tag-3 words) and the user is not able to 
manipulate code pointers (tag-3 and tag-7 words), there is no 
way to execute data as code. 
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Figure 4. Tags separate code from data. 
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Software mechanisms prevent modification of code stored on 
disk in a code file. Tags are rarely stored with information on 
disk, except for the system-controlled overlay file used by 
MCPIAS during memory management operations. There is no 
opportunity for a user to tag data in a file so that it would 
appear to be code. For each code file being executed, 
MCPIAS creates a special stack, the Code Segment 
Dictionary, that contains descriptors to the code file's code 
segments and read-only data segments (see Figure 4); multiple 
processes executing the same code file can be linked to the 
same Code Segment Dictionary. When information is read 
from a disk file into memory, MCPIAS relies upon the 
FILEKIND and segment descriptor to assign appropriate tags 
to the information during the read operation [Fin87]. 

The FILEKIND controls enforced by MCPIAS are also 
effective in preventing a user from updating or rewriting an 
existing code file on disk. MCP1AS ensures that only 
programs with a FILEKIND of COMPILERCODEFILE are 
allowed to create or modify a code file (see Figure 5). Any 
attempt by a user program to assign a FILEKIND value of 
code is rejected. A user program is allowed to read a code file, 
but if it attempts to modify an existing code file, the write 
operation is aborted with an error. 
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Importation from Storage Media 

Wilkinson [Wil81] introduced an illegal compiler to the system 
by copying it from an altered tape to disk. On an A Series 
InfoGuard system, there are two barriers to the introduction of 
dangerous code files from tape [SAG87]: 
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Figure 5. Code file protection on A Series. 

Disk Files on Tape 

To preserve the contents and attributes of disk files being 
stored or transported on magnetic tape, MCPIAS uses a 
special tape format called a "Library Maintenance" tape, which 
is distinguished by a field in the volume label; these tapes 
contain images of disk files including their defining header 
records. Only the library-maintenance utility of MCPIAS can 
create such tapes or transfer disk files to or from tapes while 
preserving such attributes as FlLEKIND; that utility rejects 
attempts to read from ordinary data tapes. 

In ordinary use, all tapes are written with standard labels, 
which are used for automatic assignment of tape files to 
processes. (The tape label convention also prevents reading 
any information past the nominal end of tape, preventing 
access to residual data that might follow the labelled contents 
of the tape.) 

A program that reads and writes "unlabelled" tapes could both 
bypass and forge tape labels and disk-file header images. 
Indeed, the Wilkinson penetration used just this technique, 
achieving validation of an illegal compiler by changing the 
FILEKIND in the tape file header to COMPILERCODEFlLE 
via unlabelled tape access [Wil81]. An InfoGuard system can 
be configured to meet this threat by requiring operator 
intervention to assign any tape to a process for unlabelled 
access [SAG87]. 

Code File Importation Restrictions 

While we have explained how compiler validation for programs 
residing on an A Series system can be carefully controlled, we 
must still address the issue of illegal compilers (or other code 
files) introduced from off-line storage or from another host 
system. Rather than detecting which programs actually 
threaten system integrity, A Series software provides the 
means to control imported programs, thus helping the security 
administrator enforce security policy; the security 
administrator then uses his own judgment to decide which 
imported programs to release from controls. 

1. 	 The security administrator can set the system security 
option TAPECHECK to the value AUTOMATIC, 
requiring that tape labels exactly match an existing 
entry in the tape volume directory, a central 
database maintained on disk by MCP1AS, before a 
copy request involving that tape can proceed. If 
there is no matching entry in the tape volume 
directory, the copy request is blocked, requiring 
operator action. 

2. 	 Furthermore, the security administrator can restrict 
tape units so that any code files copied from those 
units are marked non-executable, no matter how 
privileged the user or process performing the copy. 

In fact, the second barrier, the ability to designate untrusted 
file sources and automatically restrict any files from those 
sources, is a basic feature of the Mark 3.7 release of the 
A Series operating system and does not require InfoGuard. 
(Concentrating the restrictive capabilities under security 
administrator control, rather than trusted user control, does 
require InfoGuard.) The restricted desi~nation can be applied 
to tape units, disk units, tape volumes (reels), removable disk 
packs, remote (network) hosts, and even to individual files. In 
effect, these restrictions define the logical security perimeter of 
a system (see Figure 6). 

[j [j~ [j 

EjEj@ @@ 

EjEj@ Ej 


Figure 6. Code file importation restrictions. 

Once a code file has been marked non-executable because it 
originated from an untrusted source, only a system 
administrator can remove the restriction from that program 
and make it executable again. Copying the restricted file to 
another unit or to another storage medium does not remove 
the restriction. 
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Any comprehensive security policy for tape files requires 
physical security on the tape volumes. InfoGuard provides 
tools that can be combined with sound operational procedures 
to effect substantial barriers against abuse via tapes or other 
media. 

After attacking a Burroughs system on several fronts, 
Wilkinson and his colleagues concluded that "a B6700 system 
which disallowed the loading of code files from demountable 
tape or disk pack would be very difficult to penetrate." The 
Unisys A Series systems that evolved from the Burroughs 
B6700 have responded to this challenge -- the ability to restrict 
code file importation greatly increases A Series resistance to 
penetration. The robustness of the Unisys A Series security 
architecture is further enhanced by the lnfoGuard features that 
support a tape security subsystem and a security administrator 
role. 

Importation across Network 

By prudent use of code file importation restrictions, a system 
administrator can erect a barrier against Trojan Horse 
programs that might be transported via tape or removable 
pack. In a similar manner, restrictions can be placed on code 
files imported across a network. 

When the system security option HOSTSRESTRICTED is set, 
any code file copied onto an A Series system from a remote 
host in the network is automatically marked as non-executable 
[SAG87]. Again, only a system administrator can remove that 
restriction from a program to make it executable. 

If a user were to breach security on one host in a network, 
somehow obtain a valid usercodelpassword for each remote 
host, and copy his Trojan Horse program to each remote host, 
then those hosts that had the HOSTSRESTRICTED option set 
would be protected by MCPIAS. On the protected hosts, 
MCPIAS would mark the code file as non-executable, 
effectively containing the Trojan Horse until the system 
administrator had the opportunity to scrutinize the program 
and take appropriate action. 

Thus, the HOSTSRESTRICTED option enables a system 
administrator to erect a barrier against proliferation of Trojan 
Horse and virus programs across a network. This option can 
severely limit the ability of a virus to propagate beyond its 
original host. 

Protection of Installed Software 

The integrity of the TCB code is protected by the same 
mechanisms that prevent unauthorized modification or 
introduction of other code files. The TCB domain is further 
protected by the fact that installing or changing any part of the 
TCB software requires execution of privileged commands by 
trusted users. On an InfoGuard system with the security 
administrator role defined, those privileged commands are 
available only to a security administrator. 

The A Series TCB software includes MCPIAS, sxstem 
libraries, compilers, Message Control Systems, and priVIleged 
programs. The privileged methods for installing or changing 
these software components are summarized below [SAG87]: 

1. 	 MCPIAS cannot be installed or changed except by a 
system administrator with physical access to the 
system. A new MCP must first be compiled by the 
NEWP compiler, which automatically marks the 
newly compiled code file with a unique, non­
executable FILEKIND. Then, the system 
command CM (Change MCP) must be executed to 
install the code file, requiring total interruption 
(HALT) and restart (LOAD) of the system. 

2. 	 System libraries must be installed with the system 
command SL (System Library), a command that 
can be restricted to the security administrator under 
Info Guard. 

3. 	 Compilers must be validated with the system 
command MC (Make Compiler), a command that 
can be restricted to the security administrator under 
lnfoGuard. 

4. 	 Each Message Control System (MCS) must be named 
in the data communications network definition 
(known as Datacominfo) for that system. A new 
Datacominfo must be installed with the system 
command ID (Initialize Datacom). The ID 
command and the privilege to update the active 
Datacominfo can both be restricted to the security 
administrator under lnfoGuard. 

5. 	 Portions of the data-management and transaction­
processing software that use unsafe DMALGOL 
constructs must be made executable with the system 
command XP (eXecutable Program), a command 
that can be restricted to the security administrator 
under lnfoGuard. 

6. 	 Privileged programs must be marked as privileged 
with the system command PP (Privileged Program), 
a command that can be restricted to the security 
administrator under InfoGuard. 

Enforcement of the many software controls on A Series 
enables greater assurance than mere procedural controls could 
provide. By virtue of the fact that the software controls are 
well-integrated in the system and mutually reinforcing, they 
provide multiple barriers to penetration or compromise. 

Summary and Conclusions 

In exploring the concept of a software-based security 
architecture, several vulnerabilities relating to program code 
were considered, and methods of program containment that 
protect against those vulnerabilities were presented in the 
context of the Unisys A Series as a worked example. The 
threat of assembly language programming is avoided by 
providing no assembler and no esca.P.e to low-level code 
generation. Coercion of valid compilers is prevented by 
language design that provides benign user languages, while 
relying upon compiler implementation to identify "unsafe" 
programs written in systems programming languages so the 
operating system can enforce controls on those programs. 

The software architecture of A Series requires and provides 
for careful controls on compilers and code files. Through 
FILEKIND controls, the operating system ensures that code 
files may be created or modified only by authorized compilers; 
only a system administrator can authorize a compiler. Through 
use of hardware-enforced tags and segments, code in memory 
is protected from modification, and execution of data as code is 
prohibited. Code files exist on tape only in special, protected 
formats. Importation of dangerous code files or illegal 
compilers from untrusted sources such as tape or remote hosts 
can be restricted, with enforcement by the operating system. 
In combination, these controls provide an unusually strong 
defense against the introduction of viruses or Trojan Horses 
into existing code files, raising multiple barriers against virus 
propagation. 

Cooperation between compilers and the operating system in 
adhering to architectural principles can significantly enhance 
the protection afforded by single-state hardware. With system 
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software supporting privileged and non-privileged operations, a 
multi-domain security architecture is achieved. Together, the 
operating system, compilers, and hardware are able to protect 
the integrity of the TCB. 
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Appendix 

To illustrate the A Series concept of process domains, we 
consider the situation where a process invokes an entry point 
of an external program. The A Series system allows bindin~ of 
external program references to be· deferred until executiOn­
time throu~h use of the "library" mechanism; in this context, 
the term "library" refers to a process that exports entry points 
(procedures) for dynamic linking by MCP/AS to client 
processes [Fin87]. Figure 7 shows how the different process ' 
domains are structured for the following ALGOL program 
text: 

Client program: Library program: 

BEGIN % outer block BEGIN 

PROCEDURE Q (K, F) ; ARRAY D [0:4]; 
VALUE K; 
INTEGER K; PROCEDURE Q (K, F) ; 
ARRAY F [0]; VALUE K; 
LIBRARY L; INTEGER K; 

ARRAY F [0]; 

ARRAY A [0:4]; BEGIN 


PROCEDURE P; F[K] := D[K];

BEGIN END Q; 


INTEGER I; EXPORT Q; 

Q (7' A); FREEZE ... ; %as library
END P; 

END. 

P; 

END. 


-~dm{ 


·~~m•~ 


Outer 

Block 


Process Stack External Prograin 
(Client) (Library) 

Figure 7. Process domains and controlled sharing. 
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As each block or procedure of a program is invoked, a new 
"activation record" is built on the stack; an activation record 
contains the control words and data that define the state of a 
procedure once it has been activated (invoked). For each 
declaration in a procedure, an appropriate stack item is 
allocated in its activation record. In Figure 7, the activation 
records for the client process are delineated with brackets and 
annotated "Outer Block", "Procedure P", and "Procedure Q". 

The Outer Block of the client program declares Q, A, and P. 
Because Q refers to a procedural entry point declared in an 
external library, the client stack item for Q is a tag-1 reference 
to the actual tag-7 entry point Q in the library stack. Array A 
of the client is allocated a descriptor to the data segment for 
that array in memory. The client's local Procedure P is 
allocated a tag-7 entry point word. 

When Procedure P is invoked from the Outer Block of the 
client program, the activation record for P includes a tag-0 data 
word for its local Integer I. P then invokes Q, the library entry 
point, passing the value 7 to Q's formal parameter K and 
passing the Array A to Q's formal parameter F. 

To show the domain relationships between the two stacks, the 
execution domain of the library entry ;eoint is depicted by 
shading the relevant activation records (Procedure Q on the 
client stack plus the outer block of the library stack) and the 
data segment (Array D) belonging to the library. Even though 
Procedure Q executes on the client stack, its domain does not 
directly include items in the client's other activation records. 
However, Q can reference Array A of the client indirectly 
through the formal parameter Array F because A was passed 
as the actual parameter to F. Array A is shaded differently to 
indicate that it is shared by the client process and the library 
entry point Q. 

To summarize, the execution domain of a procedure is defined 
by its addressing environment, which includes the procedure's 
own activation record, all activation records global to the 
procedure in its declared scope, plus any items passed to the 
procedure as parameters. In addition, the domam is extended 
to include any data segments (arrays) referenced by items in 
this addressing environment. 

In a similar manner, a process can invoke entry points of the 
operating system. An MCP procedure can execute on top of a 
user's process stack and access the user domain through 
parameters, but the MCP domain is protected from any direct 
access by the user's procedures. While executing on the user's 
process stack, the MCP procedure itself still has access to data 
in the operating system domain. 
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ABSTRACT 

This paper discusses access mediation approaches for a 
class of computer architectures termed server-oriented 
systems. The focus is on the architectural issues in­
volved in designing a server-based system that remains 
faithful to the concept of a reference monitor. In addi­
tion to general concepts and concerns, two specific arch­
itectures are examined. 

1. INTRODUCTION 

Over. the past several years Trusted Information 
Systems, Inc. (TIS) has been involved in analyzing a 
number of computer systems to determine, in each case, 
the feasibility of evolving the system to a B2 or B3 
trusted system as defined by the DoD Trusted Computer 
System Evaluation Criteria (TCSEC) [1]. All of these 
systems are designed to operate on a collection of multi­
processors, usually a small set of tightly coupled proces­
sors with shared memory. Although diverse in size, 
complexity, and targeted application arena, each operat­
ing system exhibits a similar set of organizational char­
acteristics that strongly influenced its potential to evolve 
to a trusted system. These characteristics center around 
an object-oriented design philosophy where system re­
sources are presented as a set of abstract typed objects 
that may be manipulated via a set of predefined opera­
tions. The set of operations for a particular object type 
are collected together into a single, independent object­
type manager or server. Hence, these systems are char­

--·---·-· 
acterized as server-oriented systems.

:::~:~-:7:~:::: 

. Generally, the server-oriented systems that TIS has 
examined are partitioned into three progressively more 
abstract layers that typically have a direct correspon­
dence to privilege layers provided by the hard­
ware/software. The most privileged layer is the kernel, 
which directly manages the physical machine providing a 
limited view of the system resources. The kernel encap­
sulates the physical machine providing for resource utili­
zation via a well-defined set of primitive operations. 

The second layer is the collection of system servers, 
each managing a particular type of object constructed 
from the kernel-provided primitives. Examples of typi­
cal servers include file, device, and mail servers. The 
consumers of a server's services, i.e., the clients, consti­
tute the third layer of server-oriented systems. Servers 
can also be clients when the services of another server 
are required. 

We have found that many server-oriented systems, 
though not initially designed as trusted systems, have 
potential for evolving to B2 or B3 systems. The primary 
rationale for this conclusion is that the inherently layered 
structure of a server-oriented design philosophy results in 
a system architecture that incorporates many of the 
fundamental architectural traits required for a highly 
trusted system (e.g., modularity, least privilege, abstrac­
tion and data hiding). The primary task in evolving 
these systems to trusted systems has proven to be the in­
clusion of a complete and comprehensive reference 
validation mechanism that meets the criteria of a refer­
ence monitor (see [2]) while maintaining the systems' 
strong architectural traits. 

In this paper, experiences with developing trusted 
versions of two server-oriented systems are discussed. 
The first system, Aspen, is a prototype system developed 
by Amdahl Corporation to run on Amdahl 470s, 580s, 
and other IBM 370-compatible system architectures [3]. 
Aspen's design is strongly influenced by the server-ori­
ented philosophy with most system resources only acces­
sible via object-type servers. The second system ex­
amined is Mach, an operating system kernel being de­
veloped at Carnegie-Mellon University (CMU) [4]. 
Mach is designed to be transportable across a broad 
range of computer architectures, from monolithic proces­
sors to highly parallel architectures. Though Mach is 
currently only a kernel, TIS is developing a prototype 
trusted version (called TMach) based upon the server­
oriented design of Mach's precursor system, Accent[5]. 

The experienced gained from examining Aspen, 
Mach, and other server-oriented systems has led to the 
identification of several general approaches for access 
mediation within server-oriented systems. The remainder 
of this paper will discuss these general approaches and 
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the specific solutions used in the trusted designs of both 
Aspen and Mach. 

2. ESSENTIAL SYSTEM CHARACTERISTICS 

Several architectural characteristics, which server­
oriented systems tend to exhibit, play a central role in 
determining access mediation approaches for such sys­
tems. These characteristics result in an environment in 
which servers and clients can operate in a controlled and 
unambiguous fashion. The architectural characteristics 
that are most central in the design of a trusted server­
oriented system include: 

(a) Protected and Isolated Execution Domains 

Servers and clients can expect to execute in an en­
vironment free from interference by other servers 
and clients. Typically, this is provided through 
address space isolation and memory protection. 
For example, servers and clients can both execute 
as distinct processes within the same hardware 
privilege state. However, we have seen other 
methods for providing isolated execution domains 
that are also adequate. In Aspen, for example, 
software engineering principles (e.g., modularity) 
are used to provide separation among trusted 
server domains while hardware protection mech­
anisms are used to separate untrusted server and 
client domains from other untrusted and trusted 
server and client domains. 

(b) Resource Isolation 

A fundamental concept of server-oriented systems 
is that all manipulation of a particular object is 
controlled via the server responsible for that ob­
ject-type. As such, primitive resources used by a 
server to create more abstract objects must be 
isolated from other entities in the system. In a 
strict server-oriented paradigm, the resources man­
aged by one server should only be accessible by 
clients and other servers (either trusted or untrust­
ed) via the managing server. 

(c) Controlled Inter-Domain Communication 

In order for clients to request the services of a 
server, a communication mechanism must exist 
among clients and servers. In order to maintain 
separation and isolation between server and client 
domains, this communication mechanism must be 
controlled in some manner (usually directly by the 
kernel). Depending upon the level of access 
mediation incorporated within the individual serv­
ers, this communication mechanism must also 
unambiguously provide the servers with identity 
and privilege information of all clients requesting 
services. As will be seen below, both Aspen and 
Mach provide sophisticated message-passing mech­
anisms to facilitate this type of inter-domain com­
munication. 

3. ACCESS MEDIATION 

As a result of our efforts to develop trusted ver­
sions of several different systems, we have noted a small 

number of access mediation approaches for server-ori­
ented systems. All of these approaches are based upon 
the locality of access control mechanisms within the 
system's architecture. In the first approach, access medi­
ation is performed within the kernel. This kernelized 
approach, which is most like the classic "security kernel" 
[6], treats both clients and servers as subjects external to 
the reference validation mechanism. As such, the servers 
can augment and extend the kernel's access control 
mechanisms with a finer granularity of access mediation 
and the addition of supporting policies (e.g., audit), but 
the fundamental access control enforcement is provided 
by the kernel. A kernelized approach to access media­
tion is not particular to server-oriented systems and has 
been the common approach for implementing a reference 
validation mechanism in the past. For example, SCOMP 
[7], KVM [8], and KSOS [9] all have a kernelized refer­
ence validation mechanism. 

In contrast to a kernelized approach, the inherent 
structure of server-oriented systems suggests the pos­
sibility of a distributed approach to access mediation. 
Given that servers constitute independent object-type 
managers, it follows that individual servers can be re­
sponsible for mediating access to the objects they man­
age. This approach is consistent with the object-oriented 
concept of object-type managers that are responsible for 
all actions related to their objects. Unlike the kernel, 
which for the most part is only aware of the primitive 
resources it offers, a server is aware of the unique nature 
of its more abstract objects and can provide a tailored 
access control policy for that object-type. This observa­
tion is especially true for discretionary access control 
policies where, for example, the access control policy for 
files may differ greatly from that for mailboxes though 
both are essentially derived from the same primitive 
resource (e.g., disk storage). 

The distributed approach results in an reference 
validation mechanism that is distributed among the vari­
ous servers and not centralized as with the traditional 
security kernel approach. However, we have found that 
such an approach can be used to design a reference 
validation mechanism that still meets the criteria of a 
reference monitor, namely tamperproof, always invoked, 
and analyzable. 

There are two variants to the server-oriented ap­
proach for access mediation that strike a compromise be­
tween kernelized and completely distributed access med­
iation. These approaches provide server-based access 
mediation, but in a centralized fashion. The first of 
these approaches involves the notion of a front-end or 
name server. This approach assumes that all client 
accesses to server-based objects is via a common, global 
naming sphere, managed by a name server. The name 
server logically resides between the clients and the other 
servers, or at the "front-end" of the servers. Requests to 
access objects by name are routed directly through the 
name server, which performs access validation and, if the 
request is allowe<l, passes the request onto to the ap­
propriate object-type server. Thus, to establish com­
munication with a server and access the objects that that 
server manages, clients must first pass the scrutiny of the 
name server. The name server approach provides cen­
tralized access mediation while exploiting the nature of 
servers. The name server, which operates at a higher 
level of abstraction than the kernel, can address many of 
the idiosyncracies associated with the abstract objects 
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offered by other servers. Conversely, the name server 
may require considerable richness to address the media­
tion concerns of all object-types. Hence, information 
that would otherwise be maintained solely by the object­
type server must be available to the name server. 

The second centralized server-based approach in­
volves the notion of a back-end or catalog server. 
Unlike a name server, a catalog server logically resides 
between the servers and the kernel, or at the "back-end" 
of the servers. This approach assumes that in order for 
individual servers to access the kernel resources that they 
manage, they must reference a "card catalog" managed 
by a catalog setver. Thus, the catalog server intercepts 
all access attempts and, if properly designed, can per­
form access mediation based upon a combined ser­
ver/client identity. A back-end, catalog server approach 
to access mediation has many of the same pros and cons 
as a name server approach. 

In the systems that we have examined, the above 
approaches were all considered. Most often, the idiosyn­
cracies of the particular system strongly suggested the 
selection or rejection of a specific approach. In Aspen 
for example, the kernelized approach was rejected be­
cause it would have placed access mediation at too low 
a level to be meaningful with respect to server objects. 
Performance issues were also of concern. By contrast, 
in Mach, placing some mediation in the kernel appears 
to be the approach of choice. ill most cases the realities 
of the system architecture suggests a combination of 
approaches. For example, in Mach, a combination of 
mediation in the kernel and in a name server is currently 
being targeted. In the following sections, the approaches 
devised for both Aspen and Mach are discussed in more 
detail. 

4. ASPEN 

Amdahl developed Aspen to provide a lower com­
plexity, higher reliability alternative to existing 370 
operating systems that would be compatible with most 
existing application software. Though Aspen was never 
marketed many of its design concepts were innovative, 
especially for large, mainframe operating systems. 

4.1 ASPEN ARCHITECTIJRE 

Using the 370 architecture's features of execution 
states (supervisor and problem), protection keys, fetch­
protect bit, and virtual addressing [10], Aspen is orga­
nized around three hierarchical privilege levels. The 
most privileged level is the Monitor, which is Aspen's 
equivalent to the kernel in the server-oriented paradigm. 
The Monitor executes in supervisor-state in a portion of 
real memory below that allocable for virtual memory and 
is responsible for all low-level machine management 
functions. The remaining two layers, Supervisor and 
Native, both execute in the problem-state in virtual ad­
dressing mode. Virtual address spaces in Aspen are 
multi-threaded, that is, a virtual address space, called a 
session, may contain one or more threads of execution, 
called processes. Each session is a distinct address 
space with the exception of a portion of high memory 
which is common to all sessions and contains the Super­
visor layer. Hence the Supervisor layer, though running 

in virtual addressing mode, is present in all sessions 
simultaneously. Supervisor code and data structures are 
protected from modification and observation by Native 
layer code via the 370 architecture's storage protection 
keys. Supervisor layer memory and processes have a 
key=O and native layer memory and processes have a 
key>O. Processes with key=O may access any page 
addressable while processes with key>O may only access 
those pages with the same key. Thus, the Supervisor 
layer is able to coexist within the same virtual address 
space as Native layer processes without interference from 
them. · 

The Aspen Supervisor layer is organized primarily 
as a collection of interacting servers that together pro­
vide most of the traditional operating system functional­
ity (e.g., files, devices). Additional system services are 
provided by Native layer services and routines. 

4.1.1 Aspen Concept of Servers 

Servers are a well-defined and fundamental con­
cept in Aspen. The Transport Manager, which runs in 
the Supervisor layer, provides the features and mech­
anisms that allow servers and clients to interact. Servers 
are essentially processes that make a collection of ab­
stract "object-identifiers" available to clients via an offer. 
Servers may be executing in either the Supervisor or the 
Native layer. All servers are accessed via a single glob­
al naming space of object-identifiers managed by the 
Transport Manager. An object-identifier consists of five 
8-character qualifiers, which are refened to as store, 
owner, group, type, and name. A fully qualified 
object-identifier is of the form: 

store.owner.group.type.name 

An offer is an object-identifier which is usually 

only partially qualified. For example, an offer can be of 

the form: 


A.B.*.*.*. 

Such an offer means that the servc:r is offering to handle 
requests for all object-identifiers where the first two 
qualifiers are A and B. An offer also has associated 
with it an "extent", which determines its scope of visibil­
ity. Extents may either be local or global. A local-ex­
tent offer is only visible to processes within the ·same 
session as the offering server. Conversely, a global­
extent offer is visible to processes in all sessions. 

A client process communicates with a setver by 
issuing a request* with an associated fully qualified 
object-identifier. The Transport Manager supports two 
types of client requests: independent and related. In­
dependent requests establish a one-time communication 
path between a client and a server for the issuance of a 
single request and the reception of the results of that 
request. Such requests are unrelated to any other re­
quests sent to the server. Typically, independent re­
quests include DELETE, DEFINE, and REN~ opera­
tions on an object. The one-time commumcatt?n path 
established for an independent request never outlives the 

•A request is actually a· software generated interrupt (MC or SVC 
instruction) that is trapped by the Monitor and forwarded to the Transport 
Manager in the Supervisor layer. 
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life of the request. The exception is the CONNECT 
independent request, which establishes a connection to a 
server. A connection is a long-term communication path 
to a server that exists until explicitly destroyed (either by 
the client or the server). Connections are used for re­
lated requests and allow multiple requests to be associ­
ated in an ordered fashion. For example, a connection 
to a file object can be used to do multiple READ re­
quests such that each successive request reads the next 
record (relative to the record read in the previous re­
quest). The Transport Manager manages all current 
connections between clients and servers. 

When the Transport Manager receives an indepen­
dent request with an associated object-identifier, it deter­
mines which (if any) server has an offer that matches 
that object-identifier. If several offers match, the Trans­
port Manager uses the following precedence rules to 
select the appropriate server: 

(a) The most fully qualified local offer first; then 
(b) The most fully qualified global offer. 

0 0Thus for example, a local offer A 0 B 0 * * * would take 
precedence over a global offer A o B C * * eveno o o 

though the global offer is more fully qualified. 

When the Transport Manager determines the ap­
propriate server, it forwards the request to that server for 
processing. Based upon its own internal logic, the server 
may (1) reject the request, (2) fail the request, or (3) 
accept the request. If a server rejects a request (1), the 
Transport Manager forwards the request to the next 
server which has a matching offer. If no other server 
has a matching offer, the Transport Manager fails the 
request as "object not found." If a server fails the re­
quest (2), then the Transport Manager passes the failure 
back to the client. Finally, if the server accepts the 
request (3), the Transport Manager returns the results of 
the request to the client. If a server accepts a 
CONNECT request, then the Transport Manager estab­
lishes and manages a cmmection between the client and 
the server. 

4.1.2 Supervisor Object-Type Servers 

Object-identifiers offered by a server have no 
intrinsic meaning, nor do they necessarily represent some 
actual resource or resource abstraction. Actual mapping 
of system resources to an object-identifier is accom­
plished via servers and their internal logic. The Super­
visor layer consists primarily of privileged object-type 
servers. The major servers include File Server, Sched­
uler, Terminal Server, Volume Server, and Device Serv­
er. Most of the Supervisor layer servers are designed 
around the conventions implemented by the File Server, 
which is discussed in detail below. 

The File Server manages disk storage as files, 
which are organized into stores and catalogs. A File 
Server store is roughly equivalent to a logical disk vol­
ume. The first qualifier of a file object-identifier deter­
mines the store on which the file is maintained. A cata­
log, which is represented by the second qualifier in a file 
object-identifier, is a collection of files all with the same 
"owner." The owner's useriD and the name of the cata­
log in which the owner's files are stored are syno­

nymous. All files in a catalog are owned by the useriD 
that is reflected by the catalog name. 

The File Server is actually a collection of servers 
and associated offers, each server executing the same 
Supervisor layer reentrant code within different contexts 
[ 11]. There is potentially one of these servers for every 
store and catalog combination on the system. Each of 
these servers, which make the offer: 

"store_name" "catalog_name" 0 * * . * , o 0 

are dynamically activated and deactivated as references 
to files in a catalog are made. Since all file servers ex­
ecute the same reentrant code, it is convenient to con­
sider them as a single File Server with multiple offers. 
The remaining three qualifiers of a file object-identifier 
(group, type, and name) have no particular meaning to 
the File Server other than to uniquely identify a file and 
may be arbitrarily specified by the client. All files are 
grouped by the File Server based solely upon their store 
and catalog qualifiers. 

The remaining Supervisor servers offer other 
system resources in a similar fashion. The Device Serv­
er directly provides all primitive functions for physical 
devices (e.g., disks, tape drives, printers, terminals). The 
Volume Server presents tape volumes as logical exten­
sions of the file system using the Device Server to ac­
cess the tape drives. The Terminal Server accesses 
terminal devices (via the Device Server) and re-offers 
them with value-added functionality. The Scheduler 
Server accesses terminal devices (via the Terminal Serv­
er) to initiate the logon process on all interactive term­
inals. 

4.1.3 Catalog Manager 

Supervisor servers must be able to maintain des­
criptive information about their objects across system 
initialization. To facilitate this ability, Supervisor servers 
use object information blocks (OIB), which are objects 
offered by the Catalog Manager. Typical information 
stored in OIBs include location, name, type, size, owner, 
and creation, modification, and reference dates for ob­
jects. Though the Catalog Manager is a server, it only 
services Supervisor Layer clients. Native layer clients 
access the catalog information associated with an object 
through the server that manages that object-type. For 
example, a file's OIBs are made available to client ses­
sions via the File Server as part of the its offered ab­
stractions. 

As its name implies, the Catalog Manager man­
ages OIBs in groups called "catalogs." For example, a 
File Server catalog described above has a one-to-one 
correspondence to a Catalog Manager catalog. The File 
Server maintains the necessary information to describe 
all the files in a file system catalog in one Catalog Man­
ager catalog. Thus, when a client makes a request to the 
File Server to access a file, the File Server makes a 
request to the Catalog Manager to access the catalog of 
file OIBs in order to determine the existence of the file 
and locate the file on the appropriate store. A similar 
interaction occurs between the other Supervisor servers 
and the Catalog Manager. 

The Catalog Manager has a special relationship 
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with the File Server that is different than its relationship 
with the other Supervisor servers. OIBs must be stored 
in some fashion. Since the File Server manages all disk 
stores, it is necessary for the Catalog Manager to use the 
File Server's services to store and maintain its catalogs. 
This results in a recursive relationship between the Cata­
log Manager and the File Server. Thus, the Catalog 
Manager and File Server are required to cooperate in an 
environment of mutual dependency. 

4.1.4 Native Layer Servers 

Aspen's server concept is fully exported to the 
Native layer. Tims, Native layer servers can be created 
that act and behave exactly the same as Supervisor layer 
servers. However, because Native layer servers are sig­
nificantly less privileged than their Supervisor layer 
counterpart, the Transport Manager levies additional 
constraints on the offers that these servers may make as 
discussed below. 

Offers may become overloaded with several offers 
matching the same fully qualified object-identifier. For 
example, the File Server may offer object-identifiers 
A. B • * . * . * while a Native level server may offer ob­
ject-identifiers A.B. C. *. *. In this case, if the Native 
layer server's offer is global, it would intercept all re­
quests to access file names with A . B • C as the.ir first 
three qualifiers. In general, the Transport Manager only 
allows Native layer servers to make global offers that 
overload Supervisor layer servers if the owner (second) 
qualifier in the offer is the same as the Native layer 
server's useriD. Thus, Native layer servers may only 
intercept requests to objects for which they are the own­
er, essentially a fonn of discretionary access control. 
Generally, there are no restrictions on any local offers or 
those global offers that do not overload a Supervisor 
server. 

4.2 ACCESS CONTROL IN ASPEN 

Aspen incorporates many of the server-oriented 
characteristics discussed earlier. Separate server and 
client domains exist through the provision of distinct 
address spaces (sessions). Aspen further extends the 
concept of domains by providing the Supervisor and 
Native layers, allowing for servers and clients at dif­
ferent hardware privilege levels. Inter-domain communi­
cation is facilitated via the Transport Manager-provided 
concepts of offers, requests, and connections. While the 
Trar;tsport Manager does not maintain descriptive infor­
mat~on about object-identifiers, it does arbitrate all traffic 
between clients and servers, making it very similar to a 
front-end name server. 

Aspen was originally designed with a strong con­
cept of ownership and related discretionary access con­
trol mechanisms as its primary means of access control. 
!ncorp~rating man.datory access controls was a major 
tssue , ill de:velopillg th~ design for trusted Aspen. 
Aspen s architecture reqmres that processes in the Super­
visor layer be trusted, hence Aspen's TCB roughly in­
cludes all of the Kernel and Supervisor layers, plus 
sele~ted .processes running in the Native layer [12]. 
Sesswns ill Aspen are the basic unit of resource allo­

cation and as such, a session with its associated Native 
layer processes are treated as a single subject. All ses­
sions have an associated useriD and (for the trusted 
design) a security level. The major objects of the sys­
tem are the abstractions offered by Supervisor layer ser­
vers (e.g., files, tape volumes, devices, scheduling 
queues). 

4.2.1 Ownership and Discretionary Access Control 

Aspen was originally designed such that Super­
visor servers determined whether a request to access 
their objects should be honored. The Transport Man­
ager, which controls all client-server communication, 
determines which server should receive a request, but the 
individual server determines whether the request is ac­
cepted. As before, most Supervisor servers imitate the 
conventions used by the File Server, which includes a 
rigid concept of ownership in which the file's owner 
implicitly has all access to the file. A file owner, re­
flected by the second identifier in the file's object-ident­
ifier, may either be a user or an account. Accounts are 
groups of users and members of an account have implicit 
access to files owned by that account. 

Associated with each file is an access control list 
(ACL) that provides the ability for the file owner to 
specify lists of individuals (useriDs) and group of in­
dividuals (accountiDs) with specific access modes (e.g., 
read, write, delete, execute). ACLs are kept as file OIBs 
managed by the Catalog Manager. Servers enforce dis­
cretionary access control decisions in two manners. In­
dependent requests are interpreted separately and 
accepted or denied based on the client's userlD. Related 
requests, however, are mediated in an entirely different 
manner. When a connection is established, it is created 
with an associated access mode, which is either read or 
write. When a client issues a CONNECT request, it 
includes the desired access mode. The File Server vali­
dates whether the client has access to the file in the re­
quested mode and if so, accepts the request. Once the 
connection is accepted, the Transport Manager maintains 
the connection's access mode and makes it available to 
the connected server. Thus, once the File Server allows 
a connection in a particular mode, it need only ensure 
that all subsequent related requests associated with that 
connection are appropriate for the connection's access 
mode. 

From the above description, it would appear that 
Aspen incorporates a distributed approach to discretion­
ary access mediation. However, the details of how 
Supervisor servers implement this mediation is more like 
a back-end catalog server approach. As previously 
described, the File Server interacts with the Catalog 
Manager to access catalogs of file OIBs. TI1is 
interaction is actually via a connection between the File 
Server and the Catalog Server to the appropriate catalog. 
It is via this connection that the File Server accesses the 
file OIBs associated with a particular catalog and deter­
mines whether the file exists. For example, if a client 
requests access to a file A.B. C. D. E, the File Server 
first establishes a connection (if not already established) 
to the catalog A. B managed by the Catalog Manager. 
The File Server then requests (via this com1ection) the 
OIBs for file C. D • E. If the file does not exist, the 
Catalog Manager informs the File Server which informs 
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the client. For independent requests, the File Server in­
cludes the client's useriD in the request to access the 
file's OIBs. Using this information, the Catalog Manager 
makes the decision whether the client can access the file. 
The File Server only enforces the Catalog Manager's 
decision by assuring that related requests received across 
an established connection are appropriate for the access 
mode associated with the connection. 

The major exception to this approach for dis­
cretionary access mediation is the Scheduler server, 
which does not use OIBs to maintain information about 
its scheduling queues called transaction tables. Rather, 
the Scheduler stores this information directly in private 
files (of course, via the File Server). Thus, the Sched­
uler enforces discretionary access control on transaction 
tables .. directly, without direct interaction of the Catalog 
Manager. 

4.2.2 Mandatory Access Control 

Since Aspen relies heavily on servers for provid­
ing access to system resources, the major task for in­
corporating mandatory access control into Aspen was to 
control client-server interaction. In this effort, all four of 
the server-oriented access mediation approaches (kemel­
ized, front-end, back-end, and distributed) were ex­
amined. A kemelized approach was ruled out quite 
early. The main reason for this decision is that the 
Aspen Monitor was nearly completed and Amdahl pre­
ferred not to significantly modify it. Even so, Aspen 
was designed such that access mediation for server-based 
objects was not meaningful in the kernel. The architec­
ture of Aspen strongly suggested a server-based approach 
for access mediation. 

The initial approach attempted to have server­
related access mediation performed in a central location 
by the Transport Manager (i.e., front-end mediation). It 
was apparent that the Transport Manager had to perform 
some access mediation. Since servers and clients can 
both be untrusted Native layer subjects, the Transport 
Manager's server-client abstractions provide a major 
mechanism for inter-subject communication. Additional­
ly, offers made by a server may contain up to 40 char­
acters of information which, if global, would be visible 
to all sessions. Thus, the Transport Manager had to be 
modified to associate security levels with all offers made 
by Native layer servers that could be used to restrict 
communication with such servers. A global. offer made 
by a Native server would only be visible to Native layer 
sessions at the same security level. Thus, since a client 
may only send requests to offers that are visible to it, 
untrusted server-client communication is controlled by 
the Transport Manager. 

However, extending this notion to Supervisor layer 
servers proved more difficult. The nature of the Super­
visor servers demonstrated that they each must be fully 
trusted servers, servicing requests from clients at all 
security levels in addition to other trusted Supervisor 
layer servers. Further, the problem with Supervisor layer 
servers is not necessarily controlling access to the serv­
ers, but rather controlling access to the resources the 
servers manage. Thus, mandatory access control for 
Supervisor servers has to be based upon the resources 

••The nature of this policy is out of the scope of this paper. 

represe1•ted by an object-identifier associated with a 
·request and not the offer made by the server. 

In order for the Transport Manager to perform 
mediation based on individual object-identifiers, it must 
possess the appropriate information (e.g., security level) 
about the object. Further, this information differs de­
pending on the object-type (e.g., multilevel devices 
versus single-level devices). In addition, the nature of a 
request is also dependent upon the object-type and re­
quires an understanding of how the managing server 
implements the request. Thus, to facilitate the Transport 
Manager's ability to perform access mediation for Super­
visor servers' objects, it must maintain (or access) this 
information about the objects. Unfortunately, the Tran­
sport Manager was not originally designed as a true 
name server, rather it was designed to simply resolve 
overloaded offers and to facilitate client-server communi­
cation. · Its design did not encourage the addition of this 
added information, which would essentially be redundant 
with the logic already provided by the individual server. 
An alternative was to have the individual servers per­
form mediation themselves. 

The final design proposed for Aspen incorporated 
mandatory access controls for Supervisor server objects 
in a fashion as was originally designed for discretionary 
access controls, i.e., via individual servers interaction 
with the Catalog Manager. In addition to passing the 
client's useriD when requesting a file's OIBs, the Super­
visor servers would also pass the client's security level 
allowing the Catalog Manager to determine whether the 
client may access the file in the requested mode. For 
related requests, once the Catalog Manager validated the 
creation of a connection, the individual server would 
need only ensure that the connection is used to access 
only the associated object in the associated mode. 

4.3 ASPEN SUMMARY 

l110ugh the upgrade for Aspen was only partially 
implemented at the time the effort was discontinued, a 
multilevel secure design for Aspen had been nearly com­
pleted. Discretionary access controls were included in 
Aspen's original design and were implemented as a co­
operative effort between the individual Supervisor servers 
and the back-end Catalog Manager. The multilevel 
design of Aspen split mandatory access controls between 
the cooperative relation of the individual servers and the 
Catalog Manager for trusted server-based objects, and the 
fronH:;nd Transport Manager for untrusted server-client 
interactions. Though this approach to mandatory access 
control resulted. in a distributed reference validation 
mechanism, its highly-structured architecture appeared to 
allowed the mediation mechanisms to be a faithful im­
plementation of the reference monitor concept. 

5.0 MACH 

Mach is currently an operating system kernel that 
is designed to be transportable over a range of differing 
hardware from microprocessors to large parallel 
machines. Because of this design goal, dependence upon 
specific hardware features is minimal. Although most of 
the features of the Mach kernel, as specified in the Mach 
Kemel Interface Manual [13], have been implemented, 
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the nonkernel servers that will provide the bulk of the 
system functionality are currently being designed by 
CMU. It is expected that the CMU design will follow 
the general pattern of Accent, the precursor of Mach. 
Mach is still a prototype system in a state of rapid evo­
lution. Under DARPA contract, TIS is developing a 
Tmsted Mach (TMach) prototype that will provide a 
proof-of-concept for the transformation of a fully kern­
elized, server-oriented Mach system into a tmsted operat­
ing system. 

Message passing is the primary means of com­
munication both among tasks and between tasks and the 
Mach kernel itself. Thus information flows in the sys­
tem is the result (directly or indirectly) of the kernel 
processing message send or receive requests. The only 
commands implemented by system traps are those direct­
ly concerned with message communication (msg_send, 
msg receive, and msg rpc) and a few others 
(taSk self, task dat-;, task notify, and 
thre;ct self). Therest are implemented by sending 

5.1 TMACH ARCHI1ECTURE 

TMach is stmctured as a kernel which provides a 
small set of basic objects and services, and a collect~on 
of system servers that pn;>Vide the bu~k of t~e operatmg 
system functionality. Smce Mach 1s des1~ed to be 
transportable, little is specified about the mappmg to _any 
one hardware configuration; however some assumptiOns 
are made about the hardware base. It is tacitly expected 
that any hardware will have at least two execution states. 
The Mach kernel executes in the most privileged state 
and the system servers (along with untrusted user ap­
plications) execute in the unprivileged state. . Address 
space separation provides system servers protectiOn from 
each other and other system entities. Additional hard­
ware protection features are used if they exist, but are 
not assumed by the CMU design. 

5.1.1 The lCernel 

The Mach kernel handles process management, 
interprocess communication, and memory management. 
In the fully kernelized system it will also handle low 
level 110 and device management. Currently the Mach 
kernel supports four basic abstracti<;ms. . A task is an 
execution environment and the baste umt of resource 
allocation. Each task is a separate virtual address space. 
A thread is the basic unit of execution. A task may 
have several threads executing within its environment, all 
having access to the same set of resources. A port, the 
most central abstraction in Mach, is a message queue 
protected by the kernel and also act as the basic object 
reference mechanism. In addition, ports are also used as 
the primary mechanism for tasks to communicate with 
the kernel. A message is a typed collection of data used 
in communication via ports. A message, which has a 
fixed size header and a variable size body, can include 
the transfer of access rights to ports. 

Ports have three types of access rights associated 
with them: send, receive, and own. A port may only 
have a single receiver and single owner but any number 
of tasks may possess send rights to. the same port. 
Receive and own rights to a port also 1mply send nghts 
to that port. Threads and tasks are represented by 
special ports called tasks _ports and thread _ports. The 
kernel holds both receive and own rights to all 
task_ports and thread_ports. Any task''' that holds send 
rights to a task_port or thread_port can issue commands 
to the kernel for which the results of the command will 
affect the associated task or thread. 

'"Although a task is simply an execution environment, for simplicity of 
discussion, "task" is being used as an active entity in this paper. The more 
correct wording is "thread within a task." 

messagesto a task_port or thread_port, all of which have 
the kernel as the receiver. 

5.1.2 System Servers 

The bulk of TMach functionality is provided by a 
set of system servers. The most central of these servers 
is the Name Server which provides (with support from 
the kernel) the mechanisms by which servers and clients 
can interact. The Name Server essentially manages a 
hierarchical directory stmcture of server-managed ab­
stractions called items. The Name Server maintains 
certain descriptive information about each defined item 
including its relationship within the directory tree, its 
name, and its item type. All defined items are an instan­
tiation of an item type (e.g., directory, file). Each item 
type is managed by a particular server which is iden­
tified by a port, called a server-port, to which the Name 
Server possesses send rights. The Name Server itself 
directly manages all directory item types. Client tasks 
access a particular item by sending a request to the 
Name Server which in tum routes the request to the 
server-port for items of that type. Other system servers 
that will be included in our prototype include File Server 
(mass storage management), Verification Server (user 
identification and authentication), SysAdmin Server 
(support for system administration), and Audit Server 
(collection and query of audit data). 

Architecturally, TMach' s tmsted servers avoid the 
mutual dependency problems that Aspen possessed. The 
Name Server is logically the most primitive of all the 
tmsted servers. Therefore, the Name Server will only 
depend upon the kernel for its correct operation. The 
kernel provides direct support for storage and retrieval of 
the Name Server's internal database ensuring that the 
Name Server is not dependent upon the File Server. The 
remaining servers may depend upon the Name Server for 
storage of private information (e.g., the File Server may 
store disk addressing information with each file item 
record maintained by the Name Server). Our current 
plans are for trusted servers other than the Name Server 
to depend upon the File Server for mass storage require­
ments. 

5.2 ACCESS CONTROL IN TMACH 

In the current TMach design, access control is 
provided by the kernel for basic system objects (i.e., 
ports, tasks) and by the Name Server, in conjunction 
with the kernel, for server-managed objects. 

5.2.1 Access Control in the Kernel 

In a very real sense, ports are similar to capabil­
Ities [14]. The kernel maintains the equivalent of a 
capability-list for each task that defines which ports the 
task can name and in which mode (e.g., send, receive). 
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However, Mach's implementation of ports avoids the in­
herent access control inabilities commonly associated 
with capability-based systems [15]. Specifically, tasks 
can not pass port-rights directly to other tasks. The 
"capability-list" for each task is implemented as a global, 
kernel-protected hash table called the T-P table. Port­
rights for a task may be added to this table in only a 
few well-defined ways - primarily via the message send 
and receive kernel primitives (i.e., rnsg send, 
rnsg_receive, rnsg_rpc). The kernel recognizes 
when a message contains a transfer of a port-right and 
updates the T-P table accordingly. 

In TMach, the kernel will mediate all transfers of 
port-rights to ensure that no task possesses a right in 
violation of the system security policy. This is accom­
plished by mediating all messages that contain a transfer 
of a port-right. Once a task obtains a port-right, it may 
use the port without further mediation by the kernel. In 
this manner, access to ports and therefore the flow of 
message traffic is guaranteed to be consistent with the 
system security policy. It is expected that the addition 
of this mediation on port-right transfers will have a very 
small impact on the performance of the Mach kernel. 

The kernel performs two forms of access media­
tion. The first is a mandatory label-based security policy 
that is an interpretation of the Bell-LaPadula model [16]. 
The kernel maintains security levels for all tasks and 
ports. Tasks have two levels, maximum and minimum, 
that define a range over which a task may possess port­
rights. The actual security policy enforced is a direct 
derivative the Bell-LaPadula model's simple-security 
condition and *-property [17]. The majority of tasks 
(e.g., all untrusted user tasks) will have their maximum 
and minimum security levels set exactly the same (i.e., 
single-level subjects). 

The second form of access mediation within the 
kernel is an identity-based security policy. The kernel 
maintains a useriD for all tasks and can determine which 
task currently holds receive rights for all ports. Using 
this information, the kernel enforces the following addi­
tional constraints on the transfer of port-rights: 

(1) Receive 	and own rights for a port P cannot be 
transferred unless both the sending and receiving 
tasks have the same useriD ; and 

(2) Send 	 rights for a port P cannot be transferred 
unless both the sending and receiving tasks have 
the same useriD, or the sending task and the task 
which currently possess receive rights for port P 
have the same useriD. 

The first constraint essentially disallows the transfer of 
any receive right except among tasks of the same 
useriD. The second constraint allows a task to transfer 
send rights to another task only if it, or another task 
with the same useriD, has control of the port. TMach 
also provides two privileges that may be associated with 
tasks. Transfer-receive-rights privilege allows a task to 
violate constraint (1) and transfer-send-rights privilege 
allows a task to violate constraint (2). These identity­
based controls are not discretionary as normally associ­
ated with identity-based policies, but rather are man­
datorily enforced by the kernel. They, along with the 
associated privileges, provide the "hooks" that can be 

used to enforce a more traditional discretionary access 
control policy on server-based objects or perhaps a more 
interesting identity-based policy. 

5.2.2 Access Control in the Servers 

For TMach, the locus of access mediation for 
server-based objects will be within the Name Server, 
which will be a multilevel task which possesses the 
transfer-send-rights privilege. The Name Server will 
enforce both mandatory and discretionary access control 
policies with the assistance of the kernel provided con­
trols discussed above. Since all interaction between 
clients and servers must be initiated via the Name Serv­
er, it provides a central location in which the kernel's 
security policy can be extended to more abstract objects. 
The controls enforced by the Name Server are of two 
forms, those placed upon the server tasks and those 
placed upon the client tasks. 

Servers offer items by registering themselves with 
the Name Server. This registration consists of two 
phases. The first is to create an item type by defining 
an type-record to the Name Server. The Name Server 
maintains these records along with the useriD and secur­
ity levels of the creating task and a specified access 
control list (ACL). The second phase, which can occur 
concurre~tly with the creation of a type-record or sep­
arately (I.e., for permanent item types such as files), is to 
provide the Name Server with a port over which the 
server will receive requests for items of that type. In 
order to register this port, called a server-port, the serv­
er's task must have the same useriD of the type-record's 
creator and have the exact same maximum and minimum 
security levels as stored in the type-record. 

Client tasks access all server-managed objects via 
the naming conventions implemented in the directory 
tree structure maintained by the Name Server. Client 
tasks cannot directly access (and therefore directly name) 
items maintained by servers. All references to server­
managed items, including their creation and deletion, is 
directly managed and mediated by the Name Server. 
When an item is created, the Name Server ensures that 
the client is both on the ACL for that item type and has 
maximum and minimum security levels within the range 
stored for that item type (this prevents illicit communica­
tion between clients and servers). When an item is 
created, the Name Server associates with the item the 
security level of the creating task (or for multilevel 
creating tasks, a specified security level within the task's 
maximum and minimum security levels) and an ACL 
specified by the client. To subsequently access an item, 
a client task sends a request to the Name Server specify­
ing the name of an item and a port over which a re­
sponse is expected (called a reply-port). The Name 
Server will mediate the request and, if the request passes 
access mediation, will forward the request along with the 
reply-port (hence the need for transfer-send-rights priv­
ilege) to the server-port for items of that type. In the 
case of single-level servers, this mediation (along with 
the kernel's controls on the transfer of port-rights) is 
sufficient to ensure that communication is in accordance 
with the system security policy. In the case of trusted 
multilevel servers, the servers are expected to function 
correctly but are not expected to enforce any additional 
constraints. For example, the File Server, after receiving 
a request to open a file for "read", must ensure that it 
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only allows the client to "read" the file since the Name REFERENCES
Server mediated the request for "read" access. One man­
ner in which this may be accomplished is for the File 
Server to create a port, associate the port with the target 
file, transfer send rights for the port to the client via the 
client's reply-port, and ensure that subsequent requests 
received via this port are all "read" in nature. 

5.3 MACH SUMMARY 

The current TMach effort is to develop a proto­
type system that explores the feasibility of developing a 
B3 system based upon CMU's Mach kemel. The current 
Mach kemel is not complete and relies upon UNIX~ to 
perform all 1/0 functions. However, we expect that a 
complete kemel (i.e., the inclusion of 1/0 and device 
control) can support a highly trusted system. The kernel 
will eventually provide only task/thread management, 
most memory management, message-passing capabilities, 
and primitive 1/0 and device management. We expect 
that a general-purpose server-based system built upon 
this kernel can meet the B3 requirements. In the case of 
the TMach prototype, the Name Server provides a locus 
for additional access mediation required for the more 
abstract server-managed objects while the kemel provides 
resource isolation, controlled message-passing, and ac­
cess mediation for primitive objects. This allows a 
server layer to be constructed that exhibits strong modul­
arity and independence among the trusted servers. Our 
initial proof-of-concept prototype is expected to be oper­
ational by the end of this year. 

6.0 CONCLUSIONS 

We have found that server-based mediation can be 
used to implement a reference validation mechanism that 
is entirely faithful to the Reference Monitor Concept. 
This conclusion is supported by the fact that the inherent 
structure of such systems allow access controls to be 
included in trusted servers such that the completeness 
and correctness of the mediation mechanisms can be 
assured. The trusted designs of both Aspen and Mach 
incorporate access controls within servers. Aspen's 
mediation is designed entirely in the Supervisor layer 
while TMach has a kemel which provides resource 
isolation and access mediation on primitive objects and a 
Name Server which (in conjunction with the kemel) 
provides access mediation for more abstract objects. 

It is apparent from Aspen, Mach, and other sys­
tems we have examined, that the server-oriented para­
digm is becoming a popular design philosophy in new 
operating system development efforts. We feel that in 
many cases, reference validation contained entirely with­
in a security kernel is not an optimal solution to access 
control concems for this type of system. A server-based 
approach for access mediation is a viable alternative. 
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ABSTRACT 

The LOgical Coprocessing Kernel (LOCK) is a Trusted Computing Base (TCB) that 
is designed to meet and exceed the requirements for a Class Al secure system. 
This paper describes the results of a study that determined how to port the 
Unix* System V Operating System to the LOCK TCB, while maintaining maximum 
compatibility with the System V Interface Definition (SVID) [SVID86]. 

1.0 Background of the Problem 

Over the years, Unix has gained widespread 
acceptance as the de facto standard Operating 
System (OS) within the U.S. Government and 
private industry. During the same time that 
Unix has gained in popularity, a demand for 
secure computing systems has developed. 
Recently, the demands for these two technologies 
have created a demand for secure Unix systems 
within the user community. 

To help meet the demand for secure Unix systems, 
we decided to port Unix to LOCK rather than 
develop a new OS. This is very appealing from 
both a developer and user point of view because 
of the large amount of portable Unix applica­
tions that already exists. 

1.1 Background of the Solution 

Traditional approaches to providing Multi-Level 
Secure (MLS) computing systems have emphasized 
implementing software security kernels that run 
when the target processor is operating in 
privileged mode. In some cases, security has 
been provided by redesigning the OS. These 
purely software approaches to providing multi ­
level security have four primary disadvantages: 

1. 	 DECREASED ASSURANCE since a software mal­
function could cause total security failure 

2. 	 DECREASED PERFORMANCE to usually unaccept­
able levels because of the high overhead 
incurred by performing the security access 
checks in software 

3. 	 LOSS OF EXISTING APPLICATION SOFTWARE 
because of the extensive redesign of the 
operating system, and 

4. 	 INABILITY TO FUNCTIONALLY ENHANCE the OS 
without requiring expensive and time­
consuming re-verification and revaluation 
[SAYD87]. 

*Unix is a trademark of AT&T. 

The results reported in sections 1.0 through 4.0 
were supported by National Computer Security 
Center contract MDA904-87-C-6011. 

The 	LOCK TCB is a MLS computing system currently 
being prototyped at Honeywell Secure Computing 
Technology Center. It has been designed to meet 
and exceed the requirements for a Class Al sys­
tem 	as defined in the DoD Trusted Computer Sys­
tem Evaluation Criteria (the Orange Book) 
[TCSEC85]. 

LOCK is the third phase of a continuing project 
previously called the Secure Ada Target (SAT), 
which was started by Honeywell in 1982. The 
first phase of the SAT program (SAT-0) resulted 
in 	 a high-level requirements specification 
[HONE83]. The second phase (SAT-I) resulted in 
an intermediate specification [HONE86] . The 
third phase (SAT-II), nenamed LOCK, will result 
in a detailed design specification and MLS mini­
computer prototype in 1990 [SAYD87]. 

1.1.1 The LOCK Solution to Multi-Level Security 

The LOCK system takes a hardware-oriented 
approach to providing a MLS computing system. 

This approach should enable the system to over­
come the disadvantages associated with purely 
software approaches. 

The security policy of the system is enforced by 
a physically separate, multi-processor, copro­
cessing unit called the System-Independent, 
Domain-Enforcing, Assured, Reference Monitor 
(SIDEARM). The SIDEARM has its own processors, 

memory, and mass storage. All security-related 
data is stored on the SIDEARM mass storage unit. 
All security policy decisions and access compu­
tations are performed by the SIDEARM. 

The physical separation of the protection­
critical from the non protection-critical ele­
ments in the LOCK system makes it physically 
impossible for a user process to access or 
tamper with the SIDEARM firmware or its data, 
giving the LOCK system a high degree of 
assurance. 

The LOCK host processor provides TCB-mediated 
resource management and computing power for user 
applications. Since it performs no security 
access checks, the performance degradation 
imposed on the system by the security mechanisms 
should be minimal. 
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The security functionality provided by the 
SIDEARM is generic in nature, and largely 
independent of the characteristics of the host 
processor. The security policy that the SIDEARM 
enforces is configured through the use of spe­
cial administrative tools at system generation 
time. Virtually any security policy can be 
defined to meet the needs of an installation. 

Other than the physical hardware connection 
between the SIDEARM and the bus of the host pro­
cessor, the SIDEARM is also mechanically 
independent of the host architecture. A funda­
mental design goal of the SIDEEARM was to design 
it in such fashion as to allow it to be ported 
to other non-LOCK systems. 

The LOCK OS will not be responsible for enforc­
ing the security policy of the system, and 
therefore, it will not be part of the TCB and 
not have to be verified or evaluated when it is 
updated. Further, we make the assumption that 
the OS, and other non-TCB software for that 
matter, are hostile proqrams that will attempt 
to violate the security policy of the system. 
As a consequence of this assumption, we follow a 
least-privilege design philosophy for all LOCK 
software and rely heavily upon Type Enforcement 
(see subsection 2.2.2) to limit the objects 
application may access. 

Since Unix is not part of the TCB, we will not 
have to modify it to provide security policy 
enforcement mechanisms. These capabilities are 
provided by the underlying TCB. 

We do plan to extend the Unix interface in a 
non-intrusive manner to make the MLS features 
(e.g. ACLs) of the LOCK TCB available to users 
and applications. With the implementation 
approach we have developed, we should be able to 
maintain a great deal of compatibility with the 
SVID and, hence, with the existing base of Unix 
applications. 

1.2 The Study Goals and Results 

During 1987, we performed a study of the Unix 
kernel to determine if it could be (relatively 
easily) ported to the LOCK system, and if so, 
determine what the effect on the interfaces 
would be. To enable us to determine if it would 
be worthwhile to port Unix, we established the 
following research goals: 

e 	 The number of modifications to the Unix ker­
nel should not be extensive. 

e 	 The TCB could not be modified to "tailor" it 
to running Unix. 

e 	 Unix had to be able to service many con­
current users running at different security 
levels without becoming part of the TCB. 

• 	 The file system had to be able to manage data 
at different security levels requiring 
trusted servers and without introducing 
covert channels. 

e 	 The resultant system must maintain a maximum 
compatibility with the SVID. 

The results of our study indicate that these 
goals can be met. The application visible 
interface to the LOCK implementation of Unix 

rity policy enforced by the underlying LOCK TCB 
should have little, if any, impact on the major­
ity of existing Unix applications. 

We feel one major result of the study is our 
approach for implementing an untrusted file sys­
tem (see section 4.0) that will manage the 
multi-level data. Internally, our file system 
implementation will be quite different than in a 
standard Unix kernel. However, users and appli ­
cations should not notice the differences. 

Our file system design was originally intended 
to support LOCK/ix. However, we feel that it is 
general enough that it can be used to support 
other (non-Unix) LOCK applications, or be 
applied to other non-LOCK TCBs as well. 

1.3 Overview of the LOCK Architecture 

The LOCK system consists of two computing units: 
the SIDEARM and the host processor. The major­
ity of the TCB functionality resides in the 
SIDEARM, whose firmware coordinates with a small 
(TCB) software kernel (the Supervisor) that runs 
on the host processor. 

The resultant LOCK TCB provides low-level ser­
vices for subject, object, and device manage­
ment. The TCB is restricted, for reasons of 
verifiability, to minimum functionality. It is 
intended to support, not replace, traditional OS 
services, such as a hierarchical file system. 

The Supervisor (see Figure 1) functions as a 
low-level resource manager, and provides an 
application visible interface to the TCB's capa­
bilities. The Kernel Extensions are a set of 
verified, security-relevant utilities whose 
capabilities cannot be provided by the SIDEARM 
in a generic fashion. 
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Figure 1 

1.3.1 The SIDEARM 

The SIDEARM implements what is called the Refer­
ence Monitor (RM) concept (see Figure 2). In 
general, an RM can be thought of as a guard 
between people, and the information they would 
like to access. There are three important cri ­
teria for an RM: 

1. It must always be invoked. 

(LOCK/ix) is nearly identical to that of a stan­ 2. It must be verified to be correct (i.e., 
dard implementation of Unix System V. The secu- properly enforce the security policy of the 

system) . 
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3. It must be unbypassable. 

4. It must be tamperproof. 

The LOCK hardware-oriented approach (see Figure 
3) provides a good match to the m1 model 
[SAYD87]. 

Reference Monitor Concept 

A Reference Monttor Must Be 
1. Always Invoked 
2. Verfied Correct 
3. Unbypassable 
4. Tamperproff 

Figure 2 
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3. Tamperproof. No Way To Attack Security Coprocessor 

Figure 3 

When the system is booted, the SIDEAmi is booted 
and initialized before the host processor begins 
to run and continues to run until the system is 
shut down. All security-related data and most 
of the security functionality is implemented in 
the SIDEAmi, thus making it possible to verify 
that it is correct. And finally, since the 
SIDEAmi is physically separate (see Figure 4) 
and ma~ntains its own memory and mass storage, 
there 1s no (physical) way for a user process to 
tamper with its firmware or data. It is 
unbypassable since it is the SIDEAmi, and not 
the Host processor, that has exclusive control 
over the Memory Manaqement Unit (MMU) . 

1.3.2 The Host Processor 

As mentioned previously, a small software kernel 
(which is part of the TCB) runs on the host pro­
cessor. Tnis software kernel is responsible for 
preserving, and not enforcing, the security pol­
icy of the system by performing correct, low­
level resource management. This software ker­
nel, called the Supervisor, consists of code 
that runs in both privileged and user mode of 
the host processor. 

The portion of the Supervisor that runs in the 
privileged mode is only that code which is 
forced there by the hardware, such as the inter­
rupt handlers. Other code, such as the subject 
scheduler, runs in user mode of the host proces­
sor. 

Reference Monitor in LOCK 
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Monitor 
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3. Application Portability 

4. Functionality 

Figure 4 

All code that runs in privileged mode will be 
placed in Read-Only Memory (ROM) that is 
addressable only when the processor is running 
in privileged mode, thereby making it tamper­
proof. Other software, such as the OS, will run 
in user mode on the host processor. 

2.0 Overview of the LOCK Security Model. 

The LOCK TCB enforces a MLS policy. The policy 
is enforced by mediating access between sub­
jects, the active entities of the system, and 
objects, the inactive entities of the system. 

To enforce this policy, the SIDEAmi maintains a 
large database called the Global Object Table 
(GOT) . Each time a subject or object is 
created, it is assigned a unique identifier 
(UID) . A GOT entry is then created for the new 
entity where the UID is used as the primary key. 
A GOT entry will contain additional information 
such, as the level and the creator. 

The LOCK TCB provides Discretionary Access Con­
trol (DAC) and Mandatory Access Control (MAC) 
~echanisms to enforce the system's security pol­
1Cy. In order for a subject to be granted 
access to an object, the request must be allowed 
by both the DAC and MAC mechanisms of the sys­
tem. 

2.1 Discretionary Access Control Policy 

A DAC policy is discretionary because its 
administration is up to the discretion of the 
system users. The LOCK TCB provides Access Con­
trol Lists (ACLs) as the mechanisms for provid­
ing DAC. 

ACLs allow a user to specify, for each named 
object he is authorized to control, a list of 
named individuals and a list of groups of named 
individuals and their respective modes of access 
to the object. Additionally, for each named 
object, the authorized user may specify a list 
of named individuals and a list of groups of 
named individuals for which no access to the 
object is to be given. The currently supported 
modes of discretionary access are read (r), 
write (w), execute (x), and null (n). 

One aspect of the LOCK DAC policy that should be 
noted is the fact that there is no concept of 
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object ownership, or any special privileges 
associated with object ownership. Rather, the 
security policy the system enforces is config­
ured to indicate who can control (change the ACL 
of) objects of a specific type. This typically 
will be, but is not limited to, the creator of 
an object. 

2.2 Mandatory Access Control Policy 

A MAC policy is mandatory because it is always 
enforced by the system. Unlike a DAC policy, 
the system users have no say in how the policy 
is administered. The LOCK MAC policy is 
enforced by Labeled Security Protection and Type 
Enforcement mechanisms. 

2.2.1 Labeled Security Protection 

The LOCK TCB enforces Labeled Security Protec­
tion as required by the Orange Book. The policy 
is enforced over all system resources (e.g., 
subjects, objects, and I/O devices) that are 
directly or indirectly accessible by subjects 
external to the TCB. 

The LOCK TCB maintains a SIDEARM-resident data 
structure that is a partially ordered set 
(POSet) of all security levels (combination of 
one hierarchical level and a set of non­
hierarchical categories) defined in the system. 

The LOCK POSet is a generalization of the Orange 
Book concept of a security lattice. The differ­
ence them is the fact that the POSet has no 
lowest or highest bound. For example, two lev­
els may be equal in classification but have a 
different (and incompatible) category set (e.g. 
TOP SECRET.A and TOP SECRET.B). Hence, one can 
not-be said to be "higher" than, or dominate the 
other. 

When a subject or object is created, it is 
assigned one of the levels (nodes) from the 
POSet. Access is then computed using the level 
of the subject requesting access and the level 
of the object being accessed in the following 
manner: 

~ 	 To read an object, the level of the subject 
must dominate the level of the object (the 
Simple Security Property) . 

e To write an object, the level of the subject 
must be dominated by the level of the object 
(the *-Property) . 

As used in the rules above, the term dominate 
means greater than or equal to. For each 
required access computation, the POSet is con­
sulted to determine if one level dominates 
another. 

2.2.2 Type Enforcement 

Type enforcement is a mechanism that is unique 
to the LOCK TCB. Not required by the Orange 
Book, it is this mechanism that will (in part) 
allow the LOCK TCB to exceed the Orange Book 
Class Al requirements. Type enforcement is 
based on two attributes: 

• 	 The domain of execution of a subject. 

• 	 The type of the object a subject is attempt­
ing to access. 

A domain is similar in concept to rings in 
ringed architecture machines. Unlike rings, 
though, there is no hierarchical relationship 
between domains. Moving from one domain to 
another .does not necessarily imply an accumula­
tion of increasing system privilege. Rather, 
each domain has a set of privileges different 
from other domains. 

To represent the domains and the privileges 
allowed ~n them, the TCB maintains a SIDEARM­
resident data structure called the Domain Table. 
It cont.ains the following information: 

• 	 The UID of the domain. 

• 	 The human-readable name of the domain. 

• 	 A list of special privileges. 

• 	 A list of domains to which other subjects in 
the named domain have access to, and the 
modes of access (create a subject, destroy a 
subject, signal a subject, etc.) permitted. 

The special permissions that are allowed in 
domains are the ability for a subject to take 
exception to the DAC and/or the Labeled Security 
Protection mechanisms of the system. Since it 
is the type enforcement mechanism that allows a 
subject to have these special privileges, a sub­
ject may never take exception to the type 
enforcement rules of the system. 

The domain of execution is an attribute of a 
subject that remains constant throughout its 
lifetime. in other words, a subject can only 
execute in one domain. 

All objects have a type associated with them. 
The concept of type is similar in nature to 
types in high level programming languages. The 
TCB restricts operations on objects of specific 
types· based on the domain of execution of the 
subject attempting the access. 

To represent object types and the operations 
allowed on them, the TCB maintains a SIDEARM­
resident data structure called the Type Table. 
It contains the following information: 

• 	 The UID of the type. 

• 	 The human-readable type name. 

• 	 Allowable object sizes (minimum and maximum) . 

List of domains from which subjects have• 
access to objects of the named type, and the 
modes of access. (read, write, etc.) permit­
ted. 

fl 	 Default ACL. 

When a subject requests access to (or attempts 
to create) an object, the TCB consults the 
Domain and Type Tables to determine if the 
access, based on the domain of execution and the 
object type, is allowed. 

Both the Domain Table and Type Table are ini­
tialized at system generation time by the System 
Security Officer (SSO) and are inaccessible to 
user processei. It is this ability to configure 
the Domain and Type Tables that enables the LOCK 
to support virtually any security policy an 
installation desires. 
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As mentioned earlier, type enforcement can be 
used to grant special privileges. For example, 
it may be necessary to implement an application 
that is allowed to downgrade files. The list of 
special privileges in the Domain Table is used 
to grant such privileges. The Type Table is 
used to restrict which object types can be read 
and written in the downgrade process. 

Type enforcement is also useful for integrity 
reasons. For example, the system may grant sub­
jects running in a system administration domain 
read and write access to objects of type 
usernarne_file. Subjects running in the OS 
domain mey be granted only read access to 
objects of type usernarne file. With the Domain 
and Type Tables established in this fashion, the 
system will prevent unauthorized modification 
(integrity) of objects of the type password
file. 

The type enforcement mechanism can be used to 
support a variety of integrity models such as 
the Clark-Wilson [CLARK87] model, and as 
described in [BOEB85], the Biba [BIBA75] model 
as 	well. 

2.3 Subjects 

The basic execution (active) entity in LOCK is 
the subject. A subject is a process that exe­
cutes in a particular security context. The 
security context comprises the level of the sub­
ject, the domain of execution, and the user on 
whose behalf the subject is executing. In many 
ways, a subject is like a Unix process: it 
shares the processor with other subjects through 
tirneslicing, it has access to a "file system" 
that other subjects also have access to, it can 
open and operate on "files," and it has limited 
capabilities for communicating with other sub­
jects. 

There are some notable differences between sub­
jects and Unix processes. There are no 
hierarchical parent/child relationships; each 
subject is independent of the subject that 
created it. For Unix processes with the user ID 
of superuser, the entire system is accessible; 
there is no corresponding notion of superuser in 
LOCK/ix. Under Unix, multiple processes can be 
writing to the process control terminal simul­
taneously; LOCK allows only one subject to per­
form terminal I/0 to a given (process control) 
terminal at a time. 

All subjects have associated with them a Subject 
Translation Table (STT) . The STT contains an 
entry for each object that the subject has 
opened (see Figure 5). In LOCK/ix, objects are 
used to represent Unix file system objects 
(file, directories, etc.), text segments and 
data segments, process stacks, and kernel level 
data structures. The STT is similar in nature 
to the Unix per-user open file table. Each 
entry in the STT identifies an object and the 
current access that the subject has to it. The 
STT is resident in the host processor's memory 
and provides the first level of address transla­
tion for the MMU. 

Subjects within the LOCK system are character­
ized by the following: 

• 	 Each subject is uniquely identified· within 
the SIDEARM's security database (the GOT) by 
the UID the SIDEARM assigned to it when it 
was created. The GOT entry represents the 
security context of the subject. 

• 	 The subject manager (within the host resident 
portion of the TCB) maintains a data struc­
ture called the Active Subject Table. Each 
active subject within the system is uniquely 
identified by subject manager by its entry in 
the Active Subject Table. 

• 	 A user subject may execute instructions if 
and only if the host processor is operating 
in user mode. (Only TCB subjects may operate 
when the Host processor is in privileged
mode.) 

User subjects are created as a result of a TCB 
Create Subject request. They come into 
existence as the result of a user action, per­
form their function, and are terminated by a TCB 
Destroy Subject request at some later time. 
When a subject is destroyed, the subject ceases 
to exist within the system. All objects allo­
cated by the subject (contained within its STT) 
are closed, and all resources (e.g., GOT entry, 
memory, etc.) previously allocated to the sub­
ject are released. 

Typical LOCK/ix Subject STT 
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2.3.1 Relation to Unix Virtual Machines/Unix 
Processes 

The differences between Unix processes and LOCK 
subjects strongly influenced the way Unix 
processes are represented in LOCK/ix. To 
cleanly support Unix process mangement func­
tionality, each subject represents the 
equivalent of an abstract Unix virtual machine. 

To provide support for operating systems built 
on top of the LOCK TCB, as well as multitasking 
applications such as an Ada run-time environ­
ment, a subject has periodic software interrupt, 
similar to a timeslice interrupt, available to 
it. A "beginning timeslice" signal is sent to 
all LOCK subjects from the TCB when they begin 
to execute in a new timeslice. 

To take advantage of this feature, a subject 
must enable a signal handler, in much the same 
way as is done for Unix signal handlers. If a 
subject does. not wish to take advantage of this 
signal and does not define a handler for it, the 
signal is ignored and the subject is allowed to 
run without the knowledge of receipt of the sig­
nal. 
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Unlike the Unix signal handling mechanism, the 
LOCK signal handling mechanism provides to the 
subject its context (register, stack pointer, 
and program counter values) when the signal 
occurred. There is no way for a subject to con­
trol the frequency of this signal. The fre­
quency of occurrence of this signal is 
unpredictable. 

The use of this feature allows a subject to per­
form its own process multiplexing. Each subject 
can run its own process (or task) multiplexing 
algorithm to provide multiprocessing support 
within the subject. 

2. 4 Objects 

One of the most unusual features of LOCK (at 
least for those accustomed to Unix) is that 
there is no notion of external files of or a 
file system; instead, there are objects. 
Objects are containers for data that reside in 

the virtual memory and can be (physically) 
stored on disk, tape, or other media such as 
optical disk. 

All objects have associated with them a set of 
attributes that are similar in nature to Unix 
file attributes. These attributes include the 
object type, size, security level, creator, ACL, 
permanent location, and the present location (in 
main memory) . 

Objects are a generalization of a segmented 
memory system. The TCB Open Object operation 
maps an object into the virtual address space of 
a subject and returns a pointer to a memory 
address. Datum with an open object can be 
accessed by referencing offsets into the 
object's memory range. I/0 is performed on 
objects by modifying the contents of memory 
addresses in the open object. One object can be 
open by multiple subjects simultaneously, with 
the object mapped to different virtual addresses 
in each subject's address space. 

2.4.1 Relation to Unix Virtual Memory 

All memory that a subject references, even the 
subject itself, consists of open objects. The 
virtual memory space of a subject is the union 
of open object virtual addresses. LOCK imposes 
a limit on the number of open objects a subject 
is allowed, which is currently 256. The maximum 
size of on object is 16Mbytes. 

Disk I/0 is performed by LOCK without explicitly 
doing I/O (i.e., issuing a command to a device 
driver). The MMU provides the mapping between 
memory references and modifications and physical 
I/0. If a piece of an open object that has been 
paged out to disk is referenced, the MMU causes 
the appropriate piece of the object to be 
brought into memory. To an application, the 
entire contents of an object appear to be in 
memory when an object is opened, and the con­
tents disappear when the object is closed. 

LOCK object operations are analogous to Unix 
memory management functions in many ways. Open­
ing an object is similar to allocating a region, 
in order to obtain memory for a process. 
Objects can expand and shrink, as can regions. 
Open objects are memory regions associated with 
each process. 

2.4.2 Relation to Unix File System and Files 

Objects provide the foundation for building a 
file system that will appear to operate similar 
to Unix. However, from a programming stand­
point, object operations are quite different 
than file I/O operations. 

The LOCK/ix kernel is responsible for providing 
the functional bridge between the LOCK TCB and 
Unix applications. It provides the functional­
ity necessary to support a Unix file system 
built on top of LOCK objects. 

File creation requires that an object be created 
and cataloged into the file system in the 
correct directory, with the inode table provid­
ing the linkage between physical storage and 
external appearance. Open and close operations 
logically perform the same function in both LOCK 
and Unix, making the objects "known" and "unk­
nown" to an executing process. 

LOCK/ix will map the Unix-style access opera­
tions into their LOCK counterparts. Unix-style 
I/O operations will be mapped into open object 
references and updates. File deletion removes a 
reference to an object from the file system, and 
if there are no references remaining, the object 
will be deleted from the file system. 

3.0 Process Management in LOCK/ix 

The Unix process management services provide 
process creation and deletion, program execu­
tion, and synchronization between related 
processes. The Unix model of process creation, 
using the fork() operation, enforces parent­
child relationships between processes and 
ensures that a child process is initially 
created to be an exact copy of its parent. The 
Unix model of program execution, using the 
exec() operation, provides for the inheritance 
by the new program of part of the environment of 
the process that executes the program. 

In contrast to Unix in which all user processes 
are managed and coordinated by a single kernel 
entity, the LOCK/ix implementation encapsulates 
the management of processes for each LOCK/ix 
login session within a single LOCK subject (see 
Figure 6). Each LOCK/ix subject contains an 
(virtual) instance of the Unix kernel that 
manages only the user processes associated with 
its login session. The LOCK/ix kernel is in 
reality a shared text segment that is used by 
all LOCK/ix subjects. However, at any point in 
time, the kernel only "knows" about the single 
LOCK/ix subject that it is currently servicing. 

Referencing a memory address that is not mapped 
to an open object generates a bus error. A bus 
error will be interpreted by the TCB as an 
attempt to violate the security policy of the 
system and cause the termination of the offend­
ing subject. Although termination of the sub­
ject seems to be a bit harsh, under similar 

circumstances Unix would terminate the offending 
process and generate a "core dump". 

Although this approach to process management is 
a bit unusual, it does provide an implementation 
of fork() and exec() that is, from the viewpoint 
of an executing process, compatible with Unix. 
The set-user-ID modes of file execution are par­
tially supported. They effect only the user-IDs 
of an individual process, and the the user-ID of 
the containing subject. 
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3.1 Memory ManagementLOCK/ix Address Space Organization 

~ 
~ 

Figure 6 

There is a problem that is encountered when try­
ing to support Unix set-user-ID applications in 
a MLS environment. Unix maintains both a real­
user-ID that indicates who logged on, and an 
effective-user-ID that indicates on whose behalf 
the process is executing, for each active pro­
cess. Under normal circumstances, these user­
IDs represent the same individual. When the 
process is an instance of a set-uid application, 
the effective-user-id of the process is set 
equal to the owner-id of the set-uid applica­
tion. 

Unix always uses the effective-user-id of a pro­
cess for computing access rights. Running a 
set-user-ID program has the effect of tem­
porarily granting the owner's access rights to 
the user of the set-user-ID application. In 
contrast to this, the LOCK TCB maintains only 
one user-ID for each active subject. A LOCK 
subject user-ID and a process real-user-ID are 
the same individual (the person who is actually 
logged on). 

The LOCK TCB does not support this notion of 
granting temporary access. To compute access, 
the LOCK TCB will always use (the equivalent of) 
the real-user-id of a process. As a consequence 
of this, our current design does not provide 
fully compliant support for set-user-ID applica­
tions. 

We are currently investigating several alterna­
tive approaches to solving this problem (see 
section 5.0). Since the Unix user community 
appears to have a strong desire to continue to 
run set-user-ID applications, our current design 
will most likely be criticized as providing 
unacceptable support for set-user-id applica­
tions. 

There are some within the computer security com­
munity who argue that a capability such as set­
user-ID should not be provided by Al systems. 
This is .a debate that is likely to continue for 
many years to come. Our feeling is that is the 
existing Unix file protection mechanisms, and in 
particular the set-user-id capability, are 
really integrity mechanisms. If a method can be 
devised to support a fully functional set-user­
id capability in a secure manner, we see no 
disadvantage to doing so. 

Unix kernel memory management functions provide 
user processes with an expandable data area that 
can be used for dynamic heap allocation. The 
heap allocation algorithms are supplied by the 
run-time library and provide a generalized 
memory block allocation scheme to user programs. 
They call on the kernel to expand the data seg­
ment of a user process as needed to increase the 
pool of memory that is available for allocation. 

Although not explicitly visible at the user pro­
gram interface, Unix memory management also nor­
mally enforces protection over the address space 
of a user process from access by other 
processes. The address space of the kernel is 
also protected from access by user processes. 

These capabilities are dependent on the charac­
teristics of the MMU. In LOCK it is the TCB, 
and not LOCK/ix, that has explicit control over 
the MMU. As a consequence of this, such protec­
tion cannot be provided by LOCK/ix. 

The LOCK/ix kernel manages memory via calls to 
the TCB storage manager. The physical alloca­
tion of memory is replaced by requests to 
create, delete, open, close, and expand the LOCK 
objects that compose the address space of user 
processes. Each user process within the subject 
is assigned a text segment, data segment, and 
stack object by the kernel which are open as 
long as the process is executing. When a pro­
cess terminates, these objects are closed and 
deleted by the kernel. 

Expansion of the data segment is implemented by 
calling the TCB storage manager request Expand 
Object. This TCB request automatically handles 
physical relocation of the object if needed and 
zeros the newly allocated space for LOCK/ix. 

Expansion of the stack object is implemented by 
a special LOCK/ix system call, which is used to 
request that the stack of the calling process be 
extended. This requires that the compiler gen­
erate a stack overflow check as part of every C 
function's entry preamble code. Although rela­
tively inefficient, this method of automatic 
stack growth is used on ma·ny standard Unix 
machines that have no hardware support for stack 
overflow detection in the MMU. 

4.0 The LOCK/ix File System Design 

The file and I/0 system is one of the principal 
components of Unix. Conceptually, it provides a 
uniform method for performing I/O, by mapping 
all I/O into file I/0. Applications can operate 
in the same manner whether I/0 is being done to 
a terminal, a file, a interprocess communication 
pipe, or a physical device. 

Due to the nature of the Unix file system, many 
applications tend to be highly I/O intensive. 
If the file system does not work as expected, 
the effect on applications ported to LOCK/ix 
could outweigh the effort to develop the 
software from scratch. A fundamental design 
goal of LOCK/ix was to make the file system 
appear as much like the Unix file system as pos­
sible. 

In our design of the file system structure, a 
separate file system at each security level is 
supported. An inode table for each file system 
is stored in an object that is equal in level to 
the file system it represents. Directory 
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entries will map inodes to files as is done in 
existing Unix implementations. 

The major difference between the LOCK/ix file 
system structure and the standard Unix file sys­
tem structure is that directories with the same 
name may exist at multiple levels. The direc­
tories at all observable levels are logically 
overlaid to produce a virtual directory. To a 
user process, it will not be apparent that an 
observable directory has been constructed from 
multiple file systems. The level at which the 
user process is executing will determine which 
files are visible in its view of the file sys­
tem. 

To avoid the need for trusted code, a directory 
is restricted to containing only entries that 
are at the same level as the directory. How­
ever, if the same directory exists at several 
levels, each containing files, applications are 
given the illusion that the (virtual) directory 
contains files at multiple levels. To support 
this capability, only the directory paths are 
duplicated, not the files. 

Figure 7 presents a simple two-level file system 
that contains a UNCLASS file system and a SECRET 
file system. A LOCK/ix process running at 
UNCLASS would see the files cat and ls in the 
/bin directory. A SECRET process would see 
those two files (as read-only), and in addition, 
the file magic. 

Initial Two Level File System Example 

INITIAL UNCLASS FILE SYSTEM 
/ 

bin/ etc/ lmf>' usr/ 

n I I I 
user1/ user21 user3/cat Is nn 

11 d1/ 11 fa 

~-----J 
INITIAL SECRET FILE SYSTEM 

/ 

bini usr/

I 1.-------tl 
magic user1/ user2/ r ~ 

s1 da/ 
"THE CORRESPONDING UNCLASS DIRECTORIES ARE: 

bin/ usr/ user1/ user2/ user3/ 

1. 2. 5 6 7 14 . 

1 .. 1 .. 1 5 5 5 .. 

2 bin/ Scat 6 user1/ 10 11 12 fa 

3olcl 9 Is 7 usor2/ 11 d1/ 10 11 

4 Imp/ 14 user31 

5 usr/ 


"THE CORRESPONDING SECRET DIRECTORIES ARE: 

bin/ usr/ user1/ user2/ 

1. 2 3 • 4 • 6 . 

1 .. 1 1 3 3 

2 bin/ 14maglc 4 user1/ 5 B1 7dal 

3 usr/ 8 uaer2/ 


Figure 7 

LOCK/ix will perform the logical combination of 
the ~ile ~ystems from multiple levels to present 
t~e ~llus~on that there is a single, multi-level 
f7le system. The files contained in the UNCLASS 
f~le system that the process running at SECRET 
c~n observe are of course not writable. The 
v~ew of the file system presented to a SECRET 
proces~ will contain the SECRET file system 
overla~d on top of the UNCLASS file system. 

An process running at UNCLASS will have no way 
of determining the existence of anything in 
SECRET (or anything above UNCLASS for that 
matter) . The security policy enforced by LOCK 
deny access to any file system objects above the 
level of UNCLASS. 

It should be noted that the LOCK TCB enforces 
the protection of objects so that even malicious 
programs can not affect the data contents of an 
object unless the subject has write access to 
the object. 

The LOCK/ix design provides what appears to be 
the best compromise between Unix compatibility 
and the required MLS functionality. We have 
developed a design that should have the "look 
and feel" of Unix. Each file system is com­
pletely isolated from the file systems at other 
levels. 

The concept of virtual directories could also be 
applicable to a conventional, unsecure networked 
Unix environment. If file systems resided on 
multiple machines, some with the same directory 
path names, virtual directories could be 
created. The issue of which network machine a 
file resided on would no longer be significant. 

4.1 Path Inheritance 

In order to support virtual directories, a 
method is needed whereby files can be created at 
the current level if the directory path exists 
only at a lower level. It would be incompatible 
with Unix to allow a process to create a direc­
tory path that already exists. LOCK/ix will 
automatically a create directory path at the 
subject's level, when required, to fulfill a 
create request. We call this operation path 
inheritance. 

As in Unix, an attempt to create a file in a 
directory that does not exist, or is not observ­
able, will fail. If the directory exists at the 
subject's current level, no special processing 
is required to fulfill a create request. Only 
when components of the required path do not 
exist at the subject's current level (but exist 
at a lower, observable level) does LOCK/ix need 
to create them. The creation of path components 
at the current level is handled in a manner that 
is transparent to user processes. 

A good analogy to this operation is a virtual 
memory system. The working set is at first very 
small, containing only the top-level path com­
ponents. As files are created, as with pages 
not in memory, a "fault" occurs and the 
appropriate pages are brought in from disk, or 
in this case, path components are created. 
Eventually, a stable working set is established 
that handles most reteL~nces, for either virtual 
memory or the LOCK/ix file system. The differ­
ence is that the directory paths created are 
permanent and will continue to exist in the file 
system. There is no way a process can determine 
that a directory path was inherited. 

If directory entries are created with names that 
(unknowingly and unintentionally) match those at 
a higher level, the higher level virtual direc­
tory view will contain all the files, including 
multiple files with the same name. The lower 
level view will consist of only those files and 
subdirectories that exist at the lower level. 

A design issue that is currently open is how· to. 
handle this potential name collision. If ident­
ically named files exist. at multiple levels in a 
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directory, the higher level processes will need 
a way to determine, or specify, which file gets 
ac<;:essed. An extension to the namei routine, 
wh~ch performs name to inode mapping, is planned 
for the future. This extension will allow a 
process to specify the level of a file to be 
opened. Naturally, this capability will be res­
tricted by the Labelled Security Protection 
mechanism (see subsection 2.2.1) of the TCB.. 

The main changes in the internal logic of Unix 
required to support file systems at different 
levels, that are combined to appear as one com­
posite file system, has been limited to the 
namei module. In standard Unix, it is the namei 
module that performs pathname parsing to 
retrieve the inode that represents a file. 

In addition to the enhancements to namei that 
are required to support the LOCK/ix file system, 
we have chosen to encapsulate its functionality 
in a file server subject (see subsection 4.3). 

4.2 File System Examples 

To help illustrate how the files system will 
work and appear to users, we present several 
simple examples. The examples are built on the 
file system shown in Figure 7. 

Figure 8 shows how the file system would appear 
if an application running at the SECRET level 
created a file named compute in the directory 
/usr/user3. Before creating the file compute, 
the file server subject was required to create 
the full directory path at the SECRET level.'so 
that the file could be placed in the correct the 
file system. 

File System After File /usr/user3/compute 
Created by SECRET Process 

UNCLASS FILE SYSTEM 
/ 

bin/ elcl tmi>' usrl 

n I I 
user31

cal Is 

~~ 
ft dtl ft fa:_ _____ _) 

SECRET FILE SYSTEM 
/ 

bini 

~ 

usr/ 

I I I 
magic user1/ user21 r 

st dal compute 
THE CORRESPONDING UNCLASS DIRECTORIES ARE: 

I bin/ usr/ user11 user2J user3/ 

1. 
1 .. 
2 bini 
3 etc/ 
4 1mpl 
5 usr/ 

2. 
1 .. 
Beat 
95 

5 
1 .. 
6 user1/ 
7 usel2/ 
14 user3/ 

6 
5 
10 f1 
11 d11 

7 . 
5 
12 fa 
10 f1 

14 . 
5 .. 

THE CORRESPONDING SECRET DIRECTORIES ARE: 

I bin/ usr/ user21 user21 user31 

1. 2 . 3 . 4 . 6 . 8 . 
1 •. 1 .. 1 .. 3 .. 3 3 .. 
2 bin/ 
3 usr/ 

14maglc 4 
6 

user1/ 
user21 

5 s1 7da/ 9 oompute 

8 user31 

Figure 8 
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In this case, only the path component /user3 
would have to be created the directory /usr 
already existed at the SECRET level. The inode 
n~er~ for ~irectories with the same name that 
ex~st ~': mult~pl~ file systems can be, and typi­
cally w~ll be, d~fferent in each file system. 

The application running at the SECRET level that 
created the file compute is unaware that the 
directory /user3 was inherited. There will 
still appear to be only one /usr/user3 directory 
to both the UNCLAS.S and SECRET applications. 
However, to the application running at SECRET 
/usr/user3 will (potentially) contain mor~ 
a<?cessibl~ files than it will for the applica­
t~on runn~ng at UNCLASS. 

If a file named /usr/user3/compute already 
existed at UNCLASS, the application running at 
SECRET would not have been able to create the 
file since a file of that name would have 
already existed, as a read only file. If a file 
named /usr/user3/compute existed at the SECRET 
level, the process running at UNCLASS could 
still create the file, since the existence of 
the SECRET /usr/user3/compute would not be known 
at the UNCLASS level. 

Suppose that the file /usr/user3/compute exists 
at both the UNCLASS and SECRET level. An appli­
cation running at SECRET could delete the file. 
The file /usr/user3/compute at UNCLASS would 
remain intact, and the application running at 
UNCLASS would not be aware of the fact that the 
(higher level) file was deleted. 

Figure 9 illustrates. the file system after the 
directory /usr/user2/da is created at the 
UNCLASS level, and the file display is created 
in that directory. The directory /usr/user2/da 
existed at the SECRET level. However, this was 
not know not at the UNCLASS level so the opera­
tion succeeds. At the SECRET level, there will 
still appear to be only one /usr/user2/da direc­
to:y, b~t it . now contains the file display, 
wh~ch ~s read-only to processes running at the 
SECRET level. 

Fioure 10 shows the results of the removal of 
the directory /usr/user3 by a process running at 
t~e UNCLASS level. To the UNCLASS process, the 
d~rectory appeared to be empty, so it was per­
missible to unlink (delete) the directory. The 
directory path /usr/user3 at the SECRET level is 
left undisturbed by this operation. 

Maintaini':g.a separate file system per level, 
and prov~d~ng the path inheritance capability 
allow the actions described in the examples to 
be performed without trusted code. Addition­
ally, since file systems at higher levels are 
not known to processes at lower level file sys­
tem object create and delete operatio~s can be 
performed at the higher levels without introduc­
ing covert channels. 

4.3 Integrity Considerations 

The LOCK/ix kernel runs in the 
address space as user processes. 
allow a single subject to execute 

same 
LOCK 
in 

virtual 
does not 
multiple 

domains. A process within a given LOCK/ix sub­
ject could gain access to any kernel file syst'm 
structures at its level and modify them. It is 
for this reason the file system update opera­
tions are removed from the LOCK/ix kernel and 
implemented in separate file system server .sub­
ject per (active) level. Type enforcement is 
used to limit write access to critical file sys­
tem objects (directories, inodes, etc.) to the 
file server subjects. 



File System After Directory /usr/user2/da and 

File /usr/user2/da/display Created by UNCLASS Process 


UNCLASS FILE SYSTEM 
/ 

bin/ etc/ Imp/ usr/ 

n I I I 
user3/

cat Is 

SECRET FILE SYSTEM 
/ 

bini usr/

I ~~--~1--~~ 
magic user1/ user21 user3/ 

~ ~ com~ute 
s1 da/ 

THE CORRESPONDING UNCLASS DIRECTORIES ARE: 

bin/ usr/ user1/ user2 user3/ da 

1. 2. 5 6 7 . 14 . 13 . 

1 .. 1 .. 1 .. 5 5 .. 5 .. 7 .• 

2 bini Scat 6 user1/ 10 11 12 fa 16 display 

3 etc' 91s 7 user2/ 11 d1/ 10 11 

41rnpl 14 user31 13 da/ 

5 usr/ 


THE CORRESPONDING SECRET DIRECTORIES ARE: 

bin/ usr/ user1/ user2/ user31 

1. 2 3 4 6 s . 

1 .. 1 1 3 3 3 .. 

2 bin/ 14maglc 4 user1/ 5 s1 7da/ 9 compute 

3 usr/ 6 user21 


s user31 

Figure 9 

File System After Directory /usr/user3 

Deleted by UNCLASS Process 


UNCLASS FILE SYSTEM 
/ 

bin/ etc/ Imp/ usr/ n I I 
user1/ user2/cat Is 

In I I 
11 d1/ 11 fa dr~------· 

display
SECRET FILE SYSTEM 

/ 

bin/ usr/ 

II~---rl--~, 
magic user1/ user2/ user3/ 

~ ~ colpute 
s1 da/ 

THE CORRESPONDING UNCLASS DIRECTORIES ARE: 

bin/ usr/ user1/ user2 da/ 

1. 2. 6 7 . 13 . 
1 .. 1 .. 5 5 .. 7 .• 
2 bin/ Scat user1/ 10 f1 12 fa 16 display 

3 etc/ 918 user2/ 11 d1/ 10 11 

4 1mpl 13 da/ 

5 usr/ 


THE CORRESPONDING SECRET DIRECTORIES ARE: 

bin/ usr/ user1/ user21 user31 

1. 2 3 4 6 . s . 
1 .. 1 1 3 3 3 .. 
2 bini 14 magic 4 user1/ 5 sa 7dal 9 compute
3 usr/ 6 user2/ 

s user31 

Figure 10 

The file system inode table is broken out into 
two parts: non critical components, such as time 
modified, and critical components, such as 
object UIDs. The non critical components con­
sist of fields that can be updated by the 
LOCK/ix kernel and that would not cause any 
security problems if they were updated 
incorrectly. The critical components will be in 
an object type that can be read by, but not 
written by, the LOCK/ix kernel. The file system 
server subject will run in a domain that is dif­
ferent than that of the LOCK/ix kernel and user 
processes, and will have both read and write 
access to the critical inode table. 

The file system server will only perform file 
system update operations; it will not run 
processes. No malicious programs that could 
cause unexpected and undesirable consequences 
will be allowed to run in the file server 
domain. This particular instance shows how Type 
Enforcement can be used to support an integrity 
policy that will achieve the desired end result. 

5.0 Supporting set-user-ID Applications on 
LOCK/ix. 

One of the most critical factors that will ulti ­
mately decide user acceptance of a secure Unix 
system is whether or not the system will support 
set-user-id/set-group-id applications. Our work 
to date in developing the model for LOCK/ix has 
not specifically addressed this issue. However, 
we have investigated several potential models 
and identified one that appears to be very 
promising from both an implementation and secu­
rity point of view. We call this the new sub­
ject model. 

To support this model, the Unix kernel will need 
to be modified to support the creation and start 
up of a new subject that will contain a set ­
user-id or set-group-id application. For sim­
plicity, we will discuss this process in terms 
of set-user-id applications only. Set-group-id 
applications would be handled in the same 
manner. 

5.1 Create New Subject 

When the Unix kernel encounters an exec() system 
call, it determines if the new program 1s a 
set-user-id application. If it is, it makes 
sure that the new process will inherit the 
parent's environment which includes things such 
as open files. In LOCK/ix, the same actions 
would be required. However, the method by which 
the new process inherits this environment is 
somewhat different than is done in Unix. 

When a new subject in LOCK is created, it 
receives what is called a new subject parameter 
object. This parameter object contains all the 
information that the new subject will need to 
execute in its environment. The format and con­
tents of the parameter object will vary, depend­
ing upon the application. 

When a new subject is to be created in response 
to an exec() request, the LOCK/ix kernel will 
create and initialize a new subject parameter 
object for the new subject. It will place the 
following information in the parameter object: 

• The UID of the se~-user-id application. 

• The UIDs of the parent's open files. 

• The UID and process-id of the parent process. 
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• 	 Environment of the parent process (level, 
domain, etc.) 

• 	 The UID of a signal channel of the parent 
process. 

This information will provide the new subject 
with everything it needs to inherit the parents 
attributes, and establish the necessary communi­
cation with the parent. 

The LOCK/ix kernel will then ask the TCB create 
a new subject, specifying the UID of itself as 
the object module to be executed, and the owner 
UID of the set-user-id application as the user 
on whose behalf the new subject is to execute. 
This will have the desired effect (from a Unix 
point of view) of allowing the user of the set­
user-id application to inherit the discretionary 
access rights of the owner of the set-user-id 
application. 

5.2 Start Up of the New Subject 

When the LOCK TCB allows the new subject to exe­
cute, it will begin execution in the LOCK/ix 
kernel. After the the LOCK/ix kernel has 
created and initialized its data structures, it 
will open the new subject parameter object. 
Upon opening the object that contains the set­
user-id application, the LOCK/ix kernel will 
discover that it is a set-user-id application 
and know additional processing is required to 
start the new process. The following processing 
will occurr: 

• 	 Open the text, data, and stack objects for 
the new process. 

• 	 Open the files of the parent process. 

• 	 Retrieve the UID and process-id of the parent 
process. 

• 	 Retrieve the environment data of the parent. 

• 	 Establish a signal channel with the parent. 

These operations are essentially what is 
currently done in Unix. The method is dif­
ferent, but the effect is the same. 

As stated earlier, our current model of LOCK/ix 
does not support this model. To support it, 
there are two primary requirements that are 
placed on the kernel: 

• 	 The kernel must modified so it knows that it 
must read the environment information out of 
the new parameter object when starting a 
set-user-id application. 

e· 	 The Unix signalling mechanism must be 
enhanced to allow inter-processing signalling 
between processes contained within different 
subjects. 

The first requirement is fairly straight-forward 
to implement. The things that must be done to 
start a set-user-id application in LOCK/ix are 
not much -different than what is currently done 
in standard Unix. 

The later is a somewhat more difficult feature 
to implement The difficulty in implementation is 
not really how to do it, but how to do it in a 
manner that is compatible (or invisible) at the 
programmer interface to the kernel. 

Overall, the model appears to be promising and 
will be investigated further in the future. 

6.0 Current Status 

The results of our study were encouraging. We 
were surprised to find how much of the Unix ker­
nel code can be retained and unmodified. 

A continuation of the design began in April 
1988. The initial implementation of LOCK/ix 
will be completed by April 1989. This version 
of the system will essentially be a port of Unix 
to LOCK. 

Upon completion of the initial implementation, 

we will enter an enhancements phase. During 
this phase we will work on extending the func­
tionality to incorporate such things as support 
for set-user-id/set-group-id applications. We 
will also be extending the standard Unix inter­
face to incorporate some of the functionality 
provided by the LOCK TCB, such as ACLs. The 
enhancements should be completed by July 1990. 
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Introduction 

The Department of Defense Trusted Computer System Evaluation Criteria 
(TCSEC)[4] was published in 1983 to establish a uniform DoD policy for 
acquisition of trusted, commercially available, automatic data processing 
systems. The agency that originally produced the TCSEC is now called the 
National Computer Security Center (NCSC). It was established to assist all 
sectors of the Federal government in acquiring such systems by evaluating 
prospective trusted systems with respect to the Criteria in the current 
version of the TCSEC, which was revised and re-published as 
DOD 5200.28-STD [5]. 

Since the publication of the TCSEC, the NCSC has performed two major 
tasks relative to evaluation of trusted computer systems. It has evaluated a 
number of commercially available operating systems and added entries 
describing these systems to the Evaluated Products List (EPL). It has also 
published interpretations and guidelines intended to assist its evaluation 
staff, the vendors of trusted systems, and prospective trusted system users. 
An example of a guideline to assist the vendor is A Guide to Understanding 
Audit in Trusted Systems [3]. An example of a guideline intended to assist 
the user is Guidance for Applying the DoD Trusted Computer System 
Evaluation Criteria in Specific Environments [2]. 
The formal interpretation process has resulted in publication of explanatory 
material about individual requirements in the TCSEC. The most common 
type of interpretation is that published to answer a question concerning how 
the evaluation staff of the NCSC intended to apply the TCSEC to a 
particular technical implementation. Unlike guidelines, which are a general 
explanation of the TCSEC requirements for a specific audience, an 
interpretation is an authoritative clarification to the TCSEC, and has the 
same authority as a TCSEC requirement. By making an interpretation 

formal the NCSC evaluation teams can apply the TCSEC criteria in the 
same V:,ay when a similar implementation is encountered. By reading the 
interpretations, vendors are able to avoid designs that had previously caused 
problems during the evaluation process and to see acceptable 
implementations. As an outgrowth of the interpretation process, and as a 
result of vendor requests to evaluate products that do not exactly fit the 
mold of a "trusted, commercially available, automatic data processing 
system" the NCSC has published the Trusted Network Interpretation (TNI) 
[6] and has proposed the publication of "Comput~r Sec~rit~ ~,ubsystem 

Interpretation of DoD Trusted Computer EvaluatiOn Cntena [1]. 


1.1 Purpose 
The purpose of this paper is to provide guidance to those who must certify 

that a proposed computer system may be used to process sensitive 
information. In the military realm, this is a Designated Approving 
Authority; in the civil and commercial realm there are equivalent entities 
who must assure proper separation of data from system users. Such 
separation is required by law or best business practice. Similar guidance is 
given for the Department of Defense in [2], which p~ovi?es gui~ance to DoD 
personnel concerning which level of TCSEC protect10~ IS reqmred. f?r 
particular mixtures of authorized users and DoD classified or sensitive data. 
This guidance is specific to entire trusted computer systems, and does not 
address the topic of trusted subsystems running on otherwise untrusted 
computer systems. This paper will provide guidance to any user who plans 
to use such trusted subsystems by pointing out how sensitive each such 
subsystem is to other parts of the computer system in which it is installed. 
When such a dependency can be met with an appropriate evaluated 
subsystem, then it will be recommended that the dependent evaluated 
subsystem, and the evaluated subsystem on which it depends, both be 
installed. 

It is not the purpose of this paper to provide a guideline on the use of 
unevaluated computer systems to process classified information. However, if 
no computer system on the Evaluated Products List will suffice to m.e~t 
procurement requirements, the recommendations here should help rmhtary, 
civil and commercial procurement personnel in choosing a viable subset of 
evaluated protection subsystems to install on their system. 

1.2 Organization 

In addition to the background material presented in this section, the paper 
contains three further sections. Section 2 provides definitions of the five 
types of subsystems that are mentioned in the proposed Subsystem 
Interpretation [1]. The possible subsystem security levels, corresponding to 
TCSEC levels, are given for each type of subsystem. 

Section 3 displays a dependency graph for each subsystem level. An 
explanation is given for each arrow of the graph. Finally, in subsection 3.4 a 
chart is used to show all recommended sets of evaluated subsystems that 
may occur for at least one level. For each recommended set, the most 
dependent subsystem within that set has all the subsystems it needs to 
depend on also included in the set. 

2 Subsystem Definitions 

Several trusted subsystems have already been added to the Evaluated 
Products List, and the expertise gained during those evaluations has been 
used to propose a general interpretation of the TCSEC to the task of 
evaluating subsystems. In particular, it has described which types of 
subsystems can have requirements within the TCSEC isolated to the extent 
that it is possible to evaluate them separately, and has determined what 
levels of trust from the TCSEC (C1 through A1) may be applied to each 
such subsystem. The evaluatable subsystems are: 

• Discretionary Access Control (DAC) 

• Mandatory Access Control (MAC) 

• Object Reuse 

• Identification and Authentication (I&A) 

• Audit 

2.1 Details of Subsystem Types 

In the following sections, each type of subsystem is briefly discussed, and 
allowable level of trust values given. The level of trust values are from the 
Subsystem Interpretation, and correspond to the equivalent levels of trust in 
the TCSEC; they are designated as subsystem levels of trust by preceding 
TCSEC levels with S-. For example, S-C2 in the Subsystem Interpretation 
corresponds to C2 in the TCSEC. 

Discretionary Access Control DAC provides user-specified access control. 
This control is established from security policies which define, given 
identified subjects and objects, the set of rules that are used for the system 
to determine whether a given subject can be permitted to gain access to a 
specific object. The type of access, such as read, write, append, is also 
determined by this set of rules. 

To be evaluated as an S-C1 feature, the DAC subsystem must provide 
mediation between objects and system users. For S-C2, the mediation must 
be done at the granularity of a single user, and objects must, as the default 
case, be protected from the time of their creation. 

Mandatory Access Control MAC provides access control for classified or 
other specifically categorized sensitive information. This control is 
established from security policies which define rules for controlling and 
limiting access based on identifying individuals who have been determined 
to have both the proper authorization and need-to-know for the 
information. A MAC subsystem may be evaluated only at the S-B1 level, 
corresponding to the lowest TCSEC level that has a MAC requirement. 

Object Reuse Object reuse subsystems clear storage objects to prevent 
subjects from scavenging data from storage objects which have previously 
been used. Object Reuse subsystems may be evaluated only at the S-C2 
level, corresponding to the lowest TCSEC level with this requirement. 

Identification and Authentication I&A subsystems provide the 
authenticated identification of a user seeking to gain access to the protected 
system. The most typical I&A system consists of a data base of identifiers 
which are valid on the system, and of authentication data such as encrypted 
passwords. However, other types of pertinent physical or procedural data 
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may also be used in the authentication process. This type of subsystem 
provides fertile ground for innovative technological solutions to one of the 
main problems of secure computing. However, in order to meet the 
appropriate TCSEC requirement, the computer system itself must have 
access to at least some parts of the data base so that it can identify the 
valid users of the system. 

I&A subsystems may be evaluated at the S-C1 level, or at S-C2 if they 
provide granularity to the level of a single user. If the subsystem is able to 
determine the clearance and allowable authorization levels of the user, then 
the subsystem may be evaluated at the S-B1 level. 

Audit The audit subsystem helps achieve accountability for access to the 
system objects by authorized subjects through logging data from 
security-relevant events. This allows a system administrator to search for 
possible security breaches, or attempted penetrations, and to trace the 
breach to the responsible party. 

TCSEC levels of S-C2 and S-B1 are possible. The minimum level is S-C2 
since the audit log data must include the identity of the person for whom the 
security relevant event was attempted; S-B1 is possible if the authorization 
level of the individual and the security level of the object are both recorded. 
An additional requirement is that events be auditable based on the security 
level of the object. In the event that all events are logged, one must be able 
to generate reports that extract only events involving objects at the 

specified security. The final S-B1 requirement is that the system be able to 
audit attempts to override the printing of human readable output labels. 

2.2 Other Requirements 

In addition to requirements which describe specific features that each 
subsystem must have, the Subsystem Interpretation imposes additional 
assurance requirements and documentation requirements similar to those in 
the TCSEC. These requirements are in the areas of system architecture, 
system integrity, security testing, design specification and documentation, 
and test documentation. Furthermore, a description of how to use the 
subsystem in a secure manner must be included in the Security Features 
User's Guide and the Trusted Facility Manual that must accompany any 
evaluated subsystem. 

3 Interdependence of Subsystems 

Inspection of the various features and assurance requirements indicates 
that secure operation of certain of the evaluated subsystems depends on the 
proper working of other subsystems. The draft Subsystem Interpretation 
does not specify that the subsystem that is depended on must also have 
been evaluated under the Subsystem Interpretation of the TCSEC. However, 
it only seems logical to make such a recommendation. A typical example of 
the interdependence of evaluated subsystems occurs with the audit 
subsystem. This subsystem must be able to log the identity of a user who 
causes a security relevant event to occur, so an I&A subsystem is required; 
however, unless the I&A subsystem has been evaluated and found to meet 
the TCSEC criteria, it is possible that the I&A subsystem can be spoofed 
causing the audit system to record the wrong username in its log record. 

Also, since the TCSEC may impose an additional requirement at each 
increasing level for each requirement section, so the evaluated subsystems 
should only depend on other subsystems that have met their additional 
requirements. For example, an S-C2 audit subsystem should not depend on 
an S-C1 I&A subsystem since it is possible for I&A to be evaluated at S-C2. 

The intent of this paper is to provide recommendations as to which 
combinations of evaluated subsystems will assure that the most dependent 
subsystem in each combination is relying only on appropriately evaluated 
subsystems. This effort is made in the same spirit as the Guidance for 
Applying the TCSEC in Specific Environments [2]. In the sections that 
follow, for each criteria level a dependency tree will be derived showing 
which subsystems are dependent on which other subsystems. 

SUB a SUBb 
level levelH
1-------J .___:----' 

Figure 1: Sample Dependency Tree 

· This paper will derive a dependency graph for each subsystem level of trust. 
In such a tree, an arrow from a subsystem to another subsystem means that 
the first subsystem relies on the correct functioning of the second subsystem 
for its own correct functioning. All recommended combinations of 
subsystems may then be derived by listing for each subsystem in each graph 
all the subsystems in the subgraph for which it is the root. Thus, the 
notation example in figure 1 illustrates the notation that is used in this 
paper to show that subsystem SUBa depends for its correct working on 
subsystem SUBb also working correctly. So the two recommended 
combinations are {SUBb} and {SUBa, SUBb}. Note that {SUBa} is not 
recommended since it depends on an evaluated subsystem SUBb for its 
correct functioning. 

Exceptional cases may exist where all subsystems in a dependency sub graph 
are not to be evaluated. The official certifying a computer system for the 
processing of sensitive data must decide whether to follow the 
recommendations in this paper or to entrust the sensitive data to a partially 
secured system. This is always the case, since the EPL is only one input to 
the certification process. This paper is an attempt to provide guidance on 
the trustedness of systems that are secured only by the addition of 
evaluated subsystems. 

Before getting to the recommendations and their rationale, it is worth 
noting that an object reuse subsystem does not have any dependence on any 
other of the four types of subsystems described in the Subsystem 
Interpretation, and will not be discussed further. 

3.1 S-Cl Level 

At the S-Cl level, the following graph in Figure 2 can be derived. 

Figure 2: Dependency Graph at S-C1 

which yields the sets {I&A}, {DAC,I&A}. 

The DAC mechanism must decide whether an authorized user or user group 
may access a particular subject. The I&A mechanism at this level has 
granted the user access to the system and has at least identified that user as 
a member of a particular group. The DAC mechanism requires the 
knowledge of which group of users the particular user belongs to in order to 
make the access control decision. A non-evaluated l&A system might allow 
a user to login as another user, without authorization, or to masquerade as 
the member of any group and thus gain access to any object. 

3.2 S-C2 Level 

At the S-C2 level, the dependencies shown in Figure 3 can be derived: 

AUDIT 

S-C2 


Figure 3: Dependency Graph at S-C2 

which yields the sets {I&A}, {DAC,l&A}, {Audit,I&A}, and 
{Audit,DAC,I&A}. 

DAC depends on I&A for the same reasons as those previously discussed for 
S-C1, only more so since the l&A system must identify the subject down to 
the granularity of a single user. 

If there is a DAC subsystem present, Audit depends on it for two reasons. 
The first reason derives from the fact that most security relevant events at 
the C2 level are due to attempted access to objects by identified subjects. 
To depend on a non-evaluated DAC subsystem to report all such events 
accurately would mean that the audit system was not getting information 
that is accurate at the C2 level since the non-evaluated DAC subsystem may 
not fulfill all the TCSEC requirements. The second reason is the implicit 
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requirement to protect the audit log data with the best resources available 
to the computer system. If an S-C2 DAC system exists on the system, the 
audit log data should be stored in an object which is restricted by DAC to 
the appropriate access by a limited set of administrative personnel. 

Alternatively, the system could protect its audit logs in an appropriately 
configured Write Once Read Many (WORM). This could be used even if an 
evaluated DAC subsystem were present. Such devices already exist in the 
form of writable optical disks. The optical disks must be unloaded and 
processed on a separate audit machine. 

3.3 S-B1 Level 


At the S-B1 level, the dependency graph in Figure 4 can be derived: 


Figure 4: Dependency Graph at S-B1 

This yields the recommended sets {I&A}, {I&A,MAC}, {I&A,DAC,MAC}, 
{Audit,MAC,I&A}, and {Audit,DAC,MAC,I&A}. 

S-B1 MAC depends on S-B1 I&A to obtain the clearance and allowed range 
of authorization levels when the user logs in. S-C2 DAC depends on at least 
an S-C2 I&A system, but in an S-B1 system it would depend on an S-B1 
I&A because it is required for MAC and has already met all the S-C2 
requirements on the way to fulfilling the S-B1 requirements. 

If the S-C2 DAC subsystem is present, then it must depend on the MAC 
subsystem to provide the separation of subjects and objects according to 
authorization levels and need-to-know categories. Then the DAC subsystem 
provides discretionary access to objects within each level and category. 
Although the TCSEC [5] requires any B level or higher system to have both 
DAC and MAC, there is no requirement in the Subsystem Interpretation 

ohat both exist. A B 1 level system requires MAC to enforce the 
need-to-know and authorization requirement. The S-B1 I&A system is still 
needed by the Audit subsystem since it is required to record the 
authorization of a user when the Audit subsystem logs a security relevant 
event. Similarly, the S-B1 level audit system is required since it must record 
the label of any object and the authorization of any subject involved in any 
security relevant event. This is not a requirement at S-C2. 

The Audit subsystem must depend on MAC to protect the audit logs in a 
S-B1 system since the logs themselves may contain classified information, 
such as the names of categories. The most effective way to do this is to 
create a system high sensitivity level and a special category just for the 
audit logs. As with S-C2 DAC, the audit subsystem depends on the DAC 
subsystem, if present, and the MAC subsystem to truly report all security 
relevant events which a non-evaluated access control subsystem might not 
report correctly. It also needs the MAC system to truly report the 
sensitivity level of each object involved in a report of a security relevant 
event. The audit subsystem depends on an S-B1 I&A system to provide it 
the clearance and authorization level of each user which it needs to report in 
the audit log. 

3.4 Summary 

The information in the above dependency graphs can be summarized in 
Table 1, which appears without the levels of trust from the Subsystem 
Interpretation. The chart was compiled by aggregating all recommended 
sets of subsystems that appeared for each of the levels in the previous 
section. These are listed in the "Recommended Combinations" side of the 
chart. All other combinations of evaluated subsystems, whether they 
depend on an unevaluated subsystem or are some kind of standalone 
system, are not recommended for use in a trusted computer system to 
process sensitive data. Also, the Subsystem Interpretation warns that the 
subsystem rating is no guarantee that the system into which the evaluated 
subsystem is integrated then becomes equivalent to a similarly rated 
integrated system, such as the systems that are evaluated against the entire 
TCSEC. This paper points out that even evaluated subsystems may have 
their value in the security of an overall system overstated if they are allowed 
to rely on other unevaluated subsystems. 

Table 1: Possible Combinations of Evaluated Subsystems 

RECOMMENDED INOT RECOMMENDED I 
I&A DAC 
I&A, audit MAC 
I&A, DAC audit 
I&A, DAC, audit MAC, audit 
I&A, MAC DAC, audit 
I&A, DAC, MAC DAC, MAC 
I&A, MAC, audit DAC, MAC, audit 
I&A, DAC, MAC, audit 
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ABSTRACT 

This paper will present three classes of authentication mechanisms in use 
today. In addition, it will also show the need to change the Trusted 
Computer System Evaluation Criteria (TCSEC) at its upper levels such that 
new means of authentication will be encouraged in the next generation of 
products evaluated by the National Computer Security Center. 

HISTORY 

Background 

On January 2, 1981, the Director of 
the National Security Agency was 
~ssigne~ the responsibility for 
1ncreas1ng the use of trusted 
computer security products within 
the Department of Defense. As a 
result, the DoD Computer Security 
Center was established at the 
National Security Agency. Its 
official charter is contained in DoD 
Directive 5215.1. The Center became 
known as the National Computer 
Security Center (NCSC) in August 
1985. 

The primary goal of the NCSC is to 
encourage the widespread 
availability of trusted computer 
systems; that is, systems that 
employ sufficient hardware and 
software integrity measures for use 
in the simultaneous processing of a 
range of sensitive or classified 
information. Such encouragement is 
brought about by evaluating the 
technical protection capabilities of 
industry- and government-developed 
systems, advising system developers 
and managers of their systems' 
suitability for use in processing 
sensitive information, and assisting 
in the incorporation of computer 
security requirements in the systems 
acquisition process. 

The NCSC Computer Security Sub­
System Evaluation Program 

While the NCSC devotes much of its 
resources to encouraging the 
production and use of large-scale,
multi.:.purpose trusted computer 
systems, there is a recognized need 

for guidance on, and evaluation of, 
computer security products that do 
not meet all of the feature, 
architecture, or assurance 
requirements of any one security 
class or level of the TCSEC. The 
NCSC has, therefore, established a 
Computer Security Sub-system 
Evaluation Program. 

The goal of the NCSC's Computer 
Security Sub-system Evaluation 
Program is to provide computer 
installation managers with 
information on sub-systems that 
would be helpful in providing 
immediate computer security 
improvements to existing 
installations. 

Sub-systems considered in the 
program are special-purpose 
products that can be added to 
existing computer systems to 
increase some aspect of security 
and have the potential of meeting 
the needs of both civilian and 
government departments and 
agencies. For the most part, the 
scope of a computer security 
sub-system evaluation is limited to 
consideration of the sub-system 
itself, and does not address or 
attempt to rate the overall 
security of the processing 
environment. To promote 
consistency in evaluations an 
attempt is made, where appropriate, 
to assess a sub-system~s 
security-relevant performance 1n 
light of applicable standards and 
features outlined in the TCSEC. 
Additionally, the evaluation team 
reviews the vendor's claims and 
documentation for obvious flaws 
which would violate the product's 
security features, and verifies, 
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through functional testing, that the 
product performs as advertised. 
Upon completion, a summary of the 
evaluation report is placed on the 
Evaluated Products List; 

Many of the sub-systems evaluated in 
this program have been 
Identification and Authentication 
sub-systems. These systems, 
although deemed useful, do not tend 
to be incorporated in larger TCSEC 
evaluated systems because they would 
constitute a change to the Trusted 
Computing Base (TCB) . Such a change 
to any evaluated system renders the 
rating assigned void. Although the 
weakest Identification and 
Authentication mechanism, a password 
mechanism is currently acceptable 
for all levels of the TCSEC. 
Because of this and the added cost 
of incorporating another type of I&A 
mechanism, vendors currently in or 
considering evaluation by the NCSC 
for a TCSEC rating have chosen not 
to incorporate other I&A mechanisms. 

INTRODUCTION 

The Department of Defense Trusted 
Computer System EValuation Criteria 
is built around three basic control 
objectives, the security policy, 
accountability, and assurance [1]. 
Much emphasis is placed on better 
meeting the security policy and 
assurance objectives, while 
accountability is often taken for 
granted. In fact, the requirements 
stated in the TCSEC are more 
centered around security policy 
(Mandatory and Discretionary Access 
Controls) and assurance 
(Documentation and Verification) 
than accountability (Identification, 
Authentication, and Audit). New 
technologies are being developed 
which will better meet this 
requirement and the computer 
security community needs to take a 
look at them, encouraging their use 
where appropriate. 

Briefly, Identification and 
Authentication (I&A) is the process 
by which users log onto a computer 
system. The identification step 
simply identifies who the user is, 
by account name. Authentication is 
the step which proves that the user 
(person) is indeed the owner of that 
account. As these are so closely 
associated, usually they're 
considered as the same thing. In 
reality, identification is easily 
implemented while authentication 
needs more consideration. 

The importance of this issue can be 
demonstrated by citing the 

Department of Defense Trusted 
Computer System Evaluation 
Criteria's Control Objectives [1]: 

Identification is 
functionally dependent on 
authentication. Without 
authentication, user 
identification has no 
credibility. Without a 
credible identity, neither 
mandatory nor discretionary 
security policies can be 
properly invoked because 
there is no assurance that 
proper authorizations can be 
made. 

The conclusion from the above 
paragraph is that the credibility 
of any security policy is directly 
dependent on the credibility of the 
authentication mechanism backing 
it. 

The strength of an I&A mechanism 
can be measured in terms of the 
certainty that the person 
requesting access is indeed who he 
claims to be. Quantifying this 
certainty is difficult, however, a 
feel for the relative strength can 
be gained. For example, if the 
authentication of a user could be 
duplicated by any user, the 
mechanism would have certainty of 
O%. While a method which would 
distinguish between every possible 
person in the world would have a 
certainty of 100%. Since the 
latter does not exist, something 
which closely approximates it is 
the most desirable mechanism. 

There are several areas which have 
been recognized as legitimate tests 
of user uniqueness. These are 
things that the user knows, things 
which the user has, and things that 
the user is. While there is no 
quantitative way to measure the 
certainty of any of these, the 
strengths and weaknesses of each 
area can be examined and compared 
to each other. 

THINGS YOU KNOW 

overview 

The objects which are categorized 
as being "things you know" includes 
passwords and all password like 
mechanisms (such as pass-phrases). 
A password is known by the user and 
only the user. Virtually anyone 
who has ever used a computer system 
is familiar with the concept of 
passwords as being special words 
which must be entered before access 
to the computer is allowed. 
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II 

Passwords work on principle of 
being a secret between the computer 
and the user. The computer can 
only be sure of the user's identity 
if they know the same secret. The 
better this secret is kept, the 
better the password scheme. 

strengths 

The strength of a password scheme is 
very dependent on its 
implementation. Passwords become 
stronger as difficulty in forging 
them increases. The Department of 
Defense Password Management 
Guideline (CSC-STD-002-85) [2] 
provides specific guidance on how to 
make a strong password system. 

Passwords guessing should be like 
hitting a moving target. Good 
schemes allow the users to change 
their passwords and require it be 
done on a regular basis. 

Machine generated passwords are also 
important. This reduces the biases 
(such as the user's first or last 
name, wife'sjhusband's name, pet's 
name, ad infinitum) which are 
present in user chosen passwords, 
resulting in a much better mix. 
This results in a much larger set of 
targets which must be examined. 

Weaknesses 

The strengthening of passwords on 
any system tends to have 
consequences which at the same time 
weakens some of the basic principles 
of passwords. 

Making passwords more difficult to 
guess also makes them harder to 
remember. This increases the chance 
that a less than cautious or well 
informed user will write them down. 
In a large computing environment 
this becomes very likely. Also, 
this is likely to happen if the user 
is only logged onto a system 
occasionally. 

If passwords are difficult to 
remember, as machine generated 
passwords can be, they tend to get 
changed less often by the users. 
Users are just not willing to learn 
a new jumble of letters every few 
days. This causes the target to 
move less frequently. If the system 
has a password expiration 
capability, a system security 
administrator is be able to force 
users to change their passwords more 
frequently, but this increases the 
likelihood that the passwords will 
be written. 

Passwords on a network make for 
interesting security problems.­
Imagine a user who has accounts on 
30 nodes of a network. If able to 
choose his own password, the user 
will most likely use the same 
password on each node for ease of 
use. If this is the case, hacking 
the password on one node 
compromises each node the user has 
access to. On the other hand, if 
password generation in enforced on 
each node of the network, it is 
likely that the user will have 
scripts containing the node and 
password because it is simply too 
difficult to remember 30 
"pronounceable" passwords. 

The most serious weakness is that 
compromise of passwords is not 
usually detected until well after 
any damage has taken place. Even 
when users regularly check the time 
that they last logged in, it may be 
several days between sessions by 
the legitimate user of the system. 
This is more than enough time for 
the damage to be done. 

There are a number of other similar 
methods which have been thought up 
which are inherently weak. Instead 
of passwords, users are asked a 
series of questions about their 
background, typically their 
mother's maiden name, first car, or 
their pet's name. These methods 
fail basic password philosophies in 
that while this information is not 
common knowledge, it is far from 
being secret. 

THINGS YOU HAVE 

Overview 

Those things that fall under the 
category ''Things You Have" can be 
thought of as identifiers similar 
to badges worn for entrance to 
buildings. Ownership of the badge 
authenticates that person as 
belonging to a particular company 
or holding a particular position. 

Likewise, things that fall under 
this category are physical devices 
that provide authentication via 
possession of the device. such 
devices include, but are not 
limited to: smart cards, tokens, 
data keys, encryption/decryption 
keys, magnetic strip cards, 
calculator-type devices, random 
number generators, laser cards, 
code decryptors, and the ·1 ike. 
These devices are normally 
incorporated into systems through 
the use of special dedicated 
hardware and software. They can 
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include front-end or back-end 
processors, vendor-written machine 
specific software, and 
buyer-written machine specific 
software. Depending on the amount 
of storage available, these devices 
may also contain audit data, 
biographic data, and account 
balances. 

Most devices in this category also 
incorporate mechanisms that fall 
under the other two categories 
covered in this paper. Take, for 
example, a money machine card. 
Although one needs this card to 
access the machine, one must also 
know the Personal Identification 
Number associated with that card in 
order to conduct business at any 
automatic teller machine. This 
example incorporates a mechanism 
from the "Things You Know" category. 
Likewise, with a credit card, one 
must physically posses the card to 
be able to transact business, but 
one must also be able to forge the 
signature on the card. This example 
incorporates a mechanism from the 
"Things You Are" category. 

To use a specific example of such a 
device, Sytek's PFX A2000 [6] has 
been chosen. This device has been 
evaluated by the National Computer 
Security Center Sub-system 
evaluation program. The PFX A2000 
system contains a back-end processor 
that interacts with the host machine 
through the use of buyer-written 
machine specific software. From the 
users perspective, a typical login 
scenario would be the following. 
The user begins by entering his 
login identifier to the host system. 
The host system passes this 
information to the back-end 
processor which returns a 
challenge/response combination. The 
host displays the challenge 
information on the user's terminal 
and prompts the user for a response. 
The user enters his PIN into a 
calculator-type device, followed by 
the challenge displayed on the 
terminal screen. The calculator 
processes this number to produce the 
correct response which the user then 
enters to the host machine, thus 
granting him access. 

strengths 

Manufacturers have been placing a 
great deal of emphasis on the 
usefulness of "Things You Have" in 
the areas of Identification and 
Authentication. Since they are 
portable devices, they can be 
carried by the user and used to 
replace or enhance password systems 
which are commonly used today. Data 

about the holder can be stored on 
the device such that either the 
device passes data to the host 
system to be used in querying the 
user or the device queries the 
user. Vendors state that it is 
nearly impossible for a person, 
after acquiring another's device, 
to unlock the memory stored there. 
This is mainly due to the use of 
Personal Identification Numbers to 
authenticate the user to the device 
and custom built chips which 
require the destruction of the chip 
to glean any useful information. 

Another advantage to having a 
device for an authentication 
mechanism is that it is easy to 
determine when a compromise may 
have occurred. A user may only 
logon to the system if he possesses 
the device. The loss of the device 
would certainly signal that 
compromise may have occurred. 

If each system in a network uses 
the same type of device for 
authentication, a user would only 
need the one device to access each 
node of the network. Thus, a user 
would not be required to remember a 
different password for each node or 
use the same password for each 
node. A device that changes with 
each login attempt, such as a 
random number generator or 
challenge/response device, 
strengthens the scheme even more. 

Weaknesses 

All things categorized under 
"Things You Have" have the same 
basic weakness due to their main 
strength: they are physical devices 
and are thus subject to physical 
protection issues. Possession of a 
card implies that the user is who 
he says he is. The host system, in 
effect, is authorizing the device 
rather than the user. 

Although a device is useless as an 
authenticator without the proper 
identifier, many of the devices now 
marketed have the associated 
identifier embossed on them. They 
also tend to be carried with other 
personal possessions, such as in a 
wallet, where the identifier can 
often be quickly surmised. 

With the proper technology, these 
devices can be easily forged. For 
example, if the device is simply a 
smart card with a number contained 
on it, anyone that can write to a 
similar smart card can gain access 
to the system. Depending on the 
level of technology involved, this 
may be a trivial task, thus 
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providing no authentication 
assurance whatsoever. 

Lastly, although these devices are 
less expensive than their biometric 
counterparts, they tend to be more 
expensive than the development of 
password mechanisms and are 
therefore not very cost effective 
in the development of general 
purpose machines. 

THINGS YOU ARE 

Overview 

In recent years a new type of 
authentication mechanism that works 
based on some characteristic of a 
user has appeared in the 
marketplace. Devices which use 
this type of authentication 
mechanism are known as biometric 
devices. Biometric devices work by 
attempting to match some unique 
characteristic of a user with a 
known version of the 
characteristic. Common 
characteristics currently being 
used include fingerprints, eye 
retina patterns, voice 
characteristics, and signatures. 
For biometric devices to work as an 
effective authentication mechanism 
in an ADP environment, the known 
version of the characteristic must 
be protected from modification by 
users of the system. This requires 
that the known version be treated as 
an object that is protected by the 
TCB. 

One example of a biometric device is 
the IDX-50 from Identix 
Incorporated. The IDX-50 has been 
evaluated by the NCSC sub-system 
evaluation program [3]. The IDX-50 
provides authentication data to a 
host based on a comparison between a 
user's fingerprint and a pattern 
(representing the user's 
fingerprint) stored on a smart card. 
The result of the comparison made 
(either confirmed or denied) is sent 
to the host system. 

strengths 

Unlike other authentication 
mechanisms, biometrics makes it 
almost impossible for a user to pass 
his means of authentication to 
another user. For example, a user 
can tell someone his password or 
give someone his smart card, but 
giving someone his fingerprint in a 
form that will be accepted is 
extremely difficult. By linking a 
characteristic of the u'ser to the 
authentication process, biometrics 
eliminates the possibility that the 

user's means of authenticating 
himself to the system is easily 
obtained by another user. 

One of the most important features 
of an authentication mechanism is 
how difficult it is to spoof. 
Biometric authenticators are 
extremely difficult to spoof 
because of the complexity that most 
biological characteristics have. 

Weaknesses 

Biometric devices use some unique 
characteristic of a user as an 
authentication data point. 
Unfortunately, it is impossible for 
the user to present the 
characteristic in the exact same 
form as the known version. For 
example, a finger may have more oil 
on it on a particular day than that 
which was on it at the time the 
known version was obtained. This 
could cause the newly scanned image 
to vary slightly. To account for 
the variations it is necessary to 
allow some tolerance when comparing 
the authentication data point to 
the known version. The larger the 
tolerance, the greater the 
likelihood that bad data will be 
accepted (Type I errors). In 
contrast, the smaller the 
tolerance, the greater the chance 
that good data will not be 
accepted {Type II errors). 

There is a yet unexplored ethical 
side to biometrics concerning user 
acceptance. Cats and other animals 
can mark and identify territories 
by urine traces around the 
perimeter. Suppose someone devises 
a method of performing foolproof 
authentication via a device that 
performs instant urinalysis. Each 
terminal could be equipped with one 
of these devices and a sign 
reading: "For login, please deposit 
sample here." Likewise, a device 
able to perform a spectrographic 
analysis where the user must supply 
his own blood sample would probably 
have a fairly serious user 
acceptance problems [9] . Case 
studies of users concerning 
fingerprint readers and retinal eye 
scanners have shown that users are 
greatly reluctant to use these 
devices. Very few people are 
willing to place their finger in a 
hole in the side of their terminal 
as an authentication mechanism for 
fear of bodily harm. Many people 
are also reluctant to have their 
fingerprintjeyeprint stored on 
line. 

Although the cost of biometric 
devices has been steadily 
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decreasing, they are still the most 
costly of the authentication 
mechanisms available. The unit 
price of these products can vary 
from about $3500 to $10000 [8]. 
Prices of this nature make them too 
costly for many general purpose 
applications. 

CONCLUSIONS 

The TCSEC requires that the TCB 
obtain some data that will 
authenticate a user before granting 
access to system resources. 
Authentication data falls into 
three general categories: 

1) Something the user knows. 

2) Something the user. has. 

3) Something the user is. 

"Something the user knows" is some 
piece of knowledge which a user 
must memorize and present to the 
TCB at authentication time. A 
password is an example of this type 
of authentication data. "Something 
the user has" is a physical device 
which a user must present to the 
TCB at authentication time. A 
smart card is an example of this 
type of authentication data. 
"Something the user is" is a 
characteristic that a user must 
present to the TCB at authentication 
time. A fingerprint is an example 
of this type of authentication data. 

The TCSEC does not require that more 
than one type of authentication data 
be presented to the TCB. In fact, 
all computer systems that have been 
evaluated by the NCSC at this time 
have used password based mechanisms 
(i.e. mechanisms based on 
"something the user knows"). If an 
evaluated product were to change its 
authentication mechanism such that 
two or more pieces of authentication 
data were required before granting 
access to system resources (thereby 
strengthening the mechanism) the 
rating would be invalidated due to a 
change of the TCB. 

As has been shown, each type of 
authentication data discussed in 
this paper has some weaknesses 
however, these weaknesses seldom 
overlap. Therefore, a combination 
of these mechanisms would most 
likely be a stronger authentication 
mechanism. One mechanisms strengths 
could compensate for another 
mechanisms weaknesses. Since the 
TCSEC defines what is minimally 
acceptable at a given level of 
trust, it should be modified at its 

upper levels to require that 
developers of trusted ADP systems 
require at least two types of 
authentication data 
(HavejKnowjAre) before gaining 
access to system resources. 
current technology has created 
other mechanisms, that can be used 
to strengthen authentication than 
were readily available at the time 
the TCSEC was written. The NCSC 
should encourage the use of these 
mechanisms. 
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Most people who attend conferences are 
immersed for a certain length of time i~ a subject
they are interested in. They share ideas, develop 
new ones, improve their people networks, and 
occasionally have a good time besides. When 
they go back to work they will be "pumped" and 
some, especially those who are relative new­
comers to the business, will be ready to help out 
all their office companions by giving them new­
found wisdom and maybe even "changing a few 
things" to make them work better. They are 
frequently discouraged and somewhat 
disappointed by the responses they will most 
often get. People are not ready to respond and 
may even be downright negative. Having a 
conference about security will not make this any
easier for two reasons. First, security is not 
one of the favorite topics of most office 
personnel, unless they happen to work in the 
business all the t:lme. Second, changing
people's attitudes towards a subject doesn't 
happen quickly; it happens a little bit at a 
time, over a long period of time [1]. This is 
what makes security so interesting and so 
difficult. 

What security awareness does is sell 
security procedures and performance consistent 
with those procedures. In the computer 
environment, security means restraint on an 
activity that is far more efficient unrestrained, 
so some people are not just going to refuse to buy
it, but will challenge the right to sell it at all. A 
small minority of people will actively fight a 
security program; a small minority will actively 
support it [2]; the rest of the population is the 
principle target audience for a security awareness 
program. 

Program Changes Attitudes Towards Security 

What a security awareness program does is 
change people's attitudes towards security 
procedures and policy. The selling aspect of 
advertising recognizes much of what a security 
person needs to know about attitude change. 

While there is a large body of research 
surrounding the activity and an equally large 
amount of money being spent on it, its success is 
seldom measured in terms of days or weeks and is 
far from guaranteed. The best minds in the 
business fail as often, sometimes more often, 
than they succeed. Few people in security 
education like to admit it, but they don't do 
much better. One obvious problem they have is a 
measure of success to check performance against.
Unlike advertising where there is a market 
feedback for the successful, security seems to 
have no such product to measure. 

The measure of success is how many people
follow the procedures they are trained to follow. 
Knowing how many don't is a matter of auditing
and testing of the system, something that 
reinforces whatever education and training 
preceded it. It is always best to train first, test 
second, or there is little way to measure the 
success of the training. To get performance one 
must train to a standard and measure the 
performance. Some people honestly believe that 
education alone will result in action, when they
should realize that it won't. If advertising 
campaigns worked with the same logic, the goal
would be to get the audience to know a trade 
name, but not really care if anyone bought the 
product. To be effective, they have to do both. 

Awareness is not easy, but it is easier than 
getting performance. To be effective it must 
follow principles of organizational and 
interpersonal communication. The first is that 
people don't always get messages that are 
directed to them [3]. As a trainer, I have 
occasionally been reminded of this when students 
ask questions about subjects that have just been 
covered in class. It shouldn't be surprising.
Nobody ever sold anything without overcoming
this problem. 

People are "tuned;' to different types of 
media to get the majority of their information 
from particular types; some are print oriented; 
some are video oriented; some may be oriented to 
things they listen to [4]. In order to sell products,
advertisers use a variety of media over a length of 
time so that sometimes it seems, unless a person
is near death, they will get the message. Still, 
they don't always get it or perform by buying the 
product. 

In order to assure a person gets the message
advertising has to be memorable -- good or bad ' 
Mediocre is death. We are so bombarded by · 
media that we don't have time for average 
commercials and the same goes for security.
Many active programs fail because they are 
neither good nor bad. Bad is not recommended 
but it is more memorable than mediocre. Overill, 
messages have to appear in a variety of media 
over an extended period of time and most of 
those have to be good, i.e. interesting enough to 
be seen, read, or heard. Usually this also means 
short. 

An audience has an attention span of about 
20 minutes, a long time when compared to a 
reader of print [5], yet we have many people who 
think it is a great idea to get everyone together 
and do all the security training at once. A mid­
western contractor used to do this once a year for 
5 hours, meeting every required security briefing 
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for all of its employees; it looks good on paper 
and is well documented, but it doesn't work. In 
the same way, some people write long articles for 
house organs or publications and believe these 
are read by large numbers of people. Long 
articles about security are only read by security 
people, and not very many of those. Some people 
make monumental, epic films which are 
occasionally viewed by somebody, but not often 
remembered by very many. Steven Spielberg 
makes memorable films, but if everyone could do 
this, they wouldn't pay him nearly as well for 
what he does. 

Posters are the best illustration of a print 
media that gives a short message. Posters are for 
people who haven't the time to read very much 
about security. A popular misconception is that 
this means people who are undereducated or low 
~n intelligence. Along the mahogany rows are 
JUSt as many people who are overwhelmed by the 
am~unt of text coming across their desks. They
don tread well either, when it come to security. 

In order to be noticed posters, like 
advertising, have to be good or bad. The federal 
government has frequently made a series of 
mediocre posters which are not memorable. 
Lockheed Space and Missile Co. in Sunnyvale, CA 
has made many of the best : A teddy bear with 
badge around its neck and the inscription ''We 
can't bear it, if you don't wear it"; three otters 
standing side by side, with the inscription ''You 
otter not talk classified when you"re out with the 
gang''; and a series of cave dwelling comic 
characters representing computer security items 
of concern and containing the telephone number 
of the computer security office. They are done by 
commercial artists and well thought out. They 
have to lock these up or they are regularly stolen 
by employees and visitors. 

Crude drawings can be just as effective. A 
quick (and cheap) source of these is a local grade 
school. Children are perceptive and 
uncomplicated in the way they express their 
ideas, though not always artistic. The art 
sometimes falls into the "bad" category of 
advertising, but is frequently memorable. It also 
helps, as I saw Sheraton Hotels do once, to put 
the originators name on the bottom along with a 
ribbon. Everyone had a red or blue ribbon with 
absolutely no legend to explain what these meant. 
Parents intently looked at them, at least until 
they found the one they were looking for, but 
they get the message represented. 

There are many media to choose from and 
not enough activities make use of all of them. 
Audio tape, in the land of the Walkman, could be 
an effective media for foreign travel or special 
access briefings, changes in operating procedures 
and certain training where the user has the 
equipment in front of them. Video cameras make 
it possible for anyone to demonstrate how to do 
various tasks, including something as simple as 
logon procedures. Interactive video does this 
better, but it is much more expensive to develop. 
Off-line computer aided training can be done in 
house relatively inexpensively. Various forms of 
print from job aids to comic books will work. The 
trick is to not try to do everything with any 
single media. Break it up into small pieces and 
use several forms to get the message across. 
Don't be afraid to repeat points from one aspect 
to another. 

Honing a Message to Present 

Perhaps a harder task than selecting a 
medium is selecting the message to be put across. 
The government makes this somewhat easier by 
having certain required subjects that have to be 
covered. DODSI deals with the protection of 
classified information, both in and out of 
computers, but the guidance is applicable to any 
environment where information is to be 
protected. · 

Everyone in government, and in industry 
where classified work is done, has to have an 
initial security briefing outlining: 

1) 	The importance of the 

information 


2) 	The obligation of every person 
to protect it 

3) 	Procedures which govern the 

protection 


4) 	Reporting requirements for certain 
status changes (e.g. foreign travel, 
establishing relationships with 
persons from designated countries, 
bankruptcy and the like) 

5) 	Laws and statutes governing 

espionage 


Initial briefings should be short because a 
new employee is not very receptive to much of 
anything except their boss and payroll 
procedures. The acknowledgment of the briefing 
can, however, be very important, particularly 
where there are obligations for protecting trade 
secrets, process patents, and other proprietary 
information. Borland and Microsoft recently went 
to court over a similar business. The point here 
is that the employee know that some types of 
information will be safeguarded and there are 
procedures to tell them how this is to be done. 
Of course, there has to be a corporate policy and 
procedures or this type of briefing will be 
ceremonial. 

Actual briefings on procedures should 
be in work centers. Rarely are these done, or 
done well when they are. Work center briefings 
are more current and credible than any other an 
employees will receive. They will actually use 
this information often and should be geared to 
training i.e. performance. It has to be more than 
"Here is your password." Work center briefings in 
classified information settings cover very 
generally these types of things: 

1. 	Where classified is stored and how 
access is to be gained to it 

2. 	How it is made available to the 
employee 

3. 	How it is to be protected while in 
use 

4. 	What unauthorized acts are 

reportable 


5. 	What actions to take if an 
unauthorized act is observed 
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6. 	Machine specific (AIS) procedures 
are to be followed: 

a. upgrading a system to process 
b. in use controls of media, 

hardcopy, and visuals 
c. marking output products 
d. when to downgrade or declassify 

a system 
e. audit trail records activity 
f. emergency procedures 

7. 	Internallabeling 

8. 	How access is governed during 
processing 

9. 	Who is to be escorted and escort 
responsibilities 

The media used to present these ideas 
should vary depending upon the length. Some of 
these can be done with CAE since computers can 
best duplicate the environment the employee will 
operate in. Others can be written and used when 
the task has to be performed. Unfortunately this 
is not always any better than some software 
documentation and has to be done as well as the 
best of it. Some of it is a one-on-one supervisors 
briefing, and some can be written summaries of 
laws and regulations, covering computers in the 
work place. A combination is more effective than 
a single medium. 

The government also requires security 
deficiency briefings which are statements to 
employees of conditions identified during 
inspections or internal audits. This is just a good 
business practice, but it is not always done. In 
order to get across to other employees, the 
problems of a few doesn't mean that problems 
have to be stated exactly, by naming names, 
times, and dates. A general overview would be 
adequate through a memo, a short internal house 
organ article, or a letter to supervisors. Nothing 
irritates inspectors or auditors more than 
identifying a type of problem in one shop or 
building and having it come up again somewhere 
else during the next audit. 

Perhaps the most difficult area of briefings 
are those that require action by the employee to 
report suspicious behavior or actions of another 
employee. The government places considerable 
emphasis on the individual in a managerial or 
supervisory position to report factors which may 
influence a person's position of trust. Similar 
security procedures are frequently stated or 
implied in other requirements outside of the 
government. People see indicators that can 
signal internal abuses and fraud, the most 
difficult kind to detect. Getting them to report 
these may require more than a written or verbal 
sta:tement that it should be done. For several 
reasons employees don't want to "rat" on their 
friends or coworkers. For one thing, there is the 
matter of reciprocity, i.e. if I tell on you, you may 
tell on me. For another, Willis Ware of RAND 
pointed out several years ago that it would be 
possible to stop computer crime by planting 
informants i~ every DP shop, only the 

consequences would not be worth achieving the 
result. Balance is really the goal. Gossip has to be 
discouraged, but the tendency is to do otherwise. 
Security people tend to think that lots of 
information, however incredible it may be, is 
better than very little. A little quality 
information about certain auditable activities is 
far more beneficial than a hundred rumors that 
will create more dissention, mistrust, and 
internal squabbling than they are worth. 
Management has to agree on what is going to be 
said about a policy and how such reports are to be 
investigated. 

Making a Security Program Visible 

In many ways security will not survive 
without management support. No organization 
can have more security than management wants 
or will tolerate. Management is also, then, a 
target audience for security awareness. I have 
seen a few Security Officers do this well. They 
never miss a chance to keep security in the 
management mind. Particularly in computer 
security, this means keeping them informed on 
incidents inside and outside of the company, 
something that can be done with newspaper and 
periodical summaries of computer crimes and 
abuses, and memos. It means including them in 
the general security awareness program on other 
issues and soliciting their support on policy, 
discipline, and money for the security program. 
Another recommendation is to be personally 
involved with top level management. If they are 
new to the organization, go over security 
procedures with them one-on-one. Be well 
prepared and brief, but cover the essentials. 
Leave a telephone number in case they have 
difficulties and handle their inquiries personally. 
If an audit shows some problem they are having, 
help correct it, and keep notes on what was done. 
Visit now and again and show the flag. 

There is another time to keep accurate 
notes when dealing with management. Some 
security officers think that their role is 
tantamount to a mission from God and their 
approach to management parallels this. It is 
possible to treat every security incident as the 
only one there has ever been and the worst there 
ever will be. Every policy decision can be a life or 
death struggle. A dispute over money can be 
another Persian Gulf crisis. This doesn't mean 
that a security person has to be meek, but there 
is a limit to pushing a point. A security officer is 
responsible for doing three things: 

1. Make management aware of its 
responsibilities 

2. Advise on the realistic consequences 
of not meeting those responsibilities 

3. CYA, a short term which translates into 
Take Good Notes 
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Personally dealing with management carries 
an aspect of being visible to the public of the 
work place. Security people who bottle 
themselves up in an office with a terminal and 
100 different reference books, put a large sign
outside that says Computer Security, and 
announce to all that they are "available" anytime,
rarely are. I used to go around with security
people who had to introduce themselves to 
everybody we met. Part of security awareness is 
being out where the people are answering 
questions, and finding out what's going on. Most 
of our security audiences are very uncomfortable 
sitting for a week in a class because they are used 
to being out of their offices. They should be. 

The danger in being out where people are is 
that they ask questions that are difficult to 
answer. This sometimes means saying "I don't 
know, but I'll find out." Finding out m~ans both 
people learned something and the next time the 
same question comes up, the answer is ready.
This is what makes experts. People move 
hardware all the time, add equipment, change 
offices, move walls, build buildings and a host of 
other things that affect security. They don't 
always call and tell the one responsible that it is 
being done. This is sometimes called "liaison" 
with personnel, maintenance, engineering, 
physical/administrative security, the DP staff 
itself, and a few others. It is just a specialized 
form of security awareness. Making people who 
are the "changers" aware that what they do may
affect what we do. They will usually "make 
conversation" if you come around in areas that 
are of security interest. It always helps to keep a 
security program proactive instead of reactive; 
remembering that security is more than just 
paper and audit records, will help to do that. 

While a security person is out and about, there 
are two special kinds of people to look for. The 
first is that small, but important group, who will 
do their security functions well, in spite of often 
getting nothinf for it and, rarely if ever, having 
any mention o security in their job description.
Security people, as a group, are the most 
persecuted, downtrodden, neglected, and 
underpaid people in the world, at least to hear 
them talk. On the underpaid part, they are right. 
A DP staff will not be very sympathetic because 
they also fit into the same category. This is all 
the more reason to go out and find the people 
who are doing a good job and say "thank you" 
once in awhile. Every one of these people does a 
job that the security person would have to do if 
they didn't. They deserve some thanks for this, 
and it will be rewarding for both parties. 

The other kind of person lies at the other 
extreme of the cooperation spectrum. This is the 
kind of person who won't cooperate, hasn't got 
time for security measures, and doesn't like 
anyone coming around telling them how to act. 
This person needs help -- a specialized kind of 
security awareness. The type of approach is one 
that comes from The Godfather ; make them an 
offer they can't refuse. Reason with them in a 
way they can understand. This doesn't mean 
threaten, or even give the appearance of doing it. 
Tone and inflection have quite a bit to do with 
how a message is perceived [6]. Start with the 
policy of the agency or company e.g. this real 
policy of a large defense contractor: 
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The first violation results in a letter 
being placed in the person's personnel 
file. This assumes the action was 
inadvertent or accidental. 

The second violation results in a 5 day
suspension without pay. This may 
occur for a willful or intentional 
violation even if it is the first 
occurrence. 

The third violation results in 

dismissal. 


There is no threat made or implied in the 
expression of the policy. This is help for a person 
who would otherwise be surprised by the action. 
Apologizing for the policy or the action is equally 
poor procedure. The person needs the facts in as 
straight-forward a manner as possible. Every 
good security person knows who the people are 
who need this kind of attention. It is partially an 
instinct, and partially being visible to the various 
audiences the security person must serve. 

Media, Messages, and the Program Objective 

Aily person who has a security responsibility 
has an obligation to inform and educate the 
audiences they serve. When they get together, at 
a conference, a symposium, or at a chapter 
meeting of a security group in their area, they
learn things they want to do when they get back. 
Usually, they try to do too much, too fast. 
Security education doesn't work quickly, even 
when spurred on by a management generated
crises. It has to work slowly and in small, 
"chewable" pieces. Map out what is to be done 
and make a list of priorities. Divide the list into 
obtainable objectives and select media of several 
types to carry the messages to the target 
audiences. Keep the same messages going out on 
a regular basis to get them to people who missed 
them the first and second time or are new to your 
activity. 

Second, test to see that the education results 
in performance. The same office may not be 
responsible for education and testing so the 
education program has to mesh with the testing
objectives. Coordinate the education program 
with auditors and inspectors to see that it meets 
their program direction. Ask for, and expect,
feedback that will support or change the thrust of 
the security education effort and give feedback 
where it works (people get the message) but 
doesn't result in performance. This may be a 
function of poor, or unenforceable policy that 
needs to be changed. 

Third, get out of the office and actually do the 
job. ReinfOrce the good and mitigate the poor
performance where ever possible. 

Security awareness is more than a program; it 
is a way of doing the things that make up a 
security officer's responsibilities. It doesn't come 
quickly or easily and deserves the same amount 
of attention that other aspects of the security 
program receive. It means prevention more than 
correction, though some of each is required. It 
requires planning, coordination, and a lot of hard 



work to implement. In the end, it means making 
the security person's job easier by having 

employees perform at an acceptable level, not 
because someone tells them they have to, but 
because everybody else does it too. 
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Abstract 

This paper discusses the concept of a software analysis 
procedure to aid in the conversion of existing applications 
and in the development of new applications for use with a 
Trusted Computing Base. The use of this analysis within 
two separate projects, one involving conversion of existing 
software and one involving development of new software, 
is discussed to demonstrate the process and to provide 
background for our conclusions. 

Introduction 

Recent developments in the field of computer security 
have brought about a great need for provable secure 
systems that operate in accordance with DoD 5200.28­
STD, known as the Orange Book, published by the 
National Computer Security Center (NCSC) [1]. With the 
emergence of several trusted computing bases (TCBs) in 
the last year, meeting the goal of fielding secure systems 
has become a possibility. There is also significant effort on 
the part of several vendors to develop B level generic 
networks and data base management systems (DBMSs). 
This leaves a neglected area in secure systems -­
integration of the "rescue" of the investment in an 
installed software base when secure systems are 
implemented. For these reasons, Grumman Data Systems 
(GDS) has developed a manual software analysis 
procedure designed to aid in the conversion of untrusted 
applications software for use with a generic TCB. 

Software Analysis 

The software analysis consists of a.. step-by-step process to 
determine which pieces of the application software need to 
be trusted and which do not. Figure 1 gives a graphic view 
of this process. 

RESTRUCTURE 
NO AND INTEGRATE 

BACK TOGETHER 

YES 

REMOVE 
NON-SECURITY 

RELATED PORTIONS 

SECURITY 

FIGURE I. SOFTWARE ANALYSIS 

The first step is to break the software down into modules 
(routines and/or subroutines) and then identify which 
modules perform a security-related function. Security­
related implies that the module function relates to 
enforcement of the security policy and/or accountability 
criteria detailed in the Orange Book [1]. These modules 
must be part of the trusted software. 

Modules identified with security-related functions must 
then be further analyzed. Because of the burden of proof 
placed on trusted software during certification, the use of 
new trusted software must be minimized. Any of these 
security-related functions which will now be supplied by 
the TCB can be eliminated from the applications at this 
point. All remaining security-related modules must be 
further analyzed and broken down into the smallest 
entities possible until they eventually consist of only those 
functions that absolutely must be trusted. When these 
software entities have been reduced to the absolute 
minimum, they are then further analyzed to eliminate 
any duplicate functions. 

These minimum security-related entities are then isolated 
as trusted processes under the control of the TCB. This 
isolation requires well structured software with a clearly 
defined and strictly enforced TCB interface. If the 
software is not well structured, the requirements should 
be reviewed, the software redesigned, and then analyzed 
again. 

The next step is to correlate all routines that do not 
contain any security relevancy and all software entities 
that do not need to be trusted; these form the bulk of the 
untrusted software of the system and should be 
restructured and integrated together. 

Converting Existing Applications 

Initially, GDS developed this project to explore the 
possibility of applying retrofitting procedures to 
applications running on an untrusted multilevel system. 
We assumed that a TCB would soon be available to rehost 
existing applications, and we targeted on determining 
what would be necessary to convert existing applications 
for use with that TCB. 

The untrusted multilevel system in use performs basic C3I 
functions. Data is entered into the system from either an 
external communications system or manually from a 
single keyboard. After entry and labeling, the data is 
transformed into internal format and maintained in the 
DBMS where it can be manipulated by the user on site. 
The system also produces intelligence data to be output to 
various offsite users. The security clearances of the off­
site users were used to determine the protection levels 
required for internally generated data. The current 
system uses three protection levels: high (Top Secret with 
compartments), medium high (U.S. Secret), and medium 
(Secret Releasable). 

Two alternative system designs, multilayered (kernel 
based [2]) and multilevel (totally trusted [2]), were 
originally considered to offer the best solutions to 
converting this system to a trusted multilevel capability. 
We considered only these two architectures because our 
research showed that that only these approaches are 
likely to reach the higher (B3-A1) certification levels.[2] 
Each design requires a TCB but the multilevel approach 
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also requires a trusted DBMS and trusted applications. 
We chose the multilayered approach because of our 
interest in utilizing our existing application base and 
because no trusted DBMS exists. 

The multilayered approach uses existing (therefore 
untrusted) software supported by a TCB. With 
modifications as needed according to the results of the 
software analysis discussed earlier, these applications 
programs can be used to perform man-machine interface 
functions, messag.e processing, communications support, 
correlation, graphics, data base management, and other 
capabilities as needed. The use of a single untrusted 
DBMS would require a cryptographic seal to protect 
resident data from corruption, while multiple single level 
DBMSs would not.[2,3] 

Developing New Applications 

In May 1987, a large-scale system was needed within the 
Department of Defense to support resource tracking for 
planning, programming and budgeting, tactical and 
strategic wargaming models; manpower models; force 
structuring; congressional inquiries; and various program 
administration and management tasks. The existing 
system consisted of a B2 Top Secret!Secret subsystem and 
a separate Unclassified subsystem. The replacement 
system specified an initial C2 host environment for each 
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This system required the development of applications 
programs to perform man-machine interface as well as to 
perform CCM and ACM functions. The first step was to 
detail the requirements of the applications to the finest 
granularity possible. At this point, we were faced with the 
same question concerning trusted code: What must be 
trusted and what can be untrusted? While our software 
analysis procedure was developed for use with existing 
software, it also served just as well in the case ofdesigning 
new software. We applied the procedure to each 
requirement to provide insight into the functions that are 
security relevant. Experience with both old and new 
applications demonstrated that the same minimization 
technique applies to both situations. 

Discussion 

During system analysis, we considered several questions. 
First, how to determine which portions of the software 

processing level that would later be upgraded into a B3/Al 
environment by use of trusted communications processors 
to connect the hosts in accordance with Table 5 of CSC­
STD-004-85 [ 4]. The initial architecture of separate C2 
"System High" mainframes for each classification level 
could be satisfied by using a C2 certified, discretionary 
access control package for each of the hosts. 

The system specification required a single communication 
interface permitting any user, under mandatory access 
rules, access from any terminal, any operating system, 
and/or any data base at any of the three classification 
levels, subject to the clearance level of the terminal and 
user. To meet this requirement, GDS designed a Secure 
Communications Processor Environment (SCPE) based on 
the Gemini Secure Operating System (GEMSOS). 
GEMSOS is currently under evaluation by the NCSC and 
is targeted at the Allevel. The SCPE consists of a cluster 
of Gemini communications processors (using GEMSOS) 
connecting the hosts in a network fashion. The 
communications processors serve as Communications 
Control Modules (CCMs), providing direct 
communications from the users to the hosts. One 
communication processor is reserved to serve as the 
Access Control Module (ACM), providing access control 
and audit and file maintenance functions. Figure 2 
illustrates this architecture. 
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must be trusted? We began by separating the 
requirements into security related and non-security 
related portions as a base for analysis. We originally 
assumed that all or most of the security related software 
would need to be trusted because of the security 
environment of the system. However, as the requirements 
analysis continued and as we analyzed trustability in each 
case, it became apparent that this assumption was wrong. 
Only the security-related software which does not conform 
to the model must be trusted. 

Consider the case of an incoming message. When the 
message first enters the system, it must be labeled with 
the high water mark of the incoming communications line 
because all data within the system must be labeled 
immediately upon entry. As the header is parsed, the 
classification line of the message is read and compared to a 
table. When the correct label has been identified, it 
replaces the initial high water label. At first glance, it 
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appears that all of this software needs to be trusted 
because it deals with security data. Further analysis 
shows that this is not true, however. The classification 
line parsing function can be reduced into three 
subfunctions: reading the classification line, comparing it 
to a table, and writing the new label to the record. The 
first two subfunctions, reading the classification line and 
comparing it to a table, conform to the Bell-Lapadula 
model [5]. Since these subfunctions conform to the model, 
they do not alter the secure state. of the system and 
therefore do not need to be trusted. The third subfunction, 
writing the new label, does not conform to the model 
because in most cases the new classification label is lower 
than the old, which requires a write down. Since the 
writing subfunction does not conform to the model, it must 
be trusted. 

The next question is how to allow the remaining untrusted 
applications to operate in a multilevel environment and 
still eliminate the usual performance problems which 
plague systems of this type. Performance problems are 
caused by the necessary TCB mediation of all accesses 
between subjects and objects in the untrusted software. 
With existing applications, the accesses between subject 
and object are so numerous that performance is 
significantly degraded while the TCB performs its 
required management activities. The solution is to 
minimize TCB mediation as much as possible without 
sacrificing the security integrity of the system. Our 
solution is to limit mediation by implementing more 
complex, larger object level entities (such as entire 
applications processes instead ofmodules). We accomplish 
this by using several layers of each untrusted application, 
providing one layer for each classification level of data 
within the system. For example, our workstation needs 
three layers, one Top Secret with compartments, one U.S. 
Secret, and one Secret Releasable. These larger level 
objects require less import and export of data and 
therefore less TCB mediation. The final design structure 
is shown in Figure 3. 

Summary 

In conclusion, we believe that the analysis procedure 
presented provides an organized approach to secure 
software development which can be applied to existing 
applications and to new design requirements. In this 
procedure, the system processes are broken down into 
small entities that permit detailed analysis to ensure that 
the trusted processes will be at the absolute minimum. 
We have developed two conclusions from these 
experiences. First, the processes which we identified as 
needing to be trusted were those which violated the 
security model. All other security related ·processes are 
supplied by the TCB. Second, performance problems 
caused by TCB mediation brought about by security 
requirements can be somewhat alleviated by 
implementing larger object level entities in a layered 
fashion. While this implementation will become less 
efficient with larger numbers of layers, it is adequate for 
many existing requirements today. 
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