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WELCOME

The National Computer Security Center and the Institute for Computer
Sciences and Technology are pleased to welcome vou to the Eleventh Annual
National Computer Security Conference. The past ten conferences have
stimulated the sharing of information and the application of this new
technology. We are confident the Eleventh NCS Conference will continue this
tradition.

This year’s conference theme--Computer Security: Into the Future--
reflects the growth of computer security awareness and a maturation of the
technology. Our nexi major challenge is to understand how to build secure
applications on trusted bases. The efforts of the National Computer Security
Center,the Institute for Computer Sciences and Technology, computer users, and
the computer industry have all contributed to the advances.in computer security
over the past few years. We are committed to a vibrant partnership between the
Federal Government and private industry to further the state of the art in-
computer security.

Our challenge is to build upon the foundations we have established so that
secure applications emerge. We must understand and record how we build on
these foundations in order to secure user-based systems. To be successful, we
need your help as you take back to your places of work an increased awareness

of where we are, where we must go, and how to get there.
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A MULTILEVEL SECURITY MODEL FOR OBJECT-ORIENTED SYSTEMS

T.F. Keefe

Department of Computer Science
University of Minnesota
Minneapolis, MN 55455

Abstract - This paper describes a security model for a Multilevel Secure
Object-Oriented System. The model is posed in terms of an object-oriented
computation model incorporating distributed co-operating objects. The model
supports a data sensitivity level classification appropriate for use in Multilevel
Secure Database Management Systems (MLS/DBMS). This security model
allows a subject to act with the lowest clearance level necessary to accomplish
a task and thus avoid over-classification of data. The paper discusses the
security properties of the model, including the safety of message passing and
the existence of covert channels.

Index Terms - Multilevel Security, Multilevel Secure Database
Management Systems, Security Model, Object-Oriented Systems

1. Introduction

MultiLevel Secure Database Management Systems (MLS/DBMSs) allow
users with different clearance levels to share a database consisting of data
having varying sensitivity levels. MLS/DBMSs achieved prominence at the
Air Force Summer Study of 1982 [AIRF82] as a method of preventing DBMS
security violations. During the study various designs for MLS/DBMSs were
proposed. One design based on a near-term set of requirements incorporated
off-the-shelf concepts in its solution and another based on a long-term set of
requirements including content, context and dynamic classification and a
solution to the inference and aggregation problem. The committee members
defined a partial solution and outlined further research.

Recently much research is devoted to the design of Multilevel Secure Rela-
tional DBMS [DENNS87b, DILL86, DWYES87]. Techniques to deal with the
inference and aggregation problems are also being investigated [HINKSS,
MORG88, SUOZ87, THURS87, THURSS).

The relational data model is well defined and generally applicable to a wide
range of data modelling problems. For some problem domains involving
Multimedia DBMS and CAD/CAM, object-oriented systems present a more
suitable data model and have become popular for use in these domains.

Object-oriented systems began as programming systems and are only now
dealing with issues such as data models, predicate based queries [CHEN87],
schema evolution, version control [BANER7], transactions and controlled
sharing of data [FISH87]. Resolving these issues paves the way. for more
useful object-oriented DBMS and generates a need for security.

Object-oriented DBMSs unify a data model and a computational model setting
them apart from relational systems. The relational algebra does not deal with
the subject of updating or creating new relations even though most relational
DBMS do provide this capability. The fact that the object-oriented
computational model allows for creation and modification of data as well as
data access forces a security model to deal with the problem of data
modification.

The computational model also defines objects as isolated computational
entities communicating explicitly with other objects through messages. This
naturally leads to distributed security enforcement rather than the centralized
enforcement possible with relational queries.

Previous work on security in object-oriented systems has been done to enforce
discretionary and mandatory security policies. [ANCI83] describes a protection
mechanism and defines how it may be embedded in an object-oriented
concurrent programming language. The protection mechanism is based on
capabilities and allows for static access control. The protection mechanism
implements discretionary but does not address mandatory security.

Mandatory security is investigated in [MIZU87]. Security is enforced with a
combination of compile-time and run-time checks. The security model
classifies variables as having a fixed or indeterminate sensitivity level. The
indeterminate levels are meant to deal with indeterminate information flows
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and must be checked at run-time. The security model does not support the
classification of data according to its content and does not support a separate
classification for aggregate data objects.

When classifying data in a database two factors are considered, the type of data
that has been created and the sensitivity level of the data which is used to
create it. Security constraints attempt to model the correlation between types
of data and corresponding sensitivity levels. In many systems the subject's
security clearance level is assumed to be the sensitivity level of data used in
creating a new datum. This is based on the fact that the subject's clearance
level represents the most sensitive datum the subject has access to. This leads
to over-classification, since this clearance level will always dominate the
actual sensitivity level of data incorporated in the result. [WOOD87] discusses
the classification of information based on its composition. Data is marked
with sensitivity labels which track the least upper bound of all data in the
composite object. A covert channel is identified which exists when a higher
clearance subject causes an object to become unreadable by a subject with a
lower clearance. To avoid this channel, the labels are used in an advisory
manner and not in the enforcement of mandatory security. Separate Mandatory
Access Control Levels (MACLs) are attached to data objects for this purpose.
This approach does not solve the over-classification problem with respect to
mandatory access, since the MACLs do not represent the highest sensitivity
level of data known by the process which created the object but the highest
sensitivity level of data the subject is allowed to know. The model described
in [WOOD87] assumes that the sensitivity level of an object is independent of
other objects' values and sensitivity levels. This assumption is not consistent
with requirements for security in DBMSs.

‘We propose a security model for a Multilevel Secure Object-Oriented System
with the following advantages. It is posed in terms of an object-oriented
computation model incorporating distributed co-operating objects. Each object
is assumed to be a self-contained computing element whose only interaction
with other objects is through sending and receiving messages. The model
supports a mandatory security policy with extensions to support the data
classification necessary for use in MLS/DBMS. This security model allows a
subject to act with the lowest security classification level necessary to
accomplish a task and thus avoids over-classification of data in the presence of
updates. The model does this without introducing the covert channel as
discussed in [WOOD87]. This allows data classification to follow a set of
security constraints defined on the database schema and not the security
clearance level of users making the updates.

The organization of this paper is as follows: Section 2 describes the essential
points of MLS/DBMS. Section 3 gives an overview of object-oriented
systems. Section 4 describes a multilevel security model for object-oriented
systems and Section 5 discusses the security properties of the model. Finally,
Section 6 concludes this paper with future considerations.

2. MLS/DBMS

A MLS/DBMS is different from a conventional DBMS in at least the
following ways:

1. Every data item in the database has associated with it one of several
classifications or sensitivities, that may need to change
dynamically over time.

2. A user's access to data must be controlled based upon the user's
authorization with respect to these data classifications.

Providing a MLS/DBMS on current computing systems presents many
problems. The granularity of classification in a DBMS is generally finer than
a file and may be as fine as a single data element. Another problem that is
unique to databases is the necessity to classify data based on content, time,
aggregation and context. DBMSs are also vulnerable to inference attacks where
a user infers unauthorized information from legally obtained data.
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A solution proposed to overcome some of these problems in relational
database management systems is to use security constraints to associate
classification levels with all data in a database [DENN87a, DWYES7]. The
constraints provide the basis for a versatile and powerful classification policy
because any subset of data can be specified and assigned a level.

Simple constraints provide for the classification of the entire database, as
well as the classification by relation and by attribute. Constraints that
classify by content provide the mechanism for classification by tuple and by
element. Context-based constraints classify relationships among data. In
addition, the results of applying a function to an attribute in all or a subset of
tuples in a relation, such as sum, average, and count can be assigned different
classification levels than the underlying data. Finally, the classification levels
of the data can change dynamically based upon changes in time, content, or
context.

A constraint consists of a data specification and a classification. The data
specification defines any subset of the database using relational algebra and the
classification defines the classification level of this subset. For example,
consider a database which consists of a relation EMP(NAME, SALARY,

SOC_SECH) with SOC_SECH as the key.!

The content-based constraint, using the notation proposed in [DWYES87],
which classifies the names of all employees who earn more than 50K as
Secret is expressed as:

LEVEL(PROJECTINAME] (SELECT[SALARY>350K] EMP)) =
SECRET

and the context-based constraint which classifies all names and salaries taken
together as Secret is expressed as:

LEVEL(PROIECT[NAME, SALARY] EMP) = SECRET

The simple constraints which classifies all names and salaries taken
individually as Secret is expressed as:

LEVEL(PROJECT[NAME] EMP) = SECRET
LEVEL(PROJECT[SALARY] EMP) = SECRET
3. Object-Oriented Systems

This section gives a brief background on object-oriented systems. There is a
wide variation in what is meant by "object-oriented". Most of our
interpretation comes from SMALLTALK-80 [GOLD83]. Variations on this
object-oriented model are given in [STEF86]. The object-oriented model as
defined by SMALLTALK was intended as a programming system. Our
definition of an object-oriented system also stems from our desire to
incorporate database considerations such as data models, predicate based
queries, schema evolution, version control, transactions and controlled sharing
of data. Our understanding of these issues comes from [BANES7], [FISH87]
and [YOON&7].

In an object-oriented system everything is represented as an object. An object
is made up of private state information and a set of actions which represent the
only way to access or modify this state information. The state information is
represented as a set of instance variables whose values are objects each of
which contains its own state information and methods. The actions defined on
an object are called methods. A method carries out its action by sending
messages. A message consists of a method selector, which is the name of the
method to be invoked, followed by a list of objects to be used as arguments to
the method. Sending a message to an object causes a method to be executed.
Objects are passive entities which store information. A method is also passive
and represents a function which can be performed on an object. A message
combined with an object yields a method activation. Method activations are
active and perform the computation in the system.

Primitive objects represent their state directly without using other objects,
examples of these primitive objects are numeric values, strings and identifiers.
Primitive methods represent actions carried out directly by the virtual machine
without sending messages, examples are adding numeric values and reading the
value of an instance variable.

L The notation used in our discussion of database concepts and relational
algebra is based on [ULLMS82].
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Each object has a type or class it belongs to. All objects in a class are
equivalent computationally. Each may have a different state but the type of
computation which can be performed on an object is uniform throughout the
class. The class defines what methods are available in instances of the class
and what instance variables are included in the instance objects. The class of
an object is also an object. A class object responds to messages to create new
instance objects. A class object defines a type by specifying the types which it
specializes. These types are referred to as its super-types. An object inherits
methods and access to instance variables from its class object and each super-
type of the class object all the way up the lattice to the root, OBJECT.

An object represents a distributed computation element. Methods are specified
such that only data contained in the object receiving the message can be
modified directly. A method activation has no knowledge about the states of
other objects unless it explicitly queries them and it can not affect the state of
other objects except through requests to them. Each method activation
performs an independent computation except where it explicitly communicates
by sending a message.

For the most part, methods are described informally in the text. When we
wish to be more precise we will use notation similar to that in [GOLDS83]. A
method specification consists of a message pattern and a sequence of
expressions separated by periods. The message pattern determines the message
selector the method will be used for and assigns names to the formal
parameters of the method. An example of a message pattern is shown below:

spend: amount on: reason

The message selector for this method is 'spend:on:'. The two formal
parameters in this method are ‘amount’ and 'reason’. The expressions which
make up the body of the method consist of message expressions with an
optional assignment. Message statements are described briefly below:

Unary Messages

A unary message consists of the name of the receiver object followed by the
selector of the method to be executed. The statement below sends the message
consisting of a selector named 'salary’ and no parameters to the object
‘Emp01*

Emp01 salary

Keyword Messages

A message can be constructed from parts of the selector or keywords alternated
with arguments. The following message sends the object ‘HouseHoldFinances'
the selector spend:on: along with objects representing the real number 30.45
and the string 'food'.

HouseHoldFinances spend: 30.45 on: 'food'

A message expression returns an object as a result which represents the value
of the expression. This object can be assigned to an instance variable. This is
done by preceding the message expression with the name of the variable and
the assignment symbol '« as in the example below:

TotalFinances « TotalFinances + (HouseHoldFinances totalSpentFor:
'food’)

Blocks

A block is similar to a function in a traditional programming language. It
takes a list of arguments and produces a result. A block is similar in form to a
method. It is enclosed in square brackets and begins with a list of parameters.
Separated from the parameters by a 'I' is a list of expressions which form the
body of the block. The block shown below is a function of one argument
'ObjectToClassify" and returns a boolean result:

[:ObjectToClassify | (ObjectToClassify salary) > 100000 ]
The block sends its argument the message 'salary’ and to the resulting object it
sends the message with selector '>' and argument 100000. A block is an
object and can be used as an argument to a method.
4. Security Model
This section proposes a security model posed in terms of the object-oriented

computing model. The model combines the use of security constraints for data
classification with mandatory access control. Security constraints allow the
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automatic classification of data objects by their type and by their relation to
other data. Classification by security constraints conflicts with classification
by information flow. A newly created object has two classifications, one by
an applicable security constraint and another from the current security
classification of the user creating the object, (a user can only write objects
with sensitivity levels dominating their cirrent security classification level).
A distinguishing aspect of this model is the emphasis placed on classification
derived from security constraints. .

[DENNS87c] uses security constraints to classify newly entered data. Once
classified, the MACL:s are fixed and do not respond to changes in related data.
Since the levels are fixed, after some updates to the database the levels
assigned to data may not be consistent with the levels assigned by the
constraints. Consider the security constraint which classifies, the names of
employees as Secret when the employee's salary is greater than $100,000.00
and the name is Unclassified otherwise. When an employee's salary is
increased to over $100,000.00 the sensitivity level of the name remains
Unclassified by this model. In this model the sensitivity level of a datum does
not depend solely on the applicable security constraints and therefore there can
be more than one sensitivity level for a datum. Since the key value does not
determine the sensitivity level of an entity, polyinstantiation [DENN87b] is
used to disallow a low level user from overwriting higher level invisible data
without opening a covert channel.

The opposite extreme is a model which insures that security constraints are
always maintained. The level of each piece of data is completely determined by
the applicable security constraints. This model allows only those
modifications to the database which maintain the security classification
determined by the security constraints and adhering to information flow
restrictions. In the case of the classification discussed above, if a Secret user
created an employee with a salary over $100,000.00, the data would be
inserted in the database. If it were attempted by a Top Secret user it would be
rejected since the data would have to be classified Top Secret to dominate the
clearance level of the user which is in conflict with the level Secret assigned
by the security constraint. In this model, the security level of an object is
completely determined by security constraints. If the security constraints are
conditioned only on the key value of an entity, the key value completely
determines the sensitivity level and polyinstantiation is unnecessary.

The proposed model is somewhere between the other two. It allows a subject
to act with the lowest authority possible so that data can more often be
classified in accordance with security constraints. It applies the security
constraints in a dynamic fashion, changing the classification of a piece of data
when the security constraint derived level changes. For example, if the names
of employees are classified Secret when the employee's salary is greater than
$100,000.00 and Unclassified otherwise, then when an employee's salary is
increased to over $100,000.00 the sensitivity level of the name is also
changed. This model insures that an object's assigned sensitivity level always
dominates the sensitivity level determined by security constraints. This model
must rely on polyinstantiation since the sensitivity level of an object is not
determined solely by security constraints. Modifying the security classification
level of subjects and objects dynamically can open covert storage channels and
so need to be done with caution. The proposed model allows these level
changes in only those cases where a covert channel can not exist.

The elements of the proposed security model are discussed in the next section.
It describes the role of each object-oriented element in the security model. This
is followed by a discussion of the type of security constraints included in the
model and their representation. Finally, there is a description of the model
restrictions.

4.1. Security Entities

This section identifies the role played by each entity in the object-oriented
computation model in the security model. The portions of the object-oriented
model discussed are: objects, methods, messages and method activations. The
object-oriented model requires certain conceptual extensions to support
mandatory security; these are discussed as well.

Objects An object is a collection of passive data with an
associated sensitivity level. The protected data is the
object’s instance variables and it is disclosed by reading
one or more of the variables.

Methods A method is a function defined for execution on the data

of a particular object type. It is a passive entity, When

a message is sent to an object a particular method is

selected and executed in a method activation and this

method activation iS an active entity.
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Messages A message is sent on behalf of a security subject. It is
sent to an object requesting execution of a selected
method with the authority of the security subject which
the message represents. A message is an object and
therefore is protected by the security system. Messages
are labelled with two security classification levels. The
first is the clearance level, LSclear, of the security
subject originating the message. The second level is the
current security classification level, LScyurrent, of the
originating subject. These two levels act as an upper
and lower bound on the classification level of the new
method activation.

Method Activation ~ Method activations are the only active entities in the
model and therefore represent security subjects. Each
method executes in a separate context described by an
activation. The execution is carried out by sending
messages to objects. Sending messages is not a security
relevant action, for two reasons. First, because the
message carries with it boundaries on the authority of
the method activation it creates, which are encompassed
by the boundaries of the subject sending the message.
Secondly, the data sent in messages is in the form of
protected objects. These points will be discussed more
fully in the section describing model properties. Certain
primitive actions such as reading an instance variable,
writing an instance variable, carrying out a conditional
action or creating a new object are carried out directly
by the method activation without sending any mes-
sages. These actions are security relevant since they
directly access and modify information in the method
activation and instance variables of the object.

4.2. Security Constraints

This section discusses the type of security constraints supported by the model.
The first section explains the security constraint mechanism and how it can be
used to represent simple, content-based and context security constraints.
The next section defines a method used to enter the constraints and shows
specific examples of its use to register simple, content-based and context
security constraints.

Both sections demonstrate how the classification mechanism works through
the use of examples on the database described in the next two figures. Figure 1
gives the schema of a sample database. The schema is for a database
containing personnel information for a company. There are two types of
complex objects in the database, Employee type objects and Department type
objects. Each Employee object has a field (instance variable) for the social
security number, name and salary of the employee and one which is filled by a
Department type object which describes the department the employee is a part
of. Each Department object has a field for the department name (Dname) and
project name (Project) of the project the employees of the department are
working on and a field which is filled by the Employee type object
representing the manager (Mgr) of the department.
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Figure 1 - Sample Schema Diagram

Figure 2 depicts objects in a database following the schema shown in Figure
1. In the figure, boxes represent instance objects, arrows point to the value of
the instance variable, the class of the object is given in the upper left corner of
the object and the upper right hand corner contains an identifier to reference the
objects in the following discussion.
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Figure 2 - Sample Database

4.2.1. Assigning Classification Levels

Every object has a sensitivity level, LC, determined by a set of object
classification functions. Each function groups objects into sets called
classification sets and gives each set a sensitivity level L. The meaning is
that the sensitivity level for disclosing all objects in the classification set is
Lc. Each object individually can be disclosed without regard to L, however,
the last object disclosed must be classified at a level which dominates Lc. Lc
is the sensitivity level of the object determined by the security constraints in
force. This is only one factor used to determine an object's sensitivity level
Lo which is used by the reference monitor to determine the allowability of an
access.

An object is considered disclosed to a subject Sy if another subject $2 which
can write objects visible to S} has read it. In other words the object is read
with respect to a subject with clearance Lg7 if it was read by a subject with
clearance L2 such that Lg2 < Lg1. This definition is very restrictive. It is
required to protect classification sets in the case of one subject reading a
member of the set and writing the information into a new object of a different
type. For example, consider the context constraint which classifies names and
salaries together as Secret and otherwise Unclassified. If an Unclassified user
reads the name of an employee and stores the name in an object of type
‘string’, the context constraint will no longer relate this name to the salary of
the employee. The definition of who has read the name object must include
any other user who is allowed to read the special name object of type 'string'.
It must include all subjects with current classifications which dominate the
current classification of the subject when the object was read.

This mechanism allows the expression of simple, content and context
security constraints as described in [DWYES87]. A simple constraint
classifying all objects of class Project as Secret is represented by placing each
member of 'project’ in a separate classification set with a classification of
Secret. Since each set consists of only one object, the object will immediately
receive a classification level L¢ of Secret. When this classification is applied
to the sample database shown in Figure 2 the classification in Figure 3
results. This constraint produces only one classification set. The set contains
the object PO1". Since it is the only object in the Secret set, its sensitivity
level, Lc, immediately becomes Secret.

Figure 3 - Classification of Objects of Class Project as Secret for Sample DB

A content-based constraint specifies a set of objects by means of a predicate
based on the values of some objects and classifies each with the same .
classification. For example, classify the names of all employees whose salary
is greater than $100,000.00 as Secret. This type of constraint is represented
the same as a simple constraint. Each 'name' which has a corresponding
‘salary’ greater than $100,000.00 is placed in a classification set by itself and
the set is classified Secret. The two classification sets which result from
applying this constraint to the database of Figure 2 is shown in Figure 4.
This constraint produces two classification sets, one containing 'N04' and the
other containing 'NO3'. Since each object is the only object in its
classification set, it takes on the sensitivity level of its classification set,
Secret.

Figure 4 - Classification of the Names of all Employees Whose Salary is
Greater than $100,000.00 as Secret for Sample DB

A context constraint matches this security constraint mechanism exactly.
Related objects are grouped into classification sets and given the sensitivity
level LC meaning that the sensitivity level for disclosing all objects in a set
is L. Figure 5 shows an example of a context constraint classification.
This constraint classifies the Project and the Name of any Employee working
on the Project, taken together as Secret. The constraint creates four
classification sets, { 'NO1', PO1' }, { 'NO2', 'PO1' }, { 'NO3', 'PO1" } and{
'NO4', 'PO1' }. Each of these sets share the object 'P01". This means that as
soon as 'PO1' is read, all of the Name objects become Secret and if any Name
object is read, 'PO1' becomes Secret.
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Figure 5 - Classification of Project and the Name of any Employee Working
on the Project, Taken Together as Secret for Sample DB

The security model is enforced by cooperating autonomous objects. This
affects the way in which security is enforced and in particular how security
constraints are specified. In this distributed model each object is given
responsibility for insuring the security of its own data. Security constraints
must be reevaluated when a change is made to the database. For each security
constraint, on¢ or more objects must be chosen to be responsible for doing
this reevaluation whenever it is necessary. This responsibility is split between
the objects which are members of the classification set and what is called the
anchor object for the constraint. This anchor object is not classified by the
constraints but is used as a reference point for evaluating the constraint. The
responsibility of the anchor object is to alert objects when they are classified
by the security constraint. The anchor object in turn depends on objects which
the constraint is conditioned on to alert it to changes in their values. This
mechanism allows the burden of the constraint maintenance to be shared
among many objects.

In a simple or content-based constraint the anchor object is chosen to be
the class object which the classified objects are instances of. For example in
the constraint,

Name in Employee where Salary > $100,000.00 is Secret

the anchor object is the class object Name. The set of objects to be classified
is specified with respect to this anchor object. The class object Name is
responsible for alerting each Name object with a Salary over $100,000.00 that
it is classified by the security constraint. Whenever a new Name object is
created which satisfies the predicate the anchor object must alert it to its new
classification. Consider a Name object created with a Salary of $50,000.00,
the constraint will not apply but the corresponding Employee and Salary
object will be made responsible to report changes in their values to the anchor
object, Name. Later if the Salary is updated to $110,000.00 the object will
report this to the class object Name and the anchor object will alert the Name
instance object of its new classification.

Simple and content-based constraints classify single objects not sets of
objects as. do context constraints. A context constraint must specify a
classification set. Each object in the set allows itself to be read only when at
least one other member of the set is still unread. The last unread object in the
set must increase its sensitivity level to that specified in the context
constraint before it is read. Instead of maintaining the constraint specified
classification set, the set of specified objects which have not yet been read can
be maintained. The classification set is then specified and maintained as an
ordered sequence of objects. The anchor object is responsible for alerting each
first object that it.is the first object in a context constraint. The object is
also given the specification of the rest of the ordered sequence. Each object in
the sequence then acts as an anchor object for the next object in the sequence,
alerting it that it is included in the constraint and passing on the specification
of the rest of the ordered sequence of objects. Consider the constraint,

Name in Employee and Salary in Employee taken together are Secret.

The anchor object for this constraint is the class object Employee, (this is an
arbitrary decision). 'Employee’ is required to alert each object which fills the
Name slot of one of its instances that it is part of a context constraint. The
specifications for the rest of the objects are passed on with this notification.
The Name object which receives this information then uses the specification
of the rest of the ordered sequence to alert the prospective next objects in the
sequence. In this example the Name object determines its containing
Employee object and then the Salary object contained within. This Salary
object is alerted that it is part of the context constraint. The Salary object is
the last in the sequence and so doesn't need to alert any further objects.
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Each context constraint creates one or more classification sets. In the
example above there is one set of objects for each Employee object in the
database. If this constraint is applied to the database shown in Figure 2, the
resulting classification sets are shown in Figure 6. This constraint produces
four classification sets, { 'NO1', 'S01" }, { 'N02','S02' }, { 'N03','S03' } and {
‘N04', 'S04" }. Each set has a sensitivity level of Secret. This classification
has no immediate effect on the sensitivity level, L, of any of the objects, if
however object 'S03' is read this constraint will cause L of 'NO3' to become
Secret.

Figure 6 - Classification of Name and Salary Taken Together as Secret for
Sample DB

4.2.2. Specifying Security Constraints

A set of methods are defined in all objects, securityConstraintfl:Level:,
securityConstraintf1:f2:Level:, etc., which take an ordered collection of
functions and an aggregate sensitivity level LC as arguments. The functions
{f1 ... fp} are defined as follows:

f1 : anchor_object —> object”
fo.n :object —> object”

‘Where object* represents a set of zero or more objects. The functions f7 ... f
are used in the following way to define a set S of classification sets.

Si={xIxe f1(OAnchop }
S={{y1.y2,~.yn}lyie S1ay2e DG A ..Ayne fnlyn-1)}

Where OAnchor is the anchor object, the object receiving the classification
message. The first function, f1, applied to the anchor object produces the first
set S1 of objects in the classification sets. The next object in the
classification set results from applying f2 to one of the objects in S1. This is
carried out for all n functions to create each element of S.

The following are examples of how security constraints can be represented
using the above classification scheme. We are expressing the constraints in a
notation similar to SMALLTALK-80 [GOLDS83] as described in Section 3.

First we will describe some of the methods used in the example: '

Object Class ~ Method

object fillsSlot:In:

Description

This is a predicate. When used as
‘fillsSlot: name In: employee'. It returns
True if the receiving object is the value
of the 'mame' instance variable in an
‘employee’ object.

object  containingObject This method returns the object which uses
the receiver as the value of one of its
instance variables. For example, if the
object 'SO1' received the message the
result would be 'EO1', the employee’
object which 'SO1'’ is contained in.

class instancesOf Returns the objects which are instances of
this class.
class with: This message is used as 'Set with: a'. It is

sent to the class object 'Set' and creates a
new set containing the object ‘a’.
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set select: This method takes one argument which is
a predicate. It returns a new set which
contains all of the members of the
original set for which the predicate is true.
set collect: This method takes one argument which is
a function and applies it to each member
of the receiving set object. The objects
returned by the function applications are
collected into a new set which is the
result.

Returns the value of the ‘'name’ instance
variable.

employee name

employee salary Returns the value of the 'salary’ instance

variable.
Below are the sample security constraints:
Simple Security Constraints
Constraint: project in department is Secret

project securityConstraintf1:
[:Object | ( Object instancesOf ) select:
[:ObjectToClassify | ObjectToClassify fillsSlot: project
In: department]

Level: Secret.

This constraint classifies all objects which fill the ‘project’ role in 'department’
objects as Secret. The constraint is established by sending the anchor object
‘project’ the block shown and the sensitivity level Secret. The block f1 first
computes the set of instances of its argument. Elements of this set are then
selected for inclusion in the result based on the block which takes an object as
an argument and returns True if the object fills the slot named project in a
department object. This constraint would classify object 'PO1' from Figure 2
as Secret.

Content-Security Constraints
Constraint: name in employee where salary > 100000 is Secret

name securityConstraintf1:
[:Object | { Object instancesOf ) select:
[:ObjectToClassify |
(ObjectToClassify  fillsSlot: name
In: employee)
and:
(((ObjectToClassify containingObject)salary)
> 100000)

]

Level: Secret.

This constraint classifies all objects which fill the ‘name’ role in 'employee’
objects if the corresponding 'salary’ is greater than 100000. The constraint is
established by sending the class object 'name’ f1 and the sensitivity level
Secret. The anchor object is the class object name. The block f1 returns the
set of instances of its argument which satisfy the following block. The block
combines two predicates using the and' message. The first is True if the
object fills the 'name' slot in 'employee’. The second determines the
corresponding 'salary’ object and tests to see if its value is greater than
100000. The effect of the above constraint would be to classify the object
'NO03' as Secret.

Context-Security Constraints

Constraint: name in employee and salary in employee taken together are
Secret

employee securityConstraintfl:
[:Object | (Object instancesOf) collect: [:each | each name] ]

’ [:p | Set with: ((p containingObject) salary)]
Level: Secret.

This constraint groups objects into two element classification sets and assigns
the set a sensitivity level of Secret. The constraint requires of a user reading
more than one object in any set to have at least a Secret clearance. The class
object ‘employee’ is the anchor and is sent f1, f2 and the sensitivity level
Secret. The class object Employee is used as the argument to f] to compute
the first elements in each classification set. The block first creates a set of all
of the instances of 'employee’, in this example the set {E01, E02, E03, E04).
From this set it creates a new set by applying the block [:each | each name] to
each member. This block returns the 'name’ of the employee object. The
resulting set is {NO1, N0O2, N03, N04}. Given an argument in {NO1, NO2,
NO3, N04}, f2, maps it to the second element in the classification set. The
function finds the containing object and then requests of it the salary object. It
then creates a set from these objects. The resulting sets obtained in this way
are shown in Figure 6.

These methods allow a common method for defining simple, content-based
and context constraints. Simpler methods could be developed if each type of
constraint were considered separately. For example, a simple constraint can
be specified by supplying only the class name of the objects to be classified.
A content-based constraint needs in addition a predicate to be evaluated by
the objects to be classified.

4.3. Model Restrictions

This section describes the security model restrictions. The restrictions define a
set of allowable object accesses. There are four parts to the model. The first
part describes which object accesses are allowed based on the sensitivity level
of the object and the current security level of the method making the request.
The second part describes allowable assignments and allowable changes to
object sensitivity levels. The next section describes allowable assignments and
allowable changes to security classification levels for methods. The final
section discusses the effect of security-inconsistent database states on
mandatory security.

4.3.1. Object Access

A method activation executing with a current security classification level
LScurrent is allowed to:

(1.1) Read the instance variables of an object with sensitivity level Ly
such that Lo <LScurrent-

(1.2) Modify the instance variables of an object with sensitivity level L
such that LScyrrent < Lo < LSclear-

In addition, pointer references are restricted as follows:

(1.3) A pointer to an unreadable object behaves exactly as a null object
pointer.

Rules (1.1) and (1.2) by themselves do not insure the simple-security property
or the *-property [BELL76] since the levels of objects and methods are
allowed to change and these changes have not yet been defined. The
maintenance of these properties can be insured only after examining the
modification policy for sensitivity levels for objects and classification levels
for methods. This is discussed in Section 5.

4.3.2. Object Sensitivity Levels

Security classification rules determine sensitivity levels for all objects at all
times. In the interest of maintaining mandatory security some of these derived
sensitivity leévels can not be used. The following rules describe the way
assignments are made, taking into account the sensitivity level derived from
the security constraints and concems for information flow restriction.

(2.1) Objects are assigned the lowest sensitivity level Lo at object
creation time such that Lo dominates all sensitivity levels L1, ...,
Ly imposed by applicable security constraints and Lo dominates
the security level, LScurrent, of the method activation creating the
object. In other words LQ = Lscyrrent [ 111 ... Mig!

(2.2) The security level of an object can only be increased. An object
classified with a sensitivity level of LQ can be changed to level

in represents the least upper bound defined on the security classification
lattice by the partial ordering <.
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Lo' if and only if Lo < Lo'. Downgrading of objects must be
done by trusted method activations.

(2.3) The security level Lo of an object can be affected only by method
activations executing with a current classification level LScyrrent
such that Lgcyrrent € LO. If this were not the case a covert
channel would exist since a higher level subject could signal
information to a lower level subject by increasing the sensitivity

level of an object originally readable by the lower level subject,

thus making it unreadable. This channel is pointed out in
[WOQODS87]. The model restriction allows a subject with a
clearance level L§2clear to make modifications to the security level
of an object which is visible to a subject with a clearance level
Lg1clear even when Lgiclear is strictly dominated by L§2¢lear, as
long as LS 1current = LS2current- This approach decreases the
amount of over-classification and at the same time eliminates the
covert channel.

4,3,3. Method Activation Security Levels

A method activation executes with a security classification level L§current
determined by two quantities. The first is the clearance level L§clear of the
security subject which initiated the computation. L§¢lear is the security
clearance level of a user and applies to all methods which are executed on the
user's behalf, The second quantity which determines L§cyrrent is the current
security classification level L§originator of the method activation which
started this method by sending a message. Both of these quantities are at least
conceptually carried by the message. A passive method is combined with a
passive message to create a method activation which executes with a security
classification level determined by LSoriginator and LSclear as obtained from
the message. Below is a set of rules determining the current security
classification of a method activation.

(3.1) The login method begins execution with classification level
LScun-en[ = System Low.

(3.2) A method activation begins with a classification level LScurrent =
LSoriginator-

(3.3) If an attempt to read an object with sensitivity level LQ such that
L0 < L§clear fails, the classification level of the method will be

modified to LScurrent' such that LScyrrent = LScurrent| ILO.

(3.4 A method activation object Ompal is only visible to another
activation object Oma?2 and vice versa if either:
(i) Omal originated execution of Oma?2.
() Omai originated execution of Omga3 and Omga3 is visible to

Rules (3.1) through (3.3) insure that L§clear Will always dominate LScurrent.
LScurrent starts at System Low and if L§current < LSclear neither (3.2) or
(3.3) will make LScurrent > LSclear- Rule (3.4) states that method activation
objects are only visible to other objects in the same calling graph.

4.3.4. Model Enforcement and Security-Consistent Database
States

Security constraints are used to classify consistent entities only. At times
during the creation or update of an object an entity can become inconsistent.
When this happens it is not possible to immediately classify some of the
objects involved. This complicates security enforcement since it becomes
impossible to determine immediately if an operation can be allowed. The
problem is illustrated in the following example.

This example is interested in trying to create an ‘employee’ object and place it
in the database. The employee object is 'E03' from the sample database shown
in Figure 2. Assume 'Name' objects with corresponding 'Salary' objects
greater than 100K are Secret and all other objects are Unclassified. The
subject’s current classification level is Unclassified and its clearance level is
Secret. The steps in the object creation are listed in Table 1 along with the
sensitivity of the object being created or modified and Lgcyrrent., the current
classification level of the method activation.

Step . Object Sensitivi L
1. Create employee object 'EQ3' Unclassified Unclassified
2. Store 'E03' in department object 'D02' Unclassified Unclassified
3. Create social security object 'SS03'  Unclassified Unclassified

Page 7 of ©

4. Store 'SS03' in employee object 'E03' Unclassified Unclassified
5. Create salary object 'S03' Unclassified Unclassified
6. Store 'S03' in employee object E03'  Unclassified Unclassified
7. Create name object 'NO3' Unclassified Unclassified
8. Store N03' in employee object 'E03' Secret Secret

Table 1 - Steps in Creating an Employee Object

In steps 1 through 7, the database is not consistent. According to our
assumptions, only the sensitivity levels of Name objects are affected by a
relation to another object provided only in consistent objects. Once the
'Salary’ object is stored the correspondence between N03' and 'S03' is
established and 'A. Talbot' becomes Secret. At this time the subject must
change LScurrent to Secret. There is a time between steps 7 and 8 when ‘A,
Talbot' has been entered in the system but not yet classified Secret.

This problem stems from the fact that security constraints are applied after
each change to an object and not when a consistent object has been created.
The security constraints in the example classify names with corresponding
high salaries as Secret and otherwise they are assumed to be Unclassified. In
step 7 there is still no corresponding salary for the name 'NO3' and so it is
assumed Unclassified. In fact, the sensitivity level of 'N03' is unknown
because no specific security constraint applies to the object when it is
inconsistent.

We are still investigating this problem. Our approach is to do these
modifications inside a transaction. A transaction [DATE84] groups individual
operations carried out on a database to be considered as one atomic change. A
transaction has two possible outcomes. It can be committed in which case the
transaction completes and its affect on the database is made permanent. It can
be aborted in which case the database is restored to its state previous to the
beginning of the transaction. The transaction allows the individual
modifications needed to get to a security-consistent state to be considered one
unit of change. It is described further below:

1. If an object is modified outside of a transaction it must go
immediately to a consistent state, where each object is classified by
a security constraint. The modification must not cause the
classification of any object to become unknown.

2. If an object is modified inside a transaction the classification of an
object can go through unknown states. When a change causes an
object to go from an unknown classification to a known
classification, the validity of the intervening operations is checked.
If security is violated the transaction is aborted and the database
state is restored to its previous state.

This method is outlined in Table 2.

The table outlines the actions involved in creating an employee object. There
is one extra column in this example which represents the conditions under
which the action is allowed by the security model. This condition is based on
the as yet unknown sensitivity levels. In the table L3 represents the
unknown sensitivity level of the object 'N03'. Once step 9 is complete LNo3
is found to be equal to Secret, the condition on step 9 is not satisfied and the
transaction must be aborted.

5. Model Properties

This section discusses properties of the security model. We don't attempt
formal proofs of these properties but rather use informal arguments to
demonstrate the properties. In the future we hope to develop a formal model
and prove these properties at that time.

5.1. Simple Security Property

The simple security property states that a subject with a current security
classification level Lg is not allowed to read an object with a sensitivity level
Lo such that Ly > Lg. In the notation used in this model it is, a subject with
clearance level Lgclear is not allowed to read an object with sensitivity level
Lo if LQ > LSclear- This is ensured by restriction (1.1) from the previous
section along with the fact that at all times L§current < LSclear- This follows
from restrictions (3.1), (3.2) and (3.3).
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Step Action Object Sensitivity LsScurrent Allowed on Condition

1. Start Transaction

2. Create employee object E03' Unclassified Unclassified

3. Store 'E03' in department object 'D02' Unclassified Unclassified

4, Create social security object 'SS03' Unclassified Unclassified

S. Store 'SS03' in employee object 'E03' Unclassified Unclassified

6. Create salary object 'SO3' Unclassified Unclassified

7. Store 'S03' in employee object 'E03’ Unclassified Unclassified

8. Create name object NO3' LNO3 LNO3 LNO3 < Secret

9. Store 'NO3' in employee object 'E03’ LNO3 LNO3 LN03 < Unclassified
10. Abort Transaction

Table 2 - Steps in Creating an Employee Object with Deferred Classification

5.2. *-Property

The *-property states that a subject with current security classification level
Lg can not write objects with sensitivity level Lo such that Lo < Lg. The
proposed model allows a subject to write objects with sensitivity levels below
LSclear as long as the subject does not have information from objects whose
level strictly dominates the object written. Evidence the model enforces this is
based on two facts, the first that L§cyurrent dominates the sensitivity level of
all information the method has obtained and second the method activation can
not write or create objects such that L§cyrrent > LO (from (1.2)).

The information accessible to a method activation can come from its instance
variables, information about. its calling context and information available
about the existence of unreadable objects. The information accessible from
instance variables is covered by point (3.3), LScurrent dominates the
sensitivity level of all objects which are directly read by a method activation.

Information read by the calling method activation can be passed on by the
mere fact that the method is executed. For example, in the computation
below,

SecretObject if True: [ UnclassifiedObject at: Answer put: True]

the execution of the true block is predicated on the information in
SecretObject. This method activation is restricted to start execution at the
classification level of its originator by restriction (3.2), Secret in this case.
This ensures that L§current dominates the level of its originating activation
level and thus it dominates the sensitivity level of all information its
execution could be predicated on. This also address the problem of information
being transferred when the SecretObject is False, since the program can not
store information when the value is True and it doesn't attempt to when the
value is False, this program will not pass information about SecretObject.

Information about the existence of objects is given to a method activation
when it can distinguish between null objects and objects it is not allowed to
read. This transfer of information is disallowed by (1.3).

5.3. Message Safety

Sending and receiving messages can not violate mandatory security. This will
be discussed in two parts. Sending a message to begin execution of a method
is discussed first, followed by a discussion of the object returned on
completion of the method execution.

A message is sent by an active method activation, M, to a passive object
causing another method activation, M2, to begin execution. M1 is executing
with a clearance level of L§clear and a current classification level of
LS1current. From restrictions (3.2) and (3.3) it can be seen that the method
activation M2 is started with the same current authority level and the same
clearance level. Any information which is transferred to the method activation
M by beginning its execution is acceptable since both methods execute with
the same current classification level.

Restriction (3.3) places the upper bound for L§2current t0 be LSclear. Thus
the upper bound on any object returned to M1 by Ma is also Lg¢lear, by (3.3)
and (1.2). This object can always be read by M1 because of (3.3) and the fact
that the same level for L§clear applies to both method activations. Security
can only be violated if M2 can return higher level information to M3 and My
does not increase its current classification level to match that of Mp. If M
attempts to read the object returned it will raise its classification level
according to (3.3) and security will not be violated. If M1 does not read the

object it will not receive the information and security will again not be
violated.

5.4. Storage Channels

This section will discuss covert storage channels. The main threat of a covert
channel in this model comes from covert signalling using the sensitivity
levels of objects. This problem can exist in security models which allow the
sensitivity levels of objects to change. The signalling is done by allowing a
high level subject to modify the sensitivity levels of objects, making them
either visible or invisible to a lower level subject. We have added restrictions
to the model to disallow this signalling. Method activations are objects but
have different restrictions on them than normal objects. First the restrictions
for normal objects will be discussed and then the special case of method
activations is discussed.

To disallow signalling through the sensitivity level of normal objects,
restriction (2.3) was added. This forbids a high level subject from modifying
the sensitivity level of an object visible to a lower level subject indirectly.
This can also take place directly if the subject tries to modify a lower level
object, and is disallowed by (1.2). It takes place indirectly when a change to a
higher level object causes the security constraint derived sensitivity level L¢
to change. This is a natural restriction if the security level of the object is
actually recorded in the object and the method activation making a change 10
an object supplies the authority to update all changed sensitivity levels. This
ensures that a method activation M1 can only change the visibility of an
object visible to another method activation M3 if LS1clear < L§2clear. This
transfer of information is legitimate and does not violate security.

Method activations violate the above restriction. Restriction (3.3) allows the
change of a method's security level conditioned on the existence of an object
with a higher classification level. This can allow a covert storage channel if
another method activation can monitor the classification level of the method
activation. A method activation is an object which changes its visibility to
other method activations depending on its sensitivity or classification level.
Restriction (3.4) was added to eliminate this possible channel. Method
activations are allowed to see other method activation objects in the same
calling graph since this may be necessary in practice. This does not cause a
channel since the method activation object of method activations in the same
calling graph is always visible to another method activation in the same tree
and will cause LScurrent of an observing method to rise to the sensitivity
level of the activation being observed. This is because they share the same
value for Lgclear, (see discussion of message safety above).

6. Conclusion

‘We have proposed a security model for a Multilevel Secure Object-Oriented
System. The model is posed in terms of an object-oriented computation model
incorporating distributed co-operating objects. Each object is assumed to be a
self-contained computing element whose only interaction with other objects is
through sending and receiving messages.

The model contains extensions to support the data classification necessary for
use in MLS/DBMS. This security model allows a subject to act with the
lowest classification level necessary to accomplish a task and thus avoid over-
classification of data in the presence of updates. This allows data classification
to follow a set of security constraints defined on data containers and not the
security clearance level of the subject making the updates.

One distinct advantage of our approach is that the object-oriented computation
model provides a uniform treatment for all objects in the system. This sim-
plifies the statement of a security model and the subsequent design.

There are many issues which remain to be examined. Although covert storage
channels in the proposed security model have been considered we have not as
yet performed a formal analysis of these storage channels. The practicality of
some of the methods proposed, such as the deferred enforcement for security-
inconsistent database states need to be determined.
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We intend to further develop this security model and analyze its security
properties more formally. At that time we will consider the problem of
system complexity and verification. We also intend to implement the model
in an object-oriented system to investigate the feasibility of the model and
performance issues related to its implementation.
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A security policy and a formal policy model for the
security properties of an internet system are
presented. The model is a result of the resolution of
specific system design issues, environmental attri-
butes, security requirements and the desire to for-
mally specify and verify the internet system design
with respect to specific security constraints.
Although the modeling approach is general and
applicable to many systems, the actual resulting
model is system-specific.

Introduction

In this paper, we document a security policy and formal
policy model for an internet. system. We give a rationale
for the model and its development with respect to related
requirements from the DoD Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD [1]. The model pro-
vides a view of the internet system as a whole and not as a
collection of components.

Several kinds of security models have been described in
recent papers [2,3,4]. The specific kind of security model
one would use is driven by the functionality of the target
system [5]. Such systems include operating systems and
their kernels, network components with specific functiona_l
1'équirements, networks themselves and data base systems.
These are being analyzed from a formal modeling point of
view. Adaptation of any single security model, such as the
Bell-LaPadula model [6], for all targets may not be

appropriate because of the variety of analyses and particu-.

lar requirements of interest.

Many models [2,3,4,6] describe system security in terms
of states (or state-transitions) of the system. The use of a
state oriented model forces an order on the events of a sys-
tem. In the case of a system that provides a datagram ser-
vice, one cannot depend on the order of the arrival and
departure of datagrams at an individual component or at
the system as a whole. The security properties of the com-
ponents of the datagram system as well as the datagram
system itself must therefore be independent of these
aspects. The model we present is independent of the order
of the datagrams as they pass through the system.

Background

At the fall 1987 SIGSAC conference at UCLA, J. Millen
summarized reasons for modeling systems and what system
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models are to accomplish [7]. First, models are constructed
to provide a descriptive capability that can be used to iden-
tify the important concepts. Second, models are con-
structed to provide a general mechanism to analyze these
important concepts. Third, models are constructed to pro-
vide a mechanism for obtaining specific solutions. They are
to be used to answer questions about the system.

The following applies those observations to security
models. First, models are used to describe the security pro-
perties of the system. Second, they are used to provide a
means to analyze these security properties. Third, they are
used to provide a mechanism to answer questions about the
security of the system. Security models also are used to
establish the basis for the formal verification of the system
security design. In this paper we present an internet formal
policy model and illustrate these modeling observations.
We provide a general modeling approach and offer a specific
internet policy model.

The Multinet Gateway System security. policy model
provides a description of thé security properties of a system
of packet switch nodes as a whole system. The model does
not deal just with a node within the system, nor just the
software portion of the corresponding Trusted Computing
Base{l]. This is because a user of an internet system is
interested in what the entire System will do with his infor-
mation, from visible interface to visible interface. His
interest will not be satisfied merely by telling him about the
properties of some piece of software embedded deeply
within the internet system. The focus of the formal policy
model is protection = against compromise together with
specific integrity constraints that support protection against
compromise.

The formal policy model defines, as important from a
security point of view, the notions of information wunits,
their acceptance into the system, the associated internal

-processing (termed derivation, which includes information

unit isolation by security label) and their delivery out of the
system. A definition of system security is then made in
these terms. The model formulation is expressed in terms
of what information is allowed to flow. It is not expressed
in terms of states and state-transitions (see Sections 3, 4).
This formulation defines a general mechanism for the
specification and analysis of the security properties of an
internet system. By making specific choices within the com-
ponents of the formal policy model, distinct policies can be
specified and implemented. This includes a portion of a
DoD policy expressed as a ‘“‘dominance” [1] relation on sen-
sitivities. The model has been used to provide a means to
establish consistency among the security properties.



Multinet Gateway System and Environment Considerations

An internet system is a collection of gateways intercon-
nected by networks that provides a datagram service to
Hosts. To set the framework for the policy itself, a brief
discussion is provided of the Multinet Gateway System
(MGS), its environment and related security concerns. The
reader is encouraged to read [8] for additional background
information. The internet system, security policy and. for-
mal policy model are described and illustrated in this paper
by direct usage of the MGS concepts and terminology.

The purpose of the MGS is to increase inter-operability
and survivability of DoD communications networks and to
provide secure communications. Increased interoperability
is achieved by allowing Hosts on different networks, with
different network protocols, to exchange data without
resorting to exceptional procedures. Survivability . is
achieved by providing the capability to use public networks
as transfer mechanisms to reestablish DoD internet connec-

tivity. ‘Secure communication is achieved by a combination
of label-based access control mechanisms, information isola-

tion and processing separation. Enecryption is provided
where necessary. ‘

In Figure 1, we show a configuration of a MGS, the
attached networks and their Hosts. The configuration con-
sists of a MGS, together with Hosts and End Networks
external to the MGS. Hosts are connected to the MGS via
End Networks. Neither End Networks nor Hosts are under
the control of the MGS. The system boundary of the MGS
is identified in the figure. It is necessary to identify and
describe the security characteristics expected of the MGS
'by the Hosts and interconnecting networks, as well as the
characteristics expected of the Hosts and interconnecting
networks by the MGS. Hence, these charactegistics and
assumptions form the basis for the MGS security policy.

The MGS consists of MG NODES and Transport Net-
works connecting the MG NODES. Two aspects of the
figure are to be noted for modeling purposes. First, the
MGS, not just a node, is to be identified by the formal
model as a single entity. Second, the Transport Networks
provide a private subnet that is to be viewed as inside the
MGS and hence under its control. One can achieve this
result by actually placing the Transport Networks inside a
physical boundary completely under the control of the MGS
or one can use some means, say encryption, to guarantee
that MGS traffic across some resource shared with other
systems (i.e., the Transport Networks) is isolated from those
other systems. This is the basis for a secure channel within
the MGS. A secure channel is a generalization of the
“trusted path” concept as described in [1]. A secure chan-
nel is realized by specific mechanisms that allow the com-
munication of sensitive information, both within a Multinet
Gateway Node and among gateway nodes. A Host con-
nected to a Transport Network does not have access to this
secure channel.

Finally, in providing the datagram service for end-users,
additional ‘information is required to be handled by the
MGS that is not end-user data. Examples include specific
protocol information or control information. The system,
therefore, needs to distinguish between these two types of
information.
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‘Figure 1. The Multinet Gateway System As an Internet

‘ Security Policy
Perimeters and Policy

In the specification of the security policy, security responsi-
bilities are allocated to the components of MGS, End Net-
works and Hosts. We use the notion of a perimeter enclos-
ing various components to bound the security properties of
the compomnents. There are two perimeters of importance
for the Multinet Gateway System: the Security Perimeter
and the Certification Perimeter.

The Security Perimeter of the MGS extends to the Inter-
net Protocol (IP) layer of protocol on a Host.. This is
because the MGS provides an IP datagram service, and
because neither End Networks nor Hosts are under the con-
trol of the MGS. For example, a Host and an End Network
are to provide the correct security sensitivity of each
datagram sent to the MGS. The security perimeter
extends, therefore, beyond the system boundary of the
MGS. These associated assumptions and security charac-
teristics are to be included in the internet security policy,.
and consequently, included in the formal specification.

The Certification Perimeter encompasses the internet
security relevant functions. The Certification Perimeter is
contained within the Security Perimeter. For the MGS
Certification Effort, security assertions are made and being
proven (verified) concerning security relevant functions that
are within the Certification Perimeter. Security assump-
tions are made also about security relevant functions .out-
side the Certification Perimeter, but within the Security
Perimeter.

The MGS assumes security responsibility for Host data
at a MGS Port. This Port is the interface between the End
Network and the MGS. The collection of MGS Ports estab-
lishes the MGS Certification Perimeter, which is the system
boundary and identified in Figure 1. The MGS Security
Policy, as seen by Hosts, is defined with respect to this
Certification Perimeter.

The MGS implements a security policy based on the
DoD Security Policy. The enforcement of this security pol-
icy depends upon a combination of administrative pro-
cedures and technical enforcement mechanisms. Adminis-
trative procedures are necessary to determine and validate
the associated security attributes of each Host and assign
those security attributes to the appropriate MGS Port.



Technical enforcement mechanisms are then used to ensure
that all data exchanged via the MGS is always mediated
against these security attributes and that the security attri-
butes are protected against unauthorized modification.
Hosts are expected to have a wide range of security attri-
butes. Of concern here are those Host security attributes
related to the exchange of data through the MGS. These
Host specific security attributes must be converted into a
uniform set of Sensitivity levels, to ensure that there is con-
sistency in Sensttivity level naming conventions.

Multinet Gateway System Security Policy

The MGS Security Policy encompasses Protection Against
Compromise, Integrity, Provision of Service, and Accounta-
bility. The full policy statement is given in [9]. In particu-
lar, the Protection Against Compromise Policy is one of
assuring the secrecy of the information within datagrams
handled by the MGS. Related to this are the integrity con-
siderations that are in direct support of the maintenance of
that secrecy. The organization of the statements emphasize
the relationship between a restricted form of integrity and
the overall policy for Protection Against Compromise.
Since the scope of the formal model is only on the Protec-
tion Against Compromise together with specific integrity
constraints, we do not document the full Accountability
Policy or the Provision of Service Policy in this paper.

Protection Against Compromise: The intent of the
MGS Security Policy for Protection Against Compromise is
that information flowing through the MGS will not be sent
to Hosts and End Networks that are not allowed to see that
information. The exchange or transport of information
between Hosts and the MGS shall be either end-user infor-
mation or non end-user information. The policy of Protec-
tion Against Compromise consists of the following rules:

DATA SECRECY

a. The security policy shall provide for the control of
information within datagrams based on the labeling of
information.

b. This policy refers to end-user information at the MGS
certification perimeter.

c. The unit of data exchange between Hosts and the
Multinet Gateway System for end-user information
shall be termed an information unt.

d. The unit of data exchange between Hosts and the
Multinet Gateway System for non end-user informa-
tion shall be termed a non information unit.

e. There shall be the notion of a Sensitivity level associ-
ated with each information unit that is to reflect the
Sensitivity of the information unit. The Sensitivity
level shall be realized via a security label. The secu-
rity label shall consist of a security classification and a
set of security categories.

f. Hosts may be authorized to send and receive data at
more than one Sensitivity level. Associated with each
Multinet Gateway System Port is one or more security
labels authorized for the Hosts connected to that port
via an End Network. There may be separate sets of
security labels for incoming and outgoing ports.

g. It shall be possible to associate a security label with
each information unit as it enters a port.

h. The security label associated with an information unit
accepted into the System shall be one of the security
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labels associated with the port on which the unit was
received. Otherwise, the information unit will not be
accepted.

i. Information units may be transformed as they pass
through the system. The transformations will be lim-
ited, however, so that data from one or more informa-
tion units are combined into one information unit via
a transformation only when the associated security
labels are equal. The security label of the result is to
equal the security label of the information wnits being
transformed. The resulting unit is said to be Derived
From the associated information wunils being
transformed.

i. If an information unit is delivered to a port for
transmission to a Host, then (1) it was Derived From
information units accepted into the system and (2) the
security label associated with this unit is one of the
security labels associated with the Destination port.
Otherwise, it will not be delivered.

k. Information units enter and leave the MGS only via
End Networks.

I.© Non information uniis received by the MGS will not
compromise any information in information units and
no non nformation unit sent out a MGS port will con-
tain information from an ‘nformation unit.

The above policy statements can be summarized as fol-
lows: The security label associated with an information unit
is not to be changed while the unit is inside the system, the
association between security label and data is to be main-
tained throughout the system, and data from two different
information units can be combined inside the system only
when the associated security labels are the same. An infor-
mation unit will be allowed to enter (leave) the system only
if an associated port possesses a security label set compati-
ble with the security label of the information unit. Further,
there shall be no mixing of nformation units with non infor-
mation unils.

The policy itself is quite general and can be used to
describe a number of policies for potentially different appli-
cations. We give a summary of examples of this in Section
5. ’

INTEGRITY IN SUPPORT OF DATA SECRECY

The Multinet Gateway Integrity Policy is based on the
notion of information unit described above. The Integrity
Policy requires that information flowing out of the MGS is
equivalent to information read into the MGS. The Integrity
Policy provides the explicit definition of the Derived From
relationship mentioned above. The terms used in the policy
are the same as those for Protection Against Compromise.
The Integrity Policy consists of the following rules:

a. This policy refers to information at the MGS
certification perimeter.

b. Such information is embodied in information units, as
specified in the policy for Protection Against
Compromise.

¢. An information unit delivered from an MGS must be
Derived From at least one information unit accepted
into the MGS. (Note that this statement is related to
statements (h) and (i) of the Protection Against
Compromise Policy.)

d. The delivered information unit must satisfy one of the
following properties:




1. It must be the same as an nformation unit
accepted into the MGS,

2. Its contents must be contained in an information
unit accepted into the MGS, or

3. Its contents are a combination of information

unils accepted into the MGS.

The MGS is defined to be Secure with respect to Pro-
tection Against Compromise, if at all times, every informa-
tion unit ever sent by the system to a port for delivery to a
Host satisfies the Data Secrecy and Integrity statements
above.

A distinct integrity model is not provided. Only these
statements related to integrity are formally modeled and
verified and then only within the context of the model for
protection against compromise.

Accountability: The MGS Accountability Policy refers
only to events that take place inside the MGS. The events
that will be monitored are those that either affect the secu-
rity of the system or represent an attempted security viola-
tion. These events will be logged in a protected fashion and
made accessible to appropriate operators of the MGS.

Since the MGS node is an Internet Device acting at the IP

level, by its nature it is a best effort datagram forwarding
device. The associated policy statement is that the MGS,
within the limits of the IP protocol, will provide a best
effort datagram forwarding service in getting the accounta-
bility information to the appropriate audit gathering facil-

ity.

Policy Statement: MGS Security: The MGS is said to be
SECURE if is it secure with respect to both the Policy on
Protection Against Compromise and the Policy on Accoun-
tability.

It is important to note that the formal model (given in
Section 4) as well as the formal specification and its
verification is the basis for increased -assurance at the Al
level [1] that the running MGS satisfles the Policy on Pro-
tection Against Compromise.

MGS Model of Policy: Narrative

In this section, we present a narrative description of the
Multinet Gateway System Security Policy Model. The
model is one one of an external view of the system. The
model is based on identified terms, a collection of security
assertions about these terms, and specific relationships
among them.

The formal description of the properties of the system,
on which this narrative description is based, is given in Sec-
tion 4. A discussion of several consequences of the formal
model and how various security policies can be described
using the model are given in Section 5.

Primitive Terms

The motivation and security policy specification of the pre-
vious sections have been given in rather concrete terms.
The formal model is presented in more abstract terms to
better describe the important concepts. The following list
identifies terms in the model. They are given with a brief
description of the intended semantics. The list also pro-
vides a means to associate the abstract terms with the con-
crete terms used in the previous sections.

13

INTERNAL_SYSTEM
The INTERNAL_SYSTEM is the svstem under
discussion. This is the system that is being
modeled. This section describes the security
model of the INTERNAL_SYSTEM, which
relates to the MGS discussed in the previous sec-
tions.

EXTERNAL_SYSTEM
The INTERNAL_SYSTEM  provides data
transfer services for the EXTERNAL_SYSTEMs.
Although security properties of the
EXTERNAL_SYSTEMs are not being demon-
strated, assumptions about these security pro-
perties will be modeled. EXTERNAL_SYSTEMS
relate to the Hosts, which use the services of the

MGS.

wire
The INTERNAL_SYSTEM receives information
from the EXTERNAL _SYSTEMs via i_wires.
An 1_usre represents an incoming connection to
an END NETWORK.

o_wire

The INTERNAL_SYSTEM sends information to
the EXTERNAL_SYSTEMs via o_wires. An
o_wtre represents an outgoing connection to an
END NETWORK.

information_unit .
There is a set IU of information_units. They are
used to carry end-user information among
EXTERNAL_SYSTEMs by way of the
INTERNAL_SYSTEM. Note that we use the
term enformation_unit here rather than Protocol
Data Unit or datagram for the sake of generality
and historical reasons. The two names refer to
the same concept.

security_label

There is a set SL of security_labels. A single
security_label is used to mark the Sensitivity of
an nformation_unit. Bach _wire (o_wire) is
associated with a set of security_labels. An
mformation_unit is accepted for transfer from an
i_wire {or transfer to an o_wire) only if its
securtty_label is an element of the set of
security_labels associated with the i_wire {or
o_wire). Note that it is not necessary at this
time to describe an inner structure or com-
ponents of a security_lebel in order to define the
various functions on a security_label, or to define
what is meant by the term SECURE system. A
security_label encompasses the notion of a secu-
rity attribute as used in the previous sections.

Derwved_From
There is a notion of one information_unit being
Derwed_From one or more other

mformation_units. The Derived_From operation
permits the desecription of the security properties
of fragmentation, assembly, transfer from one
location to another, encryption and decryption.

Figure 2 illustrates this more general setting and is to aid
the understanding of these terms when compared with the
terms used to describe the formal model. Again, it is
important to note that the policy model views the
INTERNAL_SYSTEM as a black box.
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Figure 2. A Pictorial Description of the Model
Security Assertions

The following assertions are to be satisfied by the system.

By communication we mean the tramsfer  of
information_units. )

a. T_wires and o_wires always connect
EXTERNAL_SYSTEMs to the INTERNAL_SYSTEM

b. The only communication into and out of the
INTERNAL_SYSTEM is via i_wires and o_wires.

c. All communication across i_wires and o_wires consists
of information_units.

d. Each information_unit has an associated
security_label.

e. FEach i_wire and each o_wire has an associated set of
security_labels.

f. The INTERNAL_SYSTEM accepts an
mformation_unit only from i_wires and only if the
security_label of the information _unit is an element of
the set of security_labels associated with the _wire

" bearing the information_unit.

g. The INTERNAL_SYSTEM delivers an
wmnformation_unit only to o_wires and only if the
security_label of the information_unit is an element of
the set of security_labels associated with the o_wire to
which the information_unit is delivered.

h. If a given information_unit is delivered to an o_wire,

then it was Derived_From information_units accepted
from i_wires. Additionally, the security_label of each
such accepted nformation_unit must equal the
security_label of the delivered information_unst.

There are three major points addressed by these assertions.
First, there is an acceptance criterion . (Assertion f).
Secondly there is a Derived_From criterion (Assertion h),
and finally there is a delivery criterion (Assertion g). The
other assertions are there to guarantee that the
INTERNAL _SYSTEM has the appropriate relationship with
EXTERNAL_SYSTEMs. Figure 3 illustrates the acceptance
into , derivation and delivery out of the MGS.
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MGS Model of Policy: Mathematical Deécription

This section presents the formal model of the security policy
on Protection Against Compromise, which is given in Sec-
tion 2.

The MGS Security Policy Model is a structure consisting
of three components. The first component, specified in sec-
tion 4.1, is a collection of sets. The second component,
specified in section 4.2, is a collection of functions using
these sets. These functions are termed ‘‘primitive’” because
they are the basis of all the security relationships being
specified. The third component, specified in section 4.3, is a
collection of boolean-valued functions which specify the
necessary relationships among the various functions. These
are the security assertions. Using these relationships of the
model, an expression is then given that specifies what it

means for a system to be SECURE and based on the
model.

Throughout this section the notation PS (M) is used to
denote. the POWER SET of a given set M. For a set M, the
power set, PS (M), is the set of all subsets of the set M.
Additionally, for two arbitrary sets, A and B, A X B
denotes the cartesian product of the sets.

Underlying Sets For the Policy Model

Let [_WIRE, O_WIRE, SL, IU and DU be non-empty sets.
Let elements of these sets be called i_wires, o_wrres,
security_labels, information_units and data_unifs, respee-
tively. No assumptions are made about the sets other than
that they are finite and no two of them have a common ele-
ment. Further, let JU contain two sets, IV, and IU,,,. Ele-
ments of IU;,, (IU,,) represent information_units coming
into (leaving) the INTERNAL_SYSTEM, respectively. Let
DU contain a distinguished element, termed the
null_data_unit. Let INTERNAL_SYSTEM be a single
object. These sets model the primitive terms in the previ-
ous section except for the term Derived_From.

Primitive Functions

The following functions are the basis for the security asser-
tions identified in the policy section. Let functions be
specified as follows:



Derived_From:
Derived_From : IU,,, — PS (IU,) (1)

The function Derived_From .associates with each
information_unit, iu, leaving the INTERNAL_SYSTEM, a
subset of information_units that enter. The Derived_From
function can be used to discuss the necessary security pro-
perties of fragmentation, assembly, transport, encryption
and decryption. This discussion s illustrated by presenting,
in Section 5.2, the specific relationship between fragmenta-
tion and assembly with Derived_From.

Is_Received:
Is_Received : IUy, X _LWIRE — { T , F } (2)
The function  Is_Received —associates with  each

information_unit and o_wire pair a boolean value. If
Is_Recetved (iu, i_wire), then the i was actually received
on that ¢ wire by the INTERNAL_SYSTEM.

Is_Delivered:
Is_Delivered : IU,,; X O_WIRE — { T ,F} (3)
The function  Is_Delivered associates with each

information_unit and o_wire pair a boolean value., If
Is_Delivered (iu, o_wire), then the v was actually sent to
that o_wire by the INTERNAL_SYSTEM.

Sensitivity:

Sensitivity : IU — SL

(4)
The Sensitivity  function  associates  with each
wnformation_unit a security_label. The security_label associ-
ated with each su is used to control the acceptance and
delivery of information_units on particular i_wires and
o_wires.

L_Wire_Allow:

I_Wire_Allow : _LWIRE — PS (SL)

(5)
The function I_Wire_Allow associates with each ¢« wire a
subset, possibly null, of security_labels. An i can be
accepted into the INTERNAL_SYSTEM only if an
appropriate relationship exists between the Sensitivity of
the 7u and the set of security_labels associated with the
i_wire. The function I Wire_Allow allows one to describe
that relationship, which. is given by  the function
Is_Securely_Accepted, and specified in the Security Asser-
tions subsection (4.3).

O_Wire_Allow:
O_Wire_Allow : O_WIRE — PS (SL)

(6)
The function O_Wire_Allow associates with each o_wire a
subset, possibly null, of security_labels. An +u can be
delivered from the INTERNAL_SYSTEM to the o_wire only
if an appropriate relationship exists between the Sensitivity
of the tu and the set of security_labels associated with the
o_wire. The function O_Wire_Allow allows one to specify
that relationship, which is given by the function
Is_Securely_Delivered, and specified in the Security Asser-
tions subsection also (4.3).

Data:

Data : IU — DU

(7)
The function Date associates with each information_unit a
data_unit. It represents the data portion of - the
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information_unit.
Is_Part_Of:
Is Part Of :DUXDU —{T,F}

(8)
The function Is_Pari_Of define a relation on . data_units.
Let it be reflexive and transitive.

Data_Combine: -~

Data_Combine 9)
The function Data_Combine permits one to describe the
bringing together of data_units into a single data_unit. Let

the image of the empty set, (which is an element of

: PS (DU ) — DU

PS (DU)), be the distinguished element of DU, the
null_data_undt.
Data_Accounted_For:
Data_Accounted_For : (10)

IUXPS(IU)y—={T,F}
Data__Accounted Foris defined as: )
‘ Data_Accounted_For (iu, X)
iff

(11)

There exists a set P, P C DU, such that

Data (i) = Data_Combine (P) &
p € P implies there exists z, € X, Is_Part_Of (p, Data (zp) ) &
z € X implies there exists.p, € P; Is.Part_Of (p,, Data (z))

This function deseribes what it means for a given data_unit
to be related to other data_units.

Security Assertions

Security assertions identified in the narrative descrlptlon
are expressed in mathematical terms nexf..

Is_Securely_Accepted:. The following definition specifies

what it means to  be accepted  into.  the
INTERNAL_SYSTEM.
Is_Securely_Accepted : [Uy, X LWIRE = { T ,F} (12)
Is_Securely_Accepted must have the propéfty:
Is_. S’chrely_Accepted (fu, w) .
- (13)

Sensitivity (fu) € I Wire_Allow (w) &
’ ‘ Is_Recedved (fu, w)' -

The function Is_Securely_Accepted, is related  to the
functions Sensitivity, I Wire_Allow. and Is_Received. The
necessity for such a relationship is that in an actual system
the INTERNAL_SYSTEM may read in information_units
from an i_wire and may not be able to determine the Sensi-
tivity of the particular mformatwn untt untll after it has
been read in. Once the Sensitivity has been determined, it
is then p0551ble to say whether it is permissible to process it’
further. " If Is_Securely_Accepted (tu, w), then the w is a
candidate for further processmg

Is_Securely___Derwed
" Is_Securely_Derived : IUDM —->{ T;F}

(14)
Is. Securely_Derwed must have the property:

Is_Securely_Derived (iu)
iff (15)
for every iu' € Derived_From (iu)
Sensitivity (fu) = Sensitivity (iv') &
for some i_wire w, Is_Securely_Accepted (iu
Data_Accounted_For (fu, Derived_From (iu) )

Lw) &

The function Is_Securely Derived is related to other
functions. This relationship is specified in expression (15).



Specifically, a given information_unit is determined to be
securely derived if and only if three conditions are satisfied.
First, the particular information_unit was Deriwed_From a
set of information_units that they themselves were securely
accepted. Second, each of these
information_units have the same Sensitivity as the derived
information_unit. Third, the data portion of derived
Information_unit equals the combination of date_units that
are themselves part of the data of the incoming
information_units. Note that the Sensitivity of the derived
1w is the same as the Sensitivity of the accepted sus. If an
information_unit is determined to be securely derived, then
it is a candidate for further processing.

Is_Securely_Delivered: The next definition specifies the
conditions that must be met before an information_unit can
be placed on a particular o_wrre.

Is_Securely_Delivered: IU,

out

X O_WIRE - { T ,F} (16)

Is_Securely_Delivered must have the property:
Is_Securely_Delivered (iu, w)
iff a7
Sensitivity (i) € O_Wire_Allow (w) &
Is_Securely_Derived (iu)

The function Is_Securely_Delivered is a boolean function.
Just as there is a specific relationship between the function
Is_Securely_Accepted and some other functions, there is to
be a  specific  relationship  with  the  function
Is_Securely_Delivered and additional functions. Expression
(17) gives that relationship. Specifically, a particular
information_unit is said to be securely delivered if and only
if two conditions are satisfied. First, the set of
securtty_labels associated with that particular o_wire must
have as an element, the security_label of the particular
delivered information_unit. Second, the information_unit
must have been securely derived. These are the conditions
specifying what it means to deliver an information_unit to a
given o_wire securely.

Definition of a Secure System

The definition of a secure system is given in this subsection.
As presented, the MGS Security Policy Model is a structure
consisting of three components. Even though it allows for
considerable flexibility, it is intended that the meaning of
security be the same no matter how one may choose to use
the flexibility providéd. The flexibility is allowed by letting
the actual choice of the sets (first component) and the func-
tions ;defined using them (second and third components) be
left to a given design and implementation approach.

In order to accurately describe what it means for a sys-
tem to be Secure based on the model, two additional
notions need to be described. First, definitions of what an
instance of the model is and what security means within
that particular instance of the model need to be identified.
Second, a means of relating a system to a particular
instance of the model needs to be identified.

An INSTANCE_OF_MODEL is defined to be a particu-
lar choice for each of the five sets and a particular choice of
the primitive functions, e.g., Derived_From, Is_Received,
Is_Delivered, Sensitivity, I_Wire_Allow, etc. that satisfy the
specifled expressions (1)-(17).

Note that the functions, Is_Securely_Accepted,
Is_Securely_Derived and Is_Securely_Delivered, are defined

in terms of the previous functions and no arbitrary choice
can be made for them.

securely accepted.

An INSTANCE_OF_MODEL is defined to be SECURE
if, for the corresponding choices made in determining the

particular INSTANCE_OF_MODEL, the following
statement is true:”
for every wu € IU
if .
Is_Delivered (v, w) (18)
then

Is_Securely_Delivered (1u, w)

Note that the expression in (18) is the only place where
the function Is_Delivered is related to the function
Is_Securely_Delivered.

Consider an arbitrary system and a given instance of
the model, denoted by INSTANCE_OF_MODEL. An asso-
ciation of the INSTANCE_OF_MODEL to the entities of
the system is defined to be a mapping from the particular
components of INSTANCE_OF_MODEL to the system’s
entities.

A systém is said to be SECURE and Based on the
Model if the following conditions are satisfied. First, there
exists an instance of the model, INSTANCE_OF_MODEL.
Second, there -exists an association of the instance of the
model, INSTANCE_OF_MODEL, to the system’s entities.
Third, suppose the system actually delivers an entity that
corresponds to an ¢nformation_unit under the particular
association and model instance. Then the expression num-
bered (18), when interpreted within the system via the same
association, is to evaluate to true if and only if the expres-
sion (18) within INSTANCE_OF_MODEL evaluates to true.

MGS Model of Policy: Discussion

The policy stated as the MGS Security Policy in Section 2
and the associated formal model given in Section 4 are very
general. Depending on given instances of the model, includ-
ing the definition of security_labels and the association of
security_labels with the ports of a system, all sorts of flows
are possible. To enforce DoD policy, one expects to use the
DoD security labeling scheme. One expects to not permit
the write down of information; that is, labeling a port with
a high label when all the EXTERNAL_SYSTEMSs connected
to it are at low level. - The associated wires should not be
permitted to carry the high data. The model, in fact, disal-
lows this. This is one of the places where the administra-
tive actions in determining the security_labels associated
with ports becomes crucial to enforcing DoD policy.

Specific observations about the formal model and the
type of policies one can obtain from the model are
summarized below.

Observations On the Formal Policy Model

There is neither a ‘‘destination” nor ‘‘source” function
defined on the set of information units. While it is tempt-
ing to introduce such concepts, it is not necessary for this
particular environment, and would probably impose addi-
tional difficulties for the formal verification of a system
based on such a model. Additionally, the formal model does
not explicitly incorporate (at this time)
non_information_units although the security policy does
identify such entities. The focus of the formal modeling has
been on handling end-user information rather than on
modeling, for example, protocol control messages. Such
information would not have the same acceptance or delivery
checks. Further, such non end-user information leaving the
system needs to be ‘“‘derived from” only non end-user and
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system initialization information and not be mixed with
end-user information.

Note that the empty set {or null label) can not be asso-
ciated with an nformation unit. A particular 2_wire or
o_wire, however, may have the empty set associated with it
(via the functions I_Wire_Allow and O_Wire_Allow). If it is
an i_wire, then no information_units will be accepted from
that i_wire. If it is an o_wire, no information_units will be
delivered to it.

There is nothing in the assertions that guarantees the
delivery of information_units once they are accepted into
the system. It may turn out that all security_label sets
associated with o_wires do not contain the security_label of
an accepted information_unit.

If an nformation_unit was delivered from the
INTERNAL_SYSTEM, then there was at least one
mformation_unit accepted into the INTERNAL_SYSTEM.
The information contained . in the delivered i was
Derived_From the accepted information_unii(s).

There is no connection in the model between an i_wire
and an o_wire. In a particular application, each i_wire may
be paired with an o_wire. But the security_label sets
attached to the ¢_wires and o_wires are independent of each
other. Hence in an ¢_wire / o_wire pair; the i_wire and
o_wire may have different security_label sets associated with
them. Also, an INTERNAL_SYSTEM can securely deliver
an su to more than one o_wire.

An EXTERNAL_SYSTEM may be connected to the
INTERNAL_SYSTEM by a single 7_wire or o_wire. That is,
the EXTERNAL_SYSTEM may be only a source or a sink
for information with respect to the INTERNAL_SYSTEM.

Further, the data will not necessarily stay constant
throughout its traversal of an INTERNAL_SYSTEM. In
fact, it may change because of fragmentation, encryption,
decryption, etc. Consequently, there is no reason to expect
any verification regarding the possibility of no change to
the data or some portion of the data.

The security policy and formal model allow transforma-
tions on information units that relate, under a given condi-
tion, two or more units to another single information unit
(refer to policy statement (h) of Protection Against
Compromise and the notion of derivation). This may poten-
tially permit data aggregation, where, by the model scheme,
a resulting information unit would have a sensitivity label
possibly lower than the aggregation of the set of associated
information units. There are two aspects to this aggrega-
tion. First, the aggregation is achieved ‘“‘outside” the sys-
tem. Namely, the system being modeled is a datagram ser-
vice and the aggregation would be related to the higher
level transport services using the datagram service of the
system being modeled. Second, if, within the modeled sys-
tem, one assembles information units, they are assembled
from a related entity that was previously fragmented. The
assembly is actually the re-assembly of a previously frag-
mented datagram. Therefore, in this second case there
would be no aggregation.

Finally, the concept of Derived_From is distinct from the
concept of Data and the combination of data. The latter is
introduced to describe the necessary properties of fragmen-
tation and assembly. The concepts are brought together
only in the meaning of Is_Securely_Derived.

Assembly, Fragmentation and Derwed _From

This subsection shows how the function Derived_From
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models both assembly and fragmentation. The upper por-
tion of Figure 4 illustrates the concept of the assembly and
fragmentation of nformation_units across the
INTERNAL_SYSTEM.

Now consider the function Deriwed_From. As defined,
the image of an nformation_unit under Derved_From is a
set of incoming information_units. Observe that the sense
of direction of the function, Deriwved_From, considers an
outgoing nformation_unit and ‘“looks back” at what the
given information_unst is derived from among the incoming
imformation_units (refer to lower portion of Figure 4). In
this way assembly is represented directly by the function
Deriwved_From.

To explicitly relate fragmentation to Derived_From, one

additional  definition is ° needed. For a given
information_unit, v belonging to IU;,, define the following
set:

FRAGMENTS (iv) = { f | f € IU,,,, iu € Derived_From (f)}

The set, FRAGMENTS (w), identifies all those outgoing
information_units that are related to the given su by the
function Derwed From. In this way, fragmentation is
modeled by the function Derived_From.

Two properties are associated with Derived_From (ref:
expression 15 of Section 4). They are the security proper-
ties for fragmentation as well as assembly. First, for a
given outgoing information_unit, tu,

For all z € Derived_From (du), Sensitivity (iu) = Sensitivity (z)
Second, all portions of data in tu are to be accounted for by
data in the information_units of the set, Derived_From (iu).

This concept is captured by Data_Accounted_For of Section
4.

INTERNAL INTERNAL
SYSTEM SYSTEM
ASSEMBLY FRAGMENTATION
IUlIl IU OU‘t
A
f
\ j_
\Y INTERNAIL
Derived From(iu) 7 SYSTEM

DERIVED FROM

Figure 4. Assembly, Fragmentation and Derived_From

An incoming information_unit that does not leave the
INTERNAL_SYSTEM is modeled by Derived_From by hav-
ing that incoming informaition_unit not be an element of the
image of any outgoing information_unit  under



fragmentation are adequately modeled as described, then
the approach is symmetric. Specifically, referring to the
lower portion of Figure 4 and “looking forward,” rather
than  “backward,” one could define a function
“Derive_For,” which would associate a set of outgoing
mformation_unils with an incoming information_unit. Frag-
mentation and assembly would be modeled in an analogous
manner. Since we are interested in what goes out of a sys-
tem based on what comes into it, the choice was made as
given.

Security Assertions as Mathematical Relationships

Certain assertions within the policy are represented within
the formal model as specific relationships among functions.
Specifically, one can think of the INTERNAL_SYSTEM as
a device that reads information_units from i_wires, produces
new information_units from the accepted ones, and delivers
information_units to o_wires.

The security assertions (a)-(c) of subsection 3.2 above
must actually be satisfied by both physical and hardware
limitations of the INTERNAL_SYSTEM. It is assumed that
the INTERNAL_SYSTEM 1is connected only to packet
switch networks. It is assumed that all input and output of
information_units to the INTERNAL_SYSTEM occur
through only these networks. It is assumed that these net-
works are connected only to external
INTERNAL_SYSTEMs and in fact that the
information_units transferred to the INTERNAL_SYSTEM
have security_labels. That is, that it is possible for the
INTERNAL_SYSTEM to determine the security_label of all
information_units received.

The collection of functions, Derived_From, Is_Received,
Is_Delivered, Sensitivity, I_Wire_Allow, and O_Wire_Allow,
are primarily for description. They either describe proper-
ties of the information_units or of the i_wires and o_wires.

The last three security assertions stated in section 3.2
are described mathematically in sections 4.3.1-4.3.3. At any
instant of time, the INTERNAL_SYSTEM must be secure
in the sense of the definition in 4.4. That is, all
information_units actually sent to an o_wire up to that
point must satisfy the conditions given in 4.4.

Implementing a System-Specific Security Policy

To implement a particular security policy within a system
based on the model, several steps are required.
a. Determine the set of security_labels.

b. Determine the set of information_units to be managed
by the INTERNAL_SYSTEM. This set will change

with time.

Determine the mechanism(s) in the
INTERNAL_SYSTEM for determining the Sensitivity
of information_units.

There must be databases, or some other mechanisms,
in the INTERNAL_SYSTEM so that the functions
L Wire_Allow and O_Wire_Allow can be implemented.
These databases must be securely initialized and pro-
tected from unauthorized changes. The content of
these databases determines the acceptable flow of
information_units  from  ¢_wires, through the
INTERNAL_SYSTEM, and finally to o_wires. Various
specific policies can be implemented depending on the
content of the databases.

The INTERNAL_SYSTEM must have a notion of
Derived_From, which has the identified properties.
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f. It must then be verified that the system maintains the
definition of SECURE for every information_unit

actually sent out on an o_wire.

The model supports a number of specific security poli-
cies. The security policy in force for a particular implemen-
tation of the model depends on the security_label set and
the distribution of the subsets of security_labels to the vari-
ous i_wires and o_wires. For example, DoD policy would be
that if an i_wire or o_wire could carry top secret informa-
tion, it could also carry secret, confidential and unclassified
information, unless explicitly stated otherwise. This can be
modeled by having the security_label set of the i_wire or
o_wire contain all four classifications. This allows the tie to
the familiar “dominance” relation identified in [1].

Another policy might be that the ¢_wire or o_wire con-
nected to EXTERNAL_SYSTEMs should only allow secret
information. This can be described in the model by having
the security_label set associated with the _wire and o_wire
that connect = the EXTERNAL_SYSTEMs to the
INTERNAL_SYSTEM to contain only the element secret.
Information_units with other than a secret security_label
cannot then be carried on the particular 7_wire. Other
specific policies can be realized via this general policy
model.

Model Validations

It is often required to validate a given model in two ways.
First, validate that the model actually represents the con-
cepts and statements within a given security policy. Call
this an external validation. For the Multinet Gateway Sys-
tem, this ezternal validation is based on ‘the Protection
Against Compromise Policy. Second, validate, by some rea-
sonable means, that the model is consistent within itself.
Call this an internal validation. Both validations of the for-
mal model are given in [9]. The internal validation gives
our interpretation of the requirement stating *“. .. a formal
model of the security policy supported by the TCB shall be
maintained . . . that is proven consistent with its axioms [,
para. 4.1.3.2.2].”

Conclusions

This paper has presented an internet security policy and
formal security policy model. The scope of the security pol-
icy is the collection of the security properties of a packet-
switched internet system providing a datagram service.
The formal model focuses on protection against comprom-
ise. The paper has summarized the approach taken to
show informally that the model is a representation of an
appropriate portion of the policy and that the model itself
has an internal consistency. It illustrates a way of model-
ing the security attributes of an internet system and pro-
vides a specific example of one such security model. The
model and approach outlined here has been used in the pro-
duction of the formal specification, in Gypsy, of the Mul-
tinet Gateway System, and in the formal verification of
that specification.

The authors gratefully acknowledge the careful review
provided by Jim Williams, Don Good, Mike Smith and Max
Heckard of previous drafts during the development of this
paper.

References

[1] DoD Computer Security Center, ‘‘Trusted Computer
System Evaluation Criteria,” DoD 5200.28-STD, Dec.,
1985.



8]

J. McLean, C. Landwehr, C. Heitmeyer, “A Formal
Statement of the MMS Security Model,” Proceedings of
the 1984 Symposium on Security and Privacy, April 29-
May 2, 1984, Oakland, Calif. pp. 188-194.

J. Glasgow, G. MacEwen, “A Two-Level Security Model
For a Secure Network,”” Proceedings of the 8th National
Computer Security Conference, Sept. 30-Oct. 3, 1985,
Gaithersburg, Md., pp.56-63.

J. Goguen, J. Meseguer, “Security Policies and Security
Models,”” Proceedings IEEE Symposium on Security and
Privacy, April 1982, pp. 11-22.

D. Nessett, “Factors Affecting Distributed System
Security,” Proceedings IEEE Symposium on Security
and Privacy, April 7-9, 1986, Oakland, Calif., pp. 204-
222.

D. Bell, L. LaPadula, ‘“Secure Computer Systems:
Mathematical Foundations and Model,” Technical
Report, MITRE Corp., 1974, Bedford, MA.

J. Millen, Introductory Remarks, Session on ‘“Toward a
Theory of Computer Security,” ACM SIGSAC Sympo-
sium on Distributed Systems & Local Networks, UCLA,
Nov. 14, 1987.

Baker, P. C., Dinolt, G. W., Freeman, J. W., Krenzin,
M. D., and Neely, R. B., ““Al Assurance For an Internet
System: Doing the Job™, Proceedings of the 9th
National Computer Security Conference, Sept. 15-18,
1986, Gaithersburg, Md., pp. 130-137. A

Ford Aerospace Corporation, ‘‘Security Model Task
Report: Policy and Formal Model,” (Rev. to Final)
July, 1988, CSD-TR1711.

19



ULYSSES: A Computer-Security Modeling
Environment

Tanya Korelsky, Bill Dean, Carl Eichenlaub,
James Hook, Carl Klapper, Marcos Lam,
Daryl McCullough, Clay Brooke-McFarland, Garrel Pottinger,
Owen Rambow, David Rosenthal, Jonathan P. Seldin,
and D. G. Weber

Odyssey Research Associates, Inc.
301A Harris B. Dates Drive
Ithaca, New York 14850-1313 *

Abstract

This paper presents an overview of the Ulysses com-
puter security modeling environment. Ulysses is a design
environment in which models of systems can be described
formally, properties of those models can be verified, and
in which specialized security analysis is supported by a for-
mal theory of security. The theory of security is motivated
by non-deducibility and non-interference concerns, and it
also permits the security analysis of complex designs by
decomposing them into interacting parts. Graphical and
textual specification languages allow users to describe these
design decompositions in an intuitive manner, while remain-
ing grounded in the formal theory of security. A natural-
language component generates English descriptions of user-
created models. A library facility allows re-use of secure
models. The use of this environment requires extensive
theorem-proving and heuristic support; this is provided by a
powerful mathematical engine, incorporating a meta-language
facility.

1 Introduction

Ulysses is a collection of tools that assist in the design and ver-
ification of secure computer systems. It is being developed at
Odyssey Research Associates (ORA) in Ithaca, New York. It
provides a rich environment in which both new and previously
defined secure systems and secure system components can be dy-
namically examined and incorporated into a system design. The
design methodology supported by Ulysses uses the same princi-
ples of modularity and reusability that characterize modern pro-
gramming development environments. Because Ulysses supports
the verification of security properties, it includes an automated
theorem proving engine and tools for constructing proofs. This
paper is intended to give an overview of the important ideas and
tools incorporated by the system.

From a security standpoint, the most important feature of Ulysses
is the capability of producing a complete and formal proof of se-
curity. A security methodology is a definition of security together
with a collection of theorems which aid in constructing a proof
of security for particular models. These theorems are often ex-
pressed as conditions for deducing the security of a whole system
from the properties of its components. With such a methodol-
ogy, the task of proving security of an entire system reduces to
the smaller tasks of showing the particular properties on only
parts of the system. When a methodology can be carried out
formally we say that it is the basis for a formal security analysis.
One instance of such a security methodology is the noninterfer-
ence security definition and theory of [McC88b]. In this case,
whenever all of the components are shown to be secure then one
can conclude the system is also secure. This sort of property is
called composable or a “hook-up” property. Composable proper-
ties are particularly easy to work with. The more general security
methodologies are often constructed to be applied to particular
classes of models (e.g. a process connected to a buffer). The
Ulysses environment is one which aids in both the development
and the formal application of security methodologies.

As a design tool, Ulysses was influenced by the experience of
the MASCOT project [Sta86] and the hierarchical design ab-
straction of Moriconi’s PegaSys system [MH85). These pictorial
system description schemes are similar to the graphical specifica-
tion language that Ulysses users will be given to describe systems.
The design process, which Moriconi calls refinement, is primar-
ily “top-down”. A user begins with a diagram representing the
entire system, and refines it by dividing it into sub-systems, each
represented by an icon. Connections between sub-systems are
also specified as icons. The meaning of each icon is given for-
mally in the theory of security, and the user may also associate
other information (documentation, other formal specifications)
with the icons. The design is “grounded” by associating formal
textual specifications in the theory of security with atomic icons

*This work was supported by the Air Force Systems Command #t Rome Air Development Center under
Contract No. F30602-85-C-0098. The views and conclusions contained in this paper are those of the authors
and should not be interpreted as necessarily representing the official policies, either expressed or implied, of

the Air Force or the U.S. Government.



(i-e., icons representing components that have not been further
graphically refined). If each atomic component is proved secure
(in the sense of [McC87]), then the “hook-up theorem” can be
used to infer the security of the entire system.

One of the more innovative aspects of the Ulysses system is its
mathematical foundation. Ulysses is being developed in a formal
system based on a constructive type theory which is also capa-
ble of expressing classical mathematics. The advantages of this
foundation fall under two heads—improved support for security
modeling and exciting prospects for future extensions.

Security modeling support is enhanced because the logical basis
allows for a more rigorous treatment of modeling than previous
bases. This enhancement has two main aspects. First, for many
security theories, it is possible to formalize the relation between
the theory and the semantics of the specification language used
to describe systems. Second, the economy with which the under-
lying logic is formulated and its known consistency allay doubts
about correctness of the implementation and about correctness
of the logic itself.

The logic also allows the modeling of polymorphic typing, which
is of great interest in current discussion of programming. lan-
guages, and, due to its constructive character; includes a pow-
erful model of computation. We believe that these features will
make it possible to extend Ulysses to include a system develop-
ment environment which is both sound and robust.

The paper is organized as follows. Section 2 explains in greater
detail the primary theory of security being used in Ulysses. Next,
in section 3, various ways in which the system can be used are
described. The implementation of the type theory mentioned
above is discussed in section 4. Finally, in section 5, we conclude
with a few remarks about the software implementation of Ulysses.

2  Security Analysis

Secure design in Ulysses depends on flexible and sound theoreti-
cal foundations. To develop such foundations we examined pre-
vious formalisms for security, particularly the pioneering wark of
Bell and LaPadula in access control[BL76], the non-interference
model of Goguen and Meseguer[GM82], and the information flow
theory of Sutherland [Sut86].

Our investigations convinced us that these previous models of
security were, for the purposes of secure design in Ulysses, lacking
in some respects. Some of the problems we found among these
formalisms were

they were not based on observable behavior

they were not sufficiently implementation-independent
they could only be applied to completed systems, and there-
fore could not be used for the incremental development of
a secure design

o they only applied at one level of abstraction

o they were only suitable for deterministic systems

The biggest problem, however, was that there was no research on
the interactions of trusted systems and processes—in particular,

it was not known to what extent security was preserved when
one connected several trusted systems into a distributed system.
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The primary security formalism used by Ulysses is based on this
previous work, but it goes beyond it in that it is intended to
be useful in design as well as in implementation. In contrast
with the preceeding formalisms, the Ulysses security formalism
can be used to analyze the security of isolated components and
partially fleshed-out system designs, whose implementations are
still undetermined. This gives the designer greater flexibility,
allowing him to

o reuse off-the-shelf secure components

o discover the security flaws of a design early so as to mini-
mize wasted effort

o freely substitute components with equivalent security char-
acteristics

A formal definition of secure processes that had many of the de-
sirable features mentioned above has been developed by McCul-
lough ([McC88b]). One of the properties derivable from this the-
ory is the “hook-up” property, which provides the basis for a for-
mal security analysis. The theory is formulated in terms of state-
machines. Each state transition corresponds to a possible input,
output or internal event of a system. Non-deterministic choice
between different transitions is allowed. Within this framework,
a security property can be defined. We call this property ‘low
security’. It is a noninterference property which limits the effect
that transitions associated with high security levels can have on
transitions at lower security levels. These limits formalize the
intuitive notion that information should not flow from high level
users to low level users. It is a composable property, meaning
that if system A and system B are each flow-secure, then the
combined system of A composed with B will also be. It must
be noted that other security properties often turn out not to be
composable [McC88a).

Using Ulysses to prove that components are flow-secure will per-
mit us to incrementally verify the security of a system. Once
the flow-security of all atomic components is verified, the flow-
security of the entire system is assured.

Although a particular theory of processes and a particular thec;ry
of security are used in Ulysses, they are neither fixed nor “built
in”. The theory of security may be expanded by proving (within
Ulysses) new facts about the hook-up of processes. For example,
the hook-up of several processes, none of which is secure, may
form a combined process that is secure [WL87]. Ulysses allows
the formulation of such new theories of security. These alternate
theories could then be used in proving new hook-up theorems
as well as properties of systems. The mechanisms for packaging
new theories and referencing them are outlined in section 4.

3 How Ulysses Will Be Used

The user may interact with the system through several specially
designed interfaces. They are:

o The graphical system design interface: graphical system
descriptions, in which icons have formal meaning in the
theory of security, are used to describe the design of a model
from its secure components

o The natural language component: brief summaries of the
design and its security characteristics may be generated
automatically :



‘o The verification and textual specification interface: textual
’ specifications of components can be built and verified, new
security theories can be added to the system, and tactics
(heuristics) for proving security can be built
o The library browsing interface: models and other informa-
tion stored in the Ulysses system may be reviewed and
updated

In the next few sections we provide a more detailed description
of these interfaces.

3.1 Operations

User interactions fall into three main divisions: adding informa-
tion to the system, retrieving information from the system and
deriving new information within the system: The subject of most
end user interactions will be descriptions of computer systems.
These are most naturally presented in a graphical manner, al-
lowing the user to visualize the subject system. The graphic lan-
guage employed presents objects hierarchically, much like the Pe-
gaSys systern[MHS85]. Within this context of graphical represen-

tations the following operations are typical of what the Ulysses
user interface supports:

o Retrieving Information:

view an archived system or component

show (or hide) the sub-components of an icon repre-
senting a process

show the textual specification associated with an icon

show the textual specification associated with the hook-
up of two icons

o Adding Information:

— load an archived component into the current system
design '

— create (or delete) a hook-up (i.e., a communication
channel) between two processes

— refine an icon representing a system by adding or chang-
ing icons representing its sub-components

~ associate formal textual specifications and other prop-
erties with an icon ‘

o Synthesizing Information:

— prove that component specifications imply the speci-
fications of the systems they form

— give general mathematical facts to assist in proving
security

— ask the system to assist heuristically in developing a
secure system

Some . of these operations involve interfaces besides the strictly
pictorial or graphical one suggested above. For example, the
natural language interface produces English text associated with
graphical displays of the system. Textual specifications for atomic
icons are produced by interacting with an editor. Retrieving
archived systems may involve browsing through the library of
stored specifications. Generating proofs involves using the inter-
face to the theorem-prover and its tactics (heuristics).
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3.2 The Graphics Interface — An Example
The Ulysses graphical design environment allows the designer to
select an icon representing a component, (using a mouse-driven
“point-and-click” scheme), and cause Ulysses to open up the
component s6 that its internal structure can be seen. The com-
ponents can themselves be made up of lower-level components.
The lowest level may either be left pending or contain a link to
a textual process specification.

We describe the way the graphics system works by using a simple
example. We will model some aspects of a secure distributed
operating system (SDOS). (This example is a simplification of
the design described in [V*88].) A system is distributed if it is
composed of a network of computers with no shared memory.
An operating system is distributed if it can service requests so
that the location of the resources used to handle those requests
is transparent to the user. In this example, we will model how
messages can flow securely through such a system. Since it is
distributed, requests from a user may have to be serviced by a
different host than the one the request was made on. Hence,
not only must a message be routed to the right location, but
sometimes the location may have to be found first. We will call
the task which actually does the routing of messages the ‘message
switch’ and the task which makes the determination of a host to
handle the message the ‘locator’.

We first need to construct an overview of the system consisting
of a collection of interconnected hosts and users (figure 1). This
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Figure 1: Multiple Hosts with Multiple Users

might be done by the following sequence of steps. First we create
and connect icons representing a particular host (called an SDOS
node) and a set of users. Now we create a virtual component
to represent that any arbitrary set of interconnections between
nodes is to occur and then connect it to the SDOS-users icons.

We can then provide a more detailed description of each SDOS
node (figure 2). We use the refinement operation to open up the
SDOS node and proceed to add more detail inside of it. In this
case we have decided to break up the functions of SDOS into four
categories. TIP’s are the processes which handle communications
with the users, and the NET is the process which handles commu-
nication with the actual network protocol. The Kernel handles
the most essential operations of the system. The other kinds of
processes are divided into two boxes representing other managers
and processes. (Note that we must explicitly perform an opera-
tion which connects the SDOS users to the TIP processes.) In
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Figure 2: A particular host

this presentation we only care about the system operations which
relate to message handling, and these are contained within the
Kernel. We may consider the other process icons as place holders
for possible future refinement of the model.

We can further refine the picture by describing the structure
of the Kernel (figure 3). In particular the Kernel contains the
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Figure 3: The Kernel
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message switch and other management tasks. One of these man-
agement tasks is the locator. Finally we connect the message
switch icon to the other processes outside of the Kernel.

The graphics system not only constructs and displays the model,
but it also constructs the security theory of the example. It
uses assumptions or theorems about the underlying components
to infer what is true about the systems which contain them.
It also uses information about the components to enforce the
requirement that only the appropriate connections are made. In
the example, the Ulysses system can infer that the entire model
is flow-secure once it has been verified that each of the pieces is
secure,

3.3 Textual Specification Interface

Atomic processes are ones that are not subdivided further in the
graphical representation. The graphics system generates condi-
tions implying that all atomic processes and larger subsystems
have been legally hooked-up; these conditions are usually trivial
and can be discharged automatically by the theorem-prover. If
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all the connections between components are legal, then by com-
posability we can verify that the composite system is flow secure
by establishing that each atomic component is flow secure. For
some simple cases, the proof that a component is flow secure
can be done automatically; in general, though, it is necessary to
examine or refine the component using the textual specification
interface.

The security of a component depends on its functionality. The
textual interface allows us to describe the functionality of a com-
ponent by giving a state machine representation of its behavior.
This representation consists of the definitions of the data types
involved in the internal state parameters of the component and
in the messages that the component uses to communicate, to-
gether with axioms describing the possible state transitions of
the component and the security levels associated with messages
and internal parameter information. From the state machine
representation of a component, the statement of flow security for
that component can be generated automatically.

The state-machine model, the theory of security, and tactics for
proof of security for particular processes, are all connected via
the textual interface to the logical formalism described in section
4. Flow security, as well as other properties of components, can
thus be verified by reasoning in the underlying logic.

3.4 Natural Language

The text generation component of Ulysses is intended to serve
two purposes: First, to provide annotations and comments to
aid the designer during the design process; second, to produce
an overview of the system, including its security characteristsics,
once the design has been completed. As practical experience
with the design process is still limited, efforts have concentrated
on the second application.

The design of a system in Ulysses is determined graphically and
(in the case of atomic components) by the textual formal specifi-
cation. Typically, such designs would be accompanied by manu-
ally written annotations. Annotations complement diagrams and
formal specifications by giving an informal rationale behind the
design and its structure. Annotations summarize the function-
ality of the design components and explain them by appealing
to concepts shared by the designer and the reader of the anno-
tations. Such annotations become indispensable in the context
of a secure design; these usually involve some compromise be-
tween functional requirements and security considerations that
need explanation or justification.

The text generation component of Ulysses is a pioneering atternpt
to generate annotations automatically. During the first stage
of our work, the emphasis is on producing texts that describe
the security features of the system with less attention paid to
functionality.

The information about how security is enforced in the system is
derivable from the history of the security proof for the compo-
nent. Thus a user who is not familiar with a given design would
have to consult three different sources - graphical design, formal
specification, security proof — and synthesize an understanding
of the system himself. It is this job of synthesis that the natural
language generation component performs.

The area of text generation of system documentation has not
yet been studied by either linguists or computer scientists. How-



ever, highly promising and effective systems exist for other do-
mains (for example McKeown’s interface to a naval data base,
[McK85]). Such work has allowed us to build on existing general
techniques and concentrate on specific problems arising in our do-
main of annotations of secure designs. At present, the generation
component of Ulysses produces multi-paragraph texts about sys-
tems such as the Secure Distributed Operating System (SDOS)

[V+88).

The text generation requires computation at three levels: text
planning, sentence planning and sentence generation, described
below.

Text planning assembles a series of conceptual representations
that determine the contents and organization of the text. For-

mally, the approach used is inspired by that of McKeown: schemata

encode recurring textual patterns and access the available knowl-
edge. However, there is no homogenous knowledge representation
in Ulysses that the text generator can use. Instead, it uses any
information that is available such as:

o the decomposition of the system into communicating com-
ponents, as defined by the user through the graphical in-
terface

o the security characteristics of individual components as they
are determined during the proof, and the proof strategies
used

o domain-specific knowledge about different types of systems
(operating systems, gateways, LANs, etc.)

o certain information the user has entered after being prompted

by Ulysses

However, this information about the system is not yet in a for-
mat that could be accessed by a general text planner; instead,
the available information needs knowledge-based interpretation
in order to serve as the basis for informative and meaningful
texts. This is particularly true of the description of the system’s
security features. Certain typical security strategies need to be
inferred from the structure of the system and the level of secu-
rity of the components. For example, components which serve
as mediators of communication between other components must
figure more prominently in the security analysis. The knowledge
needed for interpretation is encoded directly in the schemata,
which makes text planning efficient but restricts it to the do-
main of secure system design.

Sentence planning takes the sequence of conceptual representa-
tions and transforms it into a sequence of sentence representa-
tions. The transformation involves message combination (de-
termining sentence boundaries), syntactic decisions (determining
sentence structure) and lexicalization (choosing English words for
the concepts).

Sentence generation produces an English sentence. The gener-
ation component is based on Meaning-Text Theory [Mel81]. It
defines a series of transformations from the sentence represen-
tation (the deep-syntactic representation) to the surface string,
thus localizing linguistic decisions at particular levels.

Figure 4 shows an annotation of SDOS generated by the system.
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SDOS: General Structure and Security Features

A SDOS is a secure distributed operating system. It is a
collection of distributed SDOS nodes connected by a net. The
net is the only link between them. Each SDOS node supports a
group of Users. They have access to operating system services
only through their SDOS node. In the SDOS security is enforced
locally by the multilevel secure SDOS nodes. The Users are
modeled as singlelevel trusted or multilevel, secure.

Each SDOS node is a complex subsystem and consists of a Kernel,
a Network Interface and groups of TIPs, of Processes and of
Managers. The Managers, the TIPs, the Network Interface and
the Processes communicate only through the Kernel. The Kernel
is multilevel secure and enforces the security of the SDOS
node. The Managers and the Processes provide operating system
services. The Managers can be singlelevel trusted or
multilevel secure; the Processes are untrusted. The TIPs serve
as interface to the Users. They can be singlelevel trusted or
multilevel secure, The multilevel secure Network Interface’
handles communication with the net.

The Kernel is a composite subsystem and consists of a Kermel
Manager and a Message-Switch. The Message-Switch mediates
communication between the TIPs, the Managers, the Processes and
the Network Interface. It is multilevel secure and enforces
the security of the Kernel. The multilevel secure Kernel
Manager supports its activity.

Figure 4: The SDOS Text

3.5 Library of Models

The function of the library is to provide and organize informa-
tion useful in the design and verification of systems. The library
contains three major kinds of information:

1. System descriptions. Both the specifications of atomic com-
ponents and interconnections of complex system designs
built from the components are stored in the library. The
status of what has been proven about the security of the
components and of the systems is also maintained. ,

2. Security Theory and other Mathematical facts. The library
maintains a store of information describing the security the-
ory and other relevant mathematical facts. Also included
are definitions of the tactics and theories used by the the-
orem prover.

3. Graphical presentation. The system can record various
facts about the graphical layout of designs. This informa-
tion is in addition to the design information of the theories.

The library will contain a variety of designs of generic, commonly
used software systems ranging from very small components, such
as buffers or queues, to complex ones, such as a Database Man-
agement System. The list of secure designs includes some generic
trusted processes (multilevel buffers, secure separators, secure
schedulers), a Local Area Network (several designs for different
medium access control), a Multinet Gateway, a Database Man-
agement System, a Distributed Operating System, and several
others. The user will be able to study library designs and their
associated documentation and to use them in his own designs.
The user can either use library designs as “building blocks” and
rely on proofs done by Ulysses’ developers, or change library de-
signs according to the requirements of his or her system.

Ulysses will support browsing through the library for components
or other theories that meet given criteria.



The theory of security currently used in Ulysses is merely a de-
fault. It is one particular set of theorems about the hook-up of
components into systems. Other theories of security are possible.
For example, a precise theory of components that are “almost se-
cure” might be definable, and facts about their hook-up proved.
Users may add such new theories to the library.

4 The Mathematical Component

The goal of the Ulysses project is to understand security at the
design level and to automate that understanding in a logically
coherent formal setting. We believe that a general mathematical
theorem-proving environment based on type theory is a good
foundation for this task.

We will explain what this assertion means and what our reasons
for believing it are in the following way. We begin with a general
sketch of the mathematical component’s design. Then we discuss
its antecedents (subsection 4.1), explain how mathematics will
be expressed within this framework (subsection 4.2), and say
why this setting is especially suited to work on security modeling
(subsection 4.3). The remainder of the section will be devoted
to some brief remarks about fechnical aspects of the design—
the underlying logic (subsection 4.4), the core component of the
logic’s implementation (subsection 4.5), and theory management
(subsection 4.6).

Within the mathematical component, the word “theory” has a
technical sense. But this technical usage reflects accurately many
important facets of the term’s ordinary meaning. Intuitively, a
theory is a collection of related facts and notations for express-
ing them. The facts collected in theories may be related in a
number of ways — they may be stated in a common language,
may depend on common axioms, and may support one another
in various fashions in the sequential development of a theory.

Facts and notation may be incorporated into a theory by relying
on a previously developed theory, by introducing a notational
abbreviation, by introducing a definition, by postulating a new
axiom, by stating and proving a theorem, and by introducing all
of the facts and notations from some other theory after show-
ing that all of its assumptions are satisfied in the theory being
developed.

The mathematical component provides a rigorous setting within
which all of these features of our informal conception of theories
are represented precisely and usefully.

Theories have two main parts: a precis, which identifies the lin-
guistic dependencies and states the postulates of a theory, and a
body, which contains the development of new facts and notation
introduced by the theory. In the context of a library of theories,
the precis determines the initial environment of a theory. That
is, it determines the collection of facts and notation imported
from other theories directly. In addition, it contains the axioms
and new symbols characteristic of the theory under development.
The body extends the environment of facts, assumptions and no-
tation defined by the precis. Essentially, the meaning of a theory
is the incremental extension of the initial environment which the
body provides.

Ulysses is based on a version of type theory capable of expressing
both classical and constructive mathematics. Within the mathe-
matical component of the system, the relationship between theo-

25

ries of security and the semantics of their specification languages
is expressed rigorously, for theories which permit it. In particu-
lar, this has been done for flow security. This formal foundation
will reduce the consistency question for the logic and the cor-
rectness question for the theorem prover, to the consistency and
correct implementation of the six rules of the underlying type
theory.

4.1 History

The idea of using type theory for the expression of mathemat-
ics in a theorem proving environment was first championed by
de Bruijn in the AUTOMATH system [Bru80]. The aim of Au-
TOMATH was to verify mathematical “books”. The system was
very batch oriented, originally reading the “book” as a deck of
punched cards.

In the early eighties, Constable and his students at Cornell Uni-
versity began another major project to express mathematics in
type theory called the “prl” project [C*86]. (“prl” is short for
“Proof Refinement Logic” and is pronounced “pearl”.) Their
work was inspired by the AUTOMATH project and by the work of
the logician Per Martin-L6f [Mar82]. Their aim was not just to
provide an environment for the verification of mathematics, but
to assist users in developing mathematical theories interactively.

The key idea that made this possible was the concept of a re-
finement style proof editor [Bat79]. Such a proof editor allows
the user to state a theorem and then construct a proof interac-
tively by manipulating subderivations displayed on the screen.
This can be done either by directly invoking the primitive rules
of the system or by invoking tactics which direct the machine to
do these micro-inferences automatically.

The tactic mechanism has proved to be a vital feature of the sys-
tems developed during the prl project, and it plays an equally im-
portant role in Ulysses. The meta-language of the prl systems is
ML [Mil78], which was developed to provide the meta-language
of LCF [GMW79]. The same is true of our system. Tactics
are segments of ML code which extend the primitive inferential
apparatus of the logics on which these systems are based., The
systems’ proof checking mechanisms insure that these extensions
are sound.

In principle, it would be possible to write a general theorem prov-
ing program and rely on it as one’s sole tactic. But experience
with the prl systems has shown that it is more productive to de-
sign tactics for specific circumstances encountered in developing
mathematical theories. The tailoring of tactics to the special
requirements of security modeling is one of the most important
features of the mathematical component of Ulysses.

Although the design of the mathematical component draws heav-
ily from the experience of the prl project, there are two primary
differences. The first is the choice of the underlying logical system
and the second is‘the addition of a facility for modular theories.
These two issues are related: the logical base we have chosen sup-
ports modularity much more easily than does the type theory on
which prl is founded [Sel88].

In addition to these differences, there are several design differ-
ences that are expected to give Ulysses significantly better per-
formance than the Nupri system (the new and current version
of prl) and allow the mathematical component to be integrated



with other system components. One of these is the use of graph
reduction to handle necessary computations in the underlying
lambda calculus (subsection 4.5). Another is the treatment of
definitions. We discuss this briefly now and return to the topic
in subsection 4.6.

For Ulysses to be used successfully, the mathematics expressed
in theories must be visually similar to mathematics as it is ordi-
narily written, and, when the mathematical component is used
as part of a domain specific system, domain specific information
must be presented to the user in a recognizable form. Conse-
quently, there must be a very powerful mechanism for extending
the notation of the system. This feature is called the definition
facility, and the concerns expressed in the first sentence of this
paragraph played a major role in shaping its design.

4.2 Expressing Mathematics and Security
Theories

Once the foundation of the system is laid, the next step is to
express something in it. That requires developing familiar math-
ematical concepts, such as elementary arithmetic, simple set the-
ory, a theory of sequences, and some simple computational mod-
els within the system. These theories will be included in the
system library. The theory manager enforces a presupposition
structure specifying which other theories must be included in
the current environment if a given theory is to be used.

Once all of these basic pieces of mathematics are in place, the
theory of security is formulated and theories describing exam-
ple systems are synthesized within Ulysses. This collection of
theories forms an experimental testbed for the automation of
security reasoning. The automation will be provided by combin-
ing the ML mechanism that provides assistance in proofs with
supplementary code written in Common Lisp. Besides supplying
assistance in proofs, the system will provide support for formulat-
ing appropriate security theorems and for integrating previously
defined structures into the current environment.

We expect that once we have developed a library of verified,
composably secure components, most Ulysses users will be able
to view the system as a fully automated theorem prover, and not
as a proof development environment. The sophisticated user will
have the opportunity, however, to invoke any mathematical facts
that can be developed within the system when arguing formally
that a system, or system component, is secure. And the system
designers will have confidence that all of the components they
have supplied to the users are, in fact, secure according to the
formal definition of security axiomatized within the system.

Besides providing a formal framework in which to pursue the
current goals of the Ulysses project, the system design allows for
the development of extended versions which will incorporate a
code verification facility. We believe that, ultimately, this formal
foundation will make Ulysses a trustworthy robust system de-
velopment environment. Of course, whether we are right can be
determined only by developing such an environment and bringing
the result before the bar of experience for judgment.

4.3 Advantages for security modeling

A number of features of the mathematical component make it an
especially useful tool for dealing with security modeling. Chief
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among these is the tactic mechanism. We are creating a library of
tactics tailored to the demands of proving security results about
the sorts of models most commonly dealt with. This library will
greatly enhance the usefulness of Ulysses.

Quite often, it is possible to restrict attention to a class of security
models considerably smaller and simpler than the class of all such
models, and, for such models, it is fairly simple to prove what
needs to be shown about the processes involved. In such cases,
we are going to automate the proof process almost completely
by writing appropriate tactics.

For example, many processes accept an input, emit some outputs,
and then process the next input. For these kinds of processes, one
can use a security tactic which converts the goal of proving flow
security into simpler kinds of conditions. It suffices to show that
(1) for any given input there will be only finitely many outputs,
(2) the security level of an output is always greater than or equal
to the level of the input, (3) the content of the output is based
only on the input and information carried by parameters at or
below the level of the input, and (4) high level inputs do not
change the low level characteristics of these parameters. See
[Ros88] for more details.

Another important characteristic of the mathematical compo-
nent is its expressive power. With this system it is relatively
easy to build new abstract data types. This makes descriptions
of models easier to understand and allows for more accurate de-
scriptions. Descriptive power also enables the user to formulate
properties of a process more easily. For example, it is easy to
assert within the language that a process halts. Also, the secu-
rity theory is built directly into the system. This insures that
proving that a system has the properties specified by the theory
really does show it is secure, in the sense specified by the theory.

A third useful aspect of the proof development environment is
that it allows security results to be proven about generic descrip-
tions and not just particular instances (see subsection 4.4). This
means that most adjustments to a model will require little if
any work in reconstructing proofs of security for it. Often, the
modeling environment will do all the necessary reconstruction,
without intervention from the user — if you want to add new
components to a model, demonstrating security may involve no
direct effort on your part.

4.4 The logic

The logical system underlying Ulysses is the theory of construc-
tions of Coquand and Huet [CH84], [CHS86], [Hue87], [Sel8s],
[Pot87)]. Besides providing a quite expressive logical system, the
theory of constructions also includes a powerful model of com-
putation. The model of computation is not important for the
current aims of the Ulysses project, but we expect to rely on it
in future extensions of the system.

There are only two built-in types in the theory, but there is a
facility for reasoning in the context of type assumptions that de-
scribe both the operations and axioms of mathematical theories.
This mechanism supports an abstract style of theory develop-
ment. Suppose group theory has been developed in a context
that specifies the operations and axioms characteristic of groups.
It will be possible to instantiate this abstract theory on a par-
ticular structure by specifying which operations of the structure



are to play the role of the group operations and proving that the
group axioms are satisfied by the specified operations.

The theory of constructions contains a type which formally repre-
sents the type of all propositions. In turn, this type is contained
in a type which satisfies very strong closure conditions. Con-
sequently, the theory contains full, higher order logic — having
specified a ground type by means of appropriate assumptions,
one can refer to properties of the ground objects, properties of
such properties, functions from properties of the latter sort to
those of the former, and so on, without limit.

The logic provided by the theory of constructions is constructive.
This is noteworthy for two reasons. First, it is the key reason
why the theory includes a model of computation. Second, it
means that the logic is richer than classical, two valued logic —
constructivity is an enhancement, not a restriction.

The theory of constructions provides a model of computation in
which, besides taking types as arguments, functions can return
types as values. Furthermore, the type of the value returned by a
function can depend on the argument, and not merely on the ar-
gument’s type. Consequently, the theory is of great interest from
the point of view of research on polymorphism in programming
languages.

This model of computation is extremely powerful. Formal mea-
sures of its power, relying on the results of [Gir71,Gir72], show
that it is strong enough to represent any computable (total) num-
ber theoretic function considered in ordinary mathematical prac-
tice, and this is a lower bound. An informative upper bound on
the strength of the model of computation built into the theory
of constructions has not yet been established.

As far as correctness is concerned, Coquand has shown that the
logic embodied in the theory of constructions is consistent and
that all computations in the model of computation terminate.
Taken together with the features of the theory discussed above,
this explains why the theory of constructions is interesting, both
from a purely logical standpoint and from the point of view of
theoretical computer science. It also led to the decision to bhase
the mathematical component of Ulysses on the theory of con-
structions.

4.5 The Primitive Inference Engine

The core of the mathematical component is the Primitive In-
ference Engine (PIE). The PIE includes a proof checker for the
theory of constructions and rudimentary (but extensible) tools
for proof development. We are proceeding on the basis of a for-
mulation of the theory of constructions which is especially suited
to the character of the proof development tools and also allows
for efficient proof checking [Pot88a].

The central computational problems involved in implementing
this formal system have to do with handling substitution, reduc-
tion and conversion of terms. We have reduced these problems to
their essence by representing terms of the theory of constructions
in the simpler framework provided by the type-free lambda cal-
culus and have done the same thing for the relations of reduction
and conversion [Pot88a].

Recasting the computational problems in this way is, of course,
only a beginning. An efficient implementation of the type-free
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lambda calculus will be produced by using graph reduction [Wad71,
Tur79].

4.6 Theory management

As was remarked in subsection 4.1, in many important respects
the mathematical component of Ulysses is modeled after Nuprl.
We end this section by commenting briefly on two important
differences.

It is reasonable to say that proofs of hook-up security require a
small mathematical foundation, if “small” is understood in the
sense of the term customary among mathematicians. But actu-
ally providing such a foundation requires building a complicated
structure in the machine. Definitions are common and vital com-
ponents of this structure, so it is important to have an efficient
way of handling them. Our approach to this problem is quite
different from the one taken by Nuprl, and we think it will turn
out to be superior [Pot88b].

It is also certain that we must develop theories modularly, if
Ulysses is to be practically useful. It should be clear from the
discussion of this section that this concern is handled adequately
in the system we are constructing. In contrast with this, Nuprl
provides no mechanisms for modular theory development, and
certain features of the logical system on which Nuprl is based
make the project of introducing such mechanisms problematic.
This reinforces our conviction that the theory of constructions,
which directly supports modularity in developing theories, is a
good choice for the logical basis for security modeling in Ulysses.

5 Implementation

A Ulysses system that implements the functions described in
previous sections is now being built at ORA. By October 1st, we
expect to have a functional prototype. The prototype version will
run under Symbolics Genera 7.1. However, we have placed great
emphasis on portability even at early stages in the development.
Most of the source code is written in Common Lisp or one of its
object-oriented extensions (Symbolics Common Lisp or CLOS);
the only exceptions are the tactics, which are written in a version
of ML that is itself implemented in Common Lisp. Symbolics
Common Lisp will be converted into CLOS and v.v. with a set of
translation macros. As a result, only a minimum of effort should
be involved in re-targeting Ulysses to any other architecture that
supports Common Lisp; most of this effort will relate to the
graphical interface.

6 Conclusion

The design of Ulysses incorporates ideas and techniques from a
diverse collection of sources, including those in computer security,
systems design, computational logic, and computational linguis-
tics in order to create a modeling environment with both rigor
in its theoretical foundations and flexibility in its use. Because
of the nature of the theorem prover and the overall design of the
system, it has the potential to significantly reduce the time and
effort needed in constructing secure models.



References

[Bat79] Joseph L. Bates. A Logic for Correct Program Develop-
ment. PhD thesis, Cornell University, 1979.

D. E. Bell and L. J. LaPadula. Secure computer
systems: Unified exposition and multics interpreta-
tion. Technical Report MTR-2997, Revision 2, MITRE
Corp., Bedford MA, March 1976.

N. G. de Bruijn. A survey of the project automath. In
Jonathan P. Seldin and J. Roger Hindley, editors, To
H. B. Curry: Essays on Combinatory Logic, Lambda
Caleculus and Formalism. Academic Press, New York,
1980.

Robert L. Constable et al. Implementing Mathematics
with the Nuprl Proof Development System. Prentice-
Hall, In¢., Englewood Cliffs, New Jersey, 1986.

Thierry Coquand and Gérard Huet. A theory of con-
structions. Presented at the International Symposium
on Semantics of Data Types, Sophia-Antipolis, June
1984.

Thierry Coquand and Gérard Huet. Constructions: A
higher order proof system for mechanizing mathematics.
In EUROCALSS5, volume 203 of Lecture Notes in Com-
puter Science, pages 151-184, Berlin, 1986. Springer-
Verlag.

[BL76]

[Bru80]

[C*86]

[CH84]

[CHS6]

[Gir71] Jean-Yves Girard. Une extension de linterprétation de
Gddel & Vanalyse, et son application & ’élimination des
coupures dans ’analyse et la théorie des types. In J. E.
Fenstad, editor, Proceedings of the Second Scandina-
vian Logic Symposium, pages 63-92, Amsterdam, 1971.
North-Holland.

Jean-Yves Girard.  Interprétation Fonctionnelle et
Elimination des Coupures de L’Arithmétique d’Orde
Supérieur. PhD thesis, University of Paris VII; 1972.

J.A. Goguen and J. Meseguer. Security policy and se-
curity models. In Proceedings of the Symposium on Se-
curity and Privacy. IEEE, 1982.

[GMWT9] M. J. Gordon, J. Milner, and C. P. Wadsworth.
Edinburgh LCF: A Mechanized Logic of Computation.
Springer Verlag, 1979. Lecture Notes in Computer Sci-
ence T8.

Gérard Huet. A uniform approach to type theory.
Notes distributed at the University of Texas Institute on
Logical Foundations of Functional Programming., June
1987.

Per Martin-Lof. Constructive mathematics and com-

puter science. In L. J. Cohen, J. Los, H. Pfeiffer, and

K.-P. Podewski, editors, Logic, Methodology and Phi-

losophy of Science VI, pages 153-175. North-Holland

Publishing Company, Amsterdam, 1982.

[McC87} D. McCullough. Specifications for multi-level security
and a hook-up property. In Proceedings of the Sympo-
stum on Security and Privacy, pages 161-166. IEEE,
1987.

[McC88a] D. McCullough. Noninterference and the composabil-

ity of security properties. In Proceedings of the Sympo-

stum on Security and Privacy. IEEE, 1988.

[Gir72]

[GM82]

[Hue87)

[Mar82]

28

[McC88b] D. McCullough. The theory of security. Technical
report, RADC, 1988.

[McK85] Kathleen McKeown. Tezt Generation. Cambridge Uni-
versity Press, Cambridge, 1985.

[Mel81] Igor Mel’tuk. Meaning-text models. Annual Review of

Anthropology, 10:27-62, 1981.

Mark Moriconi and Dwight F. Hare. The PegaSys. sys-

tem: Three papers. Technical Report 145, SRI Com-

puter Science Lab, Menlo Park, California, September

1985.

R. Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Science,
17:348-375, 1978.

Garrel Pottinger. Strong normalization for terms of
the theory of constructions. Technical Report TR 11-7,
Odyssey Research Associates, February 1987.

[MHSS5]

[Mil78]

[Pot87]

[Pot88a] Garrel Pottinger. Ulysses: Logical and computational
foundations of the primitive inference engine. Technical
Report TR 11-8, Odyssey Research Associates, January
1988.

[Pot88b] Garrel Pottinger. Ulysses: Logical foundations of the
definition facility. Technical Report TR 11-9, Odyssey
Research Associates, January 1988.

{Ros88] D. Rosenthal. An approach to increasing the automa-

tion of the verification of security. paper submitted

to the Computer Security Foundations Workshop, June

1988.

Jonathan P. Seldin. MATHESIS: The mathematical

foundation for ULYSSES. Technical report, RADC,

1988.

[Sta86] Staff. The Official Handbook of MASCOT. Systems
Designers, 1986. Version 3.1.

[Sut86] David Sutherland. A model of information. In Proceed-
ings of the 9th National Computer Security Conference,
September 1986.

[Tur79] David Turner. A new implementation technique for ap-

plicative languages. Software-practice and Fzperience,

9:31-49, 1979.

S. Vinter et al. The secure distributed operating system

project. Technical Report 6144, BBN Labs and Odyssey

Research Associates, February 1988.

[Wad71] C. P. Wadsworth. Semantics and Pragmatics of the
Lambda-calculus. PhD thesis, Oxford University, 1971.

[WL87] D.G. Weber and Bob Lubarsky. The SDOS
project — verifying hook-up security. In Third
Aerospace Computer Security Conference, pages 7-15.
ATAA/ASIS/IEEE, 1987.

[Selss]

[V+88]



IMPLEMENTING
THE CLARK/WILSON INTEGRITY POLICY
USING CURRENT TECHNOLOGY

W.R.Shockley
Gemini Computers, Inc.
P.O. Box 222417, Carmel, CA 93922
(408)-373-8500

Abstract

In this paper, the integrity policy
introduced by Clark and Wilson is taken as
a set of valid requirements suitable for
commercial and other data processing
requirements that must be enforced with a
high level of assurance. A methodology
for converting a policy expressed in terms
of the Clark/Wilson notation into a
corresponding mandatory policy expressed
in terms of a lattice of access classes,
together with an appropriate supporting
policies for identification and
authentication is stated. The existence

of such a methodology implies that the
Clark/Wilson integrity requirements can be
met by existing, appropriately-configured
Trusted Computing Bases.

1. Introduction

The integrity policy presented by
D.D.Clarke and D.R.Wilson in [1] has
received a relatively high degree of
attention as an accurate representation of
what the business and commercial data
processing community means by the term
integrity with respect to data processing
applications oriented toward commercial
applications, just as the Bell and LaPadula
formal security policy model [2] has
served, in the past, as the technical basis
for trusted computer systems enforcing a
mandatory access control policy oriented
toward military and government applications
processing information classified under
federal regulation.

Clark and Wilson state, as their two major
conclusions, that "a lattice model is not
sufficient to characterize integrity
policies", and that "distinct mechanisms
are needed to control disclosure and to
provide integrity". The implication of
these conclusions, if true, is that the
Trusted Computing Base technology described
in [3] are not applicable to the evaluation
of systems designed to enforce the
Clark/Wilson integrity policy.

In this paper, issue is taken with both of
these conclusions. The argument has the
following outline: starting with an
arbitrary Clark/Wilson policy, an
equivalent access control policy based upon
a lattice of sensitivity labels is derived.
Together with appropriate supporting
controls for a security officer interface
and identity-based subject activation, a
policy interpretation compliant with the
requirements of [3] can therefore be
formulated. A TCB enforcing such a policy
would satisfy the Clark/Wilson policy as
well as the Criteria. As the originally
chosen integrity policy was arbitrarily
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chosen from the family of Clark/Wilson
policies, it follows that any Clark/Wilson
policy can be enforced by an
appropriately-configured TCB meeting the
criteria stated in [3].

As the transformation is constructive, it
shows how an arbitrary policy, expressed in
terms of the Clark/Wilson model, can be
reformulated as an equivalent combination
of access controls based upon a lattice of
access classes together with a
discretionary component controlling access
to the execution of transactions to the
granularity of an individual.

The implication of this construction is
that one could envision a TCB, designed to
be evaluated under the criteria of the [3],
that is also well-suited to the enforcement
of controls expressed in terms of the
Clark/Wilson model. In fact, it can
further be observed that such a TCB is
already available. In a later section, I
will discuss how an existing TCB (Gemini
Computer's GEMSOS) can be tailored to
support a Clark/Wilson model.

1.1 Relationship to Previous Work

Several papers earlier than [1] are
important in the study of the application
of computer security technology to
integrity issues. I have drawn freely from
them in the work presented below. Biba, in
[4]1 presents a "mandatory integrity policy"
that is the mathematical dual of a
mandatory secrecy policy based on a lattice
of labels. Such a policy is often called a
Biba integrity policy. Lipner, in [5]
constructs a commercially-oriented policy
from a combination of secrecy and mandatory
integrity levels and categories. Shirley
and Schell, in [6] introduce the notion of
program integrity, a policy that is
important when subjects that are "trusted
with respect to integrity" exist in a
system. They demonstrate, in addition,
that a ring-based protection hierarchy,
such as that found in Multics or GEMSOS,
can be interpreted as a hierarchical system
of subjects trusted (to various degrees)
with respect to integrity, upon which the
program integrity policy is enforced.

Boebert and Kain, in [7] introduce a

system of trusted pipelines, enforceable by
the Honeywell LOCK (formerly, SAT) TCB.
They demonstrate (correctly) that a
hierarchy of Biba integrity levels alone is
insufficient to enforce a trusted pipeline.
The generalization that a full lattice
including Biba integrity categories is
insufficient as well is not addressed by
Boebert and Kain. This paper is an



important predecessor to [1]: indeed,‘it
could be fairly stated that the
Clark/Wilson policy is an elaboration of

the trusted pipeline idea.

In addition to these, the Clark/Wilson
presentation has induced a number of
additional papers, generally of the form
"system X can enforce the Clark/Wilson
policy." A recent paper by Lee, [8]
presents a construction identical in many
respects to the system presented here. The
primary deficiency in Lee's paper is that
one of the important Clark/Wilson
constraints, requiring that controls be
enforced at the granularity of a
user/object/program triple appears to be
inadequately addressed. Lee's work and mine
are independent: drafts of both papers
were presented concurrently as position
papers at the invitational Workshop on
Integrity Policies for Commercial
Information Systems held at Bentley
College, Waltham, Mass. The notion of what
Lee calls a partially trusted subject upon
which both of our systems depend is
original with neither Lee nor myself: it
is discussed by Schell et al. in [9] and by
Bell [10] as a part of this "updated"
version of the Bell and LaPadula model.

Also noteworthy is a recent paper by Karger
[11] that provides a capability-oriented
perspective on the Clark/Wilson
requirements and raises a number of
interesting design and implementation
issues, as well as featuring a review of
background papers and reports more
extensive than that given here.
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1.3 Overview

This paper provides an overview of the
basic construction that I have defined for
translating an arbitrary abstract system
meeting the Clark/Wilson requirements into
an equivalent system based upon a label-
based access control policy with integrity
and disclosure categories and "partially
trusted" subjects. Rather than presenting
this transformation in abstract
mathematical terms, I have chosen in this
paper to provide a more understandable
overview, together with a concrete example.
For those who may be interested, the more
abstract (and precise) presentation is
avallable as a Technical Report in [12].

A shoft section after the technical
overview addresses the ability to implement
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an instance of the transformation using a
currently available TCB, the GEmini Multi-
Processing Secure Operating System (GEMSOS).

2. Technical Summary

In this section, I will first review
selected technical capabilities provided by
a typical commercially-available TCB
(GEMSOS) that will be important in
constructing the transformation from a
Clark/Wilson set of access control
requirements to an equivalent set of policy

requirements, stated in terms of
discretionary, non-~discretionary, and
application policy controls. (I have

chosen to use the term "non-discretionary
access controls" in place of the usual
"mandatory access controls", as originally
defined by Salzer and Schroeder [13], in
order to avoid Clark and Wilson's complaint
that the use of the term "mandatory" can be
confusing to those unfamiliar with the
jargon of the Trusted Computing Base
technical community.) It should similarly
be understood that by identifying certain
of the controls described in the system
below as "discretionary", I mean simply
that the control is based on an individual
user identifier (as opposed to an access
class or clearance) and represents an
authorization for that individual user to
perform some security-relevant action
(represented by access to a directly or
interpretively accessible object.)

In order to illustrate the system
concretely, I will develop a "toy" system
as the summary proceeds. We will imagine a
system comprised of four data types, A, B,
C, and D, with each data type comprised of
an indefinite number of distinct data
objects. (For example, data type A might
include data objects Al, A2, A3, etc.) We
will suppose that there are defined three
transactions that transform data from one
type to another: AtoB, BtoC, and BtoD. We
will also suppose that there is defined a
verification procedure ValidateAB that
determines whether the objects of type A
and B are mutually consistent (without
modifying them). (These transactions are
simply executable programs.) The example
will be extended as needed below.

2.1 Non-Discretionary Mechanisms

The purpose of this section 1s to review
the mechanisms assumed available for the
enforcement of the non-discretionary
components of the policy and their
application in terms of a strongly-typed,
transaction-oriented system such as that
described by Clark and Wilson. It is
assumed that the system is comprised of
objects (passive information repositories)
and subjects (active entities that can read
and/or write objects.) It is important to
note that we distinguish between a program
(which is an object) and a subject (which
is typically a program in execution, acting
on behalf of a particular user). The
abstraction of a subject is implemented by



the security kernel. The distinction
between a program and a subject is
important because the single label on a
program represents its sensitivity as a
data repository, while the pair of labels
(explained later) on a subject, which are
related only incidentally to the label on
the program it is executing, represents the
accesses allowed to the subject.

It is similarly important to distinguish
between the notion of a subject and of a
user. A subject is an entity internal to
the computer system, which executes on
behalf of a user (who is external to the
computer system). Again, the distinction
will be important because a given subject
may well have a pair of labels only
incidentally related to the user's
clearance.

The set of all possible access classes
forms a lattice -- mathematically, a set of
labels with a dominance relation that
partially orders them, such that least
upper and greatest lower bounds are
uniquely defined. (It may be observed that
when integrity and/or disclosure categories
exist, it is not necessary for all possible
combinations of the categories to be
defined in the set of labels to have a
lattice -- a lattice that includes all
possible combinations is called a
distributive lattice [14].  Of importance
in this paper is that the lattice is built
from two essentially independent
components: every label represents a
sensitivity with respect to disclosure,
an independent component representing a
sensitivity with respect to modification.
Because these components are mathematically
independent, we are able (in effect) to
give each object (including programs)
independent labels with regard to its
disclosure and integrity sensitivities,
give users independent clearances with
respect to disclosure and integrity,

and give subjects (programs in execution)
independent authorizations with respect to
read and write access.

and

Both the disclosure and Biba integrity
components of a label may generally contain
hierarchical levels and non-hierarchical
categories. As it turns out, non-
hierarchical categories alone are
sufficient to implement the desired non-
discretionary component of a Clark/Wilson
policy. The following notation will be
used to represent an arbitrary set of
integrity and disclosure categories:

[a, b, ¢, . . H{x, v, z . . .}
is that unique access class composed of
integrity categories a, b, ¢, and so on,
together with secrecy categories x, y, =z,
and so on. Thus, square brackets are used
for a set of integrity categories, and
curly braces for a set of disclosure
categories. For arbitrary access classes,
these sets may overlap.

For access classes composed of sets of
integrity and disclosure categories alone,
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the dominance relation is simplified to the
following: access class A dominates access
class B if, and only if, the disclosure
categories of A are a superset (proper or
improper) of the disclosure categories of
B, and the integrity categories of A are a
subset (proper or improper) of the
integrity categories of B.

Intuitively, a system of strongly typed
objects may be constructed as follows:

each data type is represented by an
integrity category reserved for that type,
(used to limit the subjects that will be
allowed to modify objects of that type) and
by a disclosure category reserved for that
type (used to limit the subjects that will
be allowed to observe objects of that
type).

For our example system, the access class
labels reserved for objects of type A, B,
C, and D are [a]{a}, [b]l{b}, [c]{c}, and
[d]{d}, respectively.

Program objects are given special
treatment. Because we wish to control the
ability to execute transactions to the
granularity of a single certified
transaction, each transaction object
(program) will be assigned an individual
data type of its own. In addition, we will
indicate that a transaction is certified to
operate upon cbjects of a particular data
type by including the integrity category
for that data type in the access class of
the transaction object.

For our example, certified program AtoB is
certified to operate (either by reading,
writing, or both) on objects of types A and
B. In addition to the unique transaction
categories tl reserved for it, we add the
integrity categories for both A and B to
the access class for the object containing
this program: viz., [tl,a,b]{tl}.
Similarly, BtoC would have access class-
[t2,b,c]{t2}, BtoD would have access class
[t3,b,d]{t3}, and ValidateAB would have
access class [t4,a,b]{t4}.

It may appear surprising that the program
for a transaction is given an integrity
category for a data type it only needs to
read. However, a read, in a real computer
system, is useful only if the read allows
a copy to be made of the data value (e.g.,
as a return value in a subject's stack.)
This copy must be protected as having

the same integrity as the original:
therefore, in order to work, the program
(when executed) must be able to write
information (in order to make copies) of
any integrity category it is required

to read. It follows that the program
itself must also be certified to write
information of this integrity.

Subjects are given two labels, called the
write label and the read label, one of
which (the write label) serves to prevent
the subject from writing objects of an
unauthorized type, and the other (the read
label) from reading objects of an
unauthorized type. The precise rules



enforced are as follows: a subject will be
allowed to write an object only if the
write label of the subject is
mathematically dominated by the label of
the object, and will be allowed to read an
object only if the read label of the
subject mathematically dominates the label
of the object.

The reader may justifiably find it
difficult to apply these rules when both
disclosure and integrity categories are in
use, particularly as the mathematical
definition of dominance is abstract. In
more intuitive terms, a subject may only
write objects that have all of the secrecy
categories in the subjects read label (or
more) -- no write down with respect to
disclosure. A subject may also only write
objects that have no more integrity
categories than the subject's read label --
no write up in integrity. The subject
similarly may not read up in secrecy or
read down in integrity. The abstract
mathematical definitions allow the security
kernel to enforce all four of these
constraints by encoding them in two subject
labels and one object label.

In order to capture the notion of
strongly-typed objects, it turns out that
the appropriate format for the write label
of a subject is the set of all integrity
categories for the data types it is
certified to read and/or write, while the
form of the read label is the set of all
disclosure categories for these data types,
together with the disclosure category for
the transaction to be executable. (For our
system, a subject must usually be confined
to execute a single transaction in order to
successfully be created.)

For our example (without knowing anything
about user clearances yet) we suppose that
some subject must be created to execute
transaction AtoB. The indicated write and
read labels for such a subject would then
be [a,b] for the write label, and {a,b,tl}
for the read label.

It should be observed that relative to
objects with an assigned type, the labels
on the subject correctly and precisely
constrain it to manipulate data objects of
the desired type only. For example, an
object of type D, with label [d]{d}, cannot
be read, because [d]{d} is not dominated by
the subject's read label {a,b,c,tl,t2}.
Similarly, the object [d]{d} cannot be
modified by this subject because it does
not dominate the subject's write label,
[a,b,c]. Finally, transaction t2 cannot be
executed by this subject (for example),
because it will not be allowed to read or
execute an object with disclosure category
{t2}.

An important observation is that a subject
labeled as described is "partially trusted"
in that it may be able to write objects of
different access classes, and may be able
to write objects of an access class not
dominating the access class of some object
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it can read. Therefore, it is important
that the subject be limited to execute only
those transactions certified to perform the
type conversions it might be able to make.
The program integrity rule, however,
guarantees that this will be the case.
program integrity rule requires that any
program executed by a subject have an
access class with integrity categories that
include all of the integrity categories of
the subject's write label. (It may have
more). This rule has a relatively
intuitive interpretation in the context of
strong typing: program integrity
guarantees (as enforced by the security
kernel) that a subject may only execute
transactions that have been certified to
operate correctly against all of the data
types for data objects the subject is
allowed to access. That is, enforcement of
program integrity by the kernel means
globally that every transaction that is
executed will be certified to be executable
against any of the typed objects accessed
-- exactly what is wanted for any strongly
typed system, including Clark/Wilson.

The

Users (who are distinct from subjects) are
given a clearance that reflects their
authorization to manipulate data of a given
type by placing both its disclosure and
modification categories in the user's
clearance. Furthermore, a user is given
authorization to execute a particular
transaction by placing its disclosure
category in the user's clearance. It is
sufficient that the TCB constrain the read
and write labels of a subject, executed on
behalf of an authenticated user, to have a
write class that is some subset of the
user's integrity categories, and a read
class that is some subset of the user's
disclosure categories. A subject obeying
this constraint will either have no
transaction executable (i.e., the attempt
to create the subject by the TCB aborts)
or will end up executing a single
transaction, authorized to the user,
against objects of data types authorized to
the user. As discussed above, program
integrity guarantees that such a
transaction will also be one that has been
certified to operate on objects of the
given type.

It is worth noting that although a
transaction might be certified to operate
on a variety of types (e.g., A, B, and C),
an individual user might be authorized only
to operate on a subset of these types
(e.g., A and B). 1In such a case, the user
will not be able to create a subject
executing the transaction against an object
of the forbidden type, even though the
transaction itself is certified to do so.
Many existing systems based upon granting
access to "canned transactions” are unable
to limit the authorizations independently
for different users of the same
transaction. If a user has access to a
transaction, the user "inherits" any
authorizations the transaction may have.
(The "setuid" feature provided by UNIX
works this way, for example.)



In contrast, the system described here
allows the authorizations of different
users to be controlled independently of the
certifications recorded for each
transaction. Thus, the certifying official
(for transactions) need only concentrate on
determining what a transaction is trusted
to do correctly in selecting a label for
the transaction, while the security
administrator controls access by individual
users to particular transactions and object
types without, (in theory), needing to
consider the certification a transaction
has gained. If an attempt is made to give
a subject "too much authority" with respect
to the actual certification recorded for a
transaction, the TCB, enforcing program
integrity, will abort the subject before it
begins because the transaction will be
unexecutable.

2.2 Discretionary Mechanisms

The system summarized above does not yet
capture the complete intent of the
Clark/Wilson requirements with respect to
access control. It might be characterized
as "strong typing," with users cleared to
execute particular transactions and
(independently) to access objects of
particular types. Clark and Wilson ask,
in particular, for controls on which"
transactions a user can execute against
which objects: that is, permission to
access object A and to execute transaction
T, should not automatically imply
permission to execute T against A,

T is certified for A.

even if

In particular, Clark and Wilson require
that the TCB maintain (either implicitly or
explicitly), a list of relations listing
authorized combinations of users,
transactions, and objects (or data types).
It is important to see how the system
described so far does not meet this
requirement.

In more complex systems than our example,
it becomes possible, if there are no
additional controls, to implicitly clear a
user for an undesired transaction in order
to make some combination of desired
transactions available. Suppose, for
example, that there are four data types (A,
B, C, D), and two certified transactions,
both "query" transactions, each certified
to operate correctly on each of the data
types. (We might imagine, for instance,
that A, B, C, and D are disjoint
collections of personnel records for four
different divisions, tl is a transaction
for observing salaries, and t2 a
transaction for observing training
qualifications.)

We wish to give a particular user the
authority to observe salaries in database A
only, and training qualifications in any of
the databases. In the system so far
described, there is no way to do this
without granting too much authorization.

In order to make transaction tl executable
against A for the user, we must add
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{tl,a}[a] to the user's clearance. In
order to make transaction t2 executable
against A, B, C, and D, we must add
{t2,a,b,c,d}[a,b,c,d] to the user's
clearance. The user's single composite
clearance is now {tl,t2,a,b,c,d}[a,b,c,d]
and nothing prevents the user from
executing either transaction against any of
the data objects.

It can be argued that by restructuring the
transactions and repartitioning the data,
the desired effect could be attained.

While this is true, it is hardly convenient
or practical to have to repackage either
transactions or data types in reaction to
the addition of new users with novel
clearances. In this matter, I concur
whole-heartedly with Clark and Wilson: the
maintenance of a table of relations between
permitted user/transaction/object
combinations (however it may be stored
physically) is a practical necessity.

The approach I endorse is to treat the
table of triples as a special form of
discretionary controls maintained within
the TCB. When a request is made to the TCB
to create a new subject, this table will be
consulted to determine whether the new
subject is permitted. Sufficient
information to do this is encoded in the
requested read and write labels for the
subject (plus the user identity, maintained
within the TCB) if only single-transaction
subjects are allowed: the integrity
category for the subject, plus any data
types accessed, is included in the write
label requested for the subject.

I have preferred to separate this control
from the underlying non-discretionary
controls for the following reasons:

e it would ‘appear that the control is
intrinsically discretionary in nature:
it is based (in part) on the actual
user identity (not a clearance). The
notion of the non-discretionary
component of the system is that users
are cleared to execute transactions
and access data objects on a long-term
basis: this is refined by a
discretionary control granting access
to particular combinations of
transactions and objects on a more
volatile basis.

e it should not be assumed that the
mechanism is vulnerable simply because
I have called it a "discretionary"
mechanism, any more so than the
management of group memberships (for
example) is vulnerable. It would be
possible, for instance, to make the
table of relations modifiable only by
a designated security administrator
via a trusted TCB interface.

e the decomposition into three related,
but distinct sets of controls
(certification of transactions,
clearance of users, and authorization
by means of relations) would appear to



simplify the problem of keeping
everything straight. In particular,
the certification of transactions
would depend only upon their
correctness (the certifier does not
need to be concerned with the impact
of a change in certification on user
authorizations); .the clearance of
users I view as establishing long-term
"damage control" boundaries, while the
authorization of users to execute
transactions against particular
objects. or data types in the relation
table establishes a shorter-term "need
to do". .

e It should be understood that in order
for execution of a transaction to
commence, several things must match:
1) the transaction must be certified
for execution against the selected
data tvpes, 2) the user must have a
basic clearance both to access the
data types, and to execute that
transaction, 3) specific authorization
in the relation table must exist for
the user to execute the transaction
against these specific objects. If
any of these conditions fail, the
transaction cannot begin.

3. Application to the Clark/Wilson

Requirements

In the previous section, the emphasis was
on presenting an overview of how the
proposed system is to work. In this
section, the requirements stated by Clark
and Wilson in [1] are restated, with a
short summary of how they are mapped into
the proposed system.

3.1 Definitions

® Constrained Data Item (CDI) -- those
data items within the system to which
the integrity policy must be applied.
-- A CDI corresponds to what has been
called a data type in the preceding
section. Note that a CDI may consist
of many distinct objects, or, for )
important data objects, an object may
be given a unique type: it is up to
the application designer.

® Integrity Verification Procedure (IVP)
-- a procedure, the purpose of which
is to confirm that all of the CDI's in
the system conform to the integrity
specification at the time the IVP is
executed. -- In my system the IVP, as
designed, would be a transaction
object certified to correctly perform
the verification function over all
represented data types. Note that my
system also accommodates "smaller"
IVP-1like transactions for arbitrary
subsets of the data types.

® Transformation Procedure (TP) -- a
well-formed transaction that changes
the set of CDIs from one valid state
to another. -- In my system, a TP is
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an arbitrary transaction object ‘
(program) that has been certified to

operate correctly on its designated

data types.

Unconstrained Data Item (UDI) -- a
data item not covered by the integrity
policy. -- In my system, a data type
would be reserved for UDIs. Those
TP's certified to correctly transform

- UDIs to CDIs (i.e., validate and move

data into the system) would simply
have the integrity and disclosure
categories for the UDI data type added
to their access class.

Enforcement Rules

Cl: All IVPs must properly ensure that
all CDIs are in a valid state at the
time the IVP is run. -- Clark and
Wilson identify this as a requirement
imposed upon the certifier of the 1IVP,
as it would be in the system I have
described. .

C2: All TPs must be certified to be
valid. . . For each TP, the certifier
must specify a list of CDIs (called

a relation) which the TP has been
certified to manipulate correctly.

~-- In the system described, this

list is embedded in the access

class assigned to the TP program
object.

El: the system must maintain the

‘relation referred to in rule C2, and

must ensure that the only manipulation
of any CDI is by a TP, for which the
CDI occurs in the relation for that
TP. -- This rule is enforced
indirectly by means of program
integrity. .The ‘security kernel
ensures by means of this constraint
that the TP executed by a subject is
certified for all CDI1's accessible by
the subject. It follows that any CDI
manipulated by a TP in execution is
one that the TP is certified to
manipulate correctly.

E2: the system must maintain a list of
relations associating triples of the
form <UserID, TP, CDI> that identifies
which users may cause which TPs to be
executed to manipulate which CDIs. --
as discussed in the last section, this
rule is enforced explicitly by the TCB
as a discretionary policy. However,
it is backed up by the additional
requirement that the user be cleared
for a given TP and list of CDIs in the
non-discretionary sense.

C3: the list of relations in E2 must
be certified to meet the separation of
duty requirement. -- Clark and Wilson
identify this :as a rule to be enforced
by the human administrators of the
system.

E3: the system must authenticate the
identity of each user attempting to



e E4:

execute a TP. =-- as this is a
commonly met requirement for any
high-assurance evaluated TCB, it would
seem unnecessary to address this
requirement in any detail.

C4: all TPs must be certified to write
to an append-only CDI (the log) all
information necessary to permit the
nature of the operation to be
reconstructed. -- It might be noted
that this is presented by Clark and
Wilson as an application-dependent
requirement, requiring review of the
TP by the certifier. However, the
intent of this requirement would be
met in part by the security audit
function of the underlying TCB, which
would record, as a security-relevant
event, the creation of a new subject,
its associated user and access classes
in the security audit log.

C5: any TP that takes a UDI as an
input value must be certified to
perform only valid transformations, or
else no transformations, for any
possible value of the UDI. ~--
Enforcement of this rule is also the
province of the certifiers: the
described system provides a means,
however, for ensuring that a TP not
certified to take a UDI as input in
fact, cannot be executed with read
access to a UDI.

only the agent permitted to
certify entities may change the list
of such entities associated with other
entities: specifically, those:-
associated with a TP. An agent that
can certify an entity may not have any
execute rights with respect to that
entity. -- This rule is to be enforced
in several parts (outside the security
kernel). First of all, in order to
"certify" a TP one must be able to
create a subject with a write label
containing the integrity category [tn]
reserved for that TP. It follows that
a user with a clearance containing
{tn}[tn] is a "certifier" for the TP.
In order to execute the TP against a
data type A, a user's clearance must
contain {tn,a}[al. Thus, there exists
a clear-cut way to distinguish
"certifiers" from "users" of a TP:
only certifiers have a clearance
containing [tn]. The rule that must
be enforced by the TCB can then be
restated as follows: no individual
may be given a clearance that
simultaneously contains the integrity
category for a transaction and the
integrity and/or secrecy category of
any data type contained in the label
for the transaction object. This rule
would be most easily enforced by the
TCB the time some user was given a
clearance as a "certifier" by ensuring
that the user was cleared for none of
the reserved proposed for it by the
"certifying" individual).
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4. Prospects for a Near-Term
Implementation

In the material presented above,
described the proposed system for
supporting the Clark/Wilson requirements in
the simplest mathematical terms I could
find: the emphasis was on making a rather
complex construction as clearly explained
as possible without becoming mired in
extraneous design issues. In particular,
neither the efficiency nor the prospects
for actually building the proposed system
were considered. The purpose of this
section is to address these issues briefly.

I have

We might first list some of the
characteristics a conventional TCB with a
non-discretionary security kernel should
have in order to support the construction
given above:

e it should support both disclosure and
Biba integrity policies:;

e it should support partially trusted
subjects with both write and read
labels;

e it should support both hierarchical
and non-hierarchical access classes;

® it should enforce a program integrity
policy:

® it should be subsetted in such a way
that the special requirements of the

Clark/Wilson policy for constraining
clearances and imposing controls on
the creation of new subjects based on
<UserId, TP, CDI> triples can be
introduced without disturbing the
security kernel itself.

The GEMSOS TCB has all of these properties.
One issue raised by Karger in [11] is worth
special mention: it should be apparent
that a relatively large number of integrity
and disclosure categories will be needed
for a practical system. GEMSOS supports an
access class label with over 90 bits
available to represent the lattice of
access classes. The commercial version of
this system uses these bits to represent a
distributed lattice conformant to the
guidelines in [3]. However, the
interpretation of these bilits is confined
internally to a single module which is
easily modified. In order to support a
Clark/Wilson policy (as only limited
combinations of the categories will
actually occur) this module can relatively
easily be restructured to encode a much
higher number of "data types". The
remainder of the kernel depends, for its
correct operation, only upon the fact that
the policy 1s a lattice. (In particular,
non~distributive lattices are
accommodated.) Thus, making the required
modification to the kernel is an issue
primarily of routine software engineering.

The following changes, all relatively
minor, would be needed to convert the



GEMSOS TCB into one supporting a
Clark/Wilson policy in a practical way:

e the internal module interpreting
access class labels would need to be
modified, as discussed ‘above;

o additions would have to be designed
and coded for the discretionary access
control manager to enforce the
additional requirement to constrain
subject creation based on a table of
"triples". These would not disturb
the existing discretionary and/or
non-discretionary controls, but serve
as a refinement to them.

e additions would have to be designed
and coded to enforce rule E4.

All of these changes are relatively minor.
Although a re-evaluation of the TCB would
be induced, existing evidence could be
substantially re-used. In particular,
because of the high degree of structure in
the existing GEMSOS design, and because no
fundamental changes would be required to
the design, the magnitude of effort
required for such a re-evaluation would be
low, and the risk of failure small.

A final point worth noting is that
mathematically (and practically, as well)
it is relatively easy to define a lattice
that combines the lattice of "types" with
conventional disclosure and integrity
lattices (using the Cartesian product.) It
follows that a policy combining the
military and strongly-typed systems is
immediately feasible.

5. Conclusions

In this paper I have presented a
construction that maps an arbitrary
Clark/Wilson policy to an equivalent
"military" policy containing both non-
discretionary and discretionary components.
In particular, the most important elements
of the Clark/Wilson requirements (execution
of TPs only against CDIs they are certified
for, and only by users authorized to
execute the TP against these CDIs) can be
enforced with the strong assurances
traditionally associated with non-
discretionary policies. Moreover, because
this construction points the way for
utilizing existing technology, the
prospects for a near-term implementation of
a highly-assured Clark/Wilson system are
promising.

However, this construction would appear to
have some theoretical interest as well.
Essentially, the construction shows that a
security kernel supporting Biba integrity,
with both hierarchical and non-hierarchical
components, and enforcing program
integrity, can serve as a strong type
manager. As it would appear that Boebert
and Kane have shown that the inverse
transformation is also possible -- a strong
type manager can enforce a lattice security
policy -- in some sense, these views about

integrity are two different ways of talking
about the same things. Which way you
select depends upon the things you want to
talk about -- a "change of coordinates"
into the other system is always possible.
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ABSTRACT

Currently, an important concept in computer
security is data integrity. As early as 1977, there
existed formal models which incorporated integrity
in an access control policy [Biba]. In 1982 Goguen
and Meseguer provided the modelling world with
their non-interference theory which develops
assertions based upon pairs of users [G+M].
Furthermore Clark and Wilson [C + W] discussed the
concept of data integrity and the differences between
an integrity policy and those policies controlling
access to sensitive information. This paper takes
advantage of the flexibility of non-interference to
define a security policy for data integrity.

Introduction

A major concern of computer security is the
concept of data integrity. Integrity considers the
ability of a computer system to assure its users that
the information it stores is not corrupted. This is
different from the access control policies [B+ L] used
for protecting sensitive information which have been
studied intensely for the past decade. Unlike access
control policies which restrict access to data objects
based on classification and clearances, an integrity
policy should discuss properties of the system which
protect the soundness and completeness of the stored
information. We do not concern ourselves with a
discussion of the differences in the two policies, but

this point is clearly brought out in a paper by David
Clark and David Wilson [C+W]. However we use
certain of the concepts from their paper as
motivation for our integrity policy which is
expressed in non-interference theory.

Motivation

The model by Clark and Wilson [C+ W]
consists of a finite state machine which has a set of
constrained data items (CDI’s) representing those
elements for which integrity must be provided and
similiarly a set of unconstrained data items (UDT’s).
Also included in the model are two types of
procedures. The first type of procedure is called a
Transformation Procedure (TP) which can be viewed
as the typical state transition functions. The second
type of procedure is a Integrity Verification
Procedure (IVP), whose purpose is “to confirm that
all of the CDI's in the system conform to the integrity
specification at the time the IVP is executed.” [C+ W
p.189]. With a given set of procedures, they also
define a set of nine rules, partitioned into
certification and enforcement rules, to which the
procedures must adhere if the system is to provide
data integrity.
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A key concept described by these rulesis that of
separation of duty. Separation of duty refers to a
system in which a state transition cannot be fully
executed by one user but requires the cooperation of
two or more users to complete. A typical example of
separation of duty is a business procurement process.
That is, one user requests an object, another user
authorizes the request, a third actually purchases
and receives, until finally the original user who
requested the object receives it. In this example a
company handling multi-million dollar objects
certainly would not want one person to. have the
capability of performing all the functions in the
procurement process. It is this concept of separation
of duty upon which we will build our definition of an
integrity policy.

Definitions

Let U be the set of all system users and C the
set of state changing commands. For every user u &
U let ay ¢ U be the user who is designated as the
“authorizer” of any command issued by u.
Informally, our definition of an integrity preserving
system is as follows: ‘

Def: A system (finite state machine) preserves
integrity provided that for every user u ¢ U and
command ¢ ¢ C, the command ¢, when issued by u
does not effect the system until a, authorizesc.

The phrase “u does not effect the system” can
be restated as “whatever u does is not visible by any
other user” or, better yet “u does not interfere with
v” where v £ U\{{u,ay}. The last phrasing indicates a
relation to non-interference theory. However we will
see that the clause “until a, authorizes the
command” will be represented in a definition for a
purgeable user-command pair. We formalize our
definition using the notation of Goguen and
Meseguer in [G+M]. Recall that w is a finite
sequence of user-command pairs w =
$ui,c1),(ug,c2),...,(un,cp) where uj ¢ U and c; ¢ C. The
family of all possible input sequences is denoted by
§UxC)*. The state of the machine determined by w
from the universal initial state is denoted by [[w]].
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The non-interference assertion that we develop for
integrity differs somewhat from the assertions that
Goguen and Meseguer created. The difference lies in
the definition of purgeability of a user-command pair
which in turn creates a difference in the purge
function.

A purging function is the key tool in
formalizing non-interference assertions. Given a
finite sequence of user-command pairs w, the purge
of the sequence w is simply a certain subsequence of

w. In our case, this subsequence of w is the one

" where all commands issued by u are authorized.

That is, any command by u that is not authorized is
deleted (purged) from the sequence w. Formally we
say:

Def 1: A user command pair (uj,ci) ¢ w is purgeable
with respect to u iff u = uj and there is not a user-
command pair (uj,¢j) ¢ w with uj = ay and ¢j =
“authorization command for u” andi < j.

Using this definition of a purgeable user-command
pair we get a recursive definition for the purge
function: v

Def: Let w = (up,c1),(ug,¢2),...,(upn,cn). Then fori =
1,2,...,n we have Purgey:(UxC)* = (UxC)* where
Purgey(D) = & and Purgey((uj,cp,...,(un,Cn)) =

Purgey((Uj + 1,€i + 1)y+-+,(Un,Cn))
if (uj,c;) is purgeable with respect to u
or
(uj,ci), Purgeu((uj + 1,¢i + 1)y++-,(un,Cn))
otherwise

Informally Purgey(w) will delete from the
sequence W any command issued by u that is not
later authorized by a,;. Notice that this definition of
purging is different from the purging performed in
the non-interference definition in [G+M p.79].
Their purging function simply removes all user-
command pairs issued by u.or removes those where
the command is from a subset of C. Our definition of
purge is dependent upon the rest of the sequence in
determining the purgeability of a user-command
pair.



Even though the defintion of our purge function
is different from Goguen and Meseguer’s, with an
extra assumption we can derive a purge function
The
assumption is: let any authorization command

which performs conditional non-interference.

issued by ay authorize all previous commands by u.
With this additional hypothesis, our purge function
behaves exactly like that of Goguen and Meseguer’s
conditional non-interference purging. That is,
Purgey(w) = wiwg where w = wiwgl and w is the
longest subsequence of w which ends in an
authorization command and wg = Purgey(wal). We
will discuss more aspects of purging in a later
section, for now let us continue with our
deVélopement of data integrity. Given the above
definitions we can state the following:

Policy 1: A system (finite state machine) preserves
integrity provided that for every u ¢ U and v ¢
U\{u,ay} we have u does not interfere with v modulo
Purge, written

u ;| vmod Purgey

i
out({[wll,v,r) = out([[Purgey(w)ll,v,r)
for all w e (UxC)*.

Generalizations

Upon examination of the above definition,
there are several ways one could generalize to allow
more flexibility. Each generalization will be
summarized by stating a new definition for the
purgeability of a user-command pair and also a
revised policy statement. The purge function will
also be different but that is implicit because of the
new definition of purgeable. We have already stated
a generalization earlier with the assumption that all
previous commands issued by u can be authorized by
ay with a single command. The most obvious way to
generalize is to say that more than one user needs to
authorize a command issued by u. Thatis, let

&y = {x ¢ U | x must be a member of the
authorization process for u }.

We postulate that the members of the authorization
set Ay constitute a tree as defined in digraph theory.
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This seems to be a natural structure to impose on the
set because of the management hierarchy which
exists in the corporate world. We know that in many
instances a manager will not grant authorization for
an action until various subordinates have given
their approval. This concept simply says that there
Thus A,
determines an “authorization tree for u” with the

is a partial ordering on the set Ay.

members of Ay, as the nodes, u as the root, and a
directed edge exists from uj to uj, with uj,uj e Ay, iff uj
follows u; in the authorization process for u. The
example below will help to illustrate this point.

Ex: Suppose Paul, whenever he wants to publish a
paper, has to get the following approvals;
Will(technical advisor), Ted(division chief),
John(office chief), and Fred(patent officer). If we
assume that the jobs of Will,Ted, and Fred are
independent and an office chief is above a division
chief in the corporate architecture then Apgy =
{Will,Ted,John,Fred} and the authorization tree for
Paul looks like Figure 1.

John

will Ted Fred

Paul

Figure 1

Incorporating A, into our integrity concept yields
the new purgeable definition and policy:

Def 2: A user command pair (uj,cj) ¢ w is purgeable
with respect to u iff u = uj and there is not a
subsequence of user-command pairs beginning at
(uj,c;) which define the authorization tree for u.

Policy 2: A system (finite state machine) preserves
integrity provided that for every u ¢ U and v ¢
U\({u}UAy) we have u does not interfere with v
modulo Purge, written



u | vmod Purge,
il
out({[w]l,v,r) = out([[Purgey(w)]],v,r)
for all w e (UxC)*.

Closely related to the previous generalization
is the capability of providing “group” integrity
protection. This refers to allowing individuals to
interact with each other without worrying about
integrity, in other words interfering. Groups arise
naturally out of the common practice of partitioning
a project among several people. In this case we
would want all the people on the same project to be
able to interact freely without always having to
satisfy an authorization process. This is easily
formalized by defining Gy = {uj | the integrity
This
generalization does not effect the definition of a

concern between u and uj is void}.

purgeable user-command pair, and the policy is
defined by replacing v e U\{u}UA,) in Policy 2 with v
e U\{u}UALUGY).

The last generalization we want to make
concerns the actual command that a user issues. In
particular, suppose that a user has to seek
authorization from two different sources depending
The
combination of the earlier examples illustrates this

upon the command that he performs.

notion. That is, suppose Paul wants to purchase a
Cray computer. The procurement process involves
someone with the capability to authorize the use of
corporate funds whereas the publishing process is
independent of money matters. This suggests that a
user u has an authorization tree for every different
command that he can issue. Adding this concept
leaves us with the final definition and policy
statement:

Purgeable Def : A user command pair (uj,c;) € w is
purgeable with respect to uiff u = uj and there is not
a subsequence of user-command pairs beginning at
(ui,ci) which define the authorization tree for u
issuing command c;.

Integrity Policy : A system (finite state machine)

preserves integrity provided that for every u e U and
ve U\{u}UA( ¢)UGy) we have
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u using command ¢ does not interfere with v modulo
Purgey
written
u,¢ ;| vmod Purgey
Il
out({[wll,v,r) = out([[Purgey(w)1],v,r)
for all w £ (UxC)*.

Remarks:

Clearly, we ought to consider the question: are
all the concerns of data integrity emcompassed in
our policy definition? The answer is probably no.
For instance in {C + W] Clark and Wilson state nine
rules which must be satisfied to provide data
integrity. Some of the rules require procedures
which certify state transitions and data items; others
require procedures to identify and authenticate
every user attempting to execute a transition. These
rules, certainly germane, are not covered by our
model.

Our definition has the advantage of
formalizing, in our opinion, the notion of separation
of duty, a concept of considerable current interest
and concern as pointed out forcefully in [C+W]. To
use the theory of non-interference seems to be a very
natural mathematical environment in which to try
to express the notion precisely. There is the
additional advantage that the theory has been
elegantly developed by Goguen and Meseguer,
Haigh and Young, and Johnson and Thayer.

Moreover, we have described a different type of
non-interference assertion. That is, a non-
interference assertion that does not purge like that
of Goguen and Meseguer, nor does it act like a
conditional non-interference assertion. The reason
for this lies in the definition of the function Purge,,.
As stated before, Purge, removes any occurrence of
an unauthorized command issued by u, whereas the
Goguen and Meseguer non-inteference purge
function removes all occurrences of a command(in a
certain set) issued by u and the conditional non-
interference purge function purges only after a
specific occurrence, thus allowing previous



unauthorized events to be effective. Hence we see
that the “power of a non-interference policy” (i.e.
how much interference is allowed) is contingent

upon the definition of the purge function.

For the moment, suppose that our purge
function actually behaves like a conditional non-
interference assertion. (Recall that the necessary
assumption for this example is that any command
issued by ay authorizes all previous user-command
With this extra
hypothesis, the integrity policy is directly related to
the multi-domain policy(MDS) for SAT which is
described in [H+Y].
assertions in both policies look for an occurrence of a

pairs (u,c) in the sequence w).

The non-interference

“channel”, a path from the domain of user u to
domain d in the MDS policy and an “authorization
tree” for user u issuing command ¢ for our integrity
policy. Itisinteresting that these assertions not only
act the same way on commands but are considered to
comprise the mandatory part of the overall security
policy.

Conclusion

In this paper we have developed a
formalization of the concept of data integrity, the
basis of which is separation of duty. Specifically we
formalized the intuitive notion of an “authorization
process” by defining a purgeable user-command pair.
From this definition we created a purge function
which in turn results in a policy for integrity. The
use of non-interference theory as a mathematical
environment in which to describe the policy, not only
allows us the capability to enhance our defintion
with aspects of integrity which may appear in the
future as our understanding of the -concept deepens,
but also exhibits a relationship between integrity
policies and multi-level security policies already
developed in non-interference assertions.
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ABSTRACT

This paper describes a model for ADP Risk Analysis (RA)
that was developed in response to the special requirements of
the military data processing environment typified by the De-
fense Communications Agency’s (DCA) Joint Data Systems
Support Center (JDSSC) in the Pentagon. The reasons why
more traditional RA models and methodologies have failed in
this environment are identified. The special challenges faced
by risk analysts in the military classified ADP environment
are described. This paper considers the needs of security man-
agement officials for RA results in both a single-site single-
system environment and the more typical multiple-systems
multiple-sites environments faced by JDSSC and other mili-
tary commands. Finally, a methodology for RA is presented
that responds to these needs through the use of multiple
metrics, a standardized threat nomenclature, and standardized
reporting. '

INTRODUCTION

During 1987, work sponsored by the DCA JDSSC ADP Secu-
rity Office (C703) resulted in the development of a RA meth-
odology for use by JDSSC ADP Security officials during RAs
at World Wide Military Command and Control System
(WWMCCS) sites and other installations operated and man-
aged by JDSSC. The JDSSC RA Guide (RAG) incorporates a
model and a methodology for RA that is appropriate to
JDSSC’s needs but somewhat different from other RA models
being used in similar environments. While certainly not state-
of-the-art given the science of RA, the JDSSC RAG was de-
signed to provide practical guidance in the performance of an
ADP RA, not to define new methods for analyzing diffuse
risks.

Unlike many other RA methodology results, the JDSSC RAG
RA results are combinable: RA efforts from distributed sites
can be summarized over a large number of installations. This
capability can be used to identify the types of “network secu-
rity postures” JDSSC requires. Also, the JDSSC RAG RA re-
sults are abstractable, producing the level of RA reporting
necessary for both low-level specific countermeasures and
high-level JDSSC policy decisions and budget planning.

While results from the application of the JDSSC RAG are still
tentative, they show great promise for the future. Current evo-
" lutionary plans for the JDSSC RAG include expansions in the
guidance provided for Network RAs, automation of the model
and the methodology, and the establishment of mechanisms
for effective Risk Management in a military ADP environ-
ment.

BACKGROUND

Before beginning any discussion of the JDSSC RAG, it is ap-
propriate to begin with a rapid review of why ADP RAs are
performed, what is expected of them, and why current meth-
ods just don’t seem to work.
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RA is a Well Developed_Science

What may still distinctly surprise many involved in the busi-
ness of ADP RA is that RA, in its purest sense, is a well
developed, sophisticated, and evolving science. However, the
business of ADP RA is not well developed, sophisticated, or
evolving. On the contrary. Little new or innovative work in
ADP RA is occurring at all.

The science and the art of RA have been applied to other
fields over a significant period of time. RAs by professional
risk analysts against a wide variety of complex systems have
been conducted. Notable among non-ADP RA efforts was a
study conducted to determine the safety of commercial nu-
clear power stations [1]. The RA contained detailed examina-
tions of the safety mechanisms incorporated into commercial
reactor systems, and it plotted the failure rates of individual
components (as well as related and dependent components in
combination) against the potentials for measurable leakages
of radiation. A highly quantified study, it has been widely
cited as an illustration of what the process of RA should be.

As RA has evolved, organizations such as the Risk Analysis
Society have greatly extended the types of problems which
can be considered through quantitative methods. Non-
bayesian techniques for evaluating risk have been developed
and applied to a wide variety of problems not amenable to
deterministic evaluation.

Origins of ADP RA - Basic Mandates

The business of ADP RA can be said to have begun with the
publication of Transmittal Memorandum Number 1 to the Of-
fice of Management and Budget’s Circular A-71 [2]. OMB
A-71/TM#1 required that all executive branch departments
and agencies develop and implement computer security pro-
grams. Within this original guidance, RAs were explicitly
called for at all computer installations operated by or for the
federal government “to provide a measure of the relative vul-
nerabilities at the installation so that security resources can
effectively be distributed to minimize the potential loss.” RAs
were required for all installations each time a significant
change occurred, or at least once every five years.

Both before and after the publication of OMB Circular
A-71/TM#1, the Department of Commerce published a series
of standards and guidelines to aid federal agencies in the per-
formance of RAs [3] [4] [5]. The requirements and specific
methodologies for RA have also been incorporated into a
number of Department of Defense (DoD) regulations includ-
ing [6], [7], and [8].

The original guidance from the OMB has recently been re-
placed as OMB A-130 [9]. The requirements in the current
OMB Circular are only slightly more explicit than those origi-
nally contained in [2] - “The objective of a Risk Analysis is to
provide a measure of the relative vulnerabilities and threats to
an installation so that security resources can be effectively
distributed to minimize potential loss.” However, the current



circular does allow for a variance in the formalism of the
analysis based on the size of the installation - “Risk Analyses
may vary from an informal review of a microcomputer instal-
lation to a formal, fully quantified risk analysis of a large
scale computer system.”

This softening in the requirement is perhaps in response to
the realities of ADP RA state-of-the-practice. Many ADP
managers perceive ADP RAs costly, time-consuming, and of
questionable value to management planning. The next section
of this paper reviews the problems with ADP RA in more
detail.

REQUIREMENTS ANALYSIS

The development of the IDSSC RAG generally followed the
stages of the standard product lifecycle, beginning with an an
analysis of the requirements that must be satisfied by the
JDSSC ADP RA methodology. Following this analysis, a num-
ber of ideas were prototyped for evaluation through their ap-
plication to a live analysis effort.

Purpose of RA — Management Benefits
The primary management benefit of an ADP RA is that the

quantified evaluation of risk (i.e., relative criticality based on
some common metric - the basis of all RA efforts) is highly
useful as a yardstick of relative need. During the process,
management also gains an insight into problems faced at sev-
eral system levels, many of which are normally hidden be-
cause of overall system complexity. Decisions to act based on
RA results assure the best use of available funding, where
best is defined by the metric employed. If the metric em-
ployed is dollars, then RA points towards the actions that
make the best economic sense. As described earlier, however,
dollars are not the only possible metric, and other methods for
quantifying loss can be used in situations where fiscal eco-
nomics are inappropriate.

A secondary benefit from ADP RA is the opportunity to reac-
quaint staff personnel with the importance of the data proc-
essing resource to overall mission objectives. Through the
identification of real and potential losses, the extent of the
reliance on an ADP resource is rediscovered. Most, if not all,
user mission objectives are directly dependent upon the suc-
cess of the ADP organization. In the absence of the ADP re-
source, no alternative means for user mission satisfaction are
available. The true extent of DoD reliance on its ADP re-
sources is only poorly understood by most data processing
professionals involved in supporting these resources.

Another secondary benefit from the process of RA is the iden-
tification of important dependencies. Seemingly unimportant
resources and functions can play paramount roles in overall
system reliability. Within an ADP environment, the reliability
of the entire ADP resource can be focused on individual
pieces of equipment and specific personnel. Even minor fail-
ures can have major impacts on an entire installation. Ramifi-
cations of minor problems in the ADP environment can mean
disasters for user organizations.

Problems with Existing ADP RA Methods and Models

Many models, methodologies, and tools supporting (some pur-
porting to ’automate’) ADP RA have been produced and em-
ployed by different federal department and agencies [7] [8]
[10] [11] [12]. These models of ADP RA, and the particular
methodologies supporting them, vary from agency to agency,
from regulation to regulation, and from standard to standard.
Seemingly, the only thing that all existing ADP RA method-
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ologies, tools, and models have in common is their diversity.
Nearly every existing methodology, tool, and model has its
own positive and negative points [13]. Few are compatible
with any other approach. Nearly all are based on a purely
financial analysis of loss and cost-effectiveness of counter-
measures.

Considerable resources have been invested over the past ten
years in the performance of ADP RAs. A cottage industry in
the performance of RAs has emerged to service the ADP RA
needs of the federal marketplace. Unfortunately, the diversity
and the impropriety of the methods for ADP RA being em-
ployed have raised serious doubts about the utility of the proc-
ess to ADP management.

ADP RA results have been widely criticized for (1) their sizes
— ADP RAs can produce volumes of detailed data of question-
able accuracy or utility, (2) their diversity - managers are
faced with a wide variety of RA results from different efforts,
and (3) their nature - the types of issues considered by differ-
ent RA methodologies and models are different, and ADP RA
is highly dependent upon the personnel performing the analy-
sis.

Within the military environment, experiences in the perform-
ance of ADP RAs have been much the same as for non-DoD
agencies. Unfortunately for the DoD, where the greatest reli-
ance on ADP exists, and where the most significant risks are
faced, none of the methodologies for RA is at all appropriate.
Without exception, these methodologies, models, and tools
fail to properly appreciate the priorities of the military envi-
ronment. These priorities include elements that are crucial
considerations in ADP RA:

1. Unlike most other federal agencies, the DoD ADP systems
process classified information that must be protected to
the maximum extent possible. Military command and con-
trol systems process information vital to the national de-
fense.

2. System failures in the military environment have implica-
tions for national security, not just finance. The eventual
users of military systems include all military commands
and elements. Failures of different military systems have
differing levels of implications.

3.. Policy decisions and budget allocations in the DoD are
made centrally. Current ADP RAs are highly system- and
environment-specific processes. Thus, policy decisions
must be based on very detailed RA results.

4. An ADP RA requires so much time and associated re-
sources that the known risk posture within a single author-
ity or command (such as JDSSC) cannot be kept current.
Practical means are unavailable for keeping ADP RA re-
sults up to date in a rapidly changing environment.

5. A significant level of expertise is required for the perform-
ance of a quality ADP RA. It is difficult to provide suffi-
cient guidance in the performance of ADP RAs that inex-
perienced personnel can produce useful results.

Currently available tools JDSSC evaluated before the JDSSC
RAG was developed were found to be universally difficult to
use or tailor to specific environments, lacking in mechanisms
for maintaining RA results, and unable to produce both de-
tailed and abstracted results. The Los Alamos Vulnerability
Analysis (LAVA) tool received from the National Computer
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Security Center (NCSC) was evaluated in depth. The evalu-
ation concluded that:

1. LAVA can be quite cumbersome to use. If questions
within its automated questionnaire are answered incor-
rectly; no mechanisms exist for their specific modification.

2. While LAVA’s extensive automated questionnaire quite
well addresses the areas within its scope, no mechanism is
provided to address issues outside of the defined areas.
Non-addressed areas included TEMPEST, office automa-
tion, personal computers, Operations Security (OPSEC),
and word processing.

3. The report LAVA produces is difficult to read, and con-
veys less insight to actual security conditions than does an
annotated copy of the input questionnaire upon which the
report is based. Vulnerability ratings are presented with no
description of their basis.

4. LAVA is based on assumptions about the types: of threats
to which the data processing resource is exposed. For this
to be reasonable, other assumptions must be made about
the scope of the analysis LAVA is able to support.

JDSSC’s analysis of LAVA, the National Aeronautics and
Space Administration’s (NASA) Self Analysis Guide
(SAGUD), and Lance Hoffman’s RISKCALC, among others,
have resulted in the following conclusions about available
ADP RA methodologies and tools:

1. None of the examined methodologies or tools provides suf-
ficient comparison of RA results across different systems
or installations.

2. None of the examined methodologies or tools adequately
addresses the issues of mission satisfaction or information
compromise.

3. The tools examined are not sufficiently flexible or expand-
able to be useful to JDSSC because of the dynamic nature
of the JDSSC ADP environment.

4. None of the examined methodologies or tools allows risk
analysis results to be collected and accumulated across in-
stallations for strategic planning and abstract analysis.

While the failings of particular tools and methodologies differ,
no existing tool or methodology seems to solve some prob-
lems:

1. The value of classified information is difficult to quantify.
No reliable method exists for determining the value of
classified information in the general case. No formula is
possible that factors in the real value of classified infor-
mation to a potential adversary.

2. The values of assets are not identical in all instances. The
value of classified information when compromised, for ex-
ample, is much greater than the value of classified infor-
mation unintentionally destroyed (e.g., in a fire). Valu-
ation must be as a function of the threats an asset is
exposed to, a point missed by most, if not all, established
methodologies.

3. Losses experienced due to 'mission dissatisfaction’ can in-
clude a decrease in U.S. defense readiness. Threats which
might affect mission satisfaction are difficult to quantify
realistically. As a result, RA findings that imply effects
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against mission satisfaction are typically under- or over-
emphasized by the losses’ attributed to them.

4. None of the established methodologies allow for sufficient
comparison or abstraction of ADP RA results. ADP RA
results must be comparable across systems and installa-
tions and must be easily, intuitively, and quickly under-
stood by laymen.

5. The maintenance of ADP RA results is not well supported
in a very dynamic and networked environment. No provi-
sions exist for rapid calculations based on 'what if’ scenar-
ios against risk analysis results, or for the dynamics of an
environment with rapidly changing threats and assets.

6. Risk Management (the continuing identification of risks,
and the corrective actions taken in response to identified
risks) is not sufficiently emphasized by existing tools or
methodologies. Some tools include no provisions for Risk
Management whatsoever. :

7. Even within a given methodology, RA results tend to vary,
and even strong methodologies can result in ADP RA re-
sults that are inconsistent with prior studies in the same
installation. Strong guidelines for the analysis techniques,
scope, and categories of investigation are needed to ensure
consistent ADP RA results.

To a large extent, the methods employed cause the problems
with ADP RAs. [14] stated that “The majority of computer
security risk analyses have used annual loss expectancies
(ALEs), a method well-suited to and used by insurance com-
panies.” Most methodologies examined compute the ALEs
in terms of dollars. However, dollars are an inappropriate
measure of many risks faced in the military environment.
Losses of classified information, or of the implications inher-
ent in potential failures of critical defense ADP systems, just
cannot be stated in terms of “dollars lost” per instance or per
year.

[14] also concludes that the science has been hampered by the
lack of available, appropriate metrics to apply to intangible
losses. [14] further identifies means to analyze diffuse and
undefined risks. Both [14] and [15] discuss the need to better
apply the true science of RA to the problem of ADP RA
through non-bayseian techniques. However, in the analyses
which led to the production of the JDSSC RAG, the problems
with the techniques used to compute risk (ALEs) were seen as
less indicative of why current models have failed to be useful
than the problems obvious with the techniques used to com-
pute specific loss. It was felt that dollars lost were an ex-
tremely inappropriate way to express the potentials involved
in classified information compromise and in denial of service
for crucial military ADP resources.

Qualitative versus Quantitative RA

Although highly quantified computer security RAs have
tended to become quickly overbearing, unquantified analyses
face other risks. Unless supported by some form of quantifi-
cation, findings of vulnerability and recommendations for
countermeasures and safeguards are reduced to opinion and
conjecture.

It is in the quantification of risk that RA derives its benefits.
Qualitative assessments of security (physical security, techni-
cal security within systems, and administrative controls, etc.)
by experienced analysts usually identify many weaknesses for
which remedial actions can be recommended and reasonably



supported. Unfortunately, no budget is sufficient to allow im-
plementation of €very safeguard that looks attractive or which
seems necessary. In the military environment, as elsewhere,
many reviews have been conducted based on this “best guess”
approach, resulting in recommendations which may not have
been the best application of available funding.

[16] warns against the qualitative approach to computer secu-
rity: “Security Measures are cost-effective only when the
losses that are displaced are significantly greater than the
[cost of the] security measures.” Although individual prob-
lems are easy to evaluate on their own merits, the “common
sense” approach quickly breaks down when applied to many
concurrent problems. The problems facing management may
also be extremely complex and require a deep understanding
of the specific situation to appreciate the need for any reme-
dial action. Only by somehow quantifying risk can different
problems be realistically compared and decisions made about
safeguard implementations really supported. [16] recom-
mends that analysts “do a comprehensive job of problem defi-
nition and gross quantification before attempting the imple-
mentation of computer security measures.”

Minimal Requirements
While several ADP RA methodologies are in use, most were

intended for application to non-defense systems, where eco-
nomics plays the major role in management decision making.
JDSSC’s special challenges are not satisfied through any
methodology or tool demonstrated to. date, in part because
many of the situations it faces do not lend themselves to a
purely financial analysis. Safeguards over classified informa-
tion, for example, are difficult to justify by dollars saved. De-
fining the JDSSC RAG first required reviewing what the
-JDSSC environment required.

JDSSC manages systems critical to national security, distrib-
uted across a wide geographic region. Its mission includes
support of (1) the National Military Command Center
(NMCC) supporting the Organization of the Joint Chiefs of
Staff (OJCS), the Office of the Secretary of Defense (OSD),
and the National Command Authority (NCA); (2) the Alter-
nate Military Command Center (ANMCC); and (3) a wide
variety of smaller and more specialized operational, develop-
mental, and research systems and networks (both local and
wide area) supporting critical defense needs. In the near fu-
ture, classified networks, office automation, and classified
word processing systems will probably become even more
prevalent than they are today. Due to this variety of support
areas, JDSSC’s most important requirement for ADP RA is
for techniques sufficiently flexible for each of these diverse
types of systems and which allow identification of the types of
risks each faces. In practical terms, and because some of the
automation security requirements for networks (as one exam-
ple) are not fully defined today, the methodology must be ex-
pandable.

Some systems managed and operated by JDSSC are subject to
security requirements based on their processing modes.
JDSSC systems process classified information at various lev-
els, and each level is associated with increasing requirements
for computer security. The ADP RA methodology required by
JDSSC must include provisions for these types of considera-
tions.

Security management within JDSSC is centralized. Any rec-
ommendations must be based on identification of the most
critical problems among-all JDSSC systems so that decisions
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can be made about where action (new or revised policies, etc.)
is most needed. A second important consideration for JDSSC
is the need for a methodology that can allow security manage-
ment officials to realistically compare problems across sys-
tems and installations and to make summary decisions at the
policy level based on this information.

Personnel responsible for budget allocations have only a lim-
ited understanding of the details of each system supported by
JDSSC. These officials must be provided with summary infor-
mation that can be rapidly assimilated without reviewing vo-
luminous reports or detailed calculations. Techniques for ADP
RA results abstraction are needed to support high-level man-
agement decision making.

Prior ADP RAs performed against JDSSC systems have identi-
fied major risks. Recommendations for the implementation of
countermeasures were based on the findings, and actions were
assigned to different organizations to ensure that risks were
mitigated. Follow-on reviews revealed, however, that in
many cases ADP RA recommendations were not acted upon,
and that risks identified during analyses were still present
when the next analysis was performed. JDSSC needed mecha-
nisms to provide for proper Risk Management. A system was
needed to ensure that ADP RA results were acted upon in a
timely manner and that dependent situations (where multiple
actions were needed to respond to single risks) were success-
fully tracked. '

In the past, JDSSC has attempted to perform RAs according
to defined methodologies and guidelines published by various
sources. There have been problems in applying standardized
techniques to JDSSC systems, and the standardized tech-
niques have not fully met all JDSSC requirements for ADP
RA and risk management. These problems fall into four major
categories:

1. Technology. JDSSC is involved in state-of-the-art applica-
tion of available technology for secure networks, secure
systems, office automation, and classified word processing
systems. Mechanisms needed to evaluate these types of
systems are not included, incomplete, or not expandable
or modifiable.

2. Comparative Results. JDSSC management must be able to
compare results obtained from analyses at one installation
with those obtained at other installations. Methodologies
not designed to support comparisons between installations
are difficult to use for this purpose.

3. Results Abstraction. The budget allocation process must
be supported by information that is brief, concise, rapidly
understandable, and that does not require a detailed un-
derstanding of the systems or specific problems involved.
In most of the tools and methodologies used, the results
are presented in lengthy reports which contain detailed
computations, none of which is suitable for JDSSC.

4, Risk Management. Mechanisms are needed to ensure that
ADP RA results are acted upon in a timely manner and to
track progress toward planned goals. No current tools or
methodologies sufficiently provide for this need.

In general terms, the concepts involved in ADP RA are rela-
tively simple. Problems are discovered, the assets involved are
valued, the frequencies of occurrence are determined or esti-
mated, the losses are computed, and countermeasures are



postulated and analyzed. Problems often arise, however, in
applying this relatively simple concept to the JDSSC environ-
ment. The problems arise from unique ‘aspects of these sys-
tems and from shortcomings in a number of popular method-
ologies and tools.

DESIGN OF THE JDSSC ADP RA METHODOLOGY

The JDSSC ADP RA methodology’s basic requirements are
that new approaches be developed to account for the failings
of the currently available methods. The JDSSC RAG is de-
signed around an approach for quantifying “risk” that does
not depend upon dollars as the sole measure of loss.

ADP RA Risk Model

Earlier, we reflected on the sophisticated work being done to
analyze diffuse risks by professional risk analysts outside of
the ADP field. Others have described how these methods
might be more appropriate than the more simplistic model of
risk nearly all ADP RA models employ. The ADP RA objec-
tive is not, however, the most accurate portrayal of the true
extent of risks. Mandates require only the accurate ranking of
relative risks to the ADP resource.

For the purposes of an ADP RA (done quickly, and with only
a limited amount of time to quantify results), the model of
risk most ADP RA methodologies employ may be the most
appropriate and is certainly quite adequate:

RISK ALE = AFE x SLE

RISK ALE- Annual Loss Expectancy. A measure of the
extent of the danger from a given threat.

AFE Annual Frequency Estimate. How often a
given negative event is expected to occur.

SLE Single Loss Estimate. Some measure of ex-

actly what the results of that negative event
will be each time it occurs.

The model allows evaluation and relative ranking of negative
events (threats). It is beyond the scope of this paper to debate
the advantages of alternative models of risk. Suffice it to say
that we believe that this model in its most general sense is
sufficient to this application, and that its inaccuracies are well
hidden by the fallacies inherent in any attempt to quantify
threat fregencies or the true loss that will be experienced in
any disaster.

ADP RA Results Evaluation
Numbers are used in an ADP RA not to absolutely quantify
the exact risk, but rather to relatively rank risks. As a result,
and because of the inaccuracies built into any evaluation of
risk, the process of ADP RA is at the same time highly quali-
tative (i.e., judgmental) and quantitative (i.e., based on num-
bers). Understanding exactly what the results of an ADP RA
" effort mean (and what they do not) and how these results can
support risk mitigation is important. Without an appreciation
of the inaccuracies of the process, misconceptions are prob-
able.

A major misconception can occur when risk is expressed as a
figure, an ALE. For example, an ALE of $27,000.00 due to
fires in the computer room must be taken with a truckload of
salt. No installation (still standing) loses this much every year.
Even a liberal interpretation (the figure divided by the likeli-
hood of a fire yielding some figure for the potential damage a
fire is likely to cause) is unrealistic. No study can exactly pre-
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dict losses or the cost of recovering them. Postulations of po-
tential losses are hypothetical at best. Real disasters are
messy, worse-than-worst-case, and wholly unpredictable. An
installation with an excellent fire safety program can be de-
stroyed by fire immediately after receiving a clean bill of
health from the local fire marshal.

What then do ALEs represent, if the real costs associated with
disasters cannot be reliably established in advance? They rep-
resent- the magnitude of the potential or risk. Problems or
threats with high ALEs are more important than those with
low ALEs. Only in this relative and qualitative ranking do the
numbers employed in the process have their place.

Management has a limited budget and a limited opportunity
for positive change. ADP RA techniques indicate where im-
provements are most needed and where resources can best be
applied. That is all. In the situation described above, manage-
ment would be wrong to assume that, by setting aside the
ALE for fire every year, that they would be covered in the
event of a fire disaster. They would also be wrong to assume
that any safeguard costing less than 27K annually is cost—
effective. This risk must be compared with others, and what is
possible to mitigate those risks which appear most threatening
must be postulated. The relative cost-effectiveness of counter-
measures must be assessed against the most relatively serious
risks. In many cases, doing anything to reduce either the like-
lihood or the potential impact of identified risks may not be
cost-effective. Their identification is still important.

The value of the process lies not in the exactness of the fig-
ures employed but in their magnitudes, reasonableness, and.in
the relative ranking of problems based on their consistent ap-
plication across a range of situations. There is a great desire
for techniques and “truly scientific” methods to overcome the
vagaries of the ADP RA process. These desires spring from
fears that the actual numbers employed in ADP RAs are unre-
alistic. The fears are justified. Real numbers could never be
produced in advance. Even close estimations are difficult at
best. Experiences with well known threats (Courtney’s five
major sins, etc.) tend to support the contention that, through
quantification, . a reasonable qualitative ranking can be
achieved.

Increases in the accuracy of the values for assets (and the
other assumptions such as threat frequencies) do not increase
the accuracy of the process. Quantified ADP RAs are per-
formed to avoid the only alternative, a best-guess qualitative
ranking of problems. Guessing (i.e., estimating asset values,
threat frequencies, and relative degrees of exposure) is still
required, but is performed in limited ways. Upper and lower
bounds for the guesses are provided as, for example, statistics
for threat frequencies and equipment purchase costs. The
methods yield generally supportable rankings for problems
that can be intuitively ranked, and they increase the confi-
dence in the rankings of less easily understand problems.

Risk Analysis Metrics
In nearly every application of the traditional RA model to

ADP RA, the SLE and the RISK ALE are demonstrated as
dollars. During the analysis preceding the development of the
JDSSC RAG, however, we wondered if other measures of
“risk” might also be useful when dollars (as a measure of
loss) were inappropriate. Those areas where financial analy-
ses are most inappropriate are information compromise and
system downtime. Alternative metrics were devised an_d ap-
plied to a live analysis effort as an evaluation of their utility.
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‘ Information#€ompromise:: A metric for information com-

promise was based on a qualitative review of elements of the
compromise threat. We decomposed the threat as the inherent
risk associated with the classification level of information
(Top Secret data is inherently more valuable than Confidential
information), the extent of the compromise (need to know vio-
lations are less severe than a leakage from Top Secret to Un-
classified), the extent of the loss (a little data is less valuable
than a great volume of data if the other factors remain the
same), and the utility of the compromised information (auto-
mated media at high density or high speed) is more useful
than paper output.

For information compromise, the SLE is computed as a for-
mula:

SLIE=CxExAxL

C A Multiplier based on the highest classification of
data which could be exposed. Note 1.

E The percentage of the total volume of data (contained
within the system being examined) that is exposed to
the threat. Note 2.

A A multiplier based upon the avenue through which
the information is exposed. Note 3.

L The number of classification levels over which infor-

mation exposure occurs. Note 4.

Note 1. Classification multipliers were established on an or-
der of magnitude scale to allow the formula to be biased ap-
proximately equally between a small volume of highly classi-
fied data and a large volume of less highly classified data due
to the inferences possible through volume and the probability
of classification through aggregation.

Note 2. Exposure, a factor applied to all formulas in the
JDSSC RAG, is used to apply granularity within undefined
assets, such as system information volumes.

Note 3. The Avenue multiplier was originally devised as a
measure of the bandwidth of compromise (volume over
speed). In practice, the data required to accurately compute
bandwidth is generally unavailable or difficult to compute,
and a rougher measure (the avenue multiplier is described
below) was employed.

Note 4. The number of levels is a multiplier to describe the
increasing loss potential as information is compromised
across need to know (level 1) and classification level (Confi-
dential to Unclassified is Level 2, Secret to Confidential is
Level 3, etc.) boundaries.

Because ADP systems are vulnerable to compromise of infor-
mation through various types of mechanisms, the metric in-
cludes an Avenue Multiplier to allow the speed of leakage to
be considered:

10 - Information exposed over high-speed communications
lines to remote installations.

9 - Information exposed to local automated processes on
high speed media.

8 - Information exposed to local automated processes on
lower speed media.

7 - Information exposed over low—speed communications

lines to remote installations.
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6 - Information exposed to high speed terminal devices
with local storage capability.

5 - Information exposed to high speed terminal devices
without local storage capability.

4 - Information exposed to low speed display terminals.

3 - Information exposed to high speed hard copy termi-
nals.

2 - Information exposed to low speed hard copy termi-
nals.

1 - Information exposed on paper only - not automated

media.

The scale allows high risk exposures in an automated environ-
ment (i.e., high speed data leakage in a digital form away
from the facility) to be afforded more importance than less
inherently risky losses (i.e., improper handling of paper me-
dia). In practical terms, and given the high degree of “noise”
present in possible attempts to glean useful information
through the examination or monitoring of an automated sys-
tem, the scale reflects variance in the potential that an adver-
sary could gain sufficient data in an appropriate form for
automated or manual analysis to actually discover something
useful.

Through this metric, loss is expressed as an abstract number.
The actual units (CEALs) were sufficiently obtuse that the
term ’Abstracted Units’ was employed in reporting the values
computed for various situations. While the scale produced
may not be uniform, since more serious problems may not
result in a SLE value sufficiently high to reflect their true
import, the formula has resulted in a reasonable relative rank-
ing of problems, which was the intent. It also satisfies the
basic objectives:

1. Risks associated with information compromise across both
discretionary and mandatory controls can be computed
and compared.

2. Situations that involve exposure of classified information
to personnel with no need-to-know will rank lower (L=1)
than situations associated with the compromise of infor-
mation across levels (L.gt.1).

3. The greater the number of classification levels crossed, the
greater the risk. The higher the bandwidth (as estimated
via the ’avenue’) the greater the risk.

4. Situations involving highly classified information will tend
to have higher risk values than situations involving less
highly classified information, unless the volume (as esti-
mated via the exposure) of less highly classified informa-
tion is sufficiently great to overcome the order of magni-
tude emphasis of classification level.

Mission Dissatisfaction: Some ADP RA methodologies at-
tempt to place an overall value on the ADP organization, or
on the overall value of the user organization. In the military
environment, the approaches used to value the mission have
been inappropriate, resulting in dollar values for “mission”
that are much too high, while still missing the vital factors
which must be evaluated.

Missicn values are sometimes based on salaries (of all person-
nel), equipment costs, or annual budget allocations. All tech-



niques in use to place a financial value on “mission satisfac-
tion” as an asset result in enormous numbers. These
numbers, in the presence of even relatively minor risks to
ADP resource availability, result in potential loss values
(based on the percentage of potential availability unrealized or
percentage of mission unsatisfied) that can justify nearly any
safeguard that at all reduces the potentials for system down-
time. Vast savings appear possible through applying expen-
sive countermeasures to reduce downtime potentials by min-
uscule amounts.

For commercial organizations, a case can be made for “mis-
sion satisfaction” valuation as a function of the overall organi-
zation’s reliance on the ADP resource for revenue. In a mili-
tary environment, however, the competition is not economic
but strategic. The value of a command and control system
cannot be estimated as dollars per hour nor can downtime be
computed in terms of dollars lost. Downtime losses are much
greater conceptually than in financially.

Any metric of mission satisfaction must consider system avail-
ability. Mission satisfaction for an ADP organization is best
described as the highest degree of system availability and the
lowest degree of downtime. Any metric which attempts to por-
tray the “losses” associated with system downtime must ap-
preciate the realities of such situations:

1. Downtime losses for systems differ according to the
criticality of the resource being examined. In a computer
room containing multiple resources, only a subset of these
resources is absolutely critical. Others (development sys-
tems, etc.) could become unavailable for significant peri-
ods of time without appreciable impacts on the overall
mission.

2. Downtime losses are not linear. A downtime of four days
is much more than four times as damaging than a single
day of system unavailability. Secondary losses begin to ac-
crue as organizations which rely upon the resource are un-
able to satisfy their needs. Initial per-hour figures may
escalate as the length of unavailability increases.

Our original thoughts led us to the following formula for
losses associated with system downtime:

ALE = AFE * M * (D*D)

ALE = Annual “Risk”

AFE = Frequency of the situation involving downtime
M = A measure of the criticality of the system

D = Downtime length.

Real costs (personnel costs, etc.) were estimated as dollars
lost with an appreciation for the secondary impacts of lengthy
denials to various users:

SLE =AFE*D * (C + (C1 + C2 ...))

SLE = Dollar costs associated with downtime.
C = Cost per unit of downtime (Note 1.)
C1,2 = Cost escalation based on downtime length.

Note 1. Cost per unit of downtime must be computed based
on the user population dependent upon the resource. This user
population must be identified based on the users of informa-
tion produced, not merely by the number of user accounts.

In actual use, however, the survey of user organizations re-
quired to actually quantify these loss potentials proved ex-
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tremely complex and the analysis of potential per-hour or sec-
ondary costs much too time-consuming for manual tracking.
Also, the rapid ADP RA performed to testbed this metric dis-
covered risks applied equally across all surveyed resources. In
a more detailed analysis, the use of both of the formulas de-
scribed above may be possible and appropriate. In the rapid
ADP RA performed, however, the metric for downtime losses
was considerably simplified:

SLE (in hours) = D * E

ALE (in hours) = AFE * SLE

the downtime length possible (in hours)

the percentage of system resources (normally 100%)
affected by the threat.

D =
E =

Downtime losses are computed as annual hours-lost figures
for all situations involving the potentials for downtime.

Analysis using Multiple Metrics: In use, the use of dollars,
“Abstracted Units” (for information compromise) and

“hours” (for denial of service potentials) results in three rank-
ings of problems discovered during an ADP RA. Problems can
be ranked according to those with the greatest potential an-
nual costs, those with the greatest potentials for information
compromise, and those with the greatest potentials for system
downtime. These rankings are useful both in isolation and in
comparisons with one another.

Different problems will tend to be shown as most important
according to each metric. Specific situations will entail losses
in more than one metric. For example, in a fire the systems
may need to be shut down (downtime), the components may
burn (dollar losses), and unauthorized personnel will have to
be granted access to the computer room (information compro-
mise). When the relative rankings of these problems (accord-
ing to the various metrics involved) are considered, however,
the potentials for information compromise (based on a rank-
ing in the face of other information compromise potentials)
quickly diminish, while the potentials for denial of service and
major dollar costs (again as relatively ranked within these
scales) become apparent.

Countermeasure evaluations are also different in an ADP RA
model which employs multiple metrics. The traditional dol-
lars—saved per dollars-invested cost-benefit analyses can also
be “abstracted units saved” per dollar invested or “hours of
downtime saved” per dollar invested. Although the metrics
employed make it more difficult to state with assurance that
“countermeasure x is cost-effective,” they do point out which
countermeasures are more relatively cost-effective. Again,
relative, not absolute, ranking is facilitated. Comparing prob-
lems or countermeasures across metrics is purely subjective. It
is impossible to state that a problem in information compro-
mise is more or less severe than a problem with availability or
real costs. Each problem is important on its own merits.

Risk Management
An ADP RA is useful only within a program for managing

risk. Risk Management is a responsibility of senior manage-
ment in all ADP installations as a part of everyday business.
A periodic ADP RA supports this process but cannot in isola-
tion satisfy the need for a systematic program for Risk Man-
agement.

Risk Management is applied to any system that faces risks. In
software development, for example, one of the major manage-
ment programs that must be implemented is a Risk Manage-



ment program to deal with the threats to the software design
and development process [DoD-STD-2167]. Although the
management of an ADP installation is a venture with signifi-
cantly more inherent risks than those faced during software
development, few installations have formalized their risk man-
agement approaches. As a result, management is quickly
overwhelmed with problems, and a fire-fighting approach to
ADP resource integrity and reliability management is inevita-
ble.

Problem identification and evaluation occur within the context
of specific disasters. The minimum actions absolutely neces-
sary to resolve current situations are considered and acted
upon without considering root causes or long-term effects.
This approach to management is the state-of-the-practice in
ADP organizations that face rapid change or a significant
number of regular threats. Ironically, it is exactly this environ-
ment that would benefit most from a formalized risk manage-
ment program.

Effective management actions in any systém correspond to
Risk Management. Management detérmines new programs,
initiatives, and corrective actions based on informal percep-
tions of the severity of the problems addressed or averted.
Even high-level budget decisions are based on an informal
understanding of cost vs. benefits.

Risk Management is only the formalization of the process of
effective management. Too often, problems discovered during
one ADP RA remain to be rediscovered during the next. Too
often, problems are qualitatively perceived to be minor until
crises occur. Too little action is taken too late in response to
these problems. In other cases, minor problems become lost
in the system and are never dealt with or responded to. Prob-
lems or risks considered too minor will be ignored. Rapid
evaluations of potential risks ignore some potential impacts.
The extent of interdependencies within an ADP organization
is generally accepted but poorly understood. In some cases,
decisions are reached regarding the need to respond to needs,
but effective actions to implement these decisions are not
taken to the depth necessary for effective problem resolution.
The details of implementing policy are much too voluminous
for the current methods of control and monitoring. ADP RAs
conducted at JDSSC installations have revealed numerous
cases of incongruities between policy and actual practice, or
between high level decisions and low level implementations.

Formalizing the existing management system of control in re-
sponse to the volume of problems and the details of the imple-
mentation of responses is necessary and long overdue. To
identify how that formalization can be achieved, we reviewed
how Risk Management works in well-defined management
controls such as those mandated for software development.
Risk Management consists of the following steps, each of
which is conducted within a formalized tracking system:

1. Risk Identification. Problems are identified several ways.
ADP RAs identify many problems in a short time. Other
risks are identified the hard way - after the fact. Finally,
many problems are recognized-by management during
day-to-day operation.

2. Risk Evaluation. The probability of risk, its potential im-
pacts, and any and all contributing factors must be identi-
fied as quickly and as completely as possible after a risk
has been identified.
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3. Risk Mitigation. ‘A response to each identified risk should
be decided based on an understanding of both the risk and
the costs of alternative responses. Risk Mitigation is the
development of appropriate resposes to known risks.

4. Risk Monitoring. After a response has been decided upon,
its implementation and effectiveness in use must be moni-
tored by management.

These steps remain the same for any system and should be
quite familiar to anyone in Configuration Management. A
problem reporting system is required; and the status of the
analysis, review, approval, and implementation of counter-
measures (corrective action) is regularly recorded and re-
ported. Our analyses show no reason to modify this system,
and we incorporated it directly into the JDSSC RAG.

Risk Management aids management not only in terms of what
decisions and actions must be taken but also in terms of how
those decisions are made. Courtney’s [un]common sense rec-
ommendations for consideration of losses before countermea-
sures are implemented by such an approach. Once estab-
lished, such a system facilitates control to a greater degree of
detail than is humanly possible without formal tracking.

JDSSC RAG METHODOLOGY

Once the basic model of risk was established, the other re-
quired elements of the methodology were developed around it.
Summarization methods were defined from both the defined
defined and a standardized list of threats. ADP RA results
combinations (the prelude to true network ADP RA tech-
niques) were defined based on percentage of losses due to
threats by metrics, an approach which allows different ADP
RA scopes in different locations. Finally, the analysis stages
were defined to allow both standard problems, those typically
found or expected in nearly all ADP installations, and non-
standard problems, those unique to the specific environment
and which may have never before been encountered, to be
identified and analyzed.

Planning
The elements of the scope of an ADP RA should be agreed

upon in advance as should the schedule for interim reporting.
The results of this planning should be in writing.

The first phase of performance defined in the JDSSC RAG is
scope identification. The scope of an ADP RA has three ele-
ments; physical, technical, and administrative.

Within the physical scope, the specific facilities and areas
within those facilities to be reviewed are identified. The list of
external and well known threats to the facility in general are
agreed upon in advance. Areas to remain unaddressed (e.g.,
overall facility problems, grounds, etc.) should be explicitly
identified.

It is unproductive to repeat some analyses performed many
times before. It is unlikely that moving an existing computer
facility (the only possible response to some of the “risks” con-
sidered in many ADP RAs) can be justified based on external
factors like the risk of flooding, earthquakes, volcanoes, or
great hurricanes. Given the frequency of ADP RAs it is also
unlikely that prior analysis results in these areas will need to
be adjusted (for continental drift or the global greenhouse ef-
fect) very soon. It is only necessary that these factors be un-




derstood once - before the facility is built. The JIDSSC RAG
recommends that prior analysis results be consulted for this
information if it must be republished at all.

Within the technical scope, the actual systems to be reviewed
are agreed upon, as is the depth of technical analysis to be
applied against each system. Within JDSSC, other initiatives
exist to review risks to ADP resources and to grade the vul-
nerabilities of technical security mechanisms. Within other
agencies, programs for contingency planning, application cer-
tification, and -ADP MIS may provide significant inputs to
these types of analyses if they are necessary. In this area, it is
imperative that scoping be performed based on an under-
standing of the materials available for analysis. Attempting to
perform application certification, inventorying, or contingency
planning within an ADP RA is inappropriate. Unless sufficient
tracking mechanisms exist, reviews of the technical environ-
ment can be extremely time-consuming.

Finally, the organizations to be reviewed are agreed upon. In
specific cases (e.g., the ADP Security organization, the Opera-
tions organization), the actual organizational structure and re-
porting mechanisms can become threats to the ADP resource.
While many may disagree, the organization is itself an expen-
sive (and continuing) asset, and it may itself be at risk based
on threats management is exposed to.

Qualitative Review

Once the scope of an ADP RA has been established, the sec-
ond stage. of performance can begin. A qualitative review of
the installation is performed. Questionnaires are distributed to
site personnel, and the answers to those questionnaires should
be available and reviewed prior to interviews. Site reviews and
tours are required for all involved in an ADP RA.

To a large degree, the JDSSC RAG methodology draws from
the already available successful and positive elements of other
methodologies for ADP RA. LAVA’s excellent questionnaire
is incorporated, as are the questionnaires from AR 380-380,
the WWMCCS RAG, and the NASA ADP Risk Analysis
Guideline. The JDSSC RAG provides guidance as to the most
appropriate audiences for each element of each questionnaire.
The areas where contentions or differences exist between dif-
ferent copies of identical questionnaires can provide valuable
insights about where problems exist within an ADP installa-
tion.

All involved in an ADP RA effort are required to tour the
facility and make their feelings and impressions known to the
other members in writing. While all ADP RA members can be
expected to see similar things in these unstructured reviews,
each will see each thing differently and will spot problems
missed by all others who perform the same review. This
'touch and feel’ element of an ADP RA cannot be eliminated
~and is a large part of the value provided through the analysis.
ADP RA remains dependent upon the people performing the
analysis. Personnel with the right backgrounds and level of
generalized experience required are needed.

Structured interviews are conducted from the bottom up in all
reviewed organizations (as well as within organizations not
being specifically reviewed). Interviewing from the bottom up
maximizes the productivity with personnel at higher points in
an organizational structure where experience is concentrated.
Interviews are conducted not to learn of the standard threats
to the ADP resource, which should have been identified
through the questionnaires, but to learn of other and non-
standard threats the ADP resource is exposed to. The JDSSC
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RAG provides a starting point for this. stage of the analysis,
including a structure for interviewing that concentrates on the
identification of duties, responsibilities, and reporting struc-
ture.

Qualitative reviews employ standard mandates, including the
EDP Auditors Association’s Control Objectives - 1980. Using
established mandates limits the types of subjective judgements
that can lead to contention. Within JDSSC, analyses are also
made against established mandates including JCS Pubhcanon
22 and DoD-5200.28. «

Quantification and Analysis o

After the qualitative review is completed, the quantification
process begins. Standardized threats and national statistics for
those threats are employed. Most problems have well-known
countermeasures. Those without well-known responses re-
quire more in-depth analysis.

Each problem is associated to a set of threats and recorded on
standardized forms. The potential losses to each threat (in
each appropriate metric) are computed and recorded.

Countermeasures are analyzed in terms of their impact on the
losses to each threat in each metric. Note that the countermea-
sures are evaluated on their own merits and independently of
problem-specific losses. Problem-specific loss estimation is
useful only for problem ranking. The mapping between coun-
termeasures and problems is less than exact; one problem
may require multiplé countermeasures, one countermeasure
may apply to a number of specific problems.

Summarization and Abstraction

The set of quantified loss potentials and countermeasure
analyses are input to the final stage of the analysis — abstrac-
tion and summarization. The results of this stage are used to
report the ADP RA to management and to allow ADP RAs to
be combined across installations.

Problem-specific losses are first:combined to produce losses
by threat within metric during the last phase of the analysis
described above. Next, the percentage of loss attributable to
each threat within metric is defined. This effort should also
result in the identification of the most serious problems (for
major threats) within each metric. The summarization report
contains these percentage of loss by threat within metrics fig-
ures and illustrates them by. summarized descriptions of the
most serious problems for each metric. Countermeasures
which are the most cost-effective are also contained in the
summary report.

The summarization report should contain all of the informa-
tion required for ADP RA results combination. In practice, the
JDSSC RAG may need to be adjusted to increase or.change
the information contamed in the summary report

Pie charts were used in the testbed ADP RA to 1llustrate the
losses attributable to major threats in each metric. A list of
the percentage of loss by threat is listed to contain threat per-
centages too minor to be visible within thew pie chart. While
graphical representation is seen as an important feature of the
summary report, other representations of the information- are
still being researched.

FUTURE EXPANSIONS

The JDSSC RAG was delivered in December of 1987. It re-
mains far from optimal, especially in terms of the level of


http:DoD-5200.28

guidance it provides fo inexperienced personnel. Future ef-
forts will concentrate on making the JDSSC RAG easier to use
in locations where specific expertise in ADP RAs is not avail-
able, such as high security environments and remote loca-
tions. Other areas for research include the areas identified
below.

Combinational ADP RA Results

During 1988 and 1989, JDSSC will begin to employ its RAG
during other ADP RAs. As additional ADP RA results are
produced, the means for combining and summarizing ADP
RA results contained in the RAG will be revised and demon-
strated. Combining ADP RA results is a capability prerequi-
site to effective ADP Security management within JDSSC.

Expansions to a Network ADP RA Model
However, the combining of specific ADP RA results is not the

only prerequisite to the performance of Network ADP RAs.
Networks are exposed to threats not applicable to ADP re-
sources in isolation. Many of the elements of the JDSSC RAG
(e.g., its standardized threat nomenclature, etc.) must be re-
vised or extended before application to a network is possible.

Analyses of “risk” in an automated network environment
based on the trustedness of its systems versus the clearance
levels of its users (the NCSC’s Yellow Books) must also be
considered. It must be accepted, however, that networks incor-
porating all trusted elements remain in the future for JDSSC.
In the largest part, both its networks and its systems in isola-
tion remain unevaluated and uncertifiable. The lack of trusted
components is not, however, in any way slowing the move-
ment of agencies like JDSSC towards networking. Security
mechanisms are being retrofitted into commercially available
networking systems as an alternative to no security at all. As a
result, the need for Network ADP RAs is extremely high.

Automation

Automation severely constrains the ability to modify a meth-
odology in development. As a result, we have resisted the im-
pulses to automate too much of the methodology too quickly.
However, several elements of the methodology are now ready
for such a process. We intend to begin by automating the
best-known part of the methodology, quantification and sum-
marization, along with an automated set of questions in spe-
cific areas. Implementation will concentrate on the ability to
to transmit risks, problems, countermeasure implementation
reports, and security postures between various field locations
and a central controlling authority - the model of ADP secu-
rity in the military environment.

CONCLUSIONS

The JDSSC RAG is still in its beginning and conceptual design
stages. More work is needed before it becomes a useful tool
for IDSSC ADP Security management. It provides some possi-
ble responses to some of the more difficult questions facing
risk analysts in a classified ADP environment. In the absence
of experienced ADP RA analysts, means must be found to
communicate exactly what must be done to identify how re-
sults are to be produced. JDSSC remains committed, however,
to seeking answers to these questions through the develop-
ment of new methods. Existing methods and tools have not
met their needs. The approach conceptualized above may pro-
vide the starting point for analyses to solve the critical prob-
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lems facing ADP management officials in the military envi-
ronment.

REFERENCES

1. Nuclear Regulatory Commission, Reactor Safety Study: An
Assessment of Accident Risk in U.S. Commercial Nuclear
Power Plants, NUREG-75/014, 1975.

2. Executive Office of the President, Office of Management
and Budget, Security of Federal Automated Information
Systems, Circular No. A-71, Transmittal Memorandum
No. 1, 27 July 1978.

3. U.S. Department of Commerce, National Bureau of Stan-

dards, Guidelines for Automatic Data Processing Physical
Security and Risk Management, FIPS PUB 31, June 1974.

4. U.S. Department of Commerce, National Bureau of Stan-

dards, Guideline for Automatic Data Processing Risk
Analysis, FIPS PUB 65, 1 August 1979.

5. U.S. Department of Commerce, National Bureau of Stan-

dards, Audit and Evaluation of Computer Security, Special
Publication Number 500-19, October 1977.

6. Department of the Army, Automation Security, Army
Regulation 380-380, 1985.

7. Department of the Navy, Electronic Systems Command,

Department of the Navy ADP Security Manual, OP-
NAVIST 5239.2.

8. Defense Communications Agency, Security Requirements
for ADP Systems, DCA Instruction 630-230-19, 29 Octo-
ber 1985.

9. Executive Office of the President, Office of Managemént

and Budget, Management of Federal Information Re-
sources, Circular A-130, 12 December 1985.

10. EDP Audit Controls, NASA ADP Risk Analysis Guideline,
July 1984.

11.Lance J. Hoffman,
Manual, 1985.

12. Department of Energy, Center for Computer Security,
LAVA, An Application of the Tos Alamos Vulnerability
Assessment Methodology, Release 1.0, Los Alamos Na-
tional Laboratory, 1986.

RISKCAIC — A User’s Reference

13.U.S. Department of Commerce, National Bureau of Stan-
dards, Technology Assessment: Methods for Measuring
the Level of Computer Security, NBS Special Publication
500-133, October 1985. :

14.Lance J. Hoffman, Risk Analysis and Computer Security:
Bridging the Cultural Gaps, Proceedings of the 9th Na-

tional Computer Security Conference, 15 September 1986.

15.Dr. R. Brown, Managing Diffuse Risks from Adversarial
Sources (DR/AS)_With Special Reference to Computer Se-

curity, Proceedings of the 9th National Computer Security
Conference, 15 September 1986.

16. Robert H. Courtney, Good Computer Security Demands
Realistic Problem Assessment, Proceedings of the Second

Annual Symposium on Physical/Electronic Security -
Philadelphia AFCEA, August 1986.



KNOWLEDGE-BASED MODELLING OF SYSTEM USAGE FOR RISK MANAGEMENT
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Abstract

As the number and complexity of computer systems grow, the need
for useful tools for performing risk assessments of these systems will
become more pressing. In recent years, there have been several attempts to
automate the risk assessment process through the use of questionnaires and
menus. Some of these are implemented on personal computers for wide
availability. Although these techniques offer an improvement over
completely manual methods, they are often either cumbersome to use
because of the wealth of information that must be laboriously extracted, or
inadequate for deriving a sufficiently accurate risk assessment.

We have been investigating a new artificial intelligence-based approach
to standardizing and automating the risk management process that will
enable the analyst to produce risk assessments that are less costly, more
uniform, and less prone to subjectivity. Central to our approach is the
concept of determining the risk to information as it is used in the system,
rather than the replacement cost of hardware and facilities. A four-level
abstraction hierarchy for classifying system components and assets is used
as the basis for constructing system models. We then determine risk to
informational assets according to three primary criteria of security value:
confidentiality, integrity, and availability. A model of information usage in
the system is then developed to analyze the security risk for the complete
information system.

Intr i

The development of an effective security program is critically
dependent on the application of risk management to the initial design,

E.F. Troy
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subsequent modifications, and ongoing monitoring of a system.
Therefore, the need for useful risk assessments and tools will become
more urgent as the number and complexity of computer systems grow.
Although a variety of methods have been proposed and are currently in use
for performing risk analysis {1, 2], many are difficult to apply efficiently.
In recent years, there have been several attempts to automate the risk
assessment process through the use of computer-driven questionnaires and
menus. Some of these, including RiskPAC, RiskCALC, RISKA, and
LAVA/CS [3], are implemented on personal computers for wide
availability. Although these techniques offer an improvement over
completely manual methods, they are often either cumbersome to use
because of the wealth of information that must be laboriously extracted via
lengthy questionnaires, or inadequate for deriving a sufficiently accurate
risk assessment due to their focus on component replacement cost.

With a goal of enabling risk assessments that are less costly, more
uniform, and less subjective, we have been investigating a new approach
to standardizing and automating the risk management process, which
incorporates artificial intelligence techniques of representation and
reasoning to model a computer system, its components, and the asset
usage within the system. The approach draws on research in artificial
intelligence, which has led to new methods of representing symbolic
information at different levels of abstraction. Frame-based and object-
oriented systems, in particular, are extremely powerful and versatile
techniques for describing entities symbolically and embedding them into
hierarchies of related entities. We are exploring the use of these methods
for constructing representations of a computer system's components, so
that we can model their interactions. In addition, we will be using
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Figure 1. Architecture for a knowledge-based risk management system.
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advanced techniques for reasoning about imprecise and uncertain
information, such as the theory of fuzzy sets, to better describe the risk
involved in a complex environment.

We have developed the concept for a knowledge-based expert system
to assist in the risk management process:. The current proposed
architecture for our system, described in [5], is shown in Fig. 1. This
approach has these primary features:

« Itis based on multiple, high-level computer graphic models of the
system, so that fewer detailed questions are required, many
relationships can be derived automatically, and all of the input data
can be checked for consistency.

+ It minimizes the requirement for sophisticated risk management
knowledge and leads to more uniform results.

« It considers all aspects of comprehensive risk management,
drawing on multiple underlying knowledge bases for expertise
about the domain. )

Central to the design is the security schematic, which is a model of the
security requirements and attributes of the system based on an underlying
model of the risk management process. The requirements are broken
down into the three basic or primary criteria of security value —
confidentiality, integrity, and availability — and drive all of the system's
reasoning. The underlying knowledge bases or hierarchical data bases
contain taxonomies of risk entities, such as assets, threats, vulnerabilities,
and countermeasures, as well as banks of questions, similar to the ones
found in automated questionnaires. such as-those used by LAVA/CS.
These questions may be selected dynamically by the system as needed,
rather than mechanically through a laborious, step-by-step process. The
reasoning module, or inference engine, controls the operation of the
system, and includes the capacity for generating and analyzing security
requirements; building and maintaining models; selecting appropriate
parameters, questions, and data from the knowledge bases; and analyzing
the trade-offs necessary for efficiently managing risk. Despite all this
complexity, the user interface portion of the system presents a palatable set
of views of the system's model and analysis, as well as dialog windows,
which allow the option of querying or modifying any part of the
knowledge bases textually or graphically..

Informational Assets

Traditionally, risk assessments have focused on the replacement value
of the hardware and facilities of a system. Indeed, the risk assessment
methodologies sanctioned by various government agencies, such as that
described in FIPS PUB 65 [6], are also based on this approach. Although
it is undeniably important to include direct physical losses in a
comprehensive risk assessment, the greatest risks to any computer system
by far, and those that are hardest to quantify, are the compromise of the
informational content of the system, rather than the system components
themselves. We have therefore concentrated on quantifying and
expressing the risk to the informational assets of a computer system. We
view the definition and evaluation of informational assets as central to the
task of adequately assessing system risk.

Informational assets (which we shall sometimes refer to as simply
assets) refer to the actual knowledge or information that is valuable to the
organization, such as customer names and addresses, not the instantiations
of that information, such as data files containing customer names and
addresses. The distinction is a subtle but important one, We are
concerned with ensuring the security of the information, rather than a
particular instantiation of it. For instance, if a disk containing records of
recent transactions crashes and is lost, the information may be recoverable
from a backup copy, or by reconstruction of the lost records.
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As mentioned above, the security requirements of an organization's
assets can be classified into three primary criteria of security value:
confidentiality (protecting an asset from harmful disclosure), integrity
(protecting an asset from modification), and availability (assuring that
information is available when needed). The value of a primary criterion of
a particular instantiation of an asset, as it were, may or may not correspond
to the value of the primary criterion of that asset itself. So, for instance, in
the example used above, assurance of the availability of the particular data
file containing recent transactions is not necessary in order to assure the
availability of the information itself.

The intuitive inverse correlation of availability and confidentiality can
be demonstrated clearly using a particular attribute of the instantiation of an
asset according to our formulation. For example, if we consider the
attribute of number of copies of an asset, we can show that the risk to
confidentiality rises as the number of copies rises, while the risk to
availability declines, as illustrated in Fig. 2a. Integrity risk has a more
complex curve, shown in Fig. 2b. The integrity of an asset is at greater
risk of compromise as the number of copies rises (in the absence of
countermeasures, such as matching the copies against a master), yet the
risk also increases as the number of instantiations approaches zero, since it
cannot be lower than the risk to availability.

.
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Figure 2a. Risk trade-offs based on number of software
instantiations of an informational asset.
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Figure 2b. Integrity risk tends to the maximum
of confidentiality and availability risk.

An asset has a number of attributes that must be specified and
understood clearly before its informational value can be established. These
include attractiveness to threat agents, perceived value, possible outcomes
(undesirable events that can befall it), and the sum of all other attributes, its
actual compromise value, which is an expression of how much is lost if its
security, as measured by one of the primary criteria, is compromised. To
determine asset value, we must develop a methodology for considering
these tightly interrelated attributes.




INFORMATION Types:  Names, dates, figures, gomp.rom'se Value
documents, ideas, programs, ecurity requirements
processes » Confidentiality

* Integrity
+ Availability
: SOFTWARE Functions:  Iransfer Transformation Storage
Types: Systems Applications Data
Files
Records
MEDIA Functions:  Storage
Types: Tapes, hard disks, floppy
disks, printouts, paper,
punch cards
HARDWARE Functions:  Transfer Transformation
Types: Tape and disk drives, Processors
workstations, terminals,
printers, cables, wires
Figure 3. Abstraction levels of assets and components.
Abstraction Levels of A n mponent; levels. For instance, customer names and addresses (information) may be

Although informational assets are the primary entities needing
protection, and drive the determination of security requirements, we cannot
assess the risk to assets directly, nor protect them directly. Instead, we
must consider the system and the environment in which the information is
processed.

Accordingly, we have developed a four-level abstraction hierarchy for
classifying assets and system components, illustrated in Fig. 3. Atthe
lowest level are the hardware components of the system, such as the CPU,
tape and disk drives, printers, and cables. These are generally fixed in
place physically, and are the base on which everything else operates. The
next level comprises media components, which sit on the hardware
components, but tend to be less fixed. Examples of media components are
tapes, disks, and printouts. The third level, software, includes files,
databases, and programs, which exist in the environment provided by the
hardware and media levels. At the highest, most abstract, level are the
informational assets themselves. It is at this level that asset value and
security requirements are determined.

Informational assets can have instantiations at each of the component

recorded in a database (software), stored on a disk (medium), and accessed
through a disk drive (hardware). Threats arid their actions operate in the
environment of the component levels, and countermeasures are
implemented there as well, although informational assets may be the
ultimate targets of those threats.

It is also useful to classify system components according to
functionality with respect to assets processing in the system. The
functions performed by an information system can be divided into three
broad categories: storage, transfer, and transformation. ‘If we are to model
asset usage in the system, it is essential to understand these three
functions, the relationships and differences between them, and the ways in
which they are performed by the system's components.

Figure 4 depicts a matrix showing the different functions associated
with various components at the three lower abstraction levels. More
information is contained here than is immediately apparent. For instance,
although both hardware and media components are used for storage,
hardware storage typically tends to be short term, whereas media storage
implies a longer term.’ Storage in software, meanwhile, has a different
meaning, because the software component used for storage resides in a

Storage Transfer Transformation
Drives
Memo Workstation, terminal,
Hardware Buffersry keyboards Processors
Printers
Cables, wires, conduits
Tapes
Media Disks
Printouts
Paper
Data
Files it
Software System Software Application Software
oW Records ¥ PP )
Buffers

Figure 4. Functional component matrix.



hardware or media component. These distinctions are invaluable in
modelling system usage and in assessing the risk associated with the
system and the methods of minimizing that risk.

Modellin m mponen

Based on the preceding discussion of assets and components, it is
clear that an accurate, comprehensive risk assessment for informational
assets must entail a model of the components in a computer system and
their interactions, overlain by an asset usage model that describes the
processing of information by the system. Likewise, an automated system
for assisting in the risk management process should be capable of
constructing and utilizing such models.

We are currently developing the framework for such a system. A
required step is to create a component library, consisting of data structures
that represent knowledge about system components. As the information
contained in the library becomes richer, the skill of the system wilt
improve. At a basic level, however, library entries must include the type
and function of the component with respect to both the processing of assets
and its links to other system components.

The user of such an automated system, as we envision it, would select
predefined components from the library and link them together into a
functional and physical model of the system using existing CAD/CAM
tools, which provide graphic displays that facilitate interaction and enhance
understanding. Alternatively, the user would be able to define novel
components and include them in the model, as well as enter them into the
library.

In addition to a library of system components, it will be necessary to
develop data structures to represent the informational assets that need
protection from compromise. With these, the user would be able to
construct an information flow model to illustrate the processing of assets
through the system, which would be presented as another graphical view
of the system. The three graphical views described here are illustrated in
Fig. 5.

FUNCTIONAL PHYSICAL INFORMATION FLOW

=2

important aspect of this activity is the identification of asset transfer
and utilization. The information from this stage is used to derive
asset compromise cost by component.

3. Identifying vulnerabilities associated with the system components:
and countermeasures for neutralizing or minimizing those
vulnerabilities — component vulnerabilities that expose the assets
they process are defined, and countermeasures (CM) are identified
that can be used to reduce or eliminate asset exposure.

4. Identifying threats to the system assets — based on knowledge of
threat agents and their actions, specific threats are identified that may
exploit a vulnerability of the system to compromise the security of
an asset. Included are both non-human or unintentional threats such
as component failure, and intentional threat actions such as

5. Analyzing the likelihood and severity of possible threat paths, and
identifying the outcome of threat actions — possible and likely paths
by which threats could access and compromise assets are analyzed,
along with the outcomes and consequences ensuing from each.
From this analysis, overall risk of compromise to system assets can
be asssessed.

6. Presenting a summary of system risk that offers safeguard packages
described in terms of costs and benefits — the results of the risk
analysis are presented to the user in the form of a risk summary and
graphic descriptions of various safeguard alternatives with their
cost/benefit trade-offs. Specific situations representing the highest
risk are identified.

The stages of model-based risk management are portrayed in Fig. 6.
In the next section, we present a description of a knowledge-based system
that assists in this process, with some suggestions for its implementation.

1. Construct

System
Model

Select Define novel Structure C!’seck
predefined | components — components | consistency/
components into system completeness

2 Locate assets Identif Define asset
Identif e Y Define asset ot
Assetsy within B consequences m— value | transfer within

components system

3. Identify denif Analyze Define valuate

Asset antily | —gwl oxploitation =1 counter- [~ eifect of CMs

Vulnerability vulnerabilitie of vulnarab. measuros on vulnerab.

=
CF E:Q]QDO

S— — z-/%,/g’

Figure 5. User views of system models.

The automated system would then apply the user's model of system
design and asset usage , combined with its knowledge of the component
characteristics and the security requirements of the assets, to identify
component vulnerabilities with respect to the assets and to propose
adequate countermeasures for dealing with them.

‘We summarize here the stages of risk management according to the
above methodology:

1. Building a model of the system under review — this is done
graphically, using schematics and other diagrams. In this stage,
predefined components are selected from existing data bases,
additional novel components that may be present are defined, and
the components are structured into a complete system definition,
which includes the functions of and relationships between
components. The system is then checked for consistency and

2. Identifying the assets processed by the system and their value,
taking into account the consequential value of asset compromise —
the informational assets processed by the system are identified and
assessed, and the outcomes of their compromise are specified. An

\dentf Correlate Assess
entity L gl threat/asset [~ component [~
threats locations failure risk

Assess risk in
intentional
intgrvention

Identify
Threats

5. Analyze/
Simulate

Simulate ; Evaluate Su .
] Identify > » mmarize
u(;is::gon outcomes likelihoods total risk

6. Present/ . Graph .
Presentrisk | g, |Pose /analyze | o] | Present high-
Ar;::ls){(ze summary whatif's vu;r;zr;:le risk situations

Figure 6. Model-based risk management.

A Knowl -B m_for Modelling A

Useful methods for symbolically representing knowledge have
evolved from research in artificial intelligence. In an object-oriented
representation, each entity is represented as an object with various
atiributes. But, each object may be a member of one or more classes of
objects which have attributes of their own, and the object classes are also
objects, and may thus be members of other classes, and so on. This
formalism allows us to build hierarchies of objects, which can be
constructed to correspond to actual hierarchies of entities in the domain
being described. Objects may inherit attributes or values from their parent
classes, and default values may be specified for the attribute values.
Various processing methods can be used with objects, including triggering
actions based on the value of the object's attributes.




We are currently designing an object-oriented system for representing
and reasoning about system components and asset usage. Hardware,
media, and software, as discussed above, are examples of object classes in
such a representation. One attribute shared by the members of all of these
classes is function, i.¢., storage, transfer, or transformation. Conversely,
certain classes, such as hardware, may have attributes, such as physical
description, size, capacity, and location, that are not shared by other
classes. The value of specific attributes also may vary within an object
class. Those objects with similar attributes can be grouped into subsets.

The input and output ports are critical attributes in representing the
transfer of assets within a system. At the hardware level, these may refer
to actual hardware ports or terminals of the component, whereas at the
media leve], they refer to the hardware on which the media reside, and for
software, to the input and output capabilities of the software component.
Integrating the representation of the attributes of the various component
levels is the key to creating an asset usage model of the system.

We are designing the system so that it will lead the user through the
risk management process by constructing a model or set of models of the
system under consideration, including the physical layout, functional, and
information flow diagrams described above. Since the graphical objects in
these views are representations of the underlying objects of the knowledge
base, the user is actually building 2 model of the system in the computer's
memory. The user would be able to switch from one view to another at
will, and modify or query the knowledge base interactively from any view,
while the system would guide the user through this model-building phase
and check for missing or inconsistent information. The expert system
would use these graphic models to derive information about the security of
the system, inferring most relationships directly. It would then walk the
user through a dialog requesting additional information not explicit in those
views and suggest values for risk management parameters. This method
ensures the accuracy and consistency of the analysis, facilitates
modification, and closely resembles the method risk management
professionals use to perform risk assessments.

Implementation Example

We now present a specific example to illustrate how the proposed
system might work. The knowledge base may include a hierarchical
structure, such as that in Fig. 7 showing the representation of knowledge

about networks. Each of the specific network implementations (leaf
nodes) would have a component library entry, and the higher level nodes
would have library templates filled in only to the appropriate level of detail.
Examples of portions of these library entries are shown in Figs. 8a, b, and
¢. Note that each successive node down the hierarchy inherits information
from its parent node. Thus, the knowledge engineer who builds the
hierarchy does not have to enter all the information for each node, reducing
effort and the potential for entry errors. Additional and more specific
information can be added for particular nodes, as shown.

TYPE OF NETWORK:
Baseband
Broadband

CHANNEL TYPE:
Coaxial cable
Twisted pair
Radio
Fiber optic

NUMBER OF STATIONS:

DATA RATE:
1 Mbps
5 Mbps
10 Mbps
20 Mbps

Figure 8a. Network object entry.

Suppose the user indicates, perhaps by clicking the mouse on a
network icon on the main model-building display, that the system under
review includes a network. The expert system could then present a menu
of network types. It might even display this in the form shown in Fig. 7,
with common defaults highlighted as indicated, and allow the user to
browse through the tree and select a node.

If the user then selects the node labelled "Ethemnet," the network
specified by the user as being part of the system schematic model is now
identified as an Ethernet, and is associated with the information contained
in the component library about Ethemets, as well as the information about
bus networks and networks in general.

(o) Cnemi)
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Controller,
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Figure 7. Network knowledge base hierarchy.
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TYPE OF NETWORK: PACKET SIZE:
Baseband Must be between 56 and 1518 bytes
Broadband ) )

TOTAL LENGTH OF CABLE:

CHANNEL TYPE: Max 2500 meters
Coaxial cable
Twisted pair LENGTH OF INDIVIDUAL CABLE SEGMENTS:
Radio Max 500 meters
Fiber optic

NUMBER OF CONNECTED CABLE SEGMENTS:!
NUMBER OF STATIONS: Max &

Maximum of 1024
MEDIUM ATTACHMENT UNITS PER SEGMENT:

DATA RATE: Max 100 per indiv. cable segment
1 Mbps
5 Mbps LENGTH OF MEDIUM TRANSCEIVER CABLE:
10 Mbps Max 50 meters
20 Mbps

Figure 8b. CSMA/CD architecture network
(Carrier Sense, Multiple Access with Collision Detection
as defined in I[EEE Standard 802.3).

TYPE OF NETWORK: PACKET SIZE:
Baseband Must be between 64 and 1518 bytes
CHANNEL TYPE: TOTAL LENGTH OF CABLE:

Coaxial cable Max 2500 meters

ACCESS METHOD; LENGTH OF INDIVIDUAL CABLE SEGMENTS:
CSMA/CD Max 500 meters

NUMBER OF STATIONS: NUMBER OF CONNECTED CABLE SEGMENTS:
Maximum of 1024 Max 5 :

DATA RATE: MEDIUM ATTACHMENT UNITS PER SEGMENT:
10 Mbps Max 100 per indiv. cable segment

BACKOFF ALGORITHM:

LENGTH OF MEDIUM TRANSCEIVER CABLE:

Binary exponential backoff Max 50 meters
INTERPACKET SPACING:

9.6 ps DISTANCE BETWEEN 2 FARTHEST END NODES:

Max 2700 meters
Figure 8c. Ethernet object entry.

If the user were to then constrict an information flow model showing
the transmission of assets sensitive to disclosure (confidentiality
requirement) along this network, the expert system would be able. to infer a
possible threat to confidenti ality at this component, based on its knowledge
of the vulnerability of coaxial cable bus networks to undetected '
wiretapping. It might then propose a countermeasure, such as the
installation of fiber optic cable. The expert system would also know that a
threat agent could, via a single component, gain access to the assets that
are processed on the other components on that network, and consider this
possibility in relation to the security requirements of the assets.

Status and Plans

Our system has been under design since February 1987. The initial
conceptual design was completed in mid-1987 and reviewed internally and
by a government team consisting of experts from the National Bureau of
Standards and the National Computer Security Center. A static mockup of
a sample walkthrough was constructed as part of the presentation. In early
1988, we implemented a portion of the system for proof of concept on a
personal computer. Following the review of this implementation, we are
continuing to develop an initial prototype of the full-scale system.

Our work thus far has revealed a number of areas that need more
attention. Itis clear that a lucid, comprehensive, workable model of risk
management must be formulated as the basis for this work. We are
interacting vigorously with major government and industry figures in this
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area [4]. In addition, taxonomies of the various components of such a
model must be developed. It is especially important to create better
quantitative and qualitative methods for measuring risk and analyzing
trade-offs, and we intend to investigate the use of reasoning methods from
artificial intelligence and traditional sources for this purpose. For example,

" estimates of the likelihood of a given threat action occurring are often

[

necessarily imprecise. Fuzzy set theory provides tools developed
specifically for reasoning with imprecise information, and can be utilized in
this case. We also must design easy-to-use and representationally adequate
user presentation and interface methods. We plan to pursue all of these
issues in 1988 and 1989.
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Abstract

Distributed secure systems also have distrib-
uted security policy and unegual security
risk. The n-sguared problem (addressing
security interface of n communicating nodes,
not just the directly connected ones) and the
cascading problem (creating greater risk by
connecting systems of differing data exposure
levels) are primary sources of difficulty in
distributed system risk analysis. Landwehr
and Lubbes described factors for determining
Orange Book evaluation criteria in complex
systems. This paper expands on their approach
by adding network risk propagation rules. The
model presented here is applicable to evalua-
tion of sensitivity requirements (preventing
unauthorized disclosure) and criticality
regquirements (preserving system integrity and
availability) in heterogeneous networks. An
automated analysis tool has been developed.

Background

The authors discussed issues of network and
distributed system security at last year's
conference [1l]. There the ideas of Biba [2]
and others were used to propose a criticality
approach similar to that used when protecting
sensitive information, which is the primary
objective of current security policy and
requirements (see Figure 1).
were techniques of system decomposition, an
approach which deals individually and in
combination with the elements of very large
systens.

Also discussed:

Criteria
Sensitivity Critlcality
Tople (Existing Basls) (Proposed Enhancements)
: Mission Data
Protect Classified data Control Data, Processes
. Loss of Integrity
Threat Disclosure Denial of Service
Levels Unclassified Noncritical
Confidential Critical
Secret Highly-Critical
Top Secret (Compartments
(Compartments) possible)
Control Goal Need-to-Know Need-to-Modify/Execute
Protection Resistance
Mechanisms Resistance Detection/Recovery

Figure 1. Network Security Elements
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This paper addresses the complex subject of
risk analysis in a distributed system. The
approach follows the lead of National
Computer Security Center (NCSC) Yellow Book
[3] guidance for assigning Orange Book [4]
division and class and it also extends the
ideas of Landwehr and Lubbes [5] to distrib-
uted, heterogenous environments. The recently
available Trusted Network Interpretation
(TNI, [6]) provides some guidance for eval-
uating and accrediting heterogenous networks,
but TNI emphasis is on "single trusted
systems." This paper thus describes a method-
olgy for determining security (sensitivity
and criticality) requirements . in complex
networks.

A system security policy must cover all of
what is internal, plus external communica-
tions interfaces (logical as well as
physical). This follows from and expands the
Orange Book concept of the primary external
interface as the human "user." The concept
covers all "external subjects," including
humans, computers (e.g., hosts), networks,
other components or other systems.

The identification/authentication policy must
cover each of these external subjects and,
using access control capabilities, determine
what controlled information can be received
from and sent to each of them. There must be
label consistency or a mapping technique must
be defined that ensures proper protection and
integrity. In some systems it will be neces-
sary to maintain accountability to the user
level, even though the user interface is with
an external system. Sometimes the policy
will require accountability only at the
interfacing system level. The interface
policy deals not only with the physical
interconnectivity, but also with all pairs of
communicating entities. This is the so
called N-squared problem (Figure 2).
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Security Policy Interface

S

Physical Network Connectivity

Figure 2. N-Squared Problem

Sometimes data are passed from one external
system through the system of interest to
another external system (Figure 3). Policy
must ensure that required protection consis-
tent with a mutual interconnection policy
exists at the interface. If the systems are
nodes of a network that receives and delivers
encrypted data and if a mandatory sensitivity
or criticality level separation or a discre-
tionary "need-to-know" or "need-to-modify"
exists, the appropriate security labels and
access control lists must be shared between
the two systems communicating data. The
network need not necessarily be aware of
these labels and lists.

Each network component has a unigue security
policy (even if it is no policy). This
policy may be more strict or less strict than
the policy of the other components.
Inclusion into the system might increase the
rigsk associated with a component due to the
cascading problem (Figure 4), wherein the
range of security levels in the network may
be greater than the accreditation range of
any component.

Factors

Mandatory Policy
Discretionary Policy
Common Levels Supported
Trusted or Untrusted
Allocation of Responsibilities

1 Control«

Control

§ User

Figure 3. Interconnection Policy

\§\\ \QQ
NEN
77

« The network connection has
created a risk of introducing
TS information into a C-S system

Figure 4. Cascading Problem
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When we consider the security policy from an
overall system level, it must be assured that
all component policies are supported through-
out the system (including both physical and
logical interface). Further, there may be
policy dictated at the system level that is
over and above the policy that exists at the
individual component level, and this higher
level policy must also be supported.
Finally, there is policy at the system level
which concerns the system's interface with
the outside world, and it must be ensured
that this system level policy is supported by
the components that interface with the out-
side world (external subjects to the system).

Security Risk

The goal of a security program is to prevent
the disclosure of sensitive information to
unauthorized sources and to protect the
integrity and availability of the systems and
the data critical to mission operations.
This goal is accomplished through the process
:f risk management. Risk management attempts
o:

o Identify, control, and minimize the
occurrence and effect of uncertain events
that would compromise the security goals

[) Obtain and maintain the authority
for approval of operations involving sensi-
tive or critical data and/or functions
through a Designated Approval Authority (DAA)

o Facilitate information system
management throughout the system's life cycle
based on security requirements and protection
levels.

Risk Modeling is a method of correctly deter-
mining evaluation criteria for specification,
design/development, and accreditation pur-
poses. This paper presents an approach which
extends Yellow Book and Landwehr-Lubbes
methods to complex networks.

Yellow Book Guidelines - The National
Computer Security Center developed the Orange
Book to identify protection requirements
associated with a gradation of risk levels.
To assist in the assessment of risk level the
NCSC also provided the Yellow Book guidance
(CSC-8STD-003-85, illustrated in Figure 5).
The Yellow Book considers these parameters:
the maximum sensitivity of the data to be
protected by the system; the user with the
minimum clearance level who potentially has
access to the system; and whether or not the
system was developed in an open or closed
environment. A closed environment exists
where there is adequately secure design and
development with proper configuration control
and assurance. Yellow Book risk indices
(exposure levels) are summarized in Table 1.

The Yellow Book guidelines also make recom-
mendations on security mode of operation
based on the degree of exposure (maximum data
sensitivity 1level minus minimum user
clearance level). Data exposure in a
dedicated mode or system high environment is
by definition zero, and in controlled or
multi-level environments the potential
exposure is equal to the separation between
the high and low levels being protected.



Figure 5. Yellow Book Approach

Table 1. Exposure Levels

Maximum Minimum User Clearance

Data
Sensitivity 1oz 3 4 S8

N C S TS/BI TS/SBI 1C MC

ce

0-U
1-N

2-Cor>1
3-SorC+>1
4—S+>1
5-TSorS+2
6-TS+1
7-TS +>1

Landwehr - Lubbes Approach - In order to try
to loosen the strict guidance of the Yellow
Book and to consider other variables, the
Landwehr-Lubbes approach uses the fact that
different users possess different capabili-
ties, thereby potentially reducing the
identified risk and criteria levels. In
addition to the data exposure parameters of
the Yellow Book, this approach considers the
user capability, nature of the communications
path and local processing capability. Thus,
users may be categorlzed by risk levels.
Expanding on the previous figure, Figure 6
shows the addition of the Landwehr - Lubbes
criteria which combines system risk with data
exposure to determine criteria levels. The
matrices for determining process coupllng
risk and system external risk are shown in
Tables 2 and 3. Table 4 shows how to use data
exposure and system external risk levels to
arrive at an Orange Book evaluation criteria
division and class for sensitivity.
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Min User
Clearance

Max Data
Sensitivity

Data Exposure
EXposuIc

,_l/ Capablhty

-, Orange Book *.*

£y

~ DlVlsmn/Class. A

-

Figure 6.
Landwehr-Lubbes Added Criteria

Table 2. Process Coupling Risk

Local Processing Communication Path
Capability 1.S/FNet | 2.S/FNet |3.J/A Net or Direct
(one-way) | (two-way) | Connection (LAN,DDN)
1. Receive-only Terminal 2 3 4
2. Interactive Terminal
(fixed function) 2 4 5
3. Programmable Device
(Access via PC or 4 5 6
programmable host)
Table 3. System External Risk
Process Coupling Risk
User Capability (From Table 2)
2 3 4 5 6
1. Output-only (Subscriber) 3 4 5 6 7
2. Transaction Processin, -
CAnalys) 4 5 6 7 8
3. Full Programming - 6 7 8 9

Table 4. Orange Book Levels

- System i

lsjz't‘:‘g,‘:‘;gsm Y (froxf ’%‘Zﬂ?ﬁl 31}1*

(from Table 1) 3 4 5 6 7 8 9
0 C1 C1 C1 Ct/C2 c2 c2 c2
1 ci/c2 C2 C2 c2 C2/B1 B1 B1
2 C2 C2/B1 B1 B1 B1 B1/B2 B2
3 B1 Bl B1/B2 B2 B2/B3 B3 B3/A1
4 B2 B2/B3 B3 B3/A1 Al Al Al
5 B3/A1 Al Al - . R .
6 B R R . R R -
7 R R R B B R R

Table 5, Mapping System Risk using Criticality Division
Criticality System External Risk ?
Data Exposure
3 4 5 6 7 8 9

0 C C C (o] C (o} (o}
1 C c [of C (o B B
2 B B B B B B B
3 B B B B B B A
4 B B B A A A A
5 A A A - - - -
6 R B R N _ R R
7 . . . . . . .




Security Risk in Networks. Data exposure and
the Landwehr-Lubbes criteria appear to be
equally applicable to criticality. Table 5
can be used to determine the appropriate
division (A, B or C) of criticality criteria.
Prototype evaluation criteria for criticality
divisions are described in [7]. Factors for
applying the risk methodology to criticality
as well as to sensitivity are described
below. The method presented here, including
rules that utilize the Landwehr=-Lubbes
matrices, accounts for the propagation of
risk in networks.

Network Concatenation/Propagation Rules - It
was an objective to follow the principles of
the Yellow Book and it also seemed that the
essence of risk in the distributed system
problem was embodied in the capabilities
possessed by the remote users. Before these
rules could be applied it was first obvious
that the cascading effect of both maximum
data sensitivity and minimum user clearance
would have to be dealt with. Further, the
communication of a user with a remote
computer system might not be only through a
variety of communications links, but also
through systems that may or may not be
trusted and may or may not take responsibil=-
ity for the data and its communication.

The approach taken (Figure 7) was to identify
concatenation and propagation rules that
applied to the maximum data level being
protected (e.g., through the cascading
effect), to the minimum user clearance level
protected against, and finally to the inter-
pretation of multiple (and remote) communica-
tions paths. The rules adopted for maximum
data sensitivity and minimum user clearance
are given in Figure 8. If we are evaluating
System A with respect to system B, then
system A assumes the maximum data sensitivity
level egual to the maximum of A and B if
there are no trusted absorbing nodes or if
there are no one-way data lines that only
carry data in the direction from A to B.

A "trusted absorbing node" is a node that has
a trusted system base at the appropriate
level, takes and controls information that
comes into it wvia security policy that
considers trust levels of the systems with
which it interfaces and controls communica-
tions with the destination. A node is not

Max Data Min User | |Local Proc. Comm.Path
Sensitivity ~ Clegrance \
Y @ Process Coupling
Risk
User
@ l/ Capability
el
/ System External
Mode - ” Risk
[~ Orange“Bo‘olh( o
;<2 Division/Class-..
(i) = Apply Network
,,,,,,, Propagation Rules

Figure 7. Network Evaluation Approach
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trusted absorbing either if it is not trusted
or if it is trusted but merely acts as a
store and forward switch in the communica-
tions system, taking no responsibility for
the labels or the policy assoclated with the
communications.

Propagation of minimum user clearance is
defined similarly; however, note that the
direction of the one-way rule 1s reversed.
Both of these rules apply to criticqlity as
well as sensitivity, with the exception that
the directions of the one-way rules are re-
versed in both cases. In criticality we are
worried about writing and activating, and
less worried about data exposure.

To enhance the Landwehr-Lubbes criteria, we
further expand the criteria used to ipterpret
a complex path to determine the matrix value
for "communications path" to use in the
process coupling risk matrig (prev;ous%y
given in Table 2). These additional criteria
are given in Figure 9, -where prusted
absorbing node and one-way are def{ned as
before. Two-way is defined as in the
original Landwehr-Lubbes paper, where there
is a two-way store-and-forward capability,
but no direct interaction.

Rule 1; Maximum Data Sensitivity
(Evaluate A with respect B)

If trusted absorbing nodes in path, or
one-ways away from A, then

Amax = Amax.

Otherwise Amax = Max(Amax,Bmax)

Ryle 2;: Minimum r Cl n

(Evaluate A with respect to B)
If trusted absorbing nodes in path, or
one-ways in the direction of A, then
Amin = Amin.
Otherwise Amin = Min(Amin,Bmin)

(For criticality the one-way rules are reversed)

Figure 8. Network Propagation Rules

Rule 3;
To determine comm. path for Table 2

If one-way in direction of A, or
trusted absorb. node in path - No path
If one-way away from A -1

If two-way -2

Otherwise (e.g., LAN) -3

Figure 9. Network Propagation Rules (cont.)



Risk Evaluation Model and Examples - The de-
termination of evaluation criteria in net-
worked systems can now be accomplished by
applying the concatenation and propagation
rules, and then performing the evaluation
implied by the original approaches of the
Yellow Book and/or Landwehr-Lubbes criteria.

The problem is not a simple one as can be
seen from the simple network example. 1In
theory, every path from each source to each
destination element must be considered in
this evaluation, or must at least go as far
as is required to show that there will be no
cascading of security properties. Develop-
ment of the algorithm into an automated
software tool is in progress. This tool
facilitates the engineering process, since
all but the simplest of analyses become too
complex to deal with manually, as will be
illustrated.

Any model must have implicit and explicit
simplifying assumptions. In our model, the
entire threat is through system users who
have limited access. It is assumed that
computers are physically protected and that
communications lines are either physically
protected or the data are protected with
encryption and integrity encoding. It is
also assumed that interface policies have
been devised and that these policies can be
enforced by trusted systems. As an example,
if a trusted system receives data from an
untrusted system, it will not trust the
labels and will treat those data at system
high level of the untrusted system.

The definitions of nodes, systems, and
terminals are left to the judgement of the
evaluator and ultimately the DAA. Full
capability high performance microprocessors
might be treated as systems. The definition
also might differ depending on whether a
sensitivity or a criticality analysis is
being made. For example, a network node may
be performing routing and other processing
based on protocol information, and labels.
Other simplifications will be apparent as we
go through an example.

The procedure for evaluating risk (i.e.,
determining protection levels) in hetero-
genous networks is summarized as follows.
Consider the risk evaluation of System A in a

network (see Figure 10). For each potential’

path to system A from each external subject:

- Determine max. data sensitivity (rule 1)
- Determine min. user clearance (rule 2)
- Determine path data exposure (table 1)
- Determine communication path (rule 3)
- Determine process coupling risk (table 2)
~ Determine system external risk (table 3)
- Map system risk and data

exposure to Orange Book level (table 4)

This yields criteria level for that path.
Security requirements and associated protec-
tion mechanisms for each path must be
analyzed and validated. System A risk level
becomes the worst case path. The analysis is
repeated for System A criticality threat.
Finally, the process is repeated for all
systems in the network.
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As an example, consider a very small part of
the system in Figure 10, consisting only of
systems A, B, and C as well as the user
terminal connected at B. Here we are
performing the evaluation only with respect
to A. This evaluation exanple is shown in
Figure 11. We are performing only a
sensitivity evaluation; however, a critical-
ity evaluation would follow similarly, but
using the slightly altered concatenation/pro-
pagation rules and different risk matrices.

Figure 10. Evaluation of System A in a Network

The elements are given starting states and
from these it is determined how risk is pro-
pagated into A. The user at B has a Confi-
dential clearance, systems B, A, and C
respectively have Confidential, Secret, and
Secret minimum user clearance levels. They
also possess, respectively, Secret, Secret
and Top Secret, maximum data sensitivity.
Neither A, B, or C are trusted absorbing
nodes. Programming can be accomplished at
the terminal and, once a user logs on,
programming could be done at any of systems
A, B, and C. Two-way (store and forward)
links exist between the terminal and system B
and between systems B and C. A one-way link
connects system A and B where data can travel
from A to B, but not in the other direction.
Another one~-way data link allows flow of data
from C to A, but not in the other direction.

Evaluating the results shows a path from the
terminal to B to A, but it is one-way and
rates a 1 in the Landwehr-Lubbes criteria.
The path through B and then ¢ is not
considered a path because of the one-way in
the wrong direction. (Note that Landwehr-
Lubbes is worried about leakage of sensitive
information but is not concerned with the
user being able to send data into A, which is
a criticality problem.) The minimum user
clearance in A must be updated to Confiden-
tial since data from A is now exposed to that
level. Further, the maximum data sensitivity
of A must be updated to Top Secret since
there is a potential leakage path from C to
A,

Now we are able to assess the risk level at
System A (only) based on the information
given in this simple example, and from that
determine the applicable Orange Book level.
Using Table 2, the process coupling risk is
determined to be a 4. Further, the system
external risk is determined to be a 7 from.
Table 3. The data exposure between Confiden-
tial user and Top Secret data from Table 1 is
determined to be 3. Based on this exposure,
the Yellow Book would recommended a B3 class
(as with Landwehr-Lubbes, open environments
are assumed). From Table 4, the Landwehr-
Lubbes approach (with network propagation
effects factored in) recommends a B2/B3 level
of criteria.



User

Ae[ple—HAA]
"

| UseratB | System B | System C| System A

Evaluate System A with respect to B & C
(Potential paths are BA and BCA).

Initial Parameters

Min User Clearance C C S S
Max Data Sensitivity S TS S
Trusted Absorption No No No
Local Process Capab. P
User Capability P P P
Risk Calculation for Path BA (BCA is not a valid path in this case).

Max Data Sensitivity (rule 1): max (A,B,C)=TS

Min User Clearance (rule 2): min (A,B)=C

Path Data Exposure (table 1): (5,2)=3

Comm Path (rule 3): 1

Process Coupl. Risk (table 2): (3,1)=4

System Ext. Risk  (table 3): 3,4)=7

Orange Book Level (table 4): (3,7) = B2/B3

(Yellow Book => B3)

Figure 11. Risk Evaluation Example (1)

We purposely went through this first example
step by step, relating it to the appropriate
rules and tables. If we were to evaluate the
network in Figure 10 just with respect to
system A, we would have to consider each
potential path from each user and from each
of the other systems to system A. A Local
Area Network evaluation example is presented
in Figure 12. Studying numerous examples and
results of the automated evaluation tool
provides insight into network security
problems. One revelation is that the security
design solution with respect to node A may be
not changing node A at all. The solution may
be to insert a more restrictive communication
link on the other side of the network to
‘reduce A's exposure. Although this is
intuitively obvious for simple networks, it
is less obvious in complex networks.

Conclusions

We have presented a deterministic approach
for dealing with the distribution of risk in
connected systems. The methodology is more
qualitative than quantitative, since many
risk factors are difficult to quantify
precisely. We used as a starting point the
NCSC Yellow Book guidance and the Landwehr-
Lubbes approach. The evaluation methodology
described here enables consistent determina-
tion of network criticality and sensitivity
evaluation criteria (i.e., requirements).
This approach may also be adapted for other
than DoD environments, where a hierarchical
set of security requirements exists. The risk
evaluation methodology described here has
been programmed to simulate many different
system environments.
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. User LAN
 Goena e we b mascn). - Aer[Ble ]
LAN ‘/LZN
Initial Parameters | UseratB | System B | System C| System A
Min User Clearance C C S S
Max Data Sensitivity c TS s
Trusted Absorption No No No
Local Process Capab. P
User Capability P P P
Risk Calculation for Path BA Risk for Path BCA
Max Data Sensitivity (rule 1): max (A,B)=$ Max (A,B,C) =TS
Min User Clearance (rule 2): min (A,B)=C Min (A,B,C)=C
Path Data Exposure (table 1): (3,2)=1 G.2)=3
Comm Path (rule 3): 3 3
Process Coupl. Risk (table 2): (3,3)=6 3.3)=6
System Ext. Risk  (table 3): (3,6)=9 (3.6)=9
Orange Book Level (table 4): (1,9)=B1 (3.9) = B3/A1
(Yellow Book =>B1) (Yellow Bock => B3)

Figure 12. Risk Evaluation Example (2)
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Abstract

Today’s computer systems are vulnerable to both
abuse by insiders and penetration by outsiders, as
evidenced by the growing number of incidents re-
ported in the press. Because closing all security
loopholes from today’s systems is infeasible, and
since no combination of technologies can prevent le-
gitimate users from abusing their authority in a sys-
tem, auditing is viewed as the last line of defense.
What is needed are automated tools to analyze the
vast amount of audit data for suspicious user be-
havior. This paper presents a survey of the auto-
mated audit trail analysis techniques and intrusion-
detection systems that have emerged in the past sev-
eral years.

1 Introduction

The last few years have seen a sudden and growing inter-
est in automated security analysis of computer system au-
dit trails and in systems for real-time intrusion detection.
There is a growing number of research activities devoted to
the subject, and some operational systems and even a few
commercial products have appeared.

The earliest work on the subject was a study by Jim
Anderson [1], who categorized the threats that could be
addressed by audit trail analysis as

o External penetrators (who are not authorized to use
the computer)

o Internal penetrators (who are authorized to use the
computer but not the data, program, or resource ac-
cessed), including ‘

— Masqueraders (who operate under another user’s
id and password)

— Clandestine users (who evade auditing and ac-
cess controls) .

e Misfeasors (who are authorized to use the computer
and resources accessed but misuse their privileges)

Anderson suggested that external penetrators could be
detected by auditing failed login attempts and that some
would-be internal penetrators could be detected by observ-
ing failed access attempts to files, programs, and other re-
sources. He suggested that masqueraders could be detected
by observing departures from established patterns of use for
individual users. All of these approaches have been adopted
in subsequent studies.

Anderson offered no suggestions for detecting legitimate
users who abuse their privileges. To detect such abuse how-
ever, a priort rules for acceptable behavior could be estab-
lished; this approach has been taken in a few studies. Com-
parison with the norm established for the class of user to

which the user belongs also could detect abuse of privilege;
this approach is under consideration by the research group
at SRI.

The clandestine user can evade auditing by using system
privilege or by operating at a level below which auditing oc-
curs. The former might be detected by auditing all use of
functions that turn off or suspend auditing, change the spe-
cific users being audited, or change other auditing param-
eters. The latter might be addressed by low-level auditing,
such as auditing system service or kernel calls. Anderson
suggested monitoring certain system-wide parameters, such
as CPU, memory, and disk activity, and comparing these
with what has been historically established as usual or nor-
mal for that facility. At least one subsequent study has
included this approach [2].

2 The Experiments

Subsequent to Anderson’s study, early work focused on de-
veloping procedures and algorithms for automating the of-
fline security analysis of audit trails. The aim of such algo-
rithms and procedures was to provide automated tools to
help the security administrator in his or her daily assess-
ment of the previous day’s computer system activity [3,4].
One such project used existing audit trails and studied pos-
sible approaches for building automated tools for audit trail
security analysis [3]. Another such project considered build-
ing special security audit trails and studied possible ap-
proaches for their automated analysis [4]. These projects
provided the first experimental evidence that users could
be distinguished from one another based on their patterns
of use of the computer system [3], and that user behavior
characteristics could be found that could be used to dis-
criminate between normal user behavior and a variety of
simulated intrusions [4].

2.1 The Sytek Work

A tool that ranked user sessions by their suspiciousness
would allow the system security officer to analyze audit trail
records that are most likely to represent intrusions with-
out having to wade through volumes of records of mostly
normal user activity. The Sytek work sought to provide a
feasibility demonstration for such a tool [5].

Sytek’s work was guided by concepts from pattern
recognition theory. User sessions were recognized as nor-
mal or intrusive based on patterns formed by the individual
records on the audit trail for that session. The Sytek study
defined several audit record features as functions of the au-
dit record fields. For each user, expected values for the
features were determined through a process called training
(that is, for each feature, the set or range of values was
determined from the audit data). The study then tested



the features for their ability to discriminate between nor-
mal sessions and sessions containing staged intrusions. A
session was flagged as intrusive by a feature if the value of
the feature calculated for the session was outside the user’s
range or set of expected values. Features that successfully
detected the staged intrusions were combined to create a for
each user user profile—the collection of the normal ranges
for each feature. '

Sytek wrote software to collect audit data from a Unix!
system that were analogous to data available in general-
purpose operating systems. An audit record containing the
command name, associated files, process statistics, and file
statistics was generated whenever a user issued a command.

The Sytek team collected one week of audit data and
generated a set of statistics to identify features of the audit
trail that were potentially useful in discriminating among
users [6]. Each identified feature was trained on the pre-
sumedly normal audit data to establish a range or set of
expected values exhibited during each user’s sessions. The
Sytek team then enacted and audited various intrusion sce-
narios in such a way that the intrusions were embedded
into the audited behavior of legitimate users of the sys-
tem [7]. The intrusion scenarios included break-ins by
outsiders, intruders and legitimate users masquerading as
other users, and users deliberately subverting the system in
various ways. Sytek then tested the selected features to see
whether they were useful in detecting the simulated intru-
sions [8]. Those features that detected one or more of the
simulated intrusions were retained for further study.

Sytek then tested each feature still under considera-
tion against an additional week of (presumedly normal)
audit data to determine the percentage of normal sessions
the feature flagged as abnormal (i.e., the false-alarm rate).
Sytek found that the features password changed, user iden-
tity querted, and access to system dictionary performed ex-
tremely well. It found the most effective file statistics were
device on which the accessed file resides, file size, oversized
file associated with this command, group id of the owner of
the accessed file, and user id of the owner of the accessed
file. The most effective process statistics were time of use,
day of use, user program CPU time, and mazimum total
memory use. These 12 features had low (under 15 percent)
false-alarm rates and were selected for use in a pattern clas-
sifier that analyzed their composite performance [9,10].

The pattern classifier flagged those sessions that did not
fall within the pattern defined by the user profiles. The
idea was that the resultant set of flagged sessions should be
sufficiently small to enable a security officer to examine the
set manually.

The performance of the pattern classifier could be dif-
ferent from that of the individual features taken separately,
because (1) if several features individually each flagged a
certain session, the composite would flag that session only
once, so the composite could flag fewer normal sessions and
thus have better performance than the features taken indi-
vidually and (2) one feature might not flag the same normal
sessions as another feature, so the combination of features
could flag more normal sessions and thus have worse per-
formance than the features taken individually.

Sytek also attempted to compute a certainty measure
that would indicate the degree of certainty that a flagged
session actually represented an intrusion or the degree of
suspicion for a user session. They computed a certainty for

1Unix is a trademark of AT&T.
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each feature, namely, the. number of audit records within a
session that were flagged by the feature. They then com-
puted a certainty for a session as the sum of the certainties
for all 12 features.

In tests to analyze for intrusion-detection strength and
false-alarm rate, the pattern classifier successfully detected
all the simulated intrusions. However, the false-alarm rate
was high (between 40 and 70 percent). Much better perfor-
mance could be expected if a longer training period were
used.

Four of the selected features pertained to a user’s com-
mand usage patterns. These features were very good at
detecting the intrusion scenarios but had very high false-
alarm rates. Believing that command usage patterns were
potentially very useful in discriminating between normal
and abnormal behavior, Sytek decided to modify these fea-
tures to improve their performance. It decided to make
these features fuzzy; that is, to allow the computed value
for a user’s session to be a certain distance from the range
in the uset’s profile before the session was flagged as abnor-
mal. The greater the fuzziness, however, the greater the
chance of missing intrusions. For each of the four measures,
Sytek analyzed the effect of increasing the fuzziness on
both the intrusion-detection strength (percentage of scenar-
ios flagged) and on false-alarm rate (percentage of normal
sessions flagged). To reach an acceptable false-alarm rate,
the intrusion-detection strength was also greatly reduced.
Sytek found, however, that for features proportional real du-
ration of command (percentage of a session’s real elapsed
time spent in the command) and proportional CPU dura-
tion of command (percent of a session’s CPU time spent in
the command), an acceptable false-alarm rate was achieved
with a relatively modest reduction in intrusion-detection
strength. Hence, these two features showed considerable
promise as discriminators of intrusive behavior.

2.2 'The SRI Study

A group at SRI led by Hal Javitz performed an exten-
sive statistical analysis on audit data from IBM systems
running MVS and VM. The purpose of the study was to
develop analytical statistical techniques for screening com-
puter system accounting data to detect user behavior in-
dicative of intrusions. A high-speed algorithm was devel-
oped that could accurately discriminate among users based
on their behavior profiles.

Audit data were obtained from normal system account-
ing records for IBM VM and MVS systems. Because the
overwhelming majority of information in the accounting
records concerned system usage parameters that either were
beyond the control of the user, bore no reasonable relation-
ship to intrusion attempts, or were redundant with infor-
mation contained on other accounting records, subset of the
accounting data was selected that could be used to detect
logon activity outside the user’s normal range, execution
time outside the user’s normal range, activity from other
than a user’s normal set of input or output (I/O) devices,
and files for which the user is authorized but which are only
infrequently accessed by the user.

From VM accounting records the research group ob-
tained logon time and day of week, logon mode (normal
or autolog), terminal used, minidisks accessed, connect
time, computer system accessed, CPU time, number of page
reads and writes, number of virtual cards read and punched,



and number of virtual lines printed. From MVS accounting
records they obtained time and day of week, computer sys-
tem used, job priority, CPU time, number of job steps, I/O
units, card reader class and type, number of card images,
number of programs run, number of files accessed, number
of changes of index levels, and number of VSAM records
inserted, retrieved, updated, or deleted.

They created a database containing 4 weeks of audit
data for a set of representative users. They selected a job
as the unit of analysis for batch users and a session for
interactive users (both are referred to as jobs hereinafter)
and characterized each job by variables such as CPU time
used, terminal used, and the number of files accessed. They
then used these variables to construct a profile, representing
the statistical norm for the user’s jobs, for each user.

The SRI researchers developed statistical techniques to
detect jobs that deviated from the profiles developed for
each user’s jobs. The statistical algorithms aimed to maxi-
mize the true positive rate (percentage of intrusions identi-
fled as abnormal) and minimize the false positive rate (per-
centage of normal use identified as abnormal). A true pos-
itive rate of 100 percent means that all intrusions are de-
tected. The detection ratio is the true positive rate divided
by the false positive rate. The more variable user behavior
is, the higher the false positive rate will be. Although the
false positive rate can be reduced by raising the threshold
of the statistical test (so that fewer events are considered
abnormal), this also lowers the true positive rate.

They compared the results obtained when the following
criteria were used to define an abnormal job:

e A job is abnormal if the value of one of its parameters
has a probability of occurring of less than 10 percent
for that user.

e A user’s job is abnormal if a discriminant analysis
shows that the probability that the job was submitted
by another user is greater than the probability that
the job was submitted by the user in question.

They split the 4 weeks of audit data into two sets: the
training set (the first 2 weeks of data), used to determine
the statistical thresholds for the test, and the verification
set (second 2 weeks of data), used to measure the test’s
performance.

Because all activity represented in the sample database
was assumed to be normal, there were no examples of in-
trusive behavior. Thus, for each measure the researchers
calculated a surrogate true positive rate (the probability of
identifying a user’s job as abnormal when measured against
another user’s job profile) and a surrogate false positive rate
(the probability of identifying a user’s own job as abnor-
mal). These are the true and false positive rates discussed
below.

For VM sessions, by far the best indicators were the
type of login and the terminal used; both of these had ex-
tremely low false positive rates (and low to medium true
positive rates, but very high detection ratios). Minidisk id
had an extremely high true positive rate, but also a high

false positive rate. The computer system used had a fairly

high true positive rate and a low false positive rate, with
a detection ratio of seven. Most other characteristics had
detection ratios of between one and two.

Discriminant analysis was superior to measures of job
abnormality based on extreme values of job parameters.
In the discriminant analysis, the researchers used a user’s
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training set to estimate the multivariate probability distri-
bution (with respect to parameters such as CPU time, time
of day, etc.) of normal jobs for that user. They assumed
a certain multivariate probability distribution for intrusive
jobs. They then used classical statistical paradigms to de-
termine a rule for classifying a job as normal or abnormal.
With this approach, every point in the multivariate space
is assigned a value equal to the ratio of the height of the
intrusive job probability distribution to the height of the
normal job probability distribution. The points with the
largest ratios form a critical region in which the probability
of normal jobs belonging to that region is less than a few
percent. Omnce a user’s critical region has been determined,
a new job for that user can be considered abnormal if it
falls into the critical region, and normal otherwise.

Because audit data containing intrusive jobs were not
available, two different approaches were taken to determine
a hypothetical multivariate probability distribution for in-
trusive jobs:

e Nonintrusive profile approach: Assume that intrusive
jobs have a uniform distribution

o Surrogate intrusive profile approach: Use other users’
jobs to develop a probability distribution for intrusive
jobs

For MVS jobs, discriminant analysis produced a true
positive rate of over 90 percent and a false positive rate of

only 6 or 7 percent. For VM sessions, although the single
parameter rules had by far the lowest false positive rates
(averaging less than 1 percent), the discriminant analysis
method had a much higher true positive rate (over 80 per-
cent). The false positive rate was shown to increase with
the number of days since the profile was last updated. The
SRI group estimated that with daily profile updating the
results would be even better. If additional security-relevant
audit data were used in the analysis, they estimated that a
discriminant analysis would produce a true positive rate of
90 to 98 percent and a false positive rate of 1 to 3 percent.
Thus, these statistical procedures are potentially capable of
reducing the audit trail by a factor of 100 while detecting
approximately 95 percent of all intrusions [3]. The security
officer would still have to determine whether the statistical
abnormalities represent actual intrusions.

3 The Intrusion-Detection Sys-
tems

The early evidence of the Sytek and Javitz studies was the
basis for a real-time intrusion-detection system, that is, a
system that can continuously monitor user behavior and de-
tect suspicious behavior as it occurs. This system, known as
IDES (Intrusion-Detection Expert System), is based on the
approach that intrusions, whether successful or attempted,
can be detected by flagging departures from historically es-
tablished norms of behavior for individual users [12,13]. -
Another real-time approach, called keystroke dynamics,
is based on measurements of certain characteristics, such
as typing speed, of a user’s keyboard activity. Keystroke
dynamics has been found to be a powerful means of contin-
uously verifying the identity of the user doing the typing.
For systems like IDES, different intrusion-detection
measures may be appropriate to different classes of user.



For example, for users whose activity is almost always dur-
ing normal business hours, an appropriate measure might
simply track whether activity is during normal hours or off
hours. Other users might frequently login in the evenings
as well, yet still have a distinctive pattern of use (e.g., log-
ging in between 7 and 9 p.m. but rarely after 9 or between 5
and 9); for such users, an intrusion-detection measure that
tracks for each hour whether the user is likely to be logged
in during that hour would be more appropriate. For still
others for whom “normal” could be any time of day, a time-
of-use intrusion-detection measure may not be meaningful
at all.

There are obvious difficulties with attempting to detect
intrusions solely on the basis of departures from observed
norms for individual users. Although some users may have
well-established patterns of behavior—logging on and off at
close to the same times every day and having a characteris-
tic level and type of activity—others may have erratic work
hours, may differ radically from day to day in the amount
and type of their activity, and may use the computer in
several different locations and even time zones (in the of-
fice, at home, and on travel). For the latter type of user,
almost anything is normal, and a masquerader might easily
go undetected. Thus, the ability to discriminate between a
user’s normal behavior and suspicious behavior depends on
how widely that user’s behavior fluctuates and on the user’s
range of normal behavior. And although this approach
might be successful for penetrators and masqueraders, it
may not have the same success with legitimate users who
abuse their privileges, especially if such abuse is normal for
those users. Moreover, the approach is vulnerable to de-
feat by an insider who knows that his or her behavior is
being compared with his or her previously established be-
havior pattern and who slowly varies their behavior over
time, until they have established a new behavior pattern
within which they can safely mount an attack. Trend anal-
ysis on user behavior patterns, that is, observing how fast
user behavior changes over time, may be useful in detecting
such attacks.

Because the task of discriminating between normal and
intrusive behavior is so difficult, another study has taken
the straightforward approach of automating the security
officer’s job. Such an approach lends itself to traditional
expert system technology, in which the special knowledge
of the intrusion-detection experts (the system security offi-
cers) is codified as rules used to analyze the audit data for
suspicious activity. The obvious drawback to this approach
is that the security officers, in practice, have only limited
expertise. Thus, while automating these rules frees the se-
curity officer to perform further analysis, such rules cannot
be expected to be comprehensive. This approach would be
more aptly called a security officer’s assistant.

Several study teams are attempting to comprehensively
characterize intrusions (e.g., MIDAS [2]). These systems
encode information about known system vulnerabilities and
reported attack scenarios, as well as intuition about suspi-
cious behavior, in rule-based systems. The rules are fixed
in that they do not depend on past user or system behav-
ior. (An example of such a rule might be that more than
three consecutive unsuccessful login:attempts for the same
user id within 5 minutes is a penetration attempt.) Audit
data from the monitored system are matched against these
rules to determine whether the behavior is suspicious. A
limitation of this approach is that it looks for known vul-

nerabilities and attacks, and the greatest threat may be
unknown vulnerabilities and the attacks that have not yet
been tried; one is in a position of playing catch-up with the
intruders.

Below is a survey of these various intrusion-detection
systems.

3.1 A Priori Rules for Normal Program
Behavior

Paul Karger has suggested what he calls a knowledge-based
name checker to compare the names and types of objects re-
quested (for reading, writing, creation, or destruction) by
a program with the names and types of objects expected
for the program [11]. He posits as an example a FOR-
TRAN compiler containing a Trojan horse that surrepti-
tiously modifies a user’s LOGIN.CMD file while compiling
the user’s program. The name checker expects the FOR-
TRAN compiler to require read access to a file with a user-
supplied name and a suffix of .FOR and to create new files
with the same name but suffixes of .OBJ and .LIS. If the
compiler attempts to create or to write to a file named LO-
GIN.CMD, the name checker would recognize that such a
file is unexpected for the FORTRAN compiler. Other rules,
for a Unix system for example, could check whether a user
program asks for set-uid privileges.

Although Karger envisions the name checker being used
for access control decisions, it could also be used as a rule-
based form of real-time intrusion-detection. He suggests
obtaining the rules for the behavior expected of commands
from information already known to the computer system:;
for example, in VAX/VMS from the command definition
tables. For user programs and batch jobs, the user would
encode the rules in what Karger calls a special directory tree,
which would enumerate the objects on which the program
is expected to operate.

3.2 IDES

SRI International is developing a prototype intrusion-
detection system called IDES (Intrusion-Detection Expert
System) [12,13]. The goal of IDES is to provide a system-
independent mechanism for real-time detection of all types
of security violations, whether they are initiated by out-
siders who attempt to break into a system or by insiders
who attempt to misuse the privileges of their accounts. The
IDES approach is based on the hypothesis that any ex-
ploitation of a computer system’s vulnerabilities entails be-
havior that deviates from previous patterns of use of the
system; consequently, intrusions can be detected by ob-
serving abnormal patterns of use. The IDES prototype
is based on the IDES model developed by Dorothy Den-
ning [14,15]. This model is independent of any particular
target system, application environment, system vulnerabil-
ity, or type of intrusion, thereby providing a framework for
a general-purpose intrusion-detection system.

The IDES prototype is an independent system that runs
on its own hardware (a Sun Workstation?) and processes
audit data received in real time from a target system [12,13].
The user activity monitored by the IDES prototype in-
cludes login, logout, program execution, directory modifi-
cation, file access, system call, session location change, and
network activity.
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IDES is driven by the arrival of audit records, each
of which describes behavior relevant to possibly several
intrusion-detection measures. (A measure is an aspect of
user behavior.) There are two kinds of measures: discrete
and continuous. A discrete measure is one whose domain of
values is a finite, unordered set (e.g., the set of locations).
Such measures are generally constant for a particular user
session, for example location and time of login. A continu-
ous measure is one whose value is a number or count that
accumulates over a user session (e.g., connect time, CPU
time, and I/O activity).

To determine whether user behavior as reported in the
audit data is normal with respect to past or acceptable
behavior, IDES includes user behavior profiles for the mea-
sures. (A profile is a description of the expected behavior of
a user with respect to a particular measure.) The profiles
are periodically updated based on observed user behavior,
and the profile data are aged using a decay factor that gives
the data a half-life of 50 days. Thus, the profile reflects a
moving time window of behavior for each user. Anomalous
behavior is user behavior that deviates from the expected
behavior for some measure by an amount indicated in the
user profile for that measure. Because IDES can be con-
figured to monitor arbitrarily detailed user behavior, it is
potentially capable of detecting intrusions (for example, by
masqueraders) that cannot be detected by the target sys-
tem’s access controls.

The IDES prototype has demonstrated its ability to
adaptively learn users’ behavior patterns; as users alter
their behavior, the thresholds maintained in the profiles
change. This capability makes IDES a flexible system: it
does not have to be given rules determined by a human ex-
pert in order to learn what constitutes suspicious behavior;
rather, IDES derives its own rules. Thus, IDES is poten-
tially sensitive to abnormalities that human experts may
not have considered.

The IDES prototype currently monitors a DEC-2065
machine at SRI running a locally customized version of
the TOPS-20 operating system®. SRI modified the TOPS-
20 operating system to collect audit data, transform the
data into the IDES format, encrypt the formatted data,
and transmit the records to IDES according to the IDES
protocol.

IDES’s flexible system-independent audit record format
and protocol for the transmission of audit records make it
adaptable to different host systems without fundamental
alteration (although the particular measures and param-
eters chosen will depend on the system and users being
monitored). SRI’s plans are to adapt IDES to monitor a
network of Sun workstations and to monitor a large IBM
mainframe system running MVS.

Now that the framework has been established, adding
additional intrusion-detection measures to IDES is straight-
forward. In ongoing work, SRI is implementing a greater
variety of intrusion-detection measures, including some
“second order” measures to detect behavior trends, thereby
improving the intrusion-detection capability of IDES. In
addition, an expert system and rule-base that encodes in-
formation about hypothesized intrusion scenarios and sus-
picious behavior is being added to IDES.

The IDES intrusion-detection processes are imple-
mented on a Sun 3/260, and the IDES security administra-

3DEC-2065 and TOPS-20 are trademarks of Digital Equipment
Corporation.
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tor interface is implemented on a Sun 3/60%. The security
administrator interface maintains a continuous display of
various indicators of user behavior on the monitored sys-
tems and allows the security administrator to choose from
a menu of built-in queries or to build ad hoc queries against
the audit data and profiles.

3.3 MIDAS

SRI’s IDES prototype detects intrusions by flagging user
behavior that deviates from that user’s past behavior. An-
other approach is to develop an intrusion-detection system
that encodes a prior: rules that define an intrusion. This
approach is used in the Multics Intrusion Detection and
Alerting System (MIDAS), being developed by the National
Computer Security Center to monitor a U.S. government
Multics system [2].

MIDAS is implemented on a stand-alone Symbolics
LISP machine. It uses a home-grown expert system shell,
capable of 150 inferences per second, with a forward-
chaining inference engine and an explanation facility. Its
rules are elaborated in LISP, and statistical user profiles
are maintained in LISP structures. The rules are compiled
for fast performance. At the time of writing, MIDAS in-
cludes about 40 rules.

MIDAS is based on Denning’s intrusion-detection
model [15]. MIDAS monitors at the user command line
level and logs all commands used. MIDAS uses four types
of heuristic rules:

e Immediate—These are hard-and-fast rules that make
no use of information of past or expected user behav-
ior. They are intended to detect those events that,
considered in isolation from any other information,
are suspicious.

o Anomaly—These rules use statistical user profiles to
detect when a user’s behavior departs from a pattern
established by observing past behavior. User profiles
are updated at the completion of a user session. The
profiles contain a list of the user’s usual commands,
the usual access times and location for the user, and
the expected typing rate for the user. MIDAS also
profiles the observed behavior of remote systems.

o System-wide state—MIDAS also can maintain a
system-wide profile to characterize what is normal for
the system globally. For example, an unusually high
number of invocations of the copy command might
indicate suspicious activity.

o Sensitive path—A command sequence can be char-
acterized as abnormal if its probability of occurring
is sufficiently low. This type of heuristic rule can
also be used to determine whether a user’s com-
mand sequence is similar to those characterizing a
known or postulated attack. Attack scenarios are ob-
tained through interviews with system security offi-
cers, hackers, and experts in penetration testing. Use

of the sensitive-path heuristic rule could enable MI-
DAS to detect an attack in progress before the dam-
age occurs. The sensitive-path type of heuristic rule
is not currently implemented on MIDAS.

4Sun 3/260 and Sun 3/ 60 are registered trademarks of Sun Microsys-
tems, Inc.



MIDAS combines different intrusion indicators to decide
whether an intrusion is occurring. A login time unusual for
a given user, for example, is not alone sufficient to raise an
alarm; but if combined with other anomalous data, how-
ever, MIDAS might decide an intrusion was in progress.

MIDAS’s rules attempt to detect attempted break-ins,
masqueraders, penetrators, Trojan horses, viruses, and mis-
use. To detect attempted break-ins, MIDAS uses rules in-
volving password failure on a system account, login fail-
ure with an unknown user name, login attempt from out-
side the continental United States, and login attempt to
a locked account. To detect masqueraders, MIDAS uses
rules involving unusual login (e.g., time, location, termi-
nal type), unusual commands or command patterns, in-
valid commands, and user logged in simultaneously from
different locations. To detect penetrators, MIDAS uses
rules involving attempted use of semsitive commands, at-
tempted use of unauthorized commands, attempted access
to sensitive objects, and attempted access to other people’s
objects. To detect misuse, MIDAS uses rules involving re-
source overuse, inactive session, and command out of scope
for project. To detect Trojan horses and viruses, MIDAS
uses rules involving attempted modification to system files
and programs and unusual execution of predictable com-
mands (e.g., who taking abnormally long).

A preprocessor on the Multics system formats the audit
data for MIDAS. The preprocessor collects audit data from
the usual Multics auditing program® and from additional
audit collection software that was written specifically for
MIDAS.

In its current implementation, audit data are accumu-
lated in a Multics file and dumped to tape, and then the
tape is fed into MIDAS. A real-time capability is planned
for a later implementation phase.

3.4 Ask the Experts

TRW is developing an intrusion-detection system for the
U.S. Government using traditional expert system technol-
ogy [17]. The expert system rules attempt to character-
ize intrusions, either in general (what TRW calls generic
common-sense rules), for the particular organization, or for
the particular type of system and installation. The rules are
obtained using standard knowledge-engineering techniques
such as interviewing and working with system security of-
ficers. Known cases of intrusions drive the selection of the
rules. The system security officers will be able to add new
rules and modify old rules in the rule base.

This expert system is intended to do the work of the sys-
tem security officer whose job now is to flip through huge
printouts of audit trails looking for problem areas. The
benefit from the system is expected to be twofold: first, it
will be able to analyze data that are too voluminous for the
security officer to thoroughly analyze and to spot long-term
trends; and second, it will provide a degree of proficiency
that would otherwise be scarce, because experienced secu-
rity officers are rare.

This system uses the audit trail already produced by
the monitored system. Onmnce suspicious activity has been
identified, the system is intended to be used to build a case

5Because Multics is a B2 system, its auditing facilities satisfy the
auditing requirements for B2 trusted computing systems as enumerated
in the Department of Defense Trusied Computer System Evaluation
Criteria [16].

against the intruder. It does not operate in real time, but
after the fact (like the security officers it mimics).

In one test, a feasibility system using 50 rules exhibited
a false positive rate of about 12 percent, but detected the
one intrusion planted in the 500 test cases. In addition,
it detected at least one problem that had been thus far
undetected. A prototype system is under development.

3.5 NAURS

The Network Auditing Usage Reporting System (NAURS)
is used in conjunction with the Terminal Access Controller
(TAC) Access Control System for the MILNET and the
ARPANET [18,19].

NAURS monitors network activity originating from the
TACs and network access controllers (NACs). It collects
data about TAC/NAC logins, TAC/NAC login failures, lo-
gouts, open and close connections, and TACs coming on-
line, and maintains the data in a database. NAURS pro-
vides both background analysis on past activity and real-
time analysis of current use. It provides periodic audit trail
reports and real-time reports on unusual events, triggered
by the events themselves. Interactive query from local ter-
minals is also supported. Incident reports, generated every
day from the previous day’s audit data, include incidents
that satisfy one of three rules about the number of simul-
taneous logins and duration of sessions.

The threats addressed are twofold: break-in by an out-
sider (who has discovered a valid TAC id and password) and
misuse by a legitimate user (trying to break into various
network hosts). (Authorized TAC users are not generally
registered users of every host on the network.)

A prototype NAURS exists on a separate machine from
the SRI-NIC host. NAURS is not accessible for remote lo-
gin or file transfer by network users. A planned production-
quality NAURS will feature redundancy of equipment, dis-
tribution of functionality (five dedicated workstations have
been proposed), ability to perform real-time detection of
incidents, and redundancy of the audit database. Plans
include reports on trends, such as 6-month. differential-use
trends of port usage (number of logins, length of sessions).
Profiles will be maintained for users and devices. Some
of these profiles will be established when an individual be-
comes a registered user, and others will reflect observed
user behavior patterns. Proposed additional incident rules
are unexpected host connection for a particular user, long
idle periods, excessive connect time, simultaneous TAC lo-
gins with the same user id but not necessarily from the
same TAC, excessive number of simultaneous logins from
the same TAC, unusual time of day for a particular user,
excessive number of unsuccessful logins from the same TAC
and same user id, excessive number of unsuccessful host lo-
gins at different hosts, and excessive number of successful
host logins at different hosts during the same TAC session.

3.6 Keystroke Dynamics

International Bioaccess Systems Corporation® offers a suite
of products, collectively called Bioaccess System 2000,
that perform intrusion-detection using keystroke dynamics.
Among these are two products BioPassword and BioCon-
tinuous for biometric access protection for IBM personal
computers (PCs).

SBioaccess, BioPassword, BioContinuous, and BioNet are trade-
marks of International Bioaccess Systems Corporation.



Keystroke dynamics technology is based on the “fist of
the sender” concept from the days of the telegraph when
Morse Code operators could identify a sender by listening to
the incoming signals. BioPassword produces an electronic
signature based on the unique typing characteristics of each
authorized user for keystroke-dynamics verification of user

id and password. BioPassword is implemented on a board -

installed in the CPU socket of the mother board of IBM
personal computers; no special keyboard is needed.

A user’s electronic signature is stored in nonvolatile
memory on the BioPassword board. The first time a per-
son logs on the computer following installation of the board,
the signature is developed by having the user type his or
her id and password repeatedly (about 12 times). Unce a
user’s electronic signature is installed, BioPassword oper-
ates transparently to the user.

BioPassword is automatically activated when the work-
station is turned on or reset or when a user logs off, and
can be invoked by software for reverification at any time.
BioPassword prompts the user for an id and password and
verifies both the contents and keystroke dynamics of each
against the stored electronic signature, letting the user pro-
ceed with normal work only if the verification is. positive.
Once access is granted, if the workstation is idle for a pre-
specified period of time, BioPassword times out and re-
quires reverification of the user before continuation of the
idled job. All access attempts and logins are audited.

BioContinuous incorporates all of the features of
BioPassword and adds continuous real-time verification of
users. BioContinuous is a single-board component for the
IBM PC. With its own high-speed processor, the BioCon-
tinuous board continuously verifies a user’s.identity in par-
allel with the user’s work on the PC’s processor, using over
110 typing characteristics, including intervals, rhythm, an
analog of pressure, and error characteristics. After devel-
oping an electronic signature for a user id and password,
BioContinuous develops an extended electronic signature
for each user. This extended electronic signature contains
additional biometric signature data that match a user’s
keystroke characteristics used in normal work. The learn-
ing process takes place over a few days, and, once the learn-
ing process is completed, the user’s keystroke dynamics are
automatically and continuously verified against his or her
extended electronic signature. .

BioContinuous includes a programmable security matriz
containing information that indicates what actions are to
be taken when a possible intruder is detected. The action
can depend on risk factors, such as which data are being
accessed or which function is being performed. Thresholds
and alarms can be preselected.

International Bioaccess Systems Corporation is develop-
ing a product called BioNet that will add flexibility to PCs
connected to a local area network by providing a central
storage of electronic signatures. This will allow authorized
users to use any workstation on the network without hav-
ing to store their electronic signatures on each workstation.
BioNet also will provide for integrated auditing of an in-
dividual user’s activity across all the workstations on the
local network.

3.7 Discovery

Discovery is an intrusion-detection expert system developed
by TRW to address the intrusion threat in an environ-
ment in which computer services are sold to outside cus-
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tomers [20]. In such an environment, the customers may
not be as concerned with safeguarding the security and in-
tegrity of the service provider’s system and information as-
sets as would, say, those users (employees of the service
company) who create and maintain that information asset.
Thus, the customer cannot be relied upon in any program
of security instituted at the service company. The threat is
that subscribing customers may give away their passwords,
or lend their terminal devices, to would-be intruders. Thus,
Discovery attempts to detect imposters who have obtained
legitimate user ids, access codes, and inquiry formats. The
perceived need was for an intrusion-detection mechanism
that operates transparently to the subscribers of the ser-
vice. The goal is that Discovery become a preventive, as
well as a detective, control.

Discovery is an expert system that searches for fre-
quently occurring patterns in subscriber inquiries to the
data and compares these patterns to daily subscriber in-
quiry activity to detect variances in normal subscriber be-
havior. It develops a user profile for each customer by type
of service and access method, and updates a user’s profile
daily if there has been activity for the user access code that
day.

Discovery is system-specific in that the intrusion-
detection rules are particular to the specific application-
dependent data fields, or variables, being monitored. How-
ever, Discovery also monitors some variables that are
generic to most computer systems, such as date and time
of access, type of access, user location, user identifier, pass-
word, and port identifier. Discovery allows the security offi-
cer to choose the variables to be monitored and the thresh-
old parameters, so that the system can be fine-tuned and
the impact of adding new services can be determined. The
security officer can also modify, delete, and add variables
to be monitored as service offerings change. The thresholds
can be set individually for each variable being monitored
for each user access code.

Discovery analyzes the daily inquiry activity for each
user access code for comparison with the established pro-
file for the customer and also for comparison with a model
of illegitimate access.. Discovery only analyzes correct in-
quiries submitted by customers; thus Discovery cannot use
error patterns as indicators of intrusions. Discovery records
all inquiries that fall outside of acceptable thresholds, and
provides an explanation for why the inquiry is unaccept-
able (these are not used in updating the customer’s profile).
Discovery is not a real-time system, but alerts the security
officer to unusual activity at the end of the workday.

While Discovery was under development, a prototype
was used to parallel the work of security investigators, in
order to ensure that Discovery would make the same deci-
sions as the investigators. TRW found that the use of Dis-
covery resulted in investigative leads being developed more
quickly, and the analysis of Discovery’s exception data pro-
vided more concise leads than did the investigators’ con-
ventional methods. Other, unexpected, benefits included
the ability to perform marketing analysis on detailed, up-
to-the-minute data using Discovery’s customer usage pat-

terns. Trends can also be observed by comparing current
customer usage data with previous usage data.

3.8 Clyde Digital Systems’ Audit

Clyde Digital Systems’ Audit is a product that audits users
of VAX/VMS machines. Audit can create a complete log



of all terminal input and output and provides procedures
to help analyze the data collected.

Audit can record every byte that passes between a user’s
terminal and the system, including control and escape se-
quences, and stores this data in a file, although certain
qualifiers can be specified so that particular special char-
acters can later be discarded from the audit log file (for
ease of display and formatting, for example). Audit also
provides the option to monitor only terminal input (from
the user).

Audit also provides a flexible capability for selective au-
diting. For example, auditing can be activated selectively
for terminal sessions satisfying certain criteria, such as for
specific users, or specific times of day (producing an audit
trail for the user’s terminal session), and the use of spe-
cific programs can also be selectively audited (producing
an audit trail for the specified program).

Auditing can be controlled by VMS-format keyboard
commands or from programs.

Audit allows analysis of the audit data by random sam-
pling or through selective analysis based on the system
manager’s knowledge of external events. Audit’s analy-
sis produces three reports: a security summary report,
which summarizes the activity of high-risk users (as de-
fined by a predetermined set of 14 risk factor tests and
a programmable set of weighting parameters); a security
event report, which summarizes the events that caused
those users to be considered high-risk; and a supporting
data report, which includes data from the audit log to sup-
port the conclusions of the first two reports. The risk fac-
tors for which Audit tests include sessions outside business
hours or on weekends or holidays (the definition of normal
business hours and holidays can be selected by the system
manager); sessions indicating use of the AUTHORIZE or
SYSGEN utilities; sessions indicating browsing; file access
alarms; other alarms (alarms can be established for certain
activities); repeated unsuccessful login attempts; sessions
with dial-up or remote terminals; simultaneous logins for
the same user; and attempts to turn off auditing. Some of
Audit’s 14 tests use data contained in the audit logs, and
some use information from the VMS operator log file; no
test uses data from both. The operator log file is used to
test for file access alarms, other alarms, login failures, and
attempts to turn off auditing. The other tests use the audit
logs.

Each of the 14 tests has an associated weight and three
factors. One factor is for after-hour use; one factor is for
activity from a dial-up terminal; and one factor is for ac-
tivity from a DECnet remote terminal. Whenever an event
satisfies one of the tests, its weight is multiplied by its rel-
evant factors and the result is added to the score for that
user. Users with sufficiently high scores are considered to
be high-risk. The weights and factors can be selected by
the system manager. The system manager can also add
additional tests.

There has been at least one published report of bypasses
of certain Audit tests [21]. Allen Clyde reports that Au-
dit has detected “numerous acts of misconduct, including
criminal conduct ... on sensitive computer systems” [22].

4 Conclusions

None of the intrusion-detection approaches described is suf-
-ficient alone—each addresses a different threat. A success-
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ful intrusion-detection system should incorporate several
different approaches. In particular, a statistical user profile
approach augmented with a rule-base that characterizes in-
trusions promises to be an effective combination. Because
they use this combination of approaches, two prototype
systems—IDES and MIDAS—have the potential to become
strong intrusion-detection systems. Of these two, IDES
is particularly strong in its statistical approach, whereas
MIDAS focuses primarily on enumerating a comprehensive
(although site-specific) set of expert system rules.
Although, as Linde notes {23], the more skilled penetra-
tor can disable the auditing mechanisms in order to work
undetected, auditing and intrusion-detection mechanisms
are still of value in detecting the less skilled penetrator,
because they increase the difficulty of penetration.
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Abstract - The Multics Intrusion Detection and Alerting System
(MIDAS) is an expert system which provides real-time intrusion and
misuse detection for the National Computer Security Center’s net-
worked mainframe, Dockmaster, a Honeywell DPS-8/70 Multics.
The basic design of MIDAS was heavily influenced by the intrusion
detection research of Dorothy Denning and Peter Neumann of SRI
International. They proposed that statistical analysis of computer
system activities could be used to characterize normal system and
user behavior. Given such statistical profiles, user or system activity
that deviates beyond certain bounds should be detectable. MIDAS
has been developed to employ this basic concept in its evaluation of
the audited activities of more than 1200 Dockmaster users.

Introduction

The annoying ring of the telephone jarred John out of his
contemplation of the Monday morning newspaper. One of his
staff answered, then handed him the phone, whispering "It’s the
Chief".

"Computer Center, John Speaking.”

"Hello, John? This is Edward."

"Hi, Ed. What’s up?", replied John, trying to sound casual.
By the tone of Edward’s voice, John could tell he was upset.

"John, Ijust gotacall from Carla in Marketing. She says she
got a message when she logged on this morning about having
been logged in over the weekend." :

"Boy, that’s Carla for ya’, always so darned dedicated...”,
John said, frantically trying to think of something to say to dis-
tract Edward. He knew what was coming.

"She says she wasn’t.”

"She says she wasn’t what?"

"She says she wasn’t on the system over the weekend.”

"Oh."

"You people are paid to take care of this system. Why can’t
you get your act together down there!”, said Edward, starting to
get worked up. "Don’t you ever monitor who’s logged on? Carla
has access to some of this company’s most sensitive informa-
tion! Why is it that we never know when we’ve been had until
someone steps up and tells us! Welook like blithering idiots!"

"Now hold on, Edward! Sure the system monitors who logs
on; heck, it even keeps track of the misspelled commands, the
access errors, and half-a-dozen other things. But with the num-
ber of users on our system, we simply don’t have the manpower
to pour over those logs day in and day out.” But even as he said
it, John knew that wasn’t true. Not even an army of workers
would be able to make sense out of the mountains of log data that
poured out of the system every day. More staff wasn’t the
answer, but John didn’t know what was.

"Don’t start on me again with that whining for more help.
Your department’s overstaffed in the first place! And top heavy,
too! Why don’t you try doing your job for a change!”

74

R. Alan Whitehurst

Computer Science Lab, SRI International
333 Ravenswood Ave.

Menlo Park, California 94025

The phone went dead in John’s hand. "OK troops," he said,
turning to his staff with a heavy sigh, "let’s get out the logs for
this weekend and see what we can find...".

Intrusion Detection

Audit trail analysis seems to be like the proverbial sour
grapes; it is so difficult to obtain that it is tempting to dismiss it
as unprofitable and abandon any further attempt at it. The fac-
tors that make audit trail analysis so difficult may be sum-
marized into three broad categories: the lack of adequate and/or
appropriate audit data; the inability of system security officers
to utilize available data; and the lack of a precise definition of
what to look for.

"Feast or Famine" characterizes the audit trail data of typi-
cal systems. Many systems do not provide adequate auditing
facilities to be able to detect a penetration or abuse by audit data
analysis; these are the famine systems. In other systems, the
security officer is inundated with page upon page of audit data
until buried under a paper mountain; these are the feast systems.
There is a variant of this latter category which allows audit sour-
ces to be selectively activated, but even this is not the solution.
Insuch systems the security officeris faced with the unattractive
prospect of having to decide which features to activate atthe risk
of failing to activate the audit facility that would have provided
the key bit of data necessary to detect and apprehend a system
penetrator.

Even if a system were developed which provided just the
right kind and amount of audit data, the security officer still has
aformidable task, for only the mostblatant of attacks will be dis-
cernible through scrutiny of a single day’s audit data. The
sophisticated penetrator will spread out his activity over anum-
ber of days or weeks. They will subtly exploit the dark corners
of asystem. For the security officers to detect such attacks would
require the correlation and recall of an incredible store of data;
nothing short of a Herculean feat.

Another problem complicating the task of security officers
in their attempts to analyze audit data is the imprecise definition
of what characterizes the threat they are attempting to counter.
Anderson [12] defines the threat that monitoring system activity
is expected to counter as:

"The potential possibility of a deliberate unauthorized at-
temptto:

a)access information
b) manipulate information
c) render a system unreliable or unusable.”

Butwhatdoesan intrusion look like in terms of the audit data
generated? How can we differentiate between authorized use
and the unauthorized threat just described? These are certainly
not easy questions to answer, but they lie at the heart of any at-
tempt to automate audit analysis aids.

Studying the activity of a successful security officer in-
volved in audit trail analysis may reveal an approach. Consider
the process followed by a security officer in tracking down the
hacker that has just scribbled all over his company’s payroll
database. First, he applied arule of thumb, or heuristic, thatmost



penetration attempts occur in the early hours of the morning
when the system is unattended, so he concentrated his searchon
sessions in that time period. Next, since the only users at that
hour were connecting to the system across a network, he looked
for individuals whose point of origin fluctuated. His reasoning
- here was that someone illegally penetrating the system would at-
tempt to cover his actions by varying the network path. These
two constraints yielded a set of potential accounts. From these
he was able to pinpoint the account that had been compromised
because the audited activities of the individual using it simply
"didn’t feel right" for the particular account. He immediately
shut down that account and had a long talk with the account
holder who eventually admitted to giving his password to his
roommate, a computer "enthusiast”. From this example we can
see that the reasoning process employed by successful system
security officers involves symbolic reasoning, heuristics and
uncertainty. This emphasis on knowledge and its application
through symbolic reasoning makes intrusion detection an ap-
propriate candidate for expert systems [8].

Expert Systems

The goal of any intrusion detection system must be to aid
system security officers in the detection of penetration and
abuse. The expert system should provide the knowledge of an
"expert" security officer. This is a MINIMUM standard of per-
formance for an intrusion detection system; as already dis-
cussed, humans generally don’tdo a very good job of audit trail
analysis. The set of penetrations or abuses detected by a security
officer with the aid of the automated system should be a super-
set of those that would have been detected by the security officer
unaided.

Codification and reapplication of knowledge under similar
circumstances is the basis of an expert system. This knowledge
is encoded in the form of facts (assertions about the state of a
problem solution) and heuristics (rules which govern the trans-
formation of the solution state). Expert systems have been
developed that have accomplished amazing results in a number
of different fields (see [9, 3, 11]). MIDAS is an example of such
a system to detect intrusions into a computer system.

MIDAS Design

"Get place and wealth, if possible,
with grace;
If not, by any means get wealth
and place.”
- King Midas

The Multics Intrusion Detection and Alerting System
(MIDAS) provides real-time intrusion and misuse detection for
the National Computer Security Center’s networked
mainframe, Dockmaster. Dockmaster is a Honeywell Multics
computer system employed primarily as an electronic com-
munications mechanism for the national computer security
community. MIDAS was developed using the Production-
Based Expert System Toolset (P-BEST), anin-house expert sys-
tem shell that provides the mechanisms for developing,
compiling and debugging very powerful rulesets. The P-BEST
inference engine controls the assertion of data into the MIDAS
knowledge base, and via its forward chaining inference engine,
directs rule selection and execation.
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The basic design of MIDAS was heavily influenced by the
seminal work in this area of J. P. Anderson, the intrusion detec-
tionresearch of Dorothy Denning and Peter Neumann of SR1In-
ternational, and similar efforts at Sytek [13]. Denning and
Neumann proposed that statistical analysis of computer system
activities could be used to characterize normal system and user
behavior (see [2, 1]). Given such statistical profiles, user or sys-
tem activity that deviates beyond certain bounds should be
detectable. MIDAS has been developed to employ this basic
conceptinits evaluation of the daily activities of more than 1200
network users.

Architecture
preproc
Net - factsl| to | | sTAT
Multics

A

Symbolics

=~
L]

System Security Monitor

Figure 1 MIDAS Architecture

MIDAS consists of a number of distinct parts, including: a
command monitor (CM) that captures command execution data
not audited by Multics systems; a preprocessor (preproc) for
transforming Dockmaster audit log entries into a canonical
form; a network-interface daemon (Net); a statistical database
of recorded user and system statistics (STAT); aknowledge base
consisting of a representation of current fact base (FB) and rule
base (RB); and an extensive end-user interface for communicat-
ing with system security officers. The preprocessor, command
monitor, and network daemon reside on Dockmaster; the
MIDAS knowledge, statistical base, and user interface are in-
stalled on a Symbolics Lisp machine.

Each time an audit record or command monitor record is
generated, the preprocessor filters out unnecessary data and
transforms theremainderinto aMIDAS assertion. The assertion
is handed to the network interface daemon and passed via local
area network to the Symbolics lisp machine hosting the expert
system. The factis placed into the fact base of the expert system.
This introduction of a fact into the expert system will cause the
creation of rule-fact bindings between the fact and all matching
rules in the rule base. Assertion of this fact may satisfy the firing
conditions of one or more rules. Any such rules will then fire,
potentially transforming the state of the system. Depending
upon the nature of the fact, it could cause a chain of rule flm}gs
resulting in a number of potential system responses, ranging
from warning the operators of suspicious activity to taking direct



action to stop a penetrator. The system’s reaction is proportion-
al to the extent that the monitored activity deviated from what is
considered ‘normal’ according to the relevant statistical profile.

MIDAS statistics record the aggregation of monitored sys-
tem activity. Comparing norms derived from past activity ag-
gregation to ongoing actions determines whether the current
activity is outside some standard deviation. MIDAS keeps both
user and system-wide statistics. User profile statistics, which
define normal behavior for auser are maintained (in monthly ag-
gregate form) for each user account throughout the life of the ac-
count. These statistics are updated as user behavior changes.
MIDAS also keeps current session activity data in a session
statistics structure which is maintained for the duration of a user
session. User session statistics are initialized at login from the
data extracted from user profile statistics. Session statistics in-
clude the calculated values that act as thresholds of concern for
all activities monitored for that user. For example, if an
individual’s user statistics indicate that during his 350 sessions
he triggered an average 38 system errors, with a standard devia-
tion of 20; asystemerror concernthreshold of 58 (38 +20) would
be stored in his session statistics profile. This value would be the
upper limit for normal activity -- if this limit were exceeded
suspicion would be aroused, and action might be taken in the
form of messages to the operator or by the assertion of a fact
noting the suspicion into the knowledge base. When the user
logs out, the user statistical profile is updated to incorporate the
statistical variance that has been developed from the user’s ac-
tivity during the session. Figure 2 illustrates the cycling of in-
dividual user statistics.

CREATE

(AT LOGIN)

USER
PROFILE

SESSION
PROFILE

UPDATE USER
PROFILE

(AT LOGOUT)

Figure 2 User Statistics Cycle

MIDA S maintains similar statistical structures to determine
system-wide activity norms.

Heuristics

Thelogical structure of the MIDAS systemrevolves around
the rules (heuristics) in the rulebase. These rules may be charac-
terized in two ways: according to the type of heuristics they
employ, or according to the particular area of surveillance they
address.

There are three basic types of heuristics employed toreview
audit data under MIDAS: immediate attack heuristics, user
anomaly heuristics, and system state heuristics.

Immediate Attack - Immediate attack heuristics represent
a superficial level of analysis. These rules operate with a very
narrow view of the data and are, in some sense, static in their in-
terpretation. They are narrow in that they generally involve only
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asmall number of data items in their analysis; and they are static
in that they do not make use of any statistical information. In ef-
fect, they are intended to detect those audit log entries that are,
inisolation of any other information, anomalous enough toraise
concern.

Figure 3 gives an example of this type of heuristic encoded
in the P-BEST language. This rule concerns attempted system
breakin. The rule monitors the knowledge base waiting for the
assertion of a bad login attempt in which the account specified
by some user was invalid, but commonly used on other systems
to denote a privileged account. When the rule finds such an
assertion it will warn the MIDAS operator and "remember”
another fact; namely, that with high probability, a breakin at-
tempt has occurred.

(defrule illegal_privileged_account states
if there exists a failed_login_item
such that name is ("root" or "superuser"
or "maintenance” or "system"} and
time is ?time_stamp and
channel is ?channel
then
(print "WARNING: ATTEMPTED LOGIN TO
PRIVILEGED ACCOUNT")
and remember a breakin_attempt
with certainty *high*
such that attack_time is ?time_stamp
and login_channel is ?channel)

Figure 3 Immediate class rule

User Anomaly - User anomaly heuristics make use of the
statistical profiles to detect anomalous user behavior. They en-
code the intuition of the security officer when he says, "it just
doesn’tfeel right.” Figure 4 illustrates this sort of rule. In this ex-
ample, the rule is concerned with user logon analysis.

(defrule unusual_login_time states
if there exists a login_entry
such that user is ?userid and
time_stamp is ?login_time
and (unusual_login_time ?userid ?login_time)
then
remember a user_login_anomaly
such that user is ?userid and
time_stamp is ?login_time)
Figure 4 Anomaly class rule

This example incorporates the notion of a ‘usual’login time
for auser. If auser accesses the system outside his normal hours,
then an anomaly record would be generated. This would, in ef-
fect, trigger a heightened level of suspicion about that user.

System State - System state heuristics are analogous to
anomaly heuristics, except that they characterize whatis normal
for the entire system. One example of this type of rule is the
detection of an inordinately large number of login failures sys-
tem-wide. Such an occurrence might be indicative of an attempt
to break into the system.

Ar f Concern

In addition to the categories of heuristics, Denning defined
eight general areas of concern: breakin, masquerading, penetra-
tion, leakage, database inference, Trojan horse, virus, and denial



of service [2]. Under MIDAS, Trojan horse and virus attacks are
collapsed into a single category because of their similarities.
Also, since our concern is mainly with operating system
penetration, as opposed to database compromise, inference type
attacks are not considered. Finally, denial of service concerns
and leakage concemns are combined with misuse concerns.
Together with the heuristics described above, these concerns
define a matrix which outlines the intended coverage of the
MIDAS system.

IMMEDIAT AN Al EM
BREAK-IN 0 o
MASQUERADE 0
PENETRATION o o o
MISUSE o o
TROJAN HORSE o o

o = rule coverage

Figure 5 Coverage of MIDAS Heuristics

Attempted Breakin - This area of concern focuses primari-
ly on login failures. An example of this kind of heuristic was il-
lustrated in figure 3. This rule flags login failures on restricted
account names (such as ‘superuser’, or ‘root’) as being suspi-
cious.

Another level of analysis involves monitoring parameters
which define the state of the entire system at any given time. If
the attacker were smart enough to vary the target accounts, the
system rules would still detect the abnormal behavior by therise
in system-wide login failures.

Other examples from this concern area include: flagging
excessive password failures on a system account and noting ex-
cessive or abnormal password failure on other accounts.

Masquerade - This area of concern involves the detection
of intruders who have obtained access to accounts and valid
passwords which do not belong to them. Detecting such occur-
rences is straightforward: it is based upon the assumption that
parameters gleaned from a user’s normal interaction with the
system may be used to spot activity attributed to that user but
which deviates from the user’s statistical norms. A number of
statistical measures for a variety of factors are collected and
stored for each valid user account. Some examples of these fac-
tors include: origin of connection (for network users), login
time, resource usage, command usage, and command errors.
Both the average measure for each factor and the normal devia-
tion is recorded.

During a login session, MIDAS continually monitors the
statistics of the current users and compares them against their
user profiles. If a user’s current activity exceeds acceptable
limits suspicion is aroused. An example of this type of rule was
given in figure 4.

Penetration - Penetration concern involves the detection of
any attempted violation of system security mechanisms, and is
applicable to valid users as well as masqueraders. This area of
concern is addressed by immediate, anomaly, and system wide
heuristics targeted toward access or attempted access of system
sensitive programs or data.

Misuse - Unusual resource usage may be an indicator of
many things. It can certainly increase suspicion that the useris a
masquerader. Abnormal resource usage can also indicate that a
valid user is engaged in some undesirable activity. For instance,
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if he directs his printer output to some location other than where
he normally sends output, he may be attempting to leak sensitive
data [2]. Simple inactivity (logging on and then wandering away
from the terminal), while not an attack, represents wasted
resource and a potential security compromise. As suchitis noted
and reported by the system. This area of concern also covers
basic detection of covert channel activity. - Under Multics
release 11.0, all large covert channels (bandwidth 100 BPS)
have been eliminated. Moderate (10 - 100 BPS) and small (1 -
10 BPS) channels are captured and audited by Multics [4].
These MIDAS rules act on the occurrence of audited covert
channel activity.

Trojan Horse/Virus - This area of concern involves the
detection of a Trojan horse or virus which has been introduced
into the system. These two areas are not separate because we
have not determined a way to differentiate between them given
the available audit data. The key factors which are considered
when addressing this concern are access violations on system
sensitive objects, and execution statistics which violate norms
established for given commands. Access violations on sensitive
objects may indicate the introduction of a virus into the target
system; monitoring execution statistics attempts to detect their
presence.

Rule Base Structure

In the discussion to this point, the phrase ‘raise suspicion’
has been used without reference to exactly what is meant. Most
of the rules in the MIDAS system are sensory rules. Sensory
rules detect anomalous activity and assert a conclusion into the
knowledge base representing the suspected problem. These
rules may also issue a warning message. Another category of
rules, referred to as secondary rules, operate only on the output
of the sensory rules. These rules act like AND-gates; firing only
when certain kinds of suspicions have been aroused.

Figure 6 represents the structure of the MIDAS rule base.
Each area of concern (breakin, masquerading, misuse, etc.) is
addressed by a different set of rules. The output of these rules
feed the secondary rules, which in turn resultin concrete actions
being taken.

ACTION
secondary
suspicion suspicion
break-in| |Masa" pene- | | nisuse| | fro/an

uerade tration horse

KNOWLEDGE BASE / AUDIT DATA
Figure 6 MIDAS Rule Base Structure




MIDAS Operation

MIDAS operates continuously, constantly monitoring user
activity and the state of the target system. If it detects anomalies
in system operation, relevant messages are displayed on the
MIDAS console. The operator may choose to act directly on
these warning messages, or to investigate further using the com-
mands available through the user interface. For example, the
operator may query the target system status, or auser’s status, or
trace specific user activity. Based on this analysis, the operator
will initiate corrective action.

As discussed previously, MIDAS is composed of a number
of distinct parts. First among these is the preprocessor, imple-
mented on Dockmaster, which extracts and reformats relevant
audit data. This data is then transferred to the MIDAS worksta-
tion, where it is asserted into the expert system shell (P-BEST)
and applied to the compiled MIDAS rules and statistical sub-
routines. Any anomalies detected are reported immediately via
the MIDAS user interface.

Thelogic of the MIDAS rule base is coveredin the Architec-
ture section of this paper. More detailed discussions of auditdata
preprocessing and the user interface are now presented to
provide a complete system description.

Audit Datg Prepr sin

The MIDAS system acts primarily upon five types of audit
data: logins, logouts, commands, detected errors, and 1/O re-
quests. Thisdataisextracted fromthe Dockmasterauditlogsand
reformatted into a time-sorted series of assertions having the
basic structure suggested by Denning [2]:

(<subject><object><action><exception> <time-
stamp>)

For most of the different audit assertion types, <subject>is
listcomposed of userid, project, tag, process identifier, terminal
type, connection source (local dial, TYMNET, or MILNET in-
dicator), and host id.

Similarly, <time-stamp> is universally formatted as a list
containing the elements: absolute time (the number of seconds
since midnight), date (YY/MM/DD), and time (HH:MM:SS).

The remaining fields <object>, <action>, and <exception>
have varying meanings depending on the audit assertion type.
For example, a typical login entry might look something like
this:

(LOGIN (COLOSSUS FORBIN A 03452 H19 VT1
456) NIL NIL NIL (120 02/12/88 00:02:00))

and a command usage entry might look like this:

(CMD (COLOSSUS FORBIN A 03452) NIL
BOUND_INFO$WHO 0.2 (230 02/12/88 00:03:50))

User Interface

The MIDAS User Interface is a comprehensive window-
based environment composed of a bit-mapped display which
presentsfour panes arranged within one overalldisplay window,
and allows various operator interactions through a mouse menu
interface. The four display panes are: the User Pane, which dis-
plays.alist of users currently on the system; the Command Pane
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which provides 2 mouse/menu driven access to a number of
MIDAS commands; the Warning Pane, which displays specific
warning messages generated by MIDAS; and the Graphical
System Status Pane,whichis used to display the state of MIDAS
and the targetted host. The operator can adjust the operation of
MIDAS, and trigger some specific report generation through the
user interface. (Figure 7 illustrates the MIDAS window dis-
play). The MIDAS user interface displays the ongoing analysis
of the target system security state.

User Pane - Information provided in the MIDAS User Pane
consists of the Login Time, Userid, Project, and Tag for all
processes in the monitored computer system. (Tag is a one
character flag which indicates whether the user is in interactive
mode ("a"), or batch mode ("m")).

Two flags may appear prior to the user’s name in the User
Pane:

« The first flag, a question mark (?), indicates that the user
is suspected of anomalous activity. This suspicion may be
generated as a result of the user’s having triggered some
combination of MIDAS rules, or by independent observa-
tion by the Dockmaster operator.

 The second flag which may appear to the left of a user name
is a capital M. This mark indicates that a user’s session is
now being closely monitored. All audit data pertaining to
this user is now also reflected in the MIDAS Warning
Pane. This is a powerful tool for detailed user monitoring.

‘Warning Pane - The Warning Pane displays the warning
messages and MIDAS conclusions generated as a result of
MIDAS rule execution. These messages include warnings about
breakins, masqueraders, penetrations, misuse, trojan
horse/virus detection, and the reasons why these warnings were
generated.

Sample Messages

NOTE: FIRST LOGIN FOR USER COLOSSUS
(SRC: VT1.0438)

MONITOR: COLOSSUS EXECUTED CMD
CPU .03

"LIST",

WARNING: FEY EXCEEDED 1ST THRESHOLD
FOR CPU USE

ALERT: COLOSSUS IS A MASQUERADER.
REASONING IS: (

LOGGED IN FROM AN UNUSUAL SOURCE
(3106.4452)

LOGGED IN AT UNUSUAL TIME (01:45)

EXCEEDED 1ST THRESHOLD FOR CMD ERRORS
(15)

EXCEEDED 2ND THRESHOLD FOR SYSERRS 78

EXECUTED THE INVALID COMMANDS "PRIV",
"SUID"

Warning Pane information is generated independent of the
MIDAS Window Interface, and thus can be made available on
other (non-windowing) versions of MIDAS. Warning Pane
messages are hierarchically grouped into classes of related mes-
sages, from notes, to warnings, to system alerts. Each of these
message types has aslightly different format or font in order that
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Figure 7 MIDAS User Interface

the message type be easily distinguishable, and in order that the
really important messages are easily noted. All messages, from
the notes to the system alerts, are written to a daily log along with
an analysis of each suspicious user’s session (see Figure 8 for a
sample session analysis). Thislog is printed at the end of the day
(midnight).

Command Pane - The MIDAS operator has available a
number of commands to modify the operating parameters of the
system or generate different displays. MIDAS commands are
invoked by pointing the mouse at the desired command (in the
Command Pane), and clicking. Most of the commands listed in-
voke menus which are in themselves lists of commands. These
commands provide the means to display user and system statis-
tics, generate reports, modify MIDAS execution parameters,
and execute operator commands. For example information
abouta selected user (selected by invoking the "Investigate Stats
Menu" thenselecting the "Analyze User Session” command and
mousing on a current user in the User Pane) might look some-
thing like this:

. ACTIVITY FOR USER COLOSSUS IS
ANOMALOUS:
LOGGED IN FROM AN UNUSUAL SOURCE

LOGGED IN AT AN UNUSUAL TIME

USE OF COMMAND(S) "PRINT", "WHO" IS HIGH
USE OF COMMAND(S) "LIST" IS VERY HIGH
OCCURRENCE OF COMMAND ERRORS IS HIGH
OCCURRENCE OF SYSERRS IS VERY HIGH
COLOSSUS IS ‘A SUSPECTED MASQUERADER

Figure 8 User Session Analysis
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Graphical System Status Pane - This pane (the low right

corner of figure 7) displays information about the state of the tar-
get host, and about the state of MIDAS. Currently four his-
tograms and three meters are displayed. The histogram labelled
"MIDAS Concern Levels" displays how many facts the expert
system has concluded in these areas (attempted breakins,
masquerader, etc.). The three histograms labelled "Logins”,
"Total CPU", and "Total Syserrs”-inform the operator about
these particular occurences. Aquick glance at these histograms
canreveal how many of these occurrences have occurred today
(or in any particular hour of today) as well as how many occur
system wide per day. Finally, across the bottom of this pane,
three meters give the operator some indication as to how well the
expert system is running. The MIDAS RPM meter informs the
operator how many audit records per minute the expert system
processes. The MIDAS FPM meter, describes how many facts
the expert system processes. Finally the MIDAS Facts meter in-
forms the user how many facts are left in the fact base.

Results

MIDAS tracks all user activity on Dockmaster in real-time.
However, in order to implement the system in amodular fashion
and test in a controlled environment, MIDAS was initially
deployed on only 105 users, approximately 11% of the total user
population. Data was transferred daily via magnetic tape. Con-
sequently, the system was tested by flooding it with auditentries
in simulated real-time.

MIDAS performed as intended in the test-bed implementa-
tion. Under limited testing of crude simulated attacks, almostall
anomalous activities were detected. For example, test data
developed by changing the userid throughout one session’s set
of audit data to the userid of another sysiem user resulted in the
determination by MIDAS that the test user was a masquerader.
In addition, anumber of unexpected anomalies were detected in



"live" audit data that are now under further review. MIDAS
reliably flags a monitored set of 17 different immediate attack
activities (For example attempting to use sensitive system com-
mands). Those rules which fire based on overall system state
anomalies are also quite reliable.

Despite the limited size of the test-bed, we became confi-
dent that MIDAS would be capable of monitoring the complete
DOCKMASTER user base. We gained confidence because
MIDAS was deliberately designed with speed as a paramount
criteria, and because initial test data timings were very
favorable.

MIDAS is fast for three reasons. First, MIDAS rules are
compiled intolispobjectcode, notinterpreted asis the case using
many expert system shells. Second, wherever possible, MIDAS
rules have been generalized to handle as many areas of concern
as possible. Minimizing the number of rules within the system
in turn minimizes the number of rule/fact bindings that occur,
thus reducing the number of possibilities the system must check.
Third, we have placed a number of analysis functions into the
user interface to be triggered at the operator discretion, rather
than in the rule base to be triggered nondeterministicly by
matching fact patterns. For example, the MIDAS user interface
contains a function for checking if any users have been inactive
for an excessive period of time. This function detects misuse
rather than intrusion, and does not need to be active constantly.
Putting its execution at the operator’s discretionreduces the load
on the rule base.

Actually, MIDAS is faster than we had anticipated. In
processing the data for the limited test group of 105 users over a
period of approximately 45 days, MIDAS has averaged an
evaluationrate of 425 auditentries per minute. The average time
it has taken to process an entire day’s test-bed activity is 9
minutes. Given that the test population was 11% of the normal
target system population, a simple extrapolation indicated that
the system could process all audit data for an entire day in less
than 2 hours. Even allowing a massive reduction in throughput
based on the rule/fact binding complexities that would accumu-
late during peak periods of Dockmaster usage (30 - 50 users),
MIDAS appearred ready to monitor Dockmaster in real-time.

Currently the system runs in real time. The system appears
slightly oversensitive. Rules based completely on statistical
profiling often trigger too readily because the thresholds of con-
cern are often too low. This problem may be solved by develop-
ing better algorithms for concern thresholds, or some basic
adjustments to the rules dealing with individual user activity
may be required. As user profiles become normalized, the sys-
tem will better differentiate between suspicious and normal user
activity. MIDAS has been successful in profiling system-wide
behavior, by summarizing from the logs such statistics as total
login failures, total system errors, etc... As it stands, the system
has detected many anomalies, some of a suspicious nature. We
will continue investigation of these unusual activities with the
help of the system administration personnel. Although the sys-
tem is still being enhanced and tested, we believe that applying
MIDAS to the audit log problem improves detection of com-
puter abuse and misuse.

Future Directions

MIDAS was designed specifically to provide intrusion
detection for the National Computer Security Center’s
Honeywell Multics system. However, MIDAS could easily be
generalized to monitor any Multics system. With some effort, it
may be operable for a number of different target systems. For
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example, MIDAS may soon be modified to monitor anIBM sys-
tem running ACF2. Also, although the MIDAS expert system
was developed ona Symbolics workstation, the basic system has
beenported toa Sun workstation. Efforts are ongoing todevelop
auserinterface forthe Sun version which takes advantage of Sun
capabilities for graphics and color display.

A proposed enhancement is to implement Markovian
analysis of command inputpatterns. Under Markovian analysis,
each command type is regarded as a state variable, and a state
transition matrix is used to characterize the transition frequen-
cies between states. A command input transition would be ab-
normal if its probability (as determined by the previous system
state and the current transition matrix entry) was too low. This
mechanism can be used, for example, to determine if the com-
mand sequences of a user are similar to those which characterize
a penetrator.

Some means for validating the performance of the rule base
should be developed. Interim measures include the analysis of
MIDAS performance under normal conditions and under
‘stress’ conditions. These stress conditions will be generated by
assembling a tiger team to attempt to compromise the monitored
system. However, a more rigorous method for rule base valida-
tion and verification is greatly needed. This represents a current
area of particular concern in artificial intelligence. Numerous
approaches have been proposed for analyzing the structure of
rule-based systems to check for consistency and completeness
(see [5, 6,7, 10]). Tools of this nature are presently under con-
sideration as extensions for the Production-Based Expert Sys-
tem Toolset which supports MIDAS.

The rules of the expert system could be improved by inter-
viewing hackers, and those who have caught hackers. Current-
ly the heuristics of the expert system rules are based on the
knowledge of system administrators and system programmers.
Also, knowledge gained from discovering intrusion, misuse,
penetration, etc... will further refine and enhance the rules.

Finally, we would like to enhance MIDAS so that if the sys-
tem runs unattended, MIDAS can act on its own suspicions.
That is, the system could take the least disruptive action to fol-
low up onits conclusions. Thiscould occurasaresultof auser’s
failure to correctly answer a challenge response question issued
by MIDAS in reponse to the user’s previous anomalous session
activity [14]. We want to enhance MIDAS so that it can interact
with the targethost if it must. This would broaden its scope con-
siderably from that of just an audit reduction tool.
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ABSTRACT

‘ This paper describes the important features of the SunOS MLS auditing mechanism, and how it solves the
problems of performing useful audit functions in large distributed systems. The goals and experiences which led to
this design are described. The SunOS MLS mechanism is compared with other implementations.

INTRODUCTION

This paper begins with a brief overview of the SunOS MLS system:
its hardware, its software interface, and its additional security
features. That overview serves merely to introduce the system;
some familiarity with UNIX and the Trusted Computer System
Evaluation Criteria [DoD85] is expected for complete understand-
ing of this paper.

The system overview is followed by three sections describing the
characteristics that distinguish auditing in SunOS MLS from more
conventional implementations. The section on audit message life
cycle describes how an audit message travels from its point of ori-
gin to permanent storage. This mechanism was designed to minim-
ize overhead for message generation while still strictly limiting the
amount of audit data lost due to a system failure. That section also
describes the methods the administrator can use to manage large
volumes of online audit data, and how the data can be migrated
offline.

The section on audit analysis describes the audit analysis tool,
which is how the “‘single system image’” of SunOS MLS is imple-
mented for auditing. This tool has extensive merging and selection
capabilities, and is the primary mechanism for processing audit
data before analysis or display.

The section on audit message format summarizes the ‘‘Flexible
Audit Message Format’’, which was designed as a system-
independent format suitable for use in arbitrary operating systems,
not just SunOS MLS. This format is being considered by the IEEE
P1003.6 and X/Open standards subcommittees on security.

UNIXis a registered trademark of AT&T. Ethemet is a registered trademark of Xerox
Corporation. Sun Microsystems is a registered trademark of Sun Microsystems, Inc.
SunOS, NFS, Sun-3, Sun-4, and SunView are trademarks of Sun Microsystems, Inc.
POSIX is a trademark of the Institute of Electrical and Electronic Engineers. X/Open
is a registered trademark of the X/Open Company, Ltd.

The work described herein was performed under contract to Sun Microsystems, Inc.

The statistics and mechanisms presented .in this paper are taken from a pre-release
version of SunOS MLS, and do not represent ‘a commitment to any specific
implementation or performance characteristics of the actual SunOS MLS product.
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The paper ends with a section describing the implementation
characteristics of SunOS MLS auditing. This includes some com-
parisons between SunOS MLS and other systems ({Piccioto87],
[Gligor86]), as well as a preliminary discussion of SunOS MLS
auditing performance.

OVERVIEW: WHAT IS SunOS MLS?

Sun’s SunOS MLS product is secure distributed system which is
targeted for evaluation at the B1 Criteria level and which is
currently undergoing developmental evaluation with the NCSC. It
is ‘a variant of Sun’s standard SunOS system (release 4.0) with
which it has complete application compatibility except in areas
where security requirements prohibit. SunOS MLS runs on Sun’s
Sun-3 and Sun4 hardware product line, which ranges from
1.5 MIPS desktop workstations through 10 MIPS workstations and
file server machines. It has been under development since mid-
1986, and is described in more detail by [Sun87].

SunOS is a version of the UNIX operating system which includes
compatibility with the AT&T System V, Release 3 definition,
numerous enhancements from the Berkeley 4.2/4.3bsd systems, and
Sun’s own extensions. In addition to the basic UNIX functions,
SunOS includes SunView, a window-based user interface, and full
support for the TCP/IP and NFS (Network File System) network
protocols.

SunOS MLS is an extended version of the basic SunOS system
intended to meet the B1 class requirements of the Trusted Com-
puter System Evaluation Criteria (TCSEC) [DoD85]. In addition to
auditing, which this paper describes, it includes protection of user
passwords, support of mandatory security labels in the file system
and in NFS, device labeling, mandatory security for socket-based
interprocess communication, and an extension to the window inter-
face, Secure SunView, which places mandatory access control
labels on all on-screen windows and allows simultaneous display
and manipulation of data at many different labels. A more com-
plete description is found in [Sun87].



SunOS MLS Configuration

A SunOS MLS system is a distributed system comprising one or
more physical machines (such as workstations or file servers) con-
nected to a dedicated Local Area Network (LAN). Because the
LAN (which uses Ethernet-based technology) represents the com-
munication path between the CPUs in the distributed system, it is
also referred to as the interconnect or ‘‘backplane’” for the system.
Some machines may be referred to as *‘servers’’, generally because
their primary purpose is to export disk storage to other machines.
In a typical configuration, most machines are ‘‘diskless’’ and use
NFS to reference their data, which is stored on one or more servers.

Because all the machines, their peripheralé (if any) and the LAN

interconnect, are part of the same system and equally trusted, phy- .

sical security is required for all those components to ensure that no
compromise occurs due to violation of hardware integrity. In a
fully secure configuration, no ‘‘foreign’’ hardware may be attached
to the LAN: it is used only for communication among a set of
machines all running the same TCB software.

Single System Image

Although each machine in a SunOS MLS system is a partly
independent processor running its own instance of the TCB and its
own set of users, the entire set operates as a single system. This is
possible because a user’s (and administrator’s) view of the system
is independent of the machine being used. All machines share the
same file system, and a file name has the same meaning regardless
of location.

Similarly, all administrative functions may be performed (by an
appropriately authorized user) from any machine. The administra-
tive databases are all maintained at a single point, and distributed
throughout the system by Sun’s Yellow Pages distributed database
mechanism. In particular, this is true of authentication data, so that
user identity is unique regardless of location.

As is described below, this single system image is very important
for auditing. This concept allows the system administrator to view
and analyze the audit trail for the entire system as a single entity,
even though the audit data was generated by numerous independent
machines and may be stored in multiple locations. Because file
names and user identities are unique through the system, it is
straightforward to analyze the merged audit data.

Accountability

“An important aspect of SunOS MLS for auditing is the qudit user
ID. This is a unique user identity, kept in addition to the standard
UNIX real user ID and effective user ID values, that identifies a
process (subject). The audit user ID is assigned to.a process only
by its initial login through the trusted path, and its value is the same
as the initial values of the other user IDs. This identity is inherited
by all descendants of the initial process, and, in effect, provides
accountability back to-the user whose fingers are at the keyboard.
Unlike the effective user ID and real user ID, the audit user ID’s
value is never changed. All activities performed between login and
logout, regardless of which window they are performed in, or
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which machine the process runs on, are accountable to the original
logged in user. For example, the audit user ID is maintained when
the user issues the su command to switch to a privileged role or
uses the rlogin command to initiate a session on another machine.

AUDIT MESSAGE LIFE CYCLE

The generation side of the audit mechanism is responsible for
responding to ‘‘audit” calls from TCB programs, generating mes-
sages, and writing those messages to permanent storage for
analysis. Although this is a conceptually simple path, the require-
ments for high bandwidth and reliable transmission often make this
a complex process.  Even in a conventional multi-user timesharing
system, the path for an individual audit message may include
several buffers, each perhaps slower to access, but less likely to
overflow. In a distributed system, where audit message storage
may be accessed through a communication interface, the problems
are exacerbated.

Audit Message Pre-Selection

The first part of an audit message’s life is really the decision of
whether to genérate the message at all, The TCSEC requires not
that all security-relevant events be audited, but merely that they be
auditable. Tt also specifies a minimum set of characteristics for
selecting! specific audit messages. This allows the administrator
some flexibility in making the tradeoff between what to collect and
the volume of information recorded. These administrative control
mechanisms will probably be different in different systems, but
they always rely on some form of categorization of messages.

Although the most powerful selection mechanisms are available
only at analysis time, some limited options afe available to control
the set of messages recorded. For each user, the system administra-
tor may specify a set of audit event classes for which messages
should be recorded. These are further divided into two sets: mes-
sages to be recorded when an attempted operation is successful, and
messages to be recorded when an attempted operation fails for any
reason, These per-user values actually just modify a system-wide
default; rather than specifying the exact set of classes for each user,
the administrator writes specifications such as ‘‘the default, plus
successful access changes, plus all failed attempts’. Thus, the
administrator can establish a set of audit classes for the whole sys-
tem, and adjust it individually for pamcularly trustworthy or partic-
ularly suspicious users.

The class selection‘mechanism is based on audit message types (see
AUDIT MESSAGE FORMAT, below). Every distinct operation
generates a message of a different type. One set of message types
is defined to describe each of the operations defined in the POSIX
specification, and individual systems (such as SunOS MLS) define

! The TCSEC allows events 1o be ‘‘selectively audited”’ either by making the
selection at generation time (pre-selection), or by picking specific messages out of the
audit trail at analysis time (post-selection). SunOS MLS provides selection by user
identity (and message class) at both generation and analysis time, but only provides
selection by object security label (and most other attributes) at analysis time.



additional message types for their extensions. Additional message
types can also be defined by third-party applications. The number
of types may be quite large: in SunOS MLS, it is approximately
300. The message type is a fine-grained selection mechanism, and
corresponds directly to the operation performed by an administrator
OT a user program.

There is a system-wide table that maps each of these individual
message types into one of a small number of message classes. The
message class indicates the class of operations (such as ‘‘adminis-
trator action’’, ‘‘file modification’’, etc.) to which the message
belongs. Message classes are used to identify subsets of the com-
plete audit trail which are to be recorded for particular users or pro-
grams (thus reducing the volume of data). Since message classes
are intended for administrative control of the audit mechanism,
there should be only a fairly small number defined. It is expected
that the set of classes may be different in different system imple-
mentations; in SunOS MLS, 13 classes are currently defined.

Audit Messages in the Kernel

A SunOS MLS audit message starts life in the kemel (the hardware
privileged part of the TCB software). It may have been generated
either by an auditing call internal to the kemnel, or by a system call
made from some trusted process. In either case, the information for
the audit message is gathered up and formatted into an audit mes-
sage data structure, which is then stored in one of a small set of
buffers in kernel memory. If a failure occurs in the local machine,
no more than those buffers worth of audit data can be lost (up to 10
audit messages). Once a message is placed in a buffer, the ‘*audit
daemon’’ is notified.

The Audit Daemon

The audit daemon is an independent process which runs on each
machine. Unlike ordinary. processes, it runs almost entirely in ker-
nel mode. Therefore, except when handling errors, all the data it
manipulates is in kernel memory, and not subject to swapping or
paging. This allows the audit daemon to respond very quickly to
arriving audit messages and ensures that it is not a bottleneck.

The audit daemon’s job is to take the audit messages from their
kernel buffers and write them to the destination file. In normal
operation, the audit daemon is awakened whenever a message is
placed in a kemnel buffer. It runs promptly and performs a normal
file system write operation to write out the message. This process
is repeated until all the kernel buffers are again empty, at which
point the audit daemon goes back to sleep and awaits another mes-
sage. The audit daemon runs in kemel mode to avoid an extra
buffering step and to improve context switch efficiency. Its pro-
cessing loop is invoked by a special system call which never
returns from the kernel unless an error occurs.

In addition to this normal mode of operation, the audit daemon is
also responsible for creating audit files, for handling any errors
which occur while writing to an audit file, and for monitoring the
amount of space still available for writing more messages. When-
ever an [/O error or a file system full condition occurs, the audit
daemon returns to user mode, selects a new location for audit data,
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and creates a new file into which messages will be written. It then
again invokes its special system call to write messages to this new
file. No messages are lost on the local machine when this occurs,
since the kernel buffers remain full while waiting for the audit dae-
mon to find a new home for them.

Each audit daemon has a list of directories (known as ‘‘audit file
systems’”) from which it can choose a location for audit files. It
consults this list whenever a new audit file must be created. Typi-
cally, this list is different for each machine or small group of
machines, in order to spread the audit traffic evenly. Normally, the
directory is chosen based on a fixed algorithm, but the audit dae-
mon also has a control interface that allows an administrator to
direct its attention to a particular audit file system, or simply to
close out the current audit file and open a new one.

When the audit daemon is unable to find a destination for the audit
messages, or if the audit daemon itself suffers a failure, the kernel
buffers continue to fill up. As soon as all 10 kernel buffers are in
use, the machine ceases to perform any auditable operations until
the condition is remedied or until it is rebooted. The audit
daemon’s operations while trying to create new audit files are not
audited until after a new audit file is available, to avoid an infinite
loop. Because the audit daemon keeps trying to create new audit
files, as soon as the error condition is remedied, it will succeed,
drain the kernel buffers, and the processes on the machine which
are being audited (and therefore were hanging, awaiting kemel
buffers) will resume normal operation.

This recovery mechanism is important because of the distributed
nature of the SunOS MLS system. Because audit files are usually
physically resident on disks attached to remote machines, the audit
daemon references them using the NFS protocol over the LAN
interconnect. The failure or temporary unavailability of one of
these remote machines should not halt the entire system.

Audit File Systems

Audit files are typically kept in dedicated file systems? reserved for
audit data alone. This is done to keep the audit data from interfer-
ing with other user and system files: if an audit file system becomes
full, the effect is only to direct audit messages to another location,
rather than the more serious effects of exhausting disk storage used
for other purposes.

Audit file systems are also typically kept on a small set of machines
acting as ‘‘audit servers”, and referenced through NFS. This
allows for efficient and reliable storage because the audit servers
can be chosen to have large amounts of disk storage and high relia-
bility. Storing audit files for many machines on a single server also
speeds analysis, since those files can all be accessed directly on that
machine, rather than through NFS. Although, for instance, audit
data could be stored on the local disks attached to individual desk-
top machines, this would be inefficient for access, and would also
mean that some audit data would be unavailable for analysis simply

2 A SunOS file system is a fixed-size region of disk, or an entire disk, which
contains a portion of the system’s directory hierarchy.



because the user of some machine tumed its power off. Finally, use
of audit servers may improve the physical security of audit data.
Although the TCB prevents users from accessing any data, even
that on local disks, except as allowed by the security policy,
transmission of audit data to a remote machine in a physically more
protected environment may still be desirable.

Recovery From Unusable File Systems

An audit file system may become unusable either because it is inac-
cessible (its server machine has crashed, or its network connection
is broken), or because it is full. In the first case, after some brief
attempts at error recovery, an audit daemon simply selects the next
audit file system from its list, and attempts to create a new audit
file.

In the second case, the file system has reached one of two limits:
soft or hard. The soft limit is a variable threshold set by the
administrator which causes the audit daemon to run the audit_warn
command script. After encountering the soft limit, the audit dae-
mon attempts to switch to using another audit file system which has
not yet reached its soft limit. Encountering the hard limit simply
means that no space remains, and that either a new location must be
found or the machine will hang awaiting space somewhere.

In all these limit and error cases, the qudit warn script is run. A
default version of this script is shipped with the product. An instal-
lation may modify it to take more complex recovery actions. The
default action on these conditions is simply to warn the administra-
tor about whatever condition has arisen, by sending mail, and by
printing a message on the console for the more serious conditions.
However, the script can be tailored to perform arbitrarily complex
actions as well, such as automatically deleting or moving old audit
files from a full file system, terminating user processes to prevent
additional activity, or changing the audit flags for existing
processes to reduce the set of events being audited.

Archiving Audit Files

In addition to the live audit files that are being written by the audit
daemons, the administrator must also manage old audit data. The
audit reduction tool provides numerous ways of doing this.

The first thing to do with audit data is generally to combine it (a
day’s worth at a time, perhaps) into a single file and move it to
another file system. The destination need not be a dedicated audit
file system, since the combined file will not grow unpredictably
after it is created. Often, this combination process involves several
steps and intermediate destinations, but as long as the directories
are appropriately organized, the rearrangements will be transparent
to the audit analysis tools.

Another form of archiving is tape. Although no software is pro-
vided specifically for managing tapes of audit archives, the ability
to combine and trim audit files makes tape management much
simpler.

Two other forms of management for online audit files are available:
compression and trimming. Compression uses the standard SunOS
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compress program to reduce the size of audit files; the reduction
tool automatically handles compressed audit data, uncompressing
when reading it, and generating compressed data on request.

Finally, audit files can be trimmed of unwanted messages. This
allows, for example, an administrator to keep a full year’s worth of
login and logout messages online, while having the other messages
readily available in complete audit files on tape. The trimming
capability is also implemented in the audit reduction tool.

AUDIT DATA ANALYSIS

Audit analysis in SunOS MLS is performed with the aid of the
auditreduce program. This is used to perform a logical merge of all
the audit files in the system, select some messages for processing,
and output them as a stream of messages for processing. Of course,
auditreduce does not physically merge all the audit files every time
it is run -— that could represent gigabytes of data. Rather, it selects
messages (by time and machine identity) only from appropriate
files, and merges those, trimming out unwanted messages as early
as possible in the merge. In this way, it provides the most efficient
possible presentation of any desired subset of the system-wide audit
trail.

No actual analysis is performed by auditreduce; rather, its purpose
is to write (to stdout) a stream of messages for processing by
another program. The simplest example is the praudit program,
which simply displays the messages in human-readable form. This
can be combined with grep and other SunOS utilities to make more
specific selections.

The dynamic read mode of auditreduce, rather than reading mes-
sages already present in audit files, watches all the audit files and
file systems for new messages and files, and writes them to its out-
put as soon as they appear. This output can then be piped into a
program or even a simple shell script to perform real-time analysis
and alarms. It can even be piped into a real-time alarm shell script;
a program has been developed independently of the mainstream
SunOS MLS development effort to take advantage of this capabil- -
ity: it dynamically displays the most common recent audit mes-
sages in a graphical form.

Merging Audit Files

The merge of audit files relies on the fact that all the audit messages
in a file are recorded in time-sorted order. Because each audit file
is written initially by exactly one process, some machine’s audit
daemon, the daemon can easily ensure this. Furthermore, the
filenames of all audit files contain a pair of timestamps and
machine name3, so that the origin and times of audit messages
within a file can be determined by efficient examination of the file’s

3 This convention is implemented by the audit daemon and by auditreduce (when
it writes files), and is relied upon by auditreduce when reading files. Audit files with
other names are inconvenient to manipulate, and auditreduce provides a function to
regenerate the timestamps. This is important for fixing up files which were not closed
normally (because of a crash or file system), and whose ending timestamp still
indicates ““I/O in progress””. ‘



name, rather than its contents.

Whenever audit data is generated by independent processes, and
more so when generated on independent machines, synchronization
of time stamps in audit messages can be a problem. In
SunOS MLS, this is not a significant problem, because, in general,
all of a particular subject’s (process’s) auditable activities are
recorded on the local machine where the subject is running. Some
activities, such as remote login, may additionally be recorded on
another machine, and then followed by a series of messages on that
other machine (recorded as the activities of a different subject, with
the same identity), but there is always an easy way to track the ori-
gin of the activity. Therefore, as long as normal administrative pro-
cedures are used to keep the clocks in different machines approxi-
mately synchronized, the time stamps in audit messages will be in
proper sequence.

Because a single process is limited in the number of files it can
have open at one time, the merge is performed in multiple
processes. This allows auditreduce to process files from an arbi-
trarily large number* of r‘nachines.' ' Considerable effort has been
made to ensure that auditreduce performs efficiently even for very
large configurations. ' '

Selécting Audit Messages

The other half of auditreduce is message selection: choosing which
messages will be passed through to the display or analysis pro-
grams. Selection options are provided to select on any criterion
which can be assessed from a single message: time, type of mes-
sage, selection class, originating user, security label, etc. The
selections are all performed at the earliest possible point in the
merge, in the subprocesses. This reduces the amount of data which
travels among the family of processes creates by an auditreduce
invocation. Selection by time is the most important heavily optim-
ized criterion: as described above, at a coarse granularity, messages
can be selected by time based only on the timestamps in filenames,
and without opening a file unless it is known to contain messages
from the interval of interest.

Audit Migration Facilities

Some miscellaneous facilities are provided by auditreduce, pri-
marily in support of the audit file migration strategies described
above. Messages are combined from multiple files into one using
the options to write an output file, delete input files, and read all
messages from any input files processed, even if the messages are
outside the specific time intervals specified. Input files can be in
compressed format, and output files may be requested to be written
in compressed format.

Compression is perforrhed using the standard SunOS compress pro-
gram, which uses adaptive Lempel-Ziv coding. On English text,

4 Limited only by configurable table size limits in the kemel. The implementation
has worked well with over 1000 files. The number of files which must be open at a
time is equal to the number of machines which generated them: exactly one file at a
time from each machine is needed because the files, as well as the messages in them,
are kept in strict time sequence. ‘ ‘ :
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the typical compression ratio is only 50 to 60%, but on
SunOS MLS audit data, it generally achieves 75% to 90% compres-
sion. These ratios can be achieved with audit files containing 1
megabyte of data. The compression is most efficient when large
amounts of audit data are being collected, since when a single pro-
cess generates many messages in rapid succession, the messages
will usually have significant redundant content which can then be
removed by compress.

AUDIT MESSAGE FORMAT

The final important aspect of auditing in SunOS MLS is the format
for audit messages. Because this format offers significant benefits
for third-party software developers, it is being proposed as an
extension to the IEEE POSIXS5 standard, and is being considered by
both the IEEE P1003.6 committee and the X/Open® security sub-
committee.

Goals

The basic problem which makes audit messages difficult to inter-
pret and analyze is that they come from a wide variety of sources
and contain many different types of information. For example,
SunOS MLS can generate approximately 300 distinct audit mes-
sages. Despite all this variety, however, the messages contain only
a relatively few distinct types of data which are interesting for
analysis: times, labels, file pathnames, subject (process) identities,
etc. The multiplicity of formats is caused by the need to report dif-
ferent sets of these datatypes for different operations.

The goals of the audit-message format are fourfold:
1) Easy selection of audit messages on a variety of criteria;

2) Easy addition of new audit messages as functions are added to
-the system (without changes to audit analysis tools);

3) Allowing third-party software develépers to create additional
audit analysis tools which are independent of a particular ver-
sion of SunOS MLS; and

4) Allowing third-party software to generate its own audit mes-
sages which can be meaningfully analyzed with existing
analysis tools.

The initial implementation of auditing in SunOS MLS did not meet
these goals. It used an inflexible, fixed-format message, in which
additional data was simply tacked on following the header in a
message-dependent way. As a consequence, both auditreduce (for
message selection) and praudit had to understand the format of
every single audit message. Whenever a new type of audit message
was added to the system, praudit always (and auditreduce often)

5 POSIX is the IEEE’s Portable Operating System Interface specification, which is
based on common UNIX system interfaces. The P1003.6 committee is developing
security extensions for the basic POSIX functions suitable for use at all TCSEC levels.

6 X/Open is an international organization of UNIX system vendors which
develops portability standards based on its members’ systems. The security
subcommittee is developing security extensions intended primarily for commercial
applications and the C2 TCSEC level



had to be modified to understand the specific message format asso-
ciated with the new message type. This was clearly undesirable
even within the scope of SunOS MLS development, to say nothing
of its consequences for third-party developers. As a message for-
mat, it satisfied none of the above goals.

The remainder of this section discusses how these goals are met by
the current design.

Audit File Format

In the scheme described here, an audit file is treated as a sequen-
tially accessed stream of bytes. The stream is broken into
variable-length records. Each audit file contains an identifying
header, followed by an arbitrary number of records, as shown
below:

Header Message #1 Message #2

0 256 327 361

NOTE: The numbers along the bottom of all the
diagrams indicate byte offsets from the beginning. In
this diagram, they are only for illustrative purposes,
and do not represent any required values. :

In. the diagrams showing individual tokens, the
number at the beginning of each token is its token
type, which is a one-byte value appearing at the
beginning of all tokens to identify their contents.

Although the size is arbitrary, it is useful, though not required, to
keep the audit files to a manageable size by periodically instructing
the audit daemon to switch to a new file.

Although this format allows only sequential access’, and does not
support backward reading or random access, its simplicity is impor-
tant, because it allows audit data to be passed between programs
easily, or moved between systems without regard to internal file
formats.

Flexible Audit Message Format

The message format treats each audit message as a string of *‘audit
tokens”’. Each of the tokens is a self-identifying piece of data,
representing a file pathname, a subject, a label, etc. The token
starts with an identifying byte, which is followed by a string of
bytes representing the rest of the data in a token type dependent
format. A message looks something like this:

" Header b Subject 5 Label s Path
Token Token Token Token
01 1314 2425 56 57

7 ‘This restriction applies only to the simplest implementations. The TRAILER
token type allows backward reading and binary searching.

87

To a large extent, each audit message, and even each token within
the message, can be considered independently of all others, which
simplifies interpretation and message selection.

There are three classes of tokens: Control, Data, and Modifier
(identified as C, D, and M in the table below). Each of these classes
contains several distinct token types, identified by the one-byte
identifier at the beginning of each token. There are currently 17
defined token types.

Control tokens are essentially part of the audit system’s overhead:
they identify the beginning (and end) of messages. ' Data tokens
provide the primary identification of a subject or object: a data
token should provide enough information to know what the mes-
sage is referring. A data token may be followed by one or more
modifier tokens. Modifier tokens provide additional information
about a subject or object. This information is not included with the
data tokens for two reasons, both having to do with the applicabil-
ity of this message format to arbitrary systems, not just
SunOS MLS. First, an implementation could choose to save space
by not recording information that its customers don’t care about
(for example, file attributes or the supplementary group list).
Second, an implementation can always save space by not recording
information that doesn’t make sense for that system (such as labels
in a C2 system). These variations represent an implementation’s
‘‘auditing style”’, and may be built in to the system or available to
an administrator as configuration options. Because the individual
audit tokens are largely self-defining, an analysis program can work
regardless of the auditing style of the system generating the mes-
sages.

The average size of SunOS MLS audit messages is between 120
and 180 bytes, with 6 to 10 tokens per record. The compression
typically reduces the message size to between 20 and 30 bytes of
compressed data per message.

Eﬁ(ampler of Audit Message

As an example, the audit message for an unlink® system call might
contain the following tokens, laid out in the message as shown in
the previous diagrams:

Header Token
12 Message|Message Message
Length | Type Time
0 1 3 5 12
Subject Token
24 Audit Real ([Effective] Real | Process .
User ID | User ID | User ID [Group ID}  ID
0 1 3 5 7 9 10

& The operation wnlink (Path) removes a link to the file named Path, deleting the
file’s contents if that was the last link to the file. :



Label Modifier Token

32-byte binary label

3 (Sun specific format)

0 1 32

Pathname Token

23 Root Working Pathname
Directory Directory Argument
0 1 (variable) (variable)

The first token, present in all audit messages, is the header, which
gives the type, time, class, result, and length of the entire message.
The second token, present in most messages, identifies the subject
performing the operation. The third is a label, the label of the sub-
ject. This is an independent (modifier) token to allow the format to
be used on systems (such as class C2) which do not implement
labels and therefore would not want to reserve space for labels in
all their audit messages. The fourth token is the file pathname for
the target of the link.

As this is an example only, it is somewhat simplified: the actual
audit message for unlink() also includes the label of the object
being unlinked and the return value from the system call (to indi-
cate success or failure).

Audit Token Types

The message header token is present in all audit messages, and con-
tains three pieces of information in a fixed format: the message
type, the time the message was generated, and the total length of
the message. The total length of the message is used to allow
sequential processing of the variable-length messages. The mes-
sage type is used to identify a specific operation, such as a system
call or administrative operation (see Audit Message Pre-Selection,
above).

The subject token identifies a subject (process). It contains the
process’s process ID, audit user ID, real user ID, and effective user
ID. For a system with mandatory access control, this token is
always followed by a label token identifying the subject’s label.
The subject’s audit user ID is an identity which is assigned at login
time and cannot be changed even by the setuid system call (unlike
the *‘real” and effective user IDs). In a system with mandatory
access controls (such as SunOS MLS), a subject token is always
followed by a label modifier token.

The file path token type contains the complete pathname needed to
identify an object, including the process’s current root directory
and working directory, as well as the name which was supplied for
the object itself. All three are always included, even though the
pathname supplied as the argument to a system call might be an
absolute pathname, making the working directory irrelevant. Simi-
larly to subject tokens, in SunOS MLS, a path token are always fol-
lowed by a label modifier token umnless the designated object does
not exist.
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In addition to these token types, there are others which identify
Two additional token types allow the inclusion of arbitrary text of
binary data in a message. These are used when the data does not
correspond to any of the defined token types, and where additional
data about an operation is required. Text and data tokens are dis-
tinct types to allow the analysis tools to select on the contents of
text. An opaque data token is generally intended for interpretation
by a special-purpose analysis tool, whereas the text token and
miscellaneous/arbitrary data tokens are intended for reading by a
human auditor.

The table below lists all the defined token types, their class (C for
control tokens, D for data tokens, M for modifier tokens), and a
brief description.

Name Class| Description

HEADER C j Beginning of a message (length, type, time)

TRAILER C | End of a message; contains the length for
backward reading

SUBJECT D | Subject attempting the audited operation

SERVER D | Identity of server process acting for subject

DATA D | Miscellaneous binary data; includes informa-
tion about datatype (character, integer, etc.)
and instructions for printing (decimal, hexa-
decimal, string, etc.)

PATH D | Complete pathname(s) identifying a file sys-
tem object (root directory, current directory,
and supplied name)

1PC D | System V IPC object (Shared Memory,
Semaphore Set, Message Queue)

PROCESS D | Process that is target of operation

TEXT D | Text message; distinct from DATA in that
length is implicit, reducing the token’s size

RETURN D | Retumn value and error code from system call

(OPAQUE D | Application-specific structured binary data;
generated only by non-TCB programs

PACKET D | Header and identifying information from an
IP packet

ATTR M | Attributes (type, owner, permissions, etc.) of
file system object

IPC_ATTR M | Attributes of System V IPC object

LABEL M | Label for subjects and objects

GROUPS M | Group list (supplementary group IDs) for a
subject

NET_ADDR | M | Address (4-byte IP format) identifying loca-
tion of a subject or object

Writing Audit Messages

To further insulate programs generating audit messages from their
format in storage, a function is provided which accepts as argu-
ments the message type, class, and pointers to data to be inserted as
additional tokens in the message. Because a file token is generated



from a name and inode pointer (or perhaps just a name), this allows
a generating program to supply these pointers without worrying
about whether the system has mandatory access control so that
labels have to be included in the audit message.

This interface is available both within the kernel, for internal use by
the SunOS MLS TCB, and as a system call for use by the trusted
processes in the SunOS MLS TCB and by third-party trusted
software.

Application-Generated Audit Messages

The system allows programs other than the supplied TCB software
to generate audit messages. This allows an installation to write
programs that generate audit messages describing their activities.
Because these messages use the same token-based format as TCB-
generated audit messages, they can be analyzed with the same
tools.

If these messages could mimic the messages generated by TCB
software, or in some way overwhelm the audit system’s capacity,
the integrity of the audit trail would be lost. The system protects
against this in two ways. First, all application-generated messages
are identified by a specific message type, set by the TCB when the
message is written. This precludes programs from imitating
genuine TCB audit messages since the message types will always
differ. Second, application-generated messages belong to a spécial
class of audit messages, and are only recorded if that class of mes-
sages is being audited. Thus, the system administrator can control,
on a per-user basis, which users are permitted to generate non-TCB
audit messages.

IMPLEMENTATION CHARACTERISTICS

The SunOS MLS audit mechanism is quite similar to other UNIX-
based audit implementations (such as [Gligor86] and [Piccioto87]).
The principal differences are the system-independent nature of
message and file formats and the need for a ‘‘single-system view”’
assembled dynamically (by auditreduce) from a potentially
widely-distributed collection of audit data files. This section
explores those differences and summarizes the performance charac-
teristics of the SunOS MLS implementation. The comparisons are
not made with any other specific systems, but rather with general
characteristics that appear in many systems.

Comparison With Other Implementations

A daemon process for writing audit data was chosen, despite the
small additional overhead it entails, to de-couple the writing of
audit data from its generation in the kernel. This simplifies use of
the audit trail by non-kemnel software, but mostly is important
because it allows the target location (file or otherwise) of audit
messages to be chosen with great flexibility.

The additional levels of buffering bring a cost in reliability, by
increasing the amount of data lost in the event of failure, but this
seems more than compensated for by the automatic file switching
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capability provided by the daemon. In any case, the maximum
amount of data loss is limited and predictable, and the daemon
structure is such that a more reliable transport mechanism (or
perhaps one using non-erasable optical storage) could easily be
integrated, whereas such a change might be very difficult in a sys-
tem where the kernel does all message processing directly.

Audit messages in SunOS MLS are larger than in many other sys-
tems, because of the additional information they include for identi-
fying objects. This resulted from a tradeoff between simplicity of
analysis tools and size of messages: the less context the analysis
tool has to remember (such as each process’s current working
directory), the easier its job is. In practice, this seems largely com-
pensated for by the degree of compression provided by the
compress program. When the audit data is particularly bulky and
contains mostly redundant information, compression ratios of
nearly 8 to 1 are possible. Thus, although the data is temporarily
bulkier, in permanent storage (after the automatic daily consolida-
tion), the bulk is comparable to other implementations. The addi-
tional CPU overhead for decompression at analysis time appears
minimal.

Similarly, the machine-independent format carries a significant
space penalty relative to other implementations, and again, this
results from the tradeoff between audit trail size and flexibility of
analysis tools. This tradeoff, too, is largely masked by the
efficiency of compression.

The auditreduce program, in combination with self-identifying data
in messages, provides essentially all the types of selection and
analysis that can be provided when examining messages sequen-
tially. The audit class mechanism provides some capability for
pre-selection, but is not nearly as powerful as auditreduce.

The SunOS MLS audit mechanism is intended to meet or exceed
the TCSEC B1 requirements specifying which events are to be
audited and what forms of selective auditing may be performed.
However, it is also intended to meet practical needs, both for
human auditors and automated analysis systems, such as the the
Intrusion Detection Expert System (IDES) [Lunt88], which
analyzes patterns in audit data to detect unauthorized use of a sys-
tem. The capabilities of auditreduce are particularly important for
manual interpretation of audit data.

Performance Characteristics

As SunOS MLS had not been distributed to the field when this
paper was written, these numbers are necessarily tentative. How-
ever, they indicate that the size of data collected and the overhead
for collection is quite comparable to that for other systems. Most
of the numbers below describe size of the raw binary audit data;
compressed data is treated at the end.

With a minimal set of audit classes selected (logins, logouts, and
administrative and privileged activity), a system of 10 SunOS MLS
machines (workstations and servers) generates about 100K bytes of
uncompressed audit data per day for the entire system. If auditing
of failed operations is added, this increases to 1-2 megabytes per
day. If auditing of all event classes for success and failure is



enabled, this increases to 10-30 megabytes per day (again, for the
whole 10-machine system). It must be emphasized that these
numbers are generated by the ‘‘normal’’ activity of a software
development group, which consists primarily of text editing and
compilation. Any heavy file system activity increases the bulk con-
siderably.

The maximum capacity of the audit system seems to be about 20
megabytes of raw data per hour on a typical machine. If all audit
classes are tumed on, and the machine is set to running a test suite
which primarily exercises the file system, it can generate about that
much data in an hour. The machine is still usable in this state;
although performance is certainly slowed, normal interactive work
can still take place in much the same way as on a slower (previous
generation) machine.

When audit data is compressed (by the automatic daily consolida-
tion), typical compression ratios range from 3.5—to—1 to S5-to—1.
‘When the audit data is heavily redundant (such as when all audit
classes are selected), the compression ratio can reach 8—to—1. This
reduces a daily 30 megabytes to 7 or 8, or the flat-out 20 megabytes
per hour per machine to a more manageable 2.5.

Performance of any audit system is so dependent on the nature of
the workload as to essentially defy characterization. With the
minimal set of audit classes described earlier, the performance
impact is negligible. Performance impact on machines used as file
servers is also essentially negligible, since auditing and access con-
trol is performed on the client machines. This is less true for
machines. used as servers for file systems receiving andit data,
although even there, buffering in the client machines reduces the
impact. Since a SunOS MLS file server can support an aggregate
throughput (for all its clients) exceed 200K bytes per second, even
an additional 20 megabytes per hour represents a small fraction of
that capacity. ' :

Finally, auditing of security-relevant events does not affect the per-
formance of CPU-bound programs. Because a SunOS MLS system
is typically not resource limited except for CPU-bound jobs or rela-
tively brief periods of heavy I/O activity, the most important meas-
ure of auditing performance may be perceived impact on response
time, which is minimal because of the high performance of the
individual workstations.

CONCLUSIONS

Distributed systems pose significant difficulties in storing audit
messages. Use of multiple buffers and failure recovery algorithms
makes auditing practical and efficient in a distributed system.

The auditreduce tool gives the administrator of a distributed system
the all-important big picture. It also provides the management
capabilities for maintaining and archiving the enormous volumes of
audit data which are created in a large SunOS MLS configuration.

Pre-selection of ‘‘interesting’’ audit messages is important for
reducing the volume of messages generated. As yet, the capabili-
ties for doing so in SunOS MLS are rather primitive, but further
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work is planned to investigate selection by label, by object identity,
and other potentially interesting criteria. Even so, the current
implementation allows the volume of audit data to be adjusted over
nearly two orders of magnitude.

Because of the general message format, it is straightforward to use
auditing in third-party trusted software, and to create third-party
analysis tools. This has already happened within Sun: several audit
display tools have been created outside the product development
effort, and it is hoped that similar efforts will take place at field
sites once the product is delivered.

As of this writing, there is too little experience with SunOS MLS to
quantify the performance impact of auditing, and even the storage
requirements are not entirely clear.
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Abstract

Andrew is a distributed computing environment that is a synthesis of the personal computing
and timesharing paradigms. When mature, it is expected to encompass over 5000
workstations spanning the Carnegie Mellon University campus. This paper examines the
security issues that arise in such an environment and describes the mechanisms that have
been developed to address them. These mechanisms include the logical and physical
separation of servers and clients, support for secure communication at the remote procedure
call level, a distributed authentication service, a file-protection scheme that combines access
lists with Unix mode bits, and the use of encryption as a basic building block. The paper
also discusses the assumptions underlying security in Andrew and apalyses the vulnerability
of the system. Usage experience reveals that resource control, particularly of workstation
CPU cycles, is more important than originally anticipated and that the mechanisms available

to address this issue are rudimentary.

1. Introduction

Andrew is a distributed computing environment that has been under
development at Carnegie Mellon University since 1983. An early
paper [18] describes the origin of the system and presents an overview of
its components. Other papers [24, 10] focus on the distributed file
system that is the information sharing mechanism of Andrew.

The characteristic of Andrew that has influenced ahmost every aspect of
its design is its scale. The belief that there will eventually be a
workstation for each person at CMU suggests that Andrew will grow into
a distributed system of 5000 to 10000 nodes. A consequence of large
scale is that the laissez-faire attitude towards security typical of closely-
knit distributed environments is no longer viable. The relative
anonymity of users in a large system requires security to be maintained
by enforcement rather than by the goodwill of the user community.

A sizable body of literature exists on algorithms for security in
distributed environments. The survey by Voydock and Kent [28]
describes many of these algorithms and discusses the basic security
problems they address. In contrast, this paper focuses on the design and
implementation aspects of building a secure distributed environment. It
puts forth the fundamental assumptions on which security in Andrew is
based, examines their effect on system structure, describes associated
mechanisms, and reports on usage experience.

Andrew is a joint project of Camnegie Mellon University and the IBM
Corporation. The author was supported in the writing of this paper by
the National Science Foundation (Contract No. CCR-8657907). The
views and conclusions in this document are those of the author and
should not be interpreted as representing the official policies of the
National Science Foundation, the IBM Corporation or Carnegie Mellon
University.
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hough Andrew is no longer an experimental system it is far enough
nom maturity that many of its details are still evolving. Rather than
trying to describe a moving target, this paper presents a snapshot of
Andrew at one point in time. The point of reference is the date of the
official inauguration of Andrew, on November 11 1986. At that point in
time there were over 400 Andrew workstations serving about 1200 active
users. The file system stored 15 gigabytes of data, spread over 15
servers. The system was then mature and robust enough to be in regular
use in undergraduate courses at CMU and in demonstrations of Andrew
at the EDUCOM conference on educational computing.  In the rest of
this paper the present tense refers to the state of the system at this
reference point. Exceptions to this are explicitly stated.

The paper begins with an overview of the entire system and an
identification of its major components. Section 3 then discusses the
underlying assumptions and the conditions that must be met for Andrew
to be secure. Sections 4 to 7 describe the protection domain,
authentication, and enforcement of protection in the distributed file
system. Section 8 discusses the problem of resource control.. Section 9
underlines the fundamental role of encryption and proposes that
encryption hardware be made an integral part of all workstations in
distributed environments. Section 10 deals with various other security
concemns, while Section 11 examines the ways in which the security of
Andrew could be compromised and suggests solutions to some of the
possible modes of attack. Finally, Section 12 ends the paper with an
outline of changes that are in progress or have occurred since the
snapshot presented here.

2. System Structure

Andrew combines the user interface advantages of personal computing
with the data sharing simplicity of timesharing. This synthesis is
achieved by close cooperation between two kinds of components, Vice
and Virtue, shown in Figure 1. A Virtue workstation provides the power
and capability of a dedicated personal computer, while Vice provides
support for the timesharing abstraction. Although Vice is shown as a
single logical entity in Figure 1, it is actually composed of a collection of
servers and a complex local area network. This network spans the entire
CMU campus and is composed of Ethernet and IBM Token Ring
segments interconnected by optic fibre links and active elements called
Routers. Figure 2 shows the details of this network.



Each Virtue workstation runs the Unix 4.2BSD operating system! and is
thus an autonomous timesharing node. Multiple users can concurrently
access a workstation via the console keyboard, via the network or via
lines that are hardwired to the workstation. But the most common use of
a workstation, and the usage mode most consistent with the Andrew
paradigm, is by a single user at the console.

A distributed file system that spans all workstations is the primary data-
sharing mechanism in Andrew. In Virtue, this file system appears as a
single large subtree of the local file system. Files critical to the
initialisation of Virtue are present on the local disk of the workstation
and are accessed directly. All other files are in the shared name space
and are accessed through an intermediary process called Vernus that runs
on each workstation. Venus finds files on individual servers in Vice,
caches ‘them locally and performs emulation of Unix file system
semantics. Both Vice and Venus are invisible to processes in Virtue. All
they see is a Unix file system, one subftree of which happens to be
identical on all workstations. Processes on two different workstations
can read and write files in this subtree just as if they were running on a
single timesharing system.

A mainframe computer that runs a Venus can also share Vice files. It is
more likely to have multiple concurrent users and make greater use of its
local file system than a Virtue workstation. It will probably enforce local
resource usage controls too. From the point of view of security in
Andrew, however, such a mainframe is no different from a Virtue
workstation.

3. Assumptions

Saltzer [22] makes an important distinction between a securable system
and specific secure instances of that system. Our purpose in this section
is to describe the level of security offered by Andrew and to state the
assumptions under which this is achieved. The degree to which a
specific Andrew site is secure depends critically on the effort taken to
meet these assumptions.

It is easiest to characterise Andrew using the taxonomy introduced by
Voydock and Kent. Their survey [28] classifies security violations into
unauthorised release of information, modification of information, and
denial of resource usage. The security mechanisms in Andrew primarily
ensure that information is released and modified only in authorised ways.
The difficult issue of resource denial is not fully addressed. The
complexity of this problem is apparent if one considers a situation where
a defective piece of network hardware floods the network with packets.
The resulting denial of network bandwidth 1o legitimate users is clearly a
security violation in the strict sense of the term. However, it is not clear
what Andrew could possibly do in such situations except to bring the
problem to the attention of system administrators. This issue of resource
control is discussed at length in Section 8.

Alternative taxonomies of security also exist. Wulf [30], for instance,
considers the security of the Hydra operating system in the light of the
problems of mutual suspicion, modification, conservation, confinement,
and initialization. 1t is more difficult to characterise Andrew within this
framework. Since Vice and Virtue do not trust each other until a user
successfully executes the authentication procedure described in Section
5, there is indeed mutual suspicion. But users do depend on Vice to
provide safe, long- term storage of their files and to enforce their
protection policies. Andrew can protect against modification of files by
other users, but there is no safeguard against incorrect modifications by
Vice itself. Since Andrew supports revocation it does address the
problem of conservation. But the problem of confinement, extensively
discussed by Lampson [15], is one that Andrew makes no attempt tc
solve. It is not clear how the initialization problem in Wulf’s modei
applies to Andrew.

'Unix is a trademark of AT&T.

2The servers also run Unix 4.2BSD. A “‘superuser’’ is a privileged Unix user free of
normal access restrictions.
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The Department of Defense taxonomy of computer systems described by
Schell [26] classifies computer systems into four major calegories with
numerous subcategories. Security ranges in strength from class D
(minimal protection) to class A2 (verified implementation). In this
classification scheme, Andrew appears to fit best into class C2
(controlled access) or, possibly, B (labelled security).

For simplicity, we shall restrict our attention in the rest of this paper to
the model put forth by Voydock and Kent. We do recognise, however,
that a complete analysis of Andrew security in terms of a variety of
taxonomies would be a valuable exercise in itself.

A fundamental assumption pertains to the question of who enforces
security in Andrew. Rather than trusting thousands of workstations,
security in Andrew is predicated on the integrity of the much smaller
number of Vice servers. These servers are located in physically secure
rooms, are accessible only to trusted operators, and run software that is
above suspicion. No user software is ever run on servers. For
operational reasons, it is necessary to provide utilities that can be run on
servers to directly manipulate Andrew file system data. These utilities
can be run only by superusers on servers. Both access 1o servers and the
ability to become superuser on them must be closely guarded privileges.

Workstations may be owned privately or located in public areas. We
assume that owners may modify both the hardware and software on their
workstations in arbitrary ways. It is therefore the responsibility of the
user to ensure that he is not being compromised by software on a private
workstation. Such a piece of software, referred to as a Trojan horse [9],
is trivially installed by a superuser. Consequently the user has to trust
every individual who has the ability to become - superuser on the
workstation. A user who is seriously concerned about security would
ensure the physical integrity of his workstation and would deny all
remote access to it via the network.,

In the case of a public workstation, it is assumed that there is constant
surveillance by administrative personnel to ensure the integrity of
hardware and software. It is relatively simple to visually monitor and
detect hardware tampering in a public area. But it is much harder to
detect a miscreant becoming superuser and installing a Trojan horse.
Keeping the superuser password on a workstation secret is not adequate
because workstations can be easily booted up standalone, with the person
at the console acquiring superuser privileges. An organisation that is
serious about security would have to physically modify workstations so
that only authorized personnel can boot up public workstations
standalone. At the present time public workstations at CMU do not have
such physical safegunards.

It is common for a pool of private workstations to be used by a small
collection of users. Workstations located in shared offices or
laboratories are examples of such situations. From the point of view of
security, such workstations are effectively co-owned by all users who
can physically access them. It is their joint responsibility to ensure the
integrity of the hardware and software on the workstations.

It should be emphasised thaf the preceding discussion of software
integrity on workstations pertains to local files. There are usually only a
few such files, typically system programs for initialising the workstation
and for authenticating users to Vice. All other user files are stored in
Vice and are subject to the safeguards discussed in Section 6.

The network underlying Andrew has segments in every building at
CMU, including student dormitoties. It is impossible to guarantee the
physical integrity of this network. It can be tapped at any point, and
private workstations with modified operating systems can eavesdrop on
network traffic. A consequence of these observations is that end-to-end
mechanisms based on encryption are the only way to ensure secure
communication between Vice and Virtue. These mechanisms are
described in Section 5.

The routers shown in Figure 2 are dedicated computers that run
specialised software. The integrity of these routers is not criti‘cal to
Andrew security. Because Andrew uses end-to-end encryption, a
compromised router cannot expose or modify informatiqn that is
transmitted through it. At worst, it can cause packets to be misrouted or



modified in ways that cause the receiver to reject them. These are
essentially cases of resource denial, which Andrew does not attempt to
address completely. Physical damage to a network segment has similar
consequences.

Finally, the design of the Andrew file system postulates the use of an
independent, secure communication channel connecting all the Vice
servers. This is used for administrative functions such as tape backups
and distribution of the protection database described in Section 4. This
secure channel has to be realised either by a separate, physically secure
network or by the use of end-to-end encryption as in the case of Vice-
Virtue communication. At the present time, neither of these of measures
is used at CMU. The secure communication channel is the same as the
public network, and communication on it is unencrypted.

4. The Protection Domain

The fundamentai protection question is ‘‘Can agent X perform operation
Y on object Z?* We refer to the set of agents about whom such a
question can be asked as the Protection Domain [23). In Andrew, the
protection domain is composed of Users and Groups. A user is an entity,
usually a human, that can authenticate itself to Vice, be held responsible
for its actions, and be charged for resource consumption. A group is a
set of other groups and users, associated with a user called its Owner.
The name of the owner is a prefix of the name of the group. It is possible
to impose meaningful structure in the names of groups, although Andrew
ignores such  structure. For example, ‘‘Bovik:Friends”,
‘‘Bovik:Friends.CatLovers’’, and ‘‘Bovik:Friends.CatHaters’’ could
mnemonically indicate the purpose of three groups owned by user
‘‘Bovik’.

Vice internally identifies users and groups by unique 32-bit integer
identifiers. =~ An id cannot be reassigned after creation.  Such
reassignment would require elimination of all existing instances of the id
from Jong-term Vice data structures, an operatjonal nightmare in a large
distributed system. User and group names, on the other hand, can easily
be changed.

A distinguished user named ‘‘System’’ is omnipotent; Vice applies no
protection checks to it. Our original intent was that ‘‘System’’ would
play the same role that a superuser plays in Unix systems. In practice we
have found it more convenient to define a special group named
“‘System:Administrators.”” It is membership in this group rather than
authentication as ‘‘System’’ that now endows special privileges. An
advantage of this approach is that the actual identity of the user
exercising the privileges is available for use in audit trails. We consider
this particularly important in view of the scale of Andrew.. Another
advantage is that revocation of special privileges can be done by
modifying group membership rather than by changing a password and
communicating it securely to the users who are administrators.

The protection domain inciudes two other special entities: the group
‘‘System:AnyUser’’, which has all authenticated users of Vice as its
implicit members, and the user ‘‘Anonymous’’ corresponding to an
unauthenticated Vice user. Neither of these special entities can be made
a member of any group. Although the current implementation blurs the
distinction between these two entities, we forsee situations where the
distinction would be valuable. For example, when the support for
independent administrative domains discussed in Section 10.3 is
operational it would be convenient to be able to recognize and grant
specific privileges to all authenticated members of a particular
administrative domain.

3Files stored in Vice by an unanthenticated user appear as if they were stored by
“‘System:AnyUser’’ rather than by ‘‘Anonymous.”

“Our use of the group ‘‘System:Administrators” rather than the pseudo-user
*‘System’” is motivated in part by this concem.
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Membership in a group can be inherited. The IsAMemberOf relation
holds between a user or group X and a group G, if and only if X is a
member of G. The reflexive, transitive closure of this relation for X
defines a subset of the protection domain called its Current Protection
Subdomain (CPS). Informally, the CPS is the set of all groups that X is a
member of, either directly or indirectly, including X itself. This
hierarchical structuring of the protection domain is similar to the
schemes in the CMU-CFS file system [1] and Grapevine [3].

The CPS is important because the privileges that a user has at any time
are the cumulative privileges of all the elements of his CPS. For
example, suppose ‘‘System:CMU”’, *‘System:CMU Faculty’’ and
*‘System:CMU.Students’” are three groups with the obvious
interpretations. If the second and third groups are members of the first,
new additions to those groups will automatically acquire privileges
granted to ‘‘System:CMU.”” Conversely, when a student or faculty
member leaves, it is only necessary to remove him from those groups in
which he is explicitly named as a member. Inheritance of membership
thus conceptually simplifies the maintenance and administration of the
protection domain. The scale of Andrew makes this an important
advantage.

A common practice in timesharing systems is to create a single entry in
the protection domain to stand for a collection of users. Such a collective
entry, often referred to as a ‘‘group account’’ or a ‘‘project account,’”’
may be used for a number of reasons. First, obtaining an individual entry
for each human user may involve excessive administrative overheads.
Second, the identities of all collaborating users may not be known a
priori. Third, the protection mechanisms of the system may make it
simpler to specify protection policies in terms of a single pseudo-user
than for a number of users.

We believe that this practice should be strongly discouraged in an
environment like Andrew. Collective entries will exacerbate the already-
difficult problem of accountability in a large distributed system.* The
hierarchical organisation of the protection domain, in conjunction with
the access list mechanism described in Section 6, make the specification
of protection policies simple in Andrew. In spite of this we are
disappointed to observe that there are some collective entries at CMU.
We conjecture that this is primarily because the addition of a new user is
cumbersome at present. In addition, groups can only be created and
modified by system administrators. As discussed in Section 12, these
problems are being addressed and we hope that collective entries will
soon become unnecessary.

5. Authentication and Secure Communication

Authentication is the indisputable establishment of identities between
two mutually suspicious parties in the face of adversaries with malicious
intent. In Andrew, the two parties are a user at a Virtue workstation and
a Vice server, while the adversaries are eavesdroppers on the network or
modified network hardware that alters the data being transmitted.

From a user’s point of view, using Virtue seems no different from using
a standalone workstation. In response to a standard Unix login prompt,
the user provides his name and password. While logged in, he may
access local files as well as Vice files located on many servers. Venus
establishes secure, authenticated connections to these servers as they are
needed. The establishment of a connection is completely transparent to
the user. In particular, he does not have to supply his password each
time a new connection is made.

The authentication mechanism we use is a derivative of Needham and
Schroeder’s original scheme [19] using private encryption keys. The
overall function is decomposed into three major components:
® a Remote Procedure Call mechanism that provides support
for security.
» a scheme for obtaining and using Authentication Tokens.
e an Authentication Server that is a repository of password
information.



5.1. Secure RPC

Early in our implementation, it became clear that the remote procedure
call package used between Vice and Virtue was a natural level of
abstraction at which to provide support for secure communication.
Birrell’s report on security in the Cedar RPC package [4] independently
confirmed the validity of our decision.

The interface of the RPC package is described in detail in the user
manual {25]. When a client wishes to communicate with a server, it
executes a BIND operation that sets up a logical Connection. Connections
are relatively cheap to establish and require only about a hundred bytes
of storage overhead at each end. A connection can be set up to be at one
of four levels of security:

OpenKimono neither authenticated nor encrypted.

AuthOnly authenticated, but RPC packets not encrypted.

HeadersOnly authenticated and RPC packet headers, but not
bodies, encrypted.

Secure authenticated, and RPC packets fully encrypted.

Only the last of these four levels provides true end-to-end security; the
second and third levels are provided as a compromise between security
and efficiency, and the first can be used when secure communication is
not required.

A client can specify the kind of encryption to be used when establishing
a connection. - The server provides a bit mask indicating the kinds of
encryption it can handle, and will reject attempts by a client to use any
other kind. This flexibililty makes it feasible to equip servers with
encryption hardware as well as a suite of software encryption algorithms
of differing strength and cost. A workstation owner can make a tradeoff
between economy, performance and degree of security in determining
the kind of encryption to use. The preferred approach is, of course, to
equip all workstations with encryption hardware. Section 9 discusses
encryption in greater detail.

For all the authenticated security levels, the BIND operation involves a
3-phase handshake between client and server. The client side of the
application provides a variable-length byte sequence called Clientldent,
and an 8-byte encryption key for the handshake. The server side of the
application supplies a procedure, GetKeys, to perform key lookup and a
procedure, AuthFail, to be invoked on authentication failure. The latter
allows the server to record and possibly notify an administrator of
suspicious authentication failures.

At the end of a successful BIND, the server is assured that the client
possesses the correct handshake key for Clientldent. The client, in turn,
is assured that the server is capable of deducing the handshake key from
ClientIdent. The possesion of the handshake key is assumed to be prima

facie evidence of authenticity.

The steps performed by the RPC package during BIND are as follows:

1. The client chooses a random number, X and encrypts it
with its handshake key, HKC. It sends the result, (XI)HKC,
and ClientIdent (in the clear) to the server.

2. When the BIND request arrives at the server, the RPC
package invokes GetKeys with ClientIdent as a parameter.

3. GetKeys does a key lookup and returns two keys. One of
these keys is a handshake key, HKS, and the other is a
session key, SK, to be used after the conmection is
established. If the return code from GetKeys indicates that
the key lookup was unsuccessful, the BIND request is
rejected immediately and AuthFail is invoked with
Clientldent and the network address of the client as
parameters.

4. Otherwise the server decrypts (X)**¢ with its handshake
key, yielding ((X )RS,

5. The server adds one to the result of its decryption, then
encrypts this and a new random number, Y, with its

handshake key. It sends the result, ((((X)"*C)¥%5+1),
Y, Y5, to the client.
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6. The client uses its handshake key to decrypt this message.
If HKC and HKS match, the first number of the decrypted
pair will be (X +1). If this is the case, the client concludes
that the server is genuine. Otherwise the server is a fake
and BIND terminates.

7. The client adds one to the second number of the decrypted
pair and encrypts it with its handshake key. It sends the
result, (((Y)H85)HKC 4 1)HKC 1o the server.

8. The server decrypts this message with its handshake key.
If HKC and HKS match, the decrypted number will be
(Y +1). In that case the server concludes that the client is
genuine, Otherwise the client is a fake and the BIND
terminates after AuthFail is invoked.

9.The server then encrypts the session key, SK, and a
randomly chosen initial RPC sequence number, x0, with its
handshake key. It completes BIND by sending the result,
(SK, x0)¥%S, to the client. All future encryption on this
connection uses SK. The sequence numbers of RPC
requests and replies will increase monotonically from x0.

The correctness of this authentication procedure hinges on the fact that
possession of the handshake key by both parties is essential for all steps
of the handshake to succeed. Without the correct key, it is extremely
unlikely that an adversary will be able to generate outgoing messages
that correspond to appropriate transformations of the incoming messages.
Mutual authentication is achieved because both the client and the server’
are required to demonstrate that they possess the handshake key. The
use of new random numbers for each BIND prevents an adversary from
eavesdropping on a successful BIND and replaying packets from that
sequence.

Figure 3 summarises the steps involved in the BIND authentication
procedure. It is important to note that the RPC package makes no
assumptions about the format of Clientldent or the manner in which
GetKeys derives the handshake key from Clientldent. The next section
describes how this generality is used in Andrew in two different ways: at
login, to communicate with an authentication server, and each time
Venus contacts a file server. A connection is terminated by an UNBIND
call which destroys all state associated with that connection.

Security in Andrew is not critically dependent on the details of the
authentication handshake. The code pertaining to it is small and self-
contained. The handshake can therefore be treated as a black box and an
alternative mutual authentication technique substituted with relative ease.

5.2. Authentication Tokens
Andrew uses a two-step authentication scheme based on Tokens for
reasons of transparency as well as robustness. This approach provides a
number of advantages over a single-step authentication scheme:
1. It allows Venus to establish secure connections as it needs
them, without users having to supply their password each
time,
2.1t avoids having to store passwords in the clear on
workstations.
3.1t limits the time duration during which lost tokens can
cause damage.
4.1t allows system programs other than Venus to perform
Vice authentication without user intervention.

Authentication tokens are pairs of objects whose possession is indirect
proof of authenticity. Such a pair is like a Capability [14] in that no
consultation with an external agency is required when using them, but is
different from a capability in that it establishes identity rather than
granting rights. Tokens are conceptually similar to Authenticators
described by Birrell [4].

One of the components of the pair, the Secrer Token, is encrypted at
creation and can be sent in the clear. The other component, the Clear
Token, has fields that are sensitive and should be sent only on secure
connections. Both tokens contain essentially the same information: the
Vice id of the user, a handshake key, a unique handle for identifying the



token, a timestamp that indicates when the token becomes valid, and
another timestamp that indicates when it expires. The secret token
contains, in addition, a fixed string for self-identification.  The
appearance of this string when decrypting a.secret token confirms that
the right key has been used. The secret token also contains noise fields
that are filled with new random values each time a token is created. This
is done to thwart attempts to break the key used for encrypting tokens.

The Unix program for logging in on workstations has been extensively
modified, although its user interface is unaltered. LOGIN now contacts an
authentication server using the RPC mechanism described in Section 5.1,
The name and password typed in by the user are used as the ClientIdent
and handshake key respectively. The GetKeys routine in the
authentication server obtains this password from an internal table, When
the RPC handshake completes, a secure, authenticated connection has
been established between LOGIN and the authentication server. LOGIN
uses this connection to obtain a pair of tokens for the user. The
authentication server generates a new handshake key for each pair of
tokens it creates. It encrypts the secret token with a key known only to
itself and the Vice file servers. LOGIN now passes the clear and secret
tokens to Venus, which retains them in an internal data structure. At this
point LOGIN terminates, and the user can use the workstation.

Whenever Venus needs to establish an RPC connection to a Vice file
server on behalf of a user, it invokes BIND using the secret token for that
user as ClientIdent and the key in the clear token as the handshake key.
In the first phase of the BIND, the GetKeys routine on the server is
invoked with Clientldent as the input parameter. The server obtains the
handshake key from the secret token after decrypting it. The
authentication procedure is critically dependent on the assumption that
only legitimate servers possess the key to decrypt secret tokens. At this
point Venus and the server each have a key that they believe to be the
correct handshake key. The remaining steps of the BIND proceed as
described in Section 5.1, leading to mutual authentication. If the BIND is
successful, the server uses the id in the secret token as the identity of the
client on this RPC connection and sets up appropriate internal state.

Since tokens have a finite lifetime, a user will need to periodically
reauthenticate himself. At present, tokens are valid for 24 hours at
CMU. The program LOG, which is functionally identical to LOGIN, can
be used for reauthentication without explicitly logging out. This allows
users to retain logged-in context.

When multiple users are logged into a workstation, Venus maintains a
separate secure RPC connection for each of them for each of the Vice
file servers they have accessed. When a user logs out of a workstation,
Venus deletes his tokens. In the future Vice may support other services
besides a dis'ributed file system. The components of such services
which execute in Virtue will be able to use tokens for authentication, just
as Venus does at present.

5.3. Authentication Server

The authentication server, which runs on a trusted Vice machine, is
responsible for restricting Vice access and for determining whether an
authentication attempt by a user is valid. To perform these functions it
maintains a database of password information about users. An excerpt of
this database is shown in Figure 4. The passwords stored in the database
are effectively in the clear, but are encrypted with a kev known to the
server so that non-malicious system personnel are prevented from

accidentally reading the passwords. This database is used for password
lookup whenever a user logs in 10 a Virtue workstation. It is updated

whenever a user is created, deleted or has his name or password changed.
Users can change their own password; other operations can only be
performed by system administrators.

Server performance is considerably improved by exploiting the fact that
queries are far more frequent than updates. This makes it appropriate for
the server to maintain a write-through cache copy of the entire database
in its virtual memory. A modification to the database immediately
overwrites cached information. The copy on disk is not, however,
overwriten. Rather, an audit trail of changes is maintained in the
database by appending a timestamped entry indicating the change and the
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identity of the user making the modification. On startup the
authentication server initialises its cache by reading the database
sequentially. Later changes thus override earlier ones. An offline
program has to be run periodically to compact the database.

The key used by the authentication server for encrypting secret tokens
has to be known to all the Vice file servers. This key should be changed
periodically if an Andrew site is serious about security. The Vice file
servers remember the two most recent such keys and try them one after
the other when decrypting a secret token. This allows unexpired tokens
to be used even if the authentication server has changed keys. At present
key distribution is manual; this should be automated in the future.

For robustness, there is an instance of the authentication server running
on each Vice file server. These are slaves and respond only to queries.
Only one server, the master, accepts updates. Changes are propagated to
slaves over the secure communication channel referred to in Section 3.
For this specific application, nonuniform propagation speed and the
temporary inconsistencies that may result do not pose a serious problem.
For further robustness, each instance of the authentication server has an
associated watchdog Unix process that restarts it in the event of a crash.

Each server instance has a log file in which authentication failures and
unsuccessful attempts to update the password database are recorded.
Figure 5 shows an excerpt from such a log. It would not be difficult to
provide a more sophisticated and timely warning mechanism for system
personnel if suspicious events are observed by authentication servers.

6. Protection in Vice

As the custodian of shared information in Andrew, Vice enforces the
protection policies specifed by users. The scale, character and periodic
change in the composition of the user community in a university
necessitate a protection mechanism that is simple to use yet allows
complex policies to be expressed. A further consequence of these factors
is that revocation of access privileges is an important and common
operation. In the light of these considerations we opted to use an Access
List mechanism in Andrew. The next three sections describe how access
lists are implemented, how they are used for file protection, and how
Vice represents and maintains information on the protection domain.

6.1. Access Lists

The access list mechanism is implemented as a package available to any
service in Vice, though only the distributed file system currently uses it.
An entry in an access list maps a member of the protection domain into a
set of Rights, which are merely bit positions in a 32-bit integer mask.
The interpretation of rights is specific to each Vice service. The total
rights possessed by a user on an object is the union of all the rights
possessed by the members of his CPS. In other words, he possesses the
maximal rights collectively possessed by himself and all the groups of
which he is a direct or indirect member.

An access list is actually composed of two sublists: a list of Positive
Rights and a list of Negative Rights. An entry in a positive rights list
indicates possession of a set of rights. In a negative rights list, it
indicates denial of those rights. In case of conilict, denial overrides
possession.

Negative rights are primarily a means of rapidly and selectively revoking
access to sensitive objects. Although such revocation is more properly
done by changes to the protection domain, the changes may take time to
propagate in a large distributed system. Negative rights can reduce the
window of vulnerability, since changes to access lists are effective
immediately. As an example, if it is discovered that a member of a large
group is misusing his privileges, he can be immediately given negative
rights on objects used by the group. He can also be deleted from all
groups that may directly or indirectly give him rights on those objects.
After the membership changes are effective at all Vice servers, he can be
removed from the negative rights lists. Negative rights thus decouple the
problems of rapid revocation and propagation of information in a large
distributed system. They can also be used to specify protection policies



of the form **Grant rights R to all members of group G, except user
U.”” Rabin and Tygar, in their recent work on ITOSS [21], independently
confirm the advantages of providing negative privileges.

The algorithm executed during an access list check is quite efficient.
Suppose A is an arbitrary access list and C is the CPS of U. The entries
in A and C are maintained in sorted order. The rights possessed by U are
determined as follows:
1. Let M and N be rights masks, initially empty.
2. For each element of C, if there is an entry in the positive
rights list of A, inclusive-OR M with the rights portion of
the entry.
3. For each element of C, if there is an entry in the negative
rights list of A, inclusive-OR N with the rights portion of
the entry.
4. Bitwise subtract N from M.
5. M now specifies the rights that U possesses.
Profiling of the Vice servers in actual use confirms that the overheads
due to access list checks are negligible.

6.2. File Protection

Vice associates an access list with each directory. The access list applies
to all files in the directory, thus giving them uniform protection status.
The primary reason for this design decision is conceptual simplicity.
Users have, at all times, a rough mental picture of (he protection state of
the files they access. In a large system, the reduction in state obtained by
associating protection with directories rather than files is considerable.
A secondary benefit is the reduced storage overhead on servers. Usage
experience in Andrew has proved that this is an excellent compromise
between providing protection at fine granularity and retaining conceptual
simplicity. In the rare instances where a file needs to have a different
protection status from other files in its directory, we place that file in a
separate directory with appropriate protection and put a symbolic link to
it in the original directory.

Seven kinds of rights are associated with a directory:

read (r) read any file
write (w) write any file
lookup (1) lookup status of any file

insert (1) insert a new file in this directory (only if it does not
already exist).  This is - particularly useful in

implementing mailboxes.

delete (d) delete any existing file
administer (a) modify the access list of this directory
lock (K) lock any file. This has turned out not to be a

particularly useful right, but continues to be
supported for historical reasons.

The three most commonly used combinations of rights are rl, for read

access, rwlidk for write access, and rwlidka for complete access. Figure

6 shows an example of the access list on a Vice directory. Modifications

to access lists take effect immediately.

Certain privileges commonly found in timesharing systems do not make
sense in the context of Andrew. Execute-only privilege, for example, is
not a right that Vice can enforce since program execution is done by
Virtue. Revocation of read rights is another area where Vice can do little
since Virtue caches files. At best it can ensure that new versions of a file
are not readable by the user whose access is revoked.

6.3. Protection Domain Representation

Protection domain information is maintained in a database that is
replicated at each Vice file server. The database consists of a data file on
disk and an index file that is cached in its entirety in virtual memory.
The index file enables id-to-name translations in constant time, and
name-to-id translations in logarithmic time. For each entry, the index
also contains the offset in the data file where the first byte of information
about the corresponding user or group is stored. A typical lookup of the
database by user or group name involves a search to find the id, followed
by a seek operation and a read operation on the data file.
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Each entry in the database corresponds to a single user or group. It
consists of a name and an -id followed by three lists specifying
membership information. The first list specifies the groups to which that
user or group directly belongs, while the second list is the precomputed
CPS. For a user, the third list enumerates the groups owned by the user;
for a group, it is the list of users or groups who are its direct members.
Each enitry also has an associated access list, that is unused at the present
time. We intend to allow users to directly manipulate the database via a
protection server. The access lists will then control the examination and
modification of group membership. Figure 7 shows an excerpt of the
database.

‘When Venus makes a secure RPC connection on behalf of a user, the file
server caches the CPS of the user in virtual memory and uses it on access
list checks. At present, changes to the protection domain do not affect
the cached copy until the RPC connection is terminated. It would be
relatively simple to modify the server to invalidate cached CPS copies
whenever the protection domain changes.

At present, changes to the protection domain are manually performed at a
central site in Vice. Utilities are available to simplify the creation or
deletion of a user or to modify the membership of a group. These
utilities also precompute the CPS by transitive closure and construct the
index file. Modifications performed at the central site are
asynchronously propagated to all other Vice sites via the secure
communication channel mentioned in Section 3. In our experience, the
minor temporary inconsistencies that occasionally arise due to varying
propagation speeds have not significantly affected the usability of the
system. .

7. Protection in Virtue
As a multi-user Unix system, Virtue enforces the usual firewalis between
multiple users concurrently using a workstation. In addition, its role in
Andrew places other responsibilites related to security on it:
o It emulates Unix semantics for Vice files.
* It ensures that caching is consistent with protection in Vice.
¢ It allows owners full control over their workstations, without
compromising Vice security.
o It provides user and program interfaces for explicitly using
the security mechanisms of Vice.
The next four sections describe these functions in detail.

7.1. Unix Emulation

Virtue provides strict Unix protection semantics for local files and a
close approximation for Vice files. Each Unix file has 9 Mode bits
associated with it. These mode bits are, in effect, a 3-entry access list
specifying whether or not the owner of the file, a single specific group of
users, and everyone else can read, write or execute the file.

Venus does the emulation of Unix protection for Vice files. In a
prototype implementation of Andrew, the mode ‘bits in a file were
derived from the access list of its directory and could not be changed by
applications. - Unfortunately a few applications, such as version control
software, encode state in the mode bits. In addition, our users expressed
a desire to be able to prevent themselves from accidentally deleting
critical files in a directory. We have therefore evolved a scheme in
which the Vice access list check described in Section 6.1 performs the
real enforcement of protection and, in addition, the three owner bits of
the file mode indicate readability, writability or executability. These
bits, which now indicate what can be done to the file rather than who can
do it, are set and examined by Venus but ignored by Vice. For
directories, the mode bits are completely ignored. The directory listing
program, LS, has been modified in Andrew to omit mode bits for
directories and show only the owner bits for files. Figure 8 shows an
example of a directory listing in Vice.

Since the group mechanisms of Vice and standard Unix are incompatible
Venus does not emulate Unix group protection semantics. Our
experience indicates that no real applications have been affected by this.
From the point of view of an application all Vice files belong to a single
Unix group.



7.2. Caching Protection Information

Although ignorant of the Vice group mechanism, Venus caches
protection information. When a directory is cached on behalf of a user,
Vice includes rights information for the user and System:AnyUser.
Future requests are checked by Venus without contacting Vice. If a
different user on that workstation wishes to access the same directory,
and the rights for System:AnyUser are inadequate, Venus explicitly
obtains his rights from Vice. Protection information can be cached for a
small number of distinct users on each directory. If there are more users
on a workstation the protection checks will be functionally accurate, but
will take longer because of ineffective caching. Vice notifies Venus
whenever the protection on a cached directory changes.

Caching interacts with Unix semantics in a counter-intuitive manner. In
Unix, protection failures can only occur when opening a file. In Andrew,
a protection failure can occur when closing a file if the protection on one
of the directories in its path was changed while the file was open. There
is no simple solution to this problem because Vice cannot delegate the
responsibility of checking access on store operations. It cannot trust the
access check that Venus performs when opening a cached file.

This difference from Unix semantics affects a number of common Unix
applications that do not expect the close operation to fail, and hence do
not check return codes from it. In rare instances, the user of such an
application may be unaware that one or more files were not stored in
Vice because of a protection violation. We do try to inform users of the
problem by printing a message on the workstation console. However,
using the console as an out-of-band notification mechanism does not help
in situations where there is no user to act upon the message. The only
robust solution to this insidious failure mode is to modify the
applications to check return codes.

7.3. Superuser Privileges

Certain sensitive operational procedures in Unix can only be performed
by the pseudo-user ‘‘root’’. Workstation owners need to become root on
occasion to perform these procedures. As a result, root is logically
equivalent to a group account as discussed in Section 4. An RPC
connection on behalf of root provides no knowledge about which actual
user it corresponds to.

A further complication is that the initialisation of a workstation causes a
number of standard processes belonging to root to come into existence
automatically. Since there may be no users logged in, Venus may not
have tokens with which to make authenticated connections for these
pro'cesses.5 We address these problems by treating root specially and
granting it the same default access privileges in Vice as
System:AnyUser. RPC connections made on behalf of root are
unauthenticated and insecure. Usage experience indicates that- this
provides a good compromise between security and usability.

The Seruid mechanism in Unix effectively provides amplification of
rights [13]. When a file marked setuid is executed, it acquires the access
privileges of the owner of the file rather than the user executing the file.
The interpretation and enforcement of the setuid property is done by
Virtue, but Vice requires authentication tokens for the owner of the
program being run setuid. Since the tokens will not be available except
in the unlikely case of the owner of the file being logged in to the
workstation, Andrew cannot support the setuid mechanism in its general
form. However, many useful system utilities on workstations are owned
by root and run setuid. Since root has only System:AnyUser privileges
on Vice files, and since RPC connections for root do not require tokens,
we are able to support setuid in this limited form.

If naively implemented, setuid programs owned by root would make
Trojan horses trivial. A user could become root on his workstation, store
a Trojan horse program in Vice and mark it setuid. If this program were
run by any other user, it would be able to compromise his workstation.

5 Automatic logging in of root would require the password to be stored in the clear on
workstations, a security risk we were unwilling to assume.
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To guard against this, we define a special Vice user ‘‘stem.”’ No one can
be authenticated as stem, but a system administrator can make stem the
owner of a file. When Venus caches a setuid file owned by stem, it
translates the owner to root and honours the setuid property. If the file is
not owned by stem, the setuid property is ignored.

7.4. Vice Interface

Virtue provides a number of programs to allow users to use the security
mechanisms of Vice. FS is a program to allow users to set and examine
Vice access lists. LOGIN, LOG, and SU are modified versions of standard
Unix programs. They prompt for a password, contact the authentication
server, obtain tokens and pass them to Venus. A modified version of the
Unix PASSWD program allows users to change their passwords by
contacting the authentication server.

For other applications, Virtue provides a library of routines to get, set
and delete tokens stored by Venus. An important user of these routines
is the Andrew version of the standard Unix program RSH that allows a
user to execute a program on a remote workstation. Another important
user is REM, a program that makes idle workstations available for remote
use [20]. Both these programs extract tokens from the workstation a user
is at, and passes them to the remote Venus so that it can access Vice files
on behalf of the user. Since the clear and secret tokens are sent in the
clear by these programs, they violate the security assumptions of Section
3. Nevertheless, these programs are popular in our user community.

There are occasions when a user may wish to voluntarily restrict his
rights. For example, he may wish to run a program being debugged in an
environment that will not allow it to modify critical files. Virtue allows a
user to lemporarily disable his membership in one or more groups. Such
a group may be reenabled at a later time. We also intend to allow groups
to be disabled by default, but this is not implemented at the present time
except for the special group System:Administrators.

To implement this temporary disabling of membership, Virtue associates
a unique integer called a Process Access Group (PAG) with each
process. When a process forks, its child inherits the PAG. Venus
associates secure RPC connections to a server with (user, PAG) pairs.
Usually all the processes of a user have a single PAG. If a user disables
his membership of a group, the process in which the disabling command
was issued acquires a new PAG. Each time another server is contacted
on behalf of the new (user, PAG) pair, Venus makes a secure RPC
connection and requests the server to disable membership in the specified
groups. The server constructs a reduced CPS for that connection and
uses it on access list checks. PAGs also change when a L.OG or sU
command is executed.

8. Resource Usage

The absence of a focal point for allocation of resources makes resource
control difficult in a distributed system. Processes in a typical
timesharing system are constrained in the rate at which they can consume
resources by the CPU scheduling algorithm. No such throttling agent
exists in a typical distributed system. Another significant difference is
that a process in a timesharing system has to be authenticated before it
can consume appreciable amounts of resources. In contrast, each
Andrew workstation can be modified to anonymously consume network
bandwidth and server CPU cycles.

As discussed in Section 3, Andrew is not designed to be immune to
security violations by denial of resources. However, it does provide
control over some of the resources. The major resources in Andrew are:
¢ network bandwidth,
o server disk storage and CPU cycles,
» workstation disk storage and CPU cycles.
In the npext three sections we examine how Andrew treats these
resources.

8.1. Network Bandwidth
Since Andrew does not provide mechanisms to control use of network
bandwidth, responsible use of the network is primarily achieved by peer



pressure and social mozes of the user community. Blatant misuse, such
as by flooding with packets, is relatively easy to detect. But it is hard to
detect subtle misuse. For example, a malicious user can generate a level
of traffic that degrades performance but does not bring useful network
activity to a standstill. Or he can use multiple widely-separated public
workstations to generate high volumes of traffic. Identifying the user can
be particularly difficult because he can modify workstations to generate
packets with arbitrary source addresses.

In our experience, network-related problems have not been due to
malicious activity. Occasionally we observe high network utilisation and
poor file transfer rates on segments of the network that support non-
Andrew diskless workstations. The problem has not proved serious
enough yet to warrant special attention. In one memorable instance, a
bug in the low-level network code on workstations was triggered by a
malformed broadcast packet generated by a non-malicious user during
debugging. The bug affected every workstation in the environment and
effectively halted all of them.

8.2. Server Usage

Because of the long-term, shared nature of the resource, we felt it
important to be able to control disk usage on servers. An Andrew system
administrator can specify a storage quota for the Vice files of a user. The
quota is actually placed on a Volume, an encapsulation of a small subtree
of the Vice file space [27], and can be changed with ease.

When storing a file on behalf of a user, a server will abort a store
operation if his quota is exceeded. This can cause a problem similar to
the one described in Section 7.1; an application program that does not
check the return codes from a close operation will not report a failure
caused by the quota being exceeded. But our users and system personnel
consider server disk storage an important enough resource that they have
tolerated this problem.

A minor exposure arises from the manner in which electronic mail is
implemented in Andrew. Each user has a mailbox directory on which
System:AnyUser has insert rights. Mail is delivered by storing a file in
this directory. A malicious user could exhaust the quota of another user
by sending him large quantmes of junk maﬂ In practice, this has not
proved to be a problem. :

Although a user cannot execute a program on a server, his Venus can
consume server CPU cycles in file system "operations.  Excessive
demands on a server are-a form of resource denial to other users. At
present, Vice does not constrain the amount of server CPU cycles a user
can utilise. It could do so, if necessary, smce user requests come in on
distinct RPC connections.

8.3. Workstation Usage

Andrew does not restrict the amount of space used by local files on
workstations. For cached Vice files, Venus employs an LRU algorithm
to limit disk usage below a value specified at initialisation. The
algorithm is not infallible ‘because read and write operations are not
intercepted by Venus. It is possible for a program to open a short file
and then append a large amount of data thereby exceeding the cache
limit. In practice this has rarely been a problem.

Since a workstation can be privately owned, it would seem inappropriate
for Andrew to constrain the use of its CPU cycles. However, the
problem has proved more complex than we anticipated. The primary
source of difficulty is the fact that each workstation is a full-fledged Unix
system. Hence it is possible to remotely access one workstation from
another via standard Unix programs such as TELNET and RSH. Since the
Vice file space is identical at all workstations, it is particularly easy for a
user to use any workstation as his own. Such convenience was, of
course, a fundamental motivation for the distributed file system.

Unfortunately, an individual at a workstation perceives the attempt to use
its cycles by another user as a security violation. This perception is
particularly strong if the first user is at'the console of the workstation.
Totally disabling the network daemons that allow remote access is not a
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viable solution for two reasons. First, system personnel sometimes need
to remotely access workstations for troubleshooting. Second, an owner
may wish to acgess his workstation from home. Our modem access
facilities require the network daemons to be present.

We have evolved a mechanism whereby TELNET access to a workstation
can be restricted to a list of users stored in the local file system of that
workstation.. This restriction is, however, stronger than what most users
desire. When he is not using his workstation, a user is usually amenable
to others using it. It is also unacceptable for public workstations,
because every Andrew user should be able to use them. At the present
time we do not have a completely satisfactory solution to this resource
problem. The REM system, mentioned in Section 7.4, allows a user to
specify - the conditions that must be satisfied for his workstation to
become available for remote. use. Although satisfactory to a logged-in
user, this approach is harsh on the REM user who is in constant danger of
having his computation aborted at the remote site. A full-fledged Butler
mechanism [7], that migrates remote users rather than aborting them
would be a more acceptable alternative.

The problem of controlling workstation CPU usage will become acute as
Andrew grows. The large pool of idle workstations available for parallel
computation, and the development: of applications that exploit such
parallelism will make remote use even more attractive in future.

9. Encryption .
Security in Andrew is predicated on the ablhty of clients and servers to
perform encryption for authentication and secure communication. The
design and implementation of .the encryption algorithm has to satisfy
certain properties:
eIt must be difficult to break, given the computational
resources available to a malicious individual in a typical
Andrew environment.
e It must be fast enough that neither the latency perceived by
clients nor the throughput of servers be noticeably degraded.
¢ It must be cheap enough that it does not appreciably increase
the cost of a workstation owned by an individual.

Based 'on considerations of strength and standardization, we have chosen
the Data Encryption Standard (DES)[17] published by the National
Bureau of Standards as the preferred encryption algorithm in Andrew.
Since the encryption algorithm is a parameter to our RPC mechanism, it
is possible to use other algorithms. We believe, however, that
standardising on DES is appropriate in our environment. This algorithm
has been publicly scrutinized for many years and although concerns bave
been expressed about its strength [8], we feel that DES is adequate for
the level of security we require.

At the ‘present time the latency for a simple interaction between a client
and server is about 20 to 25 milliseconds, and the file transfer rate is
about 50 to 70 kbytes per second. We expect these numbers to improve
over time, as Venus, Vice and the routers in the network are improved.
The fastest software implementation of DES that we are aware of runs at
less than 5 kbytes per second on a typical workstation. Software
encryption would therefore be an intolerable performance bottleneck in
our system; hardware is essential. '

Encryption devices embedded in low-level communication hardware
have been available for some time in mainframes. In many cases such
devices provide secure machine to machine communication over an
insecure link, but are not accessible to higher level software. Andrew
depends on end-to-end encryption where the ends are user level
processes on workstations and Vice servers. Since every connection has
a distinct key, only RPC software can determine the key to use in
encrypting a packet. Transparent embedding of encryption capability at
a low level is therefore not useful in Andrew.

Although a number of VLSI chips for DES are available [2,29],
integration of such chips into workstation peripherals is not common. A
commercially available device for the IBM PC-AT [11, 12} could be
used in our IBM RT-PC workslauons but its performance of 50 kbytes
per second is barely adequate.” "We have therefore built a prototype




device (6] for the IBM RT-PCs using the AMD 9568 chip. Based on our
parts cost and labour, we estimate that a commercial version of this
device, produced in quantity, would cost an end user between $500 and
$800. As perceived by a user-level process, the time to encrypt N bytes
using the device is N * k + C, where & is 4 microseconds per byte, and C
is 470 microseconds. The overhead of the device is thus under a
millisecond for a small packet and the asymptotic encryption rate is
about 200 kbytes per second. We are currently redesigning the device to
reduce k in the above expression to about 0.6 microseconds per byte,
yielding an asymptotic encryption rate of over 1 Mbyte per second. At
the present time, we do not have encryption devices for the Sun and
Microvax workstations in our environment.

A difficult nontechnical problem is justifying the cost of encryption
hardware to management and users. Unlike extra memory, processor
speed, or graphics capability, encryption devices do not provide tangible
benefits to users. The importance of security is often perceived only
after it is too late. At present, encryption hardware is viewed as an
expensive frill. We believe, however, that the awareness that encryption
is indispensable for security in Andrew will eventually make it possible
for every client and server to incorporate a hardware encryption device.

In the interim, while the logistic and economic aspects of obtaining
encryption hardware are being addressed, Andrew uses exclusive-or
encryption in software. Although it is trivially broken, we felt it worth
our while to use it for two reasons. First, it exercises all paths in our
code pertaining to security, and allows us to validate our implementation.
Second, although a weak algorithm, it does require a user to perform an
explicit action to violate security by decrypting data. Merely observing a
sensitive packet on the network by accident will not divulge its contents.

10. Other Security Issues
We now consider three diverse questions from the viewpoint of security
in Andrew:

o How do low-power personal computers access Vice files?

o Can diskless workstations be made secure?

o Is decentralised administration of Andrew possible?
Sections 10.1 to 10.3 examine these questions. In focusing only on
security our discussion ignores many broader issues and implementation
details.

10.1. PC Server

Personal computers (PCs) such as the IBM PC and Apple Macintosh
differ from Andrew workstations in that they do not run Unix and often
do not possess a local disk. They are thus not capable of being full-
fledged clients of the Andrew File System. Since a significant number of
Andrew users also use PCs, we have developed a mechanism that
enables PCs to access Vice files.

Vice access from a PC is mediated by a server called PCServer, that
makes a Unix file system transparently accessible from a PC. Since Vice
files are part of the Unix file name space of an Andrew workstation,
PCServer automatically makes them accessible from PCs. The primary
advantage of this decoupling is that it allows the Andrew File System to
exploit techniques essential to scalability, without distorting its design to
accommodate machines of inadequate hardware capability.

Communication between a PC and PCServer uses a protocol distinct
from that used in the Andrew file system. The protocol supports
encryption using a key that is randomly generated and sent in the clear
when a client-server connection is established. It does not incorporate
the 3-way BIND handshake described in Section 5.1, but does support a
weaker form of authentication. The workstation running PCServer also
runs an authenticator process called Guardian. When a PC user needs to
access Vice files, he supplies his Andrew user id and password. These
are transmitted to Guardian, which contacts the Andrew authentication
server and obtains authentication tokens in a manner identical to LOGIN,
as described in Section 5.2. The password and tokens are logically sent
in the clear, but are encrypted with a fixed key known to Guardian and
PCServer. Although this is not secure, it does provide a modicum of
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privacy. Guardian hands these tokens to Venus and then forks a
dedicated Unix PCServer process on behalf of the user. This process
acts as the surrogate of the PC user and services file requests from his
PC.

From the point of Venus, it appears as if the PC user had actually logged
in at the workstation running PCServer. Enforcement of protection for
Vice files is performed exactly as described in Section 6.2, The main
security exposure in using PCServer is the information sent in the clear
between the PC and Guardian during the establishment of a session.

10.2. Diskless Workstations

Operating workstations without local disks has been shown to be a viable
and cost-effective mode of operation [16]. However, the impact of
diskless operation on security has been ignored in the literature. To be
secure when operating diskless, two factors have to be considered. Page
traffic has to be encrypted, and workstations have to be confident of the
identity of their disk servers so that Trojan horses are avoided.

How fast will encryption have to be done to avoid significant
performance penalty when running diskless? Cheriton et al [5] present
data from the V kernel on a Sun workstation indicating that it takes about
5 milliseconds plus disk access time to remotely read or write a random
512-byte block of data. These numbers are for file access, but to a first
approximation we assume that they also hold for page access. Assuming
that the server does write-behind, a page fault with replacement would
involve a remote page write, a disk access at the server, and a remote
page read. This yields a page fault service time of 30 milliseconds,
assuming a typical disk latency of 20 milliseconds. If encryption is to
degrade paging performance by no more than 5%, it has to be possible to
encrypt 2 512-byte pages in no more than 1.5 milliseconds. This implies
an average encryption rate of about 700 kbytes per second. For the more
typical Unix page size of 4K bytes, an encryption rate in the range of 0.5
to 1 Mbyte per second still seems necessary. As described in Section 9,
encryption hardware whose performance meets these demands seems
feasible, though not readily available.

Mutual authentication is a more difficult problem. To perform a 3-phase
authentication handshake, the client and server need to share a secret
key. Where can this key be stored at the client? Embedding it in the
ROM containing the boot sequence seems the only realistic solution.
However, this does violate the goal, mentioned in Section 5.2, of not
storing long-term authentication information in the clear on workstations.
Authentication based on public keys might avoid this problem, but this
has to be investigated.

Although these problems are not insurmountable, we know of no
implementations of diskless workstations that address them. Concerns
regarding security played a small but nontrivial part in our decision to
avoid diskless operation in Andrew.

10.3. Decentralised Administration

Our discussion has assumed that there is a single protection domain for
all of Andrew, and that the Vice id and Virtue id of a user are identical.
While this is true at present, the growth of Andrew makes it increasingly
attractive to allow muitiple protection domains. The motivation for this
comes from two distinct scenarios.

First, an established non-Andrew timesharing system or collection of
workstations may join the Andrew environment. An existing user of
both environments may have different user names and ids in the two
environments. In the merged environment, Vice and Virtue will view the
individual as two distinct users. Changing the id in either environment is
difficult, because ids are embedded in long-term data structures in both
Unix and Vice file systems.

Second, individual organisations may wish to administer a collection of
Vice file servers, control their resources, and restrict access to a set of
Andrew workstations. Such decentralised operation is likely to provide
greater flexibility and responsiveness to users. It would also allow each
organization to have its own set of privileged groups, such as
System:Administrators.



A mechanism that addresses these issues by supporting independent
Andrew Cells [31] is being implemented. A cell corresponds to a
complete autonomous Andrew system, with its own protection domain,
authentication and file servers, and system administrators. The name
spaces of two or more such cells can be merged to form a unified
Andrew environment. Users see a uniform, seamless, file name space
and are not hindered by the multiplicity of protection domains.

It is Venus that makes cells transparent during file access. Each user and
group id in the composite environment has a cell id as its prefix. The
LOG program, mentioned in Section 5.2, allows a user o direct his
authentication request to a specific cell. The authentication procedure is
identical to that described in Section 5.2, except that tokens are stamped
with the cell id of the authentication server who created them. Venus
maintains a collection of tokens, one secret-clear pair for each cell to
which the user has authenticated himself. When establishing a secure
connection to a Vice server, it uses the tokens appropriate to the cell in
which the server is located. If the user has not authenticated himself to
that cell, he gets System: AnyUser privileges in it.

The name, id and password of an individual may be different in each
cell. Application programs that translate ids to user names, such as LS,
have to be modified to take this into account. However, long-term data
structures on disk do not have to be modified to allow access to multiple
cells. Since all Vice files stored on a server belong to the same cell, their
access lists specify only users and groups who are in that cell. Thus a
server does not need the cell prefix when performing an access list
check. The prefix is used only when a secure RPC connection is being
established.

11. Risk Analysis

In this section we briefly consider how security could be subverted in
Andrew. Our analysis is not intended to be exhaustive nor is it a proof of
security. Its primary purpose is to summarise the discussions of the
preceding sections of this paper. A secondary goal is to illustrate the
complexity of applying relatively simple security algorithms to a real
distributed environment of substantial scale and diversity.

A fundamental assumption in Andrew is that encryption of sufficient
strength and speed is available to Vice and Virtue. Otherwise it is trivial
to violate security. For the purposes of this section, we assume that all
servers and workstations have DES hardware. We also assume that all
RPC connections on behalf of users are authenticated and fully
encrypted.

Low-level network attacks can, at worst, result in denial of service to
users. Since RPC packets are encrypted end-to-end, eavesdropping will
not reveal useful information. Mutilating RPC packets will not violate
security either. Such packets will be rejected by the recipient because
RPC sequence numbering information is encrypted and it is extremely
unlikely that a mutilated RPC packet will have the correct sequence
number when decrypted.

With patience and considerable computational resources, a malicious
individual could eavesdrop on client-server traffic and break the key
under which the traffic is encrypted. Since a new random session key is
generated when an RPC connection is established, breaking that key will
only give access to ome server. To masquerade as the user, the
eavesdropper would have to carefully intersperse fake RPC requests
encrypted under the session key. The session key is not adequate to
establish connections with other servers.

Greater damage can be done by breaking the key in secret and clear
tokens. One way to do this is to break the key used by the authentication
server for encrypting secret tokens. Periodic changing of this key is
therefore essential. An alternate way to break the key in a token pair is
to observe a number of BIND requests that involve the same pair of
tokens. This is unlikely, because tokens expire after 24 hours, and the
number of BIND requests made by a user in that period is not likely to be
sufficient to mount a serious key-breaking effort. A compromised token
pair allows the miscreant to establish secure RPC connections with the
privileges of the victim on any Vice file server. It is not adequate,
however, to establish a secure connection to the authentication server.

The most damage is caused when the password of a user is broken,
particularly if he is a system administrator. However, the password is
typically used only once a day when the user is contacting an
authentication server for tokens. The standard practice of changing
passwords periodically will reduce the total amount of information
available for key-breaking.

A well-known mode of attack is via a Trojan horse. Public workstations
are particularly susceptible to this. A Trojan LOGIN program on a
workstation could compromise the password of every individual who
uses that workstation. As mentioned in Section 3, a concerned site
should ensure that rebooting a workstation standalone is impossible for
normal users. This would defeat the simplest way to install a Trojan
horse.

A more subtle way to introduce a Trojan horse is by masquerading as a
server that is temporarily down, and handing out fraudulent binaries.
During their reboot sequence, workstations fetch new copies of a few
local binaries from Vice over insecure connections. To avoid this
problem, automatic updating on reboot should be disabled. Instead, the

-owner of the workstation should explicitly update these files, using

binaries fetched on his secure RPC connection.

Workstations with multiple logged-in users make a number of other
security threats possible. A malicious user with superuser privileges
could cause Venus to dump core, examine the dump and extract the
tokens of other logged-in users. Andrew does not provide any special
mechanisms to protect against such threats. As mentioned in Section 3,
users of a shared workstation have to trust all individuals who could
become superuser on that workstation. A superuser can also read and
modify all cache copies of files on the workstation.

Vice is critically dependent on the physical security of its servers and on
carefully restricted superuser access on them. For maximum security,
servers should disallow TELNET access. Physically secure machine
rooms and trustworthy operators are, of course, also essential. A
malicious individual with superuser access on a server could read or
modify all Vice file data.

Membership in the group System:Administrators has to be carefully
guarded. A system administrator can modify any access list in the
system, and can therefore read or write any file. He can also change
storage quotas and modify the ownership of files. For increased security,
it would be relatively simple to modify Vice to grant
System:Administrator privileges only to individuals who are logged in at
one of a specific set of physically secure workstations, in addition to
being authenticated.

To keep things in perspective, it should be noted that this section is
deliberately negative in tone. Most of the scenarios described here are
highly untikely, and typically involve the violation of the assumptions
discussed in Section 3. A site which adheres to those assumptions will
find Andrew more secure than any existing distributed system of
comparable functionality. Further, in spite of the attention it pays to
security, Andrew remains a highly usable system.

12. Conclusion

As mentioned at the beginning of this paper, Andrew is an evolving
system. A number of changes have been made since the date of the
snapshot on which this paper is based. Many of these changes have been
improvements to existing functionality. The protection database now

“stores its index as part of itself rather than in a separate file. This

eliminates the occasional inconsistences between index and data that
used to occur when propagating protection domain information. The
remote procedure call mechanism described in Section 5.1 has been
replaced by one that is more stringent in its use of memory. The primary
reason for this change was the desire to run Venus on workstations with
severly limited physical memory. The details of the authentication
handshake are different from that described in Section 5.1, but the same
effect is achieved. We are in the process of designing a faster encryption
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device for the IBM RT-PCs, as discussed in Section 9. Finally, the cell
mechanism referred to in Section 10.3 is a significant change that will
provide new functionality when complete.

We have long appreciated the need for users to be able to create and
manipulate groups themselves, rather than submitting requests to the
administrators of Andrew. A Protection Server that implements this
functionality has been planned but not implemented yet. This server
could be an extension of the existing authentication server and would
allow us to merge security information that is currently distributed over a
number of different data structures: the ‘‘/etc/passwd” file on
workstations, the password database on authentication servers, the
protection domain database on file servers, and the files containing direct
group membership information from which system personnel generate
the protection domain database. This change would considerably
simplify administration and operation of Andrew.

In conclusion, we believe that security issues will assume greater
significance as distributed systems of increasing size and complexity are
built. A substantial amount of theoretical research has already been done
on security algorithms for distributed environments. Applying those
principles to the design of real systems is complicated by the many levels
of abstraction spanned, by the need for compatibility and by the many
detailed aspects of the systems that are affected. Andrew is an attempt to
seriously address these issues. It offers substantially greater security
than existing distributed systems without significant loss of usability or
performance.
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L. Figures
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The amoeba-like structure in the centre is a collection of insecure networks and secure servers that constitute
Vice. Virtue is typically a workstation, but can also be a mainframe.

Figure 1: Vice and Virtue
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This figure shows the sequence of events in the BIND handshake. Each arrow represents a packet. The notation
(a)” means that a is encrypted with key b. The last packet of the exchange conveys a randomly selected session
key and a randomly selected initial sequence number to the client.

Figure 3: RPC BIND Authentication Handshake

277 545c5058595a5156 aad Anthony Datri

265 575c¢585£5b5b575a ab0g Alfred Blumstein

672 13020a030619091f ab2g A. Leconard Brown

969 5£55595c595e555e abéq Ahmadou Barry

131 565956595£5a545e abrahams Julia Abrahams

913 565857585d5a5459 ac2d Arjun Bijoy Chatterjee

283 13020a030619091f zubrow David Zubrow

18 0503135c5a6a676£ # By 18 at Wed Mar 19 13:09:23 1986

18 0503135c5a6e676£ # By 18 at Wed Mar 19 16:36:55 1986

1022 0b0317040709676£ rk27 # By 18 at Wed Mar 19 16:37:37 1986
1022 1500081d190b156£ bdop # By 18 at Wed Mar 19 16:37:37 1986
1024 150018030cldl46f cc37 # By 18 at Wed Mar 19 16:37:38 1986
1025 0b0315021blde676£ ce38 # By 18 at Wed Mar 19 16:37:38 1986
1028 150£13020502146£ jels # By 18 at Wad Mar 19 16:37:38 1986

Each entry corresponds to information about one user. The first field is the Vice id of the user: the second is his
encrypted password; the third field is the name of the user. Other fields are ignored by the authentication server.
The first few lines correspond to entries that were present when the database was initialised. The entries at the
bottom represent modifications. Each modification is tagged with the identity of the user making the change and
the time the change was made.

Figure 4: Excerpt from Authentication Database
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Date: Mon Sep 29 09:51:13 1986

09:51:13 Server successfully started

11:03:49 Authentication failed for "£s0t" from 128.2.14.11
11:05:22 Authentication failed for "fs0t" from 128.2.14.11
11:05:54 Authentication failed for "an09" from 128.2.14.8

11:09:50 Authentication failed for "whOs" from 128.2.14.4

11:10:25 Authentication failed for "whOs" from 128.2.14.4

11:12:28 Authentication failed for "ac07" from 128.2.14.14
11:12:58 Authentication failed for "whOs" from 128.2.14.4

11:20:43 Authentication failed for "ac07" from 128.2.14.14
12:00:26 Authentication failed for "ks2n" from 128.2.13.3

13:58:46 Authentication failed for "dans" from 128.2.243.3
15:22:26 Authentication failed for "dtla" from 128.2.17.17
16:16:17 AuthChangePassd () attempt on dh2u by js8c denied

16:19:17 AuthChangePassd () attempt on dh2u by js8c denied

16:24:57 Authentication failed for "akll" from 128.2.14.14
16:56:53 Authentication failed for "js8c" from 128.2.17.4

20:46:03 Authentication failed for "je55" from 128.2.14.11
21:47:13 Authentication failed for "cm2m" from 128.2.14.20
22:20:17 Authentication failed for "jr45" from 128.2.17.20
23:30:16 Authentication failed for "l1l16" from 128.2.14.20
23:30:56 Authentication failed for "1116" from 128.2.14.20
23:44:58 Authentication failed for "efOu" from 128.2.11.62
23:53:59 Authentication failed for "gwOv" from 128.2.36.6

Date: Tue Sep 30 09:51:50 1986

09:51:50 Authentication failed for "bkOu" from 128.2.14.12
09:56:23 Authentication failed for "bkOu" from 128.2.14.12
09:57:51 Authentication failed for "bkOu" from 128.2.14.12
10:16:48 Authentication failed for "jeOx" from 128.2.14.3

11:22:16 Authentication failed for "ls24" from 128.2.14.10
11:32:02 Authentication failed for "mb3h" from 128.2.14.16
11:35:55 Authentication failed for "ls24" from 128.2.14.10

12:38:45 Authentication failed for "km35" from 128.2.14.9

This figure shows typical entries from the authentication log. Most of the entries are invalid authentication
attempts, probably caused by a user typing in his password incorrectly. Each entry identifies the user and the
workstation from which the operation was attempted. Two of the entries are failed attemipts by one user to
change the password of another user.

Figure 5: Excerpt from Authentication Log

mozart> fs la /cmw/ite/satya/si1

Normal rights:
System:ITC.FileSystemGroup rlidwk
System:AnyUser rl
satya rlidwka

Negative rights:
System:ITC.UserInterfaceGroup rlidwka

mozart>

This figure shows how an access list is displayed in Andrew. The string “‘mozart>"" is the prompt by the
workstation. The command *‘fs la’" lists the specified directory. Note the use of negative rights; a member of
System:ITC.UserlnterfaceGroup would have no rights on this directory, even though System:AnyUser has read
and lookup rights.

Figure 6: Access List on a Vice Directory
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HEGRARRRRBRRHARABRIRARARERRE
# VICE protection database #
FREFHESREBRERENABHERERRRRANE

# Lines such as these are ts. C ts and whitesp are ig d.
# This file consists of user entries and group entries in no particular order.
# An empty entry indicates the and.

# A user entry has the form:

# UserName UserId

# "Is a group I directly belong to"_List

# 'Is a group in my CPS"_List

# "Is a group owned by me"_List

# Access List

# H

# A group entry has the form:

# GroupName Groupld Ownerld

# "Is a group I directly belong to"_Liat

# "Is a group in my CPS"_List

# "Is a user or group who is a direct member of me" List
# Access List

# ;

A simple list has the form ( il i2 i3 ..... )

#
# An access list has two tuple lists:

# one for positive and the other for negative righta:
# (+ (il rl) (i2 r2) ...)

# 