L7

— L0 i 20 200 B 0 30
SRR S) 01 D Y B O
IS S A 5 1 SO0 B0 20 A i 3 |

Welcome!

The National Computer Security Center (NCSC) and the National Computer
Systems Laboratory (NCSL) are pleased to welcome you to the Thirteenth Annual
National Computer Security Conference. We believe that the Conference will
stimulate a vital and dynamic exchange of information and foster an understanding
of emerging technologies.

The theme for this year’s conference, “Information Systems Security: Standards --
The Key to the Future, ” reflects the continuing importance of the broader
information systems security issues facing us. At the heart of these issues are two
items which will receive special emphasis this week -- Information Systems Security
Criteria (and how it affects us) and Education, Training, and Awareness. We are
working together, in the Government, Industry, and Academe, in cooperative efforts
to improve and expand the state-of-the-art technology to information systems
security. This year we are pleased to present a new track by the information security
educators. These presentations will provide you with some cost-effective as well as
innovative ideas in developing your own on-site information-systems-security
education programs. Additionally, we will be presenting an educational program
which addresses the automated information security responsibilities. This
educational program will refresh us with the perspectives of the past, and will
projectdirections of the future.

We firmly believe that security awareness and responsibility are the cornerstone
of any information security program. For our collective success, we ask that you
reflect on the ideas and information presented this week, then share this
information with your peers, your management, your administration, and your
customers. By sharing this information, we will develop a stronger knowledge base
for tomorrow’s foundations.

A TN SO{C}‘)

JAMES H. BURROWS

T Director
National Computer Systems Laboratory

S "7@% % v
PATRICK R. GALLAGHER

. Director
National Computer Security Center

Conference Referees

Dr. Marshall Abrams
James P. Anderson
Jon Arneson
Devolyn Arnold
James Arnold

Al Arsenault
Victoria Ashby
Elaine Barker

Dr. D. Elliott Bell
Greg Bergren
James Birch

Earl Boebert

Dr. Dennis Branstad
Dr. John Campbell
Dr. Steve Crocker
Dr. Dorothy Denning
Donna Dodson
Greg Elkmann

Ellen Flahaven

Dan Gambel

Dain Gary

Bill Geer

Virgil Gibson
Dennis Gilbert
irene Gilbert

Dr. Virgil Gligor
Capt James Goldston, USAF
Dr. Joshua Guttman
Dr. Grace Hammonds
Douglas Hardie
Ronda Henning
Jack Holleran

Jim Houser

Russ Housley

Dr. Dale Johnson
Carole Jordan
Sharon Keller
Leslee LaFountain
Steve LaFountain
Paul Lambert

Carl Landwehr
Robert Lau

The MITRE Corporation

James P. Anderson Company

National Institute of Standards & Technology
National Computer Security Center

National Computer Security Center

National Computer Security Center

The MITRE Corporation .

National Institute of Standards & Technology
Trusted Information Systems, Inc.

National Computer Security Center

Secure Systems, Incorporated

Secure Computing Technology Corporation
National Institute of Standards & Technology
National Computer Security Center

Trusted Information Systems, Inc.

Digital Equipment Corporation

National Institute of Standards & Technology
National Security Agency

National Institute of Standards & Technology
Grumann Data Systems

Mellon National Bank

National Computer Security Center

Grumann Data Systems

National Institute of Standards and Technology
National Institute of Standards and Technology
University of Maryland

National Computer Security Center

The MITRE Corporation

AGCS, Inc.

Unisys Corporation

Harris Corporation

National Computer Security Center

National Computer Security Center

XEROX

The MITRE Corporation

Defense Investigative Service

National Institute of Standards & Technology
National Computer Security Center

National Computer Security Center

Motorola GEG

Naval Research Laboratory

National Computer Security Center

ii

Dr. Theodore Lee
Nina Lewis

Steve Lipner
Terry Losonsky
Dr. Vic Maconachy
Barbara Mayer
Frank Mayer

Vin McLellan

Catherine A. Meadows

Dr. Jonathan Millen
William H Murray
Eugene Myers

Ruth Nelson

Dr. Peter Neumann
Steven Padilla

Nick Pantiuk

Donn Parker

Rich Petthia

Dr. Charles Pfleeger
Jerrold Powell
Maria Pozzo
Michael Rinick

Ken Rowe

Prof Ravi Sandhu
Marv Schaefer

Dr. Roger Schell
Dan Schnackenberg
Miles Smid
Suzanne Smith
“Brian Snow

Prof. Gene Spafford
Dr. Dennis Steinauer
Freddie Stewart

Dr. Cliff Stoli
Marianne Swanson
Mario Tinto

Ann Todd

Eugene Troy

LTC Ray Vaughn, USA
Grant Wagner

Jill Walsh

Wayne Weingaertner
Roger Westman
Roy Wood

Trusted Information Systems, Inc.
University of California, Santa Barbara
Digital Equipment Corporation
National Security Agency

National Security Agency

Trusted Information Systems, Inc.
Sparta

Boston University

Naval Research Laboratory

The MITRE Corporation
Independent Consultant

National Computer Security Center
GTE

SRl International

Trusted Information Systems, Inc.
Grumann Data Systems

SRl International

Software Engineering Institute
Trusted Information Systems, Inc.
Department of the Treasury
University of California, Los Angeles
Central Intelligence Agency
National Computer Security Center
George Mason University

Trusted Information Systems, Inc.
GEMINI

Boeing Aerospace

National Institute of Standards & Technology

Los Alamos National Laboratory
National Security Agency
Purdue University

National Institute of Standards & Technology

ANSER

Harvard - Smithsonian Center for Astrophysics
National Institute of Standards & Technology

National Computer Security Center

National Institute of Standards & Technology
National Institute of Standards & Technology

National Computer Security Center

National Computer Security Center
INCO, Inc.

National Computer Security Center
INCO, Inc.

National Computer Security Center

iii

Thirteenth National Computer Security Conference
October 1-4, 1990
Washington, DC

Table of Contents

'VOLUME |
ii Conference Referees

TRACK A - Research & Development

17 UNIX System V with B2 Securit{)
Craig Rubin, AT&T Bell Laboratories

10 Covert Storage Channel Analysis: A Worked Example
Timothy Levin, Albert Tao, Gemini Computers
Steven Padilla, Trusted Information Systems

20 Verification of the C/30 Microcode Using the
State Delta Verification System (SDVS)
Jeffrey Cook, The Aerospace Corporation

32 Data Categorization and Labeling (Executive Summary)
Dennis Branstad, National Institute of Standards and Technology

34 Information Categorization and Protection (Executive Summary)
Warren Schmidt, Sears Technology Services, Inc.

37 Security Labels in Open Systems Ir_mtérconnection (Executive Summary)
Russell Housley, XEROX Special Information Systems

44 Security Labeling in Unclassified Networks (Executive Summary)
Noel Nazario, National Institute of Standards and Technology

49 Key Management Systems Combining X9.17 and Public Key Techniques
Jon Graff, Cylink

62 Electronic Document Authorization .
Addison Fischer, Fischer International Systems Corporation

72 The Place of Biometrics in a User Authentication Taxonomy
Alex Conn, John Parodi, Michael Taylor, Digital Equipment Corporation

80 Non-Forgeable Personal Identification System Using Cryptography
and Biometrics
Glenn Rinkenberger, Ron Chandos,
Motorola Government Electronics Group

90 An Audit Trail Reduction Paradigm Based on Trusted Processes
Zavdi Lichtman, John Kimmins, Bell Communications Research

99 The Computerwatch Data Reduction Tool
Cheri Dowell, Paul Ramstedt, AT&T Bell Laboratories

iv

Thirteenth National Computer Security Conference
October 1-4,1990

109 Analysis of Audit and Protocol Data Using Methods from Artificial Intelligence
Winfried R. E. Weiss, Adalbert Baur, Siemens AG

115 A UNIX Prototzf)e for Intrusion and Anomaly Detection in Secure Networks
J.R. Winkler, Planning Research Corporation :

125 A Neural Network Approach Towards Intrusion Detection
Richard Simonian, Ronda Henning, Jonathan Reed, Kevin Fox,
Harris Corporation

135 A Generalized Framework for Access Control: An Informal Description
Marshall Abrams, Kenneth Eggers, Leonard LaPadula, Ingrid Olson,
The MITRE Corporation

144 Automated Extensibility in THETA
Joseph McEnerney, Randall Brown, D. G. Weber,
Odyssey Research Associates
Rammohan Varadarajan, Informix Software, Inc.

154 Controlling Security Overrides '
Lee Badger, Trusted Information Systems, Inc.

165 Lattices, Policies, and Implementations
D. Elliott Bell, Trusted Information Systems, Inc.

TRACK B - Systems

172 The Role of “System Build” in Trusted Embedded Systems
T. Vickers Benzel, M. M. Bernstein, R. J. Feiertaqg,
Trusted Information Systems, _
J.P. Alstad, C. M. Brophy, Hughes Aircraft Company

182 Combininﬁ S’%c_grity, Embedded Systems and Ada Puts the Emphasis
on the _
F. Maymir-Ducharme, M. Armstrong, IIT Research Institute,
D. Preston, Catholic University

189 Disclosure Protection of Sensitive Information
Gene Troy, National Institute of Standards and Technology
lnqrid Olson, MITRE
Milan Kuchta, Department of National Defence System Security Centre

201 Considerations for VSLANTM Integrators and DAAs
Greg King, Verdix Corporation

211 Introduction to the Gemini Trusted Network Processor
Michael Thompson, Roger Schell, Albert Tao, Timothy Levin,
Gemini Computers

218 An Overview of the USAFE Guard System
Lorraine Gagnon, Logicon Inc.

228 Mutual Suspicion for Network Securit

Ruth Nelson, David Becker, Jennifer Brunell, John Heimann,
GTE Government Systems ‘ \

Thirteenth National Computer Security Conference
October 1-4, 1990

237 A Security Policy for Trusted Client-Server Distributed Networks
Russell Housley, Sammy Migues, Xerox Special Information Systems

243 Network Security and the Graphical Representation Model
Jared Dreicer, Laura Stolz, W. Anthony Smith,
Los Alamos National Laboratory

253 Testin'\%a Secure Operating System - v
ichael Johnston, Vasiliki Sotiriou, TRW Systems Integration Group

266 An Assertiovn-Mapping Approach to Software Test Desi?

n
Greg Bullough, James Loomis, Peter Weiss, Amdahl Corporation

277 Security Testing: The Albatross of Secure System Integration?
Susan Walter, Grumman Data Systems

286 Low Cost Outboard Cryptographic Supgort for SILS and SP4
B. J. Herbison, Digital Equipment Corporation

296 Layer 2 Security Services for Local Area Networks
Richard Parker Il, The MITRE Corporation

307 Trusted MINIX: A Worked Example
Albert Donaldson, ESCOM Corporation
John Taylor ir., General Electric M&DSO
David Chizmadia, National Computer Security Center

318 Security for Real-Time Systems
Teresa Lunt, SRl International
Franklin Reynolds, Keith Loepere, E. Douglas Jensen,
Concurrent Computer Corporation

333 Trusted XENIXT™ |nterpretation: Phasel
D. Elliott Bell, Trusted Information System Inc.

340 PACL's: An Access Control List Approach to Anti-Viral Security
D. Cook, R. Olsson, J. Crossley, P. Kerchen, K. Levitt, R. Lo,
University of California, Davis
D. Wichers, Arca Systems, Inc.

350 Static Analysis Virus Detection Tools for UNIX Systems
K. Levitt, P. Kerchen, R. Lo, J. Crossley, G. Elkinbard, R. Olsson,
University of California, Davis

366 The VirusIntervention and Control Experiment _
James Molini, Chris Ruhl, Computer Sciences Corporation

374 Classification of Computer Anomalies
Klaus Brunnstein, Simone Fischer-Hibner, Morton Swimmer,
Virus Test Center (VTC), University of Hamburg

| VOLUME 2
TRACK C-1- Management & Administration

385 Disaster Recovery / Contingency Planning (Executive Summary)
Eileen S. Wesselingh, National Computer Systems Contingency Services

vi

392

393

394

404

414

423

433

434

439

450

460

470

480

503

515

526

541

552

Thirteenth National Computer Security Conference
October 1-4, 1990

Disaster Recovery from $138 Million Fire (Executive Summary)
Lloyd R. Smith, Jr., Information Systems Integrity

Plans and Assistance (Executive Summary)
Jon H. Arneson, National Institute of Standards and Technology

Harmonised Criteria for the Security Evaluation of IT Systems and Products
P. Casey, A. Brouwer, D. Herson, J. Pacault, F. Taal, U. Van Essen

The VME High Security Option
Tom Parker, ICL Defence Systems

Rainbows and Arrows: How the Security Criteria Address Computer Misuse
Peter Neumann, SR! International

Civil and Military Application of Trusted Systems Criteria
William Barker, Charles Pfleeger, Trusted Information Systems, Inc.

Implementation of the Computer Security Act of 1987 (Executive Summary)
Dennis Gilbert, National Institute of Standards and Technology

The CSO’s Role in Computer Security
Cindy Hash, National Computer Security Center

Implementation and Usage of Mandatory Access Controls
in an Operational Environment
Leslie Gotch, Honeywell Federal Systems, Inc.
Shawn Rovansek, National Computer Security Center

Building Trust into a Multilevel File System
Cynthia E. Irvine, Todd B. Ackeson, Michael F. Thompson,
Gemini Computers, Inc.

LAVA/CIS Version 2.0: A Software System for Vulnerability
and Risk Assessment
S.T. Smith, M. L. Jalbert, Los Alamos National Laboratory

WORKFLOW: A Methodology for Performing a Qualitative Risk Assessment
Paul Garnett, SYSCON Corporation

Critical Risk Certification Methodology
Nander Brown, U.S. Small Business Administration

Factors Effecting the Availability of Security Measures
in Data Processing Components
Robert H. Courtney, Jr., Robert Courtney, Incorporated

Integrating Computer Security and Software Safety in the Life Cycle
of Air Force Systems
Albert C. Hoheb, The Aerospace Corporation

Integrity Mechanisms in Database Management Systems
Ravi Sandhu, Sushil Jajodia, George Mason University

A Taxonomy of Integrity Models, Implementations and Mechanisms
Stephen Welke, J. Eric Roskos, John Boone, Terry Mayfield,
Institute for Defense Analyses

National Comﬁuter Security Policy (Executive Summary)
Lynn McNulty, National Institute of Standards and Technology

vii

Thirteenth National Computer Security Conference
October 1-4, 1990

TRACK C-ll - Management & Administration

553
562
564
565
567
570
572
574

577
581
585

589
594
597
600
602

605

607

A Brief Tutorial on Trusted Database Management Systems (Executive Summary)
John Campbell, National Computer Security Center :

1990: A Year of Pro‘gress in Trusted Database Systems (Executive Summary)
John Campbell, National Computer Security Center

Secure Database Products (Executive Summary)
James Pierce, Teradata Corporation

Trusted Database Software: Review and Future Directions (Executive Summary)
Peter J. Sell, National Computer Security Center

Trusted Systems Interoperability (Executive Summary)
Helena Winkler-Parenty, Sybase Corporation

Oracle Secure Systems: 1989-1990 A Year in Review (Executive Summary)
Linda Vetter, Oracle Corporation

Trusted Database Machine Program: An Overview (Executive Summary)
William O. Wesley, Jr., National Computer Security Center

Trusted Database Systems: The Tough Issues (Executive Summary)
John Campbell, National Computer Security Center

Tough Issues: Integrity and Auditing in Multilevel Secure Databases
(Executive Summary) _)
Sushil Jajodia, George Mason University

Issues of Concurrency Control and Labeling in Multilevel Database Systems
(Executive Summary) .
Teresa Lunt, Stanford Research Institute

Issues in Trusted Distributed Database Management Systems -
A Position Paper (Executive Summary)
Bhavani Thuraisingham, The MITRE Corporation

SYBASE: The Trusted Subject DBMS (Executive Summary)
Helena Winkler-Parenty, Sybase Corporation

Constrained Trusted Computing Base Subsets (Executive Summary)
Linda Vetter, Oracle Corporation

Multilevel Object Oriented Database Systems (Executive Summary)
Ravi Sandhu, George Mason University

Multilevel Secure Object-Oriented Database Model (Executive Summary)
Sushil Jajodia, George Mason University

Object-Oriented System Security (Executive Summary)
Teresa Lunt, Stanford Research Institute

Questions in Trusted Object-Oriented Database Management Designs
(Executive Summary)
Catherine Meadows, Naval Research Laboratory

Single-level Obm;ts for Security Kernal Implementation (Executive Summary)
Jonathan Millen, The MITRE Corporation

viii

609

613

621

622

629

630

631

632

633

634

641

647

653

Thirteenth National Computer Security Conference
October 1-4, 1990

Issues in Multilevel Secure Object-Oriented Database Management Systems
(Executive Summary))
Bhavani Thuraisingham, The MITRE Corporation

C2 Security and Microcomputers (Executive Summary)
Angel Rivera, Sector Technology

Electronic Certification: Has Its Time Come? (Executive Summary)
Miles Smid, National Institute of Standards and Technology

Functional Implementation of C2 by 92 for Microcomputers
Second Lieutenant Alan Berry,
USAF/ Air Force Cryptologic Support Center

Limiting Access to Knowledge and Information
Robert Melford, RJ Melford Associates

Considering the Implications of Future Technologies
Ramon Barquin, Washington Consulting Group

Patent, Trade Secret, and Copyright Laws: One Facet of the Golden Rule
Applied to Limits on Access to Knowledge and Information
J. Timothy Headley, Esq., Baker & Botts

Socie% Runs on Trust . . '
alph J. Preiss, International Business Machines

Open Access Systems: Risks & Responsibilities in the Academic Environment
Jane Robinett, Polytechnic University

Computer Emergency Response Team: Lessons Learned
E Eugene Schultz, Lawrence Livermore National Laboratory
Richard Pethia, Software Engineering Institute,
Carnegie Mellon University
Jerome Dalton, AT&T

Discerning an Ethos for the INFOSEC Community: What Ought We Do?
Eric Leighninger, Dynamics Research Corporation

Virus Ethics: Concerns and Responsibilities of Individuals and Institutions
John Cordani, Adelphi University
Douglas Brown, OHC, Holy Cross Monastery

Concerning Hackers Who Break into Computer Systems
Dorothy Denning, Digital Equipment Corporation

ix

Thirteenth National Computer Security Conference
October 1-4,1990

Educator Sessions

665 A Reassessment of Computer Security Training Needs _
Dennis Poindexter, Department of Defense Security Institute

668 Information Security: The Development of Training Modules
Corey Schou, John Kilpatrick, Idaho State University

678 Determihin%YourTrainin Needs . .
Adele Suchunsky, U.S. General Accounting Office

682 Computer Based Training: The Right Choice?
Althea Whieldon, Department of Defense

Alternate Papers

687 ANSSR: ATool for Risk Analysis of Networked Systems ,
Deborah Bodeau, Frederick Chase, Sharon Kass, The MITRE Corporation

697 Approaches to Building Trusted Applications
Helena B. Winkler-Parenty, Sybase, Inc.

707 Automated Risk Evaluation System (ARES)/Communications - Computer
Systems Security Management System (CMS)
Lt Glyn M Runnels, AFCSC/SRE

717 ATrusted Software Development Methodology
John Watson, GE Aerospace, .
Edward Amoroso, AT&T Bell Laboratories

728 A Categorization of Processor Protection Mechanisms
Eugene Myers, National Computer Security Center

738 Conductinc? an Object Reuse Study
David Wichers, Arca Systems, Inc.

748 The Deterrent Value of Natural Change in a Statistical Database
Elizabeth Unger, Sallie Keller-McNulty, Kansas State University

758 Experiencesin Acquiring and Developing Secure
Communications-Computer Systems
Captain Charles Pierce, Air Force Cryptologic Support Center

768 Secure Systems Integrator: An Honorable Profession?
Virgil Gibson, Grumman Data Systems

776 A Taxonomy of Security-Relevant Knowledge
Gary Smith, National Defense University

788 Usefulness of a Network Reference Monitor
Timothy Williams, Verdix Corporation

Thirteenth National Computer Security Conference
October 1-4, 1990

Student Papers

797 Safeguarding Personal Privacy against Computer Threats:
A Structured Perspective
Greg Young, University of Maryland

807 Legal Issues in Security & Control of Information Systems
Noah Stern, University of Maryland

817 Applications of Knowledge-Based Systems Techniques
to Detect Computer System Intrusions
John McCarron, University of Maryland

Special Reprint 12th National Computer Security Conference

827 The Design of the Trusted Workstation: A True "INFOSEC Product”
Frank L. Mayer, J. Noelle McAuliffe, Trusted information Systems, Inc. -

xi

DISASTER RECOVERY / CONTINGENCY PLANNING
Eileen S. Wesselingh

Manager, Consulting Services
National Computer Systems Contingency Services
1250 Northmeadow Parkway
Roswell GA 30076

Focus on Disaster Recovery and Contingency Planning for business survival and contin-
uity has dramatically increased since 1989 - THE YEAR OF DISASTERS. EXXON VALDEZ,
HURRICANE HUGO, HURRICANE JERRY, SAN FRANCISCO EARTHQUAKE, TORNADOES,
FLOODS, EXTREME COLD WEATHER - all of these events captured and dominated our
attention and interest during the year. We saw and read about untold numbers of
heroic people and heroic deeds. We learned that billions of dollars in damages and
losses occurred; that lives were lost, that many businesses were destroyed or so severely
impacted that they would suffer long term, perhaps even irrevocable, impairment. We
were told about tl)nle future environmental consequences and problems that would re-
sult. But, to too many of us, these tragic events seemed distant and somehow removed
from our reality, our worlds. A false sense of security that was shattered on January
15th of this year, when the AT&T long distance lines went down for most of the day.
AT&T originally stated that a software bug caused the problem. Latest information
now states that it was a worm (a type of computer virus) attack caused by a group of
hackers known as The Legion of DOOM.[1] No estimates were ever given regarding
overall dollar loss either to AT&T or to the untold number of telecommunication
dependent businesses that were affected.

Disasters occur at the local, in your own backyard, level as well. On the weekend of
June 15-17, 1990 more than 100,000 homes and businesses, including hospitals and
other sensitive services, in Atlanta, GA were affected by a multiple water main break.
The breaks were repaired and service was restored by midday Saturday. However,
another serious and more far reaching problem resulted that affected the entire me-
tropolitan area until the following Monday morning. Due to lack of water (needed for
computer room chillers) the ATM network had to be shut down. People could only ac-
cess their accounts and/or funds at their own bank. Not only were these people severe-
ly inconvenienced, but merchants throughout the area suffered revenue losses. And
while this was occurring locally, national attention was focused on the MEGABORG
tanker fire off the coast of Texas and severe flooding in the Mid West.

Additional national statistics further give evidence to the increasing fragility and
interdependency that exists as we continue to evolve into an automated information
dependent economy:

° Every five minutes, a business catches fire in the U.S.; of these 90% suffer
catastrophic losses; 40% never reopen.

° 50% of all computer dependent businesses that experience a disaster and do

not reestablish processing and operations within 10 days NEVER recover or
file for Chapter 11.

385

° 93% of all businesses which experienced a major Data Processing disaster
were out of business in 5 years. Survival odds of 7 in 100.

° An estimated 75% of all data centers in the U.S. store backup tapes on-site.

° A business can expect to lose approximately 10% of total gross sales within a
week, if data processing is non-operational.

Nine inches of rain in an eight hour period in Chicago on Aug. 13, 1987 seriously da-
maged dozens of data processing departments. Many issued alerts to backup and hot-
site service companies. Five actually declared disasters and went to hot-sites. Initial
damage estimates to area businesses were put at over $77 million.

When the Southern lllinois Bell switching station burned on Mother’s Day, May 8, 1988,
communications over hundreds of thousands of local lines, local fiber circuits, and
leased computer lines were brought to a total standstill. Air traffic control was af-
fected, not only at O'Hare, but around the country. The Federal Reserve had to set up a
"satellite" office in a car, equipped with a cellular phone, in various shopping center
parking lots in order to conduct business with area banks. One company, in the area,
activated its contingency plan and hot site. The cost to operate in contingency mode
for over two weeks was over $500,000. However, the company estimates that it would
have lost $30 million in sales if it had not committed time and resources to develop and
implement contingency planning and disaster recovery for the organization.

Natural disasters are not the only risk to be considered. Human error and computer
crime are the silent, hidden factors that can cripple or corrupt business. Computer
crime losses total over $3 million per year, in the U.S., and are rarely detected. Viruses
used to be something that sent us to the doctor’s office or home to bed for a week.
Today, the word has become part of computer terminology. Computer viruses exist as
an ever present threat to any automated business, from mainframe to PC; locally,
nationally, and globally. In 1989 and 1990, federal prosecutors obtained convictions in
four nationally recognized cases involving illegal access of systems, software theft,
destruction of information, and viral attacks.

All these statistics and events clearly give credibility to one very important reality in an
increasingly data processing driven business world today: Disasters do happen, and
contrary to popular belief or expression, they don’t just happen to someone else. Dis-
asters don’t discriminate. Disasters aren’t self-limiting. Disasters don’t call ahead.
Accepting and understanding the overwhelming and widespread consequences of
having to deal not only with business recovery, but more importantly with BUSINESS
SURVIVAL, after a natural or man-made disaster occurs, is becoming one of the most
relevant and prominent issues in corporate boardrooms, government and regulatory
agencies, management meetings. Concern about this issue even plays an ever increas-
ing role in the normal sales cycle in any automation driven business today. The critical
need for a plan, a contingency plan, to ensure recovery and survival, to reduce vulner-
ability, to protect against liability has become an integral and essential cost of doing
business, and stated quite simply, makes good business sense.

In today’s information intensive economy, survival of a company may depend on
management’s ability to use it's information resources to effectively compete, to
strategize, to expand and hold market share, in essence to survive.

As information has become more mission critical for normal business operations; as
automation has moved from being an after the fact record keeping system to a

386

dynamic, on-line, real time strategic operation, so has the scope of disaster recovery
and contingency planning changed from the computer room to the entire business.

Effective contingency planning MUST address the total, integrated business environ-
ment, not just the data processing department. Any contingency plan that is not based
on this fact will not be workable, will not succeed. Being prepared to deal with a disas-
ter situation, natural or manmade, regardless of the degree, is no longer limited to
having a comguter to process on and a place to put it. With hot-site and cold-site com-
panies available for contractually committed customers, with quick-ship equipment
replacement agreements, with data protection and vault storage services, restoring
data processing capabilities can be the least complicated recovery task to accomplish.
What degree of business survivability will occur if the DP department is up and running
at an alternate site in a few days and the rest of the company is in total shambles? A
disaster could occur and seriously cripple or destroy everything but the computer de-
partment. It has happened. Or visual another disaster that is occurring with more
frequency: A hazardous fire or chemical spill that causes a local or regional evacuation.
Your computer room is untouched, your offices are undamaged, your information is
not destroyed. The only problem you have is that you can’t get to any of it. Perhaps for
days or longer. It has happened. Professional journals, newspapers, other forms of
media are filled with reports on events, disasters, business interruptions - whatever
terminology your organization finds acceptable. However, being unprepared to deal
with a disaster and the potential economic and legal consequences resulting from one
are no longer acceptable. Businesses develop and implement disaster recovery and
contingency planning today not because of the risk that something will happen, but
because of the severe economic losses and liability issues that will result if they don't.

Due to the dynamic changes in the financial community caused by deregulation, mar-
ket aggressiveness, creativity in the investment community and increasing customer
sophistication, financial institutions, more than any other types of businesses, are rely-
ing more and more on automation in all areas of daily operations to help them better
serve their customers. These factors have added increased pressure on financial insti-
tutions to develop and incorporate contingency planning and disaster recovery into
their business and operational procedures. There is no doubt that collapse of a finan-
cial institution would result in severe economic consequences for all business in the
area. Additionally, stockholders and customers who demand continuing service will be
quick to take their business elsewhere and quick to take legal action.

A recent study done by the University of Minnesota[2] indicates that financial institu-
tions are most seriously impacted by a business interruption with a 1 1/2 day maximum
downtime before serious repercussions occur. Federal and state regulators recognized
this hi?h risk and have established specific regulations and guidelines in requiring fi-
nancial institutions to have viable, tested contingency plans in place to avoid the disas-
ters that the loss of information systems and of normal operations, no matter how tem-
porary, can cause. In July of 1989, the FFIEC issued an Interagency Policy On Contingen-
cy Planning as a result of a general meeting held in Washington, D.C. in September
1988. This joint policy specifies the scope and level of contingency planning and disas-
ter recovery that it's member institutions must develop and implement. It actually
specifies: institution-wide planning, what must be included in the plan,that periodic
testing of the plan be performed. Additionally, the FFIEC places responsibility directly
on the Board of Directors and senior management for establishing the plan and for
annually reviewing, testing, and approving the contingency plan. This annual process
must be documented in the board minutes. Each member agency then re-issued the
policy under it's own numbering system. The Office of the Comptroller of the Currency
reissued it as BC-177, which was first issued in 1983 and applied only to bank’s data pro-

387

cessing department. Two additional policies, established by the OCC in 1988, extend
requirements and responsibilities even further. BC-226 issued on January 30, 1988, sets
forth OCC Policy on the end user PC environment. BC-229 issued on May 30, 1988, sets
forth OCC Policy in regards to the establishment of Information Security Policies in
federal financial institutions.

While financial institutions have been explicitly mandated to develop disaster recovery
capability and contin?ency planning, other industries have varying levels of regulatory
guidelines, if any at all. However, there are several laws that do place responsibility for
corporate survivability directly on the officers and managers of the corporation. The
Foreign Corrupt Practices Act of 1977 states that officers, managers, representative a-
gents of a company can be held criminally liable for failure to safeguard corporate as-
sets in the event of a severe business interruption or failure. (Information is legally de-
fined as a corporate asset.) This liability can result in a personal fine of up to $10,000
and up to 5 years imprisonment. Corporate after-tax penalties start at $1 million. Third
party litigation awards could be monstrous. Additionally, directors and officers, when
acting for a corporation, are in positions of trust. If they violate that "Duty of Trust”,
they can be held liable under the "Prudent Man Rule”, which requires that they per-
form their duties with diligence and care. They have a "duty of care” including the ob-
ligation to assess the risk of loss and the impact of any loss to the corporation. Direc-
tors and officers are also liable under ordinary principles of agency law to investigate
and be informed about the condition of the corporation and it’s assets.

There are, of course, many other reasons for contingency planning than just the fear of
being sued: to protect a business’s most valuable assets - it's employees; to protect
lives, jobs, assets, market share, to maintain the confidence and trust of employees,
stockholders, customers. The reasons for and the necessity of a viable, workable con-
tingency plan are undeniable. But, what exactly is contingency planning? And, what
does your organization, business have to do to get one? Before we start discussing the
definitions and components involved, three very significant and fundamental caveats
MUST be understood and accepted as gospel for your contingency planning efforts to
succeed and be workable when needed:

1. It must address the total, integrated business and not only data processing.
The plan must belong to entire organization. Everyone must have
ownership, but the primary responsibility for creating, testing, maintaining
the plan must become part of, or someone’s primary job description.

2. Contingency planning is a continuing, on going process. Your business is
dynamic not static, and your plan, as an integral part of your overall business,
cannot be static either. The contingency process once begun, does not end.

3. There must be Corporate Commitment. Without it, you won't succeed.
Time, money, personnel, resources will be involved, and not just on a one
time basis. If you don't already have it, get it. How? Make upper
management aware of the need, and of their responsibilities and their
potential liabilities. Use the information in this article for starters. Find out
what other companies in your area, type of business are doing. Contact
professional organizations for more information. Become the inhouse
contingency planning expert.

WHAT IS CONTINGENCY PLANNING?

Simply, it is the identification prior to a business interruption or disaster, of the critical
procedures, functions, and resources (personnel, vendors, equipment, supplies, alter-

388

nate sites, communication needs, etc.) necessary for business survival, not for "business
as usual”, for SURVIVAL. From this assessment and evaluation process, an action plan
is developed to suE_port these procedures. This action plan is a combination of written

instructions for ta

ing specific actions when a disaster occurs and skilled, trained per-

sonnel functioning as the disaster recovery teams performing these actions. Without a
plan, the guaranteed response will be panic and confusion.

WHAT ARE THE STEPS INVOLVED?

1.

Ufper management must first establish the corporate policies and objectives
of the plan: for example: To protect personnel and assets, to continue
business operations in a cost-effective manner, to maintain confidence.
Identifying these will be critical in deciding on what type of alternate backup
site will be needed, i.e., hot-site, cold-site, branch office, new building. If
upper management specifies that operations and processing must resume
within 24 hours, a hot site must be incorporated into the plan. If operations
a_n%lprocessing can be handled manually for one month, other solutions are
viable.

Personnel must be identified. A Disaster Recovery Coordinator must be
named to be responsible for the contingency planning process to which your
organization has committed. This person should have certain qualifications:
be familiar with the organization, be open-minded and flexible, be per-
sistent and analytical, be a strong communicator and a strong leader. This
person will be the driving force for entire process from initiation to ongoing
testin%, training, maintenance. Disaster recovery teams and team leaders
must be identitied based on the size and structure of your organization.
These will be personnel who are knowledgeable, trained, proficient at what
they do. There are three basic types of teams to establish: management - to
plan, direct and control, i.e., the Disaster Recovery Team; operational --- the
ones who actually implement recovery , for example: Hot-site backup team,
user input team, primary site salvage and restoration team; support - to
provide all the resources and assistance needed, for example: transportation
team, insurance and personnel teams. The number of teams and team
members will depend on the size of your organization and the number of
sites included. The teams will meet and identify the steps they will perform
during a disaster. External organizations/resources must be identified, for
example: critical vendors, clients, auditors, consultants, agents. Consultants
are excellent, experienced, non-political resources to invest in and utilize.
They've been there before. If your organization decides to use one, you will
still have to work with the consultant to gather the information, identify the
teams, etc. You just won’t have to re-invent the wheel.

A realistic schedule must be established. Expect nine months to one man-
year of personnel time and possibly more to the first draft stage, depending
on the size of scope of your plan and the resources available. Several
excellent PC based planning software packages are now available on the
market. Most of them use relational databases, allow autoload and
download of information with other computers, are network compatible,
and have other features which should be investigated. These PC based tools
allow ease of input, flexibility in planning, and make maintenance doable.
It's important to remember that they are a tool to be used in conjunction
with, not in place of the organizations efforts to develop and implement
survivability.

389

4. Data gathering. This is the fun part. Sometimes the battles that are waged
in identifying and defining the critical procedures and resources are reason
enough to declare a disaster. Procedures and functions can be classified into
three categories:

Priority 1 - Those that run the business.
Priority 2 - Those that control the business.
Priority 3 - Those that supplement, are informational.

It is critical to realize that depending on the time of the year the priority levels can and
will change. Once this prioritization is completed, you can then identify the required
resources to support your recovery operations - supplies, forms, equipment, office
space, off-site storage requirements (REMEMBER TO STORE A COPY OF YOUR CONTIN-
GENCY PLAN OFF-SITE), personnel requirements, notification procedures and lists,
control centers, meeting and alternate work sites, alternate processing sites
(redundant, hot site, relocatable shell), telecommunication recovery needs (gial up
lines, leased lines, T1's, satellite links, electronic vaulting).

Yes, it is a lot of work, but, one of the benefits will be a tremendous reduction of con-
flict and disorganization if an actual disaster occurs.

5. Writing the plan. Having approached this process from a “worst possible
case" what you will actually have is a series of subsets or "mini-plans" that
can be individually or collectively put into action depending on the level and
severity of the disaster. Some of the PC based planning software packages |
mentioned earlier allow you to do this. Keep it simple. Keep it well
organized.

No, you're not finished. You now have this wonderful document, this committed and
enthusiastic organization. What's next?

TESTING

How else will you know if your plan will work? If your team members are correctly
identified and trained? If the information in your plan is accurate, sufficient? How else
will the teams gain experience in emergency actions and recovery procedures? How
else will you identify needed changes or additions, problems, weaknesses? How else
will you show your organization’s commitment to the contingency planning process
and keep upper managements support?

Don’t be afraid to test. In my book, NO TEST IS A FAILURE. Every one is a learning ex-
perience, a chance to improve, and if there are problems, an opportunity to work them
out, correct them before a real disaster occurs. Plan your testing. Start small. Don’t
pull a full scale "mock disaster” test the first time you test. Test a single team or section
of the plan. Identify the goals and parameters of the test beforehand. Monitor and
audit the actual test. Afterit's over have a post-test review to determine if you met the:
objectives and if changes have to be made. Next time you test integrate two or more
teams or sections. Do the same pre and post test planning and review. Then when
your contingency organization has familiarity and experience with the plan, do the
mock disaster. Just be careful not to cause a real one in the process. Think of a test as a
dress rehearsal, an opportunity to see how and where the script has to be modified.
Testing will lead to maintenance, revisions, changes to your plan. Testing and mainte-
nance will be the forces that keep the commitment to contingency planning and disas-
ter recovery alive and well in your organization.

390-

IMPLEMENTING YOUR PLAN

The infamous middle of the night phone call occurs. There is a problem which may or
may not require contingency plan activation. Briefly, let's review the steps major steps
or segments of a recovery operation that would take place:

1.

9.

10.

Notification. Some type of interruption has occurred. Because your infra-
structure is in place, the notifying party contacts predetermined Disaster
Recovery Coordinators or Team Leaders.

An initial situation assessment is made to determine current status, further
steps, back to normal times.

Based on their assessment a strategy is selected (Exs: Scale down operations
& wait for repair; Declare a disaster and activate plan.)

Recommend course of action to Senior management, who has responsibility
& authority to activate plan & declare.

If a disaster is declared, teams notified, alternate sites notified, other
notifications occur.

Teams meet at predetermined sites and begin assigned recovery tasks.

Contingency working environments (data processing and nondp) are
established.

Evaluation and restoration occurs at primary site.

" Planned switchback occurs after primary site problem has been problem.

Recovery efforts are reviewed. Contingency Plan and organization are
changed and updated to reflect needed changes, if any.

This is a very simplified overview of how the recovery would flow. In actuality, there
would be many, many subsets, tasks, and other identified steps and parameters. But
they would all generally fit into the broad overview steps above.

Contingency planning and disaster recovery are essential costs of doing business today,
of staying in business today. They’'re here to stay. Not only your business, but the lives
of many people --- employees, stockholders, customers, other businesses --- will be af-
fected and impacted by how you address contingency needs and by how you decide on
solutions in a viable, tested contingency plan and organization.

References:

1. R. Cringely "Notes from the Field"”, INFOWORLD, June 18, 1990.

2. University of Minnesota, "Data Processing Downtime", 1982.

391

Executive Summary

Disaster Recovery of $138 Million Fire

Lloyd R. Smith, Jr.
Colonel, USAF (retired)

Information Systems Integrity
Box 95773
Oklahoma City, OK 73143
(405) 737-8348

The Oklahoma Air Logistics Center (ALC), the states largest
industrial complex and largest employer, experienced a 40 hour
fire that destroyed 17 acres of roof over the maintenance facility
before being extinguished through the efforts of 22 fire
departments. A disaster recovery operation resulted in 265
computer and peripheral cabinets, as well as 10,000 data tapes and
50 disk packs, being evacuated from three threatened data
centers, adjacent to the burning facility. The information systems
components were then returned and operations recovered in
minimum time.

Lloyd Smith, Director of Information Systems during disaster
recovery operation, will discuss the organization, its mission,
operational requirements, and contingency philosophy. A video
tape of the $138 million fire will be shown. The speaker will then
describe the recovery of the data centers, and discuss the lessons
learned. Included in this presentation will be data on how to make
information systems more secure and sustainable from disasters.
This insight was gained through years of operational experience as
well as visits to numerous other data centers.

392

Executive Summary

Plans and Assistance

Jon H. Arneson

National Institute of Standards and Technology

The panel will discuss the computer security plans
required of each agency. In addition, it will address the
development of a comprehensive computer security program
within Federal agencies consistent with the Computer Security
Act of 1987, OMB Circular A-130, "Management of Federal
Information Resources," and OMB Bulletin 90-08, "Guidance for
Preparation of Security Plans for Federal Computer Systems that
Contain Sensitive Information." Panel members will include
representatives from the National Security Agency, the Office of
Management and Budget, the President's Council on Integrity
and Efficiency, the National Institute of Standards and
Technology, and two Federal agencies.

393

HARMONISED CRITERIA FOR THE SECURITY
EVALUATION OF IT SYSTEMS AND PRODUCTS*

A. Brouwer'!, P. Casey?, D.Herson?3, J.Pacault4, F.Taal%, U.VanEssen®

ABSTRACT

This paper sets out the technical approach adopted for the Information Technology
Security Evaluation Criteria (ITSEC), the harmonised security evaluation criteria produced
by France, Germany, the Netherlands and the United Kingdom. It discusses their structure
and nature, and the rationale underlying their development.

INTRODUCTION

Within Europe there have been a number of national initiatives in the development of
Information Technology (IT) security evaluation criteria, some of which have resulted in
publicly available documents, such as the IT-Security Criteria produced by ZSI, the
German Information Security Agency [1], the UK Department of Trade and Industry
(DTI) Commercial Computer Security Centre’s "Green Books" [2] and the UK
Communications-Electronics Security Group’s Memorandum Number 3 on UK System
Confidence Levels [3]. There have been other European national initiatives, but their
results have not been published or are not widely available.

Recognising common interests, and in order to assist in the development of the market for
IT security products, a number of European countries (France, Germany, the Netherlands
and the United Kingdom) have been co-operating in the development of a single set of
harmonised criteria for the security evaluation of IT products and systems, for possible
adoption within the practical evaluation and certification schemes planned or operating in
those countries and, ideally, on a wider international basis. These criteria - the Information
Technology Security Evaluation Criteria (ITSEC) - were published in draft form in May
1990 [4], and have been widely distributed for comment and consultation, both within the
four countries that contributed to their development, and beyond. The Commission of the
European Community sponsored a two day consultative conference on the criteria in
Brussels during September.

* This paper may be copied freely provided that the source is acknowledged. Please address correspondence
to the Computer Security Branch, Information Technology Division, Department of Trade and Industry,
Room 847, Kingsgate House, 66-74 Victoria Street, London SW1E 6SW, United Kingdom.

Ministry of the Interior, The Hague, The Netherlands

Department of Trade and Industry, London, United Kingdom
Communications-Electronics Security Group, Cheltenham, United Kingdom

Service Central de la Sécurité des Systémes d’Information, Paris, France

Netherlands National Communications Security Agency, The Hague, The Netherlands
German Information Security Agency, Bonn, Germany

NN B W

394

The harmonised criteria are intended to address the requirements of both the commercial
and government security market places, and to be applicable both to individual systems and
to IT products designed for sale as components of secure systems. In order to encompass
this wide field of applicability, the criteria separate the specification of the security
functionality of an IT system or product from the assessment of the assurance that can be
held in that functionality. Similarly, the assurance criteria distinguish between the
confidence that can be held in the correctness of the implementation of security functions
and confidence in their effectiveness in operational use as countermeasures to the actual
threats to security that may exist in the context of a particular IT system and its
environment.

Wherever possible the ITSEC has drawn on the results of the existing national European
initiatives, selecting the most suitable existing approach or method where divergent
alternatives existed. However, given the wide intended scope of the ITSEC, it has
inevitably been necessary to develop some new ideas to cover areas where no existing
approach was satisfactory.

SPECIFICATION OF SECURITY FEATURES

Within the ITSEC, the term Target of Evaluation (TOE) is used to refer to a particular IT
system or product which is the subject of a security evaluation. In National Computer
Security Center terms [5], this could be either a product evaluation or a certification
evaluation. In either case, before evaluation can take place, it is necessary to have a
precise specification of the features of the TOE which contribute to security. This is done
through the definition of a security target.

The document or documents which specify the security features define the security target
for the TOE and are used as a baseline for evaluation. The security target must always
specify the security functions of the TOE. It may specify its security objectives (including
information on known threats against those objectives) and it may also specify particular
security mechanisms which are to be employed.

In the case of a product, the intended environment and security objectives of a purchaser
are not necessarily known: ultimately each purchaser must judge whether a particular
product will fit his system security objectives. However, the ITSEC requires that some
rationale for the provision of the security functions within a product is given, to provide a
context for evaluation and to guide prospective purchasers. Similarly, the developer must
also document all assumptions made about the intended environment and the way that the
product will be used.

As well as the definition of functionality, the security target must also claim a targeted

evaluation level, and a minimum strength rating for the ability of the security mechanisms
of the TOE to withstand direct attack.

395

SPECIFICATION OF SECURITY FUNCTIONALITY

The most important part of a security target is, of course, the definition of the security
functions to be implemented by that TOE. The ITSEC recommends eight generic headings
under which functions should be grouped:

Identification and Authentication - functions to establish and verify the claimed
identity of a user;

Access Control - functions to control the flow of information between, and the use
of resources by, users, processes and objects, including the administration and
verification of access rights;

Accountability - functions to record the exercising of rights to perform security-
relevant actions;

Audit - functions to detect and investigate events that might represent a threat to
security;

Object Reuse - functions to control the reuse of data objects; -

Accuracy - functions to ensure the correctness and consistency of security-relevant
information;

Reliability of Service - functions to ensure consistency and availability of service;

Data Exchange - functions to ensure the security of data during transmission over
communications channels.

This approach to grouping functionality is similar to that adopted by the TCSEC Subsystem
Interpretation [5].

There are no restrictions on the functionality that can be specified in a security target. The
ITSEC predefines some standard functionality classes, but functionality can also be stated
explicitly, or as a combination of functionality classes and additional explicit functions.

The ten predefined functionality classes are identical in content to those defined within the
German National Criteria [1], but have been restated using the generic headings listed
above. The first five correspond to the functionality contained within the assurance classes
defined by the US Department of Defense Trusted Computer System Evaluation Criteria
(TCSEC) [6]. F1 corresponds to the functionality of US Class C1, F2 to C2, and so on up
to FS, which corresponds to US Class B3. (US Classes B3 and Al possess the same
functionality, thus FS5 also corresponds to US Class Al.)

The remaining five classes are intended to match common requirements for particular
types of system. F6 is intended for use where high data or program integrity is required.
F7 is intended for use where high availability is necessary. F8 specifies high requirements
with regard to the maintenance of integrity during data exchange. F9 provides high

396

confidentiality during data exchange. F10 is intended for networks with high requirements
for both confidentiality and integrity of the information transmitted over the network. It is
expected that other predefined classes will be added with time to meet market needs as
requirements evolve.

The ITSEC identifies three types of specification style that may be used to express security
functions within a security target: informal, semi-formal and formal. Acceptable styles
vary, depending on the targeted evaluation level.

An example of an informal style is natural language (ie. the unrestricted normal written or
spoken use of a language such as English). Semi-formal styles use some form of restricted
notation, in accordance with a set of conventions that reduce potential ambiguity, but
which are not formally or mathematically defined. An example is the Claims Language
defined within the ITSEC, which has been developed from the Claims Language proposed
within the DTI draft criteria [2].

A formal style requires a mathematically based notation. Such specifications can be tested
for ambiguity, and can also be shown to be consistent, and correct with respect to a set of
axiomatic properties. Special training and aptitude is normally required to produce and
use formal specifications, and their correct meaning is often not intuitively obvious.
Examples of formal specification styles are formal specification languages such as GYPSY
[7] or Z [8] (for readers unfamiliar with Z, [9] provides a example of its use from the
standard American literature), or the apphcatlon of established formal security policy
models which reflect the desired security properties of the TOE.

ASSURANCE

As has already been said, the assurance criteria of the ITSEC distinguish between the
confidence that can be held in the correctness of the implementation of the security
functionality of a TOE and the confidence that can be held in its effectiveness in
operational use. There is no required link between the functionality specified and the level
of assurance that is claimed.

During the course of evaluation the gathering and examination of evidence for the
assessment of correctness and effectiveness are unavoidably intertwined. However, in
order to determine whether the required evaluation rating has been achieved, an
assessment of correctness is made first, by confirming that all the correctness criteria of the
ITSEC defined for the targeted evaluation level have been satisfied. Only once correctness
has been established is assessment made of the effectiveness of the TOE, using criteria
which apply to a TOE viewed as a coherent whole.

A successful evaluation will confirm that the targeted evaluation level has been achieved
and that the claimed minimum strength rating for the security mechanisms is justified.

397

CORRECTNESS CRITERIA

The ITSEC defines seven evaluation levels in respect of the correctness of a TOE. EQ
designates the lowest level and E6 the highest.

Level EO represents inadequate assurance, the equivalent of TCSEC Division D. A TOE
assigned a confidence level of EQ for correctness need not be considered from the point of
view of effectiveness, since it has already been shown to be inadequate.

Remaining levels require satisfaction of progressively more stringent criteria in respect of
phases or aspects of the development process, development env1ronment, operational
documentation and operational procedures for the TOE.

The development process is considered to be made up of a number of phases which take
place in turn. Factors contributing to the development of confidence are identified in the
criteria for each phase of the process. The four identified phases are:

Requirements - the identification and description of the security target for the TOE;

Architectural Design - the overall top level definition and design of the TOE,
identifying its basic structure, its external interfaces and its separation into major
software and hardware components;

Detailed Design - the refinement of the architectural design to a level of detail that
can be used as a basis for programming and hardware construction;

Implementation - the translation of the detailed design into actual hardware and
software, and the testing of this implementation of the TOE against its
specifications.

This explicit model of the development process is intended to simplify identifying the
necessary relationship between the security criteria and the normal documentation and
procedures used in any development performed in accordance with good quality and
software engineering practices. Indeed, the ITSEC model is close to the spirit of US DoD
software development standard DOD-STD-2167A [10].

The criteria for the development environment address a number of issues relating to the
working practices of the developer of the TOE. Particular emphasis is placed on
configuration control, the choice of programming languages and tools, and the developer’s
own internal security measures.

The criteria for operation distinguish between operational documentation (used by the
developer to communicate information about the TOE to his customers) and information
concerning the operational environment of the TOE. In the case of a system which is
already in use, it is possible to assess actual operational procedures. In other cases, it is
only possible to evaluate proposed or suggested procedures, set down either by the
developer or by the user.

398 -

Each of the six levels E1 to E6 specifies evaluation criteria in respect of the defined phases
or aspects of development and operation. For each level, the documentation that must be
provided for examination is identified, followed by requirements for its content and
presentation or for the procedures and standards it must define. These requirements are
followed by a definition of the evidence necessary to show that the criteria in question have
been met. Finally the actions to be performed by the evaluator are stated.

For clarity, since there are significantly different requirements for each evaluation level,
the criteria for each level are set out separately within the ITSEC. There is a need for
greater rigour and depth in the evidence required at higher evaluation levels. However, in
general each level retains the criteria of the previous lower level, but adds greater detail to
the evidence required and also adds new criteria to be considered.

Except at E1, the burden for the provision of evidence is placed on the sponsor (the person
or organisation requesting evaluation), who must in turn obtain it from the developer. The
evidence provided is then checked or audited by the evaluator. The evaluator is only
required to generate evidence where independent production is considered necessary to
provide the necessary level of confidence in its conclusions.

For example, there are requirements to provide evidence of functional testing placed on
both sponsor and evaluator. The major requirement is for the sponsor to show evidence of
comprehensive testing, in particular test plans and test results, produced as part of his
normal development practices. The requirement placed on the evaluator is to show that he
has examined the results provided by the sponsor, checked their comprehensiveness and
accuracy by performing limited testing of his own, and repeated any tests where he found
points of apparent inconsistency or error in the results provided.

At Level E1, and only that level, it is acceptable that where the sponsor of evaluation
cannot obtain adequate evidence from the developer, it may be generated by the evaluator.
At higher levels this is considered to compromise the independence of the evaluator to an
extent where adequate assurance could not then be held in the evaluator’s conclusions.

This approach gives greater detail of the roles of developer and evaluator than has been
found in previous evaluation criteria. This helps ensure uniformity of evaluations, assists
developers to identify before development starts the information that must be produced
and retained for use by the evaluators and, last but not least, protects developers from
over-zealous evaluators.

EFFECTIVENESS CRITERIA

Evaluation of effectiveness takes account of the proposed use of the TOE in the context of
its intended environment. It is only performed after confidence in correctness has been
established. Because these criteria are applied to the TOE as a whole, they are not broken
down by evaluation level, or by phases and aspects of construction and operation.

399

Six distinct aspects of the TOE are considered:

Suitability of Functionality - whether the TOE’s security functions will counter the
identified threats against the TOE as specified in its security target;

Binding of Functionality - whether the individual security functions and mechanisms
of the TOE work together in a way which is mutually supportive and coherent;

Assessment of Construction Vulnerabilities - whether vulnerabilities within the
construction of the TOE identified during the course of evaluation will be
exploitable in practice;

Strength of Security Mechanisms - an assessment of the ability of the TOE to
withstand direct attack on its security mechanisms;

Ease of Use - the practicality of the security functions and mechanisms of the TOE
for actual live operation;

Assessment of Operational Vulnerabilities - whether vulnerabilities within the
operation of the TOE identified during the course of evaluation will be exploitable
in practice.

The criteria for each of these aspects have the same format as for an aspect of correctness.
Requirements for content and presentation are followed by requirements for evidence, and
then evaluator actions are defined. Unlike assessment of correctness, most of the work in
assessment of effectiveness is performed directly by the evaluators. Most of the necessary
evidence will have been already been obtained during the evaluation of correctness.

As part of the documentation required for evaluation of correctness, the sponsor of
evaluation will have supplied a security target for the TOE. During the evaluation of
correctness, this target will have been examined for coverage and consistency. When
assessing Suitability of Functionality the target is used to determine whether the security
functions and mechanisms of the TOE will in fact counter the identified threats to the
security of the TOE. "If the security target for a product is defined to be one or more
predefined functionality classes, without extension or omission, then the TOE is assumed to
be suitable for its intended purposes.

Even when a TOE’s security functions have been determined to satisfy the suitability
criteria, it is possible that the mechanisms employed may interfere or conflict with each
other. Assessment of Binding of Functionality ensures that the security functions and
mechanisms work together in a way that is mutually supportive and provides an integrated
and effective whole. It requires analysis of the interrelationships between security
functions and mechanisms to show that it is not possible to cause any security function or
mechanism to conflict or contradict the intent of another in such a way that an exploitable
weakness results. Clearly, effective binding of functionality is a essential property of a

Trusted Computer Base (TCB) as envisaged by the TCSEC. '

400

During the assessment of the correctness of a TOE, various vulnerabilities (security
weaknesses) will have been identified. During the Assessment of Construction
Vulnerabilities impact analyses are performed to assess whether the vulnerabilities that
have been found would, in practice, actually compromise the security of the TOE as
specified in its security target. It is possible that threats that could exploit the identified
weaknesses can be shown not to exist in practice, or to be countered by other security
mechanisms within the TOE, or to be countered effectively by other means external to the
TOE.

Even if a security mechanism cannot be bypassed, deactivated or corrupted, it may still be
possible to defeat it by direct attack based on deficiencies in its underlying algorithms,
principles or properties. Assessment of the Strength of Mechanisms is distinguished from
other aspects of evaluation in that it requires consideration of the level of resources that
would be needed for an attacker to execute a successful direct attack. The objective of this
assessment is to confirm the claimed minimum strength rating for the critical mechanisms
of the TOE. A critical mechanism is one that is not protected from attack by other,
stronger, mechanisms and whose failure would create a vulnerability.

The minimum strength of a TOE’s mechanisms is rated as either basic, medium or high:
basic provides protection against random accidental subversion, but not against
knowledgeable attackers; medium provides protection against attackers with limited
opportunities or resources; high could only be defeated by attackers possessing a high level
of expertise, opportunity and resources, with successful attack being judged to be beyond
normal practicality.

In certain evaluations it may not be possible or sensible for the evaluators to perform an
assessment of the strength of all mechanisms; for example, in the case of cryptographic
mechanisms the rating would be supplied by an appropriate national body with the
necessary specialist skills and information.

“Assessment of Ease of Use requires review and analysis of external security measures, such
as procedural, physical and personnel controls, that are required to support the security
functions and mechanisms of the TOE. The methods of configuration and operation of the
security functions and mechanisms of the TOE are also assessed to ensure that they are
practicable for operational use. ‘

Assessment of Operational Vulnerabilities is analogous to the Assessment of Construction
Vulnerabilities, but investigates weaknesses found in the documentation and procedures
for configuration and operational use of the TOE.

A failure of the TOE to satisfy any of the identified aspects of effectiveness will result in
the TOE being considered to provide inadequate assurance.

RELATIONSHIP TO THE US TCSEC

An important aspect of the ITSEC must be to enable the results of an evaluation to be

compared against the TCSEC. As has already been stated, the predefined functionality

401

classes F1 to FS are designed to correspond to the functionality of the TCSEC classes. The
evaluation levels, however, have been derived by harmonisation of various European IT
security criteria schemes and contain a number of requirements which do not appear in the
TCSEC explicitly, and make direct equivalence of evaluation levels significantly more
difficult. ‘

However, it is possible to produce a crude table showing the intended correspondence
between the ITSEC criteria and the TCSEC classes:

ITSEC TCSEC
EO0 —> D

F1, E2 —> Cl

F2, E2 —> 2
F3,E3 —> B1

F4, B4 —> B2

FS, ES —> B3

FS, E6 —> Al

A product successfully evaluated against the ITSEC for a predefined functionality class F1
to FS at an evaluation level not lower than that given in the table above should fuifil the
requirements of the TCSEC class shown in the table. The converse relationship, however,
cannot be directly assumed, due to the wider confidence requirements found in the ITSEC
criteria: although any product of sufficient quality to pass a TCSEC evaluation is likely to
have been built in a manner that would meet the additional software engineering
requirements of the ITSEC, this would have to be proven by evaluation.

In addition, there are other considerations that must be taken into account. Within the
TCSEC great importance is placed upon the concept of a reference monitor contained
within an identifiable TCB to enforce access relationships. The ITSEC does not mandate
particular types of mechanism. It would therefore be necessary for a reference validation
mechanism meeting the identified design requirements expressed in the TCSEC to be
specified as part of the security target in order for a rating of true equivalence to be
possible.

CONCLUSIONS -

The ITSEC represents a new development in security evaluation criteria. It has consciously
attempted to address a wider field of applicability than previously developed criteria, by
addressing both systems and products, and by addressing the needs of both commercial and
government market sectors. Equally, it has attempted to draw from the best features of
existing criteria, to harmonise where possible and to innovate only where necessary.

The ITSEC has currently been issued in a draft form, and its authors accept that it will
inevitably contain errors, inconsistencies and omissions. It is being subjected to wide
review and comment on an international basis, in order that after any necessary revision it
may receive broad acceptance and adoption by a wide range of users and market sectors.

402

Comments and suggestions are earnestly invited; contact addresses are giVen in the ITSEC
for each of the four contributing nations. Further copies of the ITSEC can be obtained
from the same addresses or via the contact address referenced at the head of this paper.

REFERENCES
1 Criteria for the Evaluation of Trustworthiness of Information Technology (IT) Systems
ISBN 3-88784-200-6, German Information Security Agency (ZSI), Bonn, Germany, January 1989.
2 DTI Commercial Computer Security Centre Evaluation Criteria
Department of Trade and Industry, London, UK, draft February 1989.
3 UK Systems Security Confidence Levels, CESG Memorandum No. 3
Communications-Electronics Security Group, Cheltenham, UK, January 1989.
4 Information Technology Security Evaluation Criteria (ITSEC)
German Interior Ministry (for the Four Nation Group), Bonn, Germany, draft May 1990.
5 Computer Security Subsystem Interpretation of the Trusted Computer System Evaluation Criteria
NCSC-TG-009, National Computer Security Center, Washington, USA, September 1988.
6 Department of Defense Trusted Computer System Evaluation Criteria
DOD 5200.28-STD, Department of Defense, Washington, USA, December 1985.
7 Report on Gypsy 2.05 :
D. I. Good et al, Report ICSCA-CMP-48, University of Texas at Austin, USA, February 1986.
8 The Z Notation: A Reference Manual
J. M. Spivey, ISBN 0-13-983768-X, Prentice Hall International, 1988.
9 A "New" Security Policy Model
P. Terry et al, Proceedings of the 1989 IEEE Symposium on Security and Privacy, pp. 215-228, IEEE
Computer Society Press, USA, 1989,
10 Military Standard: Defense System Software Development

DOD-STD-2167A, Department of Defense, Washington, USA, February 1988,

403

THE VME HIGH SECURITY OPTION

Tom Parker
Principal Security Consultant.
ICL Defence Systems, Eskdale Road, Winnersh, Wokingham,
Berkshire, England.

Abstract

Criteria for evaluating the security properties of computer systems are now well
established and widely accepted. The security capabilities of ICL's VME Operating System
have recently been enhanced in accordance with the requirements they lay down at level
B1 on the NCSC scale, by the addition of a High Security Option (the VME HSO). This
paper describes the VME HSO, concentrating on the features that have enabled it to
achieve the equivalent of level B1 certification by the British Government. The product is
also aimed at the commercial market, and the paper describes the integrity, audit and
usability features that have been provided to satisfy requirements in this area.

1. INTRODUCTION

ICL is one of the leading European manufacturers of computer systems. Its proprietary mainframe
operating system is called the Virtual Machine Environment, or VME. The VME Operating System has
established itself over the years as being one of the more secure commercial operating systems
available. A previous paper (Ref 1) presented at the DoD Conference described the ways in which the
software and hardware architectures of VME and its host systems combine together to provide the
fundamental structure upon which secure higher level functions can be built.

That paper was presented nine years ago, and VME has since then moved forward a long way. At the
time of the paper, ICL was making initial proposals to the British Government's Department of
Industry (as it was then called) to develop with their financial support a purchasable set of security
enhancements. The development was to be aimed at both the government and commercial user
populations; it was to provide usable security, offering a great deal of flexibility in the choice of
security policy; it was to provide strong security conforming to recognised independent security
quality standards and it was to be evaluated by a recognised authority, resulting in a written
certificate that ICL could use in the marketplace. In December 1987 ICL had the go-ahead to develop
the product, and work started in 1984.

The development came to be known as the VME High Security Option, usually called the VME HSO. It
is available on ICL's Series 39 mainframes.

2. MEASURING HOW GOODIT IS

in the past, various techniques have been applied in a somewhat ad-hoc manner to assess the quality
of security provided by a system. Some examples are:

o straightforward functional testing of security features;
] examination of source code listings, sometimes aided by automatic tools;
] “tiger team" attacks in which security experts attempt to penetrate the system in a

simulated real-life situation;

° consideration of architectural and design quality; a well designed and structured system
is easier to assess and more likely to be correct;

404

° formal verification of the security properties of the system using mathematical
techniques; such techniques are at present feasible only on small systems designed and
written in special languages. '

2.1 Standard Evaluation Criteria

Until the 1980's there was no way of obtaining a reliable standard measure from these techniques;
there was no concept of marks out of ten or position on a scale of security. However in August 1983
the first official set of standard criteria for the evaluation of computer security was published by the
US Department of Defense (Ref 2). This standard is widely applied in US Government procurements
of secure systems and its influence is now pervading European government and commercial
requirements. Although the evaluation scale has been subjected to criticism relating to its scope of
application and its too close coupling of functionality and correctness requirements, it is a remarkable
technical achievement. It represents the culmination of a decade of research, and it is the only
universally recognised scale available today.

The scale comprises the following set of levels, given in.increasing order of security quality:
Level D: No security.

Level C1: Basic security for benign users.

Level C2: Strong conventional slecurity. Discretionary security policy only.

Level B1: Support of a Mandatory, centrally imposed security policy. Defence against corrupt
application code is possible.

Level B2: Level B1 strengthened by a more rigorous and comprehensive approach and a better
security structure.

Level B3: Specially designed with security as an overriding priority.
Level A1: Similarto B3, plus formal methods.

A complex set of criteria apply at each level covering the system's design, functional capabilities,
testing, development environment and documentation.

An evaluation scale has also been developed by the British Government (Ref 3). This has built on the
experience obtained from the American work and is more flexible in its application. One important
feature is its ability to separate out questions about what the system does, from questions about how
well it doesit. ‘

Other scales are emerging from the German Government (Ref 4) and from the Department of Trade
and Industry in the UK (Ref 5). A first draft of a harmonized scale has also been published (Ref 9).

Over a period of two years, starting in early 1987, the VME HSO was subjected to an intensive security
evaluation by an independent technical team of security experts funded and controlled by the British
Government. ICL's aim was to obtain certification for the system at a UK equivalent of level B1 on the
American scale, with an similar but more complex rating on the British Government's own scale. This
was successfully achieved in May 1989 for version SV221 of the system. ICL is now discussing ways in
which this certification can be carried forward into subsequent versions.

At the time of writing this paper, ICL knows of no other proprietary general purpose operating
system which currently offers this level of security functionality and assurance.

405

3. LEVEL B SYSTEMS - WHY SO MUCH BETTER?

- The single most significant advance in the transition from a level C to a level B system is the support of
a centrally controlled Mandatory Access Control Policy, which provides for data confidentiality
without relying on the good behaviour of either end users or the application software they use..

Such a policy possesses three major features:

. it allows a security manager to determine and mark the levels of confidentiality of data
heid by the system; :

® it allows the manager to determine and mark which users are cleared to access what data
according to its confidentiality markings; only if a user is “cleared" to the level of
confidentiality of the data is he permitted to read it;

. using a rule known as the "information flow" rule it prevents untrusted application code
from circumventing the above checks by maliciously copying data from a highly
confidential file to a less confidential file which a user with a low clearance can
subsequently access. Such code (sometimes called "Trojan Horse" code) may attempt to
do this unknown to the user for whom it is executing.

The first two features are relatively easy to provide. The standard approach is to associate a
confidentiality label with each data object (its “"Classification™) and with each user (his “Clearance").
When a user requests to read an object his Clearance is compared with the object’s Classification and
access is permitted only if the former is higher than the latter.

The third feature however, is at the same time the most significant and the most difficuit. Its
significance lies in the fact that without it, it is not possible to evaluate only some of the code.in a
system 1o be sure of the system’s security; without it, all code needs to be evaluated. The latter is one
of the major deficiencies of level C systems; the ability to distinguish between "trusted" and
"untrusted” code is the big leap forward that level B systems make, both in terms of assurance and in
terms of their basic evaluatability. It is only on level B systems that a user can execute some unknown
code on his confidential file and be sure that its contents cannot be leaked by that code to any user
not permitted to see it.

The protection offered by information flow control is difficult to achieve because its straightforward
imposition can be too restrictive in real application environments. An operating system cannot be
expected to understand the internal logic of all of the application code that might ever be executed
on it, so it must lay down information flow rules in ways that do not depend in any way on such an
understanding. These rules will necessarily be restrictive in nature; they will be a blunt instrument
that, unless used with great care, might cause legitimate operations to fail because the system cannot
be sure of their legitimacy.

An example may help illustrate this point (see Figure 1). Suppose a particular application is
performing two "update by copy"” operations in parallel. The first involves reading a confidential file
CA and copying it with appropriate changes to a second confidential file CB; the second involves
reading a publicly available file PA and selectively copying it to a similar public file PB.

Neither of these operations constitutes an information filow violation, but the Mandatory Policy
cannot permit the application simultaneousiy to open CA for read access and PB for write access in
case it maliciously, or accidentally copies data from CA to PB. The operating system does not know
that the application will not do this, and it certainly does not trust it not to do it. Indeed if the
application had been tampered with and contained maliciously written Trojan Horse code, it would
be very likely to do something of this kind!

So the problem is not that information flow security is difficult to achieve (at least at 81 levels of

assurance), but rather that it is difficult to be sure that applications will still work when information
flow controls are imposed. More significantly, the working of the system itself might depend on the

406

Connfidential Connfidential
file “CA" copy file “CB”

Possible Violation

Public copy Public
file. “PA" file “PB”

Figure 1: Information Flow Example

continued functioning of standard system "application” processes which might suffer at the hands of
the information flow rule.

The next Section describes how ICL solved these problems in VIME.

4. USABLE FLOW CONTROLS

Naturally, the VME HSO supports a Mandatory Confidentiality Policy with information flow controls.
To do this it uses security labels along the lines already described. The system is designed so that a
security manager can choose names for the labels that are appropriate for his needs, and they may be
chosen to describe either or both hierarchic confidentiality levels and non-hierarchic confidentiality
compartments. The basic flow control rules outlined above are applied, but enhanced in a number of
ways which minimise their impact on the system's usability:

It is possible for a suitably trusted user to mark code so that the Virtual Machine it is executing
in is permitted potentially to violate the information flow rule.. It is expected that installation
management will themselves ensure that no actual flow violations would occur. The
legitimate application in the example could be marked in this way to enable it to work, but
only after it had been suitably vetted to be trustworthy in this respect . For this reason the
marking is said to belong to a group of markings known in VME as "trust" markings. VM's
executing in possession of any of these trusts are known as "Trusted Processes”. - Itis possible
for a system administrator to run an application in a way which allows it to continue to work as
if no Mandatory Policy controls were being applied, but which audits all cases where violations
would have been caused had these controls been in force. In the example application the
opening of PB for write access would trigger an audit message because CA had already been
opened for read access.

This information can be used in two ways: either the application can be reorganised to
complete and close down its PA to PB copying before opening the confidential files - in which
case not even a potential violation is caused and the application can now be run under full
controls with no security problems, or the application can be marked as trusted as described
above, with the exact reason for the need for trust having been identified and the verification
of the code’s trustworthiness having consequently been made easier. This "trial” mode method
of running an application is intended to be used primarily as a transition aid.

It is possible for a security manager to configure the Mandatory Policy for the system so that

flow control is not policed at all. For many commercial systems who perceive that the threat of
information compromise by this means is small this would be an appropriate choice.

407

° It is possible for a security manager to constrain information flow to be permitted potentially
to occur only within a band of confidentiality levels. In the example it could be arranged to
permit potential CONFIDENTIAL to PUBLIC information flow, but prevent any flow from, say,
SECRET files. :

5. INTEGRITY

Although secure commercial organisations have a strong interest in protecting sensitive information
from getting into the wrong hands, their major motivation for obtaining and installing a secure
system is usually that of prevention of fraud. One of the technical consequences of this is that there is
a need to provide data integrity, and it is therefore at least as important for a secure operating system
to provide strong data integrity controls as it is to provide strong data sensitivity controls. A
particularly significant paper on this topic was recently published by Clark & Wilson (Ref 7).

Because of this importance, despite there being no specific requirement to do so in the American
evaluation criteria, ICL has implemented a Mandatory Integrity Policy in the VME HSO, to
compiement its Mandatory Confidentiality Policy. The integrity features closely parallel the
confidentiality features, and are as follows:

® The policy allows a security manager to determine and mark the level of integrity of data held by
the system.

¢ |t allows the manager to determine and mark which users are cleared to modify what data
according to its integrity level. Only if a user's integrity clearance is higher than the integrity level
of the data is he permitted to modify it.

] It prevents high integrity data from being corrupted by low integrity inputs; this rule is an
integrity dual of the confidentiality information flow rule. it is Trojan Horse data rather than
Trojan Horse code which is defended against here.

There is however an important difference between the two policies. The Mandatory Confidentiality
Policy has no interest in distinguishing between different untrusted application code modules that
may be used to access highly confidential data; there is no concept of giving code a clearance. The
integrity policy does have this concept, and there is a therefore a fourth feature:

° It allows the security manager to determine and mark which code modules are cleared to
modify what data according to its integrity level. :

By making use of this rule the security manager can be sure that important application data is
operated upon only by the proper authorised application code under the control of a properly
authorised user. Furthermore, the integrity flow rule prevents such an application being spoofed into
running with unauthorised input data.

The VME HSO allows the security manager a high degree of flexibility in the way in which this policy is
applied. The enforcement options are similar to but separate from those available for the Mandatory
Confidentiality Policy. In particular the integrity information flow rule which prevents the flow of
low integrity data into high integrity data can in real situations be relaxed if the code involved has
been produced to defend itself against spoof input or other low integrity input, or if other features of
the operating environment can be used to guard against supply of the wrong input data.

Finally a word about viruses: high integrity software on a VME HSO system is protected against
modification by the same integrity marking as that given to that software when it is executing; in this
way the Mandatory Integrity Policy ensures that no software of lower integrity could modify it. This
means that a virus, which reproduces itself by copying itself from software module to software
module will always be confined only to at most the integrity level of the software module within

408

which it is introduced into the system. The operating system code of the VME HSO is protected by a
special integrity label which customers do not use for their own data files. This code is therefore
protected against corruption from any viruses that may be unknowingly introduced on customer
program files. Similarly, a security conscious customer site, by ensuring that all unknown software is
introduced only at a very low integrity level until it has been given a clean bill of health, can guard its
own software against viral attack.

6. OTHER MANDATORY POLICY REFINEMENTS

There are a variety of other ways in which it'is useful, and sometimes essential to allow the use of a
Mandatory Confidentiality or Integrity Policy to be applied to fit a particular installation's needs.

Once the concept of being able to mark code, or nominate users as trusted has been implemented,
one can identify a further set of privileged functions that can be controlled using different trust
markings. Examples of functions that can be specifically controlled under the trust system of the VME
HSO are:

the ability to change a confidentiality or integrity label,

the ability to set and change security controls,

the ability to set and change audit controls,

the ability to change one's own password,

the ability to introduce alien magnetic tapes into the system,
the ability to override the discretionary access control system.

Only users given the appropriate trust, using software marked with the same trust may perform any
of the functions listed above. In total there are nearly thirty different categories of trust supported
on the VME HSO, allowing a fine degree of tailoring to be applied. Services can also optionally be
controlled by trust, and users can be confined to a particular application service when operating with
a particular trust.

There are two points of particular interest in these examples.

The first is the distinction that is possible between the audit and security management functions; this
distinction allows a clear separation of responsibility to be enforced between these two important
roles.

The second is the way in which trusts are used to strengthen the discretionary access controls of the
system. There are two operating system commands in VME which have in the past been considered
particularly dangerous; these are SWITCH-USER and SET-PERMISSION-OVERRIDES. Either of these
permit a user effectively to by-pass discretionary security controls. Naturally the use of these features
was carefully controlled under the discretionary access control policy. However it is now much more
difficult to penetrate the system by illegally obtaining access to these privileged commands; There
are two reasons for this. The first is that their use is now controlled under the Mandatory Policy. Only
trusted users may use them, and then of course only subject to the discretionary controls that have
always applied. The second is that the power of these privileged commands is significantly reduced in
VME HSO systems; even if an untrusted user were to switch to become the Security Manager, he
would be unable to exercise the powers of that user since it is only that user's discretionary
capabilities that are acquired. The intruder would not have been given either the trusts or the
clearances of the username to which he has switched. ‘

The trust system has been extended in other ways. It is possible to nominate particular workstations
as possessing or not possessing particular trusts. In this way users can be controlied in their choice of
workstation from which they are permitted to perform their trusted actions. This idea is further -
extended to encompass other communications devices like network gateways and cluster controllers,
soitis possible for example to prohibit any trusted activities coming in from a gateway to a public X25
network.

409

The Mandatory Policy labelling scheme is also extended to cover communication devices and links, so
itis possible to label a workstation with a particular confidentiality or integrity clearance which limits
the effective clearance of users that use that workstation. For example, an installation could limit
work on data with integrity category of PAYROLL to those workstations located in the payroll office.

Similarly, it is possible to mark devices like disc drives and line printers with security labels which
constrain them to handling data whose security markings lie between defined boundaries. In this
way, the printing of confidential or high integrity data can be confined to one or more nominated
printers, and the storage of particularly sensitive files can be confined to nominated disc or tape
drives. This latter form of protection can also be applied in terms of disc and tape partitions
themselves, permitting fine grain control over file placement.

Finally, it is possible to mark application services with labels so that whatever a user's clearance, for
certain types of application service it can be bounded according to the nature of the work being
done.

7. AUDITING

The ability to record for posterity what is happening on a system is almost as important as the ability
to control it in the first place. Auditors wish to make system users accountable for their actions; they
wish to analyse the ways in which a system is being used or abused; they wish to be able to look back
to a record of previous events in order to assess damage done when a belated discovery of an attack
on the system has been made; they wish to be able to monitor particular kinds of action or action by
particular individuals or action using particular system access points in order to forestall attacks on
the system; finally they wish to deter, to make sure that users know that their actions are being
watched and recorded.

With these wishes in mind, ICL decided to transform the Audit capabilities of the system under the
HSO. Existing audit facilities were supplemented by the provision of a complete new set of security
audit records with special message types and subject to special protection. -

The following events can be audited under the new scheme:

attempted security violations, .

logon, jobstart, session initiation and termination,
submission of incorrect logon data,

changes to mandatory and discretionary security policy,
changes to audit policy,

the exercising of nominated types of trust under the mandatory policy,
procurement of printed output,

loading of code from nominated libraries,

changes to passwords, but not the values involved,
changes to security label values,

any access by any user to any protected VME object.

The last of these event categories has the potential to generate an unacceptably large amount of
audit data, so a wide variety of subsetting options have been made available to the audit manager.

These are:

o accesses by nominated users,

° accesses using nominated workstations,

o accesses using nominated services,

] accesses when code from a nominated library is available for execution,

. read accesses to objects whose confidentiality exceeds a nominated threshold,
® write accesses to objects whose integrity exceeds a nominated threshold,

. accesses to particular nominated objects or object types.

410

Together, these features permit an Audit Manager to define the precise audit profile he requires for
his system. This can be varied on a day to day basis to react to changing circumstances.

. In designing the formats of the new audit records ICL had a choice to make between human readable
but large and therefore inefficient formats, and compacted machine processable formats that are
more difficult for a human to interpret directly. ICL opted for the latter on the basis that in the future
the raw data from audit trails will increasingly require extensive machine pre-processing in order to
provide statistical data, to highlight significant events and to analyse for unusual changes in user
work patterns that may indicate potential attacks on the system (Ref 8). A demonstrator for analysing
VME audit trails has already been developed by Logica in the UK under the auspices of the British
Government's Central Computer and Communications Agency (CCTA).

8. OTHER FEATURES

Space does not permit a full description of all of the security features of the VME HSO, indeed it is
ICL's policy to restrict the availability of full details of the product to only bonafide customers having
a legitimate interest in it (for such customers a range of six security manuals has been produced).
Other enhancements to the system's security have however been made in the areas of authentication,
security labelling of printed output, and the protection of discarded data; this paper has only hinted
at the full power of the "trusts” system.

A range of enforcement options has also been implemented to permit a customer to move gradually
and painlessly into a secure mode of working following purchase and installation of the HSO.

9. WHAT IS THE CUSTOMER TO MAKE OF ALL THIS COMPLEXITY?

A question like this is understandable, and ICL has been very conscious that the power and potential
complexity of the features provided by the HSO can be rather intimidating. The company has
therefore provided a comprehensive training and consultancy support programme to supplement the
HSO product itself. It should be remembered that it is very much in ICL's interest to make sure that
the introduction of the leap forward in security that this product represents is a success.

It is also very important to note that a customer's philosophy when impiementing his particular
security policy should be "keep it simple and stupid!". Although the VME HSO provides a rich and
complex variety of controls, they are there as a shopping list from which each different customer is
free to select his own simple profile; the compiexity is ICL's not the customer's. If a system uses only a
small proportion of the features offered by the VME HSO, but as a result, sensitive and valuable
information is protected to a high level of assurance, then use of the product has been worthwhile. A
customer should not feel that in order to get value for money, all of the security features of the
system must be exercised to their fullest extent, indeed such an approach would be likely to achieve
just the opposite effect.

10. WHAT THE VME HSO DOES NOT DO

The VME HSO is an operating system development. It protects objects that are understood by the
basic VME operating system. This means it protects things like whole files, libraries, disc partitions,
communications devices and magnetic tape drives. It does not directly protect application-level
objects like individual data items in an IDMS or Ingres database. To VME a database is a file, or at
most a few files. The database is protected therefore at exactly that level of granularity and its
individual data items are protected by the HSO only as a consequence of the protection afforded to
the files that contain them.

411

Similarly, any software that runs on top of VME is treated by the VME HSO as being untrusted unless it
is explicitly told otherwise by the security manager. This normally means all application packages and
all superstructure products, including TPMS, are treated by the VME HSO as untrusted. This is not to
say of course that these products are not worthy of any trust; indeed many installations will utilise
their protection features to supplement the security provided by the VME HSO, whose features might
then be looked upon as providing the secure environment within which individual applications can
operate.

"11. NEXT STEPS

At the time of writing of this paper, only a few customers have obtained experience of this new
product. Choice of future enhancements will therefore depend very much on feedback which is yet
to be obtained. There are however two areas of future development which are worth highlighting:

The first is in the area of FTAM, or " File Transfer and Access Method". An early implementation of
this feature on VME will permit VME HSO customers to transmit a file's security label along with the
file, and therefore allow such a file to be protected in its destination system in the same way as on its
source system.

The second development is in the area of user authentication. In the distributed systems of the future,
users will wish to authenticate themselves once to the system as a whole, and use the results of this to
access all of the applications he wishes, in a standard manner, no matter which particular end systems
contain them. ICL is developing such a network Authentication Server and the VME HSO will be
adapted to accept the resulting certified identities rather than repeat the authentication process by
engaging in VME logon exchanges. VME usernames will then become resources which individual
users may or may not be permitted to access. By this means accountability of individual human users
will be achieved no matter how many share the use of the same VME username.

12. CONCLUSIONS

The American evaluation scale and its UK equivalent represent a major step forward in our
understanding of what is required of a secure computer system. Level B systems on these scales will
give a significantly better level of security protection than the conventional level C systems of today.
These benefits will not come without effort on behalf of both users in managing their systems
securely, and manufacturers in giving them the technical tools with which to do this; the potential
gain in our ability to protect data in computer systems is however enormous.

Of prime importance is the support of a Mandatory Confidentiality Policy, without which the higher
level of security assurance provided by level B systems cannot be obtained. The commercial world
“requires similar assurances with respect to integrity, and it is possible to satisfy these requirements by
providing support for a Mandatory Integrity Policy. In both cases however, the implementation
needs to be rich and flexible; a simple implementation would have unacceptable usability
consequences.

Access control is not by itself sufficient; users must be made accountable for their actions and an audit
capability of similar power and flexibility is also required.

The VME High Security Option provides these and other related security facilities for ICL's customers.
It has passed its first hurdle: successfully achieving British Government evaluation to the UK
equivalent of B1 on the US DoD scale. The next hurdles may be even more difficult: proving its
usability, manageability and security against real attack in real customer environments.

412

References

1. PARKER T.A.: "ICL Efforts in Computer Security”, Proceedings of the 4th Seminar of the DoD
Computer Security Initiative, August 10-12 1981.

2. DOD 5200.28-STD.: "Trusted Computer Systems Evaluation Criteria®, Fort George Meade MD USA:
National Computer Security Center, December 1985.

3. CESG: "UK Systems Confidence Levels", CESG Computer Security Memorandum No. 3, Issue 1.1,
Feb. 1989.

4. GERMAN CIPHERBOARD: "National Catalog of Criteria for the Evaluation of Trusted IT Systems”,
Draft version, issued by the German Cipherboard, Federal Republic of Germany.

5. DTI: "Evaluation and Certification Manual", V23 - Version 3.0, one of five volumes produced by the
DTl Commercial Computer Security Centre, RSRE Malvern, Worcs.

6. BELL D.E. and LAPADULA L.J.: "Secure Computer Systems: Unified Exposition and Multics
interpretation”, MTR-2997 Rev.?1 MITRE Corp., Bedford, Mass. March 1976.

7. CLARK D.D. and WILSON D.R.: "A Comparison of Commercial and Military Computer Security
Policies", in Proc. Symp. on Security and Privacy, |EEE, April 1987.

8. TERESA F. LUNT: "Automated Audit Trail Analysis and Intrusion Detection: A Survey"”, in Proc. 11th
National Computer Security Conference, Baltimore, October 1988.

9. "Information Technology Security Evaluation Criteria (ITSEC)", Harmonised Criteria of France -
Germany - The Netherlands - The United Kingdom, 2nd May 1990 Version 1 (Draft).

413

Rainbows and Arrows :
How the Security Criteria Address Computer Misuse

Peter G. Neumann
Computer Science Lab, SRI International, Menlo Park CA 94025-3493

Neumann@csl.sri.com

Phone 415-859-2375

Copyright 1990 Peter G. Neumann .

13th National Computer Security Conference
Washington DC, 1-4 October 1990

Abstract

This paper examines the two main sets of computer
security evaluation criteria and considers the extent to
which each criterion combats various types of threats.
Differences among the criteria sets are summarized, and
recommendations are offered for improved coverage.

Introduction

In the 1989 National Computer Security Conference,
Neumann and Parker [89] considered various classes of
techniques for intentional or accidental misuse of
computers and communications. Table 1 gives a terse
summary of the misuse classes and illustrations of various
types of misuse techniques. Exploitations frequently
involve multiple techniques used in combination.

Two sets of security criteria are considered here, the U.S.
Trusted Computer Security Evaluation Criteria (TCSEC)
and the European Information Technology Security
Evaluation Criteria (ITSEC). Each has certain strengths
and certain deficiencies. Together they remain incomplete
in their coverage and not completely consistent with one
another. Nevertheless, they must be considered as part of
an evolutionary process, and represent important steps
toward improved system security.

Both criteria sets are threat oriented. They are themselves
evaluated here with respect to the specific threats that they
do or do not address.

The TCSEC

The Trusted Computer Security Evaluation Criteria
(TCSEC) of the United States Department of Defense are
summarized in Figure 1, which is reproduced from TCSEC
[85] (the Orange Book). Apart from the degenerate D
class, each evaluation class (designated C1, C2, B1, B2,
B3, Al, in order of generally increasing functionality and
assurance) has associated with it a collection of criteria that
address security policy, accountability, assurance, and
documentation. - The criteria for any evaluation class
subsume the criteria at lesser classes. Many of the criteria
elements have different implications at different evaluation

414

classes; for example, security testing appears in Figure 1
with increasingly stringent requirements at each evaluation
class from C1 to Al. Overall, the C class corresponds to
conventional threats, the B class to more severe threats,
and the Al class provides greater assurance for B3
functionality.

A distinction is made between the ratings of products and
the security of installed systems. Actual configurations of
systems, particularly when networked, may result in
vulnerabilities in spite of the evaluated ratings of individual
component products. For example, passwords transmitted
in the clear between networked systems may permit easy
system compromise. Similarly, a flawed sendmail can
undermine systems through dial-up lines, even without
networking. Consequently, -it is vital to consider each
system complex (including networks, distributed system
control, database management, and applications) as a
single system. For this purpose, the Trusted Network
Interpretation (TNI, Red Book, TCSEC-TNI [87]) and the
Trusted Database Interpretation (TDI, TCSEC-TDI [89])
should be considered in addition to the Orange Book, along
with others in the ‘rainbow’ series of documents -- which
help to put TCSEC [85] in context. Analysis of a
composite system may benefit from component
evaluations; however, because the TCSEC were
established before composite systems had become better
understood, there are some basic shortcomings.

The Harmonised ITSEC

The Information Technology Security Evaluation Criteria
(ITSEC), the Harmonised Criteria of France, Germany, the
Netherlands, and the United Kingdom (ITSEC [90])
represent an effort to establish a comprehensive set of
security requirements for widespread international use.
ITSEC is generally intended as a superset of TCSEC, with
ITSEC ratings mappable onto the TCSEC evaluation
classes (see below). Historically, ITSEC represents a
remarkably facile evolutionary grafting together of the
evaluation classes of the German [light] Green Book (‘das
griine Buch’, GISA [89]) and the ‘claims language’ of the
British [dark] Green Books (DTI [89]). (The predecessor
criteria are considered here only in passing. Brunnstein
and Fischer-Huebner [90] and Pfleeger [90] contrast these
criteria with TCSEC.)

mailto:Neumann@csl.sri.com

¢ EX: External abuse ;
1. Visual spying: observation of keystfokes or screens
2. Misrepresentation: deception of operators and users
3. Physical scavenging: dumpster-diving for printout
e HW: Hardware abuse
4. Logical Scavenging: examining discarded/stolen media
5. Eavesdropping: electronic or other data interception
6. Interference: electronic or other jamming
7. Physical attack on or modification of equipment or power
"~ 8. Physical removal of equipment and storage media
e MQ: Masquerading
9. Impersonation (false identity external to computer systems)
10. Piggybacking attacks (on communication lines, workstations)
11. Playback and spoofing attacks
12. Network weaving to mask physical whereabouts or routing
e PP: ‘Pest’ programs (setting up further abuses)
13. Trojan-horse attacks (including letter bombs)
14. Logic bombs (including time bombs), a form of Trojan horse
15. Malevolent worm attacks, acquiring distributed resources
16. Virus attacks, attaching to programs and replicating
» BY: Bypassing authentication/authority
17. Trapdoor attacks (due to any of a variety of sources) --
a. Improper identification and authentication
b. Improper initialization or allocation
c. Improper termination or deallocation
d. Improper validation
e. Naming flaws, confusions, and aliases
f. Improper encapsulation: exposed implementation detail
g. Asynchronous flaws: time-of-check to time-of-use anomalies
h. Other logic errors
18. Authorization attacks (e.g., password cracking, token hacking)
e AM: Active misuse of authority (writing, using, with apparent authorization) -- .
19. Creation, modification, use (including false data entry)
20. Incremental attacks (e.g., salami attacks)
21. Denials of service (including saturation attacks)
e PM: Passive misuse of authority (reading, with apparent authorization) --
22. Browsing randomly or searching for particular characteristics
23. Inference and aggregation (especially in databases), traffic analysis
24. Covert channel exploitation and other data leakage
o IM: 25. Misuse through inaction: willful neglect, errors of omission
o IN: 26. Use as an indirect aid for subsequent abuse: off-line preencryptive
matching, factoring large numbers, autodialer scanning.

Table 1: Summary of Techniques for Computer Misuse

At

:2\ N D NO ADOIMIONAL REGUIREMENTS FOR THIS CLASS
caz;\ RN ‘ wmmm&nﬁm@smmsw
“ SECURITY POUCY . NO REGUIREMENTS FOR THIS CLASS

415

ITSEC unbundles fiunctional criteria (F1 to F10) and
correctness criteria (EO as the degenerate case, and E1 to
E6), which are evaluated independently.

The functional criteria F1 to F5 are of generally increasing
merit, and correspond roughly to the functionality of C1,
C2, B1, B2, and B3, respectively. The remaining
functionality criteria address data and program integrity
(F6), system availability (F7), data integrity in
communication (F8), data confidentiality in
communication (F9), and network security including
confidentiality and integrity (F10). F6 to F10 may in
principle be evaluated orthogonally to each other and to the
chosen base level, F1, F2, F3, F4, or F5.

The correctness criteria are intended to provide increased
assurance. To a first approximation, the correctness
- criteria cumulatively require testing (E1), configuration
control and controlled distribution (E2), access to the
detailed design and source code (E3), rigorous
vulnerability analysis (E4), demonstrable correspondence
between detailed design and source code (ES), and formal
models, formal descriptions, and formal correspondences
between them (E6). E2 through E6 correspond roughly to
the assurance aspects of C2, Bl, B2, B3, and Al,
respectively.

An ITSEC rating is thus one or none of F1 to F5, one of EQ
to E6, and one or none of each of F6 to F10, i.e., one of
6x7x2x2x2x2x2 = 1344 ratings. The intended approximate
mappings from ITSEC functionality and correctness to
TCSEC evaluation classes are given in Table 2 (although
the respective definitions are not always completely
consistent). F6 to F10 do not enter into the mappmg, as
they have no direct correspondence in TCSEC.

ITSEC ITSEC TCSEC
function corxrrectness| evaluation

level level class

EO D

Fl E2 Cl

F2 E2 c2

F3 E3 Bl

F4 E4 B2

F5 E5 B3

F5 E6 Al

Table 2: Mapping of ITSEC onfo TCSEC

Because of the unbundling of functionality and assurance,
other combinations such as F4/E3 are potentially
meaningful. However, extreme combinations such as
F5+6+7+8+9/E0 and F1/E6 are unrealistic. In any event,
the mapping from ITSEC to TCSEC is many-to-one (e.g.,
F4/E3 and F3+7/E3 both map to B1), and therefore not
uniquely reversible in the absence of the original ITSEC
context (i.e., B1 maps back to F3/E3).

416

ITSEC’s unbundling has advantages -and disadvantages.
On the whole it is a meritorious concept, as long as
assurance does not become a victim of commercial
expediency, and if the plethora of rating combmatmns does
not cause confusion.

Although ITSEC [90] contains nothing analogous to Figure
1, there is a comparable table in the precursor German
criteria document (GISA [89], pp. 106-107) for its
functional and ‘quality’ (now ‘correctness’) criteria,
distinguishing as in Figure 1 between ‘no requirement’,
‘new requirement’, and ‘no new requirement’. Because
Figure 1 is so useful as a definitional reference, a similar
table would be useful for ITSEC.

ITSEC addresses ‘‘generic headings’’ of identification and
authentication, access control, accountability, audit, object
reuse, accuracy, reliability of service, and data exchange.
A semiformal claims language is used to define particular
properties that must be satisfied. The claims provide the
basis for evaluation or self-evaluation. Table B.1 of
ITSEC [90] shows the relationships between 35 claims-
language ‘‘target phrases’’ and the generic headings.

The Criteria and the Misuse Techniques

This section contrasts TCSEC and ITSEC, and also
discusses their applicability to the various misuse
techniques. Table 3 indicates which misuse techniques
(Table 1) are addressed by each of the two sets of
evaluation criteria, TCSEC and ITSEC. The technique-
type numbers and symbolic class designators in Table 3 are
those noted in Table 1. An entry in the body of Table 3
implies that the particular criteria element contributes
something constructive to the prevention or detection of the
indicated misuse technique or class. However, because of
the inherently weak-link nature of security, it is necessary
to consider the coverage provided by the totality of all
criteria rather than that of any individual criterion.

The first section of Table 3 summarizes the misuse
techniques relative to the TCSEC evaluation criteria
(Figure 1). Apart from questions of the extent of
protection and assurance, the TCSEC entries of Table 3 are
relatively independent of the specific evaluation classes,
for those evaluation classes for which requirements exist
(i.e., for which the matrix entry in Figure 1 is not black).

To the extent that the ITSEC criteria F1 to FS map onto the
TCSEC criteria (when combined with the correctness
criteria, as noted in Table 2), the ITSEC functionality
classes F1 to F5 can be related directly to the first section
of Table 3 via the particular combination of TCSEC
requirements in Figure- 1. The additional functionality
criteria (F6 to F10) are only partially covered by TCSEC
and TNL The relevance of ITSEC to the misuse
techniques is summarized in the second section of Table 3.

\ Misuse
\ Techniques EX HW MQ PP,BY AM PM PM PM IM IN
Criterion \ 1-3 4-8 9-12 13-18 19-21 22 23 24 25 26
TCSEC Security Policy: ,
Discretionary access control (*) * *
Object reuse 17b,c
Labels & label integrity *
Exportation (3 criteria) (4) *
Labeling human-read output (3) %
Mandatory access controls *
Subject sensitivity labels *
Device labels *
TCSEC Accountability:
Identification/authentication (9) * * (*)(*)
Audit (*) * * * * * (*) (%)
Trusted path - * *
TCSEC Assurance:
System architecture (*) * * * k0%
System integrity *
Security testing (*) (*)
Design spec/verification : * * (
Covert channel analysis (*)¢(
Trusted facility management (3) (*) * * (
*
*
*

* % F ¥ ¥ ¥
* 4 ¥ * F *
¥ % F % F *

*

~—
*

Configuration management (*)
Trusted recovery (*)
Trusted distribution

TCSEC Documentation:
Security features usexr’s guide *
Trusted facility manual *
Test documentation *
Design documentation *

ITSEC Functionality and Correctness:
Fl. Cl functionality
F2. C2 functionality
¥3. Bl functionality
F4. B2 functionality
F5. B3 functionality
F6. Data/program integrity
F7. System availability (6-
F8. Comm data integrity 6
F9. Comm data confidentiality 5
Fl10.Network security/integrity 5
E1-E3, with varying assurance
E4-E6, with varying assurance

—~ o o~

Www

Nt
—~ o~ o~
S

* * (*)(*)

o~
N

% % F Ok OB F ¥ F N ¥ ¥ ¥
* % % ¥ % F N N % F ¥ ¥

~ -~
—
P~~~

Legend: The column-head misuse class designators and the misuse-type numbers refer to those in Table 1.
Misuse types are grouped according to similar characteristics.
“*’ implies the given criterion helps generally to combat the misuse class(es) in the column head.
Numbers imply only certain misuse types are applicable within the column-head class(es).
Parentheses imply a secondary effect for the particular criterion and misuse class(es) or type.
Refer to Figure 1 for relevant TCSEC evaluation classes for each TCSEC criterion.

Table 3: Criteria relevance for combatting misuse techniques

417

To the extent that ITSEC is a proper superset of TCSEC,
many of the following comments about TCSEC are also
relevant to ITSEC. When ITSEC is discussed per se, it is
usually where it differs from TCSEC.

TCSEC bundles its criteria in two dimensions, as can be
seen in Figure 1. First, functionality and assurance criteria
are coupled rather rigidly. Second, each evaluation class is
considered as a monolithic collection of criteria; in practice
it would be useful to define intermediate evaluation classes
such as ‘C2+" or ‘Bl+", defined with certain specified
features of higher classes and extra requirements (e.g., akin
to F6 to F10).

The TCSEC criteria do not adequately address availability,
data integrity (such as assurances that files have not been
tampered with through bypasses to the write-protection
mechanism), and generalized nondenial of service, for
example. (The ITSEC criteria are somewhat more explicit
about requiring availability and preventing denials of
service.) The TCSEC criteria also do not address trusted
paths to and authentication by virtual systems that do not
have comparable facilities with respect to the end users,
although extensions have been proposed. Furthermore,
there is still some uncertainty about the criteria-relevant
effects of layered trusted computing bases (TCBs). These
considerations, together with the proliferation of TCSEC
‘interpretations’ (e.g., TNI and TDI for networks and
databases, respectively), indicate that there are additions to
TCSEC that would be relevant; indeed, the ITSEC F6-F10
have attempted to address some of them. All of the misuse
techniques of Table 1 are relevant to distributed systems,
networks of computer systems, and database systems, and
thus need to be covered explicitly by any subsequent
extensions or modifications to the criteria.

The ITSEC F1-F5 functional criteria (together with the
appropriate correctness criteria) map fairly well onto the
TCSEC requirements, according to Table 2, while F6-F10
do not. For F6 to F10, it is unclear what correctness
criteria. would be meaningful in isolation, particularly
because failure to enforce the F6-F10 requirements with
adequate assurance could actually undermine the
enforcement of overall system security supposedly covered
by the F1 to F5 rating. For example, inadequate attention
to integrity, communications, or networking can undermine
the security of installed computer systems. The sendmail
debug option problem provides an illustration.

Defensive measures should be chosen to prevent wasteful
coverage of nonthreats and to prevent gaps from existing at
the interfaces among the various measures. Indeed, the
‘Chinese Menu’ flavor of the ITSEC criteria (i.e., the
unbundling of functionality and correctness, plus the
ostensibly orthogonal F6 to F10 requirements) appears to
be attractive for that reason. However, many of 1344
potential ratings of ITSEC functionality and correctness are
not particularly logical, consistent, or sound, and should be

418

avoided; in contrast, the mapping (Table 2) of ITSEC
ratings onto one of only seven TCSEC evaluation classes
suggests that TCSEC might be too monolithic, -

Further Discussion

Security requires an overall systems view, and all potential,
weak links must be considered. TCSEC and ITSEC focus
on certain basic aspects of system misuse, but are less
comprehensive in others. In this section we consider the
roles of security policy, accountability, and assurance, as
well as the special problems of networks and databases.

Security policy

Table 3 suggests that security policy criteria help to
address the basic misuse types (13-24), but the table does
not indicate the extent to which weak-link phenomena
predominate. In particular, examination of the column for
pest programs and bypasses shows that the problems of
preventing these forms of attack are rather pervasive, in
that every one of the criteria elements contributes
something to combatting these attacks, but that in
combination all of the criteria are still not quite enough.
Penetrators typically appear as if they are authorized users.
Pest programs are especially insidious because they
execute on behalf of authorized users, with the normal
privileges of their unsuspecting victims. Although any
particular known personal computer virus (or propagating
Trojan horse) that does not mutate may be detectable,
viruses are in general very difficult to detect -- especially if
they resort to techniques such as mutation, length-
preserving compressions, and dispersion into small pieces.
Such techniques escalate pest-program defense to being
‘beyond feasibility’ in general.

Thus, a combination of all of the cited criteria elements
(including better PC hardware and operating systems)
evidently would help somewhat, but would still not be
enough. Finer-grain access controls that closely reduce
what is permitted to just what is actually necessary can
help to combat these attacks, including misuse by
apparently authorized users, by narrowing the basic gap
that otherwise prevents access controls from enforcing
what is actually intended.

The existence of compartmented multilevel security (MLS)
tends to limit some of the adverse effects from pest
programs and bypasses -- notably adverse flow of
information -- as well as reducing opportunities for misuse
by authorized users. MLS is of potential value throughout
a distributed system or network, assuming that there is
comparable trustworthiness in enforcement. Some sort of
mandatory integrity (e.g., the restrictive multilevel
integrity, MLI, of Biba [75], or the more flexible type-
based integrity provided by LOCK, Boebert [85]) can also
help, particularly in preventing trusted applications from
depending on less trusted programs and data, assuming

explicit or implicit certification of new programs and data.
Denials of service could be restricted by the combination
of MLS and ML, at least by confining the effects within
security/integrity levels and compartments. However, even
with such multilevel controls there are still vulnerabilities,
such as malicious deletion within the same level and
compartment. The application integrity policy of Clark
and Wilson [87] also provides a significant set of criteria,
relating to good software engineering practice.

The scope of coverage is quite diverse for the various
security-policy related criteria elements. One of the more
narrowly defined requirements is the TCSEC criterion for
proper object reuse, addressing improper initialization or
allocation (type 17b) and also relating to improper
termination or deallocation (type 17c) in Table 3. Its
proper enforcement depends on noncompromisability of
other criteria. For the general technique class of bypassing
authentication and authority (BY) in Table 3, preventing
the subtypes of trapdoor attacks (type 17) requires
intelligent software development; object reuse is just one
specific example of this need. Thus, implicit in the process
of adhering to the criteria is a requirement that demands
better system engineering, including software, hardware,
and the operating environment. Also, inherently weak
security policies (e.g., C2 discretionary access) should not
be relied on in critical applications.

Accountability

Passwords provide a fundamentally flawed authentication
mechanism, although neither criteria set adequately reflects
the seriousness of the problems. For example, there is a Bl
requirement for authentication, but nothing higher except
for the trusted path requirements at B2 and B3, which only
slightly reduce the threats to password compromise.
Something more stringent (such as encryption-based
authenticators) is undoubtably desirable in sensitive
environments, although even those mechanisms are
vulnerable to certain forms of compromise.

Logging and auditing play a vital role throughout.
(Auditing is the only criterion that addresses the rather
obscure techniques of misuse through inaction (type 25)
and use as an indirect aid (type 26), and then only afier the
Jact.) Although not addressed in detail in either of the
criteria sets, real-time audit-trail analysis is expected to
become a major contributor in the future, in hopes of
catching perpetrators in flagrante delicto. Lunt [88]
surveys real-time analysis systems that use rule-based
expert systems and/or profile-based statistical systems.
Real-time analysis has the potential of providing additional
deterrents that post-hoc analysis cannot.

Nonrepudiation is a rather specific requirement (e.g., DTI
[89]), addressing a small corner of the authentication
problem in which authenticity cannot easily be denied at a
later time, i.e., part of the attack technique of improper
identification and authentication (type 17a).

419

Nonrepudiation was present in the predecessor Dark Green
books, but appears only implicitly in ITSEC.

Assurance

Examination of Table 3 indicates that the criteria only
incidentally address external abuse and hardware abuse
(technique types 1 to 8). Protection against emanations
(part of type- 5) and interference (type 6) is extensively
covered elsewhere for military and intelligence
applications, but is widely ignored in other applications.
Nevertheless, stray emanations and interference have been
responsible for human deaths in life-critical applications
(e.g., the combination of microwave emanations and heart-
pacemaker interference), and must be recognized as both
security and integrity problems in critical environments.
More generally, better administrative guidance for external
and hardware abuse would be appropriate, particularly for
unclassified critical applications.

Physical security is an important part of defending against
various classes of attack; it is generally thought of in
relation to hardware abuse and certain external attacks, but
often is relied upon implicitly for authentication, trusted
path, and configuration management criteria as well. It is
usually considered separate from computer security, less
glamorous in its nonresearch nature. However, physical
access to computer and communication equipment- can
seriously undermine the ability to enforce TCB security
and integrity. For example, the trusted distribution
requirement (relating to some assurances that the system is
untampered with) arises in TCSEC only at Al, but is
generally relevant; trusted paths arise at B2 and B3, but are
also meaningful below that. Defending against the
insertion of pest programs and trap doors depends not only
on the cited criteria but also to some extent on physical
security and people, especially in personal computers.

Operational security is another serious concern. Trusted
facility management has requirements at the B2 and B3
classes relating to the separation of duties between operator
and administrator roles (B2) and additionally between
security administrator and system administrator roles (B3).
(Separation of duties more generally is fundamental to the
Clark and Wilson integrity model, and is not explicitly
addressed by either of the criteria sets.)

Databases

For database management systems, all of the basic misuse
techniques and all of the criteria elements of Table 3 are
relevant. Of particular importance are database issues
relating to integrity, inference, and covert channels, at a
granularity different from operating systems:

e Integrity constraints often lead to confusion in databases.
Consistency of distributed and/or replicated data has both
security and integrity implications. Primary-key
uniqueness and referential integrity have both integrity and

inference implications. Integrity locks (e.g., cryptological
seals) are of interest, although compromises via the
underlying operating system must be considered.

e Inference issues are intrinsic in databases, and generally
impossible to combat completely.

e Covert channels arise for a variety of reasons, including
the use of shared indices, concurrency controls, resource
exhaustion, recovery, shared devices, and naming conflicts.
They are also a common side-effect of discretionary access
control mechanisms. They are seemingly more difficult to
control in databases than in operating systems, especially
when data dependent.

The TCSEC Trusted Database Interpretation (TCSEC-TDI
[89]) gives considerable guidance on such issues.
Databases are of interest to the ITSEC criteria only as
instances of entire systems. Issues of hierarchically
layered assurance raised by the TDI are in the long run
likely to be very important, whenever systems are
composed out of components with different degrees of
trustworthiness. The absence of explicit layering of TCBs
in the ITSEC criteria suggests that the entire DBMS and
underlying operating system might have to be evaluated as
one, rather than being able to reason about the underlying
TCB. Nevertheless, compositional reasoning is plausible
within ITSEC. (Discussion of balanced assurance versus
uniform assurance must await the final version of the TDI.)

As an example of a database system targeted for a TCSEC
B3 or Al rating, the SeaView security/integrity model
(Denning et al. [88]) and system design (Lunt et al. [88])
provide a general approach capable of advanced database
security, including multilevel security. The SeaView
architecture involves layers of trustworthiness, based on a
multilevel secure trusted computing base (Gemini’s
GEMSOS), and a slightly modified commercial DBMS
(Oracle). The database engine is untrusted for multilevel
security, but is trusted for integrity. SeaView explicitly
addresses a wide range of security and integrity threats
(including misuse techniques 13 through 24).

Networks

The TNI and ITSEC F8, F9, and F10 are particularly
relevant to networks; essentially all of the misuse
techniques are applicable to computer-communication
networks per se (irrespective of the computer systems that
they conjoin), although the coverage in Table 3 is
somewhat spotty. For example, the MILNET terminal
access concentrators (TACs) provide dial-up or hard-wired
~access to all systems on MILNET. The TACs and the
interface message processors (IMPs) are logically internal
to the network, and invisible to ordinary programmers.
Because the TACs and IMPs are systems (nodes) without
‘users’, some of the techniques may at first seem less
applicable, such as the ability of unauthorized people to
insert pest programs. However, such vulnerabilities still

420

exist, because of the way in which program maintenance is
done remotely using the network itself. This suggests that
without careful consideration it is dangerous to assume that
any of the criteria elements is not applicable. The 27 Oct
1980 Arpanet collapse and the 15 Jan 1990 AT&T
slowdown both indicate how a system flaw can
accidentally result in the propagation of damage,
throughout the network. (See Neumann [90a].) There is
also an important security lesson to be learmed from such
accidental problems, because both could alternatively have
been triggered intentionally. Thus, networking appears to
require still broader coverage of vulnerabilities.

Other Criteria

The Canadian draft criteria (CSE [89]) outline classes A,
B, C, and D, as in TCSEC, as well as divisions of integrity
(E,F,G,H), availability (J,K,L,M), accountability (P,Q,R,S),
and trustworthiness (TO, T1, T2, etc.). Draft French
criteria also exist, in the ‘‘Blue-White-Red Book™. -
(Harmonization of those two criteria sets could result in
colorful gourmet alphabet soup. Vive la différence!)

The British Ministry of Defence has established a different
set of standards (MoD [89]) for safety-critical computer
systems. Those criteria require significant use of
‘semiformal’ methods. Indeed many of the requirements
for secure systems are also relevant for life-critical
systems, but by no means sufficient.

Conclusions

Table 3 represents an oversimplified effort to capture the
essence of the relationships between the two criteria sets
and the threats they seek to address. The reality is
obviously more multidimensional, with some subtle
distinctions among the different evaluation classes and
among the different technique types within each misuse
class. Nevertheless, the intent of this paper is to educe the
major issues for deeper examination.

The two criteria sets have tended to focus to date largely on
the simplest threats in relatively homogeneous systems.
However, as technology and assurance measures both
improve, as distributed sytems become more widespread,
and as sophistication on the part of misusers increases, the
serious threats may tend to change in nature and escalate in
technology. Thus, it is important to anticipate such trends
and ensure that the criteria cover all of the realistic threats.
In general, this may result in a slow migration to
intermediate or even higher functionality and assurance
(whether currently defined or not), even in personal
computers and workstations, and with particular attention
to distributed systems and networking.

TCSEC and ITSEC are seen here to play useful roles in

combatting malicious (and to some extent unintentional)
misuse of computer systems and networks. However, both
criteria sets reflect some vestiges of their historical
perspective (despite the recency of ITSEC); important
classes of misuse and various advanced architectures are
not adequately covered. In addition, there are many related
issues that are shortshrifted, such as more explicit
recognition of the software-engineering relevance of the
application integrity policy of Clark and Wilson, the
importance of reusability and composability of sound
building blocks such as TCSEC TCBs, and the
fundamental nature of authentication. Trustworthy
identification and authentication are vital to distributed
systems. Also important are generality and flexibility in
evaluation of real systems, e.g., evaluating system products
and modifications generically, while also evaluating
specific installations in their live environments. Neither of
the two criteria sets deals satisfactorily with the assurance
that results from hooking together either homogeneous or
heterogeneous system components, reflecting the
vulnerabilities in layered, networked, and distributed
systems, although the Trusted Network Interpretation
(TNI) and ITSEC F8-F10 attempt to address these issues.
Some major remaining research issues were exposed in the
TDI attempts to. properly address layering of trusted
components, and must be resolved.

Recommended Extensions

Both sets of criteria represent significant efforts to improve
security in general, and to reduce the risks of malicious
misuse in particular. Several specific recommendations for
desirable extensions are noted below.

o Further system integrity is desirable above Cl1, e.g., to
hinder system tampering.

e Mandatory integrity mechanisms can reduce the
dependence on untrustworthy code and data.

e Application integrity a Ila Clark-Wilson can limit
malicious code and other problems in applications.

- Availability measures (including the use of integrity
requirements) can limit denials of service by both
unauthorized and authorized users.

¢ Higher-assurance authentication is desirable above B1.
Passwords generally have too many vulnerabilities.

o Trusted distribution is desirable below Al; trusted
recovery is desirable below B3; trusted paths may be
relevant below B2. All three of these can have significant
roles in the prevention of pest programs, even in C2
systems.

» Real-time audit-trail analysis has the potential to detect
pest program hatching, penetrations, and misuses of
authority preliminary to or concurrent with misuse.

e Greater attention to distinctions between products and
operational systems is desirable, including more
administrative and management guidelines, as well as the

_authorized users.

. systems.
421

ability to ‘accommodate compositions of evaluated
products, installed systems, and incremental changes.
Further guidance on how the criteria might help installed
systems to prevent misuse would be very valuable.

e Composite systems must be addressed systematically.

e More attention should be given to formal code
verification and other means of demonstrating whether
code is consistent with jts specifications. This is important
in certain critical applications, not just for security but also
where human safety and very high availability are vital. It
is interesting that the precursor German criteria (GISA
[89]) included a quality criterion Q7 (equivalent in spirit to
the first incarnation of TCSEC’s ‘beyond Al’), which
failed to harmonizeinto an ITSEC E7 (‘beyond E6).

¢ Specific products and installed systems need to be better
matched with the threats they are intended to address,
addressing risks and cost benefits. Table 3 must be
recognized as a superficial first step.

o ITSEC provides many challenges for an evolutionary
next-generation TCSEC addressing the above points, and
especially the issue of TCSEC/ITSEC reciprocity.
However, it will be important not to introduce circular
dependencies or inconsistencies between the two.

The original version of this paper contained the following
comment, in light of the rainbow-colored criteria books:
‘‘Although the number of still unused colors is rapidly
dwindling, it is hoped that neither the intersection of the
requirements nor the union of the colors red and green will
be used, for that would result in a little black book for
security.”” It appears that the considerable harmonization
already achieved in the past year by ITSEC has
significantly reduced that concern.

Various ‘‘CLEFs’’ (CESG-Licensed Evaluation Facilities)
are being formed to carry out ITSEC evaluations.
Recognizing the considerable advantages that can result
from relatively unrestricted reciprocity, it is hoped that
harmonization of U.S., U.K., and German interests (among
others) can lead to accord and creative counterpoint among
the at-least-treble CLEFs, particularly in staving off
nationalistic self-interest.

Malicious misuse of computer systems can never be
prevented completely, particularly when perpetrated by
Nevertheless, there are considerable
benefits that can be gained from evaluations with respect to
the criteria addressed above -- with the recognition that
some threats are not covered in adequate detail. (Note that
too much specificity is also a bad idea if it stifles design
diversity and exacerbates different vendors’ compatibility
concerns.) Further work is urgently needed to refine and
extend TCSEC and ITSEC into a unified, coherent,
international, mutually useful, and modern set of criteria
that more precisely address the vulnerabilities and threats
to be avoided, including those in heterogeneous distributed
Rapid convergence on such a universal set of

criteria will be essential to the development of appropriate
future products, systems, and their evaluations. TCSEC
and ITSEC must not be considered rigidly as gospel (or as
competitors), and must rapidly evolve together into a
unified whole. It will be important in the future to
incorporate security, integrity, availability, guaranteed
performance, safety (cf. MoD [89]), and other vital
requirements within a common composite-system
framework (Neumann [90b]), and to be able to enforce
whichever of those requirements *are necessary, so that
there will be greater assurance that critical systems can
simultaneously satisfy the combined set of requirements.
(For example, see Neumann [86]). However, we must
never assume perfection on the part of the computer
systems and their user communities, and must design and
use the technology accordingly.

Acknowledgements

The author is indebted to Teresa Lunt and Marjory
Blumenthal for their helpful suggestions. This paper was
prepared with support from National Science Foundation
Grant CCR-8715419.

References

K.J. Biba [75], Integrity Considerations for Secure
Computer Systems. Report MTR 3153, MITRE Corp.,
Bedford, Massachusetts, June 1975S.

E. Boebert [85], A Practical Alternative to Hierarchical
Integrity Policies. Proc. Eighth National Computer
Security Conference, 30 September 1985.

K. Brunnstein and S. Fischer-Huebner [90], Analysis of
"Trusted Computer Systems", Proc. 6th Inte¥national
Conference on Information Security: SEC’90, IFIP TC-11,
Helsinki-Espoo, 23-25 May 1990.

D. Clark and D. Wilson [87], A Comparison of
Commercial and Military Computer Security Policies.
Proc. 1987 IEEE Symposium on Security and Privacy,
QOakland, California, April 1987, pp. 184-194.

CSE [89], Communications Security Establishment,
Canadian Trusted Computer Product Evaluation Criteria.
Draft, version 1.0, May 1989.

DTI [89], Commercial Computer Security Centre,
Department of Trade and Industry, volumes V01
(Overview Manual), V02 (Glossary), VO3 (Index), V11
(Users’ Code of Practice), V21 (Security Functionality
Manual), V22 (Evaluation Levels Manual), V23
(Evaluation and Certification Manual), V31 (Vendors’
Code of Practice), Version 3.0, February 1989.

D.E. Denning, T.F. Lunt, RR. Schell, W.R. Shockley,
M. Heckman [88], The SeaView Security Model. Proc.
1988 IEEE Symposium on Security and Privacy, April
1988, pp. 218-233.

GISA [89], IT-Security Criteria, Criteria for the Evaluation

422

of Trustworthiness of Information Technology (IT)
Systems. German Information Security Agency (ZSI), 11
January 1990.

ITSEC [90], Information Technology Security Evaluation
Criteria, Harmonised Criteria of France, Germany, the
Netherlands, and the United Kingdom. Draft Version 1, 2
May 1990. Available from UK CLEF, CESG Room
2/0805, Fiddlers Green Lane, Cheltenham U.X. GLOS
GL52 5AJ, or ZSI, Am Nippenkreuz 19, D 5300 Bonn 2,
West Germany.

T.F. Lunt [88], Automated Audit Trail Analysis and
Intrusion Detection: A Survey. 11th National Computer
Security Conference, Baltimore, Maryland, 1988.

T.F. Lunt, RR. Schell, W.R. Shockley, M. Heckman,
D. Warren [88], A Near-Term Design for the SeaView
Multilevel Database System. Proc. 1988 IEEE Symposium
on Security and Privacy, April 1988, pp. 234-244.

MoD [89], Requirements for the procurement of safety
critical software in defence equipment. Interim Defence
Standard 00-55, Ministry of Defence, Directorate of
Standardization, Kentigern House, 65 Brown St., Glasgow
G2 8EX Scotland, U.K., May 1989.

P.G. Neumann [86], On Hierarchical Design of Computer
Systems for Critical Applications. /[EEE Trans. Sofiware
Engineering SE-12 9, September 1986, pp. 905-920.

P.G. Neumann [90a], The Computer-Related Risk of the
Year: Distributed Control. Proc. 5th COMPASS (IEEE),
June 1990.

P.G. Neumann [90b], Towards Standards and Criteria for
Critical Computer Systems. Proc. 5th COMPASS (IEEE),
June 1990.

P.G. Neumann and D.B. Parker [89], A Summary of
Computer Misuse Techniques. Proceedings of the 12th
National Computer Security Conference, Baltimore MD,
10-13 October 1989, pp. 396-407.

C.P. Pfleeger [90], Comparison of Trusted Systems
Evaluation Criteria of the U.S., Germany, and Britain,
Proc. 5th COMPASS (IEEE), June 1990; based: on earlier
TIS Report #309, Trusted Information Systems, Inc., PO
Box 45, Glenwood MD 21738, 2 March 1990.

TCSEC [85], Department of Defense Trusted Computer
System Evaluation Criteria. DOD 5200.28-STD,
December 1985 (Orange Book).

TCSEC-TDI [89], Trusted Database Management System
Interpretation of the Trusted Computer System Evaluation
Criteria. Draft, 25 October 1989, National Computer
Security Center. (Revision pending.)

TCSEC-TNI [87], Trusted Network Interpretation of the
Trusted Computer System Evaluation Criteria. NCSC-
TG-005 Version-1, 31 July 1987 (Red Book). (Revision
pending.)

CIVIL AND MILITARY APPLICATION OF TRUSTED SYSTEMS CRITERIA

William C. Barker
Charles P. Pfleeger

Trusted Information Systems, Inc.
3060 Washington Road (Route 97)
Glenwood, MD 21738

Abstract

Trusted computer systems are commonly advertised in the context of military security requirements. Systems for military
applications are designed to control access by need to know, by compartments, and by hierarchical levels. By introducing and
defining a set of modes of operation for computer systems, then providing minimum evaluation criteria for systems operating
in each mode, Department of Defense (DoD) guidelines can also be useful for civilian applications. To date, most development
of trusted systems has been in response to military requirements, and the terminology and perceived usefulness of trusted
systems development has tended to reflect this origin. It is, however, straightforward to map civilian needs—both functionality
and assurance—onto military trusted systems.

Infroduction

Many managers of non-military computer systems who perceive a need for computer security are frustrated by the scarcity of
guidelines for selecting and applying trusted systems outside the defense and inteiligence communities. The U.S. DoD Trusted
Computer Systems Evaluation Criteria [TCSEC] is the only generally accepted criteria for evaluating the trustworthiness of
computer systems in the United States. Trusted computer systems are commonly advertised in the context of military security-
requirements. Degrees of trustworthiness are expressed as digraphs (e.g., C2, B2, Al). Systems with lower ratings (e.g., C2)
are designed to prevent the access to information by persons not having a legitimate “need to know” for that information.
Systems granted higher ratings (i.e., B1) are designed to prevent the access to “compartmented” information by users not briefed
into the “compartment,” while even higher rated systems (i.e., B2, B3, and Al) are designed to prevent access to classified
information by users not possessing security clearance for that information. However, there is little guidance concerning
relevance of the TCSEC and attendant applications guidelines [CSCO003] to civil requirements.

The DoD Security Requirements for Automated Information Systems [DoD28), while more overtly military in its audience, may
provide a better foundation for determining trusted systems requirements than the National Computer Security Center’s
applications guidelines. By introducing and defining a set of modes of operation for computer systems, then providing minimum
TCSEC ratings for systems operating in each mode, the DoD security requirements provide guidelines that are also useful for
civilian applications. This paper is a brief description of different security attributes that may be associated with computer
systems and the effects of those attributes on the modes in which the systems may safely operate. It attempts to treat both civil
and defense applications classes, and to relate TCSEC features and assurances to both civilian and military requirements.

General Threats to Computer Systems

In the defense environment, disclosure is usually judged to be the most significant threat to computer systems. Public law
requires the protection of certain kinds of information, especially that related to the national defense. For truly sensitive infor-
mation, individuals are allowed the discretion to choose to whom they will release information only within the narrowly
prescribed limits of security clearances. It is considered serious when information is disclosed to a person with an appropriate

" clearance but without the necessary need to know for the information. Because such recipients have been properly investigated
and are trusted to protect similarly sensitive information, the disclosure is not considered extremely severe. However, if
information is released to an unauthorized, untrusted person, the disclosure is deemed very serious because it may be tantamount
to disclosing the information to a hostile agent. Through such a disclosure, physical assets may be lost, a competitive advantage
may be compromised, or an expensive recovery may be occasioned.

In a medical example, sensitive information may be protected by being divided into several groups: physician, accounting,

patient record, statistical, and so forth. Within each group, some individuals will have the right to see more information than
others. The physician may have some notes that are strictly for her reference, others to be shared with colleagues in a physician

423 .

group, others to be shared with the patient, others to be shared with lawyers or with insurers, and others to be shared with the
public at large. There is a definite reason for creating each of these subdivisions, due to such factors as patient confidentiality
and personal or professional liability. If confidential patient information were released to a public database or a physician’s
private notes were erroncously made available to a patient, there could be grounds for a successful lawsuit with a high judgment.
In a corporate setting, different groupings of data might include wage and salary, other personnel, profit and loss, projected sales,
research and development, product strategy, and pricing data. Within each of these groupings different people may have access
to different sets of information: some accountants need to be able to see all salaries, while others need to see salaries of only
a certain group.

Many large companies with highly-valued information assets have established rigid hierarchies of data: one class is freely
released; one class is freely released inside the organization, but only to certain outsiders (e.g., those who agree to protect
proprietary data); one class is not released within the organization at large, but is released to members of a select group (e.g.,
members of the accounting department or of a particular project’s staff); and another class is never released to outsiders or to
members of other groups in the organization. :

There are two basic classes of disclosure: release to an unauthorized person within the organization and release to an outsider.
Release to an unauthorized person within the organization may be a more serious problem than in a similar military situation,
because not all persons in the organization can necessarily be trusted to preserve confidentiality, and because for some pieces
of data concemn persons in the organization. For example, the release of salary data to employees could have a serious negative
effect on morale, as could the premature disclosure of the closing of a division, or worse, a plan for the closing of a division,
where the plan was rejected without having been publicized but was never purged from the system. The “cost” of unauthorized
disclosure ranges from a lawsuit (for revealing personal data) to loss of employee or customer confidence, to loss of competitive
edge, to loss of ability to function.

There is no commercial counterpart to the military clearance. Individuals’ requirements to access data depend on the nature
of that data, the person’s job requirements, and various unwritten standards for access, such as time with company, experience,
level of responsibility, perceived company loyalty, relationship to company (e.g., employee, consultant), and so forth. In an
organization, if access is allowed by some individuals and not by others, a de facto clearance situation exists. However, there
is little formal codification of the standards by which such a clearance is conferred, the expected behavior of the individual
holding such a clearance, or the transferability of such a clearance to other items of data. It is partly because of this lack of
formal clearances or rigid clearance-granting procedures that civil sector computer system security administrators think the
military security model and systems developed for military uses are inappropriate for civil needs. '

Untrusted Computer Systems

An untrusted computer system is a system that is either known to possess exploitable security flaws, or that has not been
evaluated against accepted evaluation criteria. In untrusted computer systems, it must be assumed that any user having access
to the system can read any file in the system, alter or write over any file in the system, and execute any program in the system.
Because they cannot reliably prevent any user from accessing the information of any other user, untrusted computer systems
may be safely operated only in a mode dedicated to a well-contained user community. In general terms, no user should be
permitted to access an untrusted system if there is any information anywhere in the system that should not be freely available
to that user. Conversely, no information should be entered into an untrusted system if the ongmator of the information objects
to making that information freely available to all users in the system.

In military terms [DoD28], this dedicated security mode requires that all users have the clearance or authorization and need to
know for all information handled by the computer system. If the system possesses special access information, all users require
special access approval. In the dedicated mode, an automated information system may handle either a single classification level
and/or category of information or a range of classification levels and/or categories. However, once information is entered into
a dedicated mode system, it must be handled and accounted for according to the rules that apply to the most highly classified
information in the system. Treatment of any output from the system as less sensitive than the most highly classified data that
is processed by the system requires manual review and reclassification of the output.

In civilian terms, if the owner or manager of an untrusted system wishes to protect any information in the system from anyone
at all, the system should be physically protected from unauthorized access and should not be connected to publicly. accessible
communications media. Physical protection means placing the system in a locked room or under appropriate surveillance or
other control. For physical protection purposes, the system includes all computer hardware and storage media (program and data

424

tapes and disks). It should be stressed that the software in untrusted systems may contain code that displays, prints, or transmits
any information in the system via any input/output port at any time. It may be extremely difficult to determine if the software
contains such unexpected functionality, or whether such illicit activities are underway at any particular time. The software may
also contain code that corrupts any program or data generated by or resident in the system.

Because the only individuals who may be granted access to an untrusted system are those individuals who may be privy to all
information on the system, organizations that have policies restricting access to some information (e.g., salary information, tax
records, acquisition plans, psychological profiles) are often forced to dedicate a computer system to each category of restricted
information. Note that it is not sufficient for users of sensitive data to maintain that data on physically protected and controlled
media (e.g., removable disks). If another user of the system wants the information contained on the removable media, he or
she has only to add to the untrusted operating system any desired data process that will copy to an accessible medium.
Similarly, the system cannot be connected to a network that has some subscribers not authorized to handle all of the information
processed by that system. Network access to an untrusted system can be made to result in access by anyone on the network
to all information in the system. Thus, the untrusted system that processes sensitive information cannot safely partake of the
advantages of connection to a network database participate in network transactions.

Trusted Computer Systems

As defined by the TCSEC, trusted computer systems control, through use of specific security features, access to information
such that only properly authorized individuals, or processes operating on behalf of properly authorized individuals, will be
permitted to read, write, create, or delete information. The TCSEC identifies six fundamental requirements of trusted systems:

Security policy—There must be an explicit and well-defined security policy enforced by the system. That is, there must
be a set of rules governing which user processes are permitted access to any specific computer memory element or
device.

Access control—Access control permissions must be associated with objects’. In the case of systems in which access
permissions are specified by a system security administrator rather than by individual users, access control labels must
be associated with objects. That is, it must be possible to associate every object with a label that readily identifies the
access restrictions associated with the object.

Identification and authentication—Individual subjects’ must be identified. That is, users or programs acting on behalf
of users must be unambiguously identified to the operating system’s protection mechanisms. Identification of users
and programs associated with those users is a necessary prerequisite to determining whether or not a requested access
can be permitted.

Accountability—Audit information must be selectively kept and protected so that actions affecting security can be traced
to the responsible party.

Assurance—The computer system must contain hardware and software mechanisms that can be independently evaluated
to provide sufficient assurance that the system enforces the foregoing policy and accountability requirements.

Continuous Protection—The trusted mechanisms that enforce these basic requirements must be continuously protected
against tampering and/or unauthorized changes.

! The TCSEC defines "objects" as passive entities that contain or receive information. Examples of objects are: records, blocks, pages, segments,
files, directories, directory trees, and programs, as well as bits, bytes, words, fields, processors, video displays, keyboards, clocks, printers, network
nodes, etc. Access to an object potentially implies access to the informatjon that it contains.

* Accordin g to the TCSEC, a subject is an active entity (generally in the form of a person, process, or device) that.causes information to flow among
objects (e.g., data or devices) or changes the state of a system.

425

Discretionary and User-Specified Access Control

Systems that provide discretionary protection must enforce a policy under which an authorized user establishes, and the system
enforces, criteria for the access to any objects under the user’s control. Typically such a policy is expressed in terms of access
control lists that identify by name or by some defined grouping all subjects that may access a specified object. All authorized
subjects must be identified to the system at a granularity consistent with the requirements of the security policy. It is essential
to require that the protection system operate in 2 domain that protects it from external interference or tampering; without such
a requirement, the protection qualities of the system cannot be assured. It is also essential that there be some degree of
confidence in the comrect implementation of the protection mechanism; such implementation assurance can be achieved through
testing, through description of the system features, through documentation of the system’s design, through inspection, or any
combination of these. The minimal feature and assurance requirements of discretionary protection systems are summarized in
Table 1.

Table 1: Discretionary Protection Summary

Features
Policy Authorized user controls access to all objects under user’s control; objects being
controlled, modes of access control, classes of accessing subjects to be specified.
Access Control Implicit in access control mechanism; associated with each controlled object.
Identification Sufficient to implement granularity of security policy.

& Authentication

Assurances
Accountability As needed to document functioning of security enforcement mechanism.
Assurance Combination of design, testing, documentation and inspection of implementation,
implementation environment requirements.
Continuous Separate domain of execution.
Protection

Discretionary access control, which uses access control lists (or an equivalent), is known to suffer from a fundamental weakness:
protection is afforded to the container, not its contents. Thus, user A can assign access to file F to users B and C only; however,
B make a copy of the file (for example, by reading the file and writing a new one which is the duplicate of F), and allow any
other users, including ones that A did not intend or would have rejected, to access the copy of F. Thus, the discretionary
protection mode depends largely on the discretion and judgment of all users to act in a way consistent with the security
objectives of the system.

Under discretionary access control rules, read access, write access, and execute access permissions are normally specified
independently of each other. On most systems, a user who has permission to read a file can also make a copy of the file. In
the user-specified or DAC security mode, the originator of information should not grant permission to any other user to read
that information unless the originator trusts that user to restrict access of any copies made of the information to the set of users
that were granted access to the original version of the information. Conversely, no user should be granted access to a DAC
environment who cannot be trusted to perpetuate the access restrictions placed on information by its originator.

As shown in Table 1, the features required of a discretionary protection system need only implement the security policy. For
a given situation, it may be acceptable within the policy to identify users only by group or class, or to provide protection for

426

only certain objects, or to limit only certain types of access (e.g., no control on reading but limitations on writing). Similarly,
the assurances are minimally those to ensure that the system is implemented as specified, and does properly perform its specified
function. As examples of the discretionary protection class systems, TCSEC Cl and C2 systems meet a reasonable set of
‘requirements for features and assurance, although in other contexts, it may be appropriate to levy more or less stringent
requirements on systems to enforce discretionary security. T'CSEC requirements for C1 and C2 systems specify relatively few
assurance requirements, under the assumption that access control truly critical to the national security will be implemented by
stronger mechanisms, Thus, under the TCSEC, systems for discretionary access control also terid to be of relatively modest
assurance, which causes people to conclude erroneously that systems providing only discretionary access control are of necessity
low assurance. »

The minimum criteria acceptable to the DoD [DoD28] for operation in other than the dedicated mode is called “controlled access
protection.” Systems meeting TCSEC requirements for the controlled access “make users individually accountable for their
actions through login procedures, auditing of security-relevant events, and resource isolation.” These systems also include
mechanisms that prevent reassignment of a medium (e.g., page, frame, disk) to a new user or process that contains residual data
entered by a previous owner. Computer systems that meet controlled access protection requirements can reliably enforce user-
specified restrictions. Evaluation criteria for higher level (i.e., C2) systems include requirements for audit mechanisms that
record successful and unsuccessful attempts by each user to access information. If a discovery is made that copies of
information have been distributed to users not granted access by the originator of a set of information, the audit mechanism
provides a means for identifying the user or process responsible. Again, these additional requirements of C2 over C1 reflect
the case that operational requirements may affect the requirements for a particular class of systems.

In military terms, the user-specified or discretionary protection mode of operation is known as the “system high” security mode.
[DoD28] The system high security mode requires that all users having access to a computer system possess a security clearance
or authorization, but not necessarily need to know, for all information handled by the system. As in the dedicated mode, an
automated information system may handle a single classification level and/or category of information or a range of classification
levels and/or categories. Again, once information is entered into a dedicated mode system, it must be handled and accounted
for according to the rules that apply to the most highly classified information in the system, and any output from the system
can be treated as less sensitive only after manual review and reclassification of the output. It is assumed that all military users
granted access to a military system high environment can be trusted to perpetuate the access restrictions placed on information
by its originator. -

In most user-specified or system high environments, a user can restrict the community of users who can read, alter or write over,
or execute programs he or she originates. However, once the user grants access permission to another user, the user loses
control over distribution of copies of that information. If the information is a program, control is lost over which users or pro-
cesses can execute copies of that program. Any restrictions regarding altering or writing over the original copy of the
information (or executing the original copy of a program) remain in force. This may suffice for some cases in which the
security objective is not confidentiality but the integrity of files or programs.

Administrator-Based Access Control

In many cases, computer system managers need more rigid control of access to information processed by the system than is
available from user-based access control. It may be desirable to require that a system security administrator determine, based
on organizational policies and procedures, which users are to be granted access to special categories of information (e.g., payroll
information, proprietary research findings, marketing plans, competition-sensitive financial data, psychiatric and other medical
records). In order to operate safely in this mode, a system must possess all of the attributes found in controlled access systems,
plus provide for assignment of sensitivity tags to all files and devices, association of authorization levels with all user
identity/password pairs, be based on a statement of the security policy model of access to objects by subjects, enforce mandatory
access control over accesses of subjects to objects in accordance with the stated model, accurately label exported information,
and have removed any flaws identified by security testing. The TCSEC describes this class of system as providing labeled
security protection (B1). It is noted that labeled security protection criteria does not require access mediation for all objects
in the system.

Under administrator-based access control, users are granted permission to access classes of information that are identified by
named tags or labels. When users are registered with a system, they are authorized access to information having certain
specified labels. (When devices are installed, they too receive security labels.) At the time of log in, a user specifies the label
of the class of information to be accessed as well as an identification and an authenticating password. The system security

427

mechanisms ensure that the user is authorized access to the category of information specified before the user can proceed. All
information entered by the user is labeled by the system security mechanisms with a sensitivity label that matches the label
entered by the user at log in. The system also ensures that no data is sent to any output port unless the system security policy
permits information having the label associated with the data to be sent to a destination having the security label possessed by
the port. This label-based access control is also known as mandatory access control (MAC). Typically, systems that provide
no more than labeled security protection (TCSEC Bl systems) are employed in applications lacking a policy-based hierarchy
among labels.> The requirements of administrator-based access control are summarized in Table 2.

Table 2: Administratively-Based Access Control

Features
Policy Policy established by an authority higher than the user. User may also have some
discretion—within bounds of higher authority’s policy.
Access Control By labels implicit in access control mechanism; associated with each controlled
object.
Identification Needed for each subject, in order to match subject’s identity
& Authentication with administratively-defined access rights. '
Assurances
Accountability As needed to document functioning of security enforcement mechanism, and to
demonstrate proper enforcement to higher authority.
Assurance Combination of design, testing, documentation and inspection of implementation and
environment.
Continuous Separate domain of execution.
Protection

The U.S. military has identified a special mode of operation for relatively low assurance (B1) systems that provide mandatory -
access control. This compartmented or partitioned security mode defines operations wherein all personnel have the clearance,
but not necessarily formal access approval and need to know, for all information handled by the system. [DoD28] This
partitioned mode requires that any information classified below the maximum level processed in the system be handled as and
accounted for in accordance with the rules applying to the most highly classified information in the system. Partitioned mode
does, however, permit organizations to avoid the requirement to grant all system users authorization for all non-hierarchical
categories of information processed by the system.

Multilevel Operation

Where security domains are structured hierarchically, computers that permit a system administrator to establish restrictions on
access to classes, or domains, of information by system users and are capable of reliably enforcing those restrictions are said
to operate in the “multilevel security” mode. In military systems, there is an established hierarchy of unclassified, sensitive,
confidential, secret, and top secret information. Categories, as described above, may exist within some or all of the hierarchical
levels. In many civil environments, each category of information may have its own internal hierarchy. In either case, the level
of trust provided by the labeled security class of the TCSEC may not be adequate to be safely employed to separate information
at different levels within a hierarchy. A reasonable minimum level of assurance for multilevel operation is provided by the

: Although some category labels may be assigned to include a group of other labels.

428

structured protection (B2) requirements of the TCSEC. The military considers structured protection to be the Immmum level
of trust acceptable for separating classified information from unclassified information. [DoD28]

The policy of a multilevel mode system functions under policy requirements very similar to those of administratively-based
access control: an administrative authority establishes a policy for marking all data, for assigning subjects to access classes, and
for controlling the access of these subjects to these objects. All objects to be controlled must be labeled and all subjects to have
access must be assigned to an access class. In order to be sure of proper association of individuals and classes, it is necessary
to provide individual identification and unambiguous authentication. Audit is used to demonstrate that the system is functioning
properly, both to the users and to the higher administrative authority; audit is also used to identify and assess the damage from
access control failures, either from a system, human, or administrative error. The necessary confidence in the correct
implementation and continuous functioning will depend on the seriousness of the administratively-based access control policy.
The requirements for multilevel secure implementation are listed in Table 3.

Table 3: Multilevel Mode of Security

Features

Policy Established by an authority higher than the user. User may also have some
discretion—within bounds of higher authority’s policy.

Access Control Labeling implicit in access control mechanism; associated with each controlled object.

Identification Needed for each subject, in order to match subject’s identity

& Authentication with administratively-defined access rights.

Assurances
Accountability As needed to document functioning of security enforcement mechanism, and to
, demonstrate proper enforcement to higher authority.

Assurance Combination of design, testing, documentation and inspection of implementation,
implementation environment requirements; because of requirement to separate two or
more classes of users and data, relatively strong assurance of correct implementation
is necessary.

Continuous Separate domain of execution for protection mechanism;

Protection because of requirement to separate two or more classes of users and data, relatively

strong assurance of continuous correct functioning is necessary.

In military terms, the multilevel mode of operation allows two or more classification levels of information to be processed
simultaneously within the same system when not all users have a clearance or formal access approval for all data handled by
the system. The multilevel secure mode of operation allows information at different classification levels to exist concurrently
on an ADP system where not all users are cleared for the highest level of information processed. All multilevel systems should
provide mandatory access control, but not all systems that provide MAC may be accredited for the multilevel security mode.
The degree of assurance of a system’s security enforcement mechanisms, as evaluated against established criteria, determine
the range of security levels for which the system may be accredited. High assurance (Al) systems can cover a range of
classification levels from Confidential to Top Secret with compartments, while lower assurance (B1) systems can cover only
the range of Top Secret with one or more compartments to Top Secret with one or more compartments. Clearly users holding
less than Top Secret clearances are not allowed access to Top Secret data. The advantage of a multilevel system is its ability
to segregate different classes of users.

In the TCSEC, discretionary access control (DAC) is used for the less rigid part of the security policy, and MAC is used for
the more rigid part. For this reason, DAC enforcement is sometimes perceived as less important than MAC enforcement, and

429

so greater assurance of correctness is required for MAC implementations than for DAC. In one sense this is'a very reasonable
position, because significant confidence is required in the ability of a system to support multilevel mode operation, which means
to separate lower clearance users from higher sensitivity data. However, in another sense, lower assurance is not necessary for
the implementation of DAC. That is, one might want to implement a very high assurance DAC system. As is shown in
Table 1, Table 2, and Table 3, in principle, assurance levels can be adjusted as appropriate for a particular system; while it is
probably unreasonable to implement a low assurance multilevel system, it is not unreasonable to implement a high assurance
user- or administrator-based access control system.

An example of the utility of high-assurance DAC is as follows. One government agency (not the DoD) publishes summary
statistics derived from private sources. The statistics become releasable in the aggregate, although the components from which
the statistics are derived are highly proprietary. Different agency employees must work with specific figures. It may be possible
to implement this control using a careful but artificial scheme of levels and categories using mandatory access control. However,
controlling access to this data by individual access control lists is probably both more natural for the users and more compatible
with the overall security policy being enforced. For this application, which is not unlike the needs of many civilian
organizations, a high assurance form of user-based access control is very desirable.

Notion of Hierarchies and “Risk Range”

For systems managing hierarchies of security labels, the U.S. National Computer Security Center (NCSC) has established a
concept, called the “risk range,” by which to evaluate the potential exposure of handling data on computing systems. The range
relates the sensitivity of the data, the clearances of the personnel who use the system, and the conditions of the system’s
development and use. Given the level of the most sensitive data on the system, the maximum clearance of the user with the
lowest clearance, and the type of the system, a chart exists by which to determine the minimum degree of trust required for the
system. [CSC004]

The rationale for the selection of these minimal requirements includes both features and assurances. For military security,
implementation of DAC, which is based on the security classification, requires features such as labeling to enforce the separation
of users at one clearance level from data at another. Therefore, any situation in which a system will operate at two or more
levels concurrently requires labeling of all objects visible to the user, which necessitates a system rated B2* or above. To
enforce discretionary access control (DAC) requires only the ability to maintain and use lists of subjects allowed to access a
single object, which occurs at the C1 level. In other cases, the choice of minimum trust is based on a less precise notion of
trust, which equates to assurance of correctness. Thus, a system that supports users some of whom are cleared to only the
Confidential level, with Top Secret data having multiple compartments, in a closed environment, is said to required an Al
system. In this situation there are no specific features that would require a system higher than B2, but the degree of risk has
been judged more significant than separating Confidential from Top Secret with no or one compartment, and so the class of
systems required rises from B2 to B3 to Al for these three cases (none, one, or more than one compartment). These
requirements are minimum requirements, with the caveat that a higher required evaluation class might be required if, for
example, there is a high volume of data at the maximum data sensitivity, or there are many users with the minimum clearance.

As the previous paragraph points out, the minimum acceptable evaluation class of a system for a particular situation is a
somewhat subjective judgment, based on the kinds of data being processed, the kinds of users, and the kind of system. The
minimum evaluation class depends both on certain required features and on the ability to ensure the system’s correctness.

Commercial computer security requirements are somewhat different, in that the negative effect of some forms of unauthorized
disclosure can be significantly worse. It is important to maintain separation not just by department but also by job function and
need-to-know. Therefore, both features and assurance of correctness are important in a selection of trusted systems for the
commercial environment. '

In the commercial environment, it is necessary to have a means of identifying data that relates to the accounting department
versus that which belongs to the personnel or management group. Such a division is naturally implemented by MAC, and so

4 Strictly speaking, B1 systems provide mandatory separation by classification level. However, these systems are missing two important qualities:
first, the mandatory access control need apply only to a defined subset of the objects in the system, so that it is not necessary that every object of
the system be under mandatory access control; and second, B1 systems lack the architecture that gives high assurance to the inviolability and
completeness of the trusted computing base. Therefore, 2 B2 system is the minimum system that can provide highly reliable separation of object
by level.

430

a system with at least B2 functionality is necessary. If information is also to be divided within departments, that is, by job
function and need-to-know, such separation can be implemented via a more complex class structure (by using a large lattice
~ of incomparable categories) or by using discretionary access control. Each of these means of implementation has adirantages
and disadvantages.

Relationship between Military and Civilian Multilevel Applications

It is often alleged that only the military community has hierarchical or level-based information protection requirements. This
simply is not true.

The military scheme for control of information dissemination is based on classifications of information and clearances of
individuals. Because this one scheme is used throughout the military and intelligence community, it is well codified (supported
by Federal law), and widely understood. The typical reaction from the civilian sector is that the rigidity of the military scheme
is excessive, that civilians do not have civil-sector clearances, and that division into classification levels such as Secret and Top
Secret is incompatible with the true civil-sector needs. In fact, the underlying framework of the military information protection
scheme corresponds very closely with civilian information protection practices.

Consider, for example, a corporation’s data handling needs. The accounting group handles financial information, the personnel
department handles confidential employee data, the sales staff handles sales projections and marketing leads, and the research
group handles data related to future corporate products. Confidentiality for some employee data (e.g., social security number)
‘must be preserved by law, while other data (e.g., individuals’ salaries) is protected as part of a bond of employer-employee
confidence. The names and status of corporate customers and prospects are closely held in a situation in which there is
significant competition. Finally, product development plans represent the future marketability for the company. These divisions
between data are typically considered extremely important. Naturally, there is some sharing, for example between personnel
and accounting organizations (so that salary changes can be implemented), but the kinds of data shared and the roles of
individuals sharing that data are part of an administrative policy. Largely, the individual groups are treated as separate divisions,
very much like compartments in the military model.

Furthermore, within a group, not all data will be accessible to all employees. Certain personnel clerks may be allowed, because
of their job functions, to access salaries of all hourly workers, but not of the salaried staff. Some clerks have no access to wage
or salary data. Some clerks have the ability to see (read) but not modify (write) the data. Some high-level management have
the ability to see all personnel data. Thus, there may be levels within compartments, ranging from No Wage or Salary, to Read
Wage Only, to Read Wage and Salary, to Read and Modify Wage and Salary.

Functionally, this situation closely resembles the military model with the most significant distinction being that compartments
are considered first, and then there may be a hierarchy within compartments. In spite of this apparent difference, there is
essentially no functional difference (from the perspective of protection of information) between compartments on top of levels
or levels within compartments. Pictorially, the military classification scheme is typically viewed as a four-level hierarchy. It
may be more appropriate to view the civilian information protection scheme as a set of largely disjoint groups, with, possibly,
levels within the groups. Under this interpretation, there will be a few high-level corporate managers who can access all
information from all groups. There will also be some information that is accessible to all persons in all groups (for example,
the kind of information typically found in the company newsletter). The civilian sector representation of sensitivities of data
is shown in Figure 1. The compartments of information are represented as ovals, and levels of data within each compartment
are shown by lines. It is not necessary that there be any correspondence between the lines of one compartment and those of
another.

This organization is not limited to a corporate structure. Medical and other professional groups have similar hierarchies. A
patient’s record may consist of several portions: billing information, statistical [anonymous] disease control data, a portion
shared with the patient, a portion shared with other physicians in a shared practice, a portion shared with other consulting
physicians, a portion shared only with the physician’s lawyers, and a portion private to the attending physician alone. There
seem to be two orthogonal sets of community of interest: first, the accounting group needs access to the billing-related
information for all patients, but consulting physicians need access to the consulting-related data for only those patients on whose
cases they consult. In fact, the consulting physician data may be better handled as a need-to-know issue. Then, the information
protection needs are broken into compartments by function (accounting, consulting physician, and so forth), and any single
patient’s record is further protected within a compartment by need-to-know, when necessary.

431

Trusted Systems for Civil Applications

As the examples just described show, there are strong similarities between the information protection needs of the military and
civil sector. To date, most development of trusted systems has been in response to military requirements, and the terminology
of trusted systems development has tended to reflect this genesis. Thus, today’s trusted systems support “classification levels”
and “compartments,” even though these terms are unfamiliar to, or at least thought to be inappropriate for, the civil sector.
However, as described above, the civilian sector today functions with strong divisions between classes of data and with a sort
of hierarchy of access within each division. It is very straightforward to map civilian needs onto military trusted systems. This
situation is most fortunate for the civil sector, because it means the military environment has paid for the research and
development necessary to cause the production of systems with both the features and the assurances needed by the civil sector.
With little or no work, these same systems can be made available to meet civil sector needs.

The civil sector does not currently have accepted criteria for the evaluation of trusted systems, nor does it have accepted
guidelines on the use of such systems. However, here, too, the military criteria and guidelines can be tailored for civil sector
use.

As described previously, the features of the TCSEC are fundamentally the same features that are needed for separation of data
into distinct divisions in commercial systems. The primary feature needed is mandatory access control. For the military model,
the standard way to organize data is to first divide it into various hierarchical levels. Non-hjerarchical categories are then
(conceptually) overlaid on each level, thereby producing data that is Secret-Compartment A or Top Secret-Compartments B and
C. In the civilian model presented in this paper, it is more appropriate to conceptualize data as having been divided into distinct
groups based on function (e.g., personnel, sales, administration, accounting, consulting-physicians, statistics, and so forth). These
groups are non-hierarchical, just like the compartments of the military model. Within each group, access is allowed to senior
administrators, managers, junior administrators, and so forth on a hierarchical basis. Thus, whereas the military model seems
to resemble hierarchical levels overlaid with non-hierarchical categories, the civilian model more closely resembles non-hier-
archical groups overlaid with a hierarchical level-of-authority structure. In fact, it makes little difference whether access by
hierarchical component is determined before or after the non-hierarchical component, as long as both are checked before success
or failure is reported to the user.

Summary

This paper outlines. the modes of use of untrusted and trusted computer systems, the functionality and assurance requirements
for design of such systems, and the possible uses of such systems. The needs of the civil sector are frequently thought to be
very different from those for the military community; however, this paper shows that both have similar—and more importantly,
compatible—requirements for the protection of information, and that these requirements lead to similar implementation
approaches. In particular, the qualities of multilevel systems (those rated B2 and higher under the TCSEC) are applicable in
civilian settings as well as in military ones, with appropriate understanding of security policies for civilian applications.

References
[CSC003] U.S. National Computer Security Center, Computer Security Requirements — Guidance For Applying the
Department of Defense Trusted Computer System Evaluation Criteria in Specific Environments, Document
CSC-STD-003-85, 25 June 198S5.
[CSC004] U.S. National Computer Security Center, Technical Rationale Behind CSC-STD-003-85: Computer Security
Requirements — Guidance for Applying the Department of Defense Trusted Computer System Evaluation
Criteria in Specific Environments, Document CSC-STD-004-85, 25 June 1985.

[DoD28] U.S. Department of Defense, Security Requirements for Automated Information Systems, Department of
Defense Directive Number 5200.28, 21 March 1988.

[TCSEC] - U.S. Department of Defense, Department of Defense Trusted Computer System Evaluation Criteria,
Department of Defense Standard 5200.28-STD, December 198S.

432

Executive Summary

Implementation of the Computer
Security Act of 1987

Dennis Gilbert
National Institute of Standards andTechnology

By establishing Public Law 100-235, the Computer Security Act of
1987 (the Act), Congress enacted a measure for establishing mini-
mum acceptable security practices for federal computer systems
that contain sensitive unclassified information. The Act places
major emphasis on computer security planning. A significant
aspect of the first'year activities under the Act included the review
of federal agencies' security plans which were submitted to a joint
NIST/National Security Agency (NSA) review team. Current
instructions from OMB shift emphasis to the implementation of
computer security plans. This strategy provides for visits by OMB,
NIST, and NSA staff. The group will provide direct comments, ad-
vice, and technical assistance relative to the agency's implementa-
tion of the Act.

Private sector organizations can also learn and benefit from the
federal experience in implementing the Act. Although federal
managers have specific regulatory requirements that must be
satisfied, much of their data processing and security needs and
perspectives are similar, or directly analogous, to their counter-
parts in the private sector.

This session will present different perspectives on the implementa-
tion of the Computer Security Act from representatives of organi-
zations that have played key roles in the process. Emphasis will
be on the learnings that have come out of the efforts to dates. Also
discussed will be current and future directions under the Act.

433

THE CSO’S ROLE IN COMPUTER SECURITY

Cindy E. Hash
National Computer Security Center
Ft. George G. Meade, MD 20755-6000
(301) 859-4360

ABSTRACT

This paper addresses the role of the Computer Security Officer in computer security from two
perspectives. How a Computer Security Officer can use the Department of Defense Trusted Computer
System Evaluation Criteria, better known as “The Orange Book,” to gain an understanding of his/her
responsibilities is one perspective. By using the Orange Book as a guide, a CSO can create a good set
of responsibilities. The other perspective deals with the relationship that exists between a Computer
Security Officer and a computer user. If the two work well together, a would be hacker has a minimal
chance of breaking into the associated computer. If either chooses to ignore established security
procedures, their computer becomes extremely vulnerable to a penetration.

INTRODUCTION

In this day and age computers have become a major part of everyone’s life. Some people are not aware
of the enormous impact a computer has on their life. That is, until the computer does not do what it is
intended to do. This “malfunction” can occur because of an operational error or because of the
maliciousness of an individual (i.e. computer hacker).

Because of the hacker threat, defining, creating and practicing computer security has become
increasingly important over the years. In those instances where a computer is shared by more than
one user, or when the computer is attached to a mainframe or a network, someone should be
responsible for ensuring the security of that environment and guarding against hacker attacks. The
often asked question is, who should that person be? Many government and industry groups have
delegated that responsibility to the infamous Computer Security Officer (CS0O). The CSO has also
been called the Information Systems Security Officer (ISSO) or the Computer Equipment System
Security Officer (CESSO) This paper will use the term CSO.

Some computer systems do not have a designated CSO. In those instances, enforcement of computer
security is often an additional job undertaken by the System Administrator. The security of that
system is in good hands if that person is motivated. Dedication is another quality a CSO should
possess. Sometimes security problems can take days or even months to resolve.

The CSO is also responsible for enlisting the help of the user population. Users need to be informed of
the role they play in maintaining computer security. The efforts of a CSO will be in vain, however, if
the user group contains one or more careless users.

Therefore, the security of any system is only as good as the conscientiousness of its’ CSO. A good CSO

constantly works to maintain and enhance the security of a computer system. In doing so, the CSO
accomplishes his/her responsibility to provide the user with a secure environment.

434

CSO RESPONSIBILITIES

All CSO’s are responsible for ensuring system security. Different systems have different levels of
security. This brings us to the question, “what is a secure system?“. According to the Department of
Defense Trusted Computer System Evaluation Criteria, there are six basic requirements associated
with a secure system.

1. SECURITY POLICY - There must be an explicit and well-defined security policy enforced
by the system.

2. MARKING - Access control labels must be associated with objects.

3. IDENTIFICATION - Individual subjects must be identified.

4. ACCOUNTABILITY - Audit information must be selectively kept and protected so that
actions affecting security can be traced to the responsible party.

5. ASSURANCE - The computer system must contain hardware/software mechanisms that
can be independently evaluated to provide sufficient assurance that the system enforces '
requirements 1 through 4 above.

6. CONTINUOUS PROTECTION - The trusted computing base (TCB) that enforce these
basic requirements must be continuously protected against tampering and/or
unauthorized changes.

Not all systems meet each of these requirements. The CSO should find out which of these
requirements apply to his/her system, and then enforce them. What follows is how each of these
requirements apply to the CSO.

1. Operate with Sound Security Policy

Without a Security Policy, there are no rules for the users to follow, nor are there any procedures to
follow in the case of an emergency. If there are no rules on a system, each user has to rely on the
integrity of other users, in order to feel that his/her files are secure. However, not everyone can be
trusted. A good Security Policy should include the following information, as a minimum:

Definition of the system.

The type of information stored on the system.

The type of activity allowed on the system.

What type of software, if any is to be used in conjunction with the system.

The allowable forms of connectivity to the system.

A reporting mechanism to follow in the event of a security incident.

List of responsible individuals and what their role is in association with the system.
A Contingency Plan to be used in the event of an emergency (i.e. fire, flood, etc.).

Bl o s o

With this information the CSO knows what needs to be protected, the forms of protection needed and
what to do when this protection has been violated.

2. Verify Access Control Labels

The system software should label all objects properly. It is the CSO’s responsibility to periodically
check to see that objects are being marked appropriately. If they are not, it is possible that someone
has tampered with the system software. This should be researched immediately.

3. Ensure Unique User Identification

The CSO should instruct the accounts administrator to use unique identifications for each user. Group
user id’s should be discouraged. Each user can be held accountable for his/her actions with a unique id.

435

4. Use Audit Trail Information

Each morning, a CSO should read highlighted portions of the audit trails from previous day’s
activities. These audit trails should provide the following important information:

a. ANY system code changes.
b. Denied file access attempts.
c. Failed login attempts of n or more times.

If any system code has been changed without the consent of the System Administrator and the CSO,
the system has been penetrated. At that time the CSO needs to begin an immediate investigation into
how the system was violated. The code should be corrected and precautionary measures installed
against any further attacks. The audit trail should have indicated what user performed these
changes. That user will have to be questioned. If it is discovered that the account was captured by an
unauthorized user, precautionary measures will have to be taken for the owner of the account (i.e.
change the password or issue a new account).

If there were denied access attempts in the audit trails, certain actions will have to be taken. This
information merely suggests that a user is trying to access a file to which he does not have legitimate
access. It is possible that the user will have to be closely monitored or the user may be questioned.

If there are failed login attempts on an account, and if they exceed the limit set by the CSO, the user
will be called. If the user did not generate these login attempts, the connection may have to be traced
back to its’ origin. In any case, this commitment gives the user a sense of security; knowing that
someone is guarding against account attacks.

This is perhaps the most important responsibility of the CSO. If the CSO does not view this job as
important, the would be hacker has an excellent chance of penetrating a system. However, by daily
review of this material, the CSO obtains some pertinent data.

5. Hardware/Software Assurance

While the CSO can not actually perform this requirement, he/she must closely monitor audit trails to
ensure that the software protection mechanisms are properly protecting the system. The CSO should
also have some sort of policy which prevents unauthorized people from accessing the system hardware.
This in turn gives some assurance that no one can tamper with the hardware protection mechanisms.

6. Provide Continuous Protection

This is another requirement that the CSO does not actually perform. However, he/she must closely
monitor the audit trails with regard to ANY access or attempted access to the Trusted Computing
Base.

ADDITIONAL CSO RESPONSIBILITIES

In addition to the above responsibilities, the CSO should remain available to the users and supply
guidance whenever necessary. The CSO should also be well known by the users. If a user does not
know who the system security officer is, then the CSO has not done his job correctly. All users should
know who to call immediately when a security incident occurs.

The CSO should also be readily available when needed. If a user comes to the CSO with a problem, the
CSO should be ready to help. A CSO may not have every law or policy about computer security
memorized, but should know where to find the guidance on a variety of subjects. This guidance should
be shared with users upon request.

436

USER RESPONSIBILITIES

~ The CSO should make the users aware of their responsibilities, while actively carrying out his/her
own duties. If a CSO is going to expect the users to play an active role in Computer Security, then it is
essential that the CSO practices what he/she preaches!

While the CSO is busy ensuring the secure environment, the user should be practicing computer
security. A user should have a daily routine which reflects a dedication to this cause. This daily
routine can eliminate a lot of security problems. The following should be practiced each day:

1. Logging in to an account should be done with no one “looking over. your shoulder.”
2. A terminal with an active session should never be left unattended.
3. Ifthe system seems to behave in an abnormal manner, the CSO should be notified.

Although it is human nature to trust others, it is possible that a co-worker would try and access
information that does not belong to them. This could be done as a gag, out of curiosity or to
intentionally harm someone. That is why it is best to log into an account in somewhat of a private
environment. Some people might watch your login pattern, looking to see if they can guess a password
by watching your typing pattern.

With that same reasoning in mind, it is crucial that a terminal NEVER be left unattended with an
active session running. This provides a great temptation to that dishonest co-worker.

It is better to be safe than sorry, is sound advice for a computer user in many ways, especially if a user
notices something odd. It is better to report an anomaly and hear the possibly insignificant reason
behind it, than to ignore it and find out months down the road that the strange occurrence did some
irreversible damage to important files.

These few examples are just daily routines! Other responsibilities that the user should actively
practice include: '

1. Frequent password changes.
2. Protection of passwords.
3. Adherence to the system Security Policy.

It is no surprise to those in the computer security business that the threat of hackers is real.
Therefore, the more frequently a user changes his password, the better the odds are against his
account being compromised. A good system will force its’ users to change their passwords at set
intervals. However, all systems do not support that type of application. Therefore, it is the users
responsibility to change his/her password at the specified interval recommended by the CSO.

The protection of a password is largely dependent upon the owner of that password. It is extremely
important that passwords not be left taped to the terminal or left out in the open anywhere near the
terminal. Good sense should also be used when selecting a password. Using words or phrases is never
a good idea, especially when it can be associated with the user. It is best to select a password with a
length longer than six characters, and perhaps one with a mixture of alpha and numeric characters.

It is also essential that the users adhere to the system Security Policy. If rules are broken, a link out of
the chain of security leaves an opening for the would be hacker to enter.

437

CONCLUSION

No matter how secure an operating system is, without a diligent CSO and a concerned user
population, the system remains extremely vulnerable. If audit trails are not read, or if users are
careless with their password, a hacker has had half the battle fought for him. It then makes the
system easier to penetrate. '

However, if the CSO is on the alert and has armed his users with the proper knowledge, and if the
users take heed to the advice, the hacker will not make it far into the system, if they get in at all. But,
it does require a team effort. Both parties are extremely important and should be mindful of their
duty. With this knowledge, everyone can contribute to furthering the world of successful computer
security.

REFERENCES

1. DoD 5200.28-STD, DoD Trusted Computer System Evaluation Criteria, Dec. 1985.

438

Implementation and Usage of Mandatory Access Contro_ls

‘in an Operational Environment

Leslie M. Gotch
Honeywell Federal Systems, Inc.
Gotch@.Dockmaster.ncsc.mil

Shawn M. Rovansek
National Computer Security Center
Rovansek@Dockmaster.ncsc.mil

Abstract

The National Computer Security Center (NCSC) uses DOCKMASTER, a Honeywell DPS-8/70
mainframe running the B2-evaluated Multics operating system. DOCKMASTER provides a cen-
tral electronic facility for technical interchange between NCSC personnel, computer vendors, and
the US computer security community on unclassified topics related to computer security. To sup-
port this role, DOCKMASTER is used to store a considerable amount of vendor proprietary data.
Up until January 1989, this information was protected using only a discretionary security policy
enforced by the Multics Access Control List (ACL) mechanisms.

In January 1989, the NCSC began utilizing the Multics Access Isolation Mechanism (AIM) to pro-
vide Mandatory Access Controls (MAC) to protect vendor-proprietary information stored on
DOCKMASTER. Modifications to standard AIM were necessary to increase the number of com-
partments in order to adequately separate vendor data (i.e., each vendor has a single compartment).
This paper discusses the modifications made to Multics to increase the number of compartments
used in the enforcement of its Mandatory Access Control policy. These modifications included re-
visions to the Trusted Computing Base (TCB). This paper will describe the reason for the changes,
the extent of work required to make the changes, the adjustments made by users to utilize AIM,
and the impact of the changes on user productivity.

Introduction

DOCKMASTER must be readily accessible to authorized users in order to fulfill its mission and is -
therefore accessible via dial-in lines, TYMNET, and the Internet. Because of its wide connectivity
and the proprietary nature of much of the data located on it, DOCKMASTER must be able to pre-
vent unauthorized access to data. Multics provides support for both discretionary and mandatory
access controls which can prevent unauthorized access to data.

Multics provides Discretionary Access Control (DAC) via Access Control Lists (ACLs) associated

with each object. The ACL defines what type of access the listed users and groups of users have to
the object. For directories, Multics defines access in terms of status (“s”, the ability to view at-

439

mailto:Rovansek@Dockmaster.ncsc.mil

tributes of objects within the directory), modify (“m”, the ability to modify attributes of objects
within the directory or remove them entirely), and append (“a” the ability to introduce objects into
the directory). For segments, Multics defines read (“1”’, the ability to view a segment), execute (“‘e”,
the ability to transfer control to the segment), and write (“w”, the ability to add data to the segment)
permissions. Additionally, a user can be given “null” access to both segments and directories which
precludes that user from accessing the object.

ACL examples

directory segment

sm Bullwinkle.*.* rew Rocky.SysMaint.*
sma Rocky.SysMaint.* null Bullwinkle.*.*

sa *.Multics.* rw *.Muitics.”

s *-*'i r 'k-*.i

Each ACL term consists of the type of access allowed followed by a tuple defining the user, project
(group), and process instance (€.g., interactive, absentee). The “*”” delimiters in the ACL entries
denote wildcard characters. Thus, the ACL term “rw *.Multics.*” grants both read and write access
to the segment for any user logged into an account registered on the Multics project.

Mandatory access controls on Multics are enforced by the Access Isolation Mechanism (AIM) and
can be represented by a grid of 8 hierarchical components called levels and 18 non-hierarchical
compartments called categories. The levels are used to segregate data from lowest to highest in or-
der of importance. On DOCKMASTER, the levels range from UNCLASSIFED (lowest) to PRO-
PRIETARY (middle) to ADMINISTRATION (highest). The categories allow the user to separate
data into compartments within the hierarchical levels.

Levels
apminisTRATON | | T

PROPRIETARY I

UNCLASSIFIED

Categories VendorA0 VendorB0 ‘ VendorZ1

The protection provided by AIM could not be used by the NCSC’s Trusted Product Evaluations
division to separate vendor data because of the insufficent number of categories supported. The
evaluations division wanted to assign each vendor a unique category in order to separate propri-
etary data using AIM. Since evaluations were in process with more than 18 vendors at the time and

440

it was planned to increase this total, the standard 18 categoriés were not enough. In 1987, the eval-
uations division approached the DOCKMASTER systems programming staff and asked if there
was a way to modify the existing software to accommodate more than 18 categories.

An initial review of the programs involved showed that the 18 categories were defined as 18 bits
that could be turned on and off (changed to a one or a zero) independent of one another to form
combinations of independent categories. Further review showed that there were 18 additional un-
used bits that could be used in a similar manner. However, the total of 36 bits used to define 36
categories would still have been insufficient. The evaluations division needed 250 categories to ful-
fill their requirements.

Finding a Solution

An implementation of the required 250 categories in a manner consistent with the way Multics
MAC worked (i.e., independent categories) would have required a major rewrite of the Access Iso-
lation Mechanism. This would have had serious implications regarding the B2 evaluation of the
system. An alternative was discussed that would leave the existing system alone and use the 18
“spare” bits as a means for establishing a different type of compartment. These new compartments
would be represented by a pattern of bits instead of just one bit. By using patterns of 9 bits, the
number of combinations available would be greater than 48,000. These patterns were created to
define what became known as “extended categories” to distinguish them from the regular catego-
ries of one bit each. This modification left the AIM authorization checking procedures largely in-
tact.

It became readily apparent that there were going to be some shortcomings with the extended cate-
gories. Each category would have to be mutually exclusive, meaning that a user could only be as-
signed to use one extended category at a time. The use of two extended categories could possibly
create a bit pattern that would be a superset of the two being used. This would allow inadvertent
access to categories not intended for the user. In fact, the potential existed that if two particular ex-
tended categories of 9 bits each were turned on at the same time, the superset of these two extended
categories would have all 18 bits turned on providing the user potential access to all vendor data
on the system. As a result, users who were assigned to more than one evaluation team would have
to logout and login at different authorizations each time they wanted to access data from a different
vendor.

Implementation

To fully implement these new categories, a method had to be found to name, maintain, and interpret
the new categories. One of the prime considerations was to make this as easy as possible, maintain
the system integrity, and not introduce any performance degradation. A Multics subsystem was
created to act as a table manager in handling these concerns. The total programming effort for this
subsystem was one man-month.

Following the creation of the table manager, an extensive search of the system software programs

was begun to determine which system programs would be affected by the introduction of the new
categories. A total of seven executable programs and two data files needed modification (see Ap-

441

pendix). Three man months were required to make the modifications and to test the changes. These
programs were responsible for:

- converting‘ the AIM levels and categories from plain text to machine language and back again
- displaying the AIM level and category information in the system’s audit logs

- updating system data bases to recognize the new categories

- allowing the system start up procedures to recognize the new categories

- handling new authorizations at login time

Storage Media Modifications

Prior to running the Access Isolation Mechanism software for mandatory access controls, the sys-
tem ran in essentially two modes. These were system_low and system_high. System high was lim-
ited to jobs such as audit trails and system saves. The users were assigned to do all of their work at
system_low.

A new system boot tape was created with the new AIM information on it. Since the system had
been running with one level of “system_high”, it would not allow the administrators to reboot the
system with the new “system_high” classification containing the extended categories. When a re-
boot of the system was tried with the new system_high on it, it didn’t match the system_high on
the disk packs from the previous sessions. The system administration staff had to bring the system
up to an intermediate level before the comparison was made of the system_highs. A “patch” to the
disk headers with the new system_high was made before continuing the boot process. The system
staff performed the trial run on a test system several times to make sure of the procedures before
attempting it on the production system.

Trusted Computing Base Modifications

Six of the executable programs and both of the data files that were modified are a part of the Multics
evaluated Trusted Computing Base. The largest change was to the program that converts the au-

thorizations from plain text to machine language and back again. The major portion of the change
was identifying the extended categories, making sure that only one was used, and then validating
its authenticity. Several MAC check algorithms for utilizing extended categories were tested to find
the most efficient and implemented. The rest of the program modifications were very simple and
consisted of one or two line changes. (See the appendix for a summary of actual code changes.)

All of the programming changes were reviewed by the Trusted Products Evaluation staff. They
were given original and modified versions of the programs, accounts on the test system where the
development was done, and were requested to run tests to verify the actions of the revised software.
After their review and approval, the change was implemented on DOCKMASTER.

442

User Transitions to a Multilevel Environment

Once the decision had been made to utilize AIM on DOCKMASTER and the modifications de-
scribed previously were completed, the evaluations division management had to decide how to best
take advantage of this additional protection. They determined that the best way to use the AIM fa-
cilities provided by MULTICS would be to store all evaluation data at its own hierarchical level,
PROPRIETARY, above the one accessible to the general user populace, UNCLASSIFIED. Addi-
tional isolation would then be provided using the extended categories to separate vendors from one
another (i.e., Vendor A’s data would be classified at PROPRIETARY, VendorAQ while B’s would
be at PROPRIETARY,VendorBO0).

The Product Evaluations Division then polled the vendors working with the NCSC on product
evaluations to determine their preferences for category separation. Several vendors were working
with NCSC on multiple product evaluations and many of their personnel were involved in more
than one of these efforts. Compartmentalization of each evaluation would cause administrative dif-
ficulties in addition to usability concerns. Thus, each vendor was given the option of a single AIM
category for all evaluations or an AIM category for each one. All of the vendors initially involved
felt that a single category for all of their personnel was sufficient. The System Administrators then
created the 32 categories required to support all of the product evaluations in progress at the time.

Next, in order to take advantage of the new AIM categories, the information currently residing on
DOCKMASTER at the unclassified level had to be reclassified. This involved upgrading both eval-
uation reports in progress and evaluation forums and was done on an incremental basis over the
course of a month (January 1989). Since each evaluation report had a unique DOCKMASTER di-
rectory, it was not difficult for the system administrators to reclassify the whole subtree using priv-
ileged commands. Upgrading evaluation forums was more involved. When using AIM, upgraded
forums (those above unclassified) had to reside in a directory of equivalent classification. Under
the previous method using ACLs, all evaluation forums were within a single directory of meetings
labeled as UNCLASSIFIED. Upgraded directories at each extended category were created within
the meetings directory. The system administrators then moved the forums to this new directory and
reclassified them to the higher level. In order to avoid disrupting normal usage of these forums,
links were left behind in the meetings directory so that users would not have to redefine entries in
their personal meetings directories. (See the next section for more on personal meetings directo-
ries.)

Finally, users had to be provided with some training on how to use the additional AIM facilities.
This took the form of presentations to the evaluation community at one of its workshops and of
direct mailing of AIM documentation to users. The evaluators could then, based on their own ex-
periences with learning how to use AIM, help the vendor personnel with whom they were working
to become familiar with AIM. Within a few weeks, users adjusted sufficiently to using AIM that
productivity using DOCKMASTER eturned lar gely to normal.

Effects of AIM on Standard User Data Structures

The standard organization of the MULTICS user environment places many dependencies beyond
the user’s control on structures stored in the user’s home directory. Examples of these user data

443

structures include the value segment, the memo segment, and the meetings directory. The way in
which the system attempts to update these structures can cause problems for users who operate at
more than one AIM classification on a regular basis.

Each user has a value segment in which things such as default terminal type and printer usage def-
initions are stored. When a user utilizes a printer for the first time, the system attempts to update
that user’s value segment. If a user process is at an AIM classification different from that of the
user’s home directory, the update cannot take place and the print job will not be executed. This
problem cannot be avoided. The only way to work around it is to issue commands from the same
classification as the user’s home directory or to temporarily redefine one’s value segment to a seg-
ment within the directory at the same AIM classification (typically the user’s process directory).

Memo segments contain reminders which a user can set for later display. Typically at log on, a us-
er’s start_up program will check the memo segment and print any outstanding reminders. Once
printed, the memo segment is updated which causes the same type of problem as the updating of
value segments.

The workaround developed for the memo segment problem involved comparing the user’s log on
AIM authorization with the AIM classification of his home directory. If they differed, the memo
segment was copied into the user’s process directory (which is always at the user’s AIM authori-
zation) and location of the segment redefined to the system. While this alleviated the problem
somewhat, it was no longer possible to set memos which would last beyond the duration of the us-
er’s current session from any authorization other than UNCLASSIFIED since the process directory
was cleared. This problem could not be avoided and was not serious enough to impair a user’s abil-
ity to perform their job.

Each user has a personal meetings directory residing beneath that user’s home directory at the
same AIM classification as the home directory. The meetings directory contains links to the forums
which the user normally attends. This allows use of a single user-specific search path for all forums.
However, since the directory is at the same AIM classification as the home directory, it cannot be
updated with new links from AIM authorizations where the forum is accessible. The significance
of this problem will be discussed later in the next section.

Impact of AIM on Forum Communication

While the activation of AIM on DOCKMASTER produced many differences in the way users ac-
cessed data, the most significant impact occurred in usage of the MULTICS user communications
mechanisms such as forum.

In the standard MULTICS implementation, forums are accessible from the single level and cate-
gory at which they have been created. In order to access a forum under these circumstances, a user
must be logged on at the exact level and category of the meeting. While this implementation may
be acceptable for most uses, it created significant problems for the product evaluation community.
As part of a normal working day, evaluators must monitor activity on forums related to each eval-
uation in which they participate. Since most evaluators can be assigned to four or more evaluations
at once, each using data within a different AIM classification, this would involve multiple logons

444

to simply see if any new transactions were posted and, if so, to read them. This problem was even
worse for evaluations division managers who are expected to monitor forums for evaluations for
which they are responsible or in which their personnel participate. Thus, a manager might be ex-
pected to view forums within every AIM category as part of their normal job responsibilities.

The solution to this problem contained two elements. First, the forum subsystem was modified to
allow read access from levels dominating the sensitivity label of any forum (if permitted by the
ACL, of course). Next, an extended category called extend_high was created which was a superset
of all other categories. By using the extend_high category at the proprietary level in conjunction
with forum’s new capability of being readable from dominant AIM classification levels, an evalu-
ator or an evaluation manager could check all meetings with a single interactive session. The “su-
percategory” also provided a way for the product evaluation community to provide separation from
all vendor-specific data for its internal discussions of issues pertaining to all product evaluations.

While this solution greatly improved the usefulness of MULTICS running AIM, there were some
unavoidable complications. These had to do primarily with maintaining accurate forum usage in-
formation and initially attending upgraded forums.

The information maintained for each forum includes a list of participants, the time/date they last
accessed that forum, and the transactions they have viewed (denoted by a “seen” switch). When
using the “AIM smart” version of forum and attempting to access the forum from a dominant clas-
sification level, none of these values can be updated since this would violate the Bell - La Padula
*-Property. In the case of the transaction “seen” switches, the inability to update them from a higher
level could quickly render the information provided by them useless. In response to queries about
new transactions, the system would keep including all of the ones read since the last login at the
AIM authorization of the forum regardless of those reviewed at higher AIM authorizations thus
preventing the flow of information across AIM boundaries. '

Additionally, the first time that a user accesses a meeting, that person’s userid must be added to
the list of participants. If the user attempts to do this from an AIM classification level higher than
that of the forum, a system error occurs. The AIM mechanism cannot pérmit this because this is
also a violation of the *-Property. A user’s authorization must exactly match the classification of a
forum for the user to access the forum for the first time.

Thus, while some of the obstacles which were side effects of activating AIM could be minimized,
users still needed to move between levels on a fairly regular basis. In order to facilitate this, “new_-
proc -auth” was activated. (This change occurred in concert with the introduction of Watchwords.)
This allowed users to change authorizations by reinitializing their processes without the delay of
logging out and logging in again. Thus, users could change levels with minimal delays of under
half a minute. This enabled users with a need to work across a wide range of extended categories
to view forums or change using the supercategory and perhaps read new transactions from the
higher sensitivity level or to “new_proc” to the necessary levels and update “seen” switches while
reading the transactions.

By combining the use of an “AIM smart” forum subsystem, an AIM supercategory, and the “new_-
proc -auth” option, users working with data under many AIM classifications could get to it with as

445

minimum an effort as possible given the constraints imposed on DOCKMASTER by the Manda-
tory Access Controls in operation on the system. '

While communicating via forum did not suffer significant usability degradation from the utilization
of AIM, the addition of links to new meetings at AIM classifications higher than unclassified be-
came a great deal more difficult. The automated facility for adding additional meetings to a user’s
search paths, invoked via the “fam” command, is no longer usable for meetings at a different AIM
classification levels from the invoking user’s personal meetings directory. Thus, the only way to
update the meetings directory to include new meetings at a variety of AIM classifications is to man-
ually create the link to the forum. While this change did not cause significant loss of usability, it
has caused some confusion among users who were used to simply using the “fam” command.

Adjusting to Multi-level Mail

Mail messages are also subject to the controls imposed by AIM. Each message is a distinct object
with its own classification label. The classification of a mail message is equivalent to the authori-
zation of the sender. A user’s mailbox may only contain messages with classifications between that
of the receiver’s home directory (UNCLASSIFIED on DOCKMASTER) and the mailbox (which
will be PROPRIETARY,category_name for evaluators and vendors in evaluation) inclusive. A user
isable to see only those messages in the mailbox which have classifications dominated by the user’s
current authorization. Thus, a user logged in at PROPRIETARY extend_high will be able to view
mail messages at PROPRIETARY, VendorAQ, the user will not be able to reply at the same classi-
fication. Using mail with AIM requires users to pay attention to their current authorizations when
sending mail to others.

Quota Management

MULTICS provides the facility for controlling how much storage space (in disk pages) a particular
directory or hierarchy can use. This is done via allocation of a set quota of disk pages. Quota may
be allocated by anyone with “modify” access to both the source and destination directories. Quota
placed at the root directory of a subtree will encompass all subdirectories of that subtree at the same
AIM classification.

Before AIM was utilized on DOCKMASTER, quota management was not a concern for the aver-
age user or for administrators of the various DOCKMASTER projects. With AIM separation in
use, users are required to manipulate quota in order to be able to work with proprietary data within
their own hierarchies. This created an administrative headache of ensuring that over 400 users had
adequate quota to continue normal operations.

In order to solve this problem, the evaluations division project administrators developed programs
that automatically executed at 6 hour intervals, checked quota levels on user and unclassified eval-
uation directories, and added additional quota to them from the root of the subtree as necessary. To
manage quota in upgraded directories under the evaluations division hierarchies, the evaluations
division project administrators created a privileged program which runs periodically and examined
quota levels, reporting any directories nearing capacity. Given these additional tools, quota man-
agement at the project level could then be handled with minimal difficulties.

446

Quota management at the user level required additional training of the type described previously.
Once users became accustomed to keeping an eye on quota or to recognizing the error messages
resulting from failure to do so, they were able to use DOCKMASTER usually with only some
slight overhead of issuing a few additional commands. If the user did not have additional quota
readily available, they could quickly exceed the amount of quota allocated to them and might have
to wait as long as six hours for the quota watcher absentee to give them more. The only alternative
to that would be intervention by a project administrator. Requesting this human intervention thus
caused some additional delays in fulfilling quota requests; however, incidents of this type have not
proved to be commonplace (averaging fewer than 1 a day).

-Impact of a Multi-level Environment

To implement extended categories on DOCKMASTER while maintaining the integrity of the TCB
proved to be a challenging, yet manageable, task. While it was nearly two years from first proposal
to final implementation, the actual amount of work involved required less than a man-year includ-
ing coding and testing. Disseminating AIM documentation and providing formal training to eval-
uators required further efforts on the part of the DOCKMASTER administrative staff which could
be measured in terms of man-weeks. Reclassification was the final significant step in transition to
a multi-level environment undertaken by the administrative staff. The start-up costs described here
proved to be the most-significant ones involved in the process.

The effects of AIM transition required some adjustment on the part of the multi-level user commu-
nity. Disk storage allocated to the evaluations division increased by 35% soon after the transition
due to the need to maintain additional storage quota in directories for later usage. Access to each
evaluation forum and report directory was not possible for a day while it was upgraded. This impact
is most comparable to a temporary outage of network service. Adjustment to the additional com-
mands required to operate at multiple authorizations occurred slowly over the course of the follow-
ing months without a significant drop in productivity. However, a 3-4% increase in interactive
usage among the affected users was noted after the multi-level environment was adopted. This is
attributed to the inconvenience of the additional commands required to navigate across multiple
authorizations.

The resulting inconveniences created are, however, largely unavoidable due to the need to provide
users with an environment in which existence at a variety of AIM classifications is possible. Some
of the system constructs which do not support this ability include the values segment, memo seg-
ment, and meetings directory. It did prove possible to create workarounds or adjust procedures to
make up for this problem. Using forum from dominant AIM classification also caused difficulties.
However, altering forum’s implementation to allow read-only access from dominant levels, creat-
ing a supercategory which encompassed all extended categories, and enabling users to change lev-
els using the “new_proc -auth” command effectively reduced these problems to an acceptable
level. The necessity for users to manage their own storage quota and ensuring that additional quota
is readily available are probably the biggest adjustments to make in order to use Mandatory Access
Controls. These obstacles have been largely overcome through training users how to manipulate
quota and the use of automatic quota watchers has, for the most part, ensured that users have addi-
tional quota available as needed. After a year of AIM usage, these problems have generally proved

447

to be little more than inconveniences without a significant impact on user productivity on DOCK-
MASTER.

Conclusion

Creating a Mandatory Access Control environment on DOCKMASTER required significant but
manageable efforts on the part of the administrative staff. Using the Mandatory Access Control en-

. vironment created by AIM utilization has not proved to be a significant burden on users despite
some unavoidable inconveniences. As could be expected, using AIM was not popular with users
because of these inconveniences; however, feedback from the vendor community has been gener-
ally positive toward utilizing AIM.

Appendix: Programs Modified During AIM Revisions
convert_access_class_.pl1

This program converts the ascii representation of an AIM authorization to a bit representation and
the reverse process. Additional code was added to perform these conversions for the new extended
categories. Also, a new category “extend_high” was added that would allow a user with this priv-
ilege to access any of the extended categories at any time.

aim_util_.alm

This program is responsible for checking AIM classifications Entry points are defined within this
program to perform different variations of the access checks that may be required. Arguments con-
sist of the bit representation of the AIM classifications to be checked. The program is written in
assembly code. Changes were made to modify a mask that checks the bit patterns of the classifica-
tions. The mask size was increased to check the extra 18 bits for the extended categories..

display_access_class.pl1

This program displays the AIM classification in a numeric form L:CCCCCC where L is the AIM
Level and C is an octal representation of the AIM category bits. This program is called by the log-
ging routines to minimize the amount of information placed in the logs. This program was changed
to make the representation take the form of L:CCCCCCCCCCCC so that the extended category
bits could be shown.

system_info.pl1
This is the utility program that gathers information about the system. Entries in this program allow

other programs to obtain information including the list of AIM levels and categories. Changes had
to be made to recognize the extended categories.

448

ed_installation_parms.pl1

This program is used to modify all system parameters. One of these parameters is the maximum
AIM classification that can be used by the system. Changes allowed the maximum authorization to
include the extended categories.

as_init.pll

This program is responsible for initializing the system environment during system start_up and
locating and validating various system tables. Changes had to be made to tell it where to find the
table that contains the extended categories.

sys_info.cds and pds.cds

These data segments are compiled are used to store various system parameters and act as templates
for other functions. These parameters are determined when the operating system is built. Changes
had to be made to make the maximum AIM classification recognize 36 bits instead of the original
18 bits.

dial_up_.pll

This program handles all logging in to the system. Changes had to be made to allow users coming
in via the Internet to login. The change was needed to make the login channel allow entry at clas-
sifications above UNCLASSIFIED. At a later date, another change was made to allow users to cre-
ate a new process at a different AIM classification without logging out and back in again.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the following people for their contributions to the modifications
of the Multics AIM mechanism for DOCKMASTER. Their efforts were essential to the develop-
ment, programming, testing, and review of these changes.

James Amold, National Computer Security Center
T. Allen Grider, Honeywell Federal Systems, Inc.
John Rutemiller, National Computer Security Center
Grant Wagner, National Computer Security Center
John Wyszynski, National Computer Security Center

The authors also wish to the acknowledge the following people for their invaluable input in devel-
oping and refining this paper. ‘

Diann Carpenter, National Computer Security Center

William Geer, National Computer Security Center

Jack Holleran, National Computer Security Center , R
Grant Wagner, National Computer Security Center

449

BUILDING TRUST INTO A MULTILEVEL .FILE SYSTEM

Cynthia E. Trvine, Todd B. Acheson, and Michael F. Thompson
Gemini Computers, Inc.
2511 Garden Road
Monterey, California 93940

Abstract

File systems are an intrinsic part of any operating system providing support for a general
application environment. To help provide general operating system functionality, a
multilevel file system is being built to run on the GEMSOS TCB. The process of
designing a file system for a multilevel environment, although similar in many respects to
that for its untrusted counterpart, should include consideration of factors which will render
its structure consistent with the trusted environment upon which it is built. The file
system should take advantage of the security mechanisms available from the TCB.

In this paper, two techniques are described which contribute to building trust into a file
system design. The first is the use of mandatory access controls as a constraining design
guide, and the second is the use of the intended discretionary access control policy as a
driver for design choices. ‘

1. Introduction

At Gemini, significant effort is being focused on the development of general purpose operating system
support to execute as an untrusted application on a Trusted Computing Base (TCB) having the highest
level of assurance. The underlying TCB is the Gemini Multiprocessing Secure Operating System
(GEMSOS) [1], which is targeted for evaluation for a Class Al rating according to the Trusted Computer
System Evaluation Criteria (TCSEC) [2]. A requirement for an A1 TCB is the exclusion of non-security
relevant functionality from the TCB. Thus it is the operating system executing on the TCB which will
provide the usual range of capabilities: memory management services, process management, I/O device
management, and file system services. The purpose of this paper is to examine how one of these
services, a multilevel file system, can be designed to utilize the trust that has been achieved in the
security mechanisms of the underlying high assurance TCB. First, environments of the highest assurance
and those of lower assurance are contrasted and the overall impact of high assurance constraints on file
system design is described. Then, approaches to file system design consistent with requirements for the
highest levels of assurance are considered from the perspective of both Mandatory Access Controls
(MAC) and Discretionary Access Controls (DAC). Design techniques for the overlying multilevel
environment are described and, for developers of low assurance systems, methods are discussed which
may be employed to avoid intrinsic security flaws. The effect of security policy on file system design is
reviewed.

2. File System Design for the Highest Levels of Assurance

The requirements of the TCSEC for assurance undergo a major transition between Class B2 and Class
B3. Tt has been argued [3] that only systems of Classes B3 and A1 can be categorized as high assurance
because only systems in these evaluation classes are able to conclusively demonstrate that they contain a
security kernel. Systems of Classes B2 and lower cannot make this claim. To better address the issues

450

encountered when developing a file system for use on a high assurance “environment,” it is helpful to
examine how file system support may differ between high and low assurance trusted systems.

Architectural requirements at Class B2 and below permit a the TCB perimeter to encompass an entire
general purpose operating system, of which a major component is likely to be file management services.
Within the TCB perimeter, it is possible for selected, or perhaps a large number of, operating system
functions to be multilevel. As such, these systems are able to manipulate complex multilevel data
structures of file system resources in support of single-level untrusted application code [4].

General purpose file system portions of an operating system are fundamentally not protection-critical.
Historically this claim has been recognized and validated in that, for high assurance systems, the file
systems have been constructed outside of the TCB. Early file systems exhibiting this choice were the
Secure UNIX System described for KSOS [S]; the Project Guardian design [6] in which layering
separated mandatory access controls from the rémaining operating system services; the file system
designed for SCOMP [7]; and the Mitre security kernel design [8]. More recently, the need to separate
security-relevant from other functionality has been reiterated [3].

A TCB must include the “totality of protection mechanisms ... the combination of which is responsible
for enforcing a security policy” [2]. From the perspective of systems at lower levels of assurance one
might attempt to argue that file systems are indeed protection critical, however, the existence of worked
examples in high assurance systems of several file system designs in which the file systems are outside of
the TCB demonstrates that this criticality may be attributed to particular file system choices rather than
intrinsic file system requirements.

At Class B3, the introduction of the architectural requirement of minimization of the TCB to include
only security relevant functionality results in a fundamentally different approach to system development
as contrasted with that permissible at lower assurance levels. TCBs of the highest assurance are required
by the TCSEC to use significant system engineering directed toward minimizing the complexity of the
TCB, excluding from it modules that are not protection-critical. Thus the TCSEC builds on historical
precedent. It follows that a general purpose file system cannot necessarily be incorporated wholesale
into a high assurance TCB. Any data structures that contain information over a range-of access classes
potentially require management by a multilevel or trusted subject. If used, multilevel subjects are
inherently part of the TCB, but we suggest that their use for the manipulation of the complex data
structures required for a file system would tremendously complicate the verification and successful
evaluation of a TCB at the highest evaluation classes. Thus current thinking of trusted system design in
a high assurance environment indicates that a general purpose file system must be provided by single
level operating system subjects effectively executing as “applications” on the TCB.

3. Approaches to File Systems in High Assurance Environments

An objective of multilevel security is to allow subjects having different access classes to execute on the
same system while prohibiting information from flowing “down.” Two approaches to file management
services have been identified for high assurance multilevel environments: first, multiple, isolated single-
level file systems providing complete compatibility with a non-secure system interface from within each
single level, and, second, a multilevel file system which overcomes this isolation to provide many
features of the untrusted general purpose operating system but which, due to the constraints of high
assurance, may sacrifice some compatibility with a comparable non-secure system interface.

The first is the virtual machine approach: the untrusted operating system executes on a single level
virtual machine provided by the TCB [9]. Having negotiated a particular session level, the operating
system executes as a single level subject in an isolated environment. In its simplest form, the virtual
machine mode yields a complete single level environment and no access to information at different

451

sensitivity levels is possible. This highlights one of the primary advantages of the virtual machine
approach: it may be relatively easy to implement because it may utilize an unmodified preexisting
operating system. If this operating system supports a rich set of applications, its second advantage
becomes clear: the virtual machine can support a large body of existing application software. A
drawback of the virtual machine approach is its per-access class isolation of file system data structures.

If a “multilevel” file system is to be provided, there are significant operational consequences of the
virtual machine approach. First, subjects with a high sensitivity level may need to access low and high
sensitivity information simultaneously and on a routine basis. Although examples of extended virtual
machine approaches, such as the secure DOS demonstration on GEMSOS [10], exist in which subjects at
higher access classes are provided with read access to objects at lower access classes, in general, this is
difficult because the virtual machine monitor would be required to manage access to the multilevel file
system and thus would be invested with substantially increased complexity and hence would be
noncompliant with the TCSEC at the highest evaluation classes. To support the ability of high access
class subjects to “read down,” considerable additional functionality may be required within the file
management services. The file system interface must provide a means for applications to specify which
file in which file system is to be accessed. At this point, the advantage of non-customized software has
been lost. :

For the virtual machine approach, a mechanism is needed for the use of file systems at each supported
access class. Before a user selects a new session level in which files are to be created, a minimal file
system data structure at that level must be present. If construction is postponed until just prior to the
user’s instantiation at a particular session level, then a multilevel subject or an administrator must be
provided to deal with the differing access classes. Alternatively, if some minimal file system is to be
provided when the system is first initialized, then a substantial waste of system resources may result. To
illustrate this last point, consider the number of access classes possible using the GEMSOS TCB: with
two sets of 16 hierarchical levels and a total of 96 non-hierarchical categories, the potential number of
access classes, although enumerable, is extremely large. To create even the most minimal file system
objects at such a large number of access classes when it is expected that most will never be used during
the entire lifetime of the system would be extravagantly wasteful, if it were possible.

Despite additions to provide an apparent multilevel file system in the virtual machine monitor milieu,
some do not regard such designs to be truly multilevel file systems.

An alternative approach, a coherent multilevel file system, is in greater harmony with the spirit of
multilevel security. In essence, the file system contains objects at many different access classes, and is
designed to provide subjects at different access classes with a unified view of the file system while the
TCB constrains each subject to access only those file system objects consistent with the policy being
enforced by the underlying TCB. This approach allows the effective use of files in a coherent multilevel
environment.

4. Using MAC to Build Trust

By relying on the security mechanisms provided by an underlying high assurance TCB, a file system can
be designed which, in effect, extends the TCB’s trustworthiness to the file system interface. In a low
assurance system, the quest for compatibility with non-multilevel general purpose file systems may lead
to certain problems which at high assurance cannot even be contemplated due to the fact that the file
system data structure is managed by untrusted single level subjects. In the following sections, several of
these design issues will be examined and it will be shown that by assuming that the file system is built on
an underlying high assurance TCB, it is possible to avoid certain classes of potential problems and,
perhaps, to achieve a more robust design with respect to trust.

452

4.1 Multilevel Tables

In the UNIX [11] operating system, the focus of the file system mechanism is the inode. It contains the
attributes of the file system object as well as the address of the object’s data. In any physical file system,
where by “physical” we mean the partitioning of some storage device or devices into logical mountable
file system volumes, each inode is distinct. Clearly, the notion of a multilevel inode table is a possibility
for low assurance systems where the complex file system mechanism is inside the TCB. Even in this case
the multilevel inode table introduces an information channel as high- and low-level applications request
the allocation of inodes. In contrast, a file system built to meet high assurance architectural |
requirements cannot use a multilevel inode table because the file system will be managed by single level
subjects which are unable to manipulate objects over a range of access classes. We propose that by
taking the time to consider high assurance engineering issues, the builders of low assurance systems can
decrease the likelihood of introducing channels.

4,2 Multilevel Directories

For low assurance systems in which subjects managing the file system are multilevel, the use of
multilevel directories may seem appealing at first. Here a directory would be a labeled object, but
would contain entries each of which would have a separate label. Unfortunately, this leads to the
requirement that the label on the directory as a whole be that of its most sensitive entry. By recursion, it
can be seen that the root directory of the file system would assume the access class of the most sensitive
entry in the file system. Adding another more sensitive entry would result in massive relabeling, quite to
the contrary of accepted notions of tranquility [12].

4.3 Upgraded File System Objects

One can postulate a hierarchical file system in which any file system element may be at a higher access
class than its parent, i.e., upgraded, thus implying that any directory might contain upgraded files,
directories, and links. Here we examine the implications of circumscribing this unlimited flexibility.

The primary difficulty with upgraded objects of all types is that of object deletion (a topic which also will
be discussed in a different context in the following section). To delete an upgraded object, a “range” is
required because it is not only necessary to delete the high access class object, a write at the high access
class, but also to delete the entry for that object in the lower access class parent object, a write at the
lower access class. Deletion is not a problem at low assurance where the management of file services is
within the TCB. Because of the inherent trust that must be placed in a file system mechanism of this
nature, it is able to delete objects of upgraded access classes which are associated with objects at lower
access classes. For a file management system executing at a single level outside of a high assurance
TCB, such file deletion is impossible. A single level subject cannot delete the upgraded object and also
modify the lower access class parent so that its entry in the parent object is removed. A trusted subject
is required, e.g., as part of a security administrator’s special tools. In order to minimize potential
operational difficulties associated with invoking a trusted subject for routine file system management,
we recommend that only directories be upgraded objects. Invoking the arguments for what has been
termed “compatibility” [12], we also recommend that all directories dominate the access classes of their
parent directories.

Operationally this makes sense. Within any directory all of the files would be at the same sensitivity
level. The level of a directory would indicate the intent of the creator to populate the directory with files
at that level. Similar files at other levels would occupy other directories. Given that each file, which is
simply a data repository will match the level of its directory, the directories themselves are the
candidates to be the upgraded objects which can allow the file system to be multilevel. If users create

453

their major directories on the basis of access class, then the use of the special services required to delete
an upgraded directory will be infrequent.

4.4 Deletion of File System Objects

In some file systems, e.g., UNIX, if a file is being simultaneously accessed by one or more subjects and
some other subject chooses to delete the file, the space occupied by the file is not released for
reallocation until all subjects terminate their access to the file [13]. Thus, as a result of its global
knowledge of current accesses to the file, the operating system postpones the act of file deletion.

The constraints imposed by an underlying high assurance TCB on single level subjects both accessing and
manipulating the file system result in behavior dissimilar to that possible at lower levels of assurance.
Single level operating system low access class subjects cannot have global knowledge of file usage at
higher access classes: they must have no way of detecting that low access class files are in use by
subjects at higher access classes, otherwise an information flow from high to low level subjects would
exist, viz., the TCB would contain a design flaw. While at any access class the operating system subject
may have read access to global databases reflecting current accesses to a file at the subject’s current level
and below, mandatory access policy will make it impossible for an untrusted subject to detect file system
accesses by subjects at higher levels. This means the operating system acting on behalf of a subject at
the access class of the file is obliged to carry through to completion any command for deletion that is
both permitted under DAC and not blocked by active accesses of subjects at the same access class.

Applications will have to cope with the deletion semantics. “Secure” applications, designed to use a
multilevel file system, can make special checks preceding or following attempts to obtain information
from deletable objects. If a “secure” application running at a higher access class has a temporary copy of
the deleted object, it can make a copy in its own directories at the higher access class. The behavior of
old non-secure applications is more problematic: if executing at a high session level, they may or may
not return meaningful error messages and take appropriate actions accordingly when files at lower access
classes are deleted. Some old applications, if mindlessly introduced into a multilevel environment, may
be expected to fail with consequences which from the user’s perspective may be considered serious.

4.5 Links: Hard Versus Symbolic

Links present another area where the behavior of software may be significantly modified in a multilevel
file system implemented on an underlying high assurance TCB. The objective of links in both the
trusted and untrusted worlds is to allow users to share files. In a trusted environment, a desirable
scenario might be to allow links from a directory at one access class to objects in other directories which
are at either higher or lower access classes. Despite the fact that, in a low assurance system, links may be
managed within the TCB, it is useful to examine the impact of a high assurance environment on link
management. There are two kinds of links: hard links and symbolic links.

Hard links are found in the single-level AT&T version of the UNIX operating system [12, 13]. Links are
from the directory to the UNIX inode. Within the inode a “link count” is maintained so that only when
the last link is deleted does the inode disappear. UNIX-like links traditionally are not allowed to cross
physical file system boundaries. The principle advantage of hard links is compatibility with the way
‘interactive users construct their file environments and, to a lesser extent, with preexisting software.
Unfortunately, there are several severe drawbacks to using hard links in a multilevel environment.
Because it would be necessary for subjects at a variety of access classes to modify link counts, a single,
multilevel file system canpot be implemented at Class B3 or above using pure hard links without
conceding the existence of mgh bandwidth covert storage channels. In reality, a high assurance TCB will

454

not allow subjects at differing access classes to modify link counts, thus relegating hard links to single
level semantics. In addition, the use of hard links in combination with mechanisms such as mountable
file systems where each file system is single level and at a different access class results in difficult file
sharing at different levels because hard links cannot cross file systems.

Symbolic links find one of their best examples in the Multics system [15]. Their semantics are well
understood and complementary to multilevel security [16]. A similar mechanism has been introduced
more recently into the BSD versions of UNIX [17]. A symbolic link is from a directory to a symbolic
name, where the symbolic name may be any of several file system object or data structures. If the target
object is deleted, the symbolic link remains unchanged: only when an attempt is made to access the
deleted object, does its deletion become apparent. If the original object is deleted and another object
having the same name is substituted in its place, then access via the symbolic link will result in the access
to the new object. Symbolic links may be used to cross physical file systems and are thus well suited to a
multilevel environment.

At first glance, the use of symbolic links which point to objects at higher or lower access classes would
seem to make the directories containing them multilevel objects, but this is not the case. (It is sufficient
to note, as pointed out earlier, that one might “get into trouble” with the notion of directories as
repositories for information at many access classes since the level of the directory would necessarily be
that of the most sensitive object it contained, and, by recursion, the root directory of the file system
would be forced to assume the access class of the most sensitive object in the file system.) On the
contrary, symbolic links contain no information about the object to which they point. The link is at the
access class of the directory in which it is contained even though a link to a higher access class object
typically is intended for use by a subject at a higher access class. Conversely, since theoretically a
subject at a higher access class can observe the path to an object at a lower access class, that subject can
easily create symbolic links to objects at lower access classes.

4.6 The Location of Temporary Files

To be most attractive, a multilevel operating system should support a large body of existing applications
software including software development tools such as editors, compilers, archivers, etc. Many of these
tools require the use of temporary files located in a common directory. There are two reasons why
directories for temporary files which are shared across access classes present a problem in a multilevel
file system. The first is the potential for duplicate names as subjects at differing access classes create
temporary files in the same directory. In order to handle duplicate names, software would have to use
“access class” as an additional qualifier for the file name. Since that might entail modification of
applications and the objective is to use off-the-shelf software, this is not practical. The second reason is
the problem of deleting upgraded objects from the temporary directory. To allow access to a single
temporary directory by subjects at all access classes, that directory would have to be system low. Thus
subjects at higher access classes would have to create upgraded entries in the system low directory. The
security policy requires a subject with a range encompassing that of the directory and the temporary file
(viz., trusted) to delete upgraded objects. This is possible in low assurance systems where the file system
is part of the TCB; it is precluded from the options available on high assurance systems where the file
system must be excluded from the TCB.

A solution to both the duplicate name and the deletion problems is to create a special directory type for
temporary directories akin to the hiding directories found in the Linus TV [18] system. Below the visible
temporary directory there exists a hidden subtree of directories at each access class. All accesses to
temporary files by subjects at a particular access class are targeted by the operating system to the hidden
subdirectory at the corresponding access class. Name duplication at differing access classes is no longer a
problem because the operating system implicitly extends the name of each temporary file with the access
class of the subject creating it. Since the temporary files are at the same access class as their containing

455

directory, the deletion problem is resolved. This mechanism is hidden from applications. Because the
operating system does the work by recognizing the paths to temporary directories as special, applications
can be used unmodified. In the case of GEMSOS, a multilevel subject within the TCB creates a location
at each new access class which can be used by the untrusted operating system as a foundation upon which
a temporary directory at that access class can be built.

The examples of this section illustrate that file system designers constrained by an underlying high

assurance TCB do not have the spectrum of choices, some of which are ill advised, available to file
system designers in low assurance environments where the file system and the TCB can overlap.

5. Using DAC to Build Trust in a Coherent Multilevel File System

In a high assurance system a DAC policy is enforced at the TCB interface. The operating system, built
on the underlying TCB, has the opportunity to maximize its usage of the underlying DAC mechanisms in
order to enhance its trustedness.

DAQC, discretionary by definition, can be rendered ineffective by allowing untrusted applications (in this
case the operating system itself) to give away the protection features provided by the TCB. A file
system poorly designed with respect to trust can fail to reflect the intended DAC policy at its interface,
but instead may implement a mechanism for which the policy is ill-defined or even flawed. During the
course of our work at Gemini, several seemingly elegant file system designs have been found to be
flawed with respect DAC. Their common trait was the need for global data structures for which all
operating system subjects required DAC access.

It is possible to arrange the file system such that the objects used to contain its access control lists
(ACLs) have a flat structure and are used much like UNIX inode tables [13] to construct the observable
files and directories. However, in order to set the ACLs for file system objects, all subjects must have
DAC permission to modify the objects containing the ACLs. Many such designs also required other
global data structures with unrestricted DAC access granted to all subjects. Thus it follows that a
penetrator of the operating system (not the TCB) could use the existing operating system software (no
operating system Trojan Horses are needed) to obtain unauthorized access to information. In effect, the
operating system in such a case has been designed so that it must assume much of the responsibility for
the enforcement of DAC policy. Having implemented such design choices, one is not able to “trust” the
file system with even close to the same degree of assurance as the DAC policy enforced at the TCB
interface.

In contrast, by giving careful attention to the constraints of the multilevel environment, the file system
may be designed to be constrained by, and reflect the DAC enforced by, the TCB. In this case,
operating system penetrators are foiled by the combined structural properties of the file system and
TCB-enforced DAC. In very simple terms, the file system is built without using global data structures
for the propagation of DAC. An ACL is associated with each file system object used to contain
directory and file status information, and directory and file data. A component of a directory would be
the repository for the ACLs associated with the files and subdirectories which are direct entries in that
directory. Thus, the access to an ACL does not require access to a structure to which all subjects have
DAC access. DAC may be applied individually to each component of the file system. Users are able to
walk the file system and list directories without necessarily having access to the files located “in” the
directories, or, conversely, they may have access to the files without being granted access to the
directories. Directories and similar structures may be arranged to promote efficient file system transit,
while files may be designed to provide for efficient data access. Details of such a design are intended for
a future presentation.

456

By synergistically combining TCB-enforced DAC and operating system structures, it is possible for
TCB-enforced DAC to be mapped directly to the file system, or, more broadly, the operating system
interface. This strong linkage between TCB-enforced DAC and that observed by applications ensures
“trust” in the file system in a practical and operational sense.

6. Distinguishing Security Policy from Common Sense

When considering a file system for use in a high-assurance trusted environment, it is essential to
distinguish between features that are reflections of the security policy and those that are related to
functionality. Security policy pertains exclusively to the access of users to information where secrecy
policies protect information from unauthorized disclosure and integrity policies protect information from
unauthorized modification. Non-security relevant mechanisms established a system-level etiquette for
general operations. Sometimes it is difficult to differentiate security and non-security relevant
functionality.

Consider the access to the time that a file system object has been modified. Some implementations may
allow this access to take place despite lack of access to the object itself or to its containing directory,
while others may severely constrain it. A mechanism allowing or disallowing access to time modified is
one related to system functionality policies not to security policy. It is clear, however, that if the system
encompasses a mechanism requiring that all users, regardless of their session levels, be allowed access to
all modification times, regardless of the access class of the object in which the times are stored, this
would constitute a serious security flaw because the times could be used as a covert channel.

Another example is the “execute” access used on UNIX directories and other modes of access
contemplated for UNIX-like systems [19]. In this case, there has been considerable confusion as to their
relevance in security policy enforcement and their real purpose, which is to provide other desirable
properties that may not be inherently security relevant. The “execute” permission to directories allows
users access to files within a directory, where for each file the user must have the appropriate form of
access on the file itself. To “read” the contents of a directory, a user must explicitly be given “read”
permission to the directory. As repositories for data, access to files and directories is mediated by
Mandatory Access Controls and by permissions granted in ACLs. The notion of accessing a file
irrespective of the permissions associated with the information in the containing directory is supportable
and an example already exists with Multics [15]. The “execute” permission for directories makes explicit
that which is implicit in some existing systems. It does not control disclosure of information in the
directory and we conclude that it is a functional rather than a security feature.

Other features of the file system that are engineering choices driven by functional requirements rather
than security requirements include maintenance by UNIX [SVID] of the date of last use and the date of
last modification of status of a file or directory (the latter is the time at which either the time of last
access or time of last modification were modified). Both are relevant from the standpoint of useful data
for file and directory management; however, neither are relevant to-the enforcement of an access control
security policy. Obviously, where a high assurance TCB provides the foundation for an operating system
populated by single level subjects, neither of these two file system object attributes can be maintained
for all accesses to files and directories by all single level subjects. They are only maintained in objects at
and modifiable by subjects at the access class of the file or directory. Such choices lead to nominal
incompatibilities with file systems conceived outside of the multilevel universe. These incompatibilities
are inevitable, but are usually of acceptable impact since, in this case, there are no applications expecting
such multilevel support.

457

7. Summar

It has been shown that building trust into a coherent, mulitilevel file system requires careful design with
respect to untrusted components. It is necessary to make a consistent set of choices which clearly define
what the behavior of the secure system will be. These include the use of symbolic rather than hard links,
the design of applications to avoid the dangers of deleted objects, the creation of special mechanisms to
handle temporary directories, and the restriction of upgraded objects to directories.

This paper has presented concepts that are useful in constructing data structures for use in a high
assurance, multilevel environment. Issues related to the design of file management services are
presented. We argue that to build “trust” into a file system, the designer’s objective should be to take
“trust” out of the file system and to “trust” the underlying TCB instead. Design choices to build trust
into a file system can be made with respect to both MAC and DAC. To build trust using MAC, one
should always constrain the design to meet the architectural and engineering requirements of the highest
possible TCSEC evaluation class, viz., Classes B3 and Al. To build trust using DAC, the design should
not subvert the high assurance DAC supported by underlying access control mechanisms, but instead
should attempt to provide a strong structural linkage between the underlying DAC enforcement
mechanisms and the DAC presented at the file system interface.

The authors wish to thank Mark Heckman and Timothy Levin for their careful review and thoughtful
comments on this paper.

References
1] Schell, R.R., Tao, T.F., and Heckman, M. “Designing the GEMSOS Security Kernel for
Security and Performance.” in Proc. 8th National Computer Security Conference, pp. 108-119,
1985.
[2] ----, Department of Defense Trusted System Evaluation Criteria. DOD 5200.28-STD, National

Computer Security Center, Fort Meade, MD, 1985.

[3] Shockley, W.R., Schell, R.R., and Thompson, M.F., “The Importance of High Assurance
Computers for Command, Control, Communications, and Intelligence Systems.” in Proc. of the”
Fourth Aerospace Computer Security Applications Conference, Orlando, FL, pp. 331-341, 1987.

[4] Gligor, V. D., Burch, E. L., Chandersekaran, C.S., Chapman, R.S., Dotterer, L.J., Hecht,
M.S., Jiang, W.E., Luckenbaugh, G.L., and Vasudevan, N., “On the Design and the
Implementation of Secure Xenix Workstations,” in Proc. IEEE Symp. on Security and Privacy,
pp- 102-117, 1986.

{5] ----, “Secure Minicomputer Operating System (KSOS) Final Report, Department of Defense
Kernelized Secure Operating System.” Ford Aerospace and Communications Corporation, Palo
Alto, CA, 1977.

[6] Schroeder, M.D., Clark, D.D., and Saltzer, J.H., “The Multics Kernel Design Project.” Proc.
Sixth ACM Symp. on Operating System Principles, p. 43, November 1977,

(7] Fraim, L.J. “SCOMP: A Solution to the Multilevel Security Problem”. Computer, 16, No 7,
pp. 26-34, 1983.

458

8]
9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]

Schiller, W.L., “The Design and Specification of a Security Kernel for the PDP-11/45.” ESD-
TR-75-69. Hanscom AFB, MA. AFESD, 1975.

Gold, B.D., Linde, R.R., Peller, R.J., Schaefer, M., Scheid, J.F., and Ward, P.D. “A
Security Retrofit of VM/370.” Proc. of the NCC, 48, p. 335, 1979.

Shockley, W.R., Tao, T.F., and Thompson, M.F. “An Overview of the GEMSOS Class Al
Techonology and Application Experience.” in Proc. of the 11th National Computer Security
Conference, p. 238-245, 1988.

----, System V Interface Definition, Volumes T and II. AT&T. Indianapolis, Indiana, 1986.
Bell, D.E., and LaPadula, L.J. “Computer Security Model: Unified Exposition and Multics
Interpretation.” Tech. report ESC-TR-75-306, MTR-2997 Rev. 1, The Mitre Corporation,
Bedford, MA, 1976.

Bach, M.J. The Design of the UNIX Operating System. Prentice Hall, Englewood Cliffs, NJ, p.
61, 1986.

Denning, D.E., Lunt, T.F., Schell, R.R., Heckman, M., and Shockley, W. “A Multilevel
Relational Data Model.” in Proc. IEEE Symp. on Security and Privacy, p. 220, 1987.

Organick, E. 1., The Multics System: An Examiniation of Its Structure. MIT Press, Cambridge,
MA, p. 222, 1972.

Whitmore, J., Bensoussan, A., Green, P., Hunt, D., Kobziar, A., and Stern, J. “Design for
Multics Security Enhancements.” ESD-TR-74-176, Hanscom AFB, MA.

McKusick, M. K., Joy, W. N., Leffler, S. J., and Fabry, R. S., “A Fast File System for Unix.” .
ACM Transactions on Computer Systems, Vol. 2., No. 3, p. 181, August 1984. .

Kramer, S. “Linus IV - An Experiment in Computer Security.” in Proc. I[EEE Symp. on
Security and Privacy, pp. 24-32, April 1984,

----, Trusted UNIX Working Group (TRUSIX) Rationale for Selecting Access Control List

Features for the UNIX System. NCSC-TG-020-A. Version 1. National Computer Security
Center, Fort Meade, MD, 1989.

459

LAVA/CIS Version 2.0;
A SOFTWARE SYSTEM FOR
VULNERABILITY AND RISK ASSESSMENT

S. T. Smith and M. L. Jalbert
Safeguards Systems Group, MS-E541
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, New Mexico 87545

ABSTRACT

LAVA (the Los Alamos Vulnerability/Risk Assessment system) is an original systematic
approach to risk assessment developed at the Los Alamos National Laboratory It is an alternative
to existing quantitative methods, providing an approach that is both objective and subjective, and
producing results that are both quantitative and qualitative. LAVA was developed as a tool to help
satisfy federal requirements for periodic vulnerability and risk assessments of a variety of systems
and to satisfy the resulting need for an inexpensive, reusable, automated risk assessment tool
firmly rooted in science. LAVA is a three-part systematic approach to risk assessment that can be
used to model a variety of application systems such as computer security systems, communications
security systems, information security systems, and others. The first part of LAVA is the mathe-
matical model based on classical risk assessment, hierarchical multilevel system theory, decision
theory, fuzzy possibility theory, expert system theory, utility theory, and cognitive science. The
second part is the implementation of the mathematical risk model as a general software engine
executed on a large class of personal computers. The third part is the application data sets written
for a specific application system. The user of a LAVA application is not required to have knowl-
edge of formal risk assessment techniques. All the technical expertise and specialized knowledge
are built into the software engine and the application system itself. LAVA application systems,
including the popular computer security application, have been in use by federal government
agencies since 1984; the previous computer security version—-LAVA/CIS, Version 1.01 [34]-is
used by over 100 agencies at more than 500 sites.

INTRODUCTION

LAVA (the Los Alamos Vulnerability/Risk Assessment system) is an original systematic
approach to risk assessment developed at the Los Alamos National Laboratory to determine vulner-
abilities and risks inherent in massive, complicated systems. Characteristics of such systems are
huge bodies of imprecise data, indeterminate (and possibly undetected) events, large quantities of
subjective information, and a dearth of objective information. LAVA was developed as a tool to
help satisfy federal requirements for periodic vulnerability and risk assessments of a variety of
systems and to satisfy the resulting need for an inexpensive, reusable, automated risk assessment
tool firmly rooted in science [1]. When the LAVA project began in 1983, there was no such tool
[2]; LAVA was designed to fill that gap [3].

LAVA is an alternative to existing quantitative methods, providing an approach that is both
objective and subjective, and producing results that are both qu:antitative and qualitative. In addi-
tion, LAVA is used by some agencies as a self-testing aid in preparing for inspections, as a self-
evaluating device in testing compliance with the various orders and criteria that exist, and as a cer-
tification device by an inspection team.

460

LAVA is a three-part systematic approach to risk assessment that can be used to model a
variety of application systems such as computer security systems, communications security sys-
tems, information security systems, and others. The first part of LAVA is the mathematical model
based on classical risk assessment [4,5], hierarchical multilevel systems theory [6,7], decision
theory [8-10], fuzzy possibility theory [11-15], expert system theory [14,15], utility theory
[17,18], and cognitive science [19,20]. (The mathematical model has been presented at other tech-
nical meetings [21-23], and generally will not be addressed in depth in this paper.) The second
part is the implementation of the mathematical risk model as a general software engine, an expert
system framework written in a commercially available programming language for a large class of
personal computers. The third part comprises the application data sets written for a specific appli-
cation system; each application system is a knowledge-based expert system. LAVA provides a
framework [24] for creating applications upon which the software engine operates; all application-
specific information appears as data.

The user of a LAVA application is not required to have knowledge of formal risk assess-
ment techniques. All the technical expertise and specialized knowledge are built into the software
engine and the application system itself. LAVA applications include the popular computer security
application [27-30] and applications for nuclear power plant control rooms [31], embedded sys-
tems, survivability systems, transborder data flow systems [32], and property control systems.
We presently are developing LAVA applications for nuclear processing plant safeguards systems
[33] and operations security systems and are discussing the development of a LAVA application
for environment, health, and safety issues. LAVA application systems have been in use by federal
government agencies since 1984; the previous version-LAVA/CIS, Version 1.01 [34]-is used by
over 100 agencies at more than 500 sites.

LAVA/CIS: THE MPUTER/INFORMATION SECURITY MODEL

The LAVA system was used to develop a hierarchical structure and sets of fuzzy analysis
trees for modeling risk assessment for systems associated with computer and information security.
Knowledge-based expert systems were built with LAVA to assess risks in application systems
comprising a subject system and a safeguards system. The subject system model is sets of threats,
assets, and undesirable outcomes; because the threat to security systems is ever-changing, LAVA
includes a dynamic threat analysis [25,26]. The safeguards system model has three parts: sets of
safeguards functions for protecting the assets from the threats by preventing or ameliorating the
undesirable outcomes that may happen to the assets, sets of safeguards subfunctions whose per-
formance determine whether the function is adequate and complete, and sets of issues, appearing in
the software as interactive questionnaires, whose measures (in both monetary and linguistic terms)
define both the weaknesses in the safeguards system and the potential costs of an undesirable out-
come occurring as a result of a successful attack against safeguards system weaknesses.

For the computer/information security application model, LAVA/CIS, the set of postulated
assets consists of four categories: (1) the facility, including physical plant and personnel; (2) hard-
ware, including all computing and ancillary pre- and postprocessing hardware; (3) machine-inter-
pretable information, including software, input and output files, and databases; and (4) human-
- interpretable information, including documents, screen displays, graphs, charts, film output, and
so forth. The model's threat set consists of three categories: 1) natural, random, and environ-
mental hazards; 2) direct or onsite humans, including the authorized insider; and 3) indirect or
offsite humans (but this threat category has not yet been implemented in the software). Figures 1
and 2 show the hierarchical structures for the three threat categories with respect to the four asset
categories. Included as the third and fourth levels in these hierarchies, and discussed later in this
paper, are representative safeguards functions and subfunctions associated with each threat-asset
pair; Fig. 3 shows the complete analysis structure for the [direct human threat, software asset]
combination.

461

NATURAL OR

RANDOM THREAT
HAZARDS
ALL ASSETS ASSETS
|
MAJOR FIRE WATER POWER
HAZARDS DAMAGE DAMAGE DAMAGE SuTAGE O ERVICE | MR TENANCE | SAFEGUARDS
CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL FUNCTIONS
; 1. EXPOSURE 1. PREVENTION 1. PREVENTION 1. PREVENTION 1. PREVENTION 1. EM. ALERT 1. PREv[Nnv[ﬁ
2. RESISTANCE 2. DETECTION 2. DETECTION 2. DETECTION 2. DETECTION 2. RESPONSE MAINT.
3. AA?::?NJSSTR/ 3. MITIGATION 3. MITIGATION 3. MITIGATION 2. :(185%?56 SAFEGUARDS
: 4. MITIGATION SUBFUNCTIONS
Fig. 1. Natural Hazards Hierarchy for Computer/Information
Security Application ‘
DIRECT (ONSITE)
HUMAN THREAT THREAT
MACHINE— HUMAN-—
FACILITY HARDWARE READABLE READABLE ASSETS
INFORMATION INFORMATION
1. REACHABILITY! 1. REACHABILITY 1. REACHABILITY] 1. REACHABILITY|
2. ACCESS 2. ACCESS 2. ACCESS 2. ACCESS
S
3. PERSONNEL 3. AUDIT 3. APPL. USE 3. ERR.CORR/
BACKUP
4. AUDIT 4. DISTRIBUTION

SAFEGUARDS SUBFUNCTIONS BRANCH FROM EACH SAFEGUARDS FUNCTION.

Fig. 2. Direct (Onsite) Human Threat Hierarchy for Computer/Information
Security Application ’

462

Threat—Asset Safeguards Outcome Consequence
Pair Functions of the Attack (of the Outcome)
SOFTWARE REACHABILITY
Perimeer MONETARY
ﬁuuldnng UNAUTHORIZED
Room ACCLSS OR'U NONMONETARY
MONETARY
SOFTWARE ACCESS MODIFICATION
ORTAMPERING | NONMONETARY
Identification, MONETARY
Authorization, .
Dle(c:)TF p\:’JM&N / Authentication %%GETI%R
Al DESTRUCTION
Operating NONMONETARY
Systems Proc. MONETARY
DISCLOSURE
SOFTWARE
APPLICATIONS NONMONETARY
MONETARY
Software Use THEFT
Developmgnt and NONMONETARY
Program Change MONETARY
Error Prevention DENIAL
d Detecti
and Detection OF USE NONMONETARY
Correction and
Backup
SOFTWARE AUDIT

Internal Audit

Data Traceability

Fig. 3. Direct Human-Software Scenario Analysis Tree for
Computer/InformationSecurity Application

Six undesirable outcomes are considered in the computer/information security model:
(1) unauthorized access or use; (2) damage, modification, or tampering; (3) destruction; (4) theft;
(5) unauthorized disclosure; and (6) denial of use. It is important to note that a single event can
result in the simultaneous occurrence of more than one of the outcomes. Figure 4 shows the out-
come possibility matrix for the threat-asset combinations; a value of zero indicates that the outcome
is impossible for that threat-asset combination, and a value of one means the outcome is possible
for that threat-asset pair; greater granularity can be achieved by assigning values lying between zero
and one, indicating varying degrees of possibility for the occurrence of each outcome.

The ideal safeguards system prevents the threats from attacking the assets and achieving the
postulated outcomes. The safeguards system model consists of a set of safeguards functions for
each of the distinguishable threat-asset pairs (nine T-A pairs, in this application) in such a way that
the relative importance of each function within the set of functions for each T-A pair is about the
same. Then, for each of the individual safeguards functions, a set of subfunctions provides per-
formance criteria for the adequacy and completeness of that safeguards function; each of the sub-
functions is devised so that the relative importance of each subfunction within a specific function is
about the same. Again referring to Figs. 1-3, the figures show the safeguards functions and sub-
functions for each distinguishable threat-asset pair.

463

Unauthorized Modification Damage Disclosure Theft Denial

Access or or of use
or Use Tampering Destruction
Natural Hazards
— Facility
0 1 1 0 0 1
Natural Hazards
— Hardware
0 1 1 0 0 1
Natural Hazards
— Software
0 1 1 0 0 1
Natural Hazards
— Documents/

Direct Human
— Facility 1 1 1 1 1 1

Direct Human
— Hardware 1 1 1 1 1 1

Direct Human
— Software 1 1 1 1 1 1

Direct Human
— Documents/ 1 1 1 1 1 1
Displays :

Fig. 4. Outcome Possibility Matrix for Computer/Information
Security Application

LAVA evaluates the value of the assets to the organization in qualitative terms. The evalua-
tion takes into account the criticality of the asset to organizational operations, the sensitivity of the
asset to adversarial gain from theft or disclosure, and the necessity for the asset to maintain its
integrity in terms of modification. The user may also specify monetary values for the asset to
maintain its integrity in terms of modification. The user may also specify monetary values for the
assets in any consistent currency system (LAVA's expertise does not extend to currency conver-
sion).

Both government and corporate organizations may be the targets of a variety of hostile
agents [35,36], and the intensity of the threat may change with time and circumstances. The
dynamic threat strength can be analyzed if the subject system is extremely sensitive to a changing
threat and if the subject organization has access to the kinds of information the analysis requires.
The dynamic threat analysis takes irito account possible threat agents and their potential attack goals
with respect to the target(s) of the attack. The dynamic aspects of the natural hazards may or may
not be of interest; these include both random natural hazards, such as volcanic eruptions or
earthquakes, as well as the natural hazards more cyclic in nature, such as hurricanes, tornadoes,
torrential rains, and the like. The human threat agents in each of the human threat categories all act
for different reasons, so they may differ widely in motivation, capability, and opportunity.
Similarly, the goals of the attacks may vary, but all categories of goals may be used by all cate-
gories of threat agents. Clearly, more than one of the goal categories may be the goal of a single
attack, and a single attack may be perpetrated by more than one category of threat agent. Figure 5
illustrates the dynamic threat analysis structures. A more detailed discussion of the dynamic threat

. analysis can be found in References 25 and 26.

The impact analysis measures costs in both qualitative and quantitative terms: LAVA uses

qualitative measures for intangible cost sources like loss of reputation or strategic posture, and
quantitative measures for tangibles like repair/replacement costs or litigation costs.

464

ASSET MOTIVATION CAPABLTY OPPORTUNITY

ATTRACTIVENESS
NO OPPORTUNITY
NO CAPABILITY
NO OPPORTUNITY
NO MOTIVATION — NO OPPORTUNITY
NO CAPABILITY
YES T NO OPPORTUNITY
DYNAMIC
NO THREAT
NO NO OPPORTUNITY STRENGTH
ASSET NO CAPABILITY
ATTRACTIVENESS NO OPPORTUNITY
NO MOTIVATION NO OPPORTUNITY
NO CAPABILITY
NO OPPORTUNITY

Fig. 5. Analysis Structure for Dynamic Threat

Loss exposure, or risk, results from a combination of asset value, threat strength, safe-
guards system weakness, and event costs. LAVA calculates both a monetary and a nonmonetary
loss exposure measure for each [threat, asset, safeguards function, outcome, impact] combination.
These loss exposure values can be aggregated in whatever ways are of interest to the user; less
aggregation provides more information for specific decision making, but more aggregation pro-
vides a bottom line for upper management..

FEATURE F LAVA/CIS VERSI 2

' The long-awaited new version of the computer and risk assessment application of LAVA,
AVA[Q S Version 2.0, was released for the first time on a limited basis in April 1990. The new
version has a much improved vulnerability assessment section, and has the additions of an asset-
value estimation, a threat-strength estimation, and both monetary and nonmonetary (or intangible)
impact analysis, expanding the LAVA 2.0 software engine into a full risk assessment package.
This section discusses what the software is, what its operating requirements are, and how it is dis-
tributed.

isLAVA?2 h i in irements? The LAVA 2.0 general soft-
ware engine is a compiled, fully self-contained piece of software that runs on the IBM-PC class of
personal computers. No additional software other than MS- or PC-DOS (version 2.0 or greater) is
required to run LAVA 2.0. Minimum required hardware includes 1) 512 K available random-
access memory, 2) a hard disk with about 1 megabyte of available space to store LAVA EXE and
the permanent application data sets, and 3) a floppy disk drive for the diskette holding the volatile
application data sets. The report generators are compatible with a wide variety of dot-matrix, ink-
jet, and laser printers.

465

What is new about LAVA/CIS 2.0? Instead of multiple code segments, LAVA 2.0 is inte-
grated into a single menu-driven program; the menu items are selected with user-friendly light bars.
Like previous versions, LAVA 2.0 applications are completely self-documented. In addition to the
many definition and instruction screens, the LAVA 2.0 software engine now can display specific
definitions selected as needed by the user during the progress of a LAVA assessment.

Besides an updated, much-improved vulnerability assessment (VA) portion, the new ver- _
sion includes a consequence analysis (CA) portion, making LAVA 2.0 a full risk assessment soft-
ware system. The CA portion comprises an asset-value estimation, a threat-strength estimation, an
outcome-severity mitigation estimation, and both monetary and nonmonetary (or intangible) impact
analysis. The interactive vulnerability and consequence analysis questionnaire segments have hot
keys for backing up in the questionnaire and for making a graceful emergency exit from the ques-
tionnaire if necessary. Both the VA and CA sections have independent report generators; the VA
report format is fixed but has user-selectable graphic displays, and the entire CA format can be
tailored by the user. The VA interactive, scoring, and reporting segments can be executed without
doing the CA section. The interactive portion of the CA can be executed before, after, or at the
same time as the VA; however, the CA scoring and reporting segments can not be run until after
the VA has been completed.

In addition, a set of utility options permits the user to print unanswered questionnaires,
partially answered questionnaires as memory refreshers in mid-assessment, fully-answered ques-
tionnaires at the completion of the VA for documentation purposes, and management worksheets
for issue resolution. Finally, the LAVA 2.0 software engine now has color capabilities for those
who have color monitors.

The data sets for LAVA/CIS Version 2.0 have been modified and expanded over those of
Version 1.01. Some additional issues have been considered in the VA questionnaires, the security-
requirement determination has been modified slightly, the underlying outcome set has been
changed a little, and many of the VA questions have had their wording clarified. The definition
screens have been reorganized so that there is only one definition per screen. All data sets for the
CA portion are new. ,

All in all, the new LAVA 2.0 software engine is chock full of new features, all designed -
with the user in mind. Upgrading to the new computer- and information-security application,
LAVA/CIS Version 2.0, should be very worthwhile!

How does one obtain LAVA/CIS? The Los Alamos National Laboratory is distributing the
LAVA Software System for Computer and Information Security, LAVA/CIS Version 2.0, free of
charge to Government agencies. It is available only to graduates of a LAVA training workshop—
those who have faithfully attended and participated in the workshop. Because the workshops are
an unfunded activity, there is a fee for the training workshops to recover workshop costs.

LAVA Workshops at L.os Alamos and elsewhere. The LAVA/CIS Version 2.0 workshops,
usually held at Los Alamos, last a full five days from 8:30 a.m. to 5:00 p.m. daily. The work-
shops present the LAVA ph1losophy and mathematical approach to vulnerability and risk assess-
ment, and are hands-on workshops in which the participants complete a real assessment of a real
computer installation. Attendance at all class sessions is required to graduate and receive the
LAVA/CIS 2.0 software that is distributed to the graduates at the end of the workshop.

The workshops are intended for persons who have the responsibility for vulnerability and
risk assessments in the computer- and information-security area; persons who require training in
physical, technical, informational, and operations security activities; security auditors; and persons
who manage security activities: The instruction staff provides help in how to use LAVA/CIS for
vulnerability and risk assessments, as a training aid, as a preparation for security audits and com-
pliance inspections, as a design tool, and as a decision aid.

466

http:Worksho.ps

If an agency wishes, the LAVA staff can hold a workshop/assessment at a site specified by
the agency. The basic workshop content would be the same as those held at Los Alamos, but the
agency could have as many participants as desired, and the workshop would produce a valid
assessment of an installation belonging to the agency.

CONCLUSIONS

LAVA/CIS Version 2.0 is a comprehensive, rigorous, understandable approach to com-
puter/information security risk assessment. It is a very affordable alternative to high-priced com-
mercial risk assessment software. It can be used in-house by agency employees, obviating the
need for the expensive services of outside consultants. Its flexibility in the order of execution of its
various parts, in doing a stand-alone vulnerability assessment or a complete risk assessment, in
doing either only nonmonetary impact analysis or both monetary and nonmonetary impact analysis,
and in tailoring its reports contributes to its ease of use.

In addition, LAVA's capability to assess the dynamic aspects of the threat spectrum makes
it an ideal tool for modelling applications of interest to the intelligence and military communities. It
would also be highly applicable in the business community in situations ripe for industrial
espionage.

Using the LAVA approach for risk assessment has benefits that do not accrue from the use
of other methods. First, the automated report generators produce results that are immediately
usable, both to managers who must make major, far-reaching decisions and to the security per-
sonnel in the field whose job it is to maintain an acceptable level of safeguards. Second, because
LAVA produces both qualitative and quantitative results, users feel more comfortable with the
results because they understand both the results and the information that produced those results.
Third, because LAVA does not require the user to generate probabilities (often unfounded) for its
operation but instead relies on a natural-language user-friendly interface to acquire its data, users
are more willing to act upon its results. Fourth, LAVA includes a way to assess the changing, or
dynamic, aspects of the threat spectrum. And finally, because of the team environment in which an
assessment is performed and the discussions that arise among team members, using a LAVA appli-
cation has proved to be an experience that both raises the security consciousness of the users and
enhances the overall working environment at the facility.

REFERENCES

1. S. Katzke, "National Bureau of Standards Perspective on Risk Analysis: Past, Present, and
Future," presented at the 1st Federal Risk Analysis Workshop, Montgomery, Alabama,
- January 1985. ,

2. S.T. Smith, "A Government-Wide Overview of Risk Analysis Methodologies," presented at
the 8th DOE Computer Security Group Conference, Richland, Washington, April 1985.

3. S.T. Smith and J. J. Lim, "An Automated Procedure for Performing Computer Security Risk
Analysis," in Pr in h Annual ESARDA Symposium on Saf nd Nucl

Material Management, May 1984, pp. 527-530.

4. N.J. McCormick, Reliability and Risk Anal
New York: Academic Press, 1981.

5. W.D. Rowe, An Anatomy of Risk. New York: John Wiley & Sons, 1977.

467

6.

10.
11.
12.
13.
14.

15.
16.

17.

18.
19.
20.

21.

22.

M. D. Mesarovic, D. Macks, and Y. Takahara, Hierarchical Multilevel ms.
New York and London: Academic Press, 1970.

Y. M. 1. Dirickx and L. P. Jennergren, Sysmms‘ Analysis by Multilevel Methods. New York:
John Wiley & Sons, 1979, pp. 10-82.

P. C. Fishburn, Decision and Value Theory. New York: John Wiley & Sons, 1964.
R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value

Tradeoffs. New York: John Wiley & Sons, 1976.

R. Schlaifer, Analysis of Decisions Under Uncertainty. Huntington, New York: Robert E.
Krieger Publishing Company, 1978. '

R. E. Bellman and L. A. Zadeh, "Decision-making in a Fuzzy Environment,” Management
Science, Vol. 17, No. 4, December 1970.

A. Kaufmann and M. M. Gupta, In Arithmetic: Th nd Appli
New York: Van Nostrand Reinhold Company, 1985

L. A. Zadeh, "Fuzzy Sets as a Basis for a Theory of Possibility,” Fuzzy Sets and Systems,
Vol. 1, pp. 3-28, 1978.

C. V. Negoita, Expert Systems and Fuzzy Systems. Menlo Park, California: The Benjamin/
Cummings Publishing Company, Inc., 1985, pp. 52-58, 74-88, 95-112.

P. H. Winston, Artificial Intelligence. Reading, MA: Addison-Wesiey, 1984, pp. 251-288.

R. Jain, "A Procedure for Multiple-Aspect Decision-Making Using Fuzzy Sets,"” Int. J. Sys-
tems Sci., Vol. 8, No. 1, pp. 1-7, January 1977.

P. J. H. Schoemaker and C. C. Waid, "An Experimental Comparison of Different
Approaches to Determining Weights in Additive Utility Models," Management Science, Vol.
28, No. 2, February 1982.

E. M. Johnson and G. P. Huber, "The Technology of Utility Assessment,” IEEE Trans.
Sys., Man, Cyber., Vol. SMC-7, No. 5, May 1977.

L. A. Zadeh, K.-S. Fu, K. Tanaka, and M. Shimura (Eds.), Fuzzy Sets and their Applica-

tions to Cognitive and Decision Processes. New York: Academic Press, 1975.
S. Sudman and N. M. Bradburn, Askin ions: A Pr tionnair

Design. San Francisco: Jossey-Bass, Inc., 1982.

S. T. Smith and J. J. Lim, "An Automated Interactive Expert System for Evaluating the
Effectiveness of Computer Security Measures, presentyed at the 7th Department of
Defense/National Bureau of Standards Computer Security Conference, Gaithersburg,
Maryland, September 24-27, 1984. :

S. T. Smith, J. R. Phillips, R. M. Tisinger, J. J. Lim, D. C. Brown, and P. D. FitzGerald,
"LAVA: A Conceptual Framework for Automated Risk Analysis," presented at the 1986
Annual Meeting of the Society for Risk Analysis, Boston, Massachusetts, November 9-12,
1986.

468

23.

24.

25.
26.
27.
28:
29.

30.

31.

32.

33.

34.

- 35.

36.

S. T. Smith, "LAVA: An Expert System Framework for Risk Analysis," presented at the 1st
International Computer Security Risk Management Model Builders Workshop, Denver,
Colorado, May 24-26, 1988.

S. T. Smith and J. J. le, "Framework for Generating Expert Systems to Perform Computer
Secunty Risk Analys1s in I ni n

1) ——r - : 2
August 1985, PP- 24—1—24-7.

S. T. Smith, J. R. Phillips, D. C. Brown, and P. D. FitzGerald, "Assessing the Threat
Component for the LAVA Risk Management Methodology," in ﬁgc_eg_dmgs_gth_m

Computer Security Group Conference, May 1986, pp.118-123.

S. T. Smith, "Risk Assessment and LAVA's Dynamic Threat Analysis," in Proceedings 12th
National Computer Secyrity Conference, October 1989, pp. 483-494.

S. T. Smith and J. J. Lim, "An Automated Method for Analyzing Computer Security Risk,"
presented at the 7th DOE Computer Security Group Conference, New Orleans, Louisiana,
April 10-12, 1984.

S. T. Smith and J. J. Lim, "An Automated Method for Assessing the Effectiveness of
Computer Security Safeguards,” in Pr: nd In ional Con

Computer Security, Toronto, Canada, September 1984

S. T. Smith and J. J. Lim, "LAVA: An Automated Computer Security Vulnerability
Assessment Software System (Version 0.9)," Los Alamos National Laboratory document LA-
UR-85-4014, December 1985.

S. T. Smith et al., "LAVA for Computer Security: An Application of the Los Alamos Vul-
nerability Assessment Methodology," Los Alamos National Laboratory document LA-UR-
86-2942, 1986.

S. T. Smith and J. J. Lim, "Assessment of Computer Security Effectiveness for Safe Plant
Operation," Trans. Am. Nucl. Soc., Vol. 46, pp. 525-526, 1984.

S. T. Smith, J. J. Lim, and J. Lobel, "Application of Risk Assessment Methodology to
Transborder Data Flow,"in Handbook on the International Information Economy, Trans-
national Data Report, Springfield, VA (November 1985).

S. T. Smith and R. M. Tisinger, "Modeling Risk Assessment for Nuclear Processing Plants
with LAVA," Nucl. Mater. Manage., Vol. XVII, pp. 101-104, 1988.

S. T. Smith et al., "LAVA for Computer Security: An Application of the Los Alamos Vulner-
ability Assessment Methodology, Release Version 1.01,"” Los Alamos National Laboratory
document LA-UR-86-2942 September 1987.

N. R. Bottom, Jr., and R. R. J. Gallati, Industrial Espionage; Intelligence Techniques and
Countermeasures. Boston: Butterworth Publishers, 1984.
R. Eells and P. Nehemkis, Intelligence and Espionage: A Blueprint for Ex

Decision Making. New York: Macmillan, 1984.

469

WORKFLOW: A METHODOLOGY FOR PERFORMING A QUALITATIVE
RISK ASSESSMENT

Paul D. Garnett
SYSCON Corporation
Route 206
Dahlgren, Virginia 22448

INTRODUCTION

The methodology described in this paper for performing a qualitative risk assessment was developed for an
organization involved in the generation and maintenance of computer software and firmware. The environment in
which software and firmware is designed, developed, and maintained has a direct bearing on the quality,
trustworthiness, integrity, and freedom from malicious code of the end product embedded system.

This paper will describe a methodology which enables the organization to look at how work flows in the
organization, hence the name "Workflow," and to look for weaknesses in the system which would allow a
sufficiently motivated saboteur to exploit these vulnerabilities. In many cases, organizational vulnerabilities occur
where adequate checks and balances do not exist. By analyzing how work flows within an organization, the lack of
these checks and balances becomes obvious to the analyst performing the workflow.

For any company that uses computers, in particular, those companies who produce and/or maintain software and
firmware, the environment in which this work is performed is constantly changing. The field of software/firmware
development and the use of computers in the workplace becomes more dynamic every year. We need to look at our
existing controls and ask ourselves, "If one person goes bad, will our entire system collapse?” Also, if it were
known that someone in the organization had a hostile intent, is there anything that would be done differently?

T K P

ERELIMINARY EFFORTS

Performing a workflow analysis begins with a briefing to upper management to let them know what is going to
be done, how long it will take, and the degree of involvement of all levels of personnel within the organization to be
analyzed. Itis imperative that upper management endorse and support the project. One reason for this endorsement
is that performance of a workflow analysis requires the cooperation of certain individuals within the organization.

The actual performance of the workflow starts with a review of a standard list of discussion items, summarized
in Figure 3. These discussion items should be reviewed to ensure that recent developments in the computer field are
included. Since this technology is advancing so quickly, the list of discussion items used for a workflow analysis
performed one month might need to be updated for an analysis to be performed a few months later.

Once the discussion items have been finalized, copies should be prepared so that each interviewee can have his
own list of the items to be discussed. This list is NOT to be used as a questionnaire; rather, the list of discussion
items is a guide to be used during a free-form discussion between two people: the interviewer and interviewee.

Before any of these interviews begin, a careful determination must be made by the people performing the
workflow analysis and by upper management of the organization to be analyzed on who ought to be interviewed.
Usually, these people include the first and mid-level managers involved in the day-to-day operations of the company.
These are the people who understand how work is REALLY performed, rather than what upper management expects
or what is represented by the official organization charts.

470

In addition to the first and mid-level managers, interviews. should be held with specific technical experts and
those people holding critical positions. Examples of these positions include managers of computer systems;
security personnel including physical and computer security; and people in the personnel department who are familiar
with various organizational procedures.

IHE INTERVIEWS

The individual discussions have proven to be invaluable in soliciting ififormation which might otherwise remain
buried within an organization. First, many people are reluctant to share sensitive information when filling out a
questionnaire which will be read by their superiors in the organization. This includes information which shows how
the individual or the organization may have done something wrong,. stupid,.or otherwise contrary to standard
computer security practices. Also, people may not divulge information when being interviewed by a panel of
people, or even by two people working together. However, in a private setting, once a rapport has been established
between the interviewer and interviewee, it is amazing what some of the people will talk about, especially near the
end of the discussion when the interviewee is asked if there are any specific areas of concern about how things are
done or not done in the company.

A typical discussion, one in which the majority of discussion items are touched on, may last from one and a
half to three hours. During this time, the interviewer will be taking copious notes while steering the conversation
into subject areas that may lead towards a discussion of potential security problems. It does not matter whether or
not the discussion items are discussed exactly in order as specified in Figure 3. What is important is that the
conversation flows and that all the discussion items are covered at some point during the interview. It is up to the
interviewer to‘ensure that each item is discussed, even if it is only to ask whether a particular topic applies to the
person being interviewed.

INDIVIDUAL REPORTS

Once an interview is concluded, the interviewer/analyst must transcribe the notes taken as soon as possible.
This is best done when the material is still fresh, so that the context of what was being talked about can be easily
recalled as the information is being analyzed. For each person interviewed, an individual report is generated. This
report is based solely on the information gathered during that one interview. Part of the value in performing a risk
assessment using the workflow methodology is that these individual reports, once completed, can be taken back to
the interviewee and the information validated by the person who gave the information. So often during an interview,
words, concepts, and ideas get slightly scrambled during translation into a formal report and it is imperative that the
person who gave this information have an opportunity to correct any misinterpretations, assumptions, or anything at
all which is not perfectly correct in the individual report.

The concept of this individual report and the opportunity for the interviewee to review it before any of the
information is passed on to other people is also invaluable in persuading someone to give information which they
feel uncomfortable about discussing. This methodology allows the individual to review what they have said and
indicate, if desired, that certain information is NOT to go forward in any further reports. In some cases, people have
reviewed their individual report and determined that certain sensitive information be slightly modified to soften the
effect. In other cases, it has been requested that certain information be treated as privileged and that it not be included
in the overall report, a compilation and interpretation of all the individual reports.

These individual reports are generated as follows. First, the rough notes taken during the interview must be
deciphered. During the course of an interview, 10 to 15 pages (8.5 x 11) of notes might be taken. The sheer volume
of material, written in haste during the interview, causes many of the inaccuracies uncovered during the review to be
introduced. The first job of the analyst is to take each piece of information, line by line through the notes, and put
it into one or'more of the categories listed in Figure 1. This is best done using some sort of automated database
system. There are many databases designed to run on personal computers which can be used in organizing this
material. It would help, however, to use a database system which allows free form information to be entered and
does not require prespecified field lengths.

471

1. ORGANIZATION NAME: ' 12. KEY PEOPLE: ‘
2. HEAD OF THE ORGANIZATION: - 13. ORGANIZATION MISSION:
.3. ORGANIZATION CODE: 14. ORGANIZATION INPUT:
4. REPORTS TO: 15. ORGANIZATION PRODUCTS:
5. DISCUSSION DATES: 16. ADDITIONAL ORGANIZATION TASKS:
6. STAFF SIZE: 17. REFERENCE DOCUMENTS:
7. NUMBER OF ORGANIZATIONAL 18. TRAINING: ‘
SUBUNITS: 19. ROTATIONS:
8. STAFF: 20. COMPUTER PROGRAMS:
9. SECRETARIAL STAFF: 21. COMPUTER USAGE:
10. STAFF RESPONSIBILITIES: 22. EQUIPMENT CONFIGURATION CONTROLS:
11. SUBUNIT #1 - ' NAME: 23. CONTROLLED ACCESS: ‘
LEADER: 24, CONTRACTORS:
SIZE: 25. INTERFACES:
MISSION: 26. OUTSIDE PARTICIPATION:
TASKS: 27. METHODOLOGIES:
28. REVIEWS:
SUBUNIT #2 - NAME: 29. ARCHIVES:
LEADER: 30. BACKUPS:
SIZE: 31. AUDITS:
MISSION: 32. CLASSIFICATION:
TASKS: 33. SENSITIVE AREAS:

34. KNOWLEDGE LIMITATIONS:
35. FIRE DRILLS:

36. ACTION:
. 37. VULNERABILITIES:
SUBUNIT #N NAME: . 38. RECOMMENDATIONS:
LEADER: 39. COMMENTS:
SIZE:
MISSION:
TASKS:

Figure 1. INDIVIDUAL REPORT CATEGORIES

Each individual report is simply a printout of the information gathered during the interview which the analyst
has entered into the database. The review of this report by the interviewee is best done in the presence of the
interviewer because misconceptions, errors, and so forth can be discussed and corrected immediately by marking up a
copy of this report. Also, as discussed earlier, any pieces of information which are not to be included in the final
report based on the interviewee's request can be bracketed and marked with the statement "PRIVILEGED
INFORMATION." A request by an interviewee to withhold any information must be honored because this trust,
once broken, cannot be regained. Also, if this trust is broken, it is not likely that anyone else in the organization
will be willing to open up and have good, honest discussions upon which the entire workflow analysis depends.

THE FINAL REPORT

Once all of the individual discussions have been held and the reports have been generated and verified, it is time

- to collate all of the information which has been gathered. The first step in performing this aspect of the workflow

analysis is to take, from each individual report, information from each category and generate category subdocuments,
These subdocuments will include everything that was said by all participants on any one topic.

472

From the category subdocuments, the analyst must decide, for each paragraph, where this information is to be
placed in terms of the chapters of the final report. A sample listing of chapters is presented as Figure 2. Each
application of the workflow methodology will require a final report format tailored to the specific organization being
analyzed.

1. ANALYSIS TOOLS 13. FOREIGN AND DOMESTIC THREATS

2. AUDITS 14. GENERAL PURPOSE COMPUTER

3. BACKUPS OPERATIONS

4. CLASSIFICATION 15. HARDWARE

5. CONFIGURATION MANAGEMENT/ 16. ILLICIT CODE
QUALITY ASSURANCE 17. KEY POSITIONS

6. CONTINGENCY PLANS 18. MEDIA PREPARATION FACILITIES

7. CONTRACTORS 19. NETWORKS

8. DOCUMENTATION 20. PASSWORDS

9. EMBEDDED SYSTEM SOFTWARE 21. PERSONAL COMPUTERS
OPERATIONS 22. PERSONNEL

10. EXAMPLES OF COMPUTER MISCHIEF/ 23. PHYSICAL SECURITY
SABOTAGE/CRIME 24. RISK ASSESSMENT

11. FIELD OPERATIONS 25. TRAINING

12. FIRE DRILLS

Figure 2. FINAL REPORT - CHAPTER TITLES

At this point one might ask, why go through all of the trouble preparing individual reports based on the
categories as defined in Figure 1 when all of this information will be reorganized later into the chapters of a final
report. Also, why not design the list of discussion items to make the final report generation easier by asking
questions directly related to chapter titles. Reasons for this approach are as follows. The list of discussion items is
designed to elicit information and to establish a rapport between the interviewer and interviewee, NOT to make the
analyst's job easier. The categories of information used in the individual reports are designed to take the analyst one
step away from the discussion items towards an organization of information related to the format of a final report,
but still close enough to the original discussion items to enable the interviewee to understand where the information
came from in terms of their discussion. Finally, part of the value in performing the workflow and in analyzing the
information collected lies in the processing of this information. The more times the analyst looks at the
information and works with it in different ways, the more likely that insights will be gained on how the organization
functions and how the key individuals perceive the organization as functioning. It is in these insights by the analyst
that the value of performing the workflow is found.

A general example of this depth of analysis is when several people address similar situations in an organization.
This information will get put into the same category in each individual report. Once this information is collected in
the category subdocuments, it becomes obvious that different people are seeing the same situation in different ways;
in some cases, this can show where the right and left hands of an organization do not really know what the other is
doing.

Once paragraphs have been assigned to specific chapters of the final report, an outline is written. This is done
by ordering these paragraphs within each chapter. Once this is done, each chapter is written. Since the paragraphs
within a chapter came from different reports and are not always complete thoughts and ideas, they need to be molded
into cohesive language.

For each chapter, primary recommendations, secondary recommendations, and summary information are chosen
from the chapter material. Chapter summaries will include the most important information that the analyst wants

473

seen by the reader. Primary recommendations are those which the analyst feels very strongly about and is willing to
say unequivicably that they should be accomplished to ensure the security posture of the organization. Secondary
recommendations are those worthy of very serious consideration. These recommendations, along with the chapter
summary, are included at the end of each chapter of the final report. v

During the writing of the individual reports and the generation of the final report, the analyst should be jotting
down notes which will later be included in the final document introduction. This introduction will include general
comments about the conduct of the analysis, any caveats about the meaning of certain information and results, and
any other thoughts and insights which the analyst came up with during the analysis itself and the preparation of the
documents.

To create the executive summary, information in each chapter's summary which the analyst feels is most
important is extracted as well as the chapter's primary recommendations. This information is then outlined and re-
written as required. :

Since the final report will undoubtedly be a rather thick document, it is very worthwhile to present the primary
findings of the study as a briefing to the management personnel who originally requested the workflow analysis.
These viewgraphs are essentially complete upon the completion of the final report, as a high level briefing can be
put together very easily from the executive summary, or a more detailed presentation can be generated from the
material in each chapter's summary and recommendations sections.

DISCUSSION ITEMS

Although it is unimportant in which order the discussion items are covered, it IS important to discuss paragraph
1 ("Why are we having this discussion?") first. This gives the interviewer a chance to state the ground rules of the
discussion, and gives the interviewee a chance to get comfortable with discussing some possibly sensitive topics.

In addition to the obvious value to the interviewer in holding these discussions to collect information as part of
the workflow analysis, these discussions are valuable to the organization being studied because the people being
interviewed will gain a new appreciation of computer security issues and a greater awareness of actions which they
themselves can take to improve the security posture of their organization. In some cases, these discussions are the
first time that people have ever had a good understanding of what malicious code is and what the differences are
between viruses, worms, trojan horses, trapdoors, and so on.

The explanations of the discussion items in Figure 3 are not intended in this paper to be a complete expansion
of the specific item being discussed. These are only sample questions, not all inclusive by any means. They are
only being provided here to give the reader an idea of the types of directions that a discussion can proceed under each
of the topics.

Some of these discussion items may not appear to have anything to do with computer security but are included
to give the analyst more of an understanding of what the organization does; how they do it; who they interface with,
when, and why; and, in a nutshell, the required understanding of what makes the organization tick. The analyst needs
to understand the philosophy of the organization and what the social climate is in the organization being studied. It
is from these understandings that analytical insights come and significant, RELEVANT recommendations can be
made to improve the organization's security posture.

1. Why are we having this discussion?
a. History/Background - The interviewer presents basic information on who asked for the study, how it is

being done, why it is being done, and what is hoped to be accomplished by performing the study.

Figure 3. DISCUSSION ITEMS

474

b. Collecting Data - The interviewer discusses the format of the study, including collecting data during these
" individual discussions, preparing the individual reports, validating the information, and collating all the
individual reports into a final report. This is also the point at which the structure of the interview itself is
discussed, and the statement is made that the discussion need not follow the list of discussion items, that the
topics can be discussed in any order, and that the list is only a checklist to make sure that all the topics are
covered sometime during the discussion.

c. Recommendations - The purpose of performing the workflow analysis is to come up with recommendations
on how to improve the organization's security posture.

d. On/Off Record - The interviewer states very clearly that if the discussion goes into subject areas which the
interviewee is uncomfortable about having appear in a final report, that he/she needs only to make this clear
and the information will be treated as privileged between the interviewer and interviewee.

‘What work is performed in your organization?

a. Organization Chart - Collect and discuss any organization charts which the interviewee may have.

b. How? - How is work performed in your organization? What are the people really doing?

¢. By whom? - Who are the people in the organization? Which people perform which tasks?

d. How learned? - How are people taught their tasks? Is it all on-the-job training? Are there documents which
describe the work to be performed? Is learning all word of mouth? And so on.

Workflow
a. Organizational Inputs - What are the inputs into the organization that drive the work being performed?

b. Organizational Products - What do you produce? This could be specific software, services, documentation,
and so forth.

‘What major computer programs are:
a. Used? - What computer programs do you use to perform your tasks?

b. Developed? - Does your organization develop any software or firmware? If so, what are they, how do they
work, what are they used for, etc.?

¢. Maintained? - Does your organization maintain any software or firmware? If so, how is this done, according
to what procedures, etc.?

‘What computer networks are:
a. Used? - Do you use any computer networks in the course of doing business?

b. Developed? - Discuss the details of the networks, the methodologies used in designing and developing them,
elc. :

c. Maintained? - Discuss the details of the networks, the procedures followed, if any, in maintaining them, etc.

Figure 3. DISCUSSION ITEMS (Continued)

475

6. Any illicit code in the organization?
a. Viruses - Do you know of any incidents in which viruses have been found in the organization? It may be
necessary here to discuss the differences, technically, between viruses, worms, trojan horses, time and logic
bombs, efc. '

b. Trojan Horses - Do you know of any incidents in which a trojan horse was introduced into any software or ° .
system used, developed, or maintained by the organization?

¢. Other (trapdoors, logic bombs, time bombs, worms, etc.) - Do ybu know of any incidents in which any of
these examples of illicit code were used in your organization?

7. What organizational controls are there?

a. Reviews - For organizations which develop software, firmware, networks, systems, etc., are there design
reviews held? How are they structured? How often are they held? When during the life cycle of the system
are they held? For production work in using computer systems, is there any kind of review process to see
how employees actually use the system(s)?

b. User/Programmer/System Operator Restrictions - Are there any restrictions on how these categories of
system users are restricted in their use of any system to which they have access? If so, what are they, how
do they work, and so on.

¢. Source/Object/Documentation - What are the controls placed by the organization on source code? Who can
change it? How? When? Similarly, what are the controls on object code and documentation? Where are
they stored? Are there mechanisms in place to determine if any unauthorized modifications have been made?

d. System Configuration - Are there any controls to prevent or detect unauthorized changes to computer
-system configurations? "Configuration” can mean connectivity to other system components, or simply
how the system itself is set up in terms of default values.

e. Backups/Audits - What are the details of all backup procedures on all systems for which your organization is
in control or involved? Also, what are the procedures used, if any, in auditing system usage for all systems
for which your organization is in control or is involved? Even if the organization is a user of a system and
is not in control of the audit and backup processes, it is valuable to leamn the perception of the user as to
what he/she THINKS is being done by the owner of the system in terms of backups and audits. It is here
that the analyst often finds out that the right hand of the organization does not know what the left hand is
doing. In some cases, system users have stated that all backups are done by system personnel, while the
system owner has stated that all backups are the responsibility of system users. This kind of an
organizational disconnect is not as rare is it should be and can obviously lead to a disaster.

8. What is classified/unclassified?
‘What is sensitive/company proprietary/not sensitive?

a. To what level? - First, does the organization handle any sensitive or classified information at all? If so, to
what level? What types of information are classified or sensitive? How is this material controlled? Is the
material in hardcopy form? Is it used in computer systems? Which ones?

b. Programs/Data/Documents? - If company proprietary, sensitive, or classified information is handled by the
organization, what form does it take and what controls are in place to deal with it?

Figure 3. DISCUSSION ITEMS (Continued)

476

C.

a.

Access to Vaults/Laboratories/Terminal Rooms - Does the organization have any "special” areas? What are
ﬂley? Which people are allowed in these areas? How is access controlled?

Use of contractors/subcontractors

‘Which ones? - Which other organizations do you deal with? What are the arrangements? How well do you
get along? What sort of relationships have been established? '

‘What products? - What do you get from these other organizations? In what form? What checks are.
performed on deliverables received? '

Who interfaces? - Who are the people in your organization who actually deal with these external
organizations?

Consultants? - Do you ever use consultants? What controls do you place on them, if any? What do you
use them for? What do they-know about the details of your organization?

10. Contacts with (other) government agencies

a.

b.

‘Which ones? - Which government agencies does your organization deal with, if any?
Who interfaces? - Who are the people in your organization who have contact with these agencies?

‘When? - Is there a regular cycle to these meetings? Is there a specific point during any work cycle that these
organizations are contacted? ‘

‘Why? - What is the purpose of the contact with these specific agencies?

What products are received/delivered? - Are there any products received or delivered to these agencies? If so,
what are the details of these interactions?

11. What are the sensitive or critical areas of knowledge?

a.

Are there controls to limit one person's grasp of the full picture? - In many organizations, the more
knowledgeable employees become, the more valuable they are to that organization. However, as employees
become more knowledgeable about company operations, they become more of a potential threat to the
organization if that knowledge were to be used against the organization. For example, someone intent upon
introducing malicious code into a system may take a job with the group that performs independent testing
on the system as it is being developed. If this individual then transfers into the group that writes the code,
he or she may know how to put something into the system which will never be discovered because he/she
knows there are no tests to find it.

Are assignments varied/rotated? - Does the organization rotate personnel through various groups as part of a
training program? Are people allowed to transfer between organizational subelements? Are people stymied
when they want to move on to something more challenging?

Personnel Backups - For every critical job, is there more than one person fully capable of performing all the
tasks?

What efforts are subject to "Fire drills?" - When do employees go into "panic mode?” Which positions are

subject to high pressure and rush jobs? In many organizations, when push comes to shove and something

Figure 3. DISCUSSION ITEMS (Continued)

477

MUST go out the door, controls and procedures are bypassed in the interest of getting the job done. When
this occurs, the organization becomes vulnerable to anyone willing to take advantage of the reduced controls
and the willingness of people under pressure to overlook a system anomaly which ordinarily would be
questioned.

12. Other

a. Areas of discussion - Are there topics that have not been discussed that the interviewee feels ought to be
talked about?

b. Other people to talk with - Are there other people in the organization who the interviewee thinks would be
valuable for the interviewer to talk with to learn more about specific areas which were dlscussed during the
interview?

c. Specific areas of concern - Are there any specific concerns which the interviewee has on any topic which
might possibly relate to the security posture of the organization? Are there concerns which interviewees
have that they have never felt comfortable in passing up the line which they would like to communicate o
upper management anonymously? This is where the trust between the interviewer and interviewee comes
into play. If there IS information to be passed up the line anonymously, and in many cases this has
occurred, it MUST be communicated in such a way in the final report that the comment cannot be traced
back to the individual who made it. This last discussion item often gives great m31ghts into the real mood
of the organization.

Figure 3. DISCUSSION ITEMS (Continued)

KEY POINTS IN PERFORMING A WORKFLOW

There are several hurdles to overcome in successfully performing a workflow analysis. First, trust must be
established between the interviewer and interviewees. The anonymity of the individual discussions MUST be
sacrosanct.

There must be a non-adversarial relationship established between the interviewer and interviewees. By this it is
meant that the interviews must be held in a non-threatening manner. When someone states that they never can find
the time to perform system backups, that they suggest to their users that they use their first names as passwords, and
that there are multiple dial-in ports into their system, one does not immediately scream "You idiot, do you realize
what you are letting yourself in for?" The analyst must take notes on the information and lead the discussion further
into these problem areas to determine, if possible, WHY these policies are being followed so that later, in the
individual and final reports, recommendations can be made to improve these potentially serious situations.

Another problem often encountered in performing a workflow analysis is the "It can't happen here" syndrome.
Again, rather than getting into a heated discussion about "Oh yes it can, you've just been lucky so far,” the analyst
must work around this mindset and extract as much information as possible from this worry-free individual. - What
can be done in the final report is to make a general statement that some employees in the organization seem to hold
the belief that they are immune to problems which have in some cases brought havoc to other organizations and that
maybe some form of training may be in order.

One way to gain the cooperation of participants in this study is to let the participants themselves take the credit
for any improvements in the organization's security posture. This can be done by keeping the results of the study
low-key and relatively unpublicized. It is amazing to watch an organization begin to quietly implement some of the
study's recommendations while publicly stating that there was nothing in the report which would indicate that they
have any problems.

478

SUMMARY

Performing a workflow gives an organization insights into where they may be vulnerable to computer security
weaknesses. A workflow analysis begins with a review of the discussion items to ensure that it is up-to-date in
relation to the state-of-the-art in computer security threats and safeguards.

Once the discussion items have been finalized, briefings are provided to upper and mid-level management to
inform them how the workflow project is to proceed and what cooperation will be required from whom.

Individual discussions are held with key people in the organization; individual reports are generated from these
discussions according to a pre-organized report format/database; and these reports are reviewed with the individuals for
acCuracy. - Once all of the key people have been interviewed and their individual reports verified, the information in
these reports’is collated according to general topics and a final report is generated.

The final report consists of discussions on many computer security related and organizational dynamic topics,
and each chapter contains primary and secondary recommendations, and a summary. The executive summary of the
final report consists of the key items in each chapter's summary and primary recommendations.

Briefings on the workflow analysis results can be generated easily based upon the summaries and
recommendations listed in the report.

The great value in producing a workflow report is that the organization gains significant insights into its
operations, the people within the company who participated in the workflow gain computer security awareness, and
previously ignored or unrecognized vulnerabilities can be addressed. Since the workflow analysis draws its input
from the people actually ifivolved in the company's operations, the recommendations made in the study's final report
are extremely relevant to the organization which was studied.

479

CRITICAL RISK CERTIFICATION METHODOLOGY

NANDER BROWN

U. §S. SMALL BUSINESS ADMINISTRATION
OFFICE OF INFORMATION RESOURCES MANAGEMENT
1441 L. STREET, N.W.

WASHINGTON, DC 20416

480

ABSTRACT

This paper describes an approach for evaluating, certifying, and
accrediting very large automated systems. This approach can be used
by Federal agencies to comply with the certification requirements .of
OMB Circular A-130. The Critical Risk Certification Methodology
(CRCM), provides a cost effective and structured approach that
agencies can use to evaluate and certify large aggregated systems.
Such systems may have been previously ignored due to their size,
complexity, and the large amount of resources required to evaluate
and certify them.

The CRCM focuses on "critical risks" at various hierarchical levels
within an application. Software tools are used to assist in the
technical analysis, and to provide key information that can be used
to support the decision to certify or not to certify the system.

The CRCM review provides evidence that control and security measures
have been implemented to ensure that information processed will be
accurate, reliable, and the system will be available, even in
emergency situations. The certifying official will have sufficient
system security evidence to make a supportable recommendation to the
designated system accrediting official.

Because of the structured process of CRCM, Agency certification and
accreditation officials should be willing to accept more risks.

This acceptance is based on the analytical evidence that most major
security and control weaknesses have been identified, and
appropriate corrective measures have been implemented, or are in the
process of being implemented.

An example of how this methodology was implemented at the Small

Business Administration (SBA) is used to describe the overall
process.

481

http:requirements.of

INTRODUCTION

OBJECTIVE

To provide a cost effective evaluation process for the certification
and accreditation of SBA's aggregated sensitive information systenms;
and to comply with OMB regulations A-130 and A-123 which directs
Federal Agencies. to conduct security reviews and internal control

reviews of automated applications.

PROBLEM

SBA currently operates 15 sensitive information systems. Several
large systems are aggregates of other systems. For example, the
Loan Accounting System (LAS) is an aggregate system which includes
three major applications: (1) Loan Origination and Disbursement, (2)
Loan Accounting and Collection Processing, and (3) Loan Servicing
and Debt Collection. These applications include approximately 24
individual application subsystems.

Traditional security certification review procedures normally
require an evaluation of each individual subsystem. This review
process is time consuming and very costly. The review is normally
conducted by two qualified security personnel, and requires 4 to 6
weeks to complete per application subsystem. Additional time is
required to prepare written reports and communicate findings and
recommendations to appropriate agency officials. Many of these
findings and recommendations may be trivial or low risk, but
never the less, they must be documented and discussed. Finally,
additional time is required by agency officials to discuss,
prioritize, and prepare an action plan for correction of security
weaknesses.

The SBA calculated the cost of reviewing each subsystem at an
average cost cf $15,000 to $20,000. The approximate cost to review
and certify LAS would be $400,000. It would also require at least 3
fiscal years, based on managements budget priority for computer
security. 1In order to find a more cost effective and timely way to
certify LAS, and comply with Federal and SBA regulations, we needed
a more efficient, but effective, way to achieve this goal. The CRCM
was developed as a solution to this problem. In the process of
formulating this approach, we researched many technical references
and reviewed certification approaches used by other agencies.

Figure 1 provides an overview of the CRCM. Figure 2 provides an

illustration of an aggregate application structure cross referenced
to the CRCM review components.

482

CRCM PROCEDURE

The Critical Risk Certification Methodology includes tailored
reviews of computer security of aggregated sensitive applications at
various hierarchical levels. The review process focuses on
"critical risks" at each level. A specific review procedure is
developed to achieve a designated security and control evaluation.
Each lower level is accorded a more detailed evaluation than its
parent level. The CRCM review procedures include the following:

1. High level risk assessment (HLRA) of the computer security

workload. The HLRA determines workload units and degree of risk
associated with each activity. Selected sensitive systems are
evaluated in more detail for certification and accreditation.
The results of this review is an inventory of the organization's
computer security workload in risk priority order.

2. System level risk assessment (SLRA) of the aggregate

system. The SLRA includes detailed assessment of designated
pervasive risks and special risks at the major system level.

Five pervasive risks and three special risks are assessed. The
results of this review is very similar to the results from step
1 above except that risk ratings are obtained for each subsysten
within each major system of the aggregate system.

3. Vulnerability risk assessment (VRA) of the major systems.

This assessment includes the identification of vulnerabilities
and implemented control measures for each major system. An
application control matrix is prepared for each major system.
Detailed steps and tools include the use of software for the
assessment of risk areas, and the review of control objectives
based on the Model Framework for Management Control Over
Automated Information Systems, published by the President's
Council on Integrity and Efficiency (PCIE).

4. Security requirements analysis review (SRAR) of the highest

risk application from each subsystem in step 3 above. This
review is a traditional security review frequently performed by
computer security personnel. The controls evaluated are
determined by the sensitivity level of the aggregate system. A
Security and Integrity Requirements Worksheet is prepared. It
is the baseline that is used to evaluate installed security and
controls. The report from this review provides detailed
discussion of findings and recommendations.

5. Security and quality assurance compliance review (SQACR) of
the most critical program modules from the high risk
applications identified in step 3. This review includes the
evaluation of functional system requirements, application design
standards, quality assurance standards, and security and control
requirements at the program module level. A detailed
Application Review Questionnaire is completed based on
interviews and analysis of program source code.

483

Figure 1.

CRCM-1 |->
(HLRA)
CRCM-2 |->
(SLRA)
CRCM-3 |->
(VRA)
CRCM-4 |->
(SRAR)
CRCM-5 |->
(SQACR)

HIGH LEVEL RISK ASSESSMENT of
computer security workload for
the organization. Work units
are ranked according to
pervasive risk areas and
specific risk areas.

SYSTEM LEVEL RISK ASSESSMENT of
risks in the major system, and
subordinate subsystems. Each is
assessed according to pervasive
risk areas and specific risk
areas.

VULNERABILITY RISK ASSESSMENT
by matrix analysis of control
objectives, security techniques
and vulnerabilities

SECURITY REQUIREMENTS ANALYSIS
REVIEW of high risk subsystens.
Security and control techniques
reviewed for effectiveness and
appropriateness to the risks

identified in CRCM-1 and CRCM-2

SECURITY AND QUALITY ASSURANCE
COMPLIANCE REVIEW of critical
software. The review focuses on
compliance with security and
quality assurance standards.

CRCM Overview

484

Prioritized list of
security work units
according to risks

Prioritized list

of application sub-
systems according
to risks

Matrix of security
techniques
implemented by
control objectives

Documented list of
controls based on
system sensitivity
and security
requirements

Specific findings
on compliance
with standards and
QA requirements.

CSWU = Computer Security Workload Unit

CSWU CSwu CSWU CSWU _ ' 1. HLRA
CSwWU CSWU
AGGREGATE AGGREGATE (LAS)
APPLICATION #A APPLICATION #B 2. SLRA
|
Loan Orig Loan Acctg Loan Servicing
& Disb & Cash Coll & Debt Coll
APPL|APPL APPL | APPL APPL|APPL|APPL
Bla| Blb B2a| B2b B3a| B3b| B3c 3. VRA
APPL APPL APPL
Bla B2a B3b
4. SRAR
I
/ \
PROG PROG
BlaOl Blao02 5. SQACR
/ \
PROG PROG
B2aOl B2a02| = —ee—-—-
/ \
/ \
PROG PROG PROG
B3b0O1 B3b02 B3b03

Critical Risk Review Components:

1. HLRA - Computer security annual workload for the Agency
2. SLRA - Aggregate Application #B
3. VRA - Major systems Bl, B2, B3
4, SRAR - Subsystems Bla, B2a, B3b
5. SQACR - Program modules:
- Bla0l (Application Bla, Major System B1)
- B2a02 (Application B2a, Major System B2)
- B3b03 (Application B3b, Major System B3)

Figure 2. CRCM aggregate application structure

485

http:Serv1.c1.ng

PARTICIPATION
The review process requires participation by the following groups:

- An independent review team

- The Agency Computer Security Program Manager
- User functional program managers

- Application system managers

- System design team leaders

- Selected computer programmers

- Computer operations personnel

CRCM REPORTS

Reports are prepared for each level of review. The reports provide
specific findings related to the type of review conducted. The
overall final report includes:

- An executive summary,

Findings and recommendations codified by risk level
A CRCM risk summary, and

Certification recommendations.

The CRCM risk summary highlights each major risk/threat situation,
control objective weaknesses, and the potential adverse impact of
the control weakness on the organization. This summary is
illustrated on the next page.

The Certification report discusses two levels of certification
recommendations:

- Level 1 addresses control enhancements required to correct
significant risk areas related to systems integrity,
information disclosure, and degradation of service.

- Level 2 addresses control enhancements required for the systen
to meet generally accepted systems integrity standards.

Level 1 control recommendations should be implemented before the
system is certified. These controls may require re-evaluation
before the official certification and accreditation can be
completed.

Level 2 control may be scheduled as part of a system enhancement
project which will be implemented at a later date. Certification
documents should note that additional security enhancements are
necessary, but not serious enough to withhold certification and
accreditation.

486

CRCM RISK SUMMARY REPORT

RISK/THREAT CONTROL PROBABILITY* EXPOSURE** PRIORITY BUSINESS
DESCRIPTION OBJECTIVE - VALUE - IMPACT
WEAKNESS '

/

Describe potential adverse impact to the organization in terms of
the consequences of the risk/threat realization. Discuss the
impact in dollar losses, information disclosure, information
integrity, and/or system denial. Losses may be estimated and
expressed quantitatively using the following order of

magnitude scale:

Negligible (about $1)

0=
1 = on the order of $10
2 = on the order of $100
3 = on the order of $1,000
4 = on the order of $10,000
5 = on the order of $100,000
6 = on the order of $1,000,000
7 = on the order of $10,000,000
PRIORITY VALUE DETERMINATION
PROBABILITY EXPOSURE
Low Medium High
Rare 1 3 6
‘Moderate 2 5 8
Frequent 4 7 9

Level 1 risks
Level 2 risks

priority values 7 to 9
priority values 1 to 6.

* Rare, Moderate, or Frequent
¥% Low, Medium, or High

487

SMALL BUSINESS ADMINISTRATION CRCM REVIEW

SBA currently operates 15 sensitive information systems. Several
large systems are aggregates of other systems. For example, the
Loan Accounting System (LAS) is an aggregate system which includes
three major applications: (1) Loan Origination and Disbursement, (2)
Loan Accounting and Collection Processing, and (3) Loan Servicing
and Debt Collection. These applications include approximately 24
individual application subsystems.

ESTIMATED LEVEL OF EFFORT

In preparation for the CRCM review of LAS, it was necessary to
determine the level of effort required to conduct the review. We
anticipated that the review would be contracted out and performed by
a qualified computer security contractor. We also estimated that
approximately 100 staff days of effort would be required. This
effort is summarized in figure 3. The Contractor actually completed
the review in 75 staff days.

Level 1 HLRA 8
Level 2 SLRA 2
Level 3 VA (3 * 10) 30
Level 4 SRAR (3 * 15) 45
Level 5 SQACR (3 * 5) 15
Total staff days: 100

Figure 3. Estimated Level of effort

Figure 4 provides an overview of the LAS hierarchical structure.
Figure 5 provides a mapping of the CRCM detailed procedures to LAS.

488

DETAILED REVIEW PROCESS

The CRCM review included the following detailed probedures:

1.

A high level risk assessment (HLRA) of the SBA 's computer
security workload. This task included an update of the FY 89
HLRA using a qualltatlve risk assessment software. The results
from this review included an inventory of the Agency's computer
security workload for FY 90 in risk priority order.

An aggregate system level risk assessment (SLRA). The SLRA
included an assessment of designated pervasive risks and
special risks for each major system. Five pervasive risks and
three special risks were assessed. The results of this review
included an inventory, in risk order, of subsystems for each
major system (see Bl, B2, and B3 in figure 4). This inventory
also identified the highest risk subsystem for each major
system.

A vulnerability risk assessment (VRA) of major systems Bl, B2,
and B3. This assessment included the identification of
vulnerabilities and installed control measures for each major
system. An application control matrix was prepared for each
major system using a software package. A review of
vulnerabilities and of control objectives based on the PCIE
Model Framework for Management Control was also conducted.

A security requirements analysis review (SRAR) of the highest
risk subsystem from applications Bl1l, B2, and B3 (subsystems Bla,
B2a, and B3b). This review included a detailed evaluation of
threats, risks, and controls. A Security and Integrity
Requirements Worksheet was prepared according to SBA level 2
sensitivity. Controls were evaluated based on the requirements
for SBA level 2 sensitive systems. The report from this review
provided a detailed discussion of findings and recommendations.

A security and quality assurance compliance review (SQACR) of
the most critical programs from high risk subsystems Bla, B2a,
and B3b. This review included the evaluation of functional
system requirements, application design standards, quality
assurance standards, and security and control requirements at
the program module level. A detailed Application Review
Questionnaire was used as the basic data gathering tool.
Program source code was also reviewed.

489

_ SMALL BUSINESS ADMINISTRATION
1. ~ SECURITY REVIEW REQUIREMENTS

|

2. ' LOAN ACCOUNTING SYSTEM
Aggregate application # B

B2 ‘ B3

B1
3. Loan'Origination Loan Accounting and Loan Servicing and
and Disbursement Collection Proc . |Debt Collections
Bla B2a B3b
4. G > 6 mmmm—————— > 11 12 <—=—mm—————— > 24
5. PROGRAM MODULES PROGRAM MODULES PROGRAM MODULES

Selected the highest risk program modules from application
subsystems Bla, B2a, and B3b.

Figure 4. Overview of the LAS hierarchical structure.

490

| CRCM-1 |->
(HLRA)

| CRCM-2 |->
(SLRA)

| CRCM-3 |->
(VRA)

| CRCM-4 |->
(SRAR)

| CRCM-5 |->
(SQACR)
Figure 5.

HIGH LEVEL RISK ASSESSMENT of
computer security workload for
the Agency. Work units are
ranked according to pervasive
risk areas and specific risk
areas.

SYSTEM LEVEL RISK ASSESSMENT of
the Loan Accounting System.
Subordinate subsystems are:
1-Loan Origination & Disb
2-Loan Accounting & Coll Proc
3-Loan Servicing & Debt Coll

VULNERABILITY RISK ASSESSMENT
using matrix analysis of:
1-Loan Origination & Disb
2-Loan Accounting & Coll Proc
3-Loan Servicing & Debt Coll

SECURITY REQUIREMENTS ANALYSIS
REVIEW of high risk subsystens.
Security & control techniques:
1-Loan Automated Allotment
2-LACCS Daily Update

3-Loan Accounting Online Update

SECURITY AND QUALITY ASSURANCE
COMPLIANCE REVIEW of critical
software. The review focuses
on High risk program modules
identified in CRCM-4.

Mapping of CRCM review to LAS

491

Prioritized list of
security work units
for the Agency
according to risks

(APPENDIX A)

Prioritized list
of LAS application
subsystems
according to risks

(APPENDIX B)

Matrix of security
techniques installed
by control objectives

(APPENDIX C)

Documented list

of controls based
on requirements for
SBA leve 2 systems

(APPENDIX D)

Specific findings
related tocompliance
with SBA standards
and QA requirements.

CONCLUSION

The major benefit from the CRCM review was that SBA's Loan
Accounting System was certified and accredited within a reasonable
time frame and at reasonable cost. The CRCM procedure addressed the
areas of high risk, and provided acceptable results to Agency
certifying and accrediting officials. The results were used to make
an informed decision on whether to accredit fully, to accredit with
specific qualifications, or not to accredit the system.

Using current review procedures and traditional security review

techniques, the resources to review and certify LAS would have
required more than 300 staff days.

492

APPENDIX A

GENETRAL RTS8 K ANALVYSTIS - FY 90

RISK PRIORITIZATION REPORT - % - "AVAILABLE WORKDAYS: 330
. %* :
ACTIVITY TOTAL * SENS WORK ACCUM
NAME ’ RISK NORM IMPT TYPE SCOPE DAYS DAYS
—————————————————————————————— EEEAER —meme mcwmme cmmema ———— —— ———
PAYROLL USER INTERFACE 1175 .967 9 CER COM 10 10
ADP SECURITY TRAINING 1160 .955 9 ADM COM 10 20
ADP SECURITY PROG MGMT 1160 .955 9 ADM OPR 120 140
8(a) FIN INFO SYSTEM 1138 .936 9 CER COM 20 160
SURETY BOND GUARANTEE 1133 .932 9 CER COM 20 180
LOAN ACCOUNTING SYSTEM 1130 .930 9 CER COM 75 255
NEW SYSTEM COORDINATION 1128 .928 9 TA OPR 10 265
DISASTER AREA CONTROL SYS 1125 .926 9 CER COM 5 270
SALARY AND EXPENSE SYS 1123 .924 9 CER COM 40 310
OFFICE OF FINANCIAL OPER 1113 .916 9 CER COM 10 320
SBA NETWORK SECURITY SYS 1113 .916 9 CER COM 10 330
%%% Accum workdays = or > Available workdays *#*%%
SNSS FUNCTIONAL REQMTS 1098 .903 9 TA AIS 15 345
COMPUTER SEC ACT FOLLOWUP 1095 .901 9 ADM COM 10 355
AGENCY PERSONNEL SYSTEM 1085 .893 9 CER COM 10 365
ADP CONTROLS MANUAL 1068 .879 9 ADM OPR 20 385
PROCUREMENT ASSISTANCE 1040 .856 9 CER COM 10 395
PROCUREMENT AUTO SOURCE 1035 .852 8 CER COM 10 405
PERSONNEL DATA SYSTEM 1033 .850 8 CER COM 10 415
COMPUTER INTL CTL REV SYS 1018 .837 9 CER COM 20 435
SPERRY MAINFRAME FACILITY 1013 .833 6 RA COM 50 485
END USER ASSISTANCE 1010 .831 9 TA OPR 50 535
REGIONAL INFO PROC CENTER 995 .819 9 CER COM 5 540
BUS DEV MGMT INFO SYS 983 .809 -9 CER COM 10 550
SPERRY MAINFRAME COMM 968 .796 6 VA COM 20 570
ADVOCACY INFORMATION SYS 945 .778 9 CER COM 10 580
PRIME CONTRT REG INFO SYS 855 .704 9 CER COM 5 585
WANG WORDPROCESSING CTR 800 .658 6 RA COM 5 590
REGIONAL OFFICE END USERS 793 .652 6 RA COM 10 600
CENTRAL OFFICE END USERS 760 .626 6 RA COM 5 605
INFORMATION CENTER 748 .615 6 RA COM 5 610
DISTRICT OFFICE END USERS 733 .603 6 RA COM 10 620
PROC CAREER MGMT SYSTEM 588 .484 5 CER COM 5 625
TOTAL ASSESSABLE UNITS = 32 AVERAGE NORM SCORE = . 0.827
QUALITATIVE RISK CONVERSION 1
0
e I 2 45 . it iectoencacan 75 e eeeces 90..... 0
L<====~ M-—-———- >H
/\ /\ /\ /\
Very Low ' Low Moderate High Very High
FINAL RISK RATING ==> 0.83 |

493

APPENDIX B

GENERAL RISK ANALYSIS - LAS

TYPE CONSOLIDATION REPORT * AVAILABLE WORKDAYS:
: *
ACTIVITY TOTAL * SENS WORK ACCUM
NAME : - RISK NORM IMPT TYPE SCOPE DAYS DAYS
—————————————————————————————— AEKEE e mcmwaw cemememe - -—— s o
MAIL ACCT SYSTEM 635 .543 5 APP ICR 15 15
MAPPER PILOT 610 .521 S APP ICR 15 30
AVERAGE = 0.532
LOAN ACCT OL UPDATE 1123 .959 9 AP3 CER 15 15
DELINQ LOAN COLLECTION 1028 .878 9 AP3 ICR 15 30
QUERY TRANSACTION 1025 .876 9 AP3 CER 15 45
SALARY OFFSET 1015 .868 8 AP3 ICR 15 60
DELINQ LOAN COLL REPORT 1003 .857 9 AP3 ICR 15 75
IRS OFFSET 980 .838 8 AP3 ICR 15 90
COLLECTION AGENCY 873 .746 8 AP3 1ICR 15 105
LIT/LIQ TRACKING 830 .709 7 AP3 ICR 15 120
TRANS APP DISP 773 .660 6 AP3 ICR 15 135
GUARANTEE LOAN REPORT 718 . .613 5 AP3 ICR 15 150
8(a) FIN INFO SYSTEM 683 . .583 5 AP3 ICR 15 165
NAME & ADDRESS SYSTEM 635 .543 5 AP3 ICR 15 180
CREDIT BUREAU REPORT 590 .504 4 AP3 ICR 15 195
AVERAGE = 0.741
GUARANTEE PURCHASE SYSTEM 1138 .972 9 AP2 CER 5 5
LOAN ACCT ALLOTMENT 1078 .921 9 AP2 CER . 15 20
LOAN APP 327 MODIFICATION 1038 .887 8 AP2 CER 15 35
LOAN DISB. -1416 993 .848 9 AP2 CER 15 50
LOAN APPL. TRACK 938 .801 8 AP2 CER 15 65
POLK FILE PROCESSING 585 .500 4 AP2 ICR 15 80
AVERAGE = 0.822
LACCS DLY UPDATE 1113 .951 9 AP1 CER 15 15
LOAN ACCT REPORT 1088 .929 9 APl CER 15 30
MGT INFO SUMMARY 945 .808 9 APl CER 15 45
TREASURY (LAT) 728 .622 6 AP1 ICR 15 60
. FED ASSIST AWARD 578 .494 4 AP1 ICR 15 75
AVERAGE = 0.761
TOTAL ASSESSABLE UNITS = 26 AVERAGE NORM SCORE = 0.747
QUALITATIVE RISK CONVERSION 1
' 0
..... eedlB ittt eeeeedB it enneeneee?Beeeees90.....0
L<-w==——=— M- >H
/\ /\ /\ /\
Very Low Low . Moderate High Very High
FINAL RISK RATING ==> 0.75 I

494

CONTROL MATRIX

Below is a sample matrix for an automated system.

APPENDIX C

CONTROL

OBJECTIVES are broad objectives which must be further codified
depending on the sensitivity of the systen.
is the assessed rating for the effectiveness of the CONTROL

The number in each cell

TECHNIQUES in place.
| OBJECTIVES. | VULNERABILITIES/RISK
USER UNAUTH | FILE/DATA FRAUD DESTRUCT
PROCEDURE | ACCESS | MANIPULATION | POTENTIAL|OF DATA

3 5 5 4 4
AUDITABILITY H D,G D,G G G

5 5 : 5
CONTROLLABILITY| C,H A,B C,F N/A N/A
DATA 3 5 3
INTEGRITY N/A C,F F N/A

3 3 3 4 3
FUNCTIONALITY E E E,F E

3 3 4 4 3
IDENTIFICATION E E,F E,F E
SEPARATION 3 3 3 3
OF DUTIES F F F N/A

3 4 2 4
RECOVERABILITY E G N/A G

3 al 2 3 3
SURVEILLANCE F G H c
SYSTEM DESIGN 5 4 2 4 3
INTEGRITY A,F G G E
Vulnerability level: 3 4 3 3 2

Explanation of control technique codes:

(A)~A large number of edits and validation checks are included.
(B)-Data 1limit checks are used as prescribed by management.
(C)-User performs reconciliation of inputs to outputs.
(D) -Exception reports are produced for users.
(E) -Operating procedures are used, and are regularly updated.
(F)-Review of input preparation is provided by management.
(G) -Logs are maintained, such as: source document, terminal

access, data base changes, program changes, and media storage.
(H) -Evidence of authorization is recorded and periodically reviewed.

495

APPENDIX D

SYSTEM SECURITY AND INTEGRITY REQUIREMENTS WORKSHEET
SYSTEM: LAS SENSITIVITY LEVEL = 2

This document specifies the security and integrity requirements of
the LAS system. It also establishes specific requirements for the
certification of the LAS system. The certification review process
is undertaken to compare the system to these documented
requirements. The certification of LAS is made relevant to its
compliance or noncompliance to these stated requirements.

1. AUDITABILITY

Auditability permits relative ease in examining, verifying, or
demonstrating a system. Auditability's two prime objectives are to:

- Determine whether the proposed system contains a network of
internal controls adequate to ensure that the results of the
system will be reasonably accurate and reliable; and

- Determine whether the planned management/audit trails will satisfy
management's need for periodic inquiry and enable auditors to
perform an effective audit.

2. CONTROLLABILITY

The objectives of internal control are to provide management with .
reasonable, but not absolute, assurance that financial and other
resources are safeguarded from unauthorized use or dispositions;
transactions are executed as authorized, financial and statistical
records and reports are reliable; applicable laws, regulations and
policies are adhered to; and resources are efficiently and
effectively managed.

3. . IDENTIFICATION

A key element in data security is identification, which enables an
organization to hold authorized users accountable for their actions.
To accurately identify users, security mechanisms need certain
information concerning each attempted access.

4. INTEGRITY

Systems integrity is the property of a system that permits effective
and reliable development and use; and normally requires a design
methodology, structured development, and up-to-date operational
procedures.

5. ISOLATION
Isolation protects the system and its data from unauthorized
sources. This is achieved by segregating functions and duties to

specific activities on a "need to know" or a "need to perform"
basis. ‘

496

6. RECOVERABILITY

Recoverability of data and processing includes emergency reaction
capability, backup precautions, and the ability to fully recover any
lost or damaged system resource. File reconstruction and system
fall back procedures are major considerations for recoverability.

7. SURVEILLANCE

Surveillance enhances security by detecting potential threats and by
accounting for all accesses and attempted processes by each user.

It includes the recording of significant events to allow audit
trails or monitoring components to detect potential or occurring
breaches and raise an alarm.

8. FORMAL CONTROL OBJECTIVES

Formal control objectives refer to regulatory objectives that must
be met. Regulatory objectives include security policy, control
policy, accounting policy, and other regulatory requirements that
are applicable.

9. SPECIFIC RISKS SECURITY AND CONTROLS

Three SPECIFIC RISKS were identified in the sensitivity assessment.
Describe the approach used to control these risks or reduce the
vulnerability and consequence of their occurrence. Address each
risk by name. '

10. FUNCTIONALITY

Functionality includes the minimum functions that must be performed
by the system to be considered successful. These are basic user
requirements that the system must meet.

11. EXCEPTIONS

Exceptions refer to constraints that are imposed upon the system due
to financial or technical considerations. Of primary concern are
those constraints that may have an impact on integrity and security
of the system.

12. SIGNATURES

The undersigned provide their acceptance of the above items as a
reasonable set of integrity and security requirements for LAS.

497

SECURITY REQUIREMENTS SELECTION

Security requirements consist of specific control measures necessary
to protect designated control areas. The evaluation and
certification of security requirements must be translated into a set
of controls appropriate to the sensitivity of the systemn.

CONTROL OBJECTIVES V : SENSITIVITY LEVEL

AUDITABILITY 1 2 3 4

- Audit trails X X X
- Special audit features 1 x

CONTROLLABILITY

- Systems management

- Project management

System development methodology
- System documentation

KON XX
MK XN
»

IDENTIFICATION
- Passwords . b4 X |'x
- Password administration X X X

INTEGRITY

- Program standards

- Data validation

- Error reports

- Application controls

- Reconciliation procedures
- System test

- Test plans

MM X XX XX
XXX X
]

Ll

ISOLATION

- Segregation of activities
- Documented system boundaries

e
M

RECOVERABILITY
- Data backup -~ X X X
- Data retention X X X X
- Contingency plan X X X

_ SURVEILLANCE
- Enhanced audit trails X
- Error reports X p:4
- User monitoring X
Security test X

498

APPENDIX E

CERTIFICATION REPORT

The certification report is the primary product of the certification
review. It contains a summary of security and integrity measures
and technical security recommendations. It is the main basis for
the accreditation decision. The certification report is prepared by
the Agency Certification Program Manager.

1. EXECUTIVE SUMMARY

2. BACKGROUND
3. FINDINGS

- Internal Control Posture
Systems Integrity Posture
- Vulnerabilities

- Risk Summary

4. RECOMMENDED CORRECTIVE ACTIONS
5. SUMMARY OF CERTIFICATION PROCESS
Attachments

A - Proposed Accreditation Statement

B - Security and Integrity Requirements Worksheet
C - Control Matrix Report

D - Application Contingency Plan

E - Computer Security Plan

499

APPENDIX F
EVALUATION KEY WORDS

CRITICAL RISK CERTIFICATION METHODOLOGY (CRCM): A security review
and evaluation of risks of large aggregated sensitive applications
at various hierarchical levels. The review process focuses on
"critical risks" at each level. Each lower level is accorded a more
detailed review than its parent level.

HIGH LEVEL RISK ASSESSMENT (HLRA): A qualitative risk assessment of
Agency computer security workload. This assessment determines
workload inventory and the measure of risk associated with each
computer related activity in the inventory.

SYSTEM LEVEL RISK ASSESSMENT (SLRA): A qualitative risk assessment
of the application within the aggregated application. Pervasive
risks and special risks are assessed at the major system level in
order to determine the high risk subsystems.

VULNERABILITY RISK ASSESSMENT (VRA): An assessment of
vulnerabilities and security measures of major systems within the
aggregated system. An application control matrix, which cross
references vulnerabilities, control objectives, and security
techniques, is developed. Detailed steps include the use of
software for the assessment of vulnerable areas and control
objectives based on the PCIE Model Framework for Management Control
Over Automated Information Systems. As an alternative, the high
risk subsystem may be assessed in lieu of the major system.

SECURITY REQUIREMENTS ANALYSIS REVIEW (SRAR): A detailed security
review of the highest risk subsystem in each major system. The
controls evaluated are determined by the sensitivity level of the
major system.

SECURITY AND QUALITY ASSURANCE COMPLIANCE REVIEW (SQACR): A source
code evaluation of the most critical program module from t 2 highest
risk application identified above. This review includes the
evaluation of design standards, software standards, functional
requirements, and security, integrity, and control requirements.

500

GENERAL KEY WORDS

CONTROL: A policy, technique, practice, device, or programmed
mechanism to accomplish an integrity or quality objective.-

CONTROL OBJECTIVE: A positive condition or event to be obtained,
given that there may be associated negative events operating to
hinder or prevent the positive event from occurring.

COUNTER MEASURE: Protective action, device, procedure, technique or
other mechanism which increases the difficulty of exploiting
computer system vulnerabilities (also called SAFEGUARD). PERVASIVE
RISK: General risks which are applicable to all organizational
activities.

RISK ANALYSIS: The identification of threats, vulnerabilities, and
the likelihood that the organization will experience some negative
impact as a result of threat occurrence. May also include
definition of specifics leading to the vulnerability, and the
additional controls required to "manage" or if possible, eliminate
threats.

RISK ASSESSMENT: A systematic method for analyzing specific computer
activities, applications, vulnerabilities to establish potential
loss or adverse impact to an organization from certain events based
on estimated likelihood of occurrence of those events

SECURITY CERTIFICATION: A technical evaluation (security
evaluation), made as part of and in support of the security
accreditation process, that establishes the extent to which a
particular computer system or application meets a prescribed set of
security requirements.

SENSITIVITY: The degree of criticality of computer system components
to their owners, users, or subjects and is most often established by
evaluating the risk and magnitude of loss or harm that could result
from improper operation or deliberate manipulation of components.

SPECIAL RISK: Inherent risks unique to a specific activity.
Examples are: (1) potential for fraud, (2) lack of management
control, and (3) potential for law suits.

VULNERABILITY: The motive, opportunity and means by which a threat
can be actuated. This reflects present conditions within the

organization which might lessen or intensify risk. It is also the
susceptibility to loss, and condition that allows a loss to occur.

501

(1]
(2]
(3]

(4]
(5]
[6].

[71]

(el
(2]
[10]
(11]
(12]

[13]

REFERENCES

U.S. Small Business Administration, Automated Information
Systems Security Program, SOP 90 47, August 1987.

U.S. Small Business Administration, General Risk Assessment
System (GRA/SYS) software User Manual.

U.S. Small Business Administration, CONTROL MATRIX Software
User Manual.

C. H. Helsing, "Application Risk Assessment and Controls
Selection", Datapro Reports on Information Security, Datapro -
Research Corporation, 1986, IS20-300-101.

National Bureau of Standards, "Work Priority Scheme for EDP
Audit and Computer Security Review", NBSIR 86-3386,
Gaithersburg, Md.,1986.

National Bureau of Standards, "Guide to Auditing for Controls
and Security: A System Development Life Cycle Approach",
Special Publication 500-153, Gaithersburg, Md., 1988

J. Fitzgerald, Designing Controls Into Computerized Systems,
Jerry Fitzgerald & Associates, 1981.

National Bureau of Standards, "Guidelines for Security of
Computer Applications", FIPS PUB 73, Gaithersburg, Md., June
1980.

National Bureau of Standards, Guidelines for Computer
Security Certification and Accreditation, FIPS PUB 102,
Gaithersburg, Md., September 1983.

National Bureau of Standards, "Report on the NBS Software
Acceptance Test Workshop", Special Publication 500-146,
Gaithersburg, Md., April 1986.

U. S. General Accounting Office, Evaluating Internal Controls
in Computer-Based Systems, Audit Guide, Washington, DC, June
1981.

T. W. Osgood, "A Risk Analysis Model for the Military
Environment", Procedings of the 11th National Computer Security
Conference, October 1988. :

J. Stevens, "Managing the Accreditation Process: Lessons

Learned", Proceedings of the 11th National Computer Security
Conference, October 1988.

502

FACTORS EFFECTING THE AVAILABILITY OF SECURITY MEASURES
IN
DATA PROCESSING SYSTEM COMPONENTS

by

Robert H. Courtney, Jr.
Robert Courtney, Inc.
Box 836, Port Ewen, NY 12466

INTRODUCTION '

With very few exceptions, our ability to provide adequate computer
security is not limited by the availability of appropriate technol-
ogy. We know how to make most of the hardware and software security
controls needed now to make our systems far more secure than they
are and adequately secure for most of today's operating environ-
ments. Yet many systems are less secure than they should be because
the suppliers of data processing products have not made available to
their customers those functional characteristics needed for adequate
security at reasonable cost.

Although the vendors are not providing what is needed, they do not
bear a major portion of the responsibility for that situation. Our
criticism of the vendors is mitigated significantly by the often
good, if not always sufficient, reasons they have for not providing
the security measures their customers need. We address those reasons
later here. On the other hand, it is fair to condemn some of them
for their hypocritical claims to be doing far more about security
than they are. For example, one major vendor proudly gquotes key
phrases from its corporate policy on providing in its products the
security 1its customers need while being quite aware of gross securi-
ty deficiencies in some of their newest and most important products.

A fairly complex array of factors serves to limit the availability
of security measures which, by their absence, make our rapidly
growing dependence on computer-based systems much less safe than it
should be. It is our purpose here to examine some of the more promi-
nent of these factors.

THE SECURITY PRODUCTS MARKET

The Customers' Data Processing Management as a Factor.

Since the data security issue first gained prominence in the middle
1960's, the security of data in computer-based systems usually has
been the responsibility of those managing the major data processing
functions for their respective organizations. This followed gquite
naturally the rather general assumption that data security was a
problem which usually could be solved by greater physical security

503

for the data center and the inclusion of appropriate technical
measures in the hardware and software complex. We were slow to real-
ize that few technical measures can be effective without comple-
mentary policies, procedures and practiceés for which the data
processing management has limited, if any, direct responsibility.

The pressures on data processing management to bring new applica-
tions on-line and their desire to have the growing dependence on
their systems seen in the best light by the corporate management
have not been wholly compatible with the need to divert some re-
sources to the protection of data. Once the corporate management has
been sold on committing major resources to the development of new
systems, there is often some reluctance to then tell them about the
threats and vulnerabilities associated with those new systems if,
indeed, the developers were aware of them.

In addition to a rather general desire not to make security problems
unnecessarily prominent, the DP management often has been, and
usually still is, quite wunaware of most of the threats to and
vulnerabilities of the data and of the economic consequences of en-
countering the full array of security problems to which their data
are heir. Without that awareness, they often do not understand that
the incorporation of security measures into their systems is a way
of reducing costs otherwise imposed on them by human frailty in all
its forms, including carelessness, incompetence, mistakes, avarice,
and malice, and by the perversity of inanimate objects and Mother
Nature. Without that awareness, there is 1little reason for them to
want to divert resources to the provision of adequate security.

Clearly, if the DP management is not adequately aware of both the
nature and the degree of the potential computer security problems in
their particular environment, it must be expected that they will not
be seriously perturbed about them.

It has been our experience that very rarely has the DP management
properly identified the most significant data security problems for
which they have " at least some degree of responsibility. Under these
circumstances, it is not surprising that the DP management, the
primary customers in most organizations for data processing pro-
ducts, has not generated a meaningful, coherent marketplace for
much-needed security measures as either stand-alone products or as
functional attributes of other product offerings, including main-
frames and minis, peripherals, system control programs, data base
management systems, and application programs.

Those in charge of corporate information systems will often contend
that they have implemented a number of important security measures
and, for that reason, things are pretty well under control in their
shops. Such is usually not the case.

All too often those measures are not fully installed or fully util-
ized or have been compromised by the procedures which surround them.

504

The most commonly installed ones are those with hlgh cosmetic value,
but which may have very limited securlty value in the absence of
other key measures which are not in place. There are numerous
instances where such products have been bought at quite significant
cost and then never used.

The Major Vendors as a Factor.

The most successful vendors of data processing products did not

achieve that position by responding to customer demands. Of necess-

- ity, they anticipated customer demands or, even more frequently,
generated customer desire for new products. They made their products

available and then explained to their customers why they needed

them.

Product development lead times are not conducive to response to cus-
tomer demands other than for limited modifications to already avail-
able products. Customer interest can wane or be diverted to other
things before the once-desired product can be made available.
Success dictates that the vendor generally anticipate and not just
respond to customer demands. The question, then, 1is whether the
potential customers want or can be induced to want security measures
if they are made available.

It is often quite difficult to sell security-related products or
added-cost security features on existing products. Salespersons are
rarely interested in selling a product which requires that they
spend much time motivating or educating the customer if they can
sell, with the same or less effort, another product which is equal-
ly, if not more, profitable for them. Further, it is not wholly
reasonable to expect salespersons to sell a major system and then go
to any significant trouble to identify and tell the customer about
the potential dangers, the security problems, which he must antici-
pate when using that product.

As things are today, we cannot expect the major vendors to do a
thorough job of making available in their products the security
attributes needed to make major, complex systems adequately secure
for most applications until there is a market for those attributes
which is about as profitable as would be the added function and
performance which could be included in a product at the same cost to
the vendor. Today's market for security measures, other than that
highly tenuous federal market generated by the activities of the
DoD's National Computer Security Center, does not provide adequate
motivation for the major vendors to mount. other than severely
limited security product programs.

Even when a major vendor introduces security products those pro-
ducts, these products are often components of systems which clearly
demand security to be saleable, such as ATM network components or an
EFT system, with the result that those security measures which are
provided lack the generality needed to satisfy customers using those
components in other ways. It is often true that generality could

505

have been included had the product managers been able to see a
greater potential market for those security attributes.

This is a reflection of the generally low level of awareness of cus-
tomer security needs by major vendor product developers which, in
turn, reflects a generally negative attitude on the part of vendor
management about the market for security measures.’

Customer Organization as a Factor.-

In earlier paragraphs here, it was said that a major security
problem is presented by the lack of awareness on the part of most DP
management of the quantitative aspects of security and a consequent
failure to recognize that all properly selected security measures,
by definition, will displace direct or indirect costs greater than
the cost of those measures. Because of this situation, it is ap-
propriate to consider alternative assignments of security respon-
sibility to bring to bear on the problem the concerns of those in
better positions to recognize the need for security, to assess the
consequences of not having it, and to provide data to support cost-
benefit determinations in the selection of appropriate security
measures.

The assignment of primary responsibility for data security to the
managers supported by data processing rather than its assignment to
the data processing organization can have highly salutary effect on
an organization's computer security posture. If that responsibility
is given to the management of the respective functional areas of the
organization, whether it be in the public or private sectors, and if
the management is directed to evaluate both the direct and indirect
costs of accidental or Iintentional modification, destruction,
disclosure, ‘delay or loss of availability of the data supporting
their functions, then there can be a basis for determining what se-
curity measures are needed and the cost justification for each.

Once there is firmly assigned responsibility and a mechanism for the
selection and cost justification of security measures there is a
basis for the procurement of that, and only that, security which is
needed. Until such changes are made in the assignment of respon-
sibility in a substantial number of organizations, it is improbable
that we will see the evolution of a rational market for security
measures and the subsequent provision of those measures by the ven-
dors.

We do not suggest that those changed assignments of responsibility
will alone create a market but rather that they are a necessary if
not sufficient condition for its evolution. There are other signifi-
cant factors which are treated below.

A full discussion of the recommended organization is somewhat beyond
the scope of this paper, but the matter is discussed in detail in R.
Courtney, The Proper Assignment of Responsibility for Computer
Security, Computers and Security, Volume 7, No. 1, Feb., 1988.

506

The Small Vendor as a Factor.

The extensive publicity given computer security issues in the gener-
al and trade press has led to the development of a fairly large num-
ber of security products in both hardware and software. Most of
these are offered by small vendors many of whom have only that
single product or, at best, a few minor variations on the same basic
technology. Roughly one in every five such products are likely to
provide a cost-effective, or even just effective, means of con-
taining the problems for which they were developed or address pro-
blems which are of significant importance to warrant enough customer
interest to constitute a meaningful market.

Several of these products are potentially quite useful, but most are
proving too hard to sell. The salesperson for a single product has a
very difficult time unless he can get within a reasonable time
orders for quantities large enough to justify the sales costs. Many
persons selling such products get only orders for quantities of one
and two for evaluation. That evaluation process 1is often long or
never happens or produces negative results. The sales costs then be-
come too large a portion of all expenses and the product or the
whole vendor company then fails.

There is not yet a recognized marketing organization, a manufactur-
ers' rep, selling a meaningful variety of such products for a sub-
stantial number of vendor companies so that the salespersons can af-
ford the time to develop adequate familiarity with the potential
customers' needs and their people that they can have reasonable
expectation of getting significant orders for at least some of the
many products they should be offering. Until such an organization,
manned by people with real expertise in the field, does evolve, the
probability that a very small securlty product vendor, even one with
a very good product, will survive is discouragingly low.

The National Computer Security Center (NCSC) as a Factor.

The NCSC, an organization within the National Security Agency (NSA)
which is, in turn, part of the Department of Defense, was establish-
ed to address computer security as a means of protecting information
involving the national security. Their activities became highly po-
liticized as a consequence a National Security Decision Directive
#145 (NSDD #145) issued by President Reagan in 1984. The effective-
ness and credibility of the NSDD were not enhanced by an attempt by
Admiral Poindexter to clarify its purpose and meaning three weeks
before he was deposed as a consequence of his involvement in the
Iran-Contra affair.

In late 1984, not 1long after NSDD#145 was issued, the Director of
NSA announced, - in a talk to an IEEE group in Washington, D.C., the
intention of NSA/NCSC to convince the civil agencies of government
and the private sector that their needs for computer security
measures were the same as those of agencies trying to protect multi-
level classified data from highly motivated technical giants in the

507

employ of major national enemies. His stated purpose in doing that
was to induce these other organizations to use the measures being
specified by the NCSC and, as a consequence of the increased volume,
reduce the cost to the government of the security products that NSA
wanted it to have.

Unfortunately, the NCSC criteria completely ignored data integrity
considerations and centered exclusively about protection against
violations of confidentiality by people wholly outside of the
organization. In all reality, of course, it would be unwise indeed
for many organizations to ignore the timeliness, accuracy, complete-
ness and availability of data while converging their concerns solely
on maintenance of confidentiality. For this reason, the NCSC criter-
ia, which have attracted widespread attention as a consequence of
very aggressive missionary work by the NCSC, precipitated interest
far beyond their significance in even most of DoD as well as the
civil agencies of government and the private sector.

The cause of data integrity would have been better served if only
half of the funds used by the NCSC in overselling their confiden-
tiality criteria had been applied to the development of integrity
criteria.

Because the DoD perceived in NSDD #145 enough leverage to do so, the
civil agencies of government were ordered to be in compliance with
certain of the NCSC criteria by 1992. As a result, the major main
frame and control program vendors were threatened with being locked
out of the large federal market for main frames unless they rapidly
brought their mainframes and control programs into compliance with
the NCSC criteria. Thus, even though many vendors did not necessari-
ly believe in the real need of their customers for equipment meeting
the NCSC criteria, the demands of the marketplace generated by the
"C2 by '92" requirement effectively forced the vendors to invest
very large sums in the development and subsequent evaluation by the
NCSC of their complying products.

The U.S. Congress, seeing potential abuses in the DoD's interpreta-
tion of NSDD #145, passed the Computer Security Act of 1987. This
new law more narrowly defined the role of DoD and NSA in the co-
mputer security area and resulted 1in the withdrawal of the NSDD by
the President's National Security Advisor. That new law also gave to
the National Bureau of Standards, now the National Institute of
Standards and Technology (NIST), responsibility for developing and
promulgating computer security information to federal agencies pro-
cessing unclassified data.

The Computer Security Act also ended the requirement that civil
agencies meet NCSC criteria - but that simply created yet another
new and different problem. By the time the Computer Security Act was
passed, a number of DP managers in the civil agencies had realized
that they could simply procure a computer meeting the lowest signif-
icant NCSC criteria, €2, and, even though they did nothing else

508

about security and even though the NCSC criteria are woefully in-
adequate in addressing data integrity and availability, ignore mis-
conduct on the part of an agency's own people, and are completely
silent on employee awareness and organizational policies, proced-
ures, personnel security and contingency planning, they can claim to
their management that they have actually exceeded their security
requirements. In the meantime, they are woefully insecure.

The confusion and obfuscation created by the NSDD and its subsequent
withdrawal has further served to confuse the marketplace for securi-
ty products. The current situation in the federal agencies is such
as to lend only disruption to that market.

There is further mention of NSA as a factor in the discussion later
here of the effects of export restrictions and national security
standards on the security products market.

The Office of Management and Budget (OMB) as a Factor.

Positive direction by OMB might make a real difference in the se-
curity posture of particularly the civil agencies, but it seems not
to be forthcoming. Although OMB has the power and the demonstrated
competence to provide strong, positive direction, they seem over-
endowed with an odd combination of timidity and lassitude. Thus, it
appears that we cannot look to DoD agencies or to OMB for help in
promoting an orderly, constructive market for security products in
support of the needs of most of DoD, the civil agencies and the
private sector.

The National Institute of Standards and Technology as a Factor.
Earlier here we noted the responsibilities given, actually returned,
to NIST by the Computer Security Act of 1987. Starting in the early
1970s, NIST, then the National Bureau of Standards, moved quickly
and well to formulate guidance in computer security for the federal
agencies. '

Well before the initiation of security work there, NIST people had
extensive experience in dealing with other agencies and the private
sector through their role in standards. They were well aware that
the easiest way to get broad agreement on a proposition is to have
most potential disputants participate in formulating that which is
to be agreed upon. (This approach is notably different from the
wholly unilateral, somewhat dictatorial one taken by NSA.) As a con-
sequence of that experience and partly because of limited resources,
working groups were formed with members from NIST, DoD, the civil
agencies and the private sector.

Over a relatively short time the NIST groups produced a set of
publications providing guidance in computer security on ~a highly
diverse array of topics. The general acceptance of these documents
was quite high.

The current federal Data Encryption Standard (DES) was a product of

509

NIST in the late 1970's.

The Carter administration effectively ended many cooperative en-
deavors between NIST and the private sector. The intent of the re-
strictions was laudable, to limit undue or unfair influence by cer-
tain segments of the private sector to the detriment of those not
participating or not exerting equal influence, but those restric-
tions served to destroy numerous constructive joint programs, which
was highly regrettable.

When the Computer Security Initiative was established first under
the Advanced Research Projects Agency and later moved to NSA and,
through a succession of titles, became the NCSC, the computer
security budget in NIST became minuscule in comparison. There was a
highly prevalent and highly unfortunate belief that the NIST se-
curity activities were somewhat superfluous in light of the exten-
sive program plans and impressive budget of the NCSC.

Few persons realized that the scope of the NCSC program was limited
almost wholly to protection of data against compromise by persons
outside of the system and had nothing to do with the integrity of
those data. As a consequence, the whole data security program in the
federal government suffered badly from neglect of those aspects of
security generally far more important than those being emphasized by
the NCSC.

With the passage of the Computer Security Act in December, 1987,
steps were taken to significantly augment the NIST security budget.
It seemed as late as 3Q89 that, with the new budget, NIST was to be
off again and running in the security area and would again be in a
position from which they could make meaningful contributions to the
establishment of reasonable standards and procedures for federal
agencies and help to stabilize the security products market for the
private sector. But that was not to be.

While there is no doubt that our form of government is the best vyet
devised, there can also be no doubt that it has some pretty gross
imperfections. One of them is ability of senior, and therefore
influential, congressional representatives to make mistakes with
far-reaching and virtually unrectifiable, even if disastrous, conse-
quences. Last November, in the closing days of the first session of
the 100th Congress, a Congressman with considerable seniority in the
House Appropriations Committee confused the National Science Founda-
tion, against which he had a grudge, with NIST and seriously im-
paired the NIST budget. This, in turn, seriously impaired the NIST
computer security program.

This loss of NIST support 1is important to the availability of
security measures in the marketplace because NIST is the logical
source of specifications for such measures. One of the principal
NIST goals was the generation of such material which could be refer-
enced in procurement documents and, as a consequence of appearing

510

repeatedly in such documents, help define a market for products with
those functional and performance,¢haracteristics.

The weakening of the NIST capability is a significant set-back for
computer security in both the private and public sectors. Their
personnel complement is severely limited and they are not as strong
as they should be but they do have an important charter. Many
organizations in both the public and private sectors will find that
they benefit by assisting NIST in the computer security area through
-participation 1in their Computer and Telecommunications Security
Council and its associated working groups. That Council provides a
very important means for making the right things happen if the fe-
deral agencies, state and local governments, and the private sector
maintain or expand their current level of participation.

Export Controls as a Factor.

The export controls imposed on data processing products as a func-
tion of their security characteristics are often arbitrary and cap-
ricious. There are good and sufficient reasons for denyving to those
in some foreign countries access to certain technologies including
the means to make it difficult for us to conduct our intelligence
operations - provided the cost to us through lost exports is not so
high as to outweigh the real advantages provided by export controls.

It is wrong to make a major economic sacrifice for a minor or only
imaginary intelligence gain. For this reason, there is a clear need
for the application of well-informed value judgment and to the deci-
sions to allow or deny exportability to specific products.

"Even when a vendor recognizes and is motivated to satisfy the
security needs of its domestic U. S. customers by the inclusion of
appropriate security measures into its products, there is a distinct
possibility that the product then might not be exportable because it
might be seen as helpful to extra-U.S. organizations in protecting
their data against our acquisition of them. Under those circumstanc-
‘es, the cautious vendor might well omit the security measures to
avoid jeopardizing the salability of his product outside of the U.S.

Because half of the revenue and more than half of the net of some
U.S-based vendors are from outside the domestic U.S. market, this
effort to satisfy the security needs of its domestic customers could
result in a halving of its market for a product. The justification
for such actions should be beyond question and not left to that
breed of bureaucrat whose every reaction is to block shipment just
in case it causes problems for which they might be held accountable.

The well-known Orange Book 1issued by NSA/NCSC provides criteria
against which base system components can be evaluated and ranked in
accordance with the degree of security provided against unauthorized
disclosure (only). NCSC also evaluates products and places those

511

passing on an Evaluated Products List (EPL). The ranking ranges from
"D" for a vanilla system with no particular security characteris-
tics, through C1 and C2 to Bl, B2, and B3 and on to the highest
level, Al.

It is probably true that major system control programs, if initially
designed to do so, could meet the B3 criteria without great diffi-
culty. The modification of existing ones to realize that level is
probably possible, but that has not been demonstrated. In either
case, the evaluation program would be very costly and time consum-
ing. It has been reliably estimated that the evaluation process
alone increases the cost of at least some products by more than 50%.

IBM has announced that it will produce a B3 system control program.
That may be a serious mistake because B3 products are not export-
able. In fact, to add confusion, products '"containing B3 function"
are not exportable. B3 function is not defined anywhere. Seemingly,
anything needed to make a workable B3 product, including the ALU,
would be a B3 function. The wording does not say "functions unique
to B3 or higher products", whatever they might be.

There is a distinct possibility that a vendor producing a good,
stable product will inadvertently make a B3-capable product, even
though it has not been evaluated as such, and find that it has now
denied itself a major extra-U.S. market.

One of the least understandable of the export problems involving
security measures 1is found with products incorporating the Federal
Data Encryption Standard algorithm - DES. DES is not a secret algo-
rithm. It is described 1in complete detail in documents available
world-wide, including everything from Time-Life books to the federal
standard publication through which it was initially promulgated.

Products employing the DES algorithm can be exported to foreign but
U.S.-owned financial institutions. For example, they can be exported
to the office of a U.S. bank in Frankfurt but not to a Ford Motor
Company facility in the same city. In both the devices would be
under the control of foreign nationals.

There are about 32 European manufacturers of DES chips or products
employing the DES algorithm, which has now achieved the status of a
de facto international standard. Yet limitations placed on the
export of devices wusing DES deny U.S. suppliers access to major in-
ternational markets for such products at a time when every reason-
able step should be taken to improve our balance of trade.

Any arbitrary, capricious or unpredictable application of export
controls on security attributes in data processing products must
serve to discourage U.S. -vendors from providing such measures in
their products. Yet such security characteristics are needed to in--
still customer confidence 1in steadily increasing dependence on.
modern, efficient data processing systems and thus help to assure

512

the acceptability of such systems.

Limiting the exportability of any desirable functional or perfor-
mance characteristic 1limits the market and thereby limits the
incentive for vendors to include it in the product design. Anything
which discourages growth in dependence on computer-based systems
will deny the affected enterprises opportunities to reduce operating
costs. Anything which denies a U.S. business the ability to reduce
operating costs will serve to diminish its competitive posture in
the world marketplace. For these reasons, any ill-conceived export
controls imposed by U.S. government agencies on information system
components offer a real potential for reducing the competitive
posture of U.S. businesses.

A rational, understandable, consistent, and stable national policy
on export controls is sorely needed and well before we do further
irreparable damage to U.S. industry as a consequence of the contin-
ued application of the irrational hodge-podge of controls being
somewhat whimsically applied today. :

A Diversity of National Security Standards as a Factor.

NSA's National Computer Security Center evaluates certain data pro-
cessing system components to assess their relative strength in
contributing to the effectiveness of the so-called "trusted computer
base'". Soon after the initiation of the NSA/NCSC security eval-
uation program, the Director of the NCSC announced that his organi-
zation would not evaluate any foreign security products offering
capabilities provided by U.S.-made products. Whatever his actual
intent in excluding those foreign products, it was assumed by many
at the time that his intent was to keep foreign products out of the
U.S. market. The significance of this, whatever the intent might
have been, was immediately apparent to many European vendors.

Before the NCSC announcement of the exclusion of foreign products
from their evaluation process, there was already rather widespread
interest in western European countries for the development of their
own counterparts to the NCSC Orange Book. Part of this was simply
nationalism at work, but the clear deficiencies in the Orange Book
contributed significant additional 1incentive to the generation of
their own national computer security standards. Most : particularly,
the absence from the NSA document of any indication of concern for
the quality of data was such an obvious and serious omission that it
alone would justify a more realistic approach to the generation of a
computer security standard by almost any developed country.

The attempt at the exclusion of their products from the U.S. market
by a U.S. intelligence agency provided considerable added incentive
for each of several major European countries to go their own way in
the generation of national security standards. That development
clearly jeopardizes the U.S. vendors' market for data processing
products because it threatens a very serious fractionation of the
very large portion of that market which has been held by the U.S. It

513

threatens U.S. vendors with a requirement that they produce as many
versions of their product as may be demanded by the differences in
individual country security standards - many of which standards, as
we noted above, were provoked by ill-advised actions of NSA in
precluding foreign data processing products from the U.S. market.

It is apparent that both the U.S. government and industry should
support aggressively the generation and broad acceptance of inter-
national security standards which would permit the continued free
flow of our data processing products to the rest of the world. If we
do not do that, country-peculiar standards will be used to lock our
products out of the foreign markets just as the NCSC attempted to do
to products originating from without the U.S.

The National Computer Systems Security and Privacy Advisory Board
(CSSPAB) as a Factor.

The CSSPAB was established under the Computer Security Act. Its ac-
tivities have been underway only since Spring, 1989. Recognizing
that it takes some time for a fairly large group of people not ac-
customed to working together to sort themselves out and mount a
meaningful program, their accomplishments to date have been modest
indeed. More aggressive action by that board is urgently needed.

The problem of NIST funding has served to undo some constructive
work which had been done by the Advisory Board. While it was re-
viewing the NIST work plan for the coming year and making what
seemed to be constructive recommendations for changes to address
better the needs of its constituency, the NIST budget was frag-
mented, as noted above, which rendered moot many of the board's
informal recommendations to NIST.

It seems highly apparent that more aggressive stances on key issues,‘
are needed if the Advisory Board is to make the contributions so
badly needed of it.

In the meantime, those trying to secure information systems are
often burdened by the wunavailability of hardware and software
security controls they need to do that job. Unfortunately, we are
continuing to see the appearance of security products which are
reasonably priced with relation to their manufacturing costs but
which are still far too costly to yield appropriate cost-benefit
relationships in any sibstantial number of applications. Technical
excellance is not a good measure of applicability, but too few
entrepreneurs in the computer security area seem to grasp that
reality. :

END

514

INTEGRATING COMPUTER SECURITY AND SOFTWARE SAFETY
IN THE LIFE CYCLE OF AIR FORCE SYSTEMS

Albert C. Hoheb
The Aerospace Corporation
2350 East El Segundo Boulevard
El Segundo, California 90245-4691

ABSTRACT

Computer security and software safety are two specialized areas in which acquisition and
approval are governed by different requirements and organizations within the Department of Defense
(DoD). The system software built for Air Force systems must follow a series of sometimes conflicting
standards both during development and after delivery. Despite these conflicting standards, computer
security and software safety are two disciplines with often similar requirements and goals. Rather
than treating these subdisciplines separately, this paper suggests integrating them in the software
acquisition and accreditation processes.

Currently in the development of system software, computer security and software safety are not
integrated with each other; neither are the acquisition and approval of systems integrated together.
Compounding this problem is an inherent difficulty in communications between organ-izations
charged with procurement, implementation, and use, both among the services and between the ser-
vices and their contractors. This complicates the design, delivery, and utility of safe and secure com-
puting systems.

This paper presents the similarities and differences between computer security and software
safety, reviews how software contributes to hazards, discusses how criticality relates to safety and mis-
sion requirements, suggests how acquisition and accreditation can be coordinated, describes how risk
factors influence system design, and closes with how to implement software safety using computer
security mechanisms.

INTRODUCTION

Recently, the computer security threat of denial of service was dramatically demonstrated when
the Internet worm brought the network to a halt, spawning a vigorous interest in computer security
[26]. The contributions of poorly designed or “unsafe” software to mishaps have not only been recog-
nized, but they are also becoming a focus of attention at administrative levels.

Both computer security and software safety mechanisms should be considered to be frusted
mechanisms, because they provide required services while preventing inadvertent, unintended, and
malicious actions. Within the DoD, the Air Force is placing an increased awareness on concept defi-
nition, design requirements, and computer security and software safety mechanisms. Heretofore
these features have been integrated within the acquisition process or the accreditation process; these
two processes themselves have not yet been integrated with each other. This paper proposes just such
an integration.

The commonality of computer security and software safety has previously been given little atten-
tion. The common design features and assurances used to mitigate risks have not been well under-
stood, nor have their relationships to-the acquisition and accreditation processes themselves [27, 12].
As software plays an ever larger role in systems control and risk in Air Force systems, computer secu-
rity and software safety play correspondingly larger roles throughout the life cycle of computer-
dependent systems. The trend has been to carve out computer security (COMPUSEC) and software
safety as separate disciplines and to shift responsibilities away from security engineering and system-
safety engineering organizations. '

Because computer security and software safety have common irreducible elements, in particular
common requirements and assurances, this paper proposes a merger of computer security and soft-
ware safety in the unified discipline of trusted computing.

This paper proposes the integration of the requirements of these two subdisci-
plines; furthermore, this paper proposes the integration of the acquisition and
accreditation processes for critical trusted systems, as well as of the organizations
committed to developing and maintaining those systems.

Copyright © 1990 by Albert C. Hoheb

515

For simplicity, examples and specific recommendations have been limited to Air Force applica-
tions using Air Force requirements documents and terms; however, the mtegratlon concepts are
applicable throughout DoD and even to civil and publxc sector systems. ,

MMONALITY OF COMPUTER SECURITY AND SOFTWARE SAFETY

Technological breakthroughs in computing power, networking, and human interfaces have caused
an increase in the use of computer controls, resulting in a corresponding increase in mission risks and
program development risks. As the dependence of systems on computers has grown, so too has the
demand for systems that are both secure and safe.

Computer security provides controls to preclude the unwanted disclosure of information or alter-
ation of data, and to ensure that proper service is available when needed. Software safety provides
controls to prevent data corruption which results in service interrupts, or the loss of life or assets. In
both computer security and software safety, these controls are designed to guard against the risk of
inadvertent, intentional, and unintentional threats.

It is not hard to find examples to illustrate the relationship between COMPUSEC and software
safety. Suppose that a database is used in the performance of a system action whose improper execu-
tion could cause a hazard. This is the safety component. Now suppose that the security of the data-
base is violated and some values are changed. Subsequent computer processing could then be both a
security problem and a hazard. Thus, through this simple scenario, a cause-and-effect relationship
between COMPUSEC and software saf_ety can be seen. This type of relationship has led to the devel-
opment of system requirements that cover both the security and safety aspects of Automatic Data
Processing Systems (ADPS). For instance, Air Force regulation AFR205-16 [2] specifies five critical-
ity factor (CF) levels (see Table 1). Criticality is defined within a specific context [4, 5], and is the
required level of protection of resources, whose compromise, alteration, destruction, or failure to meet
objectives will jeopardize mission accomplishment. For each CF level there i is both a mission require-
ment and a safety requirement.

The relative priorities of the mission, security, and safety should be established so that each
function is successful. For instance, in a satellite communications system the satellite’s primary mis-
sion must be to communicate. As its secondary mission, the system must communicate securely; it
also must be safe during all mission phases, especially during checkout and delivery, where there is a
risk of human injury. In prioritizing the secondary mission requirements, one must consider that
these requirements change throughout the mission. For example, initially it may be necessary to
ensure that a satellite is extremely safe during checkout and delivery; later, during the operational
mission phase, it may become critical to provide secure communications. Thus, if a failure occurs in
that satellite’s communication system, the requirements may demand that it communicate in an unse-
cure fashion rather than shut down completely.

The priority of various mission requirements results in a definition of criticality for each mission
function. The criticality of each mission component then determines the balance of mission, security,
and safety requirements. The program development risks must also be balanced, to ensure that the
program can function as desired, within schedule and within budget. To the question “How safe and
how secure does the system need to be?” there is no easy answer. Iterative analyses must be per-
formed in order to balance requirements and minimize program development risk.

Table 1 compares computer security to software safety. Although aspects of these concerns
change, both safety and security remain important through all phases of the mission. Both security
and safety require attention from the conceptual design phase through operations and maintenance,
yet this attention varies from predeployment checkout, through launch and all mission phases, to
recovery. Vulnerability to exploitation results from the combination of threat and risk (for security)
and hazards and risk (for safety). Both security and safety are vulnerable to the threat or hazard
severity, and the likelihood that a threat or hazard will occur.

Computer security and software safety use design features and design and development assur-
ances to eliminate or reduce the risks associated with specific threats and hazards. As Table 1 shows,
the foundation for specifying computer security is to enforce policies of sensitivity, integrity, and ser-
vice assurance [16, 4, 11]. Service assurance and integrity are the foundation of criticality [4]. This
paper proposes that integrity and service assurance also be made the foundations of software safety,
since integrity prevents modification and criticality provides the “need-to-do” (availability). In the

516

Table 1. Computer Security and Software Safety Elements.

Topic Computer Security Software Safety

Life cycle All phases All phases

Operations All phases All phases -

Vulnerability Threats Hazards

Foundation Service Assurance, Integrity, Sensitivity | Service Assurance, Integrity
Metric Criticality Factors 1-5, Classes D-A Criticality Factors 1-5

Control goals: to prevent

Inadvertent, Unintended, Malicious

Inadvertent, Unintended,
Malicious

Objective: to prevent

Denial-of-service, Modification, Disclo-
sure

Denial-of-service, Modifica-
tion

Basis of Trust

Availability, Trustworthiness

Availability

Trust Principle

Least privilege

Least privilege

Sensitivity Levels: Unclassified, Sensitive, Confidential, None identified

Secret, Top Secret

future, software safety levels based on integrity and service assurance policies may more clearly define
software safety features and assurances.

The metric for computer security based on sensitivity [16] establishes classes of systems, from
class D, the lowest assurance, to class A, the highest. These four classes have very specific design,
mechanism, and assurance requirements, all of which increase in quantity and complexity as the met-
ric approaches or exceeds class-A requirements. The metric for software safety, although separated
into classes according to criticality factors, does not have specific design, mechanism, and assurance
requirements.

The control goals are similar between computer security and software safety: to prevent inadver-
tent, unintentional, and malicious control action. Inadvertent “exploitation” (exploitation is commonly
meant to mean the realization of risk) occurs when a control action is mistakenly invoked, e.g. when a
misplaced coffee cup presses a key that in turn deletes a file. Unintentional exploitation occurs when
a control action is purposely inveked but has an undesired consequence, e.g. when a component fails
and the user, unaware of the failure, invokes a control action that in turn results in a hazard. Mali-
cious exploitation occurs when an adversary, internal or external, threatens the system.

Both computer security and software safety share the objective of preventing denial of service, or
the loss of system use. Only computer security has the direct objectives of preventing the unwanted
disclosure of data and of preventing the unwanted modification of data through their alteration or
destruction. The modification of data is only an indirect threat to computer security and software
safety, since it is actually the processing of modified data that can directly result in denial of service,
loss of assets, environmental damage, and injury or death.

The basis of trust (rationale) and trust principle for computer security are based on “least
privilege” and assignment of roles, i.e., the granting of least amount of access according to user
responsibilities. Availability ensures that the correct resources are provided at the correct time,
Trustworthiness ensures that the resources operate correctly.

Both the computer security and software safety fields are struggling to define distinct policies
based on use: policies specific to autonomous executive systems, embedded systems, stand-alone sys-
tems, and networked systems. Although computer security policies are better defined than are poli-
cies for software safety, software safety policies are established by users on a case-by-case basis.

Note that the Trusted Computer Security Evaluation Criteria (TCSEC) [16] has established
assurance levels with regard to sensitivity, whereas to date no levels of software safety with regard
to sensitivity have even been proposed. Nor has the TCSEC defined levels for integrity or service
assurance.

517

As shown, computer security and software safety have a common operations and life cycle, as
well as similar vulnerabilities, control goals, access basis and application, design goals, and founda-
tion. The duality of these disciplines not only suggests but also encourages integration. Integration
may be in the form of common requirements, common mechanisms, and common assurances.

MPARISON OF COMPUTER SE ITY THREAT

' SOFTWARFE SAFETY HAZARDS

It is useful to decompose threats and hazards and then compare them to understand their com-
monality and other relationships. The COMPUSEC threat and software safety hazards are compared
in Table 2 (this table is based upon the work of P. Neumann, and describes computer security threats
[24, 3] but does not address common software development errors). Direct impacts to software safety
are denial of service, loss of assets, environmental damage, and injury or death. All threats to integ-
rity are direct threats, since execution of modified data does result, by definition, in a hazard.

Table 2. Comparison of Threats vs Hazards

Software Contributions to Hazards

Computer Security Data Computer
Threats Integrity | Commands | Interfaces | Hardware | Environment | Processing

Scavenging

Traffic Analyses

Elec. Interference 1 1 1 1 2

Data Modification -1

Hardware 1 1
Tampering

Jamming 1 1 2

Communication
Delay

Impersonation 2

Spoofing 2

Worms, Virus, 1 2 1
Logic Bombs

Data Hiding 1 1

Password Guessing 2

Anthropomorphic 2
Spoof

Usage Flaws 1 | 1

User Privilege
Alteration

Data Alteration 1

Passive Misuse

Covert Channels 1

Misuse from ‘ 1 1
Inaction

Message Stream 1
Mods

518

Indirect impacts are those that contribute to direct ones. The COMPUSEC threats encompass
service assurance and attacks against sensitivity. For the most part, the software safety hazards cor-.
respond to attacks against integrity and service assurance. As we have seen, computer security
threats contribute greatly to software hazards, both directly and indirectly.

As Table 2 indicates, hazards in command interpretation software can be triggered by command
interference, jamming, communication delay, usage flaws, misuse from inaction, and message-stream
modification, all of which result in denial of service. Impersonation, password guessing, and anthro-
pomorphic spoofing are indirect threats to safety.

Generally, hardware threats are direct denial-of-service attacks. The contributions of environ-
mental effects to safety have a secondary impact (unless, of course, they are created by a nuclear
weapon). User privilege alteration affects safety if it permits inadvertent, unintentional, or malicious
acts. The sensitivity attacks of scavenging, traffic analysis, passive misuse, and covert channels are
associated only with the disclosure of data, and have no effect on software safety per se. Traffic analy-
sis and passive misuse, although computer-related concerns, are traditionally classified as information
security and TEMPEST concerns.

INTEGRATING THE ACOUISITION PROCESS

Traditionally, software has been developed along a “waterfall” model in which the next step can-
not proceed until the current step is completed [20, 22, 21]. This model, although straight-forward,
does not easily take iterative analyses into account. The model is useful for the delivery of documen-
tation and project milestones, but it may not be well suited to a well-engineered product.

The waterfall model is inherent in the communication of the military acquisition process. For
example, the Air Force user writes some type of top-level requirements document that then gets
accepted by the Air Force procuring agent. The procuring agent then specifies and performs all con-
tract monitoring for the system until the system is completed. The agent then turns the system over
to the user. While it is true that the user and procuring agent often try very hard to work together,
there are not enough iterations of design analyses to ensure that the system meets its mission critical-
ity requirements. :

A large portion of the mis-specification problem revolves around inadequate guidance. Comput-
er security and software safety are evolving very quickly, and rapidly generate new requirements. For
instance, in 1989, DoD directive 5200.28 specified that all government systems must have the equiva-
lent of a C2 COMPUSEC rating by 1992 [17]. A draft requirement for Trusted Critical Computer
Systems Evaluation Criteria [4] is being developed which uses data integrity and denial of service as
its main tenets. The relationships of these documents to the acquisition cycle has not been sufficient-
ly specified, nor have the appropriate guidance documents been written. However, COMPUSEC
requirements do have an advantage over software safety requirements, because the latter are not
nearly as well specified.

Air Force system development generally adheres to the concept of requirement flowdown. An
executive order [18] appoints the authority to determine policy. DoD 5200.28-D is a top-level comput-
er security policy for application within the Department of Defense. The TCSEC (DoD-5200.28-
STD), specifies system requirements. The Technical Rationale Behind [DoD-5200.28-STD] Computer
Security Requirements (CSC-STD-004-85) [13] specifies the minimal TCSEC system security classes
according to the system environment. Military Standards are usually written by various military com-
mands according to specific type of program. For example, MIL-STD-1785, System Security Engi-
neering Program Management [23], is an Air Force standard on how to manage system security.
Different Air Force organizations have their own attachment of Air Force Regulation 205-16, which
specifies the accreditation process and some design, application, and operation requirements.

Software safety is a discipline within system safety, and as such adheres to the general require-
ments established by system safety. However, there are no executive orders, top-level policies, or
DoD requirements that establish software safety standards for the Air Force or any other military
command. There are only incomplete attempts to establish such standards. For example, MIL-
STD-882B describes a system safety acquisition process that in turn describes the software safety
process. AFR 800-16 describes Air Force safety programs, while Air Force Consolidated Space Test
Center (CSTC) Regulation 127-1 specifies the safety accreditation process to be used by CSTC pro-
grams. Handbooks on a range-by-range basis only provide “guidance” for implementing the regula-
tion requirements.

519

http:DoD-5200.28

The TCSEC computer security requirements for a class-A system are listed in Table 3, where
they are mapped to software development and software safety requirements documents. The map-
ping indicates if there is a requirement overlap, if there is a requirement dual, or if there is no current
overlap. A requirement overlap indicates that there are similar TCSEC and software safety goals and
methods. A requirement dual indicates that the TCSEC and software safety implementation details
are not the same, but their intent is similar. No overlap indicates that there are no similar require-
ments or intents.

Table 3. Trusted Computer System Evaluation Criteria to Software Development
: and Software Safety Requirements Mapping

(o} > 2
& A /S
() s /2 /C /@ () A
> 5/5/5/% g‘g/ &5/ />
2 Y & /3
5 7o /&[S /S &RP/5/5
& ‘3' 3
J I/ f <J CINIEYS
s/ [£15/S/5S/S2 128 /58
< 9 /O G /N
S/ [fc/8/8e/8/ /53 S
G/ oS/ 2 /5/5/8 [/S)
S/ 518 /0/E/8/8/S5 IS5/ 8/5
0\033&7&7&735809?? &
X{ MiL-sTD-15218
X| MmiL-sTD-490A
X | DoD-STD-2167
DoD-STD-2168
N NNNENEEN X| X| miL-stp-8s28
\ N i
N NN X NN X| | ester 127-1
SECURITY POLICY ACCOUNTABLTY ASSURANCE DOCUMENTATION

|___| NO REQUIREMENT OVERLAP REQUIREMENT OVERLAP REQUIREMENT DUAL

All of the TCSEC documentation and assurance requirements categories, except trusted distri-
bution, have analogous software development or software safety requirements; some mappings indi-
cate requirement overlap, while some indicate requirement duals.

The TCSEC design and test documentation requirements are similar to those specified in almost
all of Air Force software development and software safety requirements documents; in fact, all have
implicit waterfall development cycles [8]. For example, security-testing overlaps software development
testing, validation, and verification, as well as the software-safety requirements testing specified in
MIL-STD-882B, series 300. Configuration management for the TCSEC and software safety overlap,
since both track relevant mechanisms. The design specification and verification required in the
TCSEC map to several software design and software safety specifications. With regard to complexity
and modularity, the TCSEC system architecture requirement is similar to software development in
DoD STD-2167.

The Security Features User’s Guide and Trusted Facility Manuals are duals with regard to Oper-
ating Instruction requirements for the safety accreditation of deliverables per CSTCR 127-1. Trusted
recovery for software safety is required in the sense that a system should have a known point at which
processing is resumed in accordance with MIL-STD-882B, but it is not as well defined there as it is in
the TCSEC. Covert-channel analysis is a dual of a sneak circuit or soft tree analyses. Audit is simi-
lar to error detection and reporting in MIL-STD-882B.

There are no current software safety requirements for implementing any of the security policy or
accountability requirements except audit. This does not mean that computer security policy and
accountability requirements cannot be used to implement safety or safety-related features (with the
exception of policies and assurances based on disclosure), but it may indicate that software safety has

520

not reached the level of requirements sophistication needed to specify features clearly on the basis of
criticality or integrity. It may be possible to combine features to provide trust for both computer
security and software safety; it may also be possible to implement safety functions using traditional
security ideas and mechanisms. This paper suggests that both of these approaches be applied to im-
plement software safety and computer security. :

Many of the COMPUSEC and software safety assurance and documentation requirements are
meant to ensure proper design. Both utilize computers and software, and rely on good programming
practices. Both require knowledgeable computer professionals at all levels to implement the systems
properly. If software professionals take security and safety into consideration, it is much easier to
communicate concerns across the software, security, and safety disciplines. Ensuring proper develop-
ment is also the goal of MIL-STDs 2167/2168 and 1521B. The design requirements of trusted systems
must be integrated into those military standards so that there is little or no duplication of effort and
to ensure that the efforts are coordinated.

Neither computer security nor software safety has been well integrated into the acquisition cycle
[25, 10]. Accreditation requirements do not flow into the acquisition phase, and design, integration,
and verification are not in synchrony with the DoD-STDs 2167 [8] and 2168, or in MIL-STDs 1521B
and 490. The integration of computer security and software safety may be better served by a model
that allows for iteration or feedback between phases. The spiral model [9] of software development
may capture the repetition whose risk-driven approach provides a framework for guiding the software

~ process.

This paper does not advocate that computer security or software safety
requirements be simply “forced” into DoD-STDs 2167 and 2168 and MIL-
STD-1521B. Rather, this paper advocates that these documents be rewritten, in
accordance with an iterative model, to provide for design iteration and to permit
system designers to reduce safety and security vulnerabilities. A discussion of
what is involved in this rewriting effort is beyond the scope of this paper.

ACCREDITATION PROCESS INTEGRATION '

The accreditation process and its necessary inputs are very similar for ADPS System Security in
AFR 205-16 and Software Safety in CSTC 127-1. ADPS security and software safety each require
accreditation by separate organizations. For example, in the ADPS security arena this individual is
the Designated Approving Authority (DAA). However, the inputs necessary for accreditation are
provided by different individuals, who are responsible for documenting and ensuring both safety and
security in day-to-day operations. In the security arena the Computer System Security Officer
(CSSO) is responsible for accreditation inputs and maintenance. The evidence the CSSO presents to
the DAA for approval includes information about the environment, hardware, software, personnel,
operations, mission, and contingency plans, as well as a comparison of all the computer security and
software safety requirements against a known system baseline. The risks are identified and assessed,
then mitigation techniques are applied. Residual risk is then presented to the DAA. Obviously, this
process is confusing and leads to a variety of problems.

Therefore, a single accreditation cycle for both computer security and software safety makes
sense: there is only one approval authority and one responsible officer, information gets presented
only once, resources are used only once, and the risks are presented as integrated risks. Another
added benefit of a unified accreditation cycle is that integrated risks are easily represented to the
various working groups. '

To illustrate this point, consider a secure priority-A satellite control station that must operate
without interruption through laborious redundant database and hardware backups and whose contin-
gency procedures have been well honed. This equipment is kept within a locked and guarded room
whose access requirements are strict. The safety regulations for the building require an emergency
power shutoff outside the module, so that Air Force personnel may access it eastly during an emer-
gency. However, to meet security regulations for uninterrupted service, this switch should never be
placed where it could be activated inadvertently, unintentionally, or by an adversary. Obviously the
requirements for security and safety are in conflict here; the risk represented by the switch was not
considered as an integrated risk.

Combining the accreditation of security and safety is especially effective when a system is chang-
ing rapidly. As an example, consider a large computer program that is used by hundreds of users to

521

control satellites. The program provides tracking, telemetry, and control, and is provided and main-
tained by a single organization. This program is considered off-the-shelf (OTS) to all new users, since
it was procured ten years ago. Now imagine that this system must support forty missions, all of
which are critical, each with its own mission-unique equipment (MUE) consisting of a custom opera-
tor interface and mission-unique data. To satisfy this need, it is possible to accredit the OTS for
computer security and software safety under a proposed integrated Trusted System accreditation,
while preserving that accreditation intact until a major system change requires a new one. The MUE,
on the other hand, can be accredited as required, with the end user—rather than the service pro-
viders—submitting the evidence. The service providers have the authority to deny the use of a specif-
ic MUE until it meets approval. Accrediting the MUE independently of the OTS provides the most
flexibility.

This paper proposes that accreditation requirements be specified during the

acquisition process.

These requirements must encompass the complete temporal utilization of the computing system:
boot/load, hardware integrity checks, system configuration, mission-data loading, mission perform-
ance, changes in mission processing due to security level changes or user privileges, contingency plans
and reduced modes of operation, task deletion by criticality, reinitialization and restart, recovery,
backup and data restoration, shutdown, and maintenance.

MPUSEC MECHANISMS IMPLEMENTATION OF AR

The prevention of hazard and threat vulnerabilities requires that the vulnerability path be identi-
fied and that a specific mechanism be used to ensure that this path cannot be activated. Two con-
cerns arise when the path-blocking mechanism is designed: will it mitigate the vulnerability under all
appropriate conditions, and is the mechanism itself secure from alteration? Computer security and
software safety path blocking assurances and documentation are similar. The foundations, control
goals, access basis, and access applications are similar.

Since these similarities exist, this paper proposes that TCSEC policy features be
used to implement frusted systems that include both computer security and soft-
ware safety.

The COMPUSEC concept of a Trusted Computing Base (TCB) is that all protection mechan-
isms used to enforce the security policy for the system are contained within this trusted base. The
TCB is as small as possible to permit verification, is modular, has well-defined interfaces, and con-
tains only that code essential to the security policy. However, the TCB concept can also be applied to
software safety, to enforce safety policy. In either case, the reference monitor in the TCB must have
three principle properties: it must be uncircumventable, it must be tamper-proof, and it must be
always invoked. Nonetheless, the issue of including safety mechanisms within the TCB is controver-
sial, since this may make the TCB larger and more complex.

Therefore, early in the requirements definition phase, safety-relevant elements must be identified
and classified, in order to identify common mechanisms and safety-relevant databases for inclusion in
the TCB. The databases must be protected by TCB security mechanisms and must allow access to
only those users with proper privileges.

Important to both computer security and software safety is the concept of data integrity. In com-
puter security, object reuse prevents disclosure of data through scavenging. Object reuse prevention
is the clearing of user-addressable memory before that memory is allocated for subsequent use.
Object reuse prevention designs include clearing upon memory deallocation or clearing before mem-
ory allocation. The former approach is an important feature for software safety, since it is important
that all unused memory locations (if executed) be benign. Since object reuse sets -all bits to zero, it is
important that the software safety design take into account the interpretation of all command words
whose contents are zeros; an example of this is a benign command such as a no-operation (no-op).

Safety features such as interlocks and sequence checks can be contained in safety modules with-
in the TCB. Identification and authentication mechanisms can provide safing or override safing. The
audit mechanisms can be used to detect hazards and produce alarms. In a failover situation, Discre-
tionary Access Control (DAC) mechanisms can be used to grant a redundant processor access to
data from the failed processor; in the event of the failure of the primary control processor in an
N-version programmed system, DAC mechanisms can grant system control.

522

A simple example of building a TCB based on security and safety follows. Consider a weapons
system in which an operator has the capability to override failures that could lead to disclosure or a
hazard when the weapon system is delivered. In this case a TCB containing a fail-operational system
is appropriate. The weapons system could require an additional privilege for both normal weapons
delivery and weapons delivery upon failure in the fail-operational system. Once either of the privi-
leged modes was entered, a privileged trusted process would activate the fail-operational design and
would not permit control to be altered by any other process. That privileged trusted process would
then resume normal operation only if the manual control were overridden or the fault were cleared.
Entry into either of the privileged modes could require an additional Identification and Authentica-
tion (I&A). This type of mission-critical override could also require a different type of I&A than that
needed to access the system. For instance, the traditional implementation of I&A is the login and
password. For a quick I&A in a hostile environment, it may be better to use anthropomorphic mech-
anisms (e.g., retinal scans, fingerprints, voice recognition).

As a generic example, the hazard prevention method of lockout could be implemented inside the
TCB. This mechanism should be invoked or revoked only by a process with the authority to do so.
This process must be a trusted process, i.e., one that has been verified as having the correct level of
assurance that it will work as required and is contained within the TCB. In order to request the invo-
cation or revocation of the lockout, this trusted process must ensure that the correct labels are on the
information. To enforce the correct processing of these labels and produce the lockout, the labels
must relay on a Mandatory Access Control (MAC) mechanism within the TCB.

NCLUSION

Software safety and COMPUSEC have many overlapping goals, requirements, mitigating fea-
tures, assurances, and both acquisition and accreditation processes. This paper suggests that these
two subdisciplines within system and software development be integrated for mutual benefit as #rusted
system development. This paper suggests the use of some of the traditional COMPUSEC mechan-
isms for implementing software safety. An integrated-approach to mitigating vulnerabilities and
combing common requirements, analyses, evidence of assurance, and milestones will lead to a better
product.

The following is a summary of our recommendations:

e Traditional computer security mechanisms must be studied for use as software-safety design
features.

e Both system and software engineers must be trained to design and implement integrated com-
puter security and software safety as frusted computing.

e The requirements must be rewritten for trusted critical systems. Instead of the currently sepa-
rate computer security and software safety requirements, the new requirements must encom-
pass criticality, computer security, and software safety. Table 4 maps the document levels
required for frusted system documentation to examples of current computer security or soft-
ware safety documents.

e The acquisition and accreditation processes must be better integrated to provide an iterative
process of development, rather than the traditional waterfall model.

e Finally, other procurement requirements documents, such as MIL-STD-1521B, DoD-
STD-2167, and DoD-STD-2168, must be updated to support the proposed approach to
trusted-system development.

523

Table 4. Trusted System Requirement Document Levels.

Document Level Current Documents

Executive Order EO 12356

DoD Directive DoD 5200.28-D

DoD Application CSC-STD-004-85

DoD Standard ' DoD 5200.28-STD

MIL-STD MIL-STD-882B, MIL-STD-1785

Air Force Reg. AFR205-16, CSTCR 127-1
REFERENCES

[1] AFISC SSH 1-1. Software System Safety, Headquarters Air Force Inspection Safety Center,
September 5, 1985.

[2] AFR205-16. Department of the Air Force Automatic Data Processing (ADP) Security Policy,
Procedures, and Responsibilities.

[3] Air Force HQ Electronic Security Command. Computer Critical Mission Security Require-
ments and Technical Rationale, 31 July 1989.

[4] Air Force HQ Electronic Security Command. Trusted Critical Computer System Evalua-
tion Criteria (TSSEC) (Draft), 31 July 1989.

[5] Air Force HQ Electronic Security Command. Trusted System Evaluation Criteria Interpre-
tation for Embedded Computer Systems, 26 July 1989.

[6] Air Force Space Test Center. Regulation 127-1 (CSTCR 127-1), Space Test Range Safety.
(7 Air Force Space Test Center. CSTC Handbook 127-1, Space Safety User’s Handbook.

[8] Benzel, T. C. Vickers. “Integrating Security Requirements and Software Development Stand-
ards,” Pr. ings of the 12th National Com I Ii nter Conference, Baltimore,
Maryland, October 1989.

9] Boehm, B. W, /4 Spiral Model of Software Development and Enhancement,” IEEE Comput-

er, May 1988.

[10] Brown, M. L. “Tailoring MIL-STD-882B 300 Series Tasks,” Proceedings of the Ninth Inter-
national System Safety Conference, July 1989.

[11] Clark, D. D., Wilson, D. R., “Evolution of a Model for Computer Integrity,” Proceedings
of the 11th Napgnal Computer Security Conference, Baltimore, Maryland, October 1988.

[12] Crocker, S. D., “Techniques for Assuring Safety— Lessons from Computer Security,” Pro-
dings of th mputer Assuran nference, Washington, DC, July 1987.

[13] CSC-STD-004-85. Technical Rationale Behind CSC-STD-003-85.

[14] DoD-STD-2167A. Defense System Software Development.

[15] DoD-STD-2168. Defense System Software Quality Program.

[16] DoD 5200.28-STD. Department of Defense Trusted Computer System Evaluation Criteria.
(the Orange Book).

(17} ?OD Directive 5200.28. - Security Requirements for Automatic Data Processing (ADP)

ystems.

[18] Executive Order 12356. National Security Information.

[19] Lavine, C., Thomas, Hoheb, Baker. “Survey of Software Safety Programs,” Proceedings of -
the Ninth International System Safety Conference, July 1989.

[20] MIL-STD-490A. Engineering Management.

[21] MIL-STD-882B Notice 1. System Safety Program Requirements (30 March), U.S. Depart-
ment of Defense, U.S. Government Printing Office, Washington D.C., 1984.

[22] MIL-STD-1521B. Technical Reviews and Audits for Systems, Equipment, and Computer
Software.

524

[23]
[24]

[25]
[26]
[27]

MIL-STD-1785. System Security Engineering Program Management Requirements.
Neumann, P. G., Parker. 4 Surmmary of Computer Misuse Techniques,” Proceedings of the

12th National Computer Security Center Conference, Baltimore, Maryland, October 1989.
Norvell, W, “Integration of Security into the Acquisition Life Cycle,” Proceedings of the
National rity Industrial Association, San Diego, CA, 18-20 October 1988.

Spaffdrd, E. H., “The Internet Worm Program: An Analysis,” ACM SIGCOM, vol. 19,
January 1989.

Thomas, J. C., “The Use of Kernel Architectures for Software Safety,” The Aerospace Corpo-
ration, El Segundo, CA.

525

INTEGRITY MECHANISMS IN
DATABASE MANAGEMENT SYSTEMS

Ravi Sandhu and Sushil Jajodia

Department of Information Systems and Systems Engineering
George Mason University, Fairfax, VA 22030-4444

Abstract. Our goal in this paper is to answer the following question: what mechanisms are required
in a general-purpose multiuser database management system (DBMS) to facilitate the integrity
objectives of information systems? We are particularly interested in relational DBMS’s. Although
existing commercial products fall far short of providing the requisite mechanisms, in principle they
can be easily extended to incorporate these mechanisms. In a nutshell our conclusion is that realistic
mechanisms do exist. Our principal contribution is to identify these mechanisms, fill in the gaps
where none existed and point out where gaps still remain. We have also bridged the terminology
and concepts of database and security specialists in a coherent manner.

1 INTRODUCTION

Information integrity means different things to different people, and will probably continue to do so
for some time. The recent NIST workshop, which set out to establish a consensus definition, instead
arrived at the following conclusion [18, page 2.6].

The most important conclusion to be drawn from this ¢ompilation of papers and working group
reports: don’t draw too many conclusions about the appropriate definition for data integrity
just yet. ... In the mean time, papers addressing integrity issues should present or reference a
definition of integrity applicable to that paper.

So the first order of business is to define integrity. Our approach to this question is pragmatic and
utilitarian. The objective is to settle on a definition within which we can achieve practically useful
results, rather than searching for some absolute and airtight formulation.

We define integrity’ as being concerned with the improper modification of information (much as
confidentiality is concerned with improper disclosure). We understand modification to include inser-
tion of new information, deletion of existing information as well as changes to existing information.

The reader has probably seen similar definitions using “unauthorized” instead of “improper.”
Our use of the latter term is quite deliberate and significant. Firstly, it acknowledges that security
breaches can and do occur without aunthorization violations, i.e., authorization is only one piece of
the solution. Secondly, it adheres to the well-established and useful notion that information security
has three components: integrity, confidentiality and availability. We see no need to discard this
standard viewpoint in the absence of some compelling demonstration of a superior one. Finally,
our definition brings to the front the very important question: what do we mean by improper? It
is obvious that this question intrinsically cannot have an universal answer. So it is futile to try to
answer it outside of a given context.

1We should point out that our definition of integrity is considerably broader than the traditional use of this term
in the databaese literature. For instance Date [6] says: “Security refers to the protection of data against unauthorized
disclosure, alteration, or destruction; integrity refers to the accuracy or validity of data.” The consensus view among
security rescarchers is that integrity is one component of security and accuracy/validity is one component of integrity [9,
18, for instance].

© Ravi Sandhu and Sushil Jajodia, 1990

526

We are specifically interested in information systems used to control and account for an organi-
gation’s assets. In such systems the primary goal is prevention of fraud and errors. The meaning of
improper modification in this context has been given by Clark and Wilson [2] as follows.

No user of the system, even if authorized, may be permitted to modify data items in such a way
that assets or accounting records of the company are lost or corrupted.

Note their express qualification: “even if authorized.” The word company in this quote reveals the
authors’ commercial bias but, as they have clarified [3], these concepts apply equally well to any
information system which controls assets—be it in the military, government or commercial sectors.

Our goal in this paper is to answer the following question: what mechanisms are required in a
general-purpose multiuser DBMS to help achieve the integrity objectives of information systems?
There are many compelling reasons to focus on DBMS’s for this purpose. The most important one
has been succintly stated by Burns [1] as follows.

A database management system (DBMS) provides the appropriate level of abstraction for the
implementation of integrity controls as presented in the Clark and Wilson paper [2]. ... It is
clear that the domain of applicability of the Clark and Wilson model is not an operating system
or a network or even an application system, it is fundamentally a DBMS.

This is particularly true when we focus on mechanisms. Moreover DBMS’s have the wonderful
ability to express and manipulate complex relationships. This comes in very handy when dealing
with sophisticated integrity policies.

The Operating System (OS) must clearly provide some core integrity and security mechanisms.
In terms of the Orange Book [8] one would need at least a B1 system to enforce encapsulation of the
DBMS, i.e., to ensure that all manipulation of the database can only be through the DBMS. The
question of what minimal features are required in the OS is an important one but outside the scope
of the present paper. For now let us assume that OS’s with the requisite features are available.

The bulk of integrity mechanisms belong in the DBMS. Integrity policies are intrinsically appli-
cation specific and the OS simply cannot provide the means to state application specific concerns.
One might then argue: why not put all the mechanism in the application code? There are several
persuasive reasons not to do this. Firstly, it is not very conducive to reuse of common mechanisms.
Secondly, any assurance that mechanisms interspersed within application code will be correct or
even comprehensible is rather dubious. Thirdly, the whole point of a database is to support mul-
tiple applications. A particular application may well be in a position to handle all its integrity
requirements. Yet it is only the DBMS which can prevent other applications from courrupting the
database.

The rest of the paper is organized as follows. In section 2 we discuss principles for achieving
integrity in information systems. In section 3 we describe the mechanisms required in a DBMS
to support these high level principles. In some of the more detailed consideration we will limit
ourselves specifically to relational DBMS’s. As we will see traditional DBMS mechanisms provide
the foundations for this purpose, but by themselves do not go far enough. Section 4 concludes the

paper.

2 INTEGRITY PRINCIPLES

We begin by describing basic principles for achieving information integrity. These principles can be
viewed as high level objectives which are made more concrete when specific mechanisms are proposed
to support them. In other words these principles lay down broad goals without specifying how to
achieve them. We will subsequently map these principles to DBMS mechanisms. We emphasize that

527

the principles themselves are independent of the DBMS context. They apply equally well to any
information system be it a manual paper-based system, a centralized batch system, an interactive
and highly distributed system, etc. ’

The nine integrity principles enumerated below are abstracted from the Clark and Wilson pa-
pers [2, 3, 4], the NIST workshops {17, 18] and the broader security and database literature.? The
reader has probably seen similar lists in the past. We believe the numerous discussions spurred by
the Clark-Wilson papers call for a revised formulation of major principles. We emphasize that these
principles express what needs to be done rather than how it is going to be accomplished. The latter
question is addressed in the next section.

1.

6.

Well-formed Transactions. Clark and Wilson [2] have defined this principle as follows: “The
concept of the well-formed transaction is that a user should not manipulate data arbitrarily,
but only in constrained ways that preserve or ensure the integrity of the data.” This principle
has also been called constrained change [4], i.e., data can only be modified by well-formed trans-
actions rather than by arbitrary procedures. Moreover the well-formed transactions are known
(“certified”) to be individually correct with some (mostly qualitative) degree of assurance.

Authenticated Users. This pr.incipie stipulates that modifications should only be carried out
by users whose identity has been authenticated to be appropriate for the task.

Least Privilege. The notion of least privilege was one of the earliest principles to emerge in
security research. It has classically been stated in terms of processes (executing programs) [19],
i.e., a process should have exactly those privileges needed to accomplish its assigned task, and
none extra. The principle applies equally well to users, except that it is more difficult to
precisely delimit the scope of a user’s “task.” A process is typically created to accomplish
some very specific task and terminates on completion. A user on the other hand is a relatively
long-lived entity and will be involved in varied activities during his lifespan. His authorized
privileges will therefore exceed those strictly required at any given instant. In the realm
of confidentiality least privilege is ofien called need-to-know. In the integrity context it is
appropriately called need-to-do. Another appropriate term for this principle is least temptation,
i.e., do not tempt people to commit fraud by giving them greater power than they need.

Separation of Duties. Separation of duties is a time honored principle for prevention of fraud
and errors, going back to the very beginning of commerce. Simply stated, no single individual
should be in a position to misappropriate assets on his own. Operationally this means that
a chain of events which affects the balance of assets must require different individuals to be
involved at key points, so that without their collusion the overall chain cannot take effect.

Reconstruction of Events. This principle seeks to deter improper behavior by threatening its
discovery. It is a necessary adjunct to least privilege for two reasons. Firstly least privilege,
even taken to its theoretical limit, will leave some scope for fraud. Secondly a zealous appli-
cation of least privilege is not a terribly efficient way to run an organization. It conveys an
impression of an enterprise enmeshed in red tape.® So practically users must be granted more
privileges than are strictly required. We therefore should be able to accurately reconstruct
essential elements of a system’s history, so as to detect misuse of privileges.

Delegation of Authority. This principle fills in a piece missing from the Clark and Wilson

2The literature is too numerous to cite individually. For those unfamiliar with the “older” literature some useful
staring points are [7, 9, 10, 13, 19].

3This comment is made in the context of users rather than processes (transactions). Least privilege with respect
to processes is more of an internal issue within the computer system, and its zealous application is most desirable
(modulo the performance and cost penalties it imposes).

528

papers and much of the discussion they have generated.* It concerns the critical question of
how privileges are acquired and distributed in an organization? Clearly the procedures to do
so must reflect the structure of the organization and allow for effective devolution of authority.
Individual managers should have maximum flexibility regarding information resources within
their domain, tempered by constraints imposed by their superiors. Without this flexibility
at the end-user level, the authorization will most likely be inappropriate to the actual needs.
This can only result in security being perceived as a drag on productivity and something to
be bypassed whenever possible.

7. Reality Checks. This principle has been well motivated by Clark and Wilson [4] as follows:
“A cross-check with the external reality is a central part of integrity control. ... integrity
is meaningful only in terms of the relation of the data to the external world.” Or in more
concrete terms: “If an internal inventory record does not correctly reflect the number of items
in stock, it makes little difference if the value of the recorded inventory has been reflected
correctly in the company balance sheet.” '

8. Continuity of Operation. This principle states that system operations should be maintained
to some appropriate degree in the face of potentially devastating events which are beyond
the organization’s control. This catch-all description is intended to include natural disasters,
power outages, disk crashes and the like.

9. Ease of Safe Use.® In a nutshell this principle requires that the easiest way to operate a
system should also be the safest. There is ample evidence that security measures are all too
often incorrectly applied or simply bypassed by the system managers. This happens due to
a combination of (i) poorly designed defaults (such as indefinite retention of vendor-supplied
passwords for privileged accounts), (ii) awkward and cumbersome interfaces (such as requiring
many keystrokes to effect simple changes in authorization), (iii) lack of tools for authorization
review, or (iv) mismatched policy and mechanism (“...the extent that the user’s mental image
of his protection goals matches the mechanism he must use, mistakes will be minimized.” [19]).

It is inevitable that these principles are fuzzy, abstract and high level. In developing an oz-
ganization’s security policy one would elaborate on each of these principles and make precise the
meaning of terms such as “appropriate” and “proper.” How to do so systematically is perhaps the
most important question in successful application of these principles. In other words how does one
articulate a comprehensive policy based on these high level objectives? This question is beyond the
scope of this document. Our present focus is on the question: how do these principles translate into
concrete mechanisms in a DBMS?

The goals encompassed by these principles may appear overwhelming. After all in the extreme
these principles amount to solving the total system correctness problem, which we know is well
beyond the state of the art. Fortunately, in our context, the degree to which one would seek to
enforce these objectives and the assurance of this enforcement are matters of risk management and
cost-benefit analysis. Laying out these principles explicitly does give us the following major benefits.

e The overall problem is partitioned into smaller components for which solutions can be devel-
oped independently of each other (i.e., divide and conquer).

e The principles suggest common mechanisms which belong in the DBMS and can be reused
across multiple applications.

4The closest concept that Clark and Wilson have to this principle is their Rule E4 which they summarize as
follows [2, figure 1]: “Authorization lists changed only by the security officer.” This notion of a central security
officer as an authorization czar is inappropriate and unworkable. Rational security policies can be put in place only
if appropriate authority is vested in end-users.

5One might argue that we are stepping into the scope of availability here. If so, so be it.

$Thanks to Stanley Kurzban and William Murray for coining this particular term.

529

" o The principles provide a set against which the mechanisms of specific DBMS’s can be evaluated
(in an informal sense). :

e The principles similarly provide a set on the basis of which the requirements of specific infor-
mation systems can be articulated.

o Last, but not the least, the principles invite criticism from the security community particularly
regarding what may have been left out.

3 INTEGRITY MECHANISMS

In this section we consider DBMS mechanisms to facilitate application of the principles defined in
the previous section. The principles have been applied in practise [15, 26, for instance] but with
most of the mechanism built into application code. Providing these mechanisms in the DBMS is an
essential prerequisite for their widespread use.

Our mapping of principles to mechanisms is summarized in table 1. Some of these mechanisms
are available in commercial products. Others are well established in the database literature. There
are also some newer mechanisms which have been proposed more recently, e.g., transaction controls
for separation of duties [21], the temporal model for audit data [12] and propagation constraints for
dynamic authorization [20, 22]. Finally there are places where existing mechanisms and proposals
need to be extended in novel ways. Overall the required mechanisms are quite practical and well
within the reach of today’s technology.

3.1 Well-formed Transactions

The concept of a well-formed transaction corresponds very well to the standard DBMS concept of a
transaction [10, 11]. A transaction is defined as a sequence of primitive actions which satisfies the
following properties.

1. Failure atomicity: either all or none of the updates of a transaction take effect. We understand
update to mean modification, i.e., it includes insertion of new data, deletion of existing data
and changes to existing data.

2. Serializability: the net effect of executing a set of transactions is equivalent to executing them
in some sequential order, even though they may actually be executed concurrently (i.e., their
actions are interleaved or simultaneous).

3. Progress: every transaction will eventually complete, i.e., there is no indefinite blocking due
to deadlock and no indefinite restarts due to livelocks.

4. Correct state transform: each transaction if run by itself in isolation and given a consistent
state to begin with will leave the database in a consistent state.

We will elaborate on these properties in a moment.

First let us note the basic requirement that the DBMS must ensure that updates are restricted to
transactions. Clearly, if users are allowed to bypass transactions and directly manipulate relations
in a database, we have no foundation to build upon. We represent this requirement by the diagram
in figure 1. In other words updates are encapsulated within transactions. At this point it is worth
recalling that the database itself must be encapsulated within the DBMS by the Operating System.

It is clear that the set of database transactions is itself going to change during the system life
cycle. Now the same nine principles of the previous section apply with respect to maintaining the

530

INTEGRITY PRINCIPLE

DBMS MECHANISMS

Well-formed transactions

Encapsulated updates
Atomic transactions
Consistency constraints

Authenticated users

Authentication

Least privilege

Fine grain access control

Separation of duties

Transaction controls
Layered updates

Reconstruction of events

Audit trail

Delegation of authority

Dynamic authorization
Propagation constraints

Reality checks

Consistent snapshots

Continuity of operation

Redundancy
Recovery

Ease of safe use

Fail-safe defaults
Human factors

Table 1: Summary

531

Users

Transactions

Database

Figure 1: Encapsulated Updates

integrity of the transactions. In particular transactions should be installed, modified and supplanted
only by the use of well-formed “transaction-maintenance transactions.” One can apply this argument
once again to say that the transaction-maintenance transactions themselves need to be maintained
by another set of transactions, and so on indefinitely. We believe there is little to be gained by
having more than two steps in this potentially unbounded sequence of transaction-maintenance
transactions. The rate of change in the transaction set will be significantly slower than the rate
of change in the data base proper. Going one step further, the rate of change in the transaction-
maintenance transactions will be yet slower to the point where, for all practical purposes, these
can be viewed as static over the lifespan of typical systems. With this perspective the data base
administrator is responsible for installing and maintaining transaction-maintenance transactions,
which in turn control the maintenance of actual database transactions.

We now return to considering the four properties of DBMS transactions enumerated earlier. The
first three properties—failure atomicity, serializability and progress—can be achieved in a purely
“syntactic” manner, i.e., completely independent of the application. These three requirements for
a transaction are recognized in the database literature as appropriate for the DBMS to implement.
Mechanisms to achieve these objectives have been extensively researched in the last fifteen years or
so, and our understanding of this area can certainly be described as mature. The basic mechanisms—
two-phase locking, timestamps, multi-version databases, two-phase commit, undo-redo logs, shadow
pages, deadlock detection and prevention—have been known for a long time and have made their
way into numerous products. In developing integrity guidelines and /or evaluation criteria one might
consider some progressive measure of the extent to which a particular DBMS meets these objectives.
For instance, with failure atomicity, is there a guarantee that we will know which of the two pos-
sibilities occurred? Similarly, with serializability, does the DBMS enforce the concurrency control
protocol or does it rely on transactions to execute explicit commands for this purpose? And, with
the issue of progress, do we have a probabilistic or absolute guarantee? Such questions must be
systematically addressed.

The fourth property of correct state transforms is the ultimate bottleneck in realizing well-formed
transactions. It is also an objective which cannot be achieved without considering the semantics of
the application. The correctness issue is of course undecidable in general. In practice we can only
assure correctness to some limited degree of confidence by a mix of software engineering techniques
such as formal verification, testing, quality assurance, etc. Responsibility for implementing trans-
actions as correct state transforms has traditionally been assigned to the application programmer.
Even in theory DBMS mechanisms can never fully take over this responsibility.

DBMS mechanisms can help in assuring the correctness of a state by enforcing consistency
constrainis on the data. Consistency constraints are also often called integrity constraints or integrity
rules in the database literature. Since we are using integrity in a wider sense we prefer the former

532

.. term. _
The relational data model in particular imposes two consistency constraints [5, 6).

e Entily integrity stipulates that attributes in the primary key of a base relation cannot have
null values. This amounts to requiring that each entity represented in the database must be
uniquely identifiable.

e Referential integrity is concerned with references from one entity to another. A foreign key is
a set of attributes in one relation whose values are required to match those of the primary key
of some specific relation. Referential integrity requires that a foreign key either be all null” or
a matching tuple exist in the latter relation. This amounts to ruling out dangling references
to non-existent entities.

Entity integrity is easily enforced. Referential integrity on the other hand requires more effort and
has seen limited support in commercial products. The precise manner in which to achieve it is also
very dependent on the semantics of the application. This is particularly so when the referenced
tuple is deleted. There are several choices as follows: (i) prohibit this delete operation, (ii) delete
the referencing tuple (with a possibility of further cascading deletes), or (iii) set the foreign key
attributes in the referencing tuple to null. There are proposals for extending SQL so that these
choices can be specified for each foreign key.

The relational model in addition encourages the use of domain constraints whereby the values in
a particular attribute (column) are constrained to come from some given set. These constraints are
particularly easy to state and enforce, at least so long as the domains are defined in terms of primitive
types such as integers, decimal numbers and character strings. A variety of dependency constraints
which constrain the tuples in a given relation have been extensively studied in the database literature.

In the limit a consistency constraint can be viewed as an arbitrary predicate that all correct
states of the database must satisfy. The predicate may involve any number of relations. Although
this concept is theoretically appealing and flexible in its expressive power, in practice the over-
head in checking the predicates for every transaction has been prohibitive. As a result relational
DBMS'’s typically confine their enforcement of consistency constraints to domain constraints and
entity integrity. ’ :

3.2 Continuity of Operation

The problem of maintaining continuity of operation in the face of natural disasters, hardware failures
and other disruptive events has received considerable attention in both theory and practice [10]. The
basic technique to deal with such situations is redundancy in various forms. Recovery mechanisms
in DBMS’s must also ensure that we arrive at a consistent state. In many respects these mechanisms
are “syntactic” in the sense of being application independent, much as mechanisms for the first three
properties of section 3.1 were.

3.3 Authenticated Users

Authentication is primarily the responsibility of the Operating System. If the Operating System
is lacking in its authentication mechanism it would be very difficult to ensure the integrity of the
DBMS itself. The integrity of the database would thereby be that much more suspect. It therefore
makes sense to not duplicate authentication mechanisms in the DBMS.

TOften the notion of a null foreign key is semantically incorrect. In such cases an additional consistency constraint
can disallow null values.

533

Authentication underlies some of the other principles, particularly, least privilege, separation of
duties, reconstruction of events and delegation of authority. In all of these the end objective can be
achieved to the fullest extent only if authentication is possible at the level of individual users.

3.4 Least Privilege

The principle of least privilege translates into a requirement for fine grained access control. We have
earlier noted that least privilege must be tempered with practicality in avoiding excessive red tape.
Nevertheless a high-end DBMS should provide for access control at very fine granularity, leaving it
to the database designers to apply these controls as they see fit.

It is clear from the Clark-Wilson papers, if not evident from earlier work, that modification of
data must be controlled in terms of transactions rather than blanket permission to write. We have
already put forth the concept of encapsulated updates for this purpose. In terms of the relational
model it is not immediately obvious at what granularity of data this should be enforced.

For purpose of controlling read access DBMSs have employed mechanisms based on views (as in
System R) or query modification (as in INGRES). These mechanisms are extremely flexible and can
be as fine grained as desired. However neither one of these mechanisms provides the same flexibility
for flexible control of updates. The fundamental reason for this is our theoretical inability to translate
updates on views unambiguously into updates of base relations. As a result authorization to control
updates is often less sophisticated than authorization for read access.

In relational systems it is natural for obvious reasons to represent the access matrix by one or
more relations [24]. At a coarse level we might control access by tuples of the following form

user, transaction, relation

meaning that the specified user can execute the specified transaction on the specified relation. Tuples
of the form shown below would give greater selectivity

user, transaction, relation, attribute

This would allow us to control the execution of transactions such as, “give everyone a 5% raise,”
without giving the same transaction permission to change employee addresses. The following au-
thorization tuple accomplishes this.

Joe, Give-5%-raise, Employees, Salary

A transaction which gives a raise to a specific employee needs a further dimension of authorization
to specify which employee it pertains to. Thus, if Joe is authorized to give a 5% raise to John the
authorization tuple would look as follows.

Joe, Give-5%-raise, John, Employees, Salary

We are assuming here that John uniquely identifies the employee receiving the raise. The update is
restricted to the Salary attribute of a specific tuple with key equal to ‘John’in the Employees relation.
So it takes a key, relation and attribute to specify the actual parameter of such a transaction.

Now consider a transaction which moves money from account A to account B, i.e., there are two
actual parameters of the transaction. In terms of least privilege we need the ability to bind this
transaction to updating the two specific accounts A and B. More generally we will have transactions
with N parameters identified in a actual parameter list. So we need authorization tuples of the
following form,

534

user, transaction, actual parameter list

where each parameter in the actual parameter list specifies the item authorized for update by
specifying one of the following identifiers

e relation,
o relation, attribute,

e key, relation, attribute.

These three cases respectively give us relation level, “column” level and element level granularity of
update control.

It is also important to realize that element-level update authorizations should properly be treated
as consumable items. For example, once money has been moved from account A to account B the
user should not be able to move it again, without fresh authorization to do so.

3.5 Separation of Duties

Separation of duties finds little support in existing products. Although it is possible to use existing
mechanisms for this purpose, these mechanisms have not been designed with this end in mind. As a
result their use is awkward at best. This fact was noted by the DBMS group at the 1989 NIST data
integrity workshop who concluded their report with the following recommendation [18, section 4.3].

While the group was able to use existing DBMS features to implement separation of roles
controls, we were, however, unable to use existing features in a way that would support easy
maintenance and certification. We recommend that data definition and/or consistency check
features be enhanced to provide operators that lend themselves to the expression of integrity
controls and to allow separation of integrity controls and traditional data.

Separation of duties is inherently concerned with sequences of transactions, rather than individual
transactions in isolation. For example consider a situation in which payment in the form of a check
is prepared and issued by the following sequence of events.

1. A clerk prepares a voucher and assigns an account.
2. The voucher and account are approved by a supervisor.

3. The check is issued by a cletk who must be different from the clerk in step 1. Issuing the
check also debits the assigned account. (Strictly speaking we should debit one account and
credit another in equal amounts. The important point for our purpose is that issuing a check
modifies account balances.)

This sequence embodies separation of duties since the three steps must be executed by different
people. The policy moreover has a dynamic flavor in that a particular clerk can prepare vouchers as

well as, on different occasions, issue checks. However he cannot issue a ckech for a voucher prepared
by himself.

Implementation of this policy in a paper-based system follows quite directly from its statement.
e The voucher is realized as a form with blank entries for the amount and account, as well as for

signatures of the people involved. As the above sequence gets executed these blanks are filled
in. On its completion copies of the voucher are filed in various archives for audit purposes.

535

Users

Transactions on Transient Data

Transactions Database of
on Persistent Data || Transient Data

Database of Persistent data

Figure 2: Layered Updates

e The account is represented by say a ledger card, where debit and credit entries are posted
along with references to the forms which authorized these entries.

By their very nature paper-based controls rely on employee vigilance and internal/external audits
for their effectiveness. Computerization brings with it the scope for enforcing the required controls
by means of an infallible, ever vigilant and omniscient automaton, viz., the computer itself.

The crucial question is how do we specify and implement similar controls for separation of duties
in a computerized environment? A mechanism for this purpose is described in [21]. This mechanism
of transaction-control ezpressionsis based on the following difference between vouchers and accounts.

e The voucher is iransient in that it comes into existence, has a relatively small sequence of
steps applied to it and then disappears from the system (possibly leaving a record in some
archive). The history of a voucher can be prescribed as a finite sequence of steps with an a
priori maximum length.

e The account on the other hand is persistent in the sense it has a long-lived, and essentially
unbounded, existence in the system. During its life there may be a very large number of credit
and debit entries for it. Of course, at some point the account may be closed and archived. The
key point is that we can only prescribe its history as a variable-length sequence of steps with
no a priori maximum length.

Both kinds of objects are essential to the logic and correct operation of an information system. Tran-
sient objects embody a logically complete history of transactions corresponding to a unit of service
provided to the external world by the organization. Persistent objects embody the internal records
required to keep the organization functioning with an accurate correspondence to its interactions
with the external world.

Separation of duties is achieved by enforcing'controls on transient objects, for the most part. The
crucial idea, which makes this possible, is that transactions can be executed on persistent objects
only as a side effect of executing transactions on transient objects. This thesis is actually simply
borrowed from the paper-based world where it has been routinely applied ever since bookkeeping
became an integral part of business operations.

With this perspective we arrive at the diagram shown in figure 2. The idea is that a sequence of
- transactions is viewed as transient data in the database. In this picture there is a double éncapsula-
tion of the database, first by transactions on persistent data and then by transactions on transient

536

data. Users can directly only execute the latter. The former are triggered indirectly as a result when
the transient is in the proper state for doing so. In other words transient data is singly encapsulated
and has direct application of separation of duties. Persistent data is doubly encapsulated and has
indirect application of separation of duties by means of transient data.

3.6 Reconstruction of Events

The ability to reconstruct events in a system serves as a deterrent to improper behavior. In the
DBMS context the mechanism to record the history of system is traditionally called an audit trail.
As with the principle of least privilege, a high-end DBMS should be capable of reconstructing events
to the finest detail. It should also structure the audit trail logically so that it is easy to query. For
instance, logging every keystroke does give us the ability to reconstruct the system history accurately.
However with this primitive logical structure one needs substantial effort to reconstruct a particular
transaction. In addition to the actual recording of all events that take place in the database, an
audit trail must also provide support for auditing, i.e., an audit trail must have the capability “for
an authorized and competent agent to access and evaluate accountability information by a secure
means, within a reasonable amount of time and without undue difficulty” [8]. In this respect DBMSs
have a significant advantage, since their powerful querying abilities can be used.

The ability to reconstruct events has different meaning to different people. At one end of the
spectrum, we have the requirements of Clark and Wilson [4]. They require only two things:

1. A complete history of each and every modification made to the value of an item.

2. With each change in value of an item, store the identity of the person making the change.

Of course, the system must be reliable in that it makes exactly those ché.nges that are requested by
users and the binding of a value with its author is also exact. Clark and Wilson call this “attribution
of change.”

This can be easily accomplished if we are willing to extend slightly the standard logging techniques
for recovery purposes. For each transaction, a recovery log contains the transaction identifier, some
before-images, and the corresponding afier-images. If we augment this by recording in addition the
user for each transaction, we have the desired binding of each value to its author. There is one other
change that needs to be made. In order to support recovery, there is a need to keep a log only up
to a point from which a complete database backup is available. Of course, now there is a need to
archive the logs so they remain available.

Others have argued that this simple “attribution of change” is not sufficient. We need an audit
trail, a mechanism for a complete reconstruction of every action taken against the database: who
has been accessing what data, when, and in what order. Thus, it has three basic objects of interest:

1. The user - who initiated a transaction, from what terminal,‘ when, etc.
2. The transaction - what was the exact transaction that was initiated.

3. The data - what was the result of the transaction, what were the database states before and
after the transaction initiation.

For this purpose a database activity model has been recently proposed [12] that imposes a uniform
logical structure upon the past, present, and future data. There is never any loss of historical or
current information in this model, thus the model provides a mechanism for complete reconstruction
of every action taken on the database. It also logically structures the audit data to facilitate its

querying.

537

3.7 Delegation of Authority

The need to delegate authority and responsibility within an organization is essential to its smooth
functioning. It appears in its most developed form with respect to monetary budgets. However the
concept applies equally well to the control of other assets and resources of the organization.

In most organizations the ability to grant authorization is'mever completely unconstrained. For
example, a department manger may be able to delegate substantial authority over departmental
resources to project managers within his department and yet be prohibited to delegate this authority
to project managers outside the department. These situations cloud the classic distinction between
discretionary and mandatory policies [16, 23]. The traditional concept of ownership as the basis for
delegating authority also becomes less applicable in this context [14]. Finally we need the ability to
delegate privileges without having the ability to exercise these privileges. Some mechanisms for this
purpose have been recently proposed [14, 22].

" The complexity introduced by dynamic authorization has been recognized ever since researchers
~ considered this problem, e.g., as stated in the following quote [19].

“...it is relatively easy to envison (and design) systems that statically express a particular
" protection intent. But the need to change access authorizations dynamically ...introduces
much complexity into protection systems.”

This fact continues to be true in spite of substantial theoretical advances in the interim [20]. Existing
products provide few facilities in this respect and their mechanisms tend to have an ad hoc flavor.

3.8 Reality Checks

This principle inherently requires activity outside of the DBMS. The DBMS does have obligation
to provide an internally consistent view of that portion of the database which is being externally
verified. This is particularly so if the external inspection is conducted on an ad hoc on-demand
basis.

3.9 Ease of Safe Use

Ease of safe use is more an evaluation of the DBMS mechanisms than something to be enforced
by the mechanisms themselves. The mechanisms should of course have fail-safe defaults [19], e.g.,
access is not available unless explicitly granted or this default rule is explicitly changed to grant
it automatically. DBMS’s do offer a significant advantage in providing user friendly interfaces
intrinsically for their main objective of data manipulation. These interface mechanisms can be
leveraged to make the authorization mechanisms easy to use. For instance, having the power of SQL
queries to review the current authorizations is a tangible benefit in this regard.

4 CONCLUSION

In a nutshell our conclusion is that realistic DBMS mechanisms do exist to support the integrity
objective of information systems. Some are well established in the literature while others have been
proposed more recently and are not so well known. Our principal contribution is to identify these
mechanisms and to identify the gaps where none existed or had been fully articulated.

In terms of what DBMS mechanisms can do for us, we can group the nine-principles enumerated
in this paper as follows.

538

Group I Group II Group III

Well-formed transactions Least privilege Authenticated users

Continuity of operation Separation of duties Reality checks
Reconstruction of events Ease of safe use
Delegation of authority

Group I principles are adequately treated by current DBMS mechanisms and have been exten-
sively studied by database researchers. With the single exception of assuring correctness of state
transformations these principles can be achieved by DBMS mechanisms. Techniques for imple-
menting well-formed transactions and maintaining continuity of operation across failures have been
studied extensively. Their practical feasibility has been amply demonstrated in actual systems. As-
suring that well-formed transactions are correct state transformations remains a formidable problem,
but there is little that the DBMS can do to alleviate it. As such it is a problem outside the scope
of DBMS mechanisms. The DBMS can (i) enforce encapsulation of updates by restricting their
occurrence to be within transactions, and (ii) provide controls for installing and maintaining these
transactions.

Group II principles need newer mechanisms and conceptual foundations. Several promising
“approaches have emerged in the literature. Practical demonstration of their feasibility remains to be
done, but in concept they do not present prohibitive implementation problems. They do require that
current DBMS’s be extended in significant ways. Group II principles are the ones where additional
DBMS mechanisms hold the promise of greatest benefit.

Group III principles are important but there is little that DBMS mechanism can do to achieve
them. Authentication is principally an operating system problem. Reality checks necessarily involve
external procedures. Ease of safe use is more an evaluation of the DBMS mechanisms than something
to be enforced by the mechanisms themselves. It is facilitated in the DBMS context due to the
intrinsic DBMS requirement of user friendly query languages.

In conclusion for group I principles we need little more than has currently been demonstrated in
actual products. For group II principles, current systems do something for each one but do not go
far enough. There are several promising proposals but no “worked examples.” Group III principles
are important but are not fully achievable by DBMS mechanisms alone.

References

[1] Burns, R.K. “DBMS Integrity and Secrecy Control.” In [18], section A.7, pages 1-4 (1989).

[2] Clark, D.D. and Wilson, D.R. “A Comparison of Commercial and Military Computer Security
Policies.” IEEE Symposium on Security and Privacy, pages 184-194 (1987).

[3] Clark, D.D. and Wilson, D.R. “Comments on the Integrity Model.” In [17], section 9, pages 1-6
- (1989).

(4] Clark, D.D. and Wilson, D.R. “Evolution of a Model for Computer Integrity.” In [18], section
A.2, pages 1-13 (1989).

[5] Codd, E.F. “Extending the Relational Database Model to Capture More Meaning.” ACM Trans-
actions on Database Systems 4(4): (1979).

[6] Date, C.J. An Introduction to Database Systems. Volume I, Addison-Wesley, fourth edition
(1986).

539

[7] Denning, D.E. and Denning, P.J. “Data Security.” ACM Computing Surveys 11(3):227-249
(1979).

[8] Department of Defense National Computer Security Center. Department of Defense Trusted
Computer Systems Evaluation Criteria. DoD 5200.28-STD (1985).

[9] Fernandez, E;B., Summers, R.C. and Wood, C. Datebase Security and Integrity. Addison-Wesley
(1981).

[10] Gray, J. “Notes on Data Base Operating Systems.” In Operating Systems—An Advanced Course,
Bayer, R. et al (editors), Springer-Verlag, pages 393-481 (1978).

[11) Gray, J. “Why Do Computers Stop and What Can Be Done About It?” IEEE Symposium on
Reliability in Distributed Software and Database Systems, pages 3-12 (1986).

[12] Jajodia, S., Gadia, S.K., Bhargava, G. and Sibley, E. “Audit Trail Organization in Relational
Databases. n In Database Security III: Status and Prospects Spooner, D.L. and La.ndwehr, C.E.
(editors), North-Holland, pages 269-281 (1990).

[13] Linden, T.A. “Operating System Structures to Support Security and Reha.ble Software.” ACM
Computing Surveys 8(4):409-445 (1976).

[14] Moffett, J.D. and Sloman, M.S. “The Source of Authority for Commercial Access Control.”
Computer 21(2):59-69 (1988).

[15] Murray, W.H. “Data Integrity in a Business Data Processing System.” In [17].
[16] Murray, W.H. “On the Use of Mandatory.” In [17].

[17) Report of the Invitational Workshop on Integrity Poiicy in Computer Information Sysitems
(WIPCIS), Katzke, S'W. and Ruthberg, Z.G. (editors), NIST, Special Publication 500-160
(January 1989).

[18] Report of the Invitational Workshop on Data Integrity, Ruthberg, Z.G. and Polk, W.T. (editors),
NIST, Special Publication 500-168 (September 1989).

[19] Saltzer, J.H. and Schroeder, M.D. “The Protection of Information in Computer Systems.”
Proceedings of IEEE 63(9):1278-1308 (1975).

[20] Sandhu, R.S. “The Schematic Protection Model: Its Definition and Ana.ly51s for Acyclic Atten-
uating Schemes.” Journal of ACM 35(2):404-432 (1988).

[21] Sandhu, R.S. “Transaction Control Expressions for Separation of Duties.” Jth Aerospace Com-
puter Security Applications Conference, pages 282-286 (1988).

[22] Sandhu, R.S. “Transformation of Access Rights.” IEEE Symposium on Security and Privacy,
259-268 (1989).

[23] Sandhu, R.S. “Mandatory Controls for Database Integrity.” In Database Security III: Status and
Prospects, Spooner, D.L. and Landwehr, C.E. (editors), North-Holland, pages 143-150 (1990).

[24] Selinger, P.G. “Authorization and Views.” In Distributed Data Bases, Draffan, LW and Poole,
F. (editors), Cambridge University Press, pages 233-246 (1980).

[25] Snyder, L. “Formal Models of Capability-Based Protection Systems.” IEEE Transactions on
Computers C-30(3):172-181 (1981).

[26] Wimbrow, J.H. “A Large-Sca.le Interactive Administrative System.” IBM Sys. J. 10(4):260-282
(1971).

540

A TAXONOMY OF INTEGRITY MODELS, IMPLEMENTATIONS AND MECHANISMS

J. Eric Roskos
Stephen R. Welke
John M. Boone
Terry Mayfield

Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 845-3500

1. Introduction

The issue of computer system integrity has become increasingly important as government and industry
organizations have grown more dependent on complex, highly interconnected computer systems. A small number of
formal models have been established with differing approaches to capturing integrity needs. Based on these models,
several model implementations have been developed as possibilities for real systems. In addition, a wide variety of
mechanisms exist, independent of these models and model implementations, for addressing particular integrity
concerns. These mechanisms implement a set of distinct policies, although the policies are not formally defined as
they are in the models. In order to gain a better understanding of what is required to solve integrity problems, this
paper reviews a representative set of models, implementations, and mechanisms to identify which specific problems
they address. The intent of this paper is not to present recommendations, but rather to identify research topics and
existing techniques that apply to computer system integrity.

2. Definition of Integrity

There is currently a lack of consensus in the research community on the definition of integrity. {1] For
purposes of this paper, we will adopt two related definitions, as follows.

1. The state that exists when computerized data is the same as that in the source documents and has not been
exposed to accidental or malicious alteration or destruction. [2] .

2. The state that exists when the quality of stored information is protected from contamination or degradatlon by
information of lower quality. [3]

3. Integrity Models

We describe four integrity models that suggest different approaches to achieving computer integrity. The
four models are identified by their author(s): Biba, Goguen and Meseguer, Sutherland, and Clark and Wilson. Not all
of these are traditionally viewed as integrity models, yet each on closer examination has specific applicability to
integrity. These models. establish mathematical definitions that restrict the manipulation of data to achieve the goals
of integrity, or formally describe one or more aspects of integrity goals.

3.1 Biba Model

The model defined in [4] was the first of its kind to address the issue of integrity in computer systems. This
approach is based on a hierarchical lattice of integrity levels. The goal of this model is to guarantee that every
subsystem will perform as it was intended to perform by its creator. A subsystem is some subset of a system’s subjects
and objects isolated on the basis of function or privilege. The Biba model supports four different integrity policies:
the Low-Water Mark Policy, the Low-Water Mark Policy for Objects, the Ring Policy, and the Strict Integrity Policy.
Of the four integrity policies, the Strict Integrity Policy is by far the most widely accepted and most familiar, so much
so that this policy is often assumed when the Biba model is discussed. Each policy is described below.

The work reported in this paper was conducted as part of Institute for Defense Analyses Project T-Z5-459 under
Contract No. MDA903-89-C-0003 for the Department of Defense. It is based on portions of IDA Paper P-2316, Data
Integrity in Department of Defense Computer Systems, which is in preparation at this time. The publication of this
paper does not indicate endorsement by the Department of Defense or the Institute for Defense Analyses, nor should
the contents be construed as reflecting the official positions of those organizations.

541

3.1.1 Low-Water Mark Policy

In this policy, the integrity level of a subject is not static, but is a function of its previous behavior. The policy
provides for a dynamic, monotonic and non-increasing value of il(s), the integrity level for subject s. The value of
il(s), at any time, reflects the low-water mark of the previous behavior of the subject. The low-water mark is the least
integrity level of an object accessed for observation by the subject.

3.1.2 Low-Water Mark Policy for Objects

In addition to changing the integrity level of subjects at each observe access, the Low-Water Mark Policy for |
Objects also changes the integrity level of objects at each modify access. This alternate policy can be characterized by
two rules. First, for each observe access by a subject s to an object o: il (s)=min{il(s),il(0)} Second, for each modify
accessbya sub]ect s toan object o: il ‘(0)=mind{il(s),il(0)}

3.1.3 Ring Policy

The Ring Policy provides kernel enforcement of a protection policy addressing direct modification. The
integrity levels of both subjects and objects are fixed during their lifetimes and only modifications of objects of less
than or equal integrity level are allowed. Flexibility of the system is substantially increased by allowing observations
of objects at any integrity level.

3.1.4 Strict Integrity Policy

The Strict Integrity Policy is the formal dual of the most common and most thoroughly studied computer
security policy model (Bell and La Padula). It consists of three parts: a Simple Integrity Condition, an Integrity
*-property, and an Invocation Property. The Simple Integrity Condition states that a subject cannot observe objects of
lesser integrity. The Integrity *-property states that a subject cannot modify objects of higher integrity. The
Invocation Property states that a subject may not send messages to subjects of higher integrity. Invocation is a logical
request for service from one subject to another. Since the control state of the invoked subject is a function of the fact
that the subject was invoked, invocation is a special case of modification. Therefore, this rule follows directly from
the Integrity *-property.

3.2 Goguen and Meseguer Model

Goguen and Meseguer [5] introduce an approach to secure systems that is based on automata theory. Their
approach is divided into four stages: first, determining the security needs of a given community; second, expressing
those needs as a formal security policy; third, modeling the system which that community is (or will be) using; and
last, verifying that this model satisfies the policy. The authors develop a set theoretic model which is a form of
generalized automaton, called a ‘“‘capability system.” It includes an ordinary state machine component, and a
capability machine component which keeps track of what actions are permitted to what users.

The Goguen and Meseguer approach is based on the concept of noninterference, where “one group of users,
using a certain set of commands, is noninterfering with another group of users if what the first group does with those
commands has no effect on what the second group of users can see.” [5] They introduce protection domains to
achieve this separation. Noninterference can be extended to address integrity by using the protection domains to
ensure that what one group of users does with a certain set of commands has no effect on the data belonging to a
second group.

3.3 Sutherland Model

Sutherland [6] presents a model of information that addresses the problem of inference (e.g., covert
channels). Sutherland uses a state machine as the basis of his model, but he generalizes the model, apparently to
avoid limiting it to the semantic details of one particular type of state machine. Thus, his state machine consists of (1)
a set of states; (2) a set of possible initial states; and (3) a state transformation function mapping states to states. For
each possible initial state, there is an execution sequence defined for each sequence of possible state transformations
starting from that initial state. Sutherland generalizes the state machine’s execution sequences as a set W of all such
execution sequences, which Sutherland terms ‘““possible worlds.” A given execution sequence or “possible world” is
denoted w, where weW.!

1. The “possible world” of Sutherland’s model is actually even more abstract than we have represented here. As
illustrated in a “state machine instantiation” appearing later in [6] under one interpretation of the model, an element
w of the set W may consist not only of states, but of “signals” (analogous to the “requests” and “decisions™ of the
Bell and La Padula model) interspersed between the states.

542

Sutherland formally represents the information obtainable from a subsequence of w by defining a set of
information functions, f;. Each f; represents the information that can be obtained from one ‘view” of w. For
example, assume a user has full access to the subsequence of w needed to compute f;(w). If this user knows of an
interdependence between f; and another information function, f,, to which the user may have been prohibited
access, the user can infer at least some information about f,(w) from the user’s knowledge of f;(w).

We formalize Sutherland’s presentation of this inference as follows: (1) the user knows f;(w)=x; (2) the
user deduces weS where S={y|f;(y)=x}; (3) the user deduces fo(W)ET where T=f,(S); so (4) if there is an
interdependence between f; and f, such that Iz€f,(W)[zg¢T] the user deduces f,(w)#z. Steps 1-3 are
straightforward generalizations from what the user knows of f;; the f, in steps 1-3 could be an arbitrary function, and
calling it f, in steps 1-3 only anticipates step 4.

It is in step 4 that the user makes the significant inference. The inference results specifically from the user’s
knowledge that when the result of a particular subsequence of states is seen, it is impossible for the system to have
produced the result z. In such a case, the user is able to conclude that the system has not produced a particular result
to which the user may have been denied direct access. The extent to which this inference is useful depends on how
much information is represented by knowing that result z was not produced. If the user knows that only two results
are possible, knowing “not z”’ would be of considerable value. Since the Sutherland model is so general, it does
include this and similar inferences.

Sutherland goes on to prove a theorem identifying cases in which inference is possible (specifically, cases in
which f, and f, are dependent), and from this theorem derives an important corollary: that information flows are
always symmetric. This corollary has importance to integrity since it shows that the user who can control the
computation of f; can influence the result of f,. This situation can be thought of as a reverse covert channel.

3.4 Clark and Wilson Model

Clark and Wilson [7,8] make a distinction between what they term “military security’”’ and “commercial
integrity,” and present a model for achieving data integrity. They emphasize three assertions. First, they claim that
there is a distinct set of security policies, related to integrity rather than disclosure, applicable to computer systems.
Second, they maintain that integrity policies are often of higher priority than nondisclosure policies in the
commercial data processing environment. Finally, they maintain that separate mechanisms are required for
enforcement of these policies, disjoint from those required by the Department of Defense Trusted Computer System
Evaluation Criteria (TCSEC) [2].

There are two keys to the Clark and Wilson integrity model: the well-formed transaction, and separation of
duty. A well-formed transaction is structured so that a user can not manipulate data arbitrarily, but only in constrained
ways that preserve or ensure the internal consistency of the data. Separation of duty attempts to ensure the external
consistency of data objects: the correspondence between a data object and the real world object it represents. This
correspondence is ensured indirectly by separating all operations into several subparts and requiring that each
subpart be executed by a different person.

The Clark and Wilson model is defined in terms of four elements: constrained data items (CDIs),
unconstrained data items (UDIs), integrity verification procedures (IVPs), and transformation procedures (TPs).
CDIs are data items within the system to which the integrity model must be applied. UDIs are data items not covered
by the integrity policy that may be manipulated arbitrarily, subject only to discretionary controls. New information is
fed into the system as a UDI, and may subsequently be transformed into a CDI.

The TPs and IVPs are two classes of procedures that implement the concept of a well-formed transaction.
The purpose of TPs is to changé the set of CDIs from one valid state to another. The purpose of an IVP is to confirm
that all of the CDIs in the system conform to the integrity specification at the time the IVP is executed. An IVP
checks internal data consistency, and also may verify the consistency between CDIs and external reality.

Clark and Wilson achieve separation of duty through what they term “access triples.” Whereas the lattice
model of Bell and L.a Padula defines access restrictions for subjects to objects, the Clark and Wilson model partitions
objects into programs and data and requires subject/program/data triples. Separation of duty is discussed further in a
later section of this paper.

4. Integrity Model Implementations

Implementations suggest realistic approaches to the theoretical basics identified by models. Seven methods
have been identified as implementations of one or more of the fundamental models described in the previous section.
The seven implementations are: Lipner, Boebert and Kain, Lee, Shockley, Karger, Jueneman, and Gong.

543

4.1 Lipner Implementation

Lipner [9] examines two ways of implementing integrity in commercial data processing systems. The first
method uses the Bell and La Padula security lattice model by itself. The second method combines the Bell and
La Padula model with Biba’s integrity lattice model. Lipner’s approach requires looking at security requirements in a .
different way from the prevalent view taken in the national security community. In particular, non-hierarchical
categories are considered more useful than hierarchical levels.

Lipner makes the important early distinction of separating objects into data and programs. Programs can be
either passive (when they are being developed or edited) or active (when they are being invoked on behalf of a
particular user), while data objects are always passive. Programs are the means by which a user can manipulate data;
thus, it is necessary to control which programs a user can execute and which data objects a program can manipulate.
Also, Lipner emphasizes that special attention must be given to programs to ensure that they perform as expected and
do nothing more.

4.2 Boebert and Kain Implementation

Boebert and Kain [10] introduce an implementation of the Goguen and Meseguer model based on the
Honeywell LOCK (formerly SAT) machine. Their implementation provides a mechanism for ensuring that data of
particular types can only be handled by specific trusted software. Boebert and Kain’s implementation is an object-
oriented, capability-based approach that focuses more on isolating the action than isolating the user. Domains restrict
actions to being performed in only one place in only one way; if you don’t have access to that domain, you can’t
perform that action.

4.3 Lee and Shockley Implementations

Independently, Lee [11] and Shockley [12] developed implementations of the Clark and Wilson model using
Biba integrity categories and partially trusted subjects. Both implementations are based on a set of sensitivity labels.
This set is built from two essentially independent components: every label contains a pair of sensitivity markings:
one element of the pair represents a sensitivity with respect to disclosure, and the other represents a sensitivity with
respect to modification. Mathematically, the labels have a dominance relation that partially orders them, such that
least upper and greatest lower bounds are uniquely defined. These bounds are used as a means of restricting access
to programs and data.

The Lee and Shockley implementations make two important suggestions. First, categories can be
interpreted as data types; thus, strong typing is important for implementing integrity. Second, a transactlon-onented
approach works well; thus, database technology should be very relevant to integrity.

4.4 Karger Implementation

Karger {13] proposes an implementation of the Clark and Wilson model which combines SCAP, the author’s
secure capability architecture [14] with the lattice security model. In this scheme, a capability-based protection
kernel supports access control lists (representing the security lattice). In a typical capability system, the processor
automatically loads capabilities into a cache for quick reference. Karger’s proposal is to cause a fault or trap to the
most privileged software domain (i.e., the security kernel) on the first reference to a capability, when it would
normally be moved into the cache, so that this privileged domain can evaluate whether the lattice permits the
capability to be used. Once a capability has been evaluated, it is placed in the cache so that it does not have to be
reevaluated. If a lattice entry is changed, revocation can be achieved by flushing all of the capabilities for that object
from the cache (causing new requests for the object to be freshly evaluated).

As part of this implementation, audit trails form a much more active part of security enforcement than in
earlier systems. Karger introduces token capabilities to make the use of audit information easier. While taking the
form of capabilities to prevent unauthorized tampering, token capabilities are in fact separate copies of individual
audit records. Token capabilities are used in conjunction with access control lists to ensure that permission to
execute certain transactions can only be granted if certain previous transactions have been executed by specific
individuals.

4.5 Jueneman Implementation

Jueneman [15] proposes a defensive detection scheme that is based on mandatory and discretionary integrity
controls, encryption, checksums, and digital signatures. This approach is intended for use on dynamic networks of
.interconnected trusted computing bases (TCBs) that communicate over arbitrary non-secure media. Mandatory
Integrity Controls prevent illegal modifications within the TCB, and detect modifications outside the TCB.
Discretionary Integrity Controls are used in supplementing the mandatory controls to prevent the modification,
destruction, or renaming of an object by a user who has the necessary mandatory permissions, but is not authorized by
the owner of the object. Encryption is used by the originator of an object to protect the secrecy or privacy of

544

information. Checksums provide immutability and signatures provide attribution to allow the recipient of an object to
determine its believability. The originator of an object should be responsible for assuring its confidentiality. The
recipient should be responsible for determining its mtegnty

4.6 Gong Implementation

Gong [16] presents the design of an identity-based capability protection system (ICAP), which is intended to
be used on a distributed system in a network environment. ICAP merges the access control list approach and the
capability approach; access control lists support a capability protection mechanism (the opposite of Karger’s SCAP),
and thereby solve the problem of revocation. Gong’s design provides support for administrative activities such as
traceability. This approach also works for a centralized system. Compared with existing capability system designs,
ICAP requires much less storage and has the potential of lower cost and better real-time performance.

5. Integrity Policies, Principles, and Mechanisms

Although a wide variety of integrity mechanisms exist, on examination they are found to serve a relatively
small set of distinct purposes. In this paper, we use the term policies to describe the higher-level purposes of
mechanisms, since these purposes generally reflect administrative courses of action devised to promote integrity.
Some of the policies intended to promote integrity are familiar to individuals acquainted with the traditional
computer security literature, while others are less so. Some of the mechanisms we will examine appear primarily in
embedded systems, and some are not found in familiar software systems, but are used in specialized application
environments such as accounting. We will identify these policies, and the mechanisms that enforce them, in the
following discussion. We begin with some of the simplest policies and mechanisms, and proceed to more complex
ones. In several of these policies, there are underlying principles which some or all of the mechanisms employ in
implementing the policy. Where such principles are evident, we will present the principles before discussing the
mechanisms.

5.1 Policy of Authorized Actions

Many integrity mechanisms are based on a policy of authorized actions, which specifies that users may only
perform those actions for which the users are authorized. This policy is so central to computer security that at first it
might seem that all integrity mechanisms would implement this policy, and indeed it is the case that many mechanisms
at least require a policy of authorized actions to be effective. However, we characterize mechanisms as primarily
implementing this policy if the mechanism is directly concerned with the goal of arbitrarily-specified access control,
rather than with some other purpose which requires a policy of authorized actions for its interpretation. There are
two underlying principles employed in implementing this policy, deterrence and prevention of prolonged access.
Among the mechanisms that implement this policy are those discussed in sections 5.1.3 through 5.1.7.

5.1.1 Principle of Deterrence

~ An ideal goal of computer security mechanisms is to provide absolute controls; in the implementing of a
policy of authorized actions, such a goal would require that unauthorized actions not be possible to perform. Where
integrity is concerned, this is not always possible. If a policy of authorized actions states that “‘a user who is otherwise
authorized for specific actions shall not be authorized to employ those authorized actions in unethical ways,” absolute
controls may not be possible, since what is ethical vs. unethical may be a matter of human judgement. In such a case,
it may be necessary that the principle of deterrence be employed. This principle is based on the idea that many people
may be deterred from performing certain actions by making such actions sufficiently difficult or unpleasant.
Deterrence may involve the risk of being caught performing an unauthorized action, or may simply involve making the
unauthorized action sufficiently difficult to perform that the desired result is not worth the effort. Clearly, more
absolute controls are preferable in most cases, but it must be emphasized that absolute controls are not always
possible, particularly in integrity.

5.1.2 Principle of Prevention of Prolonged Access

In cases in which absolute controls are not possible, it is sometimes useful to employ the principle of
prevention of prolonged access. According to this principle, the likelihood of integrity violations taking place may be
reduced by reducing the amount of time an individual is given access to data or resources. This principle is weaker
than deterrence, in that it assumes the subject will not have sufficient time to perform improper modifications of data,
or will not be able to discover exploitable weaknesses in the available time. :
5.1.3 Unconditional Authorization

The simplest class of mechanisms implementing this policy is one which directly grants or denies
authorization for a particular action. Access control lists (ACLs) are an example of this class.

545

5.1.4 Conditional Authorization

Conditional authorization mechanisms grant authorization only when specified conditions are satisfied. One
example is an “emergency override” mechanism, which allows prohibited actions when an emergency condition
occurs. These mechanisms are also present in military systems in which authorization to perform certain actions is
allowed only when a combat action is in progress.

5.1.5 Access Ke&s

The class of mechanisms involving access keys is based on the subject’s possessing a data object or being
assigned:a data value which is tested to determine the subject’s authorization to modify data. One of the simplest
forms of this mechanism appeared in the memory management units of early central processing units (CPUs), where
each memory segment or page was assigned a “key”” which would be matched against a key stored into a protected
CPU register during a context switch. A memory reference would succeed only if the key on the memory segment
matched the key in the protected register. This same mechanism is found in present-day file systems which grant
permission to perform certain operations only to the “owner” of a file, since the user-ID of the process attempting to’
perform the operation on the file can be considered to be a key which must be matched against the owner-ID for the
file.

The access key mechanisms discussed above are based on a test of equality. Other tests are possible, such as
a test under a partial ordering relation. An example is the mandatory access control labelling prescribed by the
Trusted Computer Systems Evaluation Criteria (TCSEC) [2], or the integrity labels required by the Strict Integrity
Policy of the Biba model [4]. These access control mechanisms also fall under the class of access keys.

5.1.6 Value Checksand Range Checks

Value checks and range checks serve as a weak mechanism for detecting improper data at the time it is
entered or processed; the goal of these checks is primarily to detect errors that would result in accidental entry of
incorrect data. The data are checked to be sure they have one of a specific set of values, or that the values fall into a
specific range or set of ranges. Although simple, these checks are noteworthy in that they are one of the types of
checks that are most often moved by vertical migration from the software level to the level of microcode or firmware.
They include checks that data have values appropriate to specific primitive data types, such as the check that a packed
decimal number does not contain the hex digits A-F and that its sign bits have one of the appropriate values. We
categorize the mechanisms as implementing a policy of authorized actions since the purpose of the checks is often to
ensure that input data is in an authorized format or has authorized values, although it may be correctly argued that
other policies are also supported by these mechanisms.

5.1.7 Access Control Tuples

Access control tuples provide one of the most direct ways of implementing a policy of authorized actions.
They consist simply of tuples that indicate subjects and the actions they are authorized to perform on specified
objects. In implementations of systems satisfying the TCSEC, these usually take the form of ACLs. In the Clark and
Wilson model [7], they take the form of a triple specifying a user, transformation procedure, and object. When
implemented, one element of the tuple may be omitted, being implied by the entity to which it is attached or which
possesses it (subjects, in the case of capabilities; objects, in the case of of ACLs).

5.2 Policy of Supervisory Control

A policy of supervisory control requires that a subject in a specific supervisor role be required to authorize
specific actions as they arise. This policy may involve either requiring the supervisor to give final approval to an
action that was decided upon by another individual, or requiring the supervisor to give approval only to actions that
meet certain constraints, such as actions having a particularly large scope or effect.

5.2.1 Principle of Alarm Sufficiency

In interpretations of a policy of supervisory control, it is critical that communications channels that indicate
requests for action to the supervisor not be blocked by excessive message traffic. The principle of alarm sufficiency
requires that, to ensure integrity of data, alarms (the channels by which requests are transmitted to the supervisor)
must be sufficient to support all possible combinations of alarms that can be active at once. This principle is an
integrity concern since, if alarm sufficiency is not enforced, it would be possible to mask a given item of data
requiring a supervisory decision by simultaneously causing other data to be transmitted to the supervisor.

546

5.2.2 Mechanism of Supervisory Authorization

Supervisory control is a straightforward policy to implement, and mechanisms that implement it can be
placed in the category of supervisory authorization mechanisms. Examples of such mechanisms are the requirement
that a bank officer approve withdrawals that exceed a certain amount, or that a fire control officer approve firing a
missile upon an aircraft believed to be hostile during a military engagement.

5.3 Policy of Separation of Duty

In some environments, it is more likely for an integrity violation to occur when operations are carried out by
individuals working alone. This can be because there is less likelihood of detection in such a case, or because there is
not a second person to notice accidental errors. In well-controlled environments, it may be possible to partition a
task among several individuals such that no one individual has enough information or control available to successfully
carry out an integrity violation without allowing detection: the person will not be able to “‘cover his tracks.”” In such an
environment, a policy of separation of duty may be employed to prevent an individual from acting alone to carry out an
integrity violation, by making it essential that two or more people be involved in an operation. With separation of
duty in effect, it is necessary for two or more people to conspire together to carry out an integrity violation,
something which usually is less likely, and may be more easily detectable in subsequent investigation, than an integrity
violation carried out by one person acting alone.

5.3.1 Conventional Access Control

The conventional access control tuples discussed in the previous section may be used to implement
separation of duties, by appropriate assignment of access permissions. Appropriate assignment of access via the
access control tuples must be made to ensure that access permissions for two separated duties are not assigned to the
same person.

532 Compartfnentation

Traditional compartmentation of information, similar to that used in implementing confidentiality policies,
can be used to effect separation of duties, via mechanisms such as those in [4]. Compartmentation generally requires
fine-grained definitions of categories, with separate categories for duties intended to be separated, and non-
overlapping assignments of these categories to individuals.

5.3.3 Chinese Wall

A mechanism used in some financial institutions is the Chinese wall, also called the Brewer-Nash policy [17].
In this mechanism, data or operations are grouped into equivalence classes. Each subject is originally given access to
all data or operations, but access to one element of an equivalence class by a subject causes access permissions to
change such that the subject cannot access other data or operations in the same equivalence class. Thus, access
permissions are dynamically reconfigured to ensure separation. Dynamic reconfiguration automates the assignment
of access permissions to ensure separation of duty. It should be noted that this mechanism was termed a “policy” by
Brewer and Nash, although we here categorize it as a mechanism implementing a policy of separation of duty.

5.3..4 N-Person Control

A different form of separation of duty is provided by mechanisms involving n-person control. In such
mechanisms, # people must simultaneously request or authorize an operation in order for it to take place. The
principal purpose of such a mechanism is to ensure that a single errant individual or system component cannot cause a
critical process to be authorized or initiated.

5.3.5 Process Sequencing

To further organize separation of duty, process. sequencing is sometimes used. This approach requires that
duties not only be separated, but also be performed in a specified order. Doing so can ensure that individuals
assigned duties later in the sequence will always check the work of their predecessors, or that sufficient information is
always available for each individual to perform their assigned duty correctly. An example of the absence of process
sequencing would be a situation in which a person signed a check before the amount to be written on the check was
computed.

5.4 Policy of Rotation of Duty

Where separation of duty is employed, increased integrity may sometimes result from an additional policy of
rotation of duty. The purpose of such a policy can be to reduce errors that result from repetition of a monotonous
task, or to reduce the likelihood that an individual will discover or exploit ways of carrying out an integrity violation.
Again, this policy is useful primarily in cases where absolute integrity controls are not possible. The mechanisms are

547

the same as those for separation of duty, except that a way of atomically rotating duties must be provided so that
exploitable intermediate states do not exist while the rotation is taking place.

5.5 Policy of Separation of Resources

In addition to separating duties among different persons or processes, access to resources can also be
separated. In separation of resources, the resources to which subjects have access are partitioned such that a given
subject has access only to a subset of the resources available. More precisely, a given subject and the tools available to
that subject are allowed access only to specific resources. This policy can also overlap the policy of separation of
duties if controlling access to resources also limits the duties which each subject can perform.)

5.5.1 Capabilities

Capabilities are specially-protected objects, or values representing such objects, the possession of which
gives access to other objects to which access is to be controlled. The capability is used to name the object to which it
refers, and usually has specific attributes or permissions associated with it which specify what types of access the
possessor of the capability is granted. It is possible for a system to invalidate a capability, so that possession of it no
longer grants access; to control whether or not it is possible to give away the capability to another process; or to limit
the number of times a capability may be used to access an object [18].

5.5.2 Descriptors

-Whereas capabilities are associated (by possession) with a subject, descriptors are associated with an object
and indicate which subjects are granted access to the object. A variety of memory protection schemes based on
descriptors have been developed over the history of computer architecture, since descriptors are a very old and
widely-used mechanism. Most of these mechanisms work by comparing addresses generated by a user program with a
list of valid address ranges which the program is allowed to access. Before an attempted access is permitted to occur,
the comparison is performed, and if it is found that the address is illegal, an exception is generated which aborts the
access.

5.5.3 Separation of Name Spaces

A more primitive mechanism for separation of resources is separation of name spaces. In this mechanism,
two distinct user processes are given separate address spaces, such that the same address refers to distinct, non-
overlapping locations when used by each process. The result is that each process is unable to modify the other’s data
not because a fault is generated which prevents such an access, but because the address has a different meaning to the
two processes. The mechanism also appears in simple ‘“‘virtnal machine’’ interpretations in which each user appears
to have access to a private machine which is not shared with other users.

5.6 Policy of Encapsulation

Protection against modification of data can be increased by encapsulating distinct parts of a system into
objects* and controlling the ways in which individual objects in a system may be accessed. There two underlying
principles employed in implementing encapsulation, abstract data types and strong typing.

5.6.1 Principle of Abstract Data Types

To precisely define the semantics of data and to control the operations that may be performed on them, the
principle of abstract data types is employed. This principle defines a type to be a particular set of data values and a
particular set of operations that may be performed on those values.

5.6.2 Principle of Strong Typing

The principle of strong typing is a major integrity mechanism, and is one of the bases of the Clark and Wilson
model of data integrity. Strong typing is simply the strong, uncircumventable enforcement of abstract data types. It
restricts what operations can be performed on what data (or on what objects). When strong typing is enforced, even
though an object’s representation might be compatible with operations not associated with that data type, such
operations will not be permitted. This principle is distinct from simple abstract data typing, in which data types are
defined, but may be circumvented when convenient for the programmer to do so.

2. The term object as used in this discussion is distinct from the term object as generally used in discussions of computer
security.

548

5.6.3 Message Passing and Actors

If the only way to access objects is by sending messages to them, the types of actions that can be performed
on the objects are restricted to those which the object directly permits, since the only way to perform such actions is
to request the object to perform an operation on itself. This approach is the basis of message passing encapsulation
mechanisms. A well-developed form of this mechanism is the actor model [19]. It is also found in the Smalltalk
programming language [20].

5.6.4 Data Movement Primitives

Most computer architectures equate a data object with the place in which it is stored. A computer
architecture which uses the data movement primitives [21] get and put distinguishes these two; an object has a distinct
" identity separate from its address, and it is possible to move this object about, removing it from one address and
placing it in another. This mechanism addresses integrity problems related to multiple updaters.

5.7 Policy of Fault Tolerance

A policy of fault tolerance specifies that a system should attempt to survive isolated failures of components.
Policies of fault tolerance potentially involve two parts. The first is the detection of errors, and is 'commonly
accomplished via summary integrity checks. This part is necessary for a system to determine when a failure has
occurred, since a system that simply corrects errors without detecting them can be considered not to have failed at
all. The second is the attempted correction of errors. This part is accomplished via the principle of redundancy.

5.7.1 Principle of Redundancy

Redundancy is commonly used in fault-tolerant applications. The same data or processes are duplicated
several times, possibly separated in time or location, in the expectation that not all of the redundant copies will fail in
the same way or at the same time. Hardware redundancy is the most familiar type of redundancy, and involves
duplicated hardware components. Software redundancy involves additional software beyond what is necessary for
basic operation, in order to check that the basic operations being performed are correct. Information redundancy
involves duplication of information, possibly using different encodings or representations of the information to
reduce the likelihood that the same failure will modify all copies in the same way. Time redundancy involves repeating
an operation at several separated points in time, to detect intermittent or transient failures [22].

5.7.2 Summary Integrity Checks

Summary integrity checks are mechanisms which “summarize’ the content or state of data, such that this
summary can be checked against the data itself to ensure that the data has not been modified. To be effective, the
summary information must be separated from the data summarized, and independently protected, or must be
computed in a way that cannot easily be duplicated. Summary integrity check mechanisms include transmirtal lists,
which simply list the contents of an aggregate data object; data counts, which count the size or number of data objects;
checksums and hash totals, which are abbreviated functions of a larger block of data which they represent; and check
digits, which are simply a short, single-digit checksum.

6. Conclusion

Four models have been developed which suggest fundamentally different ways of achieving computer
integrity. Biba’s [4] was the first model to address integrity in a computer system, and it has the most established
background because it is based on the Bell and La Padula model for confidentiality. This model emphasizes the use of
hierarchical levels. Goguen and Meseguer [5] uses domain separation and automaton-based state transformations.
Sutherland [6] focuses on ensuring that conceptually independent computations do not have unintended
interdependencies. Clark and Wilson [7,8] introduce the concepts of well-formed transaction and separation of duty;
separation of duty is implemented by access triples. '

Based on these four models, seven model implementations have been identified and described. Lipner’s
implementation [9] is the first work to emphasize the importance of non-hierarchical categories for achieving integrity.
This implementation also introduces the important distinction between program objects and data objects. Boebert
and Kain [10] describe a flexible, object-oriented, capability-based approach that focuses more on isolating the action
than isolating the user. Lee [11] and Shockley [12] introduce minimum and maximum views for controlling access to
objects. This approach points out the usefulness of strong typing and transaction-based operations. Karger [13] and
Gong [16] both combine the advantages of capabilities (speed and domain separation) and access control lists (review
and revocation). Karger’s approach uses capabilities in support of ACLs; Gong uses ACLs in support of capabilities.
Jueneman [15] uses encryption, checksums, and digital signatures to achieve integrity in a distributed system.

In examining intégrity mechanisms, we find that many mechanisms exist, but that they ultimately implement a
relatively small set of distinct policies. The general policy of authorized actions specifies that users may perform only

549

those actions for which they are authorized; this is a concept that is as fundamental to confidentiality as it is to
integrity. The policy of supervisory control classifies actions according to their severity of impact, reserving the
actions with the greatest impact to be performed or confirmed by more-trusted individuals serving in a supervisor role.
The policy of separation of duty requires that duties be divided across two or more individuals, such that no one
person can complete a controlled action while acting alone. The similar policy of rotation of duty requires that
individuals be rotated among the set of duties, reducing the duration of exposure of a given individual to a particular
duty. The policy of separation of resources controls access to resources needed to perform an action, rather than
directly controlling which actions may be performed. The policy of encapsulation encapsulates a system into objects
which may be accessed in controlled ways, thus restricting the ability for “back door” accesses to system
components, and increasing the amount of control the component can exercise over what actions are performed. A
policy of fault tolerance requires that isolated faults and errors, when they occur, be detected and corrected.

No single model, taken on its own, supports all of the policies. Yet, the models as a whole can be argued to
provide at least a moderate level of support for at least some interpretation of these policies. Clearly, addressing all
the aspects of integrity requires an integration of model concepts to ensure complete coverage, or selection of
models appropriate to the specific policies to be enforced.

References

[1] Ruthberg, Z.G. and W.T. Polk, eds., Report of the Invitational Workshop on Integrity Policy in Computer
Information Systems (WIPCIS), NIST Special Publication 500-160, October 1987.

[2] Department of Defense, DoD Trusted Computer System Evaluation Criteria, DoD 5200.28-STD,
Washington, DC, December 1985.

[3] Courtney, R.H., Jr., “Some Informal Comments About Integrity and the Integrity Workshop,” in Report bf
the Invitational Workshop on Data Integrity, NIST Special Publication 500-168, pp. A.1.1-A.1.18, January
1989.

[4] Biba, K.J., “Integrity Considerations for Secure Computer Systems,” ESD-TR-76-372, Bedford, MA:
MITRE Corporation, April 1977.

[51 Goguen, J.A. and J. Meseguer, “Security Policies and Security Models,” in Proceedings of the 1982 Berkeley
Conference on Computer Security, pp. 11-20, 1982.

[6] Sutherland, D.I., “A Model of Information,” in Proceedings of the 9th National Computer Security
Conference, pp. 175-183, September 1986.

7] Clark, D.D. and D.R. Wilson, “A Comparison of Commercial and Military Computer Security Policies,” in
Proceedings of the 1987 IEEE Symposium on Security and Privacy, pp. 184-194, April 1987.

(8] Clark, D.D. and D.R. Wilson, “Evolution of a Model for Computer Integrity,”” in Report of the Invitational
Workshop on Data Integrity, NIST Special Publication 500-168, pp. A.2.1-A.2.13, January 1989.

[9] Lipner, S.B., “Non-Discretionary Controls for Commercial Applications,” in Proceedings of the 1982 IEEE
Symposium on Security and Privacy, pp. 2-10, April 1982.

[10] Boebert, W.E. and R.Y. Kain, “A Practical Alternative to Hierarchical Integrity Policies,” in Proceedings of
the Eighth National Computer Security Conference, pp. 18-27, September 1985.

[11] Lee, T.M.P., “Using Mandatory Integrity to Enforce *Commercial’ Security,” in Proceedings of the 1988
IEEE Symposium on Security and Privacy, pp. 140-146, April 1988.

[12] Shockley, W.R., “Implementing the Clark/Wilson Integrity Policy Using Current Technology,” in
Proceedings of the 11th National Computer Security Conference, pp. 29-37, October 1988.

[13] Karger, P.A., “Implementing Commercial Data Integrity with Secure Capabilities,” m Proceedings of the
1988 IEEE Symposmm on Security and Privacy, pp. 130-139, April 1988.

[14] Karger, P.A. and A.J. Herbert, “An Augmented Capability Architecture to Support Lattice Security and

Traceability of Access,” in Proceedings of the 1984 IEEE Symposium on Security and Privacy, pp. 2-12 April
1984.

550

http:A.2.1-A.2.13
http:A.l.1-A.l.18

[15]

[16]

- 7]

(18]

(19]

[20]
[21]

[22]

Jueneman, R.R., “Integrity Controls for Military and Commercial Applications, II,”” in Report of the
Invitational Workshop on Data Integrity, NIST Special Publication 500-168, pp. A.5.1-A.5.61, January 1989.

Gong, L., “A Secure Identity-Based Capability.System,” in Proceedings of the 1989 IEEE Symposium on
Security and Privacy, pp. 56-63, May 1989.

Brewer, D.F.C. and M.J. Nash, “The Chinese Wall Security Policy,” in Proceedings of“the 1989 IEEE

- Symposium on Security and Privacy, pp. 206-214, May 1989.

Gligor, V.D., J.C. Huskamp, S.R. Welke, C.J. Linn, and W.T. Mayfield, “Traditional Capability-Based
Systems: An Analysis of Their Ability to Meet the Trusted Computer Security Evaluation Criteria,” IDA
Paper P-1935, Alexandna, VA: Institute for Defense Analyses, February 1987 Available as NTIS AD-B119
332.

Agha, G.A., Actors: A Model of Concurrent Computation in Distributed Systerns. Cambridge, MA: The MIT
Press, 1986

Goldberg, A. Smalltalk-80: The Language and its Implementation. Reading, MA: Addison-Wesley, 1983.

Roskos, J.E., “Data Movement, Naming, and Ambiguity,” Vanderbllt University Department of Computer
Science Technical Report CS-84-05 March 1984.

Johnson, B.W., Design and Analysis of Fault Tolerant Digital Systems. New York, NY: Addison-Wesley
Publishing Co., 1989.

551

http:Computation.in
http:A.5.1-A.5.61

Executive Summary

National Computer SeCuri’ty Policy
Lynn McNulty

National Institute of Standards and Technology

This panel will discuss the changing national authorities
and policies with regard to computer security and the role that
agency computer security policy plays in a successful computer
security program. The passage of the Computer Security Act of
1987 and the rescinding of NSDD-145 have resulted in a changed
national computer security policy structure. OMB, NIST, NSA,
GSA and other agencies are involved in developing
governmentwide policies and standards to varying degrees.
Policies developed by individual agencies, which build upon
policies, standards and guidelines issued by national authorities,
plays a critical role in ensuring clear direction to agency
executives, managers and system users. The panel will also
discuss areas in which national policy and/or standards guidance
have been successful and those areas where further attention may
be necessary.

552

A BRIEF TUTORIAL ON TRUSTED DATABASE
MANAGEMENT SYSTEMS

John R. Campbell
National Computer Security Center
Office of Research and Development
9800 Savage Road .
Fort George G. Meade, Maryland 20755-6000
(301)859-4488 _

INTRODUCTION

Over ninety percent of the nation’s mainframes and most minicomputers
and microcomputers contain database management systems (DBMS). Our most crit-
ical data, including defense, intelligence, law enforcement, social welfare, and
financial data, are stored on such systems. Applications ranging from financial
systems to national defense mechanisms depend on the security of these systems.

The building of these systems and the construction of applications for
these systems is a multi-billion dollar industry. Yet, to date, little has been done to
secure database management systems. Vendors have emphasized performance and
ease of use, with security being an afterthought. Often any security included in the
database system is done without regard to consistency with the existing operating
system security mechanisms.

This lack of interest in DBMS security, however, is starting to change. The
threat to data, due to nondisclosure, lack of integrity and unavailability, is beginning
to be addressed. Trusted products are being introduced. The National Computer
Security Center (NCSC) is leading the research and development, in part, through
contracts with Oracle Corporation and Teradata Corporation. These help the
government to examine the fundamental issues regarding the Orange Book
interpretation of database management systems. Teradata is using a database
machine architecture while Oracle is developing host based systems.

This tutorial gives the background, describes the issues and offers some
proposed solutions for database security. -

DATABASES AND DATABASE SECURITY

In the August 1989 issue of Computer [JACO89], the reviewer of a book on
computer security makes two comments, both | especially agree with for database
security. First, he states that the entire field of computer security has substantial
weaknesses. This is especially true for database security. For example, trusted
distributed database management systems present many unanswered questions.
There is no general theory of control for inference and aggregation, although there
. are some application specific controls. Verification tools are weak. There are many
other unanswered issues. :

Second, the reviewer states that the field of computer security is quickly

evolving. Again, this is especially true for database security. It is junior to operating
system security because it often has to depend on a trusted operating system. But,

553

until now, there were few trusted operating system products. Several years ago, we
talked about the possibility of trusted database systems. Today there are at least
eight prototypes, half of which are commercial quality. Truly the field is rapidly
evolving. '

What is a database? Date [DATE86] defined them as collections "of stored
operational data used by the application systems of some particular enterprise.” The
operational data could include product, account, patient, student or planning data.
It does not include input or output data, work queues, temporary results or any
purely transient information. Databases are increasing in complexity. The data can
now be pictures, rules, or derived information.

What is a database management system? Date [DATE86] defines these as
systems that provide users with a view of the database that is elevated somewhat
above the hardware level, and support user operations such as SQL operations that
are expressed in terms of that higher level view. "SQL", or Structured Query
Language, is a high level query language that contains both data manipulation and
data definition features. It also contains data control features, "grant” and
"revoke"”, for example. Database management systems are also increasing in
complexity. Some database systems have natural language, rule manipulation and
other artificial intelligence components. Some are distributed. Database security
must meet these challenges.

WHY DATABASE SECURITY IS lMPO.RTANT

Database security is important because databases are so very important.
The DoD, the intelligence, financial, law and social services communities depend on
them to be safe and correct. Two billion dollars was spent in 1987 on database
systems. It is estimated that six billion will be spent in 1992. Applications for these
systems cost many times more. Ninety percent of mainframes use database systems.

Database security is important because even with a trusted operating sys-
tem underneath, data is at risk if you are not using a trusted database system. One
problem is granularity. Operating systems usually protect at the file level. Databases
need finer granularity such as table or relation, row or tuple, or even element. Data-
base systems can provide protection at these levels of granularity. In addition,
different discretionary security policies are often desired for database systems that
restrict access to specific data through specific database operations, such as insert,
update, retrieve and delete. Such controls are not available in operating systems.

Database security is important because database systems are the most
widely used class of application on computer systems. As such, much learned about
database systems, such as trusted operating system interface, can be transferred to
our knowledge of securing other applications.

Database security includes data integrity. Data integrity is important be-
cause a database is useless if the information you get out of it is wrong. The impor-
tance of integrity has long been realized by database system vendors and they have
provided some capabilities to preserve integrity. However, the active data dictio-
nary, where data constraints are recorded and enforced, is a relatively new concept.

Concentrated work done now on both database security and integrity is
important because the list of problems is constantly growing. In addition to the

554

vanilla stand-alone commercial database systems, which by themselves are quite
complex, we now have commercial expert, multimedia and/or distributed database
systems. These, plus intelligent, temporal, historical and object-oriented databases
add to the complexity of the problem. :

SOME ARCHITECTURES AND MODELS

Database systems employ different architectures and these present differ-
ing problems. Database machines are computers dedicated to database activities.
All data is stored on these machines. Host computers issue queries to the database
machine. This machine processes the query, finds and manipulates the data and
returns the answer. Under this configuration, the machine's operating system (OS)
and database system are usually one; therefore the OS/DBMS interface does not
exist.

In host-based DBMSS, the OS/DBMS interface is a serious problem. Here
the DBMS runs on a general purpose computer that, in addition to the DBMS, usually
has other applications running on it. Some vendors want to port their database sys-
tems to as many computers as possible. How is this accomplished in an efficient yet
secure manner? There are no standard security interfaces. Therefore, in order to be
truly portable, DBMS vendors may choose to duplicate the security functionality of
the operating system and not use the security functionality of the operating system.
This avoids having to make several custom interfaces, but it increases the complexity
and size of DBMS security components. Also, if the DBMS is trusted, its interactions
with the operating system trusted computing base must be controlled.

Finally, distributed database systems have added additional complexities
to the security problem. The data in these systems may have different physical
locations, may be on heterogeneous nodes and may be redundant. How do you
audit? How do you identify and authorize? How do you assure the integrity of
redundant information? We are beginning to address these issues.

The DBMS model used may also affect security. Is the model relational,
network, hierarchical, object-oriented or other. A secure entity relationship study
reported that it was easier to secure a system based on an entity relationship model
than arelational model. One reason he gave was that he had the freedom to choose
the entity-relation model that could best contain security. There is no standard
model. The relational model, however, has solidified into almost a standard, a
standard where initially security was not considered, and therefore retrofitting
security, especially multilevel security, is difficult.

WHAT IS SECURITY?

Security, in some areas, has been equated only with nondisclosure. A sys-
tem is secure if you can prevent unauthorized users from reading sensitive informa-
tion. However, we also include integrity and availability or denial of service compo-
nents in this definition. Consequently, our definition agrees with what the Strategic
Defense Initiative calls "security *".

555

WHAT IS INTEGRITY?

We've seen a list of 150 definitions of integrity. One we like is "sound,
unimpaired or perfect condition™ [NCSC88a]. Is what you get out of the database
what you putinit?

Three integrity components have been noted. The Department of De-
fense Trusted Computer Evaluation Criteria (TCSEC or "Orange Book") [DODS85]
recognizes two types, label integrity and system integrity. Label integrity assures
that the security labels accurately represent the classifications of subjects or objects
with which they are associated. System integrity is the correct operation of the on-
site hardware and firmware elements of the TCB. This "TCB" is the totality of
protection mechanisms within a computer which is responsible for enforcing a
security policy. :

What the TCSEC doesn't explicitly mention, the third integrity component,
data integrity, is something very important to DBMS users. We define it as the
"property that data has not been exposed to accidental or malicious alteration or
destruction [NCSC88b]. '

DATA INTEGRITY IMPLEMENTATION

Data integrity may be implemented as part of the overall security policy.
For example, the Biba integrity model [BIBA77] may be implemented with Bell-
LaPadula nondisclosure model [BELL73] to produce a model that enforces both
integrity and security. SeaView did this using a modified Biba model and Bell-
LaPadula. The model can then be translated into an operational system.

Even though a security policy may not be explicitly stated, integrity com-
ponents may exist. Entity integrity, for example, does not permit null primary keys.
In general, under referential integrity, foreign keys must reference existing primary
keys. Also, integrity constraints and typing may be used. For example, one field or
attribute may allow only months of the year, with the first letter capitalized. The
system will check that each item entered into this field satisfies these constraints.
Both secure recovery and the concept of serializability are also important for data
integrity.

Finally, it is important to note that nondisclosure and data integrity may
conflict. Referential integrity may enable someone at a lower classification level to
know whether something at a higher level exists. Hiding the existence of high data
from low users may also require that polyinstantiation be used. Under this concept,
multiple data objects with the same name, differentiated by their access class, may
exist simultaneously [DENN88]. Is this an integrity violation? And couldn't it cause
data integrity problems?

BREAKDOWN OF THE PROBLEMS
It is useful to break down the database security problem into historical

components. Research that has been done in each of these components may be
useful in building a secure database system.

556

The first component is operating system security. Many of the concepts
that originated in operating system security are also used in DBMS security. In
addition, in the computer system, the DBMS may be layered on top of the OS, may
depend on the OS for services and may share t%e responsibility for security policy
enforcement with the OS.

The second component is network security. Network security concepts will
be useful in distributed database work.

Some issues, such as granularity, are unique to database security. The
problems of inference and aggregation, while not unique to database systems, are
exacerbated by database management systems, because these systems are designed

~ to easily manipulate large quantities of data. Finally, there are issues unique to the

distributed DBMS.

STANDARDS/INTERPRETATIONS

Several useful standards and interpretations are available. The previously
mentioned TCSEC, although traditionally used on stand-alone operating systems,
has many concepts applicable to database systems. The Trusted Network Interpre-
tation is a trusted computer/communications network systems interpretation of the
TCSEC. Similarly, the Trusted DBMS Interpretation of the TCSEC, now under
development, will cover stand-alone DBMS products.

TCB SUBSETS

Wouldn't it be of advantage to a vendor who ports a DBMS to many com-
puters and to the evaluator not to have to evaluate the operating system of each
target computer with the DBMS? If it can be shown that the DBMS does not inter-
fere with the underlying security mechanisms of the os, then this can happen. The
TCB or Trusted Computing Base is the totality of protection mechanisms in a compu-
ter system. The combination of these mechanisms is responsible for enforcing a
security policy [DOD85]. A TCB Subset is a logical partition or layer of the TCB that
enforces a subset of the security policies and supporting accountability policies
enforced by the combined TCB [NCSC89]. With this approach, the TCB is divided into
TCB Subsets, and each subset enforces a distinct part of the security policy

OTHER CONSIDERATIONS

A Trusted Path has been defined as a mechanism by which a person at a
terminal can communicate directly with the TCB. To prevent spoofing, the mechan-
ism cannot be imitated by untrusted software. A trusted path is also needed
between the system security officer and the TCB.

In good software engineering, a design and development process that
promotes modifiability, efficiency, reliability and understandability [BOOC83]
should be used.

Finally appropriate audit mechanisms should be used. The issue is to get

the granularitK to record needed information while not severely impacting perfor-
mance. To achieve this balance we have recommended the use of summary audit

557

records to the TDI Chairman/Project Leader. Summary audit records log a count of
the accesses for each subject accessing each level/compartment in a relation.

INFERENCE AND AGGREGATION

Inference and aggregation are big security problems. Inference is the
derivation of information at a level for which the user is not permitted access by
referencing other information to which he has access. In aggregation, the sensitivity
level of a collection of data may be higher than the level of any individual datum.
Therefore, in either case, the data's security label is not enough to protect the data.
Neither is mentioned in the TCSEC. They are not specifically DBMS problems but are
aggravated by the DBMS because the DBMS has been built to facilitate the
manipulation and combination of data.

AN INFERENCE EXAMPLE

Who makes widgets? The answer is known butit is a secret. Is it company
A,B,C, DorkE?

It is known that widget makers need lots of water for cooling. Therefore
the plant must be on a lake, river, etc. Also, they need lots of fossil fuel. Therefore
the plant needs to be on a railroad siding or a barge pier. Finally, widget makers
need chemical engineers.

The following additional information has been obtained from databases:
1.Company A ison a lake. Companies D and E are on rivers.

2. Companies A, C and E have railroad sidings.

3. Companies B and E advertise for Chemical Engineers.

Who? E.

INFERENCE/AGGREGATION CONTROLS

To control inference, and yet to keep classifications as low as possible, the
applications designer, in a relational system, can classify table linkages or keys, but
not the actual data in the tables. Or, the inference problems may be defined and the
system could check queries for the problems. Control of aggregation could be done
with query response history information. This however, presents a data aging/
system performance problem. That is, the more history you have, the better the
control, but the longer it takes to scan the history.

SQL STANDARDS CONSIDERATIONS

"SQL" is a data definition and data manipulation language and is
currently an ANSI standard. "SQL3", a proposed future ANSI standard, provides for
triggers, mechanisms by which a user can affect the consistency of the database.
Therefore the impact of SQL on integrity must be considered. ‘Also SQL must be
enriched to handle additions of audit, role and security level requirements.

558

CURRENT IMPLEMENTATIONS

Two types of implementations of current trusted database systems are the
integrity lock and the Trusted Computing Base (TCB) implementations.” Integrity lock
methodology should be less costly but could involve covert channel problems
[LAND88] and more direct attacks.

The integrity lock approach uses a trusted filter in front of an untrusted
DBMS. The filter mediates all accesses between the users and the database, and
performs trusted downgrades where necessary when providing at lower security
levels with data from the database. [WINK89] A trusted operating system at least
the filter level and B1 or higher is required to enforce the separation between DBMS
end users. Both discretionary and mandatory access controls are at least in part
located in the filter.

The TCB implementations place the assurance and security functionality in
a relatnvely small-kernel of code. The smallness of the kernel invites verification and
other proofs of correctness. The TCB may be broken into subsets, with each subset
enforcing a part of the policy.

NCSC DISCRETIONARY SECURITY “PROTOTYPE CONSIDERATIONS

Some of the factors considered in the "C2" prototypes developed at the
NCSC are:

- discretionary access control

- object reuse

- identification and authentication

- audit

- security testing

- data integrity

- performance

NCSC MANDATORY SECURITY PROTOTYPE CONSIDERATIONS

In addition to the "C2" prototype considerations, the following are being
considered in the "B"-level prototypes developed at NCSC:
- labels
- label integrity
- exportation to
- multilevel hosts
-single level hosts
- exportation of labeled information
- mandatory access control

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS (DDBMS)

Distributed database management systems form an important set of
security problems and opportunities. This type ofyDBMS has multiple sites connected
together into a communications network in which a user at any site can access data
at any site. Characteristics of this DBMS may include the physical location of the data
being transparent to the user, redundant data for performance and heterogeneous

559

nodes. Vendors who have current implementations include CCA, Oracle and Ingres.
Maintaining the consistency of replicated copies of data may be a problem.

- The DDBMS may be very efficient because data can be stored where the
user uses it. Data can be better controlled by isolating it on particular nodes. The
DDBMS, with multiple nodes and redundant data and communication paths answers

the system availability or denial of service problem. System performance may be

enhanced by local storage of frequent used data and by other distribution of data.
Also, there are opportunities for the parallel execution of queries.

Problems also are many. How do you maintain database consistency with
redundant data during updates/deletes and restores? What is the best method of
identification and authentication? What is the best way to audit? Deadlocks must
be controlled and priorities maintained. Other problems include the construction of
a distributed MTCB, the part of the TCB that manages mandatory access control.
Also, we must look at the distributed management of DAC, the Discretionary Access
Control, and the problem of the consistency of DAC on replicated tables. How do
you handle distributed transactions? Can serializability be maintained without
creating inference channels? Can we use weak consistency? Are there new covert
chann:gls? A subsetted TCB could be very large and complex and therefore difficult
to verify.

Encryption would be very useful between nodes and to store data. Long
term keys are a problem. What algorithms should be used? How does this affect
performance? How should the DDBMS be administered? What tools are needed?
How do you resolve heterogeneous security policies? How do you assure the security
of the system?

SUMMARY

Database security is a young interdisciplinary science, filled with promise
and opportunities. The demand already exists. C-level operating systems are here
and b-level operating systems are appearing. The evaluators tool, the Trusted
Database Interpretations, is being written. Trusted DBMS prototypes are being
produced. These include LOCK Dataviews, Trusted Oracle, Secure Data Views
(SeaView), and Teradata. Sybase and Trudata have products. New products are
emerging. In the future there will be an increasing demand for database security.
Many databases will be very large, distributed and with heterogeneous nodes.
Databases will be smart, with multimedia data, where rules, and derived knowledge
are stored and used. Parallel, array and fault tolerant processing will be the norm.
Operating systems may have some database management system functionality.
Security research and development is needed in all of these areas.

GLOSSARY
aggregation problem - The aggregation problem refers to the fact that the sensitivity level of a

collection of data may exceed the sensitivity level of any individual datum in that
collection. [NCSC89]

B - A TCSEC Division. The notion of a TCB that preserves the integrity of sensitivity labels and uses

560

them to enforce a set of méndatory access control rules is a major requirement in this
division. Systems in this division must carry the sensitivity labels with major data
structures in the system. [DOD85]

C2 - ATCSEC class ‘Systems in this class enforce a more finely grained discretionary access control
than C1 systems, making users individually accountable for their actions through login
procedures, auditing of security-relevant events, and resource isolation. [DOD85]

Discretionary Access Control - A means of restricting access to objects based on the identity of
subjects and/or groups to which they belong. The controls are discretionary in the sense
that a subject with a certain access permission is capable of passing that permission
(perhaps indirectly) on to any other subject (unless restrained by mandatory access
control). [DOD85] :

inference - derivation of new information from known information. The inference problem refers
to the fact that the derived information may be classified at a level for which the user is
not cleared. [NCSC89]

Mandatory Access Control - A means of restricting access to objects based on the sensitivity (as
represented by a label) of the information contained in the objects and the formal autho-
rization (i.e., clearance) of subjects to access information of such sensitivity. [DOD85]

REFERENCES:

BELL73 Bell, D., and L. Lapadula, "Secure Computer Systems:
Mathematical Foundations and Model", MITRE Report MTR
2547, v2 Nov 1973.

BIBA77 Biba, K., "Integrity Considerations for Secure Computer
Systems U.S. Air Force Electronic Systems Division, 1977.

BOOCS3 Booch, Grady, Software engineering with Ada, Menlo Park: the
Benjamm Cummings Publishing Company, 1983.

DATES6 Date, C. J., An Introduction to Database Systems, Reading, MA:
Addison-WesIey, 1986.

DENNSS8 Denning, D. E., "Lessons Learned From Modeling a Secure Mul-

, tilevel Relational Database System”, Database Security: Status
and Prospects, Amsterdam: Elsevier Science Publishers, 1988.

DOD85 DoD, Department of Defense Trusted Computer System

‘ Evaluatlon Criteria, DOD 5200.28-STD, 1985.

- JACO89 "Security In Computmg , Computer, August, 1989, p. 150.

LANDS88 ‘ Landwehr, C. E., "Database Security, Where Are We?",
Database Secunty Status and Prospects, Amsterdam, Elsevier
Science publishers, 1988.

NCSC88a National Computer Security Center, Glossary of Computer
Security Terms, NCSC-TG-004-88, 1988.

NCS288b National Computer Security Center, Trusted Network

_ Interpretation of the Trusted Computer System Evaluation
Criteria, NCSC-TG-005, 1987.

NCSC89 National Computer Security Center, Draft Trusted DBMS
Interpretation of the DoD Trusted Computer System Evaluation
Criteria, 1989.

WINK89 Winkler- -Parenty, H., "Can You Trust Your DBMS", Database
Programming & Design, July 1989, pp. 50-59.

561

Executive Summary

1990: A YEAR OF PROGRESS IN TRUSTED DATABASE
SYSTEMS

John R. Campbell
National Computer Security Center
Office of Research and Development
9800 Savage Road
Fort George G. Meade, Maryland 20755-6000
(301) 859-4488

1990 has been a year of progress in trusted database systems. It is the year
when research and development has reached new level of maturity. Tougher ques-
tions, such as inference, aggregation and concurrency control are being examined,
and answered. Theoretical foundations are being established. At the Third RADC
Workshop on Multilevel Security, Bhavani Thurasingham of MITRE proved that the
general inference problem is unsolvable and then presented a series of approaches
that could be used to control inference. Knowing that the general problem is unsol-
vable enables us to more efficiently apply resources to research the controlling
methodology. _ '

At the same Workshop, TY Lin of California State University provided insights
into aggregation by looking at aggregation through theoretical constructs. Several
researchers, each of whom by their work have developed perspectives into the
problem of polyinstantiation, discussed and debated this problem. The researchers
who attended this Workshop, and their work, were of high quality.

The activity and productivity in trusted database systems was also seen at the
1990 IEEE Computer Society Symposium in Security and Privacy. Three of the eleven
sessions discussed work being done in this area.

1990 is also the year of the trusted multilevel database prototype. At the NCSC,
Oracle Corp. delivered a "B-level" prototype in April. This prototype is exploring re-
search questions, methodologies and techniques in building multilevel trusted sys-
tems. The papers of Vetter, on TCB-Subsets and Maimone on concurrency controls
(Tuscon, winter, 1990) are outputs of this work. Oracle is delivering a second proto-
type, based on the Gemsos Operating System, in August.

Teradata Corp. is building a trusted "B-level” database machine for the NCSC.
This computer, dedicated to database management system processing, can be ac-
cessed by several host computers. It has an interesting MIMD architecture, is modu-
lar and fault tolerant. Systems can be configured from six to several hundred pro-
cessors. Discussions on metadata host control were interesting.

“Sybase Corp. has produced a "B-level" server. In doing this, much work on
trusted subjects and covert channels was done.

562

In this paper, | have enclosed all trust ratings in quotes. This is done because no
systems have been evaluated by the NCSC. No system has been evaluated because
the "yardstick" for evaluations has not yet been built. However, it is likely that this
yardstick, the first edition of the "Trusted Database Interpretations of the Trusted
Computer System Evaluation Criteria”, or "TDI", will be published before the Con-
ference. This is the document that will be used to evaluate the security of database
systems.

1990 is a year for users too. Users have, and will soon have still more security in
off-the-shelf database systems. For example, "C2-level" security will be part of the
standard database package from both Oracle and Teradata. Sybase, Trudata and
others have packages. :

1990 hopefully is also a good year for future plans for research and develop-
ment in trusted database systems. The NCSC is sponsoring two parallel efforts to
develop highly secure database systems. "Secure" here means secrecy, integrity and
availability. Secrecy will be at the "B-3" and "A-1" levels. "Integrity" includes sys-
tem, label and data integrity. "Data integrity" includes entity, referential and other
integrity. "Availability" includes fault tolerance and distributed systems. The efforts
will last from five to six years. One effort uses host-based architecture; the second
uses the database machine.

To date much has been accomplished, much is being done. If this area is
properly supported, it is likely that future accomplishments will be equally bright.

563

Executive Summary

Secure Database Products

James Pierce
Teradata Corporation

DBC/1012 Security Features

C2 General Release - June, 1990
® DAC
® Auditing v
® Logon Control

B1 Prototype - February, 1991
® MAC _
® Audit Extensions

- @ Password Guidelines

Implementation Experience

Database Computer
® Parallel Architecture
® Dedicated Operating System
® |dentification & Authentication

Audit in Large Databases
® Performance.
® Storage Requirements

Labels of Metadata _
® Requires Trusted Process

564

Executive Summary

Trusted Database Software:
Review and Future Directions

Peter J. Sell

Office of Research and Development
National Computer Security Center

The Trusted Database Software (TDS) program is a two phase effort using exist-
ing technologies and commercially available Database Management Systems (DBMS)
to develop a series of trusted DBMS prototypes. These prototypes range from a
stand-alone C2 level prototype to a distributed A1 level prototype. The first goal of
this project is to develop secure DBMS prototypes, both distributed and non-distribu-
ted, which will provide the Government with secure database management capabili-
ties. The second goal of this project is to have the prototypes developed into com-
mercial products, evaluated by the National Computer Security Center (NCSC), and
added to the Evaluated Products List (EPL).

Phase One

The first phase of the TDS project involves the development of five prototypes.
The first two prototypes implement discretionary access control (DAC) and run on
the VAX VMS operating system and the Gemini Secure Operating System (GEMSOS).
The next three prototypes implement mandatory access control (MAC) and run on
the VAX VMS, the VAX Security Enhanced VMS (SEVMS), and the GEMSOS operating
systems. In July 1988, Oracle Corporation signed a contract to develop the proto-
types for this phase of the TDS program. '

Oracle Corp. delivered and installed the first prototype developed under this
contract to the NCSC in May 1989. This prototype, which runs on the VMS operating
system, implements DAC at a potential C2 level of trust as defined in the Trusted
Computer System Evaluation Criteria (TCSEC). Besides the TCSEC security require-
ments, the prototypes also include two research topics, referential integrity and
group access controls. Referential integrity insures that all foreign keys refer to
legitimate values defined in a different table. Group access controls allow database
administrators to separate users into groups and then assign privileges to those
groups. This prototype provides group access controls by using roles, or bundles of
privileges. For example, a role named payroll could be created that contained all the
privileges relating to a person working in the payroll department. A database
administrator, or another privileged user, may grant this role to other users as if it
were asingle privilege.

Oracle Corp. delivered and installed the second prototype, which runs on the
VMS operating system, at the NCSC in April 1990. This prototype was a stepping
stone to the third prototype that runs on the SEVMS operating system. Oracle
delivered and installed this prototype at the NCSC in May 1990. This prototype
enforces MAC at a potential B1 level of trust as defined in the TCSEC. As with the
first pllfototype, this prototype includes referential integrity and group access
controls.

565

The final two prototypes will be delivered in the fall of 1990. The first of these
prototypes implements DAC and the second of these prototype implements MAC.
Both prototypes run on the GEMSOS operating system.

Phase Two

The second phase of the TDS program will produce four prototypes at the
potential B3 and A1 levels of the TCSEC. The first two prototypes will operate in a
stand-alone environment, while the second two prototypes will operate in a
distributed environment. This project incorporates the requirements of the TCSEC,
the Trusted Network Interpretations of the TCSEC (TNI), and the Trusted Database
Interpretations of the TCSEC (TDI). These prototypes incorporate all three of these
requirements on one system for the first time.

The first prototype will run in a stand-alone environment. This prototype will
meet all the requirements of a potential A1 system except that the prototype will
not meet the formal verification requirements of the TCSEC. The second prototype
will then undergo formal verification to meet a potential A1 level of trust. The third
prototype will run in a three-node distributed environment and will meet all the
requirements of a potential A1 distributed system except the formal verification
requirements. The fourth, and final, prototype will then undergo formal verification
to meet a potential A1 level of trust for a distributed system.

In addition to the TCSEC requirements, several security research topics will be
studied. The first topic to be studied is a data integrity policy combined with a
security policy. All four of the prototypes developed ?or this phase of the program
will enforce a combined data integrity and security policy. The second research topic
to be studied is polyinstantiation. Polyinstantiation allows multiple copies of a
record to be stored at different classifications. Inference and aggregation controls
will be studied as the third research topic and an inference and aggregation control
policy will be included on the prototypes. Finally, the prototypes will maximize the
use of Trusted Computin? Base (TCB) subsets in order to increase the portability and
simplify the evaluation of the prototypes. _

Several non-security requirements also will be included on the prototypes. The
first requirement is to maximize the performance of the DBMS by designing security
into the system from the beginning. The second requirement is that the prototypes
implement ANSI SQL as the query language. Any enhancements to the SQL
language, as a result of the addition of multi-level security, will remain consistent
with ANSI SQL.

The Center sent a Request for Proposal (RFP) to several vendors in the DBMS

arenain May 1990 for this phase of the TDS program. A contract should be signed by
the end of 1990.

566

Trusted Systems Interoperability

Helena B. Winkler-Parenty

, Sybase, Inc.
0475 Christie Avenue
Emeryville, CA 94608

Past Year’s Efforts

During the past year, Sybase has continued its commitment to producing trusted DBMS
technology. The first offering of trusted products was the SYBASE Secure SQL.
Server™ and SYBASE Secure SQL Toolset™. These products were generally available
at the end of 1989. Since then, SYBASE Open Server™, an application programming
interface for developing server applications, has been extended to incorporate secure
features. In addition, the Secure SQL Toolset has been ported to several platforms,
including Digital’s SE/VMS and Sun OS MLS.

This past year there have been several major trusted projects ongoing within Sybase.
After shipping Release 1 of the Secure SQL Server we have been providing customer
support for the product, and shipped a maintenance release in the middle of the year.
We gathered information from our customers to feed into the design process of Release

‘2. Release 2 has been fully specified and designed, and implementation is now under-

way.
We used this past year as an opportunity to reexamine our B2 strategy. When we ini-
tially started work on our B2 targeted DBMS there were no trusted operating systems

that could be used as a base. There are now several trusted operating systems in the
marketplace, and others that are being developed.

The final project that we have worked on over the last year has been porting the Secure
SQL Toolset to SE/VMS and Sun OS MLS. It has been an interesting learning experi-.

- ence seeing how each of these multi-level operating systems treats trusted processes both

running on top of themselves and on top of other operating systems. Heterogeneous
trusted systems working cooperatively is a hard but important problem. Creating a com-
mon label space and enabling our Secure SQL Server to communicate with users at mul-
tiple security levels were two of the challenges we faced.-

SE/VMS

One of the two MLS operating systems we targeted for the Secure SQL Toolset was
SE/VMS. For both security and user convenience we decided to modify the Toolset to
retrieve the user’s operating system login security level from SE/VMS, and use this secu-
rity level as part of the identification and authentication procedure with the Secure SQL
Server. This means that users do not need to retype their logm security level when log-
ging into the Secure SQL Server.

567

In addition, it is important for site security, because if the user logs into the Secure SQL
Server at a different level from their operating system session level, security breaches can
occur, If the user’s operating system level is greater than their DBMS level, then trojan
horse software or an error on the user’s part can cause data at a high security level to be
inserted into the database and labeled at a lower security level. Similarly, if the user logs
into the DBMS at a higher level, high level data could be retrieved from the DBMS and
be incorrectly inserted into a lower level operating system file. Both of these potential
problems are averted by the Sybase trusted system.

Once the user’s login security level has been retrieved from SE/VMS, the Secure SQL
Toolset converts it from the format used by SE/VMS to the format used by Sybase.
SE/VMS supports 256 security levels and 128 compartments, if integrity labels are not
used. Release 1 of the Secure SQL Server supports 16 hierarchical levels and 64 com-
partments. Release 2 of the Secure SQL Server will support 256 levels and 1024 com-
partments. If the user has logged into SE/VMS with a level between 16 and 256, or
compartments 65 through 128, and they are attempting to login to a Release 1 Secure
SQL Server then their logm w111 be rejected.. In addition, the Secure SQL Server con-
firms that the user’s maximum allowable DBMS login level dominates the user’s active
SE/VMS session level. Otherw1se the login request to the Secure SQL Server is denied.

In SE/VMS it is both poss1b1e and easy to specify that another machme, and all of the

software running on it, is trusted to operate over a specified range of security levels.
Therefore, if the Secure SQL Toolset is running on SE/VMS and the Secure SQL Server
is on another operating system, the only special action that needs to occur is for someone
with root privileges to specify that the machine which is running the Secure SQL Server
is trusted to operate over the range of at least level 0 with no compartments on, to level
15 with compartments 1 through 64 on. This will need to be done for each SE/VMS
machine running the Secure SQL Toolset that wants to connect to the Secure SQL
Server.

Sun OS MLS

For the Secure SQL Toolset to run on Sun OS MLS similar changes needed to be made
to retrieve the user’s Sun OS MLS login level, convert it to the Sybase format, and send
it to the Secure SQL Server.

A signpificant difference between SE/VMS and Sun OS MLS is that Sun OS MLS will
only consider another machine to be trusted if it complies with the change to the IP
header that Sun OS MLS has specified. Sun'OS MLS requires that the Internet Protocol
(IP) header contain the security level of the packet. Since the Secure SQL Server is an
application running on top of an operating system Sybase could not make this change.

In order for the Secure SQL Server to communicate with users at multiple levels we were
required to write a new utility called the Trusted Multiplexor.

The Trusted Multiplexor is trusted by Sun OS MLS to operate over d range of security
levels, and is therefore part of the Trusted Computing Base (TCB). It runs on each
client machine, receiving requests from clients at their login level, writing the request up
to Sun OS MLS system high, and then passing these requests over the network to the
Secure SQL Server. After the Secure SQL Server has formulated a response to the
user’s query, the Trusted Multiplexor receives the response from the Secure SQL Server.

568

writes it to the user’s login security level, and sends the response to the user.

All communication with the Secure SQL Server is over the network and is labeled at Sun
OS MLS system high, regardless of the actual level of the data being transmitted.
Because data is overclassified, and is never underclassified, no security breaches can
occur.

After installing the Secure SQL Server a user with root privileges must specify on every
client machine that may want to access the Secure SQL Server that the machine running
the Secure SQL Server is a single level machine running at Sun OS MLS system high. In
addition, this same user must install the Trusted Multiplexor. The Trusted Multiplexor
is installed at system low, with root privileges. These privileges allow the Trusted Multi-
plexor to communicate with users at all possible security levels.

Conclusion

1990 was a busy year for Sybase. We’ve received favorable feedback on our secure pro-
ducts, which have been generally available for a year. We've ported the Secure SQL
Toolset to two MLS operating systems, SE/VMS and Sun OS MLS. We’ve addressed
and solved installation, site security, and interoperability problems with running our
trusted products in a heterogeneous trusted operating system environment.

copyrighted © Sybase, Inc., 1990. All rights reserved. SYBASE is a registered trademarks of Sybase, Inc. SYBASE Secure SQL ‘
Server, SYBASE Secure SQL Toolset, and SYBASE Open Server are trademarks of Sybase, Inc. All other company and product
names may be trademarks of the respective company with which they are associated.

569

Oracle Secure Systems
1989-1990 A Year In Review

Linda L. Vetter
Director, Secure Systems
Oracle Corporation

Over the last year, Oracle Corporation has continued.
to focus significant efforts on trusted relational
database management system (RDBMS) technology
through our on-going research, development, and
consulting activities, Oracle Secure Systems, formed
in February 1989 as an Oracle Corporation strategic .
business unit, is chartered with spearheading Oracle’s
efforts to research, design, build and deliver high
security RDBMS commercial off-the-shelf software to
commercial and government organizations worldwide.

At the Computer Security Conference last October, 1
discussed Oracle’s discretionary prototype that was
delivered to the NCSC in May 1989 running on
Digital Equipment Corporation’s Class C2 VAX/VMS
trusted computing base (TCB). That prototype was
the first in a series of working "proof of concept”
prototypes of trusted RDBMSs that run on various
secure platforms and which are targeted for Trusted
Computer Security Evaluation Criteria (Orange Book)
evaluation Classes C2 and B1 under an R&D contract
awarded to Oracle Corporation in July 1988.

In the twelve months from October 1989 to October
1990, Oracle has achieved several additional
milestones, including the delivery of our Bl level
RDBMS prototype to the National Computer Security
Center (NCSC). Building on last year’s C2-style
prototype, Oracle Corporation developed a mandatory
prototype that supports multilevel security (MLS)
features including data labeling and other. Class Bl
functionality. The ORACLE MLS mandatory
prototype was delivered to the NCSC in- April 1990
running on DEC’s target Class B1 operating system,
SEVMS.

The security policy of the ORACLE mandatory
prototype consists of two types of security: mandatory
and discretionary. Mandatory security controls access
to information through labels: in order to access
certain information, a subject’s label must meet
specified criteria in relation to the label of requested
objects. Discretionary security further controls access
to information through privileges: in order to access
certain information a subject must possess the
appropriate privilege as granted by the object’s owner
or security officer.

570

The ORACLE mandatory prototype implements
mandatory and discretionary security through a
constrained TCB subset architecture in which the
RDBMS builds upon security features of the trusted
computing base (TCB) to which it is ported. This
architectural approach extends security features
already provided by a trusted operating system with
complementary security capabilities in the RDBMS.
Together, the RDBMS and operating system (OS)
jointly and cooperatively enforce the stated security
policy. ' :

The. constrained TCB subset architecture requires a
clear definition between the RDBMS portion of the
TCB and the operating system and hardware portions
of the TCB on which the RDBMS runs. Because the
multilevel secure (MLS) ORACLE prototype’s
implementation of a constrained TCB subset
architecture relies on mandatory security mechanisms
in the OS base, portions of the MLS ORACLE
security policy are based on the operating system
mandatory security policy. The RDBMS implements
database-relevant discretionary security without
superseding or violating the security policy of the
underlying secure operating system.

In the mandatory prototype, the operating system
mandatory TCB (m-TCB) controls all access to
storage objects, for example OS files and memory
segments. The m-TCB' subjects execute code of
appropriately labeled ORACLE instances. Database
subjects map directly to OS subjects that have
successfully completed identification and
authentication by the operating system m-TCB
identification and authentication component.
Discretionary access control on database objects, such
as views and tables, and database auditing are
enforced by the RDBMS prototype.

Oracle’s implementation of the constrained TCB
subset approach takes advantage of the fact that our
MLS RDBMS is designed to be portable to any Bl+ -
targeted platform and that it can depend on certain
features, functions, and assurances already available in
such environments. For example, MLS ORACLE uses
the user ids and passwords, user clearance ranges,
label definitions, MAC policy model (of label

dominance), and other security facilities of the
underlying B1+ platform. Not only does this reduce
the amount of code within the RDBMS that must be
trusted, evaluated, and RAMPed, but this also means
that users only need to maintain and change their
passwords in only one place; also, installation security
officers do not need to define and maintain -clearance
ranges, valid label formats, etc., more than once. MLS
ORACLE provides installation options allowing the

database-specific audit trail records to be maintained:

inside the trusted DBMS or to be delivered to the
secure OS for global recording.

Oracle Secure Systems is now completing the final
phase of its NCSC contract. The final phase consists

of the ORACLE prototypes ported to Gemini -

Computers’ target Class A1 GEMSOS TCB hardware
and software. Gemini Computers is a subcontractor to
Oracle Corporation on this R&D contract.

The ORACLE C2 and B1 style prototypes delivered to
the NCSC included extensive test suites and
documentation deliverables similar to those required
for NCSC evaluations, plus training courses on
porting, installing, and using multilevel secure
systems, Features of both the mandatory and
discretionary prototypes, including enhanced
documentation and training materials in addition to
product enhancements, are being incorporated into
ORACLE RDBMS commercial products and services
such as Trusted ORACLE RDBMS, which is targeted
for B1 and higher ratings on multiple secure platforms,

Another major R&D effort involving Oracle Secure .

Systems during this year has been the SEcure DAta
Views (SeaView) high security RDBMS project
sponsored by the United States Air Force’s Rome Air
Development Center (RADC). In this R&D contract
awarded at the end of 1989 as a follow-on to the
original RADC SeaView project, Oracle Corporation
is teamed with SRI International (prime) and Gemini
Computers.

The original SeaView project was a three-year study
completed by SRI in January 1989. That effort
produced a security policy, a model, an
implementation specification, and a GEMSOS-based
demonstration system for a multilevel secure (MLS)
RDBMS designed to meet high United States
Department of Defense standards for computer
security. ORACLE RDBMS was selected as the
commercial database that best met the original
SeaView project goals. These goals included:

571

* Portability to multiple high security operating
systems

* Full function relational or structured query
language (SQL) interface

* Support of user-defined views and discretionary
access controls for both base relations and views

In the follow-on effort, Oracle Secure Systems is
participating in the production of a demonstration
system of a Class Al secure RDBMS based on the
original SeaView design.

. The SeaView design shpports multilevel relations, a

technology that provides classification and access
control of individual database elements based on
"need-to-know" criteria. SeaView’s hierarchical
subset architecture uses an ORACLE RDBMS MLS
prototype, extended from work under the NCSC
prototype contract, layered between Gemini’s
Al-targeted GEMSOS TCB and the "untrusted”
SRI/SeaView MSQL (multilevel SQL) Processor.
When completed, the SeaView demonstration system
will further allow users to define, manipulate, and
control relational database entities and relations at a
very fine level of granularity in a multilevel, high
assurance environment.

In building these secure systems, we have attempted to
ensure that the required mandatory and discretionary
security enforcement is applied in the RDBMS and OS
base products so that our wide range of application
development tools and utilities, as well as existing
applications, can all continue to process as untrusted
systems with minimal or no modification. Besides
reducing possible impact on developers and system
maintenance personnel, this greatly simplifies the
efforts of system evaluators, certifiers and accreditors.

Obviously, it has been a busy twelve months for
Oracle Secure Systems. Participation in these and
other secure database activities are helping Oracle
Corporation build an integrated family of portable,
high-performance, commercially available secure
relational database products for a wide variety of
platforms.

Executive Summary
Trusted Database Machine Program: An Overview
William O. Wesley, Jr.

Office of Research and Development
National Computer Security Center

Program Goal and Description

The goal of the Trusted Database Machine (TDM) program is to develop a
solution to the database security problem of providing multilevel security for data-
base machines. The overall program will be broken into 4 phases. Each phase will
focus on the development of demonstratable secure database machine prototypes,
using existing technology and a commercially available database machine, making
the commercially available database machine a more secure product.

The first phase will focus on the development of 2 secure prototypes. The
first prototype, in phase 1, will incorporate "C2" security features into a database
machine. The second prototype, in phase 1, will.incorporate "B1" security features
into a database machine. A detailed description of what "C2" and "B1" security
requirements are may be found in the Department of Defense Trusted Computer
System Evaluation Criteria, document number DOD 5200.28-STD.

The second phase of the program will focus on the development of 1 se-
cure prototype. This prototype will require the development of a "A1" database
machine. Unlike phase 1, security features at the "A1" level cannot be incorporated
into an existing database machine. "A1" security features must be a part of the
entire development process of the database machine. Further information regard-
ing "A1" security features may be found in the Department of Defense Trusted
Computer System Evaluation Criteria, document number DOD 5200.28-STD. In
addition to addressing the TCSEC requirement for "A1", phase 2 will also address
several database security issues. These issues include - the incorporation of a security
policy and a integrity policy and how they will work together, inference and aggre-
gation, data integrity, referential integrity, and system performance and how the
security controls affect it.

The third phase of the TDM Program will focus on the development of an
"A1" networked database machine. This portion of the program will incorporate
the results from phase 2 of the program and develop a secure network at the "A1"
level, which will allow several heterogeneous computers (both mainframes and
workstations) to use the secure database machines resources in a secure manner.
Further information regrading "A1" secure networks may be found in the National
Computer Security Center Trusted Network Interpretation, document number NCSC-
TG-005.

The fourth and final phase of the program will develop an "A1" secure
heterogenous multi-node database machine system. This phase will securely link
together several database machine systems with several heterogenous computers

572

(both mainframes and workstations), providing a secure distributed operating
environment for the entire system.

Accomplishments to Date

Phase 1

The contract for the phase 1 was awarded to the Teradata Corporation in
September 1987. In August 1988, Teradata completed the development of the
"C2" prototype. This prototype implements such features as discretionary
access control, object reuse, identification and authentication, and auditing of
named objects. To date, Teradata is working on the "B1" secure prototype
development. The "B1" prototype is scheduled to be completed in FY91. In
addition to the security features implemented in the "C2" prototype, the "B1"
prototype will also implement manadatory access control, and labeling.
Teradata has recently incorporated the security features implemented in the
"C2" prototype, into their commercial version 4.2.

Phase 2_

The RFP for the phase 2 work has been developed and released. The RFP
is a competitive bid and a contract is expected to be awarded by the end of the
calendar year. :

573

Executive Summary . |
TRUSTED DATABASE SYSTEMS: THE TOUGH ISSUES

John R. Campbell
National Computer Security Center
Office of Research and Development
9800 Savage Road
Fort George G. Meade, Maryland 20755-6000
(301) 859-4488 .

Research and development in trusted database systems have reached a new
level of maturity. The "B-level” prototypes being produced attest to this maturity.
However, many interesting problems remain.

A. CONCURRENCY CONTROLS

For example, what is the right type of concurrency control for trusted
multilevel database systems? Database systems frequently have many users working
on the system at the same time. Each is doing a part of their own transaction. itisup
to the system to insure that each user’s transaction is consistent.

Suppose A and B are tellers that are subtracting cancelled checks from checking
accounts. Bob has written two checks, one for $10, one for $20. Bob's checking
account currently has $100 in it. The processing is done in this sequence. Clerk A
reads Bob's balance, $100. Clerk B read's Bob's balance, $100. Clerk A subtracts the
amount of the first check from the balance, $100 - $10, and writes the difference,
$90, in the database. Clerk B subtracts the amount of the second check from the
balance he read, $100 - $20, and writes the difference in Bob's account, or $80. Bob
has spent $20 plus $10, or $30; he is charged for $20. This is a concurrency problem.

One solution is for the system, or clerk A through the system, to lock all other
users out of Bob's balance until clerk A is finished updating the balance. The
disadvantage of this technique is that it impacts performance, especially if the
structure locked is large.

Multiple users on a multilevel system who are able to lock the same data create
another problem, that of a covert channel. Locking can be used to signal high to
low.

The issue then is to provide concurrency with minimum impact on performance
and with covert channels removed, if possible.

B. LABELS

A sensitivity label represents the security level of an object. It describes the
classification of the data in the object. What is the "right" way to label objects? Do
we need separate labels for secrecy, including compartments, integrity and other
designations? How do we handle special needs, for example, 1024 compartments?
Should we, and how do we standardize labels?

574

C. AUDIT ,

An audit trail provides documentary evidence of processing. It associates users
with objects. How do you do multilevel audit in a trusted database management
system? Do you have an audit trail at each level? How are these combined?

What should the granularity of the audit trail be and what should be recorded?
If the granularity is too fine or if every act is recorded a huge amount of audit data is
created. On the other hand, insufficient audit data will hinder and even prevent the
detection or recording of an inappropriate event.

What assurance is needed? The processes used to create the audit trail and the
audit trail itself should be tamperproof. How do you do this? _

How is the operating system involved? Certainly there are situations where the
database system is incapable of creating its own trail; for example, when it is coming
up or crashing. Another example is the deletion of the audit trail when the disks are
full; this is another case where the operating system audit trail may be needed.
What if the operating system is used for identification and authentication?

How do you combine audit trails? In the distributed case, how should the
separate streams be combined? Do systems distributed across the country use
standard time stamps? ,

What tools are necessary so that system security officers may obtain
meaningful information out of the mass of audit data that was created?

D. HIGH ASSURANCE

"B3" and "A1" systems require high assurance. How do you get this assurance?
Database systems are large andtheir TCB's are likely also to be large. Are the current
verification tools adequate for the job?

Must the SQL compiler be in the TCB? If it does, the TCB will be very large.
What software engineering methodologies and other techniques can be used to
provide the SQL compiler with adequate assurance?

E. IMPLEMENTING DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

How do you implement a trusted multilevel distributed database management
system? Do you use client-server, distributed operating system or distributed
database system? Which is easiest?

F. INTEGRITY

How do you build integrity into a trusted multilevel database system? What is
"integrity”? How do you resolve the conflict between integrity and secrecy, for
example, referential integrity and secrecy?

575

G. TRUSTED SUBJECTS , .

- Trusted subjects are subjects that violate the security policy of the system and
are trusted to do that violation in a very specific way. A downgrader, for example, is
an example of a trusted subject. Some trusted multilevel database systems are
implemented using trusted subjects. Should we be doing this? How do trusted
subjects affect evaluations?

H. TCB SUBSETS | \

TCB subsets are layers of the TCB. Each enforces a specific part of the overall
security policy. If an upper layer does not interfere with a lower layer, then it may
not be necessary for the lower layer to be reevaluated. For example, if the lower
level, an operating system, provides mandatory access control (MAC), the upper, a
database system, provides discretionary access control, and the upper level does not
interfere with MAC enforcement, then the operating system does not have to be
reevaluated when evaluating the upper layer. this is a big labor savings. Is this the
way to go? ‘

I. COVERT CHANNELS

Covert channels are communications channels that allows processes to transfer
information in a way that violates the security policy of the system. Shared resources
invite covert channels. Database systems make a point out of sharing resources.
Where are the covert channels? How do you eliminate or control them?

This is but a partial list of tough database security problems. These problems
are currently being studied, and, one by one being solved. Highly trusted multilevel
database systems will be a reality.

576

TOUGH ISSUES:
- INTEGRITY AND AUDITING IN MULTILEVEL SECURE DATABASES
(Panel Position Paper)

Sushil Jajodia

Department of Information Systems and Systems Engineering
George Mason University
- 4400 University Drive
Fairfax, VA 22030-4444

I. INTEGRITY

The requirements for maintenance of databasc integrity are often in conflict with
the security? requirements of multilevel secure database management systems.
Nevertheless, although we may never reach a point at which security and integrity feel
entirely comfortable with each other, it is possible to have themlive in harmony to a
large extent.

Security requires that users be denied all knowledge of data to which they do not
have authorized access. On the other hand, integrity constraints can be defined over data
in different access classes in such a way that information from one access class can leak
to another. This conflict is exacerbated by the well-known covert channel problem: the
fact that a leak between access classes can provide, not only information about data over
which the constraint is defined, but signaling channels by which information about data
at one access class can be passed to users at another access class. If satisfaction of an
integrity constraint requires that changes to data at one access class be reflected
indirectly in the value of data at another class, then a Trojan Horse program embedded in
a process at the first class can encode data at the first class as data at the second class by
varying the data involved in the integrity constraint so that it produces detectable
changes in the data in the second class. Such a channel could be used to pass on, not
only information directly affected by the constraint, but any other information to which
the Trojan Horse has access. Thus integrity constraints that seem intuitively harmless
can actually be more dangerous than they appear at first glance.

The requirements for database security can be summed up in a general statement,
called the Basic Security Principle for Multilevel Secure Databases [1,2]. (One access
class is said to dominate another if a user who is cleared to the first access class is also
assumed to be cleared to the second access class.)

T Perhaps I should use *secrecy’ instead of ‘security’ throughout.

577

Basic Security Principle for Multilevel Secure Databases

The access class of a datum should dominate
the access classes of all data affecting it.

The reason for the Basic Principle is clear: if the value of a datum can be affected
by data at access classes not dominated by its own, information can flow into the item
from those other access classes. '

We will find it useful to divide the definition of integrity into three different
(although somewhat overlapping) properties:

Correctness
The correctness of a databaseis the degree to which it satisfies all known con-
sistency constraints.

Availability
The availability of a database is the degree to which data can be made available to
authorized users.

Unambiguity
The unambiguity of a database is the degree to which queries have identical
responses. We take unambiguity to apply to equivalent as well as identical queries.
In other words, if two equivalent queries have different responses, we consider the
responses to be ambiguous.

A fourth property is also important to the maintenance of database integrity.

Recoverability
The recoverability of a database is the degree to which, whenever it is not correct,
available, or unambiguous, it can be returned to such a state.

If we examine the various kinds of threats to integrity that arise in multilevel secure
database systems, there are several ways that exist of dealing with them. (See [1,2].)
Whenever a conflict arises between database integrity and security, it can often be
resolved more or less satisfactorily by introducing a trade-off among the three integrity
properties instead of between integrity and security. In general, of all three database
integrity properties, unambiguity is the most easy to sacrifice, perhaps because unambi-
guity is the most easily recoverable of the three properties. When data availability is
sacrificed, data may become irretrievably lost, and when data correctness is sacrificed,
data may become irretrievably corrupted. However, it is always possible to recover data-
base unambiguity as long as well-defined rules exist for identifying the correct version of
the data. The definition of such rules is nontrivial and remains an open problem.

II. AUDITING

In the Trusted Computer System Evaluation Criteria [3], the accountability control
objective is stated to be as follows:

578

“‘Systems that are used to process or handle classified or sensitive information
must assure individual accountability whenever either a mandatory or discre-
tionary security policy is invoked. Furthermore, to assure accountability the
capability must exist for an authorized and competent agent to access and
evaluate accountability information by a secure means, within a reasonable
amount of time and without undue difficulty.”’

Existing databases clearly fail to meet the above objective. In my view, this is
because existing database systems treat only the current data in a systematic manner; the
old information is either spooled to the log that has an ad hoc structure or is deleted. If
we wish to meet above requirements in a database, we need to treat the audit data in a
systematic way as well, not just the current data. Once this is done, we can then begin to
address other issues related to audit. (See [4].)

A similar situation existed in the early 1960’s. An application program used its own
specially designed files. As a consequence, it was very difficult for a user to know what
files already existed in the system. Knowing the existence of a file was not sufficient; the
user needed to know the actual file structure as well. If a file maintained by some pro-
gram was reorganized, there was no assurance that other programs wishing to access the
reorganized file would still work. Thus, much information was stored redundantly; how-
ever, this there were problems when users started to look for consistency of results.

The database approach in the early 1970’s overcame many of the problems listed in
the previous paragraph. An important tool called a data model was developed which
imposed a logical structure on all the (current) data in the system. This allowed the users
to see data, not as an arbitrary collection of files, but in more understandable terms.
Database researchers developed another key concept of independence: The logical
structure of the data became independent of the details of physical storage of data. Since
now users could reorganize the physical scheme without changing the logic of existing
programs, duplication of data could be avoided.

We must take a similar approach when it comes to audit data. First, we must care-
fully list the audit objectives, and then provide mechanisms required to achieve these
objectives. It is my position that in an audit trail, it should be possible to audit every
event in a database. I call it ‘‘zero-information loss.”” What events are actually audited
depends on the sensitivity of the events in question and the results of a careful risk
analysis. In addition to the actual recording of all events that take place in the database,
a logical structure needs to be imposed on audit data. An audit trail requires mechanisms
for a complete reconstruction of every action taken against the database: who has been
accessing what data, when, and in what order. Finally, an audit trail must also provide
the capability (a query language) to easily access and tools to evaluate the audit informa-
tion.

579

References

1.

Catherine Meadows and Sushil Jajodia, ‘‘Integrity versus security in multi-level
secure databases,”’ in Database Security: Status and Prospects, ed. Carl E.
Landwehr, pp. 89-101, North-Holland, Amsterdam, 1988.

Catherine Meadows and Sushil Jajodia, ‘‘Maintaining correctness, availability, and
unambiguity in trusted database management systems,”” Proc. 4th Aerospace Com-
puter Security Applications Conference, pp. 106-110, December 1988.
“‘Department of Defense Trusted Computer System Evaluation Criteria,’” Depart-
ment of Defense, National Computer Security Center, December 1985.

Sushil Jajodia, Shashi K. Gadia, Gautam Bhargava, and Edgar H. Sibley, ‘‘Audit
trail organization in relational databases,’” in Database Security, III: Status and
Prospects, ed. D. L. Spooner and C. Landwehr, pp. 269-281, North-Holland,
Amsterdam, 1990.

580

Issues of Concurrency Control and Labeling
in Multilevel Database Systems

Teresa F. Lunt
Computer Science Laboratory
SRI International

For this panel on “tough issues” in database security, I was asked to
comment on the issues of concurrency controls and labeling in multilevel
database systems. ‘

Concurrency Controls

There are basically two choices in implementing concurrency controls in a
multilevel database system: either to implement the controls in such a way
that they can be enforced without the need of trusted components (and
hence free of covert channels), or to implement the controls using a trusted
scheduler with global knowledge.

Covert-Channel-Free Mechanisms

The published work in this area (papers have appeared recently by Lunt,
Greenberg, Downing, Tsai, Keefe, Jajodia, and Kogan) has been directed
toward solutions to the former approach, in which concurrency controls can
be implemented free of downward information flow channels. Although most
of the work to date (with the exception of that by Lunt et al.) has considered
a single central scheduler with global knowledge, that work has neverthe-
less sought solutions that were demonstrably free of downward information
flows. Most recently, work by Bill Maimone and Ira Greenberg (to appear
in the Sixth Annual Computer Security Applications Conference in Tuscon

. in December 1990) has shown that a central covert-channel-free scheduler

with global knowledge is equivalent to a set of single-level untrusted sched-
ulers, each with knowledge only of the information at or below its access
class. This alternative, of implementing concurrency controls using only
single-level untrusted subjects, is the most secure approach possible. As the
published literature has shown, this approach permits any desired degree of
concurrency and consistency, including strict serializability.

581

Trusted Mechanisms

The second alternative, that of implementing the concurrency controls using
a trusted scheduler, while reducing the complexity of the functional design,
increases the inherent security risk. This is because the concurrency controls
are used in routine query and transaction processing, rather than merely for
privileged operations performed by privileged users and authorized through
a trusted path. Meaningful auditing of the covert channels introduced by
such a trusted scheduler appears to be infeasible, because every query and
transaction on the database will make use of the concurrency controls. As we
seek increased assurance in the higher evaluation classes, the use of trusted
components for routine data processing should be discouraged as introducing
too much unnecessary and avoidable risk. Moreover, the interaction of the
channels introduced by the database system’s trusted concurrency control
‘mechanisms and the information flows of the underlying trusted operating
system may be potentially dangerous; there is currently no known theory
to form a basis for reasoning about such interactions. Thus, at the higher
evaluation classes, there is no way to achieve high assurance for such a
design without performing a flow analysis on the combination of the trusted
subjects in the database system and the operating system TCB.

Another drawback to the second alternative, in which concurrency con-
trols are implemented by a trusted component of the database system, is
that isolation of the security-relevant trusted portion of the system may be-
come infeasible. Such isolation is.crucial at the higher evaluation classes in
order to demonstrate the high assurance required. Although in theory, the
code that implements the database system’s concurrency control algorithms
could be relatively small, in practice in today’s database systems, which are
highly optimized for high concurrency and maximized throughput, the mech-
anisms involved in concurrency control are dispersed throughout the system.
For example, today’s database systems have numerous caches that are used
for maintaining multiple versions of the data, for undo/redo logs, for recov-
ery logs, and so on. In a distributed database system the requirements for
the consistency of such structures, achieved through the application of the
database concurrency controls, become even more onerous and far-reaching.

Implications for Database System Architectures

For the above reasons, for database systems that aim to meet the require-
ments of the higher evaluation classes, achieving covert-channel-free concur-

582

http:underlyi.ng

rency controls is of great importance. A design approach that requires this
alternative is the so-called constrained or self-contained TCB subsetting ap-
proach. This approach segregates all code enforcing mandatory security or
trusted with respect to mandatory security to a single nonbypassable TCB
subset responsible for mandatory security. The database system, and hence
the database system’s concurrency control mechanisms, will belong to a dif-
ferent TCB subset, one that is constrained by the underlying mandatory
TCB subset.

The difficulty of using the self-contained TCB subsetting approach is
great for those database systems vendors whose processing model consists of
a single server process servicing all user requests. A more natural model for
a self-contained TCB subsetting approach is a processing model consisting
of multiple database server instances, each servicing the requests of subjects
at a single access class.

Some vendors whose processing model makes the self-contained TCB
subsetting approach infeasible have argued that the self-contained approach
implies reduced performance for the database system. However, at least
one database system vendor includes a multi-instance processing model in a
standard (not multllevel) product whose performance is comparable to that
of the other vendors’ products. Thus, the empirical evidence does not sup-
port this claim. More importantly, at the higher evaluation classes, tradeoffs
between performance and security must be made in favor of security. Users
demanding B3 or Al database systems will not demand such high assurance
frivolously; such high assurance will be demanded for extremely sensitive
applications where the concern for mandatory secrecy is overriding.

In addition, the history of computer science has shown that what is ruled
out as infeasible on performance grounds very often appears only a few years
later as a generally accepted approach. The computer industry continues
to make enormous strides in basic technology; it is quite conceivable that
such progress will quickly make today’s speculations and general statements
about performance irrelevant.

Labels

The database-system-specific labeling concerns are threefold. First, there is
the question of what granularity of labeling is desired in a multilevel database
system. Second, there is the question of how to display to the user in
some meaningful way the plethora of labeling information that accompanies

583

element-level or even row-level labeling. Finally, there is an urgent need for
standardization of labels among vendors’ trusted operating systems. This
need will extend to trusted database systems as users attempt to construct
heterogeneous trusted systems from components purchased from different
trusted database system vendors.

For the first question, the industry is moving in the direction of row-
level labeling. This is probably adequate for the near term. However, at
the same time we should experiment with systems that provide element-level
labeling to determine their degree of usability (or unusability) and the extent
to which they can better model the requirements of real-world multilevel
applications. The decision as to the optimum granularity of labeling can
only be made in such a context.

For the second question, that of how best to display voluminous label
information to the user, it has been suggested that the data on the display
that is at the subject’s access class be highlighted, and all other data not be
highlighted. This has several obvious advantages; it is immediately obvious
to the user which rows or-data elements the user can update (this is especially
valuable in systems that polyinstantiate if a high user attempts to update
low data). In addition, the user can focus on the data themselves without
the distraction of a scattering of labels. This is appealing, since security
should not hinder a user from focusing on the critical application at hand..
Moreover, the database system need not anticipate having to display 1024
compartments for a single element or row. An obvious advantage is the ease
of implementation of the approach. If the user desires to know the access
‘class of a particular element or row, the user could “mouse” on the data, and
a pop-up window could display the full access class, including the secrecy
and integrity levels and all secrecy and integrity categories.

The third labeling issue, that of standardization, especially among
trusted operating systems, is one that we cannot afford to overlook. This
issue arises as database system vendors consider how to make their trusted
database systems portable to a large number of trusted operating systems.
It becomes even more pressing as users attempt to use a single vendor’s
trusted database system in a distributed heterogeneous environment, where
each trusted operating system uses different label formats and system calls
for operations (such as dominance checks) on those labels. As we eventually
move to the use of heterogeneous trusted database systems in a distributed
environment, the problem will become even more difficult. Thus, it is im-
perative that the industry begin to face the issue of standardization.

584

ISSUES IN TRUSTED DISTRIBUTED DATABASE MANAGEMENT SYSTEMS
- A POSITION PAPER

Bhavani Thuraisingham
The MITRE Corporation, Burlington Road, Bedford, MA 01730

1. INTRODUCTION

The rapid growth of the networking and information processing industries has led to the development of distributed database management
system prototypes and commercial distributed database management systems. In such a system, the database is stored in several computers
which are interconnected by some communication media. The aim of a distributed database management system (DDBMS) is to process and
communicate data in an efficient and cost-effective manner. It has been recognized that such distributed systems are vital for the efficient
processmg required in many DOD applxcauons For these applications, it is especially important that the distributed database systems operate
in a secure manner. For example, in military applications, the DDBMS should allow users, who are cleared to different levels, access to the
database consxstmg of data at a variety of sensitivity levels without compromising security.

A conmderable amount of work has been carried out in providing multilevel user/data handling capabilities in centralized database
management systems, known as trusted database management systems (TDBMS). In contrast, it is only recently that trusted distributed
database management systems (TDDBMS) are receiving some attention. Note that in some DDBMSs limited forms of discretionary security
controls (that is, where users access data based on authorizations) do exist.

In this paper we briefly describe the various issues involved in developing a TDDBMS. In particular, security issues in distributed
architectures, query processing, transaction management, metadata management, inference problem, multilevel distributed database design, and
handling heterogeneity are discussed. Note that various definitions of a DDBMS have been proposed previously. We assume the one that is
most commonly used. In this definition, a DDBMS is a manager of a distributed database which is distributed across two or more nodes
connected via a network. Each node can handle its local applications and participates in at least one global application. Unless otherwise
stated, we also assume that the relational data model is utilized at the global and local levels.

2. ARCHITECTURAL ISSUES

The first step towards the design of any software system is to evaluate a variety of architectures and then select the most appropriate ones
for the design and implementation of the system. In this section, we describe four possible architectures that have to be evaluated with respect
to the various functions of a TDDBMS.

In the first of these distributed architectures, a trusted front-end machine is connected to untrusted back-end machines. Each back-end
machine operates at a single level. Two data distribution schemes for such an architecture have been previously proposed. They are the
following. (1) Each untrusted machine manages a database whose security level is the same as the operating level of the machine. That is, an
Unclassified machine manages only the Unclassified data and the Secret machine manages only the Secret data. (2) Each untrusted machine
manages databases whose security levels are dominated by the machine's operating level. That is, the Secret machine manages the Secret and
Unclassified data while the Unclassified machine manages only the Unclassified data. The Unclassified data is replicated in the Secret database.
This architecture does not satisfy the definition of a DDBMS as all applications are controlled by the front-end machine.

In the second of these architectures, multiple nodes are connected via a trusted network. Each node has a TDBMS which is hosted on a
Trusted Computing Base (TCB). The TCB could be general purpose, or it could be specially developed for a DBMS. Furthermore, a node
operates at a range of security levels and the range is not the same for all nodes. That is, one node operates at the range Unclassified to Secret,
and the other node operates at the range Secret to Top Secret. The third of these distributed architectures has a configuration similar to that of
the second one except that it is assumed that all of the nodes operate within the same range. In the fourth of these distributed architectures, the
DDBMS is hosted on a distributed TCB (DTCB). The DTCB could be a general purpose one or it could be specialty developed for a DDBMS.
More work needs to be done before the issues involved in hosting a TDDBMS on a DTCB can be identified.

The TDDBMS design will no doubt depend on the architecture that is selected. From a preliminary evaluation of the various
architectures, it appears that the third architecture satisfies the definition of a DDBMS and is less complex than some of the others. Therefore,
the security issues that we have identified in this paper stem from the third architecture.

3. QUERY PROCESSING

The most important function of a TDDBMS is to provide a facility for users to query the distributed database system and obtain
authorized and correct responses to the queries.. Ideally, the distribution of the data should be transparent to the user. That is, the user should
query the distributed database as if it were a centralized system. The distributed query processor, which is responsible for handling queries,
should determine the locations of the various relations involved and transmit the requests to the various sites. The responses obtained from
these sites have to be assembled before dehvery to the user. : .

Following are some of the issues in secure distributed query processing.
(1) System Architecture; “Two of the major components of thé system architecture are the secure distributed execution monitor (SDEM) and the
local TDBMS. SDEM augments the local TDBMS at each node. The distributed query processor, which is part of SDEM, is responsible for
handling the queries at the global level.
(2) Semijoin Processing: -Semijoin as a query processing tactic has received much attention in nontrusted DDBMSs The various semijoin
algorithms need to be adapted for multilevel applications. :

585

3 Polyinstamiation Various definitions of polyinstantiation have been proposed. We assume that polyinstantiation occurs when users at
different security levels have different views of the same entity. Whether polymstantxatxon should be supported is still under debate. It should
be noted that eliminating polyinstantiation could cause signalling channels.

(4) Multilevel Distributed Data Model: A multilevel distributed data model needs to be developed, and the views that users at different security
levels could have of the distributed database at the local and global levels should be identified.

(5) Data Distribution: There are many ways of distributing the multilevel data across the various nodes. Fragmentation and replication issues
have to be considered. In addition, polyinstantiation issues should also be addressed. Fmally. ways of recombining the data at different security
levels and nodes should be examined.

4. TRANSACTION MANAGEMENT

Transactions are managed by the Transaction Manager ‘component of a database system. A transaction is a program unit that must

execute in its entirety or not execute at all. The issues involved in transaction management are concurrency control and recovery. Concuxrency
control techniques ensure the consistency of the database when multiple transactions execute concurrently. Recovery techniques are necessary in

order to ensure that the database is brought to a consistent state when transactions are aborted due to some failure. In order to manage

transactions securely in a distributed system, it has to be ensured that the transactions associated with each local node operate securely.
Although much progress has been made in incorporating transacnon management features into a DBMS, providing these features in a TDBMS
has only recently begun.

Following are some of the issues on transaction management in trusted centralized and distributed database systems.

(1) Security policy: The security policy enforced by the system needs to be extended for transaction management. An unportant issue that

needs to be addressed is whether a transaction operatés at a single level during its execution or whether it can change security levels during
execution. If it is the former, then the ransactions are single-level. If it is the latter, then the transactions are multilevel.
(2) Serializability condition: Appropriate serializability conditions for local and global transaction management have to be formulated. These
conditions should ensure that only serializable schedules are executed.
(3 Concurrency control: The various concurrency control techmques need to be examined for transactions whu:h operate in a multilevel
environment. These techniques should ensure that not only is the consistency maintained, but the actions of higher level transactions do not
interfere with lower level ones. In addition, deadlocks and starvations have to be prevented. The three techniques that are being investigated are
locking, timestamping and validation. The Iockmg technique has a potential for a covert channel. Some suggestions have been given for
adaptmg the locking techmque usmg multiple versions of data. No satisfactory technique has yet been proposed which would satisfy all the
requirements. Therefore, this is an area where much research remains to be done.
(4) Recovery: . Recovery techniques should ensure that the system should be recovered to a consistent state in the event of any failure.
Techniques for extending the two-phase commit protocol for recovery in a TDDBMS have been proposed. However, issues on handling
network partitions have yet to be investigated.. Extensions to the three-phase commit protocol for handling partitions in a TDDBMS need to be
. proposed.
(5) Constraints: Techniques for handling integrity and security constraints during transaction management in a multilevel environment have not
received any attention. There could be a potential for signalling channels, covert channels, and security violations via inference when the
constraints have to be processed during transaction execution. More research needs to be done in this area.
(6) Performance: For many military applications, it is important that not only are the transactions executed securely, but also that they have
high performance. Therefore, simulation studies of transaction'management in a multilevel environment should be carried out. In the past,
simulation studies have been shown to be extremely cost-effective methods for modelling the behav:or of distributed database systems. By
carrying out simulation studies, inefficient implementation efforts can be avoided.

5. METADATA MANAGEMENT

To function effectively, information about the various databases, users, network, and the administrative features of the distributed system
must be integrated.” A metadatabase (sometimes referred to as the data dictionary) is the repository of such information. The module which
manages the metadatabase is called the Metadata Manager (or Data Dictionary Manager). The function of the Metadata Manager is to ensure the
consistency of the metadatabase and to provide the support in terms of metadata access to the other functions of the DDBMS.

Many of the issues involved in metadata representation and management have been investigated for centralized systems. Further, the
Information Resource Dictionary System (IRDS) has been proposed as a standard for representing and managing the metadata. However, little
work has been accomplished on managmg the metadata in a distributed environment. The security impact on metadata management has also
not received much attention even in centralized systems. Only afew of the designs have addressed the issues involved to some extent. In order
to investigate the security impact on metadata management in a distributed environment, the following topics shouid be addressed first:

(1) Metadata Management in a DDBMS, and (2) Metadata Management in a TDBMS.

The TDDBMS functions requiring metadata access can be grouped into three categories. They are (1) functions for processing distributed
database user requests, (2) functions for processing system designer requests, and (3) functions for processing system administrator requests. As
in the case of a DDBMS, the functions for processing distributed database user requests in a TDDBMS are transaction analysis, distribution,
access control and translation. The metadata required by these functions includes mappings, schemas, integrity constraints, discretionary
security oonstraims, and transaction logs. The functions for processing system designer requests in a TDDBMS include performance evaluation,
file conversion, and file allocation. These functions require information on file access programs, total volume of queries for each file, total
volume of updates for each file, the secunty levels of the files, the security levels of the user who requests queries and updates on files, and the
number of polyinstantiated tuples in a fragment of a relation and database schema. The administrators of a TDDBMS are the network
administrators, global and local database administrators, and global and local system security officers. The functions of the network and
database administrators are the same for a DDBMS and a TDDBMS. The functions of the system security officer are to design, enforce, and
monitor the security features of the system. A TDDBMS must also support mandatory security constraints (which assign security levels to the
data) in addition to the integrity constraints and discretionary security constraints. The mandatory security constraints may be used by the
Transaction Analysis and Access Control functions for operations such as query modification. The system security officers are responsible for

586

‘

creating and maintaining the security constraints at the local and global levels. The consistency and the completeness of the constraints should
also be ensured.

It should be noted that the metadata itself could be assigned different security levels. For example, the metadata could be maintained
either at system-low, system-high, or at different security levels. Some¢ implications of each of these configurations for a TDDBMS are as
follows. When metadata is stored at system-low, there is a trusted manager at each security level. The manager at level L in node 1
communicates with the manager at level L in node 2 to retrieve the metadata stored in a remote machine. A disadvantage of storing the
metadata at system-low is that the information required by higher level users is also stored at system-low. When metadata is stored at system-
high, there is one trusted manager operating at system high. The managers at different nodes communicate in order to access remote metadata.
‘When metadata is multilevel, there is 2 manager at each security level. The managers do not have to be trusted. The manager at a security level
L in node 1 communicates with the manager at security level L in node 2 in order to access remote metadata. Some integrity problems with
multilevel metadata have been identified previously.

Various schemes have also been proposed to store the metadata. They include having the metadata (1) centralized at one node, (2) fully
replicated at each node, and (3) distributed across various nodes with possible partial replication. If the metadata is centralized, then it can be
kept consistent. Also the users will know exactly where to look for the metadata. However, if the node which stores the metadata fails, then
the metadata cannot be accessed. Furthermore, if the system is congested, then access to the metadata will be difficult. Fully replicating the
metadata overcomes the problems of failures and congestion. However, the various copies of the metadata have to be kept consistent.
Distributing the metadata with possible partial replications eases the consistency problem. However, the locations of the metadata have to be
determined before they can be accessed. Usually, the metadata which describes the data at a node is also stored at the same node. If a data
fragment is replicated in several nodes, then the metadata associated with that fragment could be stored at the site where the primary copy of the
fragment is stored. If all of the metadata is assxgned the same security level, then the techniques used to allocate metadata in a DDBMS can be
used for a TDDBMS also. If the metadata is assigned multiple security levels, then the data d1st:nbunon schemes used for a multilevel
distributed database can be applied to allocate the metadata also.

6. INFERENCE PROBLEM

The word "inference" is commonly used to mean "forming a conclusion from premises,” where the conclusion is usually formed without
expressed or prior approval, that is, without the knowledge or consent of anyone or any organization that controls or processes the premises or
information from which the conclusion is formed. The resulting information that is formed can be innocuously or legitimately used or it can
be used for clandestine purposes with sinister overtones. The term "information" is broadly defined to include raw data as well as data and
collections of data which are transformed into knowledge. The inference process becomes a problem when unauthorized conclusions are drawn
from authorized premises.

Two distinct approaches have been proposed for handling the inference problem. They are: (1) Handling of inferences during database
design. Here, the security constraints during database design are handled in such a way that security violations via inference cannot occur. (2)
Handling of inferences during query processing. Here, the query processor is augmented with a logic-based Inference Engine. The Inference
Engine will attempt to prevent users from inferring unauthorized information. We believe that inferences can be most effectively handled and
thus prevemed during query processing. This is because most users usually build their reservoir of knowledge from responses that they receive
by querying the database. It is from this reservoir of knowledge that they infer unauthorized information. Moreover, no matter how securely
the database has been designed, users could eventually violate security by inference because they are continuously updating their reservoir of
knowledge as the world evolves. Itis not feasible to have to redesign the database simultaneously.

Handling inferences in a distributed environment is more complex. One possible approach is to augment each node with an inference
controller component. This component is hosted on top of the distributed execution monitor. The various inference controllers have to
communicate in order to handle inferences. We could also envisage having a few dedicated inference controllers connected to the network whose
functions are only to determine the inferences that users could draw. More research needs o be done in order to determine the feasibility of

-handling inferences in a distributed environment.

7. MULTILEVEL DISTRIBUTED DATABASE DESIGN

Designing a multilevel distributed database includes the following two steps:

(1) Designing the multilevel database - This design is carried out as in the case of a TDBMS. That is, the security and integrity constraints are
- examined, and the schema is assigned appropriate security levels. Tools need to be developed in order to design the schema for a multilevel

database. Suggestions for multilevel database design have been given previously. However, no attempt has yet been made to develop viable

tools for multilevel database design. Future work should focus in this direction.

(2) Designing the global, fragmentation, allocation, mapping, and physical schemas - Once the multilevel database is designed, distribution and

allocation issues are addressed as in the case of a DDBMS. That is, the following schemas should be designed:

* Global schema: The entire distributed database is regarded as a single database, and it is designed at the conceptual and logical levels.

Different data models could be used to represent the data at the conceptual and logical levels.

. Fragmentauon schema - Each database relation could be fragmented into several components. The fragmentation schema includes a description

of the various components of a relation.

* Allocation schema - The distributed database is scattered across several nodes. The allocation schema describes where the relations and

fragments of relations are stored.

» Local mapping schema - This consists of mappings between the global and local representational models.

« Physical schema - The internal schema of the local databases.

Many of the issues involved in designing the global fragmentation, allocation, mapping, and physical schemas are the same for both

multilevel and nonmultilevel applications. There are various steps involved in designing a multilevel database. The first step in the design
process is to capture all of the information present in the application. In order to do this, an appropriate data model has to be used. If there is

587

no single data model that will capture the information present in the entire application, then a combination of data models have to be used. The
information for a multileve] application will include the integrity constraints, security constraints, structural relationships, and semantic
relationships between the various entities. The second step:is to ensure that all of the information present in the application has been captured
by the information model. Various techniques that have been proposed to determine the completeness of the knowledge base can be used for
this purpose. The first and second steps are repeated until the designer is convinced that all of the information is captured. The third step is to
translate the information captured by the data model'into an appropriate format if necessary in order to process it efficiently. The fourth step is
to analyze the data and subsequently generate the database schema. The fifth step is the testing phase where the output generated is validated.
For applications which are involved with very large amounts of data it is useful to implement a rapid prototype of the system in order to carry
out the validation. The fourth and fifth steps are repeated until satisfactory output is obtained.

8. HANDLING HETEROGENEITY

The ultimate solution to handling heterogeneity is to adopt a standard which each local system in the distributed environment should
follow. However, vendors, eager to maintain their advantages over competitors to preserve their share of the market, discourage the adoption of
a universal standard. This is because compromise is inevitable when adopting a standard which can lead to diminution of individual performance
and erosion of customized advantages and efficiency. At least for the foreseeable future, different database systems with their differing data
representation schemes are here to stay. Consequently, in order to reconcile the contrasting requirements, tools which enable users of one
system to use other systems are necessary. Therefore efficient solutions for interconnecting different database systems as well as administering
them, have to be provided. However, the increasing popularity of heterogeneous DDBMSs should not obscure the need to maintain security of
operation. That is, it is important that such a system operate securely in order to overcome any malicious corruption of data as well as prohibit
unauthorized access to and use of classified data, especially with military applications. Incorporating security into the operation of a
heterogeneous distributed database system brings about a complexity not present in homogeneous systems. This is because it is not
straightforward to transform the security properties of one system into those of another:

Various types of heterogeneity can be identified. Two of the more important ones are secure data model heterogeneity and heterogeneity
with respect to local TDBMS designs. To handle secure data model heterogeneity, mappings have to be developed which transform the
constructs of one secure data model into those of another. Therefore, if there are n different data models, n**2 (n squared) different translators are
necessary. This is not desirable. One useful approach is to define a secure unified data model for the global view. Then, mappings are
necessary only from (to) the unified data model to (from) a specific data model. Therefore, in this approach, if there are n data models, only 2n
translators are necessary. When there is heterogeneity with respect to local TDBMS designs, not all the local TDBMSs are designed using the
same methodology. Therefore, the various designs have to be made compatible at the global level. It should be noted that TDBMSs based on
various designs are being developed commercially. For certain applications, it may be necessary to interconnect these systems.

9. OTHER ISSUES

In this section, we discuss some of other issues that have to be addressed. They are network security issues, steps to developing a
TDDBMS, and developing new gerieration TDDBMS, '

The major issues in DDBMS security are (1) the secure operation of the various nodes, and (2) the secure operation of the network which
interconnects the nodes. Much of the previous work on TDDBMS. has focused only on the first aspect. It assumes that the network is
multilevel secure. Future work should include the investigation of network security issues. In particular, various network architectures need
to be investigated for a TDDBMS. These architectures could include those based on a token-ring network, a token-bus network, and point-to-
point interconnection. ‘

The steps required to develop a TDDBMS depend on the level of assurance that is expected of the system. In addition to the design and
implementation steps (which will consist of the design and implemeéntation of the models for query processing, update processing, transaction
management, and metadata management), a TDDBMS development process would include the following: (1) Security Policy: This is a
discussion on the policies for mandatory security, discretionary security, integrity, auditing, authentication, accounting, and the roles of the
distributed database administrator, the local database administrators, and the systems security officer. (2) Model: A security model for the
distributed database system should be developed. There are three components to this model. They are: model of the local TDBMS, model of
the network, and model of the secure distributed execution monitor. (3) Specification: Security requirements expressed by the model are
specified (either formally or informally), and the correspondences between the specification and the model and the specification and the
implementation are demonsirated.

Recent work on DDBMSs has included (1) exploiting parallel architectures, (2) extending relational systems to support deductions and
complex objects, and (3) developing non-relational systems such as object-oriented distributed database systems. In order to conduct similar
research for TDDBMSs, it has to be first carried out for a TDBMS. That is, the issues on (1) using parallel database architectures for designing
a TDBMS, (2) extending the multilevel relational model to support deductions and complex objects, and (3) developing an object-oriented
TDBMS need to be investigated first. The work can then be extended to a secure distributed environment.

10. CONCLUSION

In this paper we have described the need for TDDBMSs and identified some security issues that need to be given further consideration.
We have also provided solutions to some of these. More research, prototype development, and simulation studies need to be carried out before
useful TDDBMSs can be developed successfully.

ACKNOWLEDGEMENT AND DISCLAIMER

We gratefully acknowledge the Department of the Navy (SPAWAR) for supporting our work on identifying the issues in 2 TDDBMS under
contract F19628-89-C-0001. The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Department of the Navy or the United States Government.

588

SYBASE: The Trusted Subject DBMS

Helena B. Winkler-Parenty

Sybase, Inc.
6475 Christie Avenue
Emeryville, CA 94608

Historical Context

In 1983 the Department of Defense (DoD) published the Trusted Computer System
Evaluation Criteria (TCSEC) [1]. It is a description of the varying levels of trust that
can be placed in a computer system, based on whether the system meets a comprehensive
set of standards for features and assurances. The TCSEC was republished as a DoD
standard, Dod-5200.28-STD, in December, 1985. The Trusted Network Interpretation
(TNI) [2], an interpretation of the TCSEC for networks, was published in 1987. The
Trusted Database Interpretation (TDI) [3], an interpretation of the TCSEC for database -
management systems (DBMS), is expected to be published by the end of 1990.

The TDI

In addition to providing information specific to databases, the TDI contains a section
describing architectural approaches and evaluation strategies for building trusted systems.
The purpose of this section is to provide guidance on evaluating systems when the system
is comprised of several pieces that were developed independently, perhaps by different
vendors. The techniques presented can be used beneficially to structure an operating
system and its utilities, a DBMS running on an operating system, or any software sys-
tem.

The TDI presents a strategy meant to facilitate evaluation of computer systems, which is
to divide the Trusted Computing Base (TCB) into a collection of parts, called TCB sub-
sets. Each subset contains its own set of subjects, objects, and an access control policy
that it enforces. Subsets must mediate every access of a subject to an object. In addi-
tion, they must be self-protecting. Every subset is evaluated individually. The evalua-
tion requirements for the whole TCB depend upon the placement of system components
into subsets, and the privileges associated with each subset.

Trusted Subject Overview

There are two architectural approaches presented in the TDI that are particularly signifi-
cant. These approaches are TCB augmentation using trusted subjects and hierarchical
TCB subsets. TCB augmentation using trusted subjects allows a TCB subset’s MAC pol-
icy to be extended by the addition of a trusted subject to the total TCB.

589

A trusted subject is a process that contains its own MAC policy, that it enforces on its
own subjects and objects. This means that it is trusted to operate over a range of secu-
rity levels. An example of this is a trusted DBMS that performs MAC and DAC on
DBMS objects, running on an operating system that performs MAC and DAC on
operating system objects. See figure 1.

A trusted subject can be placed into a TCB subset that already exists, i.e. the operating
system’s TCB subset, or it can be put into its own TCB subset. If the trusted subject is
placed into a pre-existing subset, a complete evaluation is performed on this TCB subset.
The trusted subject extends the MAC policy of this pre-existing TCB subset.

If the trusted subject is placed into its own subset, then only the new subset is fully
evaluated. For B2 and above systems global analysis, such as penetration testing and
covert channel analysis, will be performed on both the new TCB subset containing the
trusted subject and the pre-existing TCB subset whose MAC policy is extended.

With the hierarchical TCB subsets approach the MAC policy for the entire TCB is in
one subset. For example, the operating system performs MAC and DAC on operating
system objects, and the DBMS only performs DAC on DBMS objects. See figure 2.

DBMS MAC & DAC DBMS DAC
O/S MAC & DAC O/S MAC & DAC
Figure 1: Trusted Subject Figure 2: Hierarchical TCB Subsets

Sybase’s Approach

An example of a trusted DBMS that uses this approach is the SYBASE Secure SQL
Server™, The SYBASE Secure SQL Server is a relational DBMS targeted at the Bl
level of trust. The SYBASE Secure SQL Toolset™ is a set of user interface tools and
utilities. The Secure SQL Server, the Secure SQL Toolset, and the operatmg system(s)
on which they run, are all part of the total TCB.

System Architecture

The Secure SQL Server and the Secure SQL Toolset make use of the client/server archi-
tecture. In this model, clients make requests and process the server’s responses. -Servers
respond to, these requests and return data and other information to the clients. The
Secure SQL Server and Secure SQL Toolset can run on the same, or different,
machines. The operating system runs in one TCB subset and the Secure SQL Server
runs in another TCB subset. The Secure SQL Toolset runs as an ordinary user process.

The Secure SQL Server uses a multi-threaded architecture. The Secure SQL Server runs
as a single operating system process. For each DBMS user the Secure SQL Server
creates an internal task. The Secure SQL Server handles scheduling, task switching, disk
caching, locking, and transaction processing for these DBMS tasks. Users can communi-
cate with the Secure SQL Server either from the Secure SQL Toolset or from an

590

application program.

Identification and Authentication

Identification and authentication takes place as follows. (To simplify this discussion,
only logging in to the Secure SQL Toolset will be discussed. Logging in from an appli-
cation program would proceed in a similar fashion.) The user is prompted for his or her
name and password. The default value for the user’s DBMS user account name is hlS or
her operating system account name.

If the user is logging in from a multi-level secure (MLS) operating system, the Secure
SQL Toolset obtains the user’s operating system login level from the MLS operating sys-
tem. Otherwise, the user is prompted for the DBMS login security level. The user’s
name, password, and login security level is then inserted into a login packet and passed
from the Secure SQL Toolset to the Secure SQL Server for authentication. The underly-
ing operating system(s) and the network are relied upon to safely transmit the packet.
No MLS functionality is required, only integrity.

When the Secure SQL Server receives the packet, the user’s name is checked to confirm
that there is a valid user account with the same name. In addition, it checks that the
account has not been locked, a mechanism by which user accounts stay valid but cannot
be used. This mechanism is useful when steps need to be taken so that a user cannot log
into his or her account for security or administration-related reasons, such as when a
user goes away on vacation.

The password is encrypted with a one-way encryption algorithm and compared. with the
encrypted password stored in syslogins, a system catalog. The user’s login security level
is compared with his or her maximum allowable login security level, also stored in syslo-
gins. The user’s maximum allowable login security level must dominate the requested
login security level.

If all of these checks succeed, the login attempt was successful and a DBMS task is
created on behalf of the user. Otherwise, the user gets back the error message: Login
failed. The DBMS task created on behalf of the user is quite similar in both concept
and content to the user process that is created when a user logs into an operating system.

Operating System Interactions

The description of identification and authentication typifies the interactions between the
Secure SQL Server and the operating system it runs on. The Secure SQL Server

enforces its own security policy. It does not rely upon the operating system for security
functionality or assurance, and uses only low-level operating system services such as I/O.

The Secure SQL Server enforces mandatory and discretionary access controls on DBMS
objects, just as operating systems enforce mandatory and discretionary access controls on
operating system objects. The Secure SQL Server enforces mandatory access control
(MAC) on rows and discretionary access control (DAC) on tables and databases. The
Secure SQL Server extends the MAC policy of the underlying operating system. Because
the objects upon which the operating system and the Secure SQL Server operate on are
different, there is no conflict between the two. policies. The operating system does not
mediate access to DBMS objects and the DBMS does not mediate access to operating
system objects.

591

In addition to providing MAC, DAC, and identification and authentication, the Secure
SQL Server has been designed to meet all other TCSEC requirements at the B1 level of
trust.

Site Security

Although the operating system and DBMS security policies are disjoint, care must be
taken to ensure that all site security requirements are met. Specifically, because the
DBMS stores its data in operating system objects, the operating system must be config-
ured to protect this data. There are three separate mechanisms that can be used. DAC
can be used to ensure that only the DBMS process has access to the operating system
objects that contain the database. MAC can also be used either by labeling the operat-
ing system objects at the highest level at which data might be stored within the database,
or by allocating a special compartment for these objects and the Secure SQL Server pro-
cess. Finally, the machine on which the Secure SQL Server runs can be configured as a
database machine. This means that no users other than trusted system administrators
are allowed access to this machine.

Secure SQL Toolset

Unlike the Secure SQL Server, which is responsible for virtually all of the DBMS secu-
rity policy, the Secure SQL ‘Toolset is only responsible for correctly implementing its por-
tion of identification and authentication. Because the Secure SQL Toolset does not
enforce a mandatory access control policy, it is not a trusted subject. Therefore, even
though the Secure SQL Toolset is trusted with respect to the Secure SQL Server and is
part of the total TCB, it is not trusted with respect to the operating system on which it
runs.

Comparison to Hierarchical TCB Subsets

Trusted subjects is a natural approach to building trusted systems. It allows each com-
ponent of the system to enforce a portion of the overall system’s security policy on the
objects that it knows best. By allowing each portion of the system to enforce its own
security policy, the end result is a system that more closely meets the needs of its users.
For example, a key component of a DBMS is users’ ability to specify how .the data will
be stored in the database, based upon its semantic content. Clustered indexes provide
this ability, and their implementation is the same in the Secure SQL Server as in the
standard SQL Server product. See figure 3.

In contrast, when a DBMS is built based on hierarchical TCB subsets, the DBMS is con-
strained by the mandatory access control policy of the underlying operating system.
Since operating systems enforce MAC on files, the DBMS must store its data in files
having security levels that match the level of the DBMS data. For example, a row
labeled Top Secret-NATO would have to be stored in a file labeled Top Secret-NATO.
In this system, although the user may want to have data that semantically belongs
‘together stored together, this can only occur if the data happens to have identical secu-
rity levels. See figure 4. Not only does the data have to be stored in several files, but
any index on this table also has to be stored in several files, one for each level of data.
This means that for data which needs to be returned in the order of the index, an

592

additional sort will be required to merge the data into the proper order.

LEVEL DATA LEVEL DATA
TS-1 ——- [S VT T (R—
TS-1,3 | - TS-1,3 | --—---
s | - I
g |

Figure 3: Trusted Subject

TS-1 TS-1,3
Figure 4: Hierarchical TCB Subset

Another possible implementation is to allow only single-level tables, but multi-level
views. Views can then be used to create the illusion of multi-level tables. Additional
system overhead is required to combine many tables to form a multi-level view. Again,
data that semantically belongs together cannot be stored together to optimize perfor-
mance.

In addition to the performance degradations already mentioned, all system resources
which could contain data at multiple levels will need to be divided, one instance of each
system resource for each level of data. For example, the buffer cache will need to be
subdivided, and information on tasks and locks will need to be managed separately. All
of these will result in less system resources being avai'able for any specific security level.

Conclusion

Trusted subjects is a powerful approach to building high performance trusted systems. It
allows a system architect to build on top of a pre-existing TCB, extending the TCB’s
mandatory access control policy so that it can accommodate the requirements of a
trusted application or utility. This means that a DBMS built with trusted subjects will
perform better than a system built with hierarchical TCB subsets.

References

[1] "Trusted Computer System Evaluation Criteria,"” Dept. of Defense, National Com-
puter Security Center, Dec. 1985.

[2] "Trusted Network Interpretation," Dept. of Defense, National Computer Security
Center, July 1987.

[3] "Trusted Database Management System Interpretanon " Dept of Defense, National
Computer Security Center, March 1990.

copyrighted © Sybase, Inc., 1990. All rights reserved. SYBASE is a registered trademarks of Sybase, Inc. SYBASE Secure SQL
Server and SYBASE Secure SQL Toolset are trademarks of Sybase, Inc.

593

NCSC "Tough Issues" Panel

Constrained Trusted Computing Base Subsets

Linda L. Vetter
Director, Secure Systems
Oracle Corporation

Introduction

Oracle Corporation is developing a multilevel
secure (MLS) relational database management
system (RDBMS) product for commercial and
government markets. Oracle’s MLS RDBMS
architecture is unique among MLS database systems
available from or under development by other
vendors because Oracle’s MLS RDBMS, Trusted
ORACLE RDBMS, utilizes a "constrained" trusted
computing base (TCB) subset architecture within its
fundamental design.

Producing an MLS RDBMS using a constrained
TCB subset approach is not a simple task.
However, the constrained TCB subset architecture
promises implementation benefits to the secure
‘RDBMS user, as well as benefits to- the database
vendor, evaluators, and accreditors, that make it a
logical choice of system architecture where the
underlying DBMS architecture supports this option.

Constrained TCB Subset Approach

In a constrained TCB subset architecture, there

is a clear definition between the RDBMS portion of
the trusted computing base (TCB) and the
operating system (OS) and hardware portions of
the TCB on which the RDBMS runs. The
_constrained TCB subset approach extends security
features already provided by a trusted. operating

system with complementary security capabilities in.

the RDBMS; the RDBMS TCB implements the
DBMS-specific aspects of the security policy
without superseding the security policy of the
secure operating systém base,

. This architecture efficiently utilizes the security

mechanisms of each component of the trusted
computing base in a non-redundant manner to
form a unified, secure computing system. The TCB
is hierarchically layered into defined subsets, each
subset enforcing a specific part of the overall
system security policy. A subset at a higher layer
of the TCB expands upon the security policies
enforced by lower layers but cannot violate or
supersede the security policies of the lower layers.
A layered, constrained TCB subset architecture is
consistent with fundamental principles of sound

software and system engineering, as well as with
the high assurance security concepts of structured,
layered components.

A DBMS must meet specific requirements to
qualify as a constrained TCB subset, A constrained
subset must function untrusted with respect to any
underlying TCB subsets of the system. In other
words, a constrained TCB subset cannot include
trusted subjects that are allowed to operate across a
range of sensitivity levels, nor can it run with any
privileges that would allow it to bypass or violate
the access control policies of any more primitive
subset of the TCB. By constraining its subjects to
operating wholly within the bounds of the OS
security policies, the DBMS and underlying
operating system can each be completely evaluated
independently.

The Case for Constrained TCB Subsets

A constrained TCB subset architecture is a
logical approach to MLS RDBMS secure system
design. ‘The constrained TCB subset approach
provides for reuse and extension of existing
evaluated trusted systems. This allows secure
RDBMS vendors, especially those dedicated to
providing portable solutions, to leverage existing
systems-on the evaluated products list (EPL) and
thus populate the EPL with secure RDBMS products
on multiple platforms more quickly. The

_availability of numerous evaluated RDBMS products

on the EPL, in turn, gives users greater flexibility in
choosing a secure system configuration while
providing products with a high degree of security
assurance.

A portable MLS RDBMS with a constrained TCB
subset architecture should also take less time to
maintain, enhance and port because a new
mandatory TCB does not have to be designed and
implemented with regard to each hardware
platform. -Also, the constrained TCB subset
approach allows vendors to build independent
products to extend a system’s TCB to enforce
additional DBMS-specific security without having to
re-verify OS-level security.

——
NCSC Conference

594

October 1990

Benefits of Constrained TCB Subsets

Ease of evaluation: The TCB subset architecture
exploits the security features of an existing,
evaluated OS. Since the operating system and
hardware base have already undergone evaluation,
only the RDBMS TCB subset (and its interfaces to
the operating system) must be evaluated. This
makes for simpler, shorter evaluations. This entire
concept allows trusted DBMS products to be
available from vendors other than the OS vendors,
and it leverages off of all the past and future work
of vendors and the NCSC in populating the
evaluated products list (EPL). '

The benefits of reduced evaluation efforts
extend to multiple OS platforms as well. For each
new platform to which the RDBMS is ported, only
the implementation of the interface from the
RDBMS to the operating system changes.
Subsequent evaluations of the same version of the
RDBMS at the same security class, on different
platforms at the same security class, are therefore
even further reduced in scope.

Portability: The layered structure of the
constrained TCB subset architecture ensures clean
interfaces and facilitates portability of trusted
products. The ORACLE RDBMS is already known
for its portability to a variety of hardware and
software bases, so a security architecture that
supports portability is a natural fit for ORACLE. In
addition, ORACLE’s multi-server RDBMS design
gave Oracle Corporation great flexibility in
selecting a security implementation, where
single-server architectures tend to be limited to
dedicated machine and trusted subject
implementations. As many major operating system
vendors are actively producing secure operating
systems for evaluation, a portable MLS RDBMS
architecture offers customers a choice of many
potential hardware and software platforms,
including micros, minis, workstations and
mainframes. Since the secure RDBMS builds upon
security features of the platform, it is also adaptable
to additional environments (e.g., compartmented
mode workstations or "international" Orange Book
variations),

Appropriateness of policy enforcement: A
constrained TCB subset architecture presents a
"seamless" view of computer security to users by
providing each aspect of security functionality and
granularity at appropriate levels, for example:
logon security at the system access level, file

security at the operating system level, and database
table and view security at the RDBMS level. This
approach also produces a system with comparable
functionality and usability of standard, full

function products combining, for example, a highly

functional RDBMS and a general purpose operating
system.

Constrained TCB Subsets Considerations

‘The primary difficulty in implementing a
constrained TCB subset architecture is eliminating
DBMS privileges that bypass operating security
mechanisms. For example, in most DBMSs a read
operation requires locking the data. Locking the
data of a lower level to allow read down requires
write access to 2 lock at the lower level; this
introduces a covert channel which violates
mandatory security policies. Eliminating this "secure
readers-writers" problem requires a concurrency
control mechanism that can provide pure read
capabilities and avoids the use of locks.

A drawback of constrained TCB subsetting is
that multilevel database objects must physically be
stored in multiple operating system segments or
files. This is required in order to utilize the
operating system mandatory security policy and the
enforcement mechanisms for database MAC
enforcement. While it does mean that for all inserts
and updates (which are by nature single level) and
for all single level queries this approach is more
efficient (no row-by-row label storage or checking),
reading a muliilevel object requires retrieving
portions of the data from each different level.

Why Oracle Chose TCB Subsets

There are two primary reasons why Oracle
Corporation chose to incorporate a constrained
TCB subset architecture into its Trusted ORACLE
RDBMS product: 1) market viability; and 2)
technical feasibility.

Product acceptance, and therefore market
viability, necessitate that a. product be designed to
meet the needs of users. Oracle Corporation has
been successful to date in the database
management system market by providing
well-designed RDBMS products that are integrated,
portable, and highly functional. Oracle believes
that using a constrained TCB subset architecture, as
described below, will best allow it to produce MLS

—
NCSC Conferonco

595

October 1990

RDBMS products that build upon the traditional
strengths of its product line,

Oracle Corporation’s ability to implement a
constrained TCB subset architecture in its MLS
RDBMS is unique among database vendors due to
the multi-server architecture and multi-versioning
capabilities of ORACLE RDBMS, upon which
Trusted ORACLE is based.

For example, when ORACLE updates a row, it
also records enough information to generate a
pre-update replicate of the row. Replicates are
stored in memory or in the rollback segment areas
of the database. Rollback segments are used for
read consistency to ensure that a query uses a
consistent image of the database at the start of the
query. In a multilevel secure environment,
multi-versioning technology allows users at various
security levels to read data at lower security levels
without locking data, thereby eliminating covert
channels., Thus, ORACLE’s multi-versioning
concurrency control mechanisms eliminate the
secure readers-writers problem described in the
preceding section.

The inherent characteristics of a constrained
TCB subset architecture will allow Trusted ORACLE
RDBMS users to take maximum advantage of the
latest in RDBMS technology, such as support for
symmetric multiprocessing machines, on-line
transaction processing (OLTP) environments, new
read-only media, and distributed applications in
heterogeneous environments.

ORACLE already provides features that readily
lend themselves to the constrained TCB subset
architecture. The ORACLE RDBMS is designed for
portability; this includes years of defining and
refining the- distinct operating system interfaces so
necessary in TCB subset architecture. In addition,
the ORACLE RDBMS TCB subset approach provides
full functionality, including fully ANSI-compatible
SQL and referential integrity, as well as versatile
features such as roles and views. In Trusted
ORACLE, many existing RDBMS capabilities are
being utilized, such as multiple servers,
multi-versioning and distributed database support.
Utilizing the existing, flexible RDBMS architecture
and base features also ensures high compatibility
and application portability across all versions of
ORACLE and Trusted ORACLE.

Oracle preferred to provide a constrained TCB
subset implementation rather than limiting the

product to only a single trusted subject design for
several reasons:

First, typical trusted subject designs require that
the DBMS re-implement and bypass certain
mandatory access control (MAC) facilities typically
enforced by the operating system. The DBMS
processes that supplant the operating system MAC
mechanisms must execute as trusted subjects with
special privileges. A single-server DBMS trusted
subject typically must perform operations in
violation of the operating system security policy,
for example apparent downgrading of data to
subjects at lower security levels.

Use of a trusted subject architecture can limit
OS functionality and thereby limit system
functionality. Some features usually provided by
the operating system must be incorporated into the
DBMS, often implementing the same or similar
security model, leading to additional code to
evaluate and maintain.

Summary

Each approach to database security involves
trade-offs. After weighing the pros and cons of
each approach, Oracle Corporation has chosen to
use the constrained TCB subset architecture in its
MLS Trusted ORACLE RDBMS product. The
availability of this approach to Oracle, due to its
unique DBMS architecture, and the benefits of this
approach relative to other approaches (including
reduced evaluation time, exceptional portability,
high functionality, compatibility with existing
products, interoperability, and configuration
flexibility) lead Oracle to believe that the benefits
of constrained TCB subsets substantially outweigh
any disadvantages.

——
NCSC Conference

596

October 1990

MULTILEVEL OBJECT-ORIENTED
DATABASE SYSTEMS

-(Panel Session)

Ravi Sandhu

Department of Information Systems and Systems Engineering
George Mason University, Fairfax, VA 22030-4444

There is a consensus that ob ject-oriented database management systems will dominate the
next generation of commercial products, much as relational database management systems
are dominant today. Several approaches to multilevel security for object-oriented systems
have been proposed. The underlying assumptions adopted by each one and their motivating
forces are somewhat different. This makes a relative comparison difficult since different
assumptions and motivations inevitably lead to different design trade-offs.

This panel brings together some of the leading researchers in this arena. Each panelist
will present a brief overview of his or her approach, perspective and insights. The pan-
elists have been requested to address the following questions at some point during their
presentation.*

1.

How much trusted code is required for their architecture? How much reuse of com-
mercial off the shelf software is feasible?

How do their systems enforce inheritance? Can the inheritance mechanisms of their
systems be used to define and enforce security policies?

. Do their systems support security policies for composite objects and multilevel com-

posite objects as defined in Catherine Meadows’ position paper?

Each panelist has contributed a position paper which is included in these proceedings.

A biographical note on each of the panelists and the panel session chairman is given
below (in alphabetical order).

¢ Sushil Jajodia is currently Professor of Information Systems and Systems Engineer-

ing at the George Mason University, Fairfax, VA. He is also Principal Scientist in the
Security Technical Center at the MITRE Corporation in McLean, VA. Prior to joining
GMU in 1988, he directed the Database and Expert Systems Program at the National
Science Foundation. He earlier headed the Database and Distributed Systems Sec-
tion at the Naval Research Laboratory, Washington and was an Associate Professor
of Computer Science and Director of Graduate Studies at the University of Missouri,
Columbia. He received the Ph.D. from the University of Oregon, Eugene. His current
research interests include information systems security, database management and dis-
tributed systems, and parallel computing. He has published more than 60 technical
papers in refereed journals and conferences and has co-edited three books. He is on
the editorial board of the IEEE Transactions on Knowledge and Data Engineering. He

*I am indebted to Catherine Meadows for questions 2 and 3, which are posed in her position paper.

597

¢ Ravi Sandhu is currently an Associate Professor of Information Systems and Systems
Engineering at the George Mason University, Fairfax, VA. Prior to that he was an
Assistant Professor of Computer Science at the Ohio State University, Columbus.
He earlier held R&D and teaching positions at the Indian Institute of Technology,
Jawaharlal Nehru University and Hindustan Computers Limited all in New Delhi,
India. His research interests include information systems security, multilevel database
management systems, models and mechanisms for integrity, and secure distributed
systems. He received the B.Tech. degree in Electrical Engineering from the Indian
Institute of Technology, Bombay in 1974, the M.Tech. degree in Electrical Engineering
from the Indian Institute of Technology, Delhi in 1976, and the M.S. and Ph.D. degrees
in Computer Science from Rutgers University in 1980 and 1983 respectively. Ravi
Sandhu has authored numerous journal and conference publications on information
security. He is the program chairman for the 1991 TEEE Workshop on Computer
Security Foundations. ’

¢ Bhavani Thuraisingham is a lead engineer at the MITRE Corporation. Her cur-
rent research interests are in database security and the applications of mathematical
logic in computer science. Her recent research contributions include security in dis-
tributed database management systems, secure object-oriented data models, logic for
secure data/knowledge base management systems, techniques for handling the infer-
ence problem, and the complexity of the inference problem. She is also leading two
team efforts on the design and implementation of a trusted distributed query processor
and a database inference controller. Previously Dr. Thuraisingham was at Honeywell
Inc. where she was involved with the design of Lock Data Views, and before that
at Control Data Corporation where she was involved with the development of CDC-
NET. She was also an adjunct professor and member of the graduate faculty in the
Department of Computer Science at the University of Minnesota. Dr. Thuraisingham
received the M.S. degree in computer science from the University of Minnesota, M.Sc.
degree in mathematical logic from the University of Bristol, England, and the Ph.D.
degree in recursive functions and computability theory from the University of Wales,
Swansea, United Kingdom. She has published over 50 technical papers including over
25 journal articles in database security, distributed processing, Al and computability
theory. She is a member of the IEEE Computer Society and ACM.

598

has edited special issues of the IEEE Transactions on Software Engineering, Journal of
Systems and Software, and Bulletin on Data Engineering. He is general co-chair of the
2nd International Symposium on Databases in Parallel and Distributed Systems and
program chair of the 4th IFIP Working Group 11.3 Workshop on Database Security.
He is a member of the IEEE Computer Society Publication Planning Committee, and
has chaired the IEEE Technical Committee on Data Engineering for two years. He is
a senior member of the IEEE Computer Society and a member of ACM.

Teresa F. Lunt, of SRI’s Computer Science Laboratory, is in charge of computer
security research at SRI, where she is leading two landmark programs: the SeaView
multilevel secure relational database system and the IDES Intrusion-Detection sys-
tem. She is also leading a new research area in security for knowledge-based systems
and using Al techniques for computer security. Prior to joining SRI in early 1986, she
worked at the MITRE Corporation for four years and later at SYTEK’s Data Security
Division for two years. She has worked on audit trail analysis, automated security
guards, security models, and formal verification of secure systems. She received the
A B. degree from Princeton University in 1976 and the M.A. degree in applied math-
ematics from Indiana University, Bloomington, in 1979. She won Outstanding Paper
Award at the 11th National Computer Security Conferénce in 1988 and Best Paper
Award at the 1987 IEEE Symposium on Security and Privacy. She is founding editor
and principal contributor to the Data Security Letter. She is currently serving as the
program co-chair for the 1991 IEEE Symposium on Security and Privacy.

Catherine Meadows received the B.A. degree in mathematics from the University
of Chicago in 1975 and the Ph.D. degree in mathematics from the University of Illi-
nois in 1981. From 1981 to 1985 she was an assistant professor of mathematics at
Texas A&M University. Since 1985 she has been employed at the Naval Research
Laboratory, currently in the Center for Secure Information Technology. Her research
interests include database security, verification of cryptographic protocols, and exe-
cutable specifications for secure systems. She has published numerous technical papers
on her research. She has served on the program committee for the IEEE Symposium
on Security and Privacy from 1987 onwards.

Jonathan Millen received his Ph.D. in Mathematics from Rensselaer Polytechnic
Institute, Troy, N.Y., in 1969. His Bachelor’s degree is from Harvard University in
1963 and his M.S. from Stanford University in 1965, both in Mathematics. He has
worked at The MITRE Corporation in Bedford, MA since 1969. In 1988 he became
Principal Scientist in the Distributed Processing Systems Division. He has worked in
the area of computer security since 1974, with a special interest in formal methods and
analysis tools. He established the IEEE Computer Security Foundations Workshop in
1988 and served as the general and program chair for the 1988 and 1989 workshops.
He has also served as the program co-chair for the IEEE Symposium on Security and
Privacy in 1984 and 1985. His current activities include mode].mg a variety of security
policies and analysis of covert channels.

599

MULTILEVEL SECURE OBJECT-ORIENTED DATABASE MODEL
(Panel Position Paper)

Sushil Jajodia

Department of Information Systems and Systems Engineering
George Mason University
4400 University Drive
Fairfax, VA 22030-4444

During the past several years, object-oriented approach to programming and design-
ing complex software systems has received a great deal of attention in the programming
languages, artificial intelligence, and database disciplines. There are several aspects of
object-oriented model which are quite appealing from security standpoint, and recently,
researchers have begun to examine the object-oriented paradigm in the context of secu-
rity. Several proposals have appeared in the literature dealing with security models for
object-oriented databases. While some of them are of considerable interest and merit,
they seem to lack in intuitive appeal because they do not appear to model security in a
way that would take full advantage of the object-oriented paradigm.

Most security models today are based on the traditional Bell-LaPadula paradigm.
While this paradigm has proven to be quite effective for modeling security in operating
systems as well as relational databases, it appears somewhat forced when applied to
object-oriented systems. The problem is that the notion of object in the object-oriented
data model does not correspond to the Bell-LaPadula notion of object. The former com-
bines the properties of a passive information repository, represented by attributes and
their values, with the properties of an active agent, represented by methods and their
invocations. Thus, the object of the object-oriented data model can be thought of as the
object and the subject of the Bell-LaPadula paradigm fused into one.

It seems natural, therefore, to view the system as consisting of objects (in the new,
object-oriented sense), where these objects are units of security. Perhaps the most impor-
tant consequence of adopting such a view is that information flow in this context has a
very concrete and natural embodiment in the form of messages. Moreover, taking into
account encapsulation, T a cardinal property of object-oriented systems, messages can be
considered the only instrument of information flow. Information flow becomes explicit
(in the form of message exchange among objects) and, therefore, easy to control.

The main elements of the proposed model can now be sketched out as follows. The
system consists of objects that are assigned unique classifications. Objects can

T Encapsulation of objects—a fundamental property of object-oriented systems—means that only
objects themselves can have direct access to their internal state (their attributes). For anyone else
to access the object’s state, it is necessary to send a message to that object.

600

communicate (and exchange information) only by means of sending messages among
themselves. However, messages are not allowed to flow directly from one object to
another. Instead every message is intercepted by the message filter, a system element
charged with implementing security policies. The message filter decides how to handle
any given message based on the security classifications of the sender and the intended
receiver, as well as some additional information. The rulings issued by this module
embody the security policy.

The main advantages of the proposed model are its compatibility with the object-
oriented data model and the simplicity and conceptual clarity with which security poli-
cies can be stated and enforced. Moreover, even though all objects are single-level (in
the sense of having a unique classification assigned to the entire object and not assigning
any classifications to individual attributes or methods), this does not preclude the possi-
bility of modeling multilevel entities. We refer the reader to [1] for additional details.

References

1. Sushil Jajodia and Boris Kogan, ‘‘Integrating an object-oriented data model with
multilevel security,”” IEEE Symp. on Research in Security and Privacy, pp. 76-85,
May 1990.

601

Object-Oriented System Security

Teresa F. Lunt
Program Manager
Secure Systems

Computer Science Laboratory
SRI International
Menlo Park, California 94025

We are developing a security model for knowledge-based systems for Rome
Air Development Center (RADC).! Because our initial investigations have
shown that knowledge-based systems can be straightforwardly modeled and
implemented on object-oriented systems, the first part of this study focused
on developing a security model for an object-oriented database system.

Multilevel Object Model

Our first model of a secure object-oriented database system was developed
under the SeaView project for RADC. In this model, classifications can be
associated with objects (including classes) and facets of objects, where a
facet could be an instance variable, a method, or a constraint. Thus, in
this model, objects can be multilevel; that is, various portions of an object,
such as class name, instance variable names, and methods, can have different
classifications.

We defined a hierarchy property, which requires that the security level
of an object must dominate that of its parent class object. This property is
needed to permit the object to inherit methods and variables from its parent.
This is a fundamental property that will play a part in any model of security
for object-oriented systems.

This model also requires that an object’s facets be classified at least as
high as the object itself. This is analogous to the SeaView property that
requires that any data contained in a tuple be classified at least as high as

'RADC is funding SRI through subcontract R009406 with IITRI (U.S. Government
contract F30602-87-D-0094).

602

the tuple’s primary key, and that any data that can be stored in a relation
be classified at least as high as the name of the relation. We called this the
facet property in this multilevel object model.

Single-Level Object Model

In the current project, we developed a security model for an object-oriented
database system in which objects are single-level rather than multilevel. The
reasons for doing this were two-fold: first, we uncovered several difficulties
with multilevel objects and thus felt that we needed a model for single-level
objects to put us on a more solid footing, and secondly, we felt that a single-
level object model might be sufficient to support a multilevel knowledge-
based system.

This single-level object model includes the hierarchy property, discussed
above. We demonstrated that typical database security and integrity policies
can be supported by this model.

Composite Object Model

In our ongoing work, we are again investigating a model that supports mul-
tilevel objects. Our investigations of actual knowledge-based system require-
ments have led us to the conclusion that multilevel objects are desirable to
support a knowledge-based system. We have also developed a new model
that does not have the difficulties of our initial multilevel object model dis-
cussed above. In essence, this new model combines the features of the above
two models. In this new model, an object can be multilevel, but the ac-
cess class of the object dominates the access class of its components (as
contrasted with the facet property described above). Each of these com-
ponents is itself an object, which in turn can be multilevel and can consist
of lower-level components. This provides a very natural and simple way of
constructing multilevel objects. This model also leads to a natural decom-
position of multilevel objects from single-level partitions. Thus, queries and
updates on multilevel objects will be decomposed into queries and updates
on the single-level partitions. This approach is easily generalized to an object
mode] in which the object base is distributed and queries and updates are
distributed across numerous processors and memories.

603

http:numero.us

Discretion/ary Access Controls for Object-Oriented
Database Systems

In another project for RADC?, we are developing a model for discretionary
access control in object-oriented database systems. This model allows the im-
plementation of arbitrary access policies and enables one to easily implement
such conventional mechanisms as access control lists, named access control
lists, user groups, user attributes, user capability lists, and user roles. It
also provides convenient extensions for additional access restrictions based
on time, day, date, or any user-supplied function. The generality of the mech-
anism permits users to think of their access policies as true policies rather
than as particular representations imposed by more restrictive mechanisms.

We added the notions of negative authorizations and strong and weak
authorizations, so that we could require more and more privilege in order
to access objects as you go down the class hierarchy. Negative authoriza-
tions are used to express explicit denial of authorization, that is, those users
and groups that must be denied authorization even if authorization is later
granted. Strong authorizations are authorizations that cannot be overridden.
Weak authorizations can be overridden by strong authorizations. Weak and
strong positive and negative authorizations can be flexibly combined to make
realistic policies.

2RADC is funding SRI through subcontract C/UB-07 with CALSPAN, U.S. Govern-
ment contract number ¥30602-88-D-0026

604

Questions in Trusted
Object-Oriented Database Management Design

Catherine Meadows
Code 5543
Center for Secure Information Technology
Naval Research Laboratory
Washington, DC 20375

A few years ago, Carl Landwehr and I wrote a paper [2] in which we
showed how a security model could be developed and described from an object-
oriented point of view. In it, we outlined the model for the NRL Secure Mili-
‘tary Message System [1], and restated it in an object-oriented framework, in
terms of objects that could use certain methods and pass certain messages
between each other. We found certain aspects of the object-oriented approach,
very useful in describing and developing the security model, and we suggested
ways in which an object-oriented system could be designed so that it could be
used to enforce such a model.

We found the concept of class hierarchies and inheritance among classes
extremely useful in developing the object-oriented SMMS model. A security
policy could be defined for one class of objects which could then be inherited by
other classes. This policy could then be refined for application to these other
classes. Thus, for example, an object of class container would obey the security
rules relevant to containers (for example, the rule that a container cannot con-
tain any entities whose labels are not dominated by its container label), while a
container of class message would obey, not only the container rules, but the
rules relevant to messages (for example, the rule that a message marked ‘sent’
may not be modified). Such an approach provided a straightforward and under-
standable way of describing a security model.

Another concept that we found useful was that of composite object. This
allowed us to model policies for handling objects that were made up of several
different objects that each obeyed their own policies, and that possibly existed at
different security levels. Thus, for example, we could describe policies governing
message files made up of messages at different levels, and policies governing
messages made up of headers and paragraphs of different levels.

We never got to the point of designing an object-oriented system that
would assist us in enforcing such policies. But we did identify several properties
that such a system must have in order for it to be useful. In particular, it was
necessary that it be possible to ensure that an object responded only to -those
messages to which it was supposed to respond and used only the appropriate
messages in its response, that inheritance among object classes be strictly

605

enforced, and that messages and methods defined further down in the class
hierarchy did not interfere with security-related methods and messages defined
earlier. It was also necessary, although we did not explicitly say so in our paper,
that the system be able to support multilevel composite objects and enforce
security policies defined for such objects.

With these thoughts in mind, I would like to turn to the other members of
this panel and ask how their systems would enforce such policies. In particular,
how do their systems enforce inheritance, and do they think it possible that the
inheritance mechanisms of their systems could be used to define and enforce
security policies? Also, do their systems support security policies for composite
objects and multilevel composite objects, and in what way? Finally, do they
think that such features are important or necessary? If not, what features do
they think are important?

References

1. C. E. Landwehr, C. L. Heitmeyer, and J. McLean, “A Security Model for
Military Message Systems,” ACM Transations on Computer Systems, vol.
2, no. 3, pp. 198-222, August 1984. ’

2. C. A. Meadows and C. E. Landwehr, “Designing a Trusted Application
Using an Object-Oriented Data Model,” in Research Directions in Data-
base Security, ed. T. F. Lunt, Springer-Verlag, to appear.

606

, Sihgle-Level Objects for Security Kernel Implementation

Jonathan K. Millen
The MITRE Corporation
Bedford, MA 01730

The design for a secure knowledge-based system given in [1] takes an object-
oriented approach. A knowledge-based system is a database system with certain
additional features, such as a class hierarchy with inheritance, and support for rule-
based inference. The class hierarchy comes naturally with an object-oriented approach.
As for the inference engine, we found that it can be added within the existing structure
without straining the system organization or security properties.

To obtain the greatest possible assurance for mandatory security, we took a
layered approach to the system design, with the idea of building on a conventional
security kernel. It was assumed that this kernel would enforce mandatory security
while providing essential services such as memory management, process management,
input-output, and user identification and authentication. We investigated the feasibility
of superimposing on this kernel an object-oriented layer, to provide primitive services
such as object creation, message handling, inheritance, and object data accesses.

It was an important objective to determine whether the object layer could
operate within the security constraints imposed by the kernel, without any privilege to
violate those constraints, and yet provide a natural, understandable and usable interface.
We found a suitable higher-level, object-oriented security policy based on the simple
notion that each object has a single security level. .

The security level of an object applies to everything in the object, whether the
object represents a class or an instance. Attributes of a class object, such as the
methods that belong to it, the names and types of its variables, and any default values
they possess, are all labelled at the object level. Attributes of an instance object, namely
the values of its variables, are labelled by its level. In fact, the design and policy do not
make any distinction between classes and instances; they are all objects, and the pohcy
applies to them all uniformly.

Saying that each object has a single security level (applying to everything in it)
is not by itself a full or unique description of a security policy. A number of other
design choices were made and details were filled in. For example, not all "objects"” in
the widest sense are labelled - only named, uniquely identifiable objects that serve as
containers for data values. Instances of data values - numbers, strings, and other
entities of types normally predefined in the system - are stored inside labelled objects.

607

When the value of a variable in one object is a reference to another labelled
object, the reference itself, stored inside the first object, is distinguished from the object
it references. The former is implicitly labelled with the label of the object containing it.
Consequently, it is possible for the existence of an object to be known (through the
reference) at a lower security level than the level of the object.

An important design choice was made in the handling of messages. Any object
can send a message to any other object. A "subject" or method invocation is created
upon reception of a message. The subject is given a security level that dominates both
that of the receiving object and that of the message (which is the level of the subject that
sent it). In some cases, the new subject level will strictly dominate that of the receiving
object, and the subject will then not be allowed to update variables in that object.

Another aspect of the security policy was necessitated by the mechanism of
- inheritance. Since a message might be handled using a method inherited from a parent
class, the parent class of an object should be at a lower or equal security level. This
"hierarchy" property is reminiscent of the directory hierarchy compatibility property of
secure Multics. ’

With regard to the "trustedness” of the object layer, we are assuming that the
pre-existing security kernel will enforce the mandatory policy at its interface without
granting any privileges to the object layer, or expecting any guarantees. This means
that we can use an off-the-shelf evaluated conventional secure operating system.
However, an off-the-shelf non-secure object-oriented environment would require
substantial redesign to respect the kernel security constraints, specifically to support the
policy we have outlined. The object layer may also introduce and be trusted to enforce
its own discretionary policy, which may or may not make use of a discretionary access
control mechanism present in the kernel.

We feel that the single-level-per-object design is appropriate for users of the
object system interface. Although multilevel objects could conceivably be supported
using a decomposition approach similar to the way multilevel relations are handled in
SeaView, there are new complications in an object-oriented environment due to the
class hierarchy. Furthermore, the single-level approach avoids polyinstantiation and

clarifies integrity issues. ,

[1] J. K. Millen and T. F. Lunt, "Security for Knowledge-Based Systems,"

MTR-10686, The MITRE Corporation, September 1989, and SRI-CSL-90-04, SRI
International, August, 1989.

608

ISSUES IN MULTILEVEL SECURE OBJECT-ORIENTED
DATABASE MANAGEMENT SYSTEMS - A POSITION PAPER

Bhavani Thuraisingham

The MITRE Corporation, Burlington Road, Bedford, MA 01730

1. INTRODUCTION

Object-oriented systems are gaining increasing popularity due to their inherent ability to represent conceptual entities as objects;
this is similar to the way humans view the world. This power of representation has led to the development of new generation
applications such as CAD/CAM, Multimedia information processing, Artificial Intelligence and Process control systems. However
the increasing popularity of object-oriented database management systems should not obscure the need to also maintain security of
operation. That is, it is important that such systems operate securely in order to overcome any malicious corruption of data as well as
to prohibit unauthorized access to and use of classified data especially with military applications.

Recent investigations of security issues in object-oriented systems has proceeded in three directions. In the first direction,
multilevel object-oriented data models are being developed in order to represent a database with data at different sensitivity levels.
Thus multilevel secure object-oriented database management systems (MLS/ODBMS) will be needed to manage a multilevel object-
oriented database. In the second direction, an object-orient approach is taken to design a secure software system. That is, the
software system is treated as a set of interacting objects. In the third direction, an object-oriented approach is taken to design trusted
applications. In this paper we focus only on the issues for designing a MLS/ODBMS. In particular, the issues on data modelling,
architectures, interface languages, metadata management, query processing, transaction management, and theory, will be discussed.

2. MULTILEVEL OBJECT-ORIENTED DATA MODEL

A multilevel object-oriented data model should support all of the constructs associated with an object-oriented data model. In
this section we will briefly identify the various constructs of an object-oriented data model and discuss the security issues.

All conceptual entities in an object-oriented database are modelled as objects. A group of objects with similar properties form
a class which is also an object. The objects that form the class are called the instances of the class. A class could be a system-defined
class, such as a class of integers or strings, or it could be a user-defined class such as.a class of documents. A class has methods
associated with it. Methods provide a means for accessing the class or the instances of the class. Methods may be executed by
sending messages to the class or to its instances. This feature is known as encapsulation.

Associated with each class is a set of instance variables that describes the attributes of the instances of the class. An instance
variable could be either a noncomposite instance variable, or it could be a composite variable. Noncomposite instance variables are
divided further into simple instance variables and complex instance variables. Simple instance variables take individual objects as
their values. An individual object could be a basic object such as an integer, string, or boolean, or it could be an object which is
described by a tuple value such as an employee, a department, or an automobile. For example, the simple instance variables of a
book class include the "Author” and the "Title.” Complex instance variables take a set or a list of individual objects as their values.
Examples of complex objects include a set of names or a set of employees. Composite instance variables describe the components of
the instances. That is, a component of an instance is part of the instance. For example, a document could be composed of a cover,
table-of-contents, set of sections, and references.

Any class which has a composite instance variable is a composite class. The instances belonging to such a class are
composite objects. A composite object together with its components forms a hierarchy called the IS-PART-OF hierarchy (or
composite hierarchy). The link from a composite object to its component is called a composite link. A second hierarchy that may be
formed is the IS-A hierarchy, where subclasses are associated with a class. The subclasses inherit all the methods and instance
variables defined for a class. This feature is known as inheritance. A subclass could also have some additional instance variables and
methods. Other features that need to be supported include versxomng That is, different versions of an object need to be maintained.
These versions could be alternate versions or historical versions that evolve over time.

In order to develop a multilevel object-oriented data model, security properties between the various constructs need to be
enforced. One of the main issues that need to be resolved is whether an object should be single level or muiltilevel. If an object is
single level, then all its components and parts are assigned the same security level. If an object is multilevel, then its components
could have different security levels. It appears that at the conceptual level the notion of multilevel objects is desirable in order to
reflect the real-world more accurately However, the multilevel objects could be decomposed into single level objects and stored in
single level files or segments in order to obtain higher levels of assurance. A multilevel object-oriented model should also support
polyinstantiated versions. Various definitions of polyinstantiation have been proposed. We assume that polyinstantiation occurs
when users at different security levels have different views of the same entity. Cover stories at different security levels can be
regarded as a form of polyinstantiation.

609

3. ARCHITECTURURAL ISSUES

The first step towards the design of any software system is to evaluate a variety of architectures and then select the most
appropriate ones for the design and implementation of the system. In this section, we describe four possible architectures that have to
be evaluated with respect to the various functions of a MLS/ODBMS and the level of assurance expected of the system.

In the first of these architectures, an object manager is hosted on top of a multilevel relational system. The object manager is
responsible for managing complex multilevel structures, consequently alleviating the burden placed on the application programs. The
multilevel relational system acts as the storage manager and is responsible for concurrency control and recovery. Such an architecture
would be very useful in the near-term. This approach takes advantage of the developments in multilevel relational systems.

In the second of these architectures, a MLS/ODBMS is hosted on a trusted computing base (TCB). The object manager as well
as the storage manager are part of the MLS/ODBMS. Such an architecture is preferable to the first. However, several issues need to
be investigated before this architecture can be developed.

In the third of these architectures, a trusted front-end machine is connected to untrusted back-end Object-oriented DBMSs. Each
back-end machine operates at a single level and manages the data at the same level. Recently multilevel relational systems have been
developed using the trusted front-end / untrusted back-end approach. The feasibility of developing a MLS/ODBMS using such an
approach needs to be investigated.

In the fourth of these architectures, a trusted filter needs to be placed between the untrusted front-end user interface and the
untrusted back-end Object-oriented' DBMS. This is based on the integrity lock architecture. The feasibility of developing a
MLS/ODBMS using such an approach needs to be investigated.

The MLS/ODBMS design will no doubt depend on the architecture that is selected. From a preliminary evaluation of the
various architectures, the second architecture appears to be the most appropriate one for high assurance systems. Furthermore, by
having the object manager and the storage manager together as part of the MLS/ODBMS will result in better performance. The
security issues that we have identified in this paper are related to the second architecture.

4. LANGUAGE ISSUES

Data manipulation, data definition, and persistent database programming languages are being developed for Object-oriented
DBMSs. Data manipulation languages provide the facility for interactively querying the database. Data definition languages provide
the facility for defining the various types of data. Persistent database programming languages that have been developed for object-
oriented systems support many of the features of modern object-oriented languages such as abstract data types, as well as support
persistence where data can be accessed even after the process that creates it is not in existence.

Although object-oriented database languages have received considerable attention, extensions of these languages to support
multilevel security has not been done. Note that extensions to relational database languages to support multilevel security assertions
has been reported in the literature.” Therefore it is proposed that for object-oriented database languages the constructs for multilevel
security should be incorporated at the onset.

5. METADATA MANAGEMENT

Metadata management in an Object-oriented DBMS includes the creation, modification and deletion of the various classes,
security constraints which assign security levels to the data, integrity constraints which enforce consistency among the data, and
relationships between the various constructs associated with the object-oriented data model. Metadata is managed by the metadata
manager component of the DBMS. The metadata required by the other modules such as the query processor and transaction manager
are accessed via the metadata manager. The metadata could be static, in which case it is assumed that all of the metadata are created
before the database is created, or the metadata could be dynamic, in which case it is assumed that the metadata is evolving.

The security impact on metadata management has not received much attention even in multilevel relational systems. Only a
few of the designs have addressed the issues involved to some extent. Therefore much research needs to be done in the area of metadata
management in multilevel systems. One function of the metadata manager in a MLS/ODBMS could be ensure that the classes are
created at the appropriate security levels. That is, the security constraints could be applied when the metadata is created and it could be
ensured that the constraints are satisfied. This approach is not desirable for applications with dynamic security constraints. The
metadata manager is also responsible for ensuring that the metadata is consistent. For this purpose tools for checking the consistency
of the metadata need to be developed. In a multilevel environment it has to be ensured that the security constraints are enforced in such
a way that security violations cannot occur. For example, the following constraints "John lives in Boston is Unclassified"”, "The
existence of a man named John is Secret” are inconsistent with one another. The metadata manager should be able to detect such
inconsistencies. In the case of distributed data, the metadata manager is responsible for maintaining the information on data
distribution.

610

It should be noted that the metadata itself could be assigned different security levels. For example, the metadata could be
maintained either at system-low, system-high, or at different security levels. Some implications of these configurations for
multilevel relational systems have been investigated. They need to be investigated for a MLS/ODBMS also.

6. QUERY PROCESSING

The most important function of a MLS/ODBMS is to provide a facility for users to query the database system and obtain
authorized and correct responses to the queries. The data is usually distributed in files or segments at different security levels. The
distribution of the data across security levels should be transparent to the user. That is, the user should query the database and receive
only the responses at or below his level. The query processor, which is responsible for handling queries, should determine the
segments which store the relevant data and assemble the data from the different segments.

Following are some of the issues in secure query processing.

(1) Access methods: Two of the major components of the system architecture are the object manager and the storage manager. The
object manager is responsible for managing the complex objects and the storage manager manages the multilevel database. Efficient
and secure access methods for the object and storage managers need to be developed.

(2) Query Optimization: Special query optimization strategies need to be developed to access the classes, objects and instance variables
of objects. The security impact on query optimization techniques need to be investigated.,

(3) Polyinstantiation: In an object-oriented data model, the instances, instance variables and even the classes could be
polyinstantiated. Strategies for efficiently handling polyinstantiation should be developed.

(4) Data Distribution: The data could be distributed in files or segments at different security levels. Strategies for recombining the
data at different security levels during query processing need to be developed.

(5) Inference Problem: Inference is the process of forming conclusions for premises. This process becomes a problem when
unauthorized conclusions are drawn from authorized premises. Techniques for handling the inference problem in multilevel relational
systems are being investigated. These techniques need to be adapted for a MLS/ODBMS.

7. TRANSACTION MANAGEMENT

Transactions are managed by the Transaction Manager component of a database system. A transaction is a program unit that
must execute in its entirety or not execute at all. The issues involved in transaction management are concurrency control and recovery.
Concurrency control techniques ensure the consistency of the database when multiple transactions execute concurrently. Recovery
techniques are necessary in order to ensure that the database is brought to a consistent state when transactions are aborted due to some
failure. Although much progress has been made in incorporating transaction management features into a DBMS, providing these
features in an Object-oriented DBMS as well as in a multilevel relat10na1 DBMS has only recently begun. Very little attention has
been given to transaction management in a MLS/ODBMS.

Following are some of the issues on transaction management in multilevel database systems.

(1) Security policy: The security policy enforced by the system needs to be extended for transaction management. An important issue
that needs to be addressed is whether a transaction operates at a single level during its execution or whether it can change security levels
during execution. If it is the former, then the transactions are single-level. If it is the latter, then the transactions are multilevel.

(2) Serializability condition: Appropriate serializability conditions for transaction management have to be formulated. These
conditions should ensure that only serializable schedules are executed.

(3 Concurrency control; The various concurrency control techniques need to be examined for transactions which operate in a multilevel
environment. These techniques should ensure that not only is the consistency maintained, but the actions of higher level transactions
do not interfere with lower level ones. In addition, deadlocks and starvations have to be prevented. The three techniques that are being
investigated for multilevel relational systems are locking, timestamping and validation. These techniques need to be examined for a
MLS/ODBMS. In addition, concurrency control techniques based on abstract data types that are being investigated for an Object-
oriented DBMS need to be adapted for a MLS/ODBMS.

(4) Recovery: Recovery techniques should ensure that the system should be recovered to a consistent state in the event of any failure.
Recovery techniques that are being proposed for an Object-oriented DBMS need to be adapted for a MLS/ODBMS.

8. THEORY

Secure object-oriented database systems could be built by incorporating multilevel security into existing Object-oriented
DBMS:s by the use of special annotations and supporting mechanisms. Such an ad-hoc approach is usually cumbersome and awkward
especially because it involves the cooperation of different and disparate expertise including those of data model designers, systems
designers and language designers. Therefore, a simple but adequate model for the description and construction of a multilevel secure
object-oriented database management system is certainly desirable. That is, we need a theory for integrating the data modelling,
programming language and system development concepts to aid in the construction of muitilevel secure object-oriented database
management systems.

611

During the 1970s the notion . of using type theories for representing Abstract Data Types in programming languages was
proposed. Abstract Data Types are also an important concept in the object-oriented paradigm, and type theories have subsequently
been used to provide a theoretical framework for object-oriented systems. The inheritance mechanism, another important concept in
the object-oriented paradigm, has also been supported in certain type theories. Among the enhancements that have resulted from such
work, programming language compilation and execution have been made more efficient and support for persistent objects essential to
‘database applications has also been provided

It is important to note that type theories that have been developed for the object-oriented paradigm in general are not sufficient
in themselves to achieve the goals of constructing multilevel object-oriented systems. This is because the existing type theories do
not have security levels incorporated into them and therefore cannot be used for computations in a multilevel environment. What is
needed is a type theory developed specifically to meet the needs of a multilevel operating environment.

Work should be directed towards developing a multilevel type theory from first principles with the necessary extensions to be
made consistently and systematically for various tasks such as data modelling, programming language design and system construction.
It appears that our basic intuitions concerning types in a multilevel environment could be represented and formalized using ideas from
universal algebra and second order models, such as those based on lambda calculus and constructive mathematics.

9. OTHER ISSUES

In this section, we discuss some of other issues that have to be addressed. They are (1) designing an Intelligent MLS/ODBMS,
(2) steps to developing a MLS/ODBMS, and (3) designing a Distributed MLS/ODBMS.

An Intelligent MLS/ODBMS should have the capability to make deductions and intelligent decisions. At present, Object-
oriented DBMSs are being extended with rule processing and deduction capabilities. The security impact of these extensions are also
being investigated. Such work will produce database systems that are not only multilevel secure, but also have powerful
representational and deduction capabilities.

The steps required to develop a MLS/ODBMS depend on the level of assurance that is expected of the system. In addition to
the design and implementation steps (which will consist of the design and implementation of the models for query processing, update
processing, transaction management, and metadata management), a MLS/ODBMS development process would include the following:
(1) Security Policy: This is a discussion on the policies for mandatory security, discretionary security, integrity, auditing,
authentication, accounting, and the roles of the database administrator, and the systems security officer. (2) Model: A security model
for the MLS/ODBMS should be developed. (3) Specification: Security requirements expressed by the model are specified (either
formally or informally), and the correspondences between the specification and the model and the specification and the implementation
are demonstrated.

The issues in designing a Distributed MLS/ODBMS will include all of the issues involved in designing a MLS/ODBMS.
Furthermore, the additional complexities that arise from distributing the data across several nodes should also be handled. Data
distribution causes a major impact on the functions of query processing, transaction management and metadata management. In an
object-oriented data model, data distribution causes additional problems if encapsulation and inheritance properties have to be preserved.
The security impact on the various functions and properties remains to be investigated.

10. CONCLUSION
In this paper we have described the need for a MLS/ODBMS and identified some security issues that need to be given further

consideration. Various efforts are under way to provide solutions to some of these issues. More research, prototype development, and
simulation studies need to be carried out before useful MLS/ODBMSs can be developed successfully.

612

C2 SECURITY AND MICROCOMPUTERS

Angel L. Rivera
Sector Technology
5109 Leesburg Pike
Suite 900
Falls Church, Virginia 22041-3201
(703)845-5600

The latest and most commonly used marketing (claim-plot) term being
used by manufacturers of PC security products is that their products
meet €2 functionality, a term that has never been explained or
described by the folks at NCSC.

The thinking behind such a plot is that if the product has
discretionary access controls (DAC), wuser identification and
authentication (I&A), audit trails (AUD), it more or less meets the
C2 requirements. The fact of the matter is that no PC security
product meets C2 requirements because they are subsystems, and in
order for them to get a C2 rating they would have to be a complete
ADP system that has been evaluated and certified by the National
Computer Security Center (NCSC). Will we ever have a C2 PC? Your
guess 1s as good as mine.

What I would like to accomplish in this article is to clarify the
requirements for D2 evaluation and give a plain english definition
of the features needed to meet the D2 requirements, which is a
different interpretation of C2 for subsystems. I will also include
a matrix for you to use when evaluating PC security products under
consideration. In my opinion, D2 is the closest we will ever get to
C2 in a PcC.

As you can imagine, PC security product manufacturers were pretty
upset that the NCSC would only evaluate their products and would not
rate them. In response to the demand from users and the vendors, NCSC
came up with a rating system at the D level. For an explanation of
these ratings, I suggest you read the booklet titled "“COMPUTER
SECURITY SUBSYSTEM INTERPRETATION’ of the Trusted Computer System
Evaluation Criteria" (NCSC-TG- 009) . Since subsystems, by their very
nature, do not meet all of the requirements for a class Cl or higher
computer system, it is most appropriate to associate subsystem ratings
with the D division of the TCSEC. This Interpretation defines the D1,
D2 and D3 classes within the D division for subsystems. The D1 class
is assigned to subsystems that meet the interpretations for

'For the purpose of this discussion, I will call this book the
Light Blue Book.
Copyright 1989, 1990

613

requirements drawn from the Cl1 TCSEC class. Likewise, the D2 class
consists of requirements and interpretations that are drawn from the
C2 TCSEC class. The D3 subsystem class is reserved for DAC subsystems
and audit subsystems that meet the B3 functionality requirements for
those functions. A plain D rating means that the subsystem does not
meet all of the requirements for a higher category2 .

Furthermore, subsystems are evaluated on the following subsets:
Discretionary Access Control (DAC), Object Reuse (OR), Identification
and Authentication (I&A), and Audit (AUD). Each subset has its own
set of ratings as identified in the following table:

SUBSYSTEM FUNCTION ‘ POSSIBLE RATINGS

Discretionary Access Control DAC/D
DAC/D1
DAC/D2
DAC/D3

Object Reuse OR/D
OR/D2

Identification & Authentication I&A/D
I&A/D1
I&A/D2

Audit AUD/D
AUD/D2
AUD/D3

When subsystems are evaluated for more than one function, they will
receive a separate rating for each function.

Back to our topic of C2 functionality. The closest one can get to a
C2 rating with a PC security product, is to have a product that meets
at least the D2 requirements in all of the functions. It would be
nice if we could go to the Evaluated Products List and pick the D2
certified products, however, there are none as of yet, and it takes
anywhere between six months to a year to get a product evaluated by
the center. In the meantime, unfortunately, the evaluating is left
to us, the users. I will try to walk you through the D2 requirements
and then give you a matrix for your own use in evaluating available
PC security products.

2NCSC-TG-009

614

Discretionary Access Controls (DAC)

Let's start with discretionary access controls (DAC). The purpose
of the DAC subsystem is to control access to resources. To do this,
the security package must use some mechanisms to determine whether
users are authorized for each access attempted. For example - user
one wants to run a word processing program. The DAC mechanism must
identify this user and determine whether he has access to that program
or not. If the user decides to open a file with the word processing
program, the DAC mechanism should also determlne if the user has
access to the file being opened. .

Under the D2 requirements this mechanlsm shall allow users to spec1fy
and control sharing of those files (objects) by named individuals, or
groups of individuals. In other words, the DAC mechanism should allow
the authorized user to share the files that belong to him.

This sharing of files include individual or groups of individuals.
The security package should be able to limit the ability to grant the
propagation of access to only authorized individuals. Some users
could be allowed to share some of their files while others could be
restricted and not allowed to share files.

In addition the security package should have a default setting that
denies all users access to files on programs when no explicit action
has been taken by the authorized user to allow access. For example:
if I create a file the default permissions on that file are no access
for other users unless I specify otherwise.

According to the Light Blue book (NCSC-TG-009), mechanisms that can
meet the DAC requirements include, but are not limited to: access
control 1lists, capabilities, descriptions, user profiles, and
protection bits. ~

Object Reuse (OR)

In plain english, object reuse means that before I let you use a
storage medium like a diskette, I have to make sure that the diskette
has no data. Erasing a diskette, as most of you know, does not get
rid of the data, it only gets rid of the pointers to that data and
frees the space for reuse. With common disk utilities, the data could
be recovered. The same applies to memory. When a word processing
package loads a file into memory for you to work on, and then saves
it to disk when you are finished, the work space used in memory is not
erased. It is like the diskette, it is made available for reuse. A
dump of the contents of memory would display the contents of that
file. In order for a PC security product to meet this requirement,
the package would have to overwrite, with meaningless or
unintelligible bit patterns the files that it erases, also known as
file purging, and overwrite the contents of memory, also known as
memory purging. Keep in mind that this requirement also applies to
hard disks, tapes, i/0 buffers, temporary files, CMDS memory, prlnter
and keyboard buffers, numerous registers, etc.

615

Under the D2 ‘requirements, even encrypted data needs to be
overwritten. The reasoning behind this is that an unauthorized user
can get this encrypted data and try to figure out the key. According
to the Light Blue book, there is an alternative way of approaching the
problem of object reuse and that is to deny read access to the
previously used storage objects until the user who has just acquired
them has overwritten them with his own data. One way of doing this
is to have a security package that does not allow unauthorized users
to do memory dumps or do a file unerase, and does not allow sector
reads. Unfortunately, software only security packages cannot take
advantage of this alternative because any user can load the Operating
System from the A drive and do absolute sector reads with common disk
utility packages. : ‘

Identification and Authentication (I&A)

The simplest way to meet this requirement is through the use of a
user ID and a password. More sophisticated methods for identification
and authentication include, but are not 1limited to smartcards,

fingerprints, tokens, etc. Keep in mind that the <claimed
identification of a user must be authenticated by an explicit action
of the user. I&A must be a two step process. The user ID can be

public, however, by keeping it secret, it can only strengthen the I&A
portion of the security system. The password on the other hand must
be secret. The authentication data (i.e. passwords) must be protected
so that it cannot be accessed by unauthorized users. Here again,
software security falls short of the requirement. Even if the
password file is encrypted, it must be protected from unauthorized
access, and software by itself cannot prevent this from happening.

Besides being able to enforce individual accountability, the security
system must be able to associate the user ID with all auditable
actions taken by that individual. For PCs, auditable actions include
the date and time of the event, the user ID, type of event (i.e. file
opened, file deleted, password changed, etc.), and the success. or
failure of the event.

Audit (AUD)

The purpose of the audit subsystem is to record all the security-
relevant actions that take place on the PC. This will allow the
administrator to detect security violations and trace them back to
the responsible parties. :

On mainframe systems it would be possible to use the I&A mechanisms
and DAC mechanisms built into the operating system and pass this data
to the Audit subsystem for storage. However, on PCs there are no
built in I&A or DAC mechanisms. Therefore, the audit subsystem must
be used in conjunction with a DAC and I&A. This does not mean they
have to be in the same security package. For example, you could use
a biometric device (like a finger print reader) as' the I&A mechanism
and then pass the I&A data onto the Audit subsystem. This example is
more expensive to implement but more secure.

616

Under the D2 requirements for Audit, the system should protect the
audit trails from unauthorized access, modification, or destruction.
Here again, software-only security packages - fall short of the
requlrements.

Software~only packages can protect the confidentiality of the audit
data (i.e. if they are encrypted) but cannot protect against
unauthorized access, modification, or destruction. Once a user boots
the system from the A> drive and uses common disk utility to

access the medium storage (where the audlt trails are stored) the
requlrement has been compromised.

Authorized access should be clarified when discussing the Audit
requirements. Just because you are the system administrator and have
authorized access to the audit trails does not mean you can access
them any which way you want. Under the D2 requirements this audit
data must be accessed through the audit subsystem. This requirement
makes sense since you want to make sure users with authorized access
can only access the audit data with the approved audit mechanism and
that this action is recorded itself in the audit trails.

Another D2 requirement is that the Audit subsystem allow the system
administrator the capability to selectively audit some users while
not auditing others. To accomplish this, the subsystem should have
the ability to perform selection of audit data based on individual
users. There are two ways to select the data. You can either pre-
select the events actions that the audit subsystem is going to keep
track of, or have the subsystem extract specific data out of a more
general audit trail. The main advantage of this requirement is that
it reduces the amount of data a system administrator has to review.

The specific information to be recorded about each security-relevant
event includes the following:

- Use of I&A Mechanisms

- Introduction of objects into a users address spool (e.q.
file open, program run)

- Deletion of objects

- Actions taken by computer operators, and system
administrators/security officers

For each recorded event the audit record should include:
- Date and time of event
- User

- Type of event
- Success or failure of event

617

Keep in mind that this does not mean that every time anyone uses the
word processor you need to record it. Remember, we are talking about
security-relevant events only. If the word processor is not used to
generate sensitive documents you do not need to keep track of who uses
it. On the other hand, if it is used for sensitive documents you
should record that the program was used and which files were created,
modified, read, or deleted.

You have probably realized by now that there are some very strict
requirements to meet C2 functionality or get a D2 rating. Not only
are there requirements, but there are different categories. When a
vendor tells you they meet C2 functionality, your immediate response
should be to ask what is C2 functionality. Second, you should ask
under which categories. The ideal product would meet the requirements
in all the categories. To make sure the vendor knows what he is
talking about, ask him/her to name the categories.

To refresh your mind, they are: Identification and Authentication
(I&A), Discretionary Access Controls (DAC), Object Reuse (OR) and
Audit (AUD). . :

Requiring C2 functionality for all your microcomputer security needs
can be overkill in many areas. - The degree of security needed is
dependent on the sensitivity of the data. 1In plain and simple terms,
if your data is worth $10 you do not spend $15 to protect it. C2
functionality should only be required in your most sensitive
applications. And remember that C2 functional products can not be
used to process classified data.

This article only discussed the feature requirements for subsystems.
The reader should should be aware that there are also assurance,
in