
TRANSMAT
Trusted Operations for

Untrusted Database Applications

Dan Thomsen
Secure Computing Corporation

2675 Long Lake Road
Roseville, MN 55113, USA
email: thomsen@sctc.com

Abstract

This paper presents a technique for allowing untrusted database applications to perform
trusted operations. The approach is based on the TCB subset architecture with a commer-
cial database and a small amount of easily assurable, generic, trusted code for the multi-
level operations. The approach uses a trusted path mechanism to stop the threat of Trojan
horses.

1.0 Introduction

Multilevel applications are expensive to build due to the high costs of creating trusted
code. Tools were created to reduce the cost of creating single level applications by provid-
ing, common components needed by many applications. For example, most applications
need to store data. Database Management Systems (DBMS) were created to provide data
storage capability to many different applications. A similar approach is needed to reduce
the cost of creating multilevel applications.

The technique described in this paper has been dubbed TRANSactions for Multilevel
ApplicaTions (TRANSMAT). TRANSMAT provides an environment for easily creating
multilevel applications. The goal of TRANSMAT was to provide high assurance with rea-
sonable development costs.

TRANSMAT uses the DBMS TCB subset architecture, described in the TDI, to achieve
high assurance [1]. In the TCB Subset approach, a copy of the DBMS is running at each
level. The TCB provides the high assurance separation between each DBMS. This allows
the DBMS to be untrusted. The TCB Subset approach was used by both SeaViews and
LOCK DBMS [2], [3]. The DBMS provides the environment to build applications quickly.
However, many multilevel applications need to perform trusted operations. Since the
DBMS layer and the applications environment layer are untrusted, the applications cannot
perform trusted operations.

TRANSMAT uses a small trusted program that can execute pre-approved operations. The
small trusted program prompts the user to confirm a trusted operation before it is executed.

The confirmation is done using a trusted path mechanism that ensures only users, not pro-
grams, can confirm operations. This prevents a Trojan horse from driving a covert channel
through the application.

TRANSMAT builds on the TCB subset architecture to support multilevel operations that
are secure and easily implemented. Supporting multilevel operations is an important build-
ing block for creating multilevel applications. TRANSMAT uses type enforcement to pro-
vide controlled trusted write downs in a database context [5].

Section 2 describes the TRANSMAT approach with detailed examples. Section 3 dis-
cusses some of the high assurance issues involving TRANSMAT. Section 4 discusses the
drawbacks to TRANSMAT and Section 5 provides a brief summary.

2.0 The TRANSMAT Approach

The TRANSMAT system is built on top of a TCB subset architecture such as the ORA-
CLE OS MAC mode used on LOCK DBMS [3]. The TCB subset architecture has a copy
of the database running at each level. The DBMS handles the simple security property of
allowing users to read data from lower levels. TRANSMAT handles the multilevel com-
munication between different levels with small trusted subjects called TRusted Applica-
tion Managers (TRAM). Each TRAM is trusted to communicate with other TRAMs
running at any level. TRAMs move data between levels. However, each TRAM can only
communicate with the DBMS at its level. The TRAMs allow only pre-approved opera-
tions to transfer data between levels. Figure 1 shows the basic TRANSMAT architecture.

Any database application can communicate with the TRAM at its level, but no other
TRAM. The applications themselves are untrusted. However, if the application requires a
multilevel operation, the operation must be certified when the application is created. To
make the TRAMs as generic as possible, the operations are stored in a separate table
called the Approved Multilevel Operation (AMO) table. Thus as new applications are
added, the trusted TRAMs do not have to be modified, only the AMO table.

The entries in the AMO table are represented as parameterized SQL statements. The AMO
table is stored outside of the database in a protected, but unclassified file. An example
AMO table is given in Table 1.

Each entry contains:

• Operation Name:
the name is used to index the table so that applications can select the correct opera-
tion

• Target Level:
the level at which to run the operation. This entry indicates which of the other
TRAMS may receive the operation.

• Parameter description:
the size and type of each parameter. This allows TRAMs to limit the amount and
kind of data that is regraded.

• The SQL script to execute:
the SQL script that implements the operation. The parameters received are inserted
into the SQL scripts at the indicated positions. The receiving TRAM then has the
target DBMS execute the script..

The statements are approved and installed only by the certification authority. Applications
request the TRAM to run a specific operation with the parameters specified. As new appli-
cations are added, or old applications are updated, the AMO table can be updated. This
eliminates the need to create new trusted software for each application. Access to the
AMO table is tightly controlled via type enforcement.

User

FIGURE 1. The TRANSMAT architecture. A multilevel operation can be initiated by an
application at any level. The operation is routed to the Trusted Application Manager (TRAM)
which checks the Approved Multilevel Operation (AMO) table. The TRAMs confirm the
operation by invoking trusted path communication with the user to ensure Trojan horses are not
making the request.

Secret

Confidential

Top Secret

Application

ORACLE

TRAM

Unclassified

Trusted Path

TrustedUntrusted

Application

ORACLE

TRAM

Application

ORACLE

TRAM

Application

ORACLE

TRAM

AMO
Table

Now that the basic pieces of the approach have been introduced some detailed examples
are provided.

2.1 Example: Downgrade Operation

The first example is a sample multilevel operation that downgrades information. This
example is based on a simple multilevel application for selecting pilots for missions. The
level of a mission can range from Unclassified to Top Secret. Because mission planners at
all levels need to know the status of pilots, that information is unclassified (see Figure 2).

TABLE 1. Approved Multilevel Operation (AMO) Table

Operation
Name

Target Level
Parameter
Description

SQL Script

Pilot Selection Unclassified 30 Characters Update pilot
set status = assigned
where pilot = ???

Pilot Debrief Unclassified 30 Characters Update pilot
set status = available
where pilot = ???

Pilot

StatusPilot Name

Mission

PilotMission Name

B. Budd Available

M. Douglas Assigned

J. Fairchild Assigned

O. Wright Assigned

Windsor J. Fairchild

FIGURE 2. An example schema for a multilevel application. The classification level of a mission
ranges from Unclassified to Top Secret. All pilot information is stored at the Unclassified level.

Secret

Top Secret

Unclassified

Mail Run O. Wright

Pegasus S. Smith

Convoy J. Johnson

E-Guard

Red Dog M. Douglas

Skyfish

When a Top Secret mission selects a pilot, the Unclassified table must be updated to indi-
cate that pilot is no longer available. Figure 3 shows the steps taken to execute the opera-
tion. The application tells the TRAM to execute the pilot selection operation with the pilot
parameter set to “B. Budd.” The TRAM executes the predefined integrity checks for the
parameter “B. Budd.” In this case the TRAM removes any extra spaces or control charac-
ters. Next the TRAM prompts the user for a confirmation using the trusted path mecha-
nism. Invoking trusted path is important because this guarantees that only a user can
regrade information. The TRAM is controlled by a person, precluding the possibility of
malicious code from operating the downgrading channel (see Figure 3).

TRAM

ORACLE
Pro*C

Application

User

Trusted Path

acknowledgment

acknowledgment

acknowledgment

Pilot Selection:
B. Budd

update pilot
set status = assigned
where pilot = Budd

Pilot Selection:
B. Budd

TRAM

➀

➅

➄

➁

➂

➃

FIGURE 3. This figure shows the execution steps when the pilot selection operation is
executed. First the untrusted application selects a pilot and passes the selection to its TRAM.
The TRAM confirms the pilot selection by invoking the trusted path. If the user confirms the
operation, the information is downgraded. The unclassified TRAM has the untrusted DBMS
make the update in the unclassified database. Finally, the success or failure of the update is
passed back to the user at Top Secret.

Top Secret

Unclassified

Application

ORACLE

Application

ORACLE

2.2 Example: Schema Creation via Write-up

TRANSMAT can be used to allow the database administrator to create a multilevel
schema quickly. In the pilot example the mission table must be created and semantically
linked with the mission tables at lower levels. This is a tedious, error prone process. A
TRANSMAT operation could be created that runs the same “create table” command at the
specified levels and automatically connects them semantically by creating the appropriate
multilevel views.

2.3 Example: Referential Integrity Across Levels

Unclassified users may be given the power to ensure referential integrity constraints across
several levels. In the pilot example, suppose an unclassified clerk updates the database
when a pilot is withdrawn from service due to retirement. An AMO entry would be cre-
ated that removes the pilot from any of the mission tables at the higher levels.

Unfortunately this means referential integrity is being enforced by the application rather
than a general mechanism in the DBMS. Thus each application grows more complex.
However, this is not a bad trade-off when compared to the risk of an unclassified user
entering the wrong data at higher levels. In the pilot example, a supervisor could be
required to confirm the retirement operation.

3.0 Assurance Issues

High assurance is achieved in the TRANSMAT approach by combining the following
three components

• Trusted path

• Approved Multilevel Operations

• Type enforcement

Each component is discussed in turn.

3.1 Trusted Path

Without requiring a trusted path confirmation, the untrusted applications could drive a tim-
ing channel by repeatedly requesting approved operations. The effects of these operations
could be observed at lower levels by users or programs working in collusion.

This timing channel is closed using the trusted path mechanism of the underlying TCB.
Each time a TRAM gets a request for a multilevel operation, it invokes the trusted path
utility asking the user to confirm the operation. The TCB trusted path cannot be spoofed or
simulated by untrusted programs. While this extra question may annoy sensitive users, it is
not unreasonable. Valid multilevel operations requests are the result of a user’s action; thus
the user is available to confirm the action. Depending on the trusted path mechanism avail-
able in the TCB, the confirmation may require nothing more that typing “yes” on the ter-

minal. Moreover, trusted path confirmation is not needed on all operations, only those that
are multilevel. As multilevel operations are rare the user will not be prompted for confir-
mation most of the time.

If multilevel operations are frequent, the trusted path confirmation could be eliminated at
the cost of reduced security and assurance. However, the TRAM could guarantee that all
multilevel operations are entered into the audit trail. The TRAM could also limit the num-
ber of unreviewed operations which would limit the size of the covert channel. Any
approach without human consent is dangerous. Sophisticated Trojan horses could avoid
detection by hiding their actions among legitimate operations. Each site must decide if the
risk to security is worth the small inconvenience of human confirmation.

3.2 Approved Multilevel Operations

The parameters that are passed down also provide a storage channel. A hostile application
could encode information in the values it provides for parameters. This channel can be
controlled by limiting the size of parameters to something easily reviewed by the user.
Then when the TRAM invokes the trusted path, it can display the parameter value as well.
This precludes the application from substituting its own value. Forty characters may be the
practical limit of what users will conscientiously review.

The TRAM must also sanitize the parameters to ensure control characters are not embed-
ded at the end of the parameter or that the application encodes information in the number
of spaces. Unfortunately, there may still be ways for a hostile application to encode infor-
mation, for example by altering the spelling of words. These may slip past even a consci-
entious, but spelling impaired, reviewer. Individual sites may choose not to take that risk
and enforce a no parameters policy by not allowing SQL statements with parameters into
the AMO table.

An important question is what assurance must be applied to the AMO table entries.
Because entries are expressed in terms of SQL statements, the semantics should be clear.
Each site or accreditation authority can decide the complexity of the operation and deter-
mine the acceptable level of the security risk.

Imposing a restriction of one simple SQL statement with a single small parameter should
provide ample security because it is easily analyzed. As more SQL statements and param-
eters are added, analyzing and understanding the behavior of the operation becomes more
difficult.

Downgrades are of course more problematic than upgrades. The application accreditor
must consider how much information is moving down and how quickly. Downgrades must
still be a rare event, because even valid, non-malicious downgrades allow users at the
lower level to infer actions at the higher levels. This type of inference is discussed further
in the Drawbacks section, Section 4.

3.3 Type Enforcement

Type enforcement is a key part of the TRANSMAT approach. It provides separation
between the TRANSMAT components and ensures that only the TRAMS downgrade
information [5], [6].

Type enforcement is used to separate the DBMS from the TRAMs. Thus the DBMS does
not have trusted write down privilege. The TRANSMAT approach provides high assur-
ance with a minimal amount of trusted code. Only the TRAMS are trusted. Each TRAM
has only to provide the following services:

• Communicate with the untrusted application to get the operation and parameters

• Establish the trusted path and confirm that the user wants to run this specific
operation

• Check the size and type of the parameters

• Regrade the parameters

• Place the parameters into the proper place in the associated script

• Signal the untrusted database to execute the SQL script

Each service can be implemented with a small amount of code.

Type enforcement also guarantees that the DBMS or hostile application cannot modify the
AMO table to add operations that have not been approved.

TRANSMAT is similar to having trusted, stored procedures in the database. However, the
TRAMs that handle the security across levels are small programs, outside of the database,
that can be fully analyzed and assured. It would be extremely difficult to provide high
assurance for trusted triggers inside a large, complex DBMS.

4.0 Drawbacks to the TRANSMAT Approach

No approach is without drawbacks. In this section a number of drawbacks are discussed as
well as what can be done to minimize them.

4.1 Performance

It is difficult to discuss performance for TRANSMAT without an implementation, but it is
clear that operations will be slower than those that take place within a DBMS at a single
level. At least two TRAMs and an additional DBMS are involved in each multilevel oper-
ation. The originating application must wait until the updates at the other levels have com-
mitted and news of the commit travels back through the TRAMs.

The user may wind up waiting longer for a TRANSMAT operation to commit, but
TRANSMAT will certainly be faster and more accurate than the alternative of having the
user login in at the other level and do the updates manually.

4.2 Inference of Higher Level Activity

If downgrades are made easy, people at the lower levels can infer what is happening at the
higher levels. In the pilot example, unclassified users can easily infer that if a pilot is
unavailable and is not assigned to any missions at their level, the pilot is flying a classified
mission. Obviously this type of inference is a problem faced by any multilevel application.

The inference is aggravated by the fact that it can be done automatically and regularly by
an unclassified user. The traditional approach to solving this problem is to create a cover
story that explains where the pilot is. A cover story involves the insertion of two tuples
into the database, the real tuple at Top Secret and the cover story at Unclassified.
TRANSMAT can help here by making the insertion of the cover story tuples a single mul-
tilevel operation.

The application can help the user create the cover story as well. In the pilot example the
application may prompt the Top Secret mission planner to provide the name of the Unclas-
sified mission to which the pilot will be assigned. The application designer can choose
how complicated the cover story is. For example, if the application always created a cover
story that the pilot was doing the mail run to Anchorage Alaska, eventually it would stop
being a cover story because a regular pattern would be detectable.

The actual drawback of the TRANSMAT approach in regards to inference is that the appli-
cation designers must be aware of the potential inferences and take steps to prevent infer-
ence by lower level users. As a result, the multilevel applications are going to be more
complicated. The problem is not with the TRANMAT approach per se, but instead comes
from the inherent difficulty in multilevel operations.

4.3 Trusting the Database

The database must still be trusted to maintain the integrity of the data. This is true for any
TCB subset architecture. If an application is actually a Trojan horse, it could destroy the
data after it has been entered into the database by valid applications. It also is necessary to
assume that the SQL scripts in the AMO table are not malicious. They must be carefully
reviewed before being placed in the table. Type enforcement is used to protect the table
from unwanted modification.

4.4 Binding Applications to AMO Entries

In the current architecture any application can execute an AMO entry. Since the user must
confirm the action, it is unlikely that a malicious application can cause damage by calling
the incorrect AMO. However, one can not always trust users to do the right thing, so it
would be nice to eliminate this problem by creating a binding that ties applications to the
AMO entries to which they are authorized. Finding a high assurance approach for creating
this binding is future work.

5.0 Conclusion

The approved multilevel operations, trusted path, and type enforcement components of
TRANSMAT open the gateway for creating true multilevel applications in a rich DBMS
application development environment. The benefits of multilevel operations are many.

• The user can enter multilevel data without switching levels, thus greatly improving
the user interface.

• Integrity constraints across levels can be enforced.

• The application controls operations at lower levels, reducing user errors.

TRANSMAT adds the important capability, of multilevel operations, to the TCB subset
architecture. With TRANSMAT multilevel applications can be written quickly and
securely.

References

[1] National Computer Security Center, “Trusted Database Management System Inter-
pretation of the Trusted Computer Security System Evaluation Criteria,”
April 1991.

[2] T.F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. “The
Seaview Security Model.”IEEE Transactions on Software Engineering, 16(6):593-
607, June 1990.

[3] J.T. Haigh, R.C. O’Brien and D.J. Thomsen, “The LDV Secure Relational DBMS
Model,” Database Security, IV Status and Prospects, edited by S. Jajodia and C.E.
Landwehr, pp. 265-279, North Holland, New York 1991.

[4] R.C. O’Brien, J.T. Haigh and D.J. Thomsen, “Trusted Database Consistency Policy
- Final Technical Report,” Rome Air Development Center, Griffiths AFB, New
York, RADC-TR-90-387, December 1990.

[5] W.E. Boebert and R.Y. Kain, “A Practical Alternative to Hierarchical Integrity Pol-
icies,” Proceedings of the 8th National Computer Security Conference, pp. 18-27,
October, 1985.

[6] D. Thomsen, “A Comparison of Type Enforcement and Unix Setuid,”Proceedings
of the 6th Annual Computer Security Applications Conference, pp. 304-312,
December 1990.

