
1

Presented at the 20th National Information Systems Security Conference,
Baltimore, October 1997

A NEW STRATEGY FOR COTS IN CLASSIFIED SYSTEMS

Simon R. Wiseman, Defence Evaluation and Research Agency
and

Lt. Col. Colin J. Whittaker, UK Ministry of Defence

Abstract

The UK MOD’s emerging strategy for Infosec is described. The strategy accommodates the use of
modern COTS software, whilst providing security of equivalent strength to established techniques
and supporting the working practices of end-users. The strategy encompasses a new approach to
security policy documentation and new implementation techniques which have been shown to work
with Windows NT.

1. Introduction

1.1 Background

Computer systems that handle classified information have generally been implemented in one of two
ways – either as a Multi-Level Mode system or as a System High Mode system1.

The use of Multi-Level Mode invariably leads to a requirement for security functionality in TCSEC
class B1 or above, which is not available in mainstream COTS operating system products. The use of
niche-market products which do provide the appropriate functionality and assurance brings a high
degree of risk to a procurement, because such products are either less than fully developed or are
effectively obsolete versions which do not support the latest applications.

The use of System High Mode permits the use of TCSEC C2 functionality which is readily available
in mainstream COTS operating systems, such as Windows NT and Unix. However, such
functionality does not permit systems operating at different system-high levels to communicate
securely, because it does nothing to prevent high information flowing from the high system to the low
system. Attempts to police the high-to-low flows, in order to prevent inappropriate flows, are
ineffective because the information content of data is very difficult to assess, even if people (an
expensive option) are used for the task.

1.2 A New Approach

The UK Ministry of Defence (MOD) recently undertook a study to ascertain a suitable procurement
strategy and system architecture for its future command systems. Security apart, the study team
favoured a move towards the use of COTS software and the widespread interconnection of systems.
It was immediately recognised that these goals precluded both extant approaches to the construction
                                                     
 © British Crown Copyright 1997
1 These, and other important terms, are defined in Annex A.



2

of secure systems – use of System High Mode would be ruled out because of the need to interconnect
high and low systems and Multi-Level Mode because of the need to use mainstream COTS software.

With no established technique seeming acceptable, the study chose to consider the problem afresh,
starting from first principles, rather than postpone consideration of the problem. The proposed
solution was to use interconnected Compartmented or System High Mode domains with the following
security functionality:
• discretionary labelling;
• role based access controls [Ferraiolo] on shared files;
• data export between domains and compartments sanctioned by human users;
• application oriented accounting and audit.

The strategy was successful, in that the profile appeared to have the following desired properties:
• can be supported with modern COTS software;
• accommodates the work practices of the end-user;
• provides security of equivalent strength to the established techniques.

Since the proposal was for a novel approach, there was initially some reluctance to commit to it. In
particular, there was no practical evidence to support the claim regarding the first two desirable
properties listed above. Thus a project was started, as part of the MOD’s applied research
programme, to build a prototype system which became known as “Purple Penelope”. This was
remarkably successful in demonstrating that security need not conflict with the use of modern
software and that secure systems can be usable. As a result, the new approach is rapidly gaining
favour within the MOD.

1.3 Overview of the Paper

This paper describes the security architecture which has been devised, provides a security
assessment of its effectiveness and gives an overview of how it can be implemented using COTS
software.

The structure of existing security policy documentation, in the UK and elsewhere, is centred around
descriptions of isolated systems. Modern systems, however, are invariably interconnected and it is
not really possible to state the security policy for a system in isolation. Therefore, a new approach to
describing security requirements and designs has been devised to accompany the new architectural
strategy. This is described in section 2.

To justify the adequacy of the proposed approach, it is necessary to consider the ways in which
compromises can occur, and for each determine which measures reduce the risk. It is then possible to
form a judgement about whether overall risk is reduced to acceptable levels. An assessment of this
form is provided in section 3.

The proposed security architecture will only be successful if it accommodates the COTS procurement
philosophy. In section 4, an outline description of the Purple Penelope demonstration system is
given, which is a practical example of how the proposed measures can be provided using Windows
NT on the desktop.



3

2. Domains

2.1 The Domain Model

The new approach focuses on domains rather than systems. The intention is to capture the security
aspects of the business requirements in an implementation independent way using the following
model.

A Security Domain is a boundary that constrains people’s freedom to move around – some people,
called the domain’s members, are allowed into a domain, while other people are not. Those members
who are currently within a domain’s boundaries are called its occupants.

Domain boundaries may be implemented through physical or logical means. An example of a domain
with a physical boundary is a protected building, while a computer system may be considered a
domain with a logical boundary. People enter a logical domain by “logging-in” to the computer
system.

Domains are specified in order to describe the security requirements for people accessing data in
repositories and exchanging data as messages. For each domain, a specification is given of which
repositories can be reached by the domain’s members and to which domains a channel exists for
messages to be sent.

Data in a repository can only be accessed by a person while they are an occupant of a domain from
which the repository is reachable. Similarly, one person can only send a message to another, if a
channel exists between their two domains. These, however, are only the broad controls that are
required. Further controls and restrictions will need to be imposed, and a specification of these can
be made in the context of the domain model. A set of standard “security requirements classes” is
being developed to aid this task.

2.2 Secure and Implementable Requirements

The domain model allows arbitrary business requirements to be specified, however not all possible
requirements can be implemented securely in practice. The following simple rules are applied to a
requirement, expressed in terms of domains, to confirm that the requirement is readily
implementable with adequate security (as far as the UK MOD is concerned):

1. Each domain may be System High or Compartmented Mode, but not Multi-Level Mode.
2. Domains handling Secret data should contain no more than, say, 1000 members (as this is the

most effective means of ensuring that the principle of need-to-know is applied).
3. No domain should have a users with clearances more than one level lower than that required to

access data in any domain to which it is connected.
4. In all domains, discretionary labelling and role based access controls should be provided with E3

assurance2.
5. Non-members to be excluded from domains through the use of physical controls and, where

necessary, E3 technical mechanisms (e.g. password checks on “login”).

                                                     
2 E3 is the ITSEC assurance level that is commensurate with the assurance component of TCSEC
B1. ITSEC, however, has the important advantage of divorcing assurance and functionality
requirements, which is vital as this strategy depends upon non-traditional security functionality.



4

6. Data should not be exported from one domain to another unless sanctioned by a human user,
with E3 assurance that the sanction cannot be bypassed.

7. A person exporting data must be accountable for the action, with E3 assurance that accounting
cannot be bypassed.

8. Communications between domains which is not required should be actively excluded through the
use of E3 mechanisms.

9. Strict configuration control of software should be applied, with any proactive mechanisms being
E3 assured.

A domain model is a specification which gives the implementors considerable freedom in respect of
the system’s design and functionality. In practice, additional requirements for security functionality
will emerge as design details are taken into consideration. For example, if domains handling Secret
data are implemented using public networks an encryption requirement will arise, whereas there is
no such requirement if the network is private and physically protected. It is inappropriate to describe
such implementation considerations in the domain model, since this is about business requirements.
Instead, architectural design decisions are described using another notation which focuses on the
way services are provided and used, but details of this are beyond the scope of this paper.

3. Security Assessment

3.1 The Kinds of Compromise

In order to assess the effectiveness of the approach, it is necessary to establish the different ways in
which information can be compromised and consider whether each of these is countered adequately.
Broadly, there are two sources of a compromise, the members of the domain and the members of any
domain to which it has a connection. In all, four kinds of compromise can be identified at a high level.
There are two kinds of externally sourced attack, a direct attack and an indirect attack, and there
are two kinds of internally sourced attack, accidents and treachery.

In a direct attack, the external attacker breaks the domain’s external communications mechanisms.
Having done this, the attacker gains some freedom to observe or modify data in the domain –
freedom which they are not supposed to have. For example, the attacker might find a way of
observing the traffic on the domain’s private network, even though they are only supposed to
exchange e-mail.

In an indirect attack, the external attacker arranges that a member of the domain unwittingly
causes the compromise. This may be through “social engineering” or by means of a technical attack
in which the member of the domain runs software (a Trojan Horse), provided by the attacker, that
carries out the inappropriate actions.

With accidents, a member of the domain makes an honest mistake. They may distribute data
inappropriately or set access controls so that inappropriate access might occur. For example, a
message might be sent to a distribution list which, unknown to the sender, names someone who
should not see it.

With treachery, a member of the domain deliberately causes information to be compromised, and
thus betrays the trust placed in them by the domain’s owners. Hence, by definition, such people are
traitors – regardless of whether their motive is financial reward, political gain or revenge. For
example, a user may send sensitive data to their organisation’s competitor for payment.



5

3.2 Defending Against Direct Attack

To defend against direct attack, it is necessary to ensure that only the communications services
permitted by the requirement are implemented when two domains are connected. For example, the
requirement may only permit the members of two domains to exchange messages, in which case it is
important that a member of the external domain cannot transfer documents from the internal
domain.

A firewall is a mechanism which controls communication between systems and provides confidence
(formal assurance may be required, especially if the information requiring protection is particularly
sensitive) that forms of communication which are not required are not provided. Provision of a
firewall, however, is not sufficient. Firstly, the firewall must be constantly managed and maintained
[Garfinkel&Spafford96], and secondly the configuration of the internal system must be carefully
controlled, because the permitted forms of communication can be used as a carrier (called
“tunnelling”) for inappropriate traffic if the internal system provides suitable servers.

Thus to defend against direct attack requires both firewall and internal configuration control
mechanisms to be in place.

3.3 Defending Against Indirect Attack

There is no foolproof method of preventing a Trojan Horse attack, but risk can be reduced by
deploying a number of measures which make such attacks very difficult:

• detect attempts to import Trojan Horse code and reject them;
• prevent the Trojan Horse code from executing;
• limit the information which can be compromised by a single Trojan Horse;
• make it difficult for the Trojan Horse to export information;
• monitor activity to detect Trojan Horse behaviour.

A Trojan Horse may be imported as directly executable code (a binary program image), interpreted
code (e.g. a macro) or a format which is compiled before execution (e.g. a Java applet). Unfortunately,
distinguishing these formats from benign business data is very difficult, especially as one may be
embedded in another, although it is possible to detect the signature in some cases, such as the Word
templates that might carry macros or the cafe babe header of a Java applet [Martin&Rajagopalan97].

To prevent Trojan Horse code being executed, configuration control measures can be used. For
example users may not be given the right to execute the files they create.

If a Trojan Horse manages to enter the domain and start executing, it will be working on behalf of
the user who unwittingly executes the program in which it resides. This user will be constrained by
role based controls and, in a compartmented domain, discretionary labelling and so the Trojan Horse
is limited in what it can access, hence exposure is limited.

To compromise the confidentiality of data, the Trojan Horse needs to export it. While it is difficult to
deny application software access to communications services, in many cases it is practical to ensure
that their use must first be sanctioned by the human user. So, for example, when a Trojan Horse
attempts to compromise information by sending an e-mail message without the user knowing, the
user will be surprised by a request for export confirmation and the Trojan Horse risks discovery. To



6

be effective the confirmation must not be bypassable, hence a Trusted Path must be used to interact
with the user. Also, the confirmation must make sense in business terms – for example the check on
sending an e-mail message cannot be made at the packet level since the user would not understand
whether the action is reasonable.

A final defence against an indirect attack is to monitor the system for unusual behaviour in an
attempt to detect the activities of any Trojan Horse which has managed to enter the system. This is
an evolving field of research [Halme&Bauer95] and products are in their infancy.

In summary, a number of measures are used to mitigate against Indirect Attacks:
• filtering imported data in firewalls and applications to prevent ingress of Trojan Horse code;
• software configuration control to prevent execution of Trojan Horse code;
• restrict scope of attack by virtue of existing constraints on the user;
• trusted path sanction of exports to hamper the Trojan Horse’s attempts to leak information.

3.4 Defending Against Accidents

Documents can easily be compromised by distributing them, or their contents, to inappropriate
people. Discretionary labelling provides protection against such mistakes by checking security
markings against clearances. In order to gain any benefit it is important that users can easily apply
an appropriate marking to their data, because markings that are too high will prevent data from
being distributed in ways which are reasonable, causing operational inconvenience, whilst markings
that are too low afford no protection against mistakes. It is therefore essential that users can alter
markings, up and down, as they manipulate data.

The discretionary labelling checks are applied whenever data is exported. For example, when a
message is sent to a distribution list, the labels of the message body and its attachments would be
compared against the clearances of the recipients named in the distribution list. The message would
be rejected if any recipient lacks clearance for any of the data. Thus a user who mistakenly sends
information marked with a national caveat that excludes foreigners to a distribution list containing a
foreign national would be saved from embarrassment.

In addition, within Compartmented Mode domains, labelling checks would be applied to shared
filestores. Whenever a user attempts to observe the contents of a shared file, their clearance would
first be checked against the file’s label. Thus a foreign national would be prevented from observing
any file marked with a national caveat that excludes foreigners, regardless of how any role based
controls are set on that file.

With discretionary labelling, a user may use their discretion to give data a lower label, even if they
did not originate the information it conveys. Typically this would be achieved by copying data
belonging to another user and giving the copy a lower label. This is in contrast to mandatory
labelling, where a user who originates some information provides a marking for it, and this marking
is a mandated minimum for that information regardless of how it is subsequently used.

At first sight, it would seem that a move towards discretionary labelling rather than the more usual
mandatory labelling, results in the originators of information losing the ability to control how others
protect it. In practice, however, this ability is not provided even when mandatory labelling is
deployed. This is because mandatory labelling is invariably accompanied by a regrading mechanism.



7

A regrading mechanism is essential with mandatory labelling, because such labelling has a
propensity to produce overclassified data and so users need a way of adjusting the label of their own
data. Unfortunately the system is not able to ascertain whether the data conveys any important
information originated by other users. Accounting measures are usually associated with the use of
the downgrade mechanism, but in practice these do not record the data which is downgraded and
hence provide no real evidence of inappropriate downgrades.

Thus, while mandatory labelling itself does provide more protection than discretionary labelling, in
practice it is coupled with other functionality that undermine its advantage.

With discretionary labelling, it is important to defend against a Trojan Horse which relabels data in
inappropriate ways. Thus, when shared data is relabelled the action must be confirmed with the user
using a Trusted Path. Also, when private data is exported or made shared, the user must confirm its
label, to defend against a Trojan Horse which lowers the label of the data just before the user exports
it.

In summary, the main defence against accidents is to provide discretionary labelling in a way which
permits users to apply appropriate labels to their data with ease.

3.5 Defending Against Treachery

The main defence against treachery is the employment of personnel procedures, the provision of a
good working environment which promotes loyalty and the deterrent of heavy penalties for traitors
who are caught. The second defence is to limit what any one individual can do, so that if someone
does turn traitor the damage is limited.

In a computer system, accounting information needs to be recorded in order to help detect traitors
and, once a traitor is caught, to provide evidence and establish the extent of the damage. It is usual
to rely on the operating system to collect accounting information, but unfortunately, the information
collected at this level is voluminous and yet does not provide sufficient information to establish the
relevant facts about the earlier actions of the system’s users, such as what data they have exported.
For example, a conventional “B1” operating system may record the names of files that an application
reads, creates, relabels, prints and deletes, but not their contents. Consider what the following
accounting information reveals:

07:25 start application WordProcessor
10:30 WordProcessor, open for read “Plans.doc”, Secret
10:31 WordProcessor, close “Plans.doc”
16:50 WordProcessor, open for write “Expenses.doc”, Secret
16:51 WordProcessor, close “Expenses.doc”
16:52 downgrade “Expenses.doc” to Unclassified
16:53 print “Expenses.doc” at Unclassified
16:54 delete “Expenses.doc”
18:42 quit application WordProcessor

An honest user could have performed the following actions. First they read the secret plans using
their favourite word processor. Later, they used the same execution of the word processor to draft
their expenses claim. This new document gets labelled Secret because the plans document previously
read was Secret. Having created the expenses claim at Secret, the user adjusts the label to
Unclassified, prints it and then deletes the file.



8

A traitor could have performed the following actions. First they read the secret plans using their
favourite word processor and copy it all into the clipboard. Later that day they create a new
document, paste the Secret data into it and save it as “Expenses.doc”. Having created this new
document the user downgrades it to Unclassified, prints it, deletes the file. Later that night they
walk out of the gate with Secret data bearing a marking of Unclassified.

Thus traditional accounting functionality is relatively poor, both at detecting traitors and
establishing the damage they have caused. However, the requirement for accounting is really only
important when data is passed between domains, and when it crosses compartment boundaries
within a compartmented mode domain. Here, application level constraints, such as the trusted path
sanction of an export, are applied in order to defend against external attacks and mistakes.
Therefore, augmenting this functionality, so that meaningful application level accounting
information is also retained, is relatively straightforward. For example, an archive of all printed
documents and all email messages may be retained for accounting purposes.

In addition to accounting measures, it is important to place restrictions on the actions a user can
perform, so that if they do turn traitor the damage they can cause is limited. Traditionally, access
control lists or user/group/world access permissions have been provided by the operating system so
that the users can control who has access to their data.

Unfortunately, these mechanisms are invariably difficult to apply in a fine grained way and have
strange behaviour when viewed at the application level. For example, when a document is edited and
saved with a modern word processor, the original file is deleted and a new file is created in its place,
so any access control list attached to the document is lost.

The proposed approach is to provide users with controls which fit in with the way they use modern
applications, and to present these controls in a way which makes them easy to use. Role based
controls applied to directories rather than individual files would appear to satisfy these
requirements. They are easier to understand, because they relate directly to physical controls such as
lockable cabinets, and there is no interference from applications.

Thus the proposed defence against traitors is:
• to detect traitors and prove treacherous behaviour by gathering accounting information at the

application level, which accurately and easily associates users and the information they handle;
• to deploy easy-to-use role based access controls which restrict the actions of any one user.

4. Implementing the Mechanisms

4.1 Platforms

The main platform for workstations in the near future is likely to be Windows NT, though some
specialist applications may require a Unix workstation. For servers both NT and Unix will be
required.

Generally, Compartmented Mode Workstations (CMWs) are not thought to have a role as
workstations, though they are useful as platforms for specialist software such as a trusted DBMS.
This is because many CMWs are variants of obsolete versions of Unix and hence do not support the
modern applications which are required, while others are less than fully developed because the



9

market for them is so small. In addition, the labelling functionality provided by CMWs was intended
to be used to support mandatory labelling and while, with the careful assignment of privileges, they
can support discretionary labelling, the resulting system is difficult to use on the desktop. For
example, the label of a document being edited cannot be lowered – it is necessary to close the
document and lower the label of the file.

Although Windows NT provides E3 assured security functionality, this is of TCSEC class C2. NT
does not support any form of labelling, the sanctioning of export or the high level kind of role based
controls envisaged. NT does, however, have sufficient open interfaces that it is possible to tailor the
use of its assured mechanisms to provide all of these mechanisms. A prototype implementation has
been produced and this is the core of the Purple Penelope demonstration.

As far as the user is concerned, they see a Windows NT3.51 workstation interface, augmented with a
stripe across the top of the screen in which security information is displayed. The exact content of the
stripe depends on the application which is the focus of attention, but typically it shows the marking
of the selected data and the marking of the data in the clipboard.

The screen shot shown above shows Microsoft Word with two documents open – one marked Secret
and the other Restricted (a UK marking roughly equivalent to Official Use Only in the US). The
Restricted document is current (has input focus) and so its marking is displayed in the screen stripe.
Alongside is an indication that the clipboard contains Confidential data. The Secret document is
visible on the screen, but its marking is only visible when the header is in view.

The system’s file storage is arranged into two kinds of filestore – private and shared. Each user has
their own private filestore, to which they have exclusive and unconstrained access. In addition, each
user has read access to the shared filestore, subject to both discretionary labelling and role based
checks.



10

When a file is exported (copied) to the shared filestore, the user is requested to confirm the action
using a dialogue box on a trusted path (applications cannot spoof the user’s input). When shared files
are deleted or relabelled the action, which is subject to role based controls, is confirmed in a similar
way.

Exporting a file is an accountable action, as is reading, relabelling or deleting a shared file. Shared
files are never actually deleted – a copy is kept as part of the accounting information.

All files in both the private filestores and the shared filestores are labelled, and so are all running
applications (processes). As applications read files, the application’s label floats up according to the
label of the file that is read. Similarly, when an application writes a (private) file, the file’s label
floats up according to the label of the application.

An application may, however, lower its label at any time, although many applications will only do
this when requested to do so by the user. A common mechanism is provided through which the user
can request the application to change the label of the selected data. A mouse-click on the marking
displayed in the screen stripe brings up a choose-marking dialogue with which the user can select a
new marking.

When an application copies data into the clipboard, the clipboard label is set to that of the
application. When an application takes data from the clipboard, the application label floats according
to the clipboard label. The clipboard label can be changed at any time, most easily by clicking on the
clipboard marking displayed in the screen stripe. This gives the user a convenient way of extracting
data which warrants a low marking from a document that overall has a high marking.

4.2 Applications

Windows applications which are run as they are shipped behave quite reasonably with respect to
Purple Penelope’s discretionary labelling. The limitation is with applications that handle more than
one document at once, because documents open by one application are treated as having the same
label. Fortunately, most such applications are also customisable by the end user, typically with plug-
in modules and macros.

For Microsoft Office products, the ability to customise has been exploited to make the discretionary
labelling apply at a finer granularity than the application. In the case of Word, each open document
has its own label, and in the case of Access each field of a form may have its own label.

In Purple Penelope, Microsoft Access is being used to provide the forms interface for a database
managed by Trusted Oracle 7 (TO7) hosted on a Sun CMW server. The TO7 DBMS has been
configured so that it provides discretionary labelling, rather than the mandatory labelling for which
it was designed. In addition, through the use of special database design techniques
[Wiseman&Lewis95], the labelling is applied to individual attributes rather than whole entities. The
user of TO7 in this way results in assured mediation at the attribute level without placing
intolerable constraint on the database user.

To prepare labelled messages, with labelled attachments, Microsoft Exchange client has been
customised. The current implementation, however, relies on the correct operation of Exchange and
the messaging system to preserve the labels. That is, Purple Penelope currently only addresses the
user interface issues of messaging, and further work is in progress to integrate this with a proper
secure messaging system.



11

World Wide Web pages can be labelled through the use of a HTTP proxy which takes label
information from the files that store pages and adds it to the HTML returned to the client. A
Netscape plug-in then picks up this label information and displays it in the screen stripe.

4.3 Firewalls

The first stage of Purple Penelope aimed to show that discretionary labelling could be provided
within a Compartmented Mode domain using COTS products on a single network. The second stage
is underway and aims to show how such domains could be connected together.

Firewalls with E3 assured functionality are now available in the marketplace. The work currently in
progress is investigating how these products can be incorporated into the domain architecture, and
on how future products can be produced and evaluated quicker and more cheaply. A number of
prototype simple firewalls have been produced, including one for SMTP and one for sharing files.
Each is capable of providing E3 assurance against external attack, though no evaluation effort has
been undertaken, and this is largely derived from the E3 assurance of a CMW. The basic technique
used is that described in [Smith96].

The SMTP firewall checks the label of the message and any attachments against the clearances of
the recipients. An X.500 directory has been used to provide the necessary clearance details. The label
information is confirmed with the user using a Trusted Path on the user’s workstation.

A “shared filestore” firewall permits domain users to export files out of the domain. From the inside,
the filestore appears just like any other shared filestore in Purple Penelope, so files may be exported
by drag-and-drop but each export must be confirmed using the Trusted Path. From the outside, the
filestore appears as a Web site with labelled pages. Assured mediation based on labels is not,
however, possible as an assured user identification service has not yet been incorporated.

5. Conclusions

The UK MOD have embarked on a new strategy for Infosec. The focus has not been on
implementation techniques, nor on security policy, nor on the presentation of security policy, nor on
the business needs of the end-users – instead, all these aspects have been considered together. The
result is a significantly different paradigm which is unlikely to have been derived without such a
revolutionary and all-embracing approach. So far it has proved very successful in exposing security
issues more clearly and in permitting COTS solutions to system procurements.

6. References

D.Ferraiolo, “An Introduction to Role Based Access Control”, http://waltz.ncsl.nist.gov/rbac/

S.Garfinkel&G.Spafford, “Practical UNIX and Internet Security”, ISBN-1-56592-148-8, April 96.

L.R.Halme & R.K.Bauer, “Aint Misbehaving – A Taxonomy of Anti-Intrusion Techniques”, Procs.
18th Natl. Inf. Sys. Security Conference, Baltimore, MD, October 1995.

D.M.Martin&S.Rajagopalan, “Blocking Java Applets at the Firewall”, Procs. Internet Society Symp.
on Network & Distributed Systems Security, February 1997.



12

R.E.Smith, “Mandatory Protection for Internet Server Software”, Procs. 12th Computer Security
Applications Conference, San Diego, CA, December 1996.

S.R.Wiseman&S.R.Lewis, “Database Design with Secure DBMS Products”, Procs. 11th Computer
Security Applications Conference, New Orleans, LA, December 1995.

Annex A: Terminology

A system is said to operate in Multi-level mode if any of its potential users have insufficient
clearance to permit them routine access to some of the information which may be legitimately
processed by the system. In contrast, if all users have adequate clearance for all the information, but
formal restrictions apply which mean not all users are authorised to access all of the information, the
system operates in Compartmented mode. The restrictions may be in terms of the users’
nationality or the use of codewords. A system in which all users have adequate clearance and no
formal restrictions apply, is said to operate in System High mode.

A Security Label is applied to a container of data to convey how the contents should be protected
and distributed. A security label may be represented in a number of different ways, even within a
single system. The form which is intended to be readable by humans is particularly important and is
referred to as a Security Marking.

The functionality relating to security labels in a system may provide Mandatory Labelling. This
means that the originator of some information is able to mandate its security marking, as
represented in the computer by a security label. This marking cannot subsequently be changed by
other users, regardless of how the information is used or represented within the computer. The term
Mandatory Access Control is deliberately avoided because it has more than one interpretation. If
MAC is interpreted as a requirement oriented statement, rather than as a mechanistic one, then it
has roughly the same meaning as mandatory labelling.

Labelling may also be supported in a discretionary form, termed Discretionary Labelling. This is
where users obtaining some information may, at their discretion, change its marking. Typically, the
change is made as data conveying the information is copied.

A trusted path is an interface between two parties which assures one party of the identity of the
other. Often, the assurance of identity is mutual. The most common trusted path is that used
between the human user and the function which checks or changes their password.


