

The attached DRAFT document (provided here for historical purposes) has been superseded by
the following publication:

Publication Number: NIST Special Publication (SP) 800-178

Title: A Comparison of Attribute Based Access Control (ABAC)
Standards for Data Service Applications: Extensible Access
Control Markup Language (XACML) and Next Generation
Access Control (NGAC)

Publication Date: October 2016

• Final Publication: http://dx.doi.org/10.6028/NIST.SP.800-178 (which links to
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-178.pdf).

• Information on other NIST cybersecurity publications and programs can be
found at: http://csrc.nist.gov/

http://dx.doi.org/10.6028/NIST.SP.800-178
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-178.pdf
http://csrc.nist.gov/

The following information was posted with the attached DRAFT document:

Dec 02, 2015

SP 800-178

DRAFT A Comparison of Attribute Based Access Control (ABAC) Standards for Data
Services: Extensible Access Control Markup Language (XACML) and Next Generation
Access Control (NGAC)

NIST requests public comments on Draft NIST Special Publication 800-178, A Comparison of
Attribute Based Access Control (ABAC) Standards for Data Services. Extensible Access Control
Markup Language (XACML) and Next Generation Access Control (NGAC) are very different
attribute based access control standards with similar goals and objectives. The aim of both is to
provide a standardized way for expressing and enforcing vastly diverse access control policies on
various types of data services. However, the two standards differ with respect to the manner in
which access control policies are specified, managed, and enforced.

This document describes XACML and NGAC, and then compares them with respect to five criteria.
The goal of this publication is to help ABAC users and vendors make informed decisions when
addressing future data service policy enforcement requirements.

The specific areas where comments are solicited are:

• Accuracy in the description of the XACML and NGAC frameworks; and
• Analysis

Comments Due: January 15, 2016

Submit comments to: sp800-178 <at> nist.gov using the Comment Template provided below. The
“Type” codes for comments are:

 • E - Editorial • G - General • T - Technical

DRAFT NIST Special Publication 800-178 1

A Comparison of Attribute Based 2

Access Control (ABAC) Standards for 3

Data Services 4

Extensible Access Control Markup Language (XACML) and 5

Next Generation Access Control (NGAC) 6

 7

David Ferraiolo 8
Ramaswamy Chandramouli 9

Vincent Hu 10
Rick Kuhn 11

 12

 13

 14

 15
 16

 17

C O M P U T E R S E C U R I T Y 18

 19

20

DRAFT NIST Special Publication 800-178 21

A Comparison of Attribute Based 22

Access Control (ABAC) Standards for 23

Data Services 24

Extensible Access Control Markup Language (XACML) and 25

Next Generation Access Control (NGAC) 26

 27

David Ferraiolo 28
Ramaswamy Chandramouli 29

Vincent Hu 30
Rick Kuhn 31

Computer Security Division 32
Information Technology Laboratory 33

 34
 35

December 2015 36
 37
 38

 39
 40
 41

U.S. Department of Commerce 42
Penny Pritzker, Secretary 43

 44
National Institute of Standards and Technology 45

Willie May, Under Secretary of Commerce for Standards and Technology and Director 46

ii

Authority 47

This publication has been developed by NIST in accordance with its statutory responsibilities under the 48
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., Public Law 49
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, 50
including minimum requirements for federal information systems, but such standards and guidelines shall 51
not apply to national security systems without the express approval of appropriate federal officials 52
exercising policy authority over such systems. This guideline is consistent with the requirements of the 53
Office of Management and Budget (OMB) Circular A-130. 54

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 55
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should 56
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of 57
Commerce, Director of the OMB, or any other federal official. This publication may be used by 58
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. 59
Attribution would, however, be appreciated by NIST. 60

National Institute of Standards and Technology Special Publication 800-178 61
Natl. Inst. Stand. Technol. Spec. Publ. 800-178, 57 pages (December 2015) 62

CODEN: NSPUE2 63

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 64
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 65
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 66
available for the purpose. 67
There may be references in this publication to other publications currently under development by NIST in 68
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 69
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, 70
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 71
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of 72
these new publications by NIST. 73
Organizations are encouraged to review all draft publications during public comment periods and provide feedback 74
to NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at 75
http://csrc.nist.gov/publications. 76

Public comment period: December 2, 2015 through January 15, 2016 77
All comments are subject to release under the Freedom of Information Act (FOIA). 78

National Institute of Standards and Technology 79
Attn: Computer Security Division, Information Technology Laboratory 80

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 81
Email: sp800-178@nist.gov 82

 83

 84

http://csrc.nist.gov/publications
mailto:sp800-178@nist.gov

iii

Reports on Computer Systems Technology 85

The Information Technology Laboratory (ITL) at the National Institute of Standards and 86
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 87
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 88
methods, reference data, proof of concept implementations, and technical analyses to advance 89
the development and productive use of information technology. ITL’s responsibilities include the 90
development of management, administrative, technical, and physical standards and guidelines for 91
the cost-effective security and privacy of other than national security-related information in 92
federal information systems. The Special Publication 800-series reports on ITL’s research, 93
guidelines, and outreach efforts in information system security, and its collaborative activities 94
with industry, government, and academic organizations. 95

 96

Abstract 97

Extensible Access Control Markup Language (XACML) and Next Generation Access Control 98
(NGAC) are very different attribute based access control (ABAC) standards with similar goals 99
and objectives. The aim of both is to provide a standardized way for expressing and enforcing 100
vastly diverse access control policies on various types of data services. However, the two 101
standards differ with respect to the manner in which access control policies are specified and 102
implemented. This document describes XACML and NGAC, and then compares them with 103
respect to five criteria. The goal of this publication is to help ABAC users and vendors make 104
informed decisions when addressing future data service policy enforcement requirements. 105

 106

Keywords 107

access control; access control mechanism; access control model; access control policy; attribute 108
based access control (ABAC); authorization; Extensible Access Control Markup Language 109
(XACML); Next Generation Access Control (NGAC); privilege 110

 111
Note to Reviewers 112

This draft was re-released on Dec. 15, 2015, with the following corrections in the text: 113
• P. 21, Line 981: 114

“The element e is contained by the policy element attribute at of that association;” 115
• P. 21, Line 982: 116

“The policy element attribute at of that association is contained by…” 117
• P. 22, Lines 998 and 1000: 118

Change “Table 2” to “Table 3”. 119

iv

Acknowledgements 120

The authors wish to thank their colleagues who reviewed drafts of this document. The authors 121
also gratefully acknowledge and appreciate the comments and contributions made by 122
government agencies, private organizations, and individuals in providing direction and assistance 123
in the development of this document. 124

 125

Trademark Information 126

All registered trademarks or trademarks belong to their respective organizations. 127

 128

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

v

Executive Summary 129

Extensible Access Control Markup Language (XACML) and Next Generation Access Control 130
(NGAC) are very different attribute based access control (ABAC) standards with similar goals 131
and objectives. XACML, available since 2003, is an Extensible Markup Language (XML) based 132
language standard designed to express security policies, as well as the access requests and 133
responses needed for querying the policy system and reaching an authorization decision [17]. 134
NGAC is a relations and architecture-based standard designed to express, manage, and enforce a 135
wide variety of access control policies through configuration of its relations. Commonly asked 136
questions are, what are the similarities and differences between these two standards? What are 137
their comparative advantages and disadvantages? 138

These questions are particularly relevant because XACML and NGAC are different approaches 139
to achieving a common access control goal—to allow data services with vastly different access 140
policies to be expressed and enforced using the features of the same underlying mechanism in 141
diverse ways. These are also important questions, given the prevalence of data services in 142
computing. Data services include computational capabilities that allow the consumption, 143
alteration, and management of data resources, and distribution of access rights to data resources. 144
Data services can take on many forms, to include applications such as time and attendance 145
reporting, payroll processing, and health benefits management, but also including system level 146
utilities such as file management. 147

To answer these questions, this document first describes XACML and NGAC, then compares 148
them with respect to five criteria. The first criterion is the relative degree to which the access 149
control logic of a data service can be separated from a proprietary operational environment. The 150
other four criteria are derived from ABAC issues or considerations identified by NIST Special 151
Publication (SP) 800-162 [13]: operational efficiency, attribute and policy management, scope 152
and type of policy support, and support for administrative review and resource discovery. 153

Although NGAC is only now emerging as a national standard, it compares favorably in many 154
respects with XACML and should be considered, along with XACML, by both users and 155
vendors in addressing future data service policy enforcement requirements. Below is a summary 156
of this comparison. 157

Separation of Access Control Functionality from Proprietary Operating Environments 158

Both XACML and NGAC achieve separation of access control functionality of data services 159
from proprietary operating environments, but to different degrees. XACML’s separation is 160
partial. An XACML deployment consists of one or more data services, each with an operating 161
environment-dependent policy enforcement component, and operating environment-dependent 162
operation and resource types, that share a common policy decision function and access control 163
database consisting of policies and attributes. The degree of separation that can be achieved by 164
NGAC is near complete. Although NGAC issues application and system utility-specific access 165
requests, these requests may be comprised of operations that consist of sequences of standardized 166
operations on data resources and NGAC’s access control data. The requests are issued through a 167
standardized enforcement component to a standardized decision component, with functionality 168
that is not dependent on an application operating environment. 169

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

vi

Operational Efficiency 170

An XACML request is a collection of attribute name, value pairs for the subject (user), action 171
(operation), resource, and environment. XACML identifies relevant policies and rules for 172
computing decisions through a search for Targets (conditions that match the attributes of the 173
request). Because multiple Policies in a PolicySet and/or multiple Rules in a Policy may produce 174
conflicting access control decisions, XACML resolves these differences by applying collections 175
of potentially twelve rule and policy combining algorithms. The entire process involves 176
collecting attributes, matching conditions, computing rules, and resolving conflicts, involving at 177
least two data stores. 178

NGAC is inherently more efficient. An NGAC request is composed of a process id, user id, 179
operation, and a sequence of one or more operands mandated by the operation that affects either 180
a resource or access control data. NGAC identifies relevant Policies and attributes by reference 181
when computing a decision. NGAC computes decisions by applying a single combining 182
algorithm over applicable Policies that do not conflict. All information necessary in computing 183
an access decision resides in a single database. 184

Attribute and Policy Management 185

Proper enforcement of data resource policies is dependent on administrative policies. This is 186
especially true in a federated or collaborative environment, where governance policies require 187
different organizational entities to have different responsibilities for administering different 188
aspects of policies and their dependent attributes. 189

XACML and NGAC differ dramatically in their ability to impose policy over the creation and 190
modification of access control data (attributes and policies). NGAC manages attributes and 191
policies through a standard set of administrative operations, applying the same enforcement 192
interface and decision making function as it uses for accessing data resources. XACML does not 193
recognize administrative operations, but instead manages policy content through a Policy 194
Administration Point (PAP) with an interface that is different from that for accessing data 195
resources. XACML provides support for decentralized administration of some of its access 196
policies. However the approach is only a partial solution in that it is dependent on trusted and 197
untrusted policies, where trusted policies are assumed valid, and their origin is established 198
outside the delegation model. Furthermore, the XACML delegation model does not provide a 199
means for imposing policy over modification of access policies, and offers no direct 200
administrative method for imposing policy over the management of its attributes. 201

NGAC enables a systematic and policy-preserving approach to the creation of administrative 202
roles and delegation of administrative capabilities, beginning with a single administrator and an 203
empty set of access control data, and ending with users with data service, policy, and attribute 204
management capabilities. NGAC provides users with administrative capabilities down to the 205
granularity of a single configuration element, and can deny users administrative capabilities 206
down to the same granularity. 207

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

vii

Scope and Type of Policy Support 208

Although data resources may be protected under a wide variety of different access policies, these 209
policies can be generally categorized as either discretionary or mandatory controls. Discretionary 210
access control (DAC) is an administrative policy that permits system users to allow or disallow 211
other users’ access to objects that are placed under their control. Although XACML can 212
theoretically provide users with administrative capabilities necessary to control and give away 213
access rights to other users, the approach is complicated by the need to create and maintain 214
additional metadata for each and every object/resource. Conversely, NGAC has a flexible means 215
of providing users with administrative capabilities to include those necessary for the 216
establishment of DAC policies. 217

In contrast to DAC, mandatory access control (MAC) enables ordinary users’ capabilities to 218
execute resource operations on data, but not administrative capabilities that may influence those 219
capabilities. MAC policies unavoidably impose rules on users in performing operations on 220
resource data. MAC policies can be further characterized as controls that accommodate 221
confinement properties to prevent indirect leakage of data to unauthorized users, and those that 222
do not. 223

Expression of non-confinement MAC policies is perhaps XACML’s strongest suit. XACML can 224
specify rules and other conditions in terms of attribute values of varying types. There are 225
undoubtedly certain policies that are expressible in terms of these rules that cannot be easily 226
accommodated by NGAC. This is especially true when treating attribute values as integers. For 227
example, to approve a purchase request may involve adding a person’s credit limit to their 228
account balance. Furthermore, XACML takes environmental attributes into consideration in 229
expressing policy, and NGAC does not. However, there are some non-confinement MAC 230
properties, such as least privilege, and a variety of history-based policies that NGAC can 231
express, which XACML cannot. 232

In contrast to NGAC, XACML does not recognize the capabilities of a process independent of 233
the capabilities of its user. Without such features, XACML is ill equipped to support 234
confinement and as such is arguably incapable of enforcement of a wide variety of policies. 235
These confinement-dependent policies include some instances of role-based access control 236
(RBAC), e.g., “only doctors can read the contents of medical records”, originator control 237
(ORCON) and Privacy, e.g., “I know who can currently read my data or personal information”, 238
or conflict of interest, e.g., “a user with knowledge of information within one dataset cannot read 239
information in another dataset”. Through imposing process level controls in conjunction with 240
event-response relations, NGAC has shown [7] support for these and other confinement-241
dependent MAC controls. 242

Administrative Review and Resource Discovery 243

A desired feature of access controls is review of capabilities of users and access control entries of 244
objects [11]. These features are often referred to as “before the fact audit” and resource 245
discovery. “Before the fact audit” is one of RBAC’s most prominent features [18]. Being able to 246
discover or see a newly accessible resource is an important feature of any access control system. 247
NGAC supports efficient algorithms for both per-user and per-object review. Per-object review 248

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

viii

of access control entries is not as efficient as a pure access control list (ACL) mechanism, and 249
per-user review of capabilities is not as efficient as that of RBAC. However, this is due to 250
NGAC’s consideration of conducting review in a multi-policy environment. NGAC can 251
efficiently support both per-object and per-user reviews of combined policies, where RBAC and 252
ACL mechanisms can do only one type of review efficiently, and rule-based mechanisms such as 253
XACML, although able to combine policies, cannot do either efficiently. 254

 255

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

ix

 256
Table of Contents 257

Executive Summary .. v 258

1 Introduction .. 1 259

1.1 Purpose and Scope .. 1 260

1.2 Audience... 1 261

1.3 Document Structure .. 1 262

2 Background .. 2 263

2.1 XACML ... 4 264

2.2 NGAC ... 4 265

2.3 Comparison of XACML and NGAC’s Origins .. 5 266

3 XACML Specification ... 6 267

3.1 Attributes and Policies .. 6 268

3.2 Combining Algorithms .. 8 269

3.3 Obligation and Advice Expressions .. 8 270

3.4 Example Policies .. 9 271

3.5 XACML Access Request .. 12 272

3.6 Delegation .. 12 273

3.7 XACML Reference Architecture .. 16 274

4 NGAC Specification ... 19 275

4.1 Basic Policy and Attribute Elements ... 19 276

4.2 Relations... 20 277

4.2.1 Assignments and Associations ... 20 278

4.2.2 Derived Privileges... 21 279

4.2.3 Prohibitions (Denies) .. 24 280

4.2.4 Obligations ... 24 281

4.3 NGAC Decision Function .. 25 282

4.4 Administrative Considerations .. 25 283

4.4.1 Administrative Associations .. 26 284

4.4.2 Delegation .. 26 285

4.4.3 NGAC Administrative Commands and Routines 27 286

4.5 Arbitrary Data Service Operations and Policies .. 28 287

4.6 NGAC Functional Architecture .. 30 288

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

x

5 Analysis .. 32 289

5.1 Separation of Access Control Functionality from Proprietary Operating 290
Environments .. 32 291

5.2 Scope and Type of Policy Support ... 33 292

5.3 Operational Efficiency ... 38 293

5.4 Attribute and Policy Management ... 39 294

5.5 Administrative Review and Resource Discovery .. 40 295

 296
List of Appendices 297

Appendix A— Acronyms .. 41 298

Appendix B— References .. 42 299

Appendix C— XACML 3.0 Encoding of Medical Records Access Policy 44 300

 301

List of Figures 302

Figure 1: ABAC Overview ... 2 303

Figure 2: XACML Policy Constructs .. 7 304

Figure 3: Utilizing Delegation Chains for Policy Evaluation ... 14 305

Figure 4: XACML Reference Architecture ... 17 306

Figure 5: Two Example Assignment and Association Graphs 21 307

Figure 6: Graphs from Figures 5a and 5b in Combination ... 22 308

Figure 7: NGAC's Equivalent Expression of XACML Policy1 .. 23 309

Figure 8: NGAC Standard Functional Architecture .. 30 310

Figure 9: NGAC's Partial Expression of TCSEC MAC .. 37 311
 312

List of Tables 313

Table 1. Attribute Names and Values and the Authorization State for Policy 1 10 314

Table 2: Derived Privileges for the Independent Configuration of Figures 5a and 5b ... 21 315

Table 3: Derived Privileges for the Combined Configuration of Figures 5a and 5b 22 316

Table 4: Derived Privileges for the Configuration of Figure 7 .. 23 317

318

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 1

1 Introduction 319

1.1 Purpose and Scope 320

The purpose of this document is to compare and contrast Extensible Access Control Markup 321
Language (XACML) and Next Generation Access Control (NGAC) — two very different access 322
control standards with similar goals and objectives. The document explains the basics of both 323
standards and provides a comparative analysis based on attribute based access control (ABAC) 324
considerations identified in NIST Special Publication (SP) 800-162, Guide to Attribute Based 325
Access Control (ABAC) Definition and Considerations [13]. 326

1.2 Audience 327

The intended audience for this document includes the following categories of individuals: 328

• Computer security researchers interested in access control and authorization frameworks 329
• Security professionals, including security officers, security administrators, auditors, and 330

others with responsibility for information technology (IT) security 331
• Executives and technology officers involved in decisions about IT security products 332
• IT program managers concerned with security measures for computing environments 333

This document, while technical in nature, provides background information and examples to help 334
readers understand the topics that are covered. The material presumes that readers have a basic 335
understanding of security and possess fundamental access control expertise. 336

1.3 Document Structure 337

The remainder of this document is organized into the following sections: 338

• Section 2 provides background information on the origins, makeup, and objectives of 339
XACML and NGAC. 340

• Section 3 describes XACML’s policy specification language and reference architecture 341
for ABAC implementation. 342

• Section 4 describes NGAC’s fundamentally different approach from XACML for 343
representing requests, expressing and administering policies, representing and 344
administering attributes, and computing and enforcing decisions. 345

• Section 5 provides an analysis of XACML and NGAC’s similarities and differences 346
based on five criteria. 347

• Appendix A provides a list of acronyms used in the document. 348
• Appendix B contains a list of references. 349
• Appendix C provides a formal XACML policy specification for an abbreviated policy 350

example in Section 3. 351

 352

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 2

2 Background 353

XACML and NGAC both provide attribute-based approaches to accommodate a wide breadth of 354
access control policies and simplify their management. Most other access control approaches are 355
based on the identity of a user requesting execution of a capability to perform an operation on a 356
data resource (e.g., read a file), either directly via the user’s identity, or indirectly through 357
predefined attribute types such as roles or groups assigned to that user. Practitioners have noted 358
that these forms of access control are often cumbersome to set up and manage, given their 359
limitation of associating capabilities only to users or their attributes. Furthermore, the identity, 360
group, and role qualifiers of a requesting user are often insufficient for expressing real-world 361
access control policies. An alternative is to grant or deny user requests based on arbitrary 362
attributes of users and arbitrary attributes of data resources, and optionally environmental 363
attributes that may be globally recognized and tailored to the policies at hand. This approach to 364
access control is commonly referred to as attribute-based access control (ABAC) and is an 365
inherent feature of both XACML and NGAC. 366

From a policy management perspective, ABAC has advantages over other access control 367
approaches. ABAC avoids the need for capabilities (operation, data resource pairs) to be directly 368
assigned to every instance of a user or resource before the request is made. Instead, when a user 369
requests access, the ABAC engine (depicted in the center of Figure 1) can make access control 370
decisions based on the assigned attributes of the requesting user and data resource instances, 371
environmental attributes, and a set of policies that are specified in terms of those attributes. 372
Under this approach, policies are managed without direct reference to potentially numerous users 373
and data resources, and users and data resources can be provisioned through attribute assignment 374
without reference to policy details. 375

 376

Figure 1: ABAC Overview 377

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 3

XACML and NGAC are ABAC standards for facilitating policy-preserving user executions of 378
data service capabilities (data service operations on data service resources). In general, data 379
services are both applications and system utilities that provide users with capabilities to 380
consume, manipulate, manage, and share data. Data services can take on many forms, including 381
applications such as time and attendance reporting, payroll processing, corporate calendar, and 382
health benefits management, all with a strong dependency on access control. The XACML and 383
NGAC standards, enable decoupling of access control logic from proprietary operating 384
environments (e.g., operating system, database management system, application). 385

Stated another way, a data service is comprised of an application layer and an operating 386
environment layer that can be delineated by their functionality and interfaces. The application 387
layer provides a user interface and methods for data presentation and manipulation (e.g., font 388
selection, spell correction), and an interface for management and distribution of access rights on 389
data. The application layer does not carry out operations that consume data, alter the state of 390
data, or alter the access state to data (e.g., read, write/save, create and delete files, submit, 391
approve, schedule), but instead issue requests to the operating environment layer to perform 392
those operations. An operating environment implements operational routines (e.g., read, write) to 393
carry out application access requests and provides access control to ensure executions of 394
processes involving operational routines on data resources are policy preserving. In addition, 395
operating environments provide methods for authenticating users, creating and associating users 396
with their processes, and managing data resources and access control data. 397

Access control mechanisms comprise several components that work together to bring about 398
policy-preserving data resource access. These components include access control data for 399
expressing access control policies and representing attributes, and a set of functions for trapping 400
access requests, and computing and enforcing access decisions over those requests. Most 401
operating environments implement access control in different ways, each with a different scope 402
of control (e.g., users, resources), and each with respect to different operation types (e.g., read, 403
send, approve, select) and data resource types (e.g., files, messages, work items, records). 404

This heterogeneity introduces a number of administrative and policy enforcement challenges. 405
Administrators are forced to contend with a multitude of security domains when managing 406
access policies and attributes. Even if properly coordinated across operating environments, 407
global controls are hard to visualize and implement in a piecemeal fashion. Furthermore, because 408
operating environments implement access control in different ways, it is difficult to exchange 409
and share access control information across operating environments. XACML and NGAC seek 410
to alleviate these challenges by creating a common and centralized way of expressing all access 411
control data (Policies and Attributes) and computing decisions, over the access requests of 412
applications. 413

In 2014 NIST published SP 800-162, Guide to Attribute Based Access Control (ABAC) 414
Definition and Considerations [13] to serve two purposes. First, it provides Federal agencies 415
with an authoritative definition of ABAC and a description of its functional components. NIST 416
SP 800-162 addresses ABAC as a mechanism comprising four layers of functional 417
decomposition: Enforcement, Decision, Access Control Data, and Administration. Second, in 418
light of potentially numerous approaches to ABAC, NIST SP 800-162 highlights several 419

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 4

considerations for selecting an ABAC system for deployment. Among others, these 420
considerations pertain to operational efficiency, attribute and policy management, scope and type 421
of policy support, and support for administrative review and resource discovery. This report 422
examines and compares XACML and NGAC based on these considerations. In addition, it 423
compares XACML and NGAC in their abilities to separate access control logic necessary to 424
support applications from proprietary operating environments. 425

2.1 XACML 426

In 2003, with the emergence of Service Oriented Architecture (SOA), a new specification called 427
XACML was published through the Organization for the Advancement of Structured 428
Information Standards (OASIS). The specification presented the elements of what would later be 429
considered by many to be ABAC. In support of controlled execution of data service capabilities, 430
the XACML ABAC model employs three components in its authorization process: 431

• XACML policy language, for specifying access control requirements using rules, 432
policies, and policysets, expressed in terms of subject (user), resource, action (operation), 433
and environmental attributes and a set of algorithms for combining policies and rules. 434

• XACML request/response protocol, for querying a decision engine that evaluates 435
subject access requests against policies and returns access decisions in response. 436

• XACML reference architecture, for deploying software modules to house policies and 437
attributes, and computing and enforcing access control decisions based on policies and 438
attributes. 439

XACML is widely recognized by both the research and vendor communities. This acceptance is 440
evident by its implementation, in whole or part, across an increasing number of product 441
offerings. 442

2.2 NGAC 443

In 2003, NIST initiated a project in pursuit of a standardized ABAC mechanism referred to as 444
the Policy Machine that allows changes to a fixed set of data elements and relations in the 445
expression and enforcement of ABAC policies. The Policy Machine has evolved from a concept 446
to a formal specification [8] to a reference implementation and open source distribution. The 447
Policy Machine has served as a research component in support of a family of American National 448
Standards Institute/International Committee for Information Technology Standards 449
(ANSI/INCITS) standardization efforts under the title of "Next Generation Access Control" 450
(NGAC) [2], [20]. In addition to the expression and enforcement of a wide variety of access 451
control policies [6], [7], NGAC facilities can be used to effectuate security-critical portions of 452
the program logic of arbitrary data services and enforce mission-tailored access control policies 453
over data services [7], [9]. Taken together, these NGAC standards define: 454

• A standard set of data and relations used to express access control policies and attributes, 455
and deliver capabilities of data services to perform operations on data resources 456

• A standard set of administrative operations for configuring the data and relations, 457

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 5

• A standard set of functions, interfaces, and protocols for trapping and enforcing policy on 458
requests to execute operations on data resources, computing access decisions to permit or 459
deny those requests, and dynamically altering access state in response to access events. 460

The initial standard of the NGAC family was published in 2013. It is available from the ANSI 461
eStandards store as INCITS 499 – Next Generation Access Control - Functional Architecture 462
(NGAC–FA) [2]. INCITS 526 – Next Generation Access Control - Generic Operations and 463
Abstract Data Structures (NGAC-GOADS) [20] is in the approval process, and is expected to be 464
published in the fall of 2015. 465

2.3 Comparison of XACML and NGAC’s Origins 466

While largely developed in parallel, these standards were established under different timetables 467
and circumstances. XACML was developed as collaboration among vendors with a goal to 468
separate policy expression and decision-making from proprietary operating environments in 469
support of the access control policy needs of applications. XACML first appeared in 2003 and 470
was revised in 2013 by providing support for decentralized policy management. NGAC’s origin 471
stems from the NIST Policy Machine, a research effort that began in 2003 to develop a general-472
purpose ABAC framework. The Policy Machine, and thus NGAC, has benefited from 473
experimental implementation and sustained analysis, resulting in increased policy support and 474
decreased access control dependency on proprietary operational environments. 475

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 6

3 XACML Specification 476

XACML defines a policy specification language and reference architecture for ABAC 477
implementation. The standard encompasses requests, policies, attributes, and functions for 478
computing decisions and enforcing policies in response to access requests to perform actions on 479
resources. 480

For purposes of brevity and readability, the XACML specification is presented as a summary 481
that is intended to highlight XACML’s salient features and should not be considered complete. 482
In some instances, actual XACML details and terms are substituted with others to accommodate 483
a simpler and more consolidated presentation. 484

3.1 Attributes and Policies 485

An XACML access request consists of subject attributes (typically for the user who issued the 486
request), resource attributes (the resource for which access is sought), action attributes (the 487
operations to be performed on the resource), and environment attributes. 488

XACML attributes are specified as name-value pairs, where attribute values can be of different 489
types (e.g., integer, string). An attribute name/ID denotes the property or characteristic 490
associated with a subject, resource, action, or environment. For example, in a medical setting, the 491
attribute name Role associated with a subject may have doctor, intern, and admissions nurse 492
values, all of type string. Subject and resource instances are specified using a set of name-value 493
pairs for their respective attributes. For example, the subject attributes used in a Medical Policy 494
may include: Role = “doctor”, Role = “consultant”, Ward = “pediatrics”, SubjectName = 495
“smith”; an environmental attribute: Time = 12:11; and resource attributes: Resource-id = 496
“medical-records”, WardLocation = ”pediatrics”, Patient = “johnson”. Although XACML does 497
not require any convention for naming attributes, we sometimes use the prefixes Subject, 498
Resource, and Env for naming the subject, resource, and environment attributes, respectively, to 499
enhance readability. 500

Subject and resource attributes are stored in their respective repositories and are retrieved 501
through the Policy Information Point (PIP) at the time of an access request and prior to the 502
computation of the decision. XACML formally defines an action as a component of a request 503
with attribute values that specify operations such as read, write, submit, and approve. 504

Environmental attributes, which depend on the availability of system sensors that can detect and 505
report values, are somewhat different from subject and resource attributes, which are 506
administratively created. An environment is the operational or situational context in which 507
access requests occur. Environmental attributes are not properties of the subject or resources, but 508
are measurable characteristics that pertain to the operational or situational context. These 509
environmental characteristics are subject and resource independent, and may include the current 510
time, day of the week, or threat level. 511

In this document we use a functional notation for reporting on attribute values with the format 512
A(), where the parameter may be a subject, resource, action, or the environment. For example, 513

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 7

A(e), where e is the environment, may equal 09:00 (time) and low (threat level), and A(s), where 514
s is a subject, may equal smith (name) and doctor (role). We use a tuple notation to describe 515
multiple attributes possessed by a subject, resource, or environment. For example, for subject s1 516
we have A(s1) = <smith, doctor>, where the first attribute corresponds to the name and the 517
second one to the role possessed by subject s1. 518

As shown by Figure 2, XACML access policies are structured as PolicySets that are composed of 519
Policies and optionally other PolicySets, and Policies that are composed of Rules. Policies and 520
PolicySets are stored in a Policy Retrieval Point (PRP). Because not all Rules, Policies, or 521
PolicySets are relevant to a given request, XACML includes the notion of a Target. A Target 522
defines a simple Boolean condition that, if satisfied (evaluates to True) by the attributes, 523
establishes the need for subsequent evaluation by a Policy Decision Point (PDP). If no Target 524
matches the request, the decision computed by the PDP is NotApplicable. 525

 526

Figure 2: XACML Policy Constructs 527

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 8

In addition to a Target, a rule includes a series of boolean conditions that if evaluated True have 528
an effect of either Permit or Deny. If the target condition evaluates to True for a Rule and the 529
Rule’s condition fails to evaluate for any reason, the effect of the Rule is Indeterminate. In 530
comparison to the (matching) condition of a Target, the conditions of a Rule or Policy are 531
typically more complex and may include functions (e.g., “greater-than-equal”, “less-than”, 532
“string-equal”) for the comparison of attribute values. Conditions can be used to express access 533
control relations (e.g., a doctor can only view a medical record of a patient assigned to the 534
doctor’s ward) or computations on attribute values (e.g., sum(x, y) less-than-equal:250). 535

3.2 Combining Algorithms 536

Because a Policy may contain multiple Rules, and a PolicySet may contain multiple Policies or 537
PolicySets, each Rule, Policy, or PolicySet may evaluate to different decisions (Permit, Deny, 538
NotApplicable, or Indeterminate). XACML provides a way of reconciling the decisions each 539
makes. This reconciliation is achieved through a collection of combining algorithms. Each 540
algorithm represents a different way of combining multiple local decisions into a single global 541
decision. There are twelve combining algorithms, which include the following: 542

• Deny-overrides: if any decision evaluates to Deny, or no decision evaluates to Permit, 543
then the result is Deny. If all decisions evaluate to Permit, the result is Permit. 544

• Permit-overrides: if any decision evaluates to Permit, then the result is Permit, otherwise 545
the result is Deny. 546

• First-applicable: the result is the result of the first decision (either Permit, Deny, or 547
Indeterminate) when evaluated in their listed order. 548

• Only-one-applicable: if only one decision applies, then the result is the result of the 549
decision, and if more than one decision applies, then the result is Indeterminate. 550

Combining algorithms are applied to rules in a Policy and Policies within a PolicySet in arriving 551
at an ultimate decision of the PDP. Combining algorithms can be used to build up increasingly 552
complex policies. For example, given that a subject request is Permitted (by the PDP) only if the 553
aggregate (ultimate) decision is Permit, the effect of the Permit-overrides combining algorithm is 554
an “OR” operation on Permit (any decision can evaluate to Permit), and the effect of a Deny-555
overrides is an “AND” operation on Permit (all decisions must evaluate to Permit). 556

3.3 Obligation and Advice Expressions 557

XACML includes the concepts of obligation and advice expressions. An obligation optionally 558
specified in a Rule, Policy, or PolicySet is a directive from the PDP to the Policy Enforcement 559
Point (PEP) on what must be carried out before or after an access request is approved or denied. 560
Advice is similar to an obligation, except that advice may be ignored by the PEP. 561

A few examples include: 562

• If Alice is denied access to document X: email her manager that Alice tried to access 563
document X. 564

• If a user is denied access to a file: inform the user why the access was denied. 565

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 9

• If a user is approved to view document X: watermark the document “DRAFT” before 566
delivery. 567

A common use of an obligation, applied after an access request is approved, is for auditing and 568
logging user access events. 569

It should be noted that the functionality to accommodate the directives of an obligation or advice 570
is outside of the scope of XACML and must be implemented and executed by an application-571
specific PEP. 572

3.4 Example Policies 573

Consider the following two example XACML policy specifications. For purposes of maintaining 574
the same semantics as XACML, we use the same element names, but specify policies and rules 575
in pseudocode for purposes of enhanced readability (instead of exact XACML syntax). A more 576
formal XACML treatment of the first policy (Policy 1) is included in Appendix C. 577

Policy 1 applies to “All read or write accesses to medical records by a doctor or intern” (the 578
target of the policy) and includes three rules. As such, the policy is considered “applicable” 579
whenever a subject with a role of “doctor” or “intern” issues a request to read or write “medical-580
records” resource. The rules do not refine the target, but describe the conditions under which 581
read or write requests from doctors or interns to medical records can be allowed. Rule 1 will 582
deny any access request (read or write) if the ward in which the doctor or intern is assigned is not 583
the same ward where the patient is located. Rule 2 explicitly denies “write” access requests to 584
interns under all conditions. Rule 3 permits read or write access to medical-records for “doctor”, 585
regardless of Rule 1, if an additional condition is met. This additional condition pertains to 586
patients in critical status. Since the intent of the policy is to allow access under these critical 587
situations, a policy combining algorithm of “permit-overrides” is used, while still denying access 588
if only the conditions stated in Rule 1 or Rule 2 apply. 589

<Policy PolicyId = “Policy 1” rule-combining-algorithm=”permit-overrides”> 590
 // Doctor Access to Medical Records // 591
 <Target> 592
 /* :Attribute-Category :Attribute ID :Attribute Value */ 593
 :access-subject :Role :doctor 594
 :access-subject :Role :intern 595
 :resource :Resource-id :medical-records 596
 :action :Action-id :read 597
 :action :Action-id :write 598
 </Target> 599
 600
 <Rule RuleId = “Rule 1” Effect=”Deny”> 601
 <Condition> 602

 Function: string-not-equal 603
 /* :Attribute-Category :Attribute ID 604
 :access-subject :WardAssignment 605

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 10

 :resource :WardLocation 606
 </Condition> 607
 </Rule> 608
 609
 <Rule RuleId = “Rule 2” Effect=”Deny”> 610
 <Condition> 611

 Function: string-equal 612
 /* :Attribute-Category :Attribute ID :Attribute Value 613
 :access-subject :Role :intern 614
 :action :Action-id :write 615
 </Condition> 616
 </Rule> 617
 618
 <Rule RuleId = “Rule 3” Effect=”Permit”> 619
 <Condition> 620

 Function:and 621
 Function: string-equal 622

 /* :Attribute-Category :Attribute ID :Attribute Value */ 623
 :access-subject :Role :doctor 624

 Function: string-equal 625
 /* :Attribute-Category : Attribute ID : Attribute Value 626
 :resource :PatientStatus :critical 627
 </Condition> 628
 </Rule> 629
 </Policy> 630
 631
Together policies (PolicySets and Policies) and attribute assignments define the authorization 632
state. Table 1 defines the authorization state for Policy 1 by specifying attribute names and 633
values. 634

Table 1. Attribute Names and Values and the Authorization State for Policy 1 635

Subject Attribute Names and their Domains:
 Role = {doctor, intern}
 WardAssignment = {ward1, ward2}
Resource Attribute Names and their Domains:
 Resource-id = {medical-records}
 WardLocation = {ward1, ward2}
 PatientStatus = {critical}
Action Attribute Names and their Domains:
 Action-id = {read (r), write (w)}
Attribute value assignments when there are two subjects (s3, s4) and three resources (r5,
r6, r7):
 A(s3) = <doctor, ward2>,
 A(s4) = <intern, ward1>,
 A(r5) = <medical-records, ward2>,
 A(r6) = <medical-records, ward1>, and

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 11

 A(r7) = <critical>.
Authorization state:
 (s3, r, r5), (s3, w, r5), (s3, r, r7), (s3, w, r7), (s4, r, r6)

 636

Policy 2 applies to “IRS-agents and auditor access to tax-returns” (target of the policy) and has 637
two rules. This policy is an “applicable policy” whenever users with role “IRS-agent or auditor” 638
access the resource “tax-returns” with a write request. The rules do not refine the target, but state 639
the conditions under which write requests from IRS-agents or auditors to tax-returns records can 640
be allowed. Rule 1 will permit an applicable access request if the access time (an environmental 641
variable) is between 8 AM and 5 PM. Rule 2 will deny the request even if the condition in Rule 1 642
applies through an additional condition; the IRS-agent or auditor is attempting to write to his or 643
her own tax return. Since the intent of the policy is to disallow IRS employees from altering their 644
own tax returns, a policy combining algorithm of “deny-overrides” is used, while still allowing 645
access if the conditions stated in Rule 2 does not. 646

<Policy PolicyId = “Policy 2” rule-combining-algorithm=”deny-overrides”> 647
 // IRS Agent and Auditor Access to Tax Returns // 648
 <Target> 649
 /* :Attribute-Category : Attribute ID : Attribute Value */ 650
 :access-subject :Role :IRS-agent 651
 :access-subject :Role :auditor 652
 :resource :Resource-id :tax-returns 653
 :action :Action-id :write 654
 </Target> 655
 656
 <Rule RuleId = “Rule 1” Effect=”Permit”> 657
 <Condition> 658

 Function: and 659
 /* :Attribute-Category : Attribute ID : Attribute Value 660

 :environment : Time : ≥ 08:00 661
 :environment : Time : ≤ 18:00 662
 </Condition> 663
 </Rule> 664
 <Rule RuleId = “Rule 2” Effect=”Deny”> 665
 <Condition> 666

 Function: and 667
 /* :Attribute-Category : Attribute ID : Attribute Value 668

 :environment :Time : ≥ 08:00 669
 :environment :Time : ≤ 18:00 670

 Function: string-equal 671
 /* :Attribute-Category :Attribute ID 672
 : access-subject :SubjectName 673
 : resource :FilerName 674
 </Condition> 675
 </Rule> 676

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 12

 </Policy> 677

3.5 XACML Access Request 678

An XACML access request is specified in terms of one or more attributes associated with 679
elements: subject, action, resource, and environment. For example, if the IRS Agent Smith is 680
making a request to write Brown’s Tax Return at 9:30 a.m., the XACML access request will 681
carry the values “smith” and “IRS-agent” for the Subject-id and Role attributes, value “write” for 682
action’s Action-id, values “tax-return” and “brown” for the resource’s Resource-id, and 683
Resource-owner attributes, and value “09:30 a.m.” for environment’s Time attribute. XACML 684
pseudocode for this access request is as follows. 685

<Request REQ1> 686
 <Attributes> /* :Attribute-Category : Attribute ID : Attribute Value */ 687
 :access-subject :Subject-id :smith 688
 :access-subject :Role :IRS agent 689
 :resource :Resource-id :tax-return 690
 :resource :Resource-owner :brown 691
 :action :Action-id :write 692
 :environment :Time :9:30 a.m. 693
 </Attributes> 694
</Request REQ1> 695
 696

3.6 Delegation 697

The XACML Policies discussed thus far have pertained to Access Policies that are created and 698
may be modified by an authorized administrator. Access Policies specify capabilities for subjects 699
to perform actions on resource objects. An Access Policy is always considered trusted and its 700
authority is not verified by PDP. XACML includes a delegation mechanism to support 701
decentralized administration of a subset of access policies. A consequence of this feature is a 702
new type of policy called an Untrusted Access Policy that must have its authority verified. 703

In addition to Untrusted Access Policies, the delegation approach makes use of Trusted 704
Administrative Policies and Untrusted Administrative Policies. Administrative policies (trusted 705
or untrusted) include a delegate and a situation in its Target. A situation is a means of scoping 706
the access rights that can be delegated and may include some combination of subject, resource, 707
and action attributes. The delegate is an attribute category of the same type as subject, thus 708
representing the entity(s) that has been given the authority to create either access or further 709
delegation rights. 710

Trusted Administrative Policies serve as a root of trust. They are created under the same 711
authority that is used to create Access Policies. A Trusted Administrative Policy gives the 712
delegate the authority to create Untrusted Administrative Policies or Untrusted Access Policies. 713
The situation for a created Untrusted Administrative Policy or Untrusted Access Policy needs to 714
be either the same situation (the same scope) as that of the Trusted Administrative Policy or a 715
subset of the situation (narrower in scope). In addition, an Untrusted Administrative Policy or 716

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 13

Untrusted Access Policy includes a policy issuer tag with a value that is the same as the value of 717
the delegate in the administrative policy under which it was created. An Untrusted 718
Administrative Policy provides authority to the delegate to create either: (a) an Untrusted 719
Administrative Policy with a policy issuer, delegate, and situation, or (b) an Untrusted Access 720
Policy with a policy issuer and situation. Both these policies should have at least one rule with a 721
PERMIT or DENY effect. 722

XACML recognizes two types of requests – Access Requests and Administrative Requests. 723
Access Requests are issued to (attempt to match targets of) Access Policies or Untrusted Access 724
Policies. An Untrusted Access Policy includes a Policy Issuer tag and an Access Policy does not. 725
If the Access Request matches the target of an Access Policy, the PDP considers the Access 726
Policy applicable and it is directly used by PDP in a combining algorithm to arrive at a final 727
decision. If the Access Request matches the target of an Untrusted Access Policy, the authority 728
of the policy issuer must first be verified before it can be considered by the PDP. Authority is 729
determined through establishment of a delegation chain from the Untrusted Access Policy, 730
through potentially zero or more Untrusted Administrative Policies, to a Trusted Administrative 731
Policy. If the authority of the policy issuer can be verified, the PDP evaluates the access request 732
against the Untrusted Access Policy; otherwise it is considered an unauthorized policy and 733
discarded. In a graph where policies are nodes, a delegation chain consists of a series of edges 734
from the node representing an Untrusted Access Policy to a Trusted Administrative Policy. To 735
construct each edge of the graph, the XACML context handler formulates Administrative 736
Requests. 737

An Administrative Request has the same structure as an Access Request except that in addition 738
to attribute categories – access-subject, resource, and action – it also uses two additional attribute 739
categories, delegate and decision-info. If a policy Px happens to be one of the applicable 740
(matched) Untrusted Access Policies, the administrative request is generated using policy Px to 741
construct an edge to policy Py using the following: 742

• Convert all Attributes (and attribute values) used in the original Access Request to 743
attributes of category delegated. 744

• Include the value under the PolicyIssuer tag of Px as value for the subject-id attribute of 745
the delegate attribute category. 746

• Include the effect of evaluating policy Px as attribute value (PERMIT, DENY, etc.) for 747
the Decision attribute of decision-info attribute category. 748

The Administrative Request constructed using the above attributes is evaluated against the target 749
for policy Py. If the result of the evaluation is “PERMIT”, an edge is constructed between 750
policies Px and Py. The overall logic involved is to verify the authority for issuance of policy Px. 751
For this there should exist a policy with its “delegate” set to the policy issuer of Px. If that policy 752
is Py, then it means policy Px has been issued under the authority found in policy Py. The edge 753
construction then proceeds from policy Py until an edge to a Trusted Administrative Policy is 754
found. 755

The process of selecting applicable policies for inclusion in the combining algorithm is 756
illustrated in Figure 3. Based on the matching of the attributes in the original access request to 757

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 14

the targets in various policies, Untrusted Access Policies P31, P32, and P33 can be found to be 758
applicable policies. A path to a Trusted Administrative Policy P11 can be found directly from the 759
applicable Untrusted Access Policy P31. A path to a Trusted Administrative Policy P12 can be 760
found through Untrusted Administrative Policy P22 for the applicable Untrusted Access Policy 761
P32. Because no such path can be found for the third applicable Untrusted Access Policy P33, 762
only policies P31 and P32 will be used in the combining algorithm for evaluating the final access 763
decision, and policy P33 will be discarded since its authority could not be verified. 764

 765

Figure 3: Utilizing Delegation Chains for Policy Evaluation 766

Below is a more concrete example that illustrates the use of delegation chains to select applicable 767
policies that are used in combining algorithms for arriving at final access decisions. The example 768
gives a Policy Set that consists of four policies: 769

• Policy P1: A Trusted Administrative Policy that gives John (the delegate) the authority to 770
create policies for a situation involving reading of medical records to any user who has 771
the role of Doctor. 772

• Policy P2: An Untrusted Administration Policy that is issued by John, under the authority 773
of P1, to give Jessica (the delegate) the authority to create policies for a situation 774
involving reading of medical records to any user who has the role of Doctor. Because of 775
the matching of delegate of P1 to policy issuer of P2 and the fact that the situations in 776
both policies P1 and P2 are the same, it is obvious that the authority to issue policy P2 777
has come from policy P1. Thus P1 and P2 form a delegation chain. 778

• Policy P3: An Untrusted Access Policy that is issued by Jeff to give Carol the capability 779
to read medical records. 780

• Policy P4: An Untrusted Access Policy that is issued by Jessica to give Carol the ability 781
to read medical records. Because of the matching of delegate of P2 to policy issuer of P4 782
and the fact that the situations in both policies P2 and P4 are the same, it is obvious that 783

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 15

the authority to issue policy P4 has come from policy P2. Thus P2 and P4 form a 784
delegation chain. 785

The four policies described above are given in the form of pseudocode below: 786

<Policy Set> 787
 <Policy P1> /* Trusted Administrative Policy */ 788
 <Target> /* :Attribute-Category :Attribute ID :Attribute Value */ 789
 :access-subject :role :doctor 790
 :resource :resource-id :medical-records 791
 :action :action-id :read 792
 :delegate :subject-id :john 793
 </Target> 794
 <Rule R1> 795
 Effect: PERMIT 796
 </Rule R1> 797
 </Policy P1> 798
 799
 <Policy P2> /* Untrusted Administrative Policy */ 800
 <Policy Issuer> john </Policy Issuer> 801
 <Target> /* :Attribute-Category : Attribute ID : Attribute Value */ 802
 :access-subject :role :doctor 803
 :resource :resource-id :medical-records 804
 :action :action-id :read 805
 :delegate :subject-id :jessica 806
 </Target> 807
 <Rule R2> 808
 Effect: PERMIT 809
 </Rule R2> 810
 </Policy P2> 811
 812
 <Policy P3> /* UnTrusted Access Policy */ 813
 <Policy Issuer> Jeff </Policy Issuer> 814
 <Target> /* :Attribute-Category : Attribute ID : Attribute Value */ 815
 :access-subject :subject-id :carol 816
 :resource : resource-id :medical-records 817
 :action :action-id :read 818
 </Target> 819
 <Rule R3> 820
 Effect: PERMIT 821
 </Rule R3> 822
 </Policy P3> 823
 824
 <Policy P4> /* UnTrusted Access Policy */ 825
 <Policy Issuer> Jessica </Policy Issuer> 826
 <Target> /* :Attribute-Category : Attribute ID : Attribute Value */ 827

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 16

 :access-subject :subject-id :carol 828
 :resource :resource-id :medical-records 829
 :action :action-id :read 830
 </Target> 831
 <Rule R4> 832
 Effect: PERMIT 833
 </Rule R4> 834
 </Policy P4> 835
<Policy Set> 836

By matching the situation and delegate in one policy to situation and policy issuer in another, we 837
see that P1, P2, and P4 form a delegation chain. P3 is not part of any delegation chain. Given the 838
above delegation structure, let us see how the following access request REQ1 will be resolved. 839

<Request REQ1> 840
 <Attributes> /* :Attribute-Category : Attribute ID : Attribute Value */ 841
 :access-subject :subject-id :carol 842
 :access-subject :role :doctor 843
 :resource :resource-id :medical-records 844
 :action :action-id :read 845
 </Attributes> 846
</Request REQ1> 847

By matching the attributes (and values) in the request REQ1 with the attributes (and values) in 848
the target of the policies in the policy set, we find that only policies P3 and P4 match directly 849
since policies P1 and P2 contain delegated attributes. Since both policies P3 and P4 are untrusted 850
access policies, their respective authority has to be verified by making administrative requests. 851
Since policy P3 is not part of any delegation chain, its authority cannot be verified. However, the 852
authority for policy P4 can be established by using the delegation chain P1, P2, P4. 853

The same PAP interface that is used to create access policies can be used to create the additional 854
policies needed for supporting delegation – Untrusted Access Policies, Trusted Administrative 855
Policies, and Untrusted Administrative Policies. This requires at least two classes of policy 856
administrators. The first is a System-Administrator authorized to create Access Policies. The 857
second is a Delegated-Administrator authorized to create Untrusted Administrative Policies or 858
Untrusted Access Policies conforming to the situation or a subset of the situation authorized in 859
any Trusted Administrative Policy currently in the policy repository. 860

3.7 XACML Reference Architecture 861

XACML reference architecture defines necessary functional components (depicted in Figure 4) 862
to achieve enforcement of its policies. The authorization process is a seven-step process that 863
depends on four layers of functionality: Enforcement, Decision, Access Control Data, and 864
Administration. 865

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 17

At its core is a PDP that computes decisions to permit or deny subject requests (to perform 866
actions on resources). Requests are issued from, and PDP decisions are returned to, a PEP using 867
a standardized request and response language. The PEP is implemented as a component of an 868
operating environment that is tightly coupled with its application. A PEP may not generate 869
requests in XACML syntax nor process XACML syntax-compliant responses. In order to 870
convert access requests in native format (of the operating environment) to XACML access 871
requests (or convert a PDP response in XACML to a native format), the XACML architecture 872
includes a context handler. The context handler also provides additional attribute values for the 873
access request context (retrieving them from PIP). In the reference architecture in Figure 4, the 874
context handler is not explicitly shown as a component since we assume that it is an integral part 875
of the PEP or PDP. 876

A request is comprised of attributes extracted from the PIP, minimally sufficient for Target 877
matching. The PIP is shown as one logical store, but in fact may comprise multiple physical 878
stores. In computing a decision, the PDP queries policies stored in a PRP. If the attributes of the 879
request are not sufficient for rule and policy evaluation, the PDP may request the context handler 880
to search the PIP for additional attributes. Information and data stored in the PIP and PRP 881
comprise the access control data and collectively define the current authorization state. 882

 883

Figure 4: XACML Reference Architecture 884

A Policy Administration Point (PAP1) using the XACML policy language creates the access 885
control data stored in the PRP in terms of rules for specifying Policies, PolicySets as a container 886
of Policies, and rule and policy combining algorithms. The PRP may store trusted or untrusted 887
policies. Although not included in the XACML reference architecture, we show a second Policy 888
Administration Point (PAP2) for creating and managing the access control data stored in the PIP. 889
PAP2 implements administrative routines necessary for the creation and management of attribute 890
names and values for users and resources. The Resource Access Point (RAP) implements 891

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 18

routines for performing operations on a resource that is appropriate for the resource type. In the 892
event that the PDP returns a permit decision, the PEP issues a command to the RAP for 893
execution of an operation on resource content. As indicated by the dashed box in Figure 4, the 894
RAP, in addition to the PEP, runs in an application’s operating environment, independent of the 895
PDP and its supporting components. The PDP and its supporting components are typically 896
implemented as modules of a centralized Authorization Server that provides authorization 897
services for multiple types of operations. 898

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 19

4 NGAC Specification 899

NGAC takes a fundamentally different approach from XACML for representing requests, 900
expressing and administering policies, representing and administering attributes, and computing 901
and enforcing decisions. NGAC is defined in terms of a standardized and generic set of relations 902
and functions that are reusable in the expression and enforcement of policies. 903

For purposes of brevity and readability, the NGAC specification is presented as a summary that 904
highlights NGAC’s salient features and should not be considered complete. In some instances, 905
actual NGAC relational details and terms are substituted with others to accommodate a simpler 906
presentation. 907

4.1 Basic Policy and Attribute Elements 908

NGAC’s access control data is comprised of basic elements, containers, and configurable 909
relations. While XACML uses the terms subject, action, and resource, NGAC uses the terms 910
user, operation, and object with similar meanings. In addition to these, NGAC includes 911
processes, administrative operations, and policy classes. Like XACML, NGAC recognizes user 912
and object attributes; however, it treats attributes along with policy class entities as containers. 913
These containers are instrumental in both formulating and administering policies and attributes. 914

NGAC treats users and processes as independent but related entities. NGAC processes can be 915
thought of as simple representations of operating system processes. They have an id, memory, 916
and descriptors for resource allocations (e.g., “handles”). Like an operating system, an NGAC 917
process can utilize system resources (e.g., clipboard) for inter-process communication. Processes 918
through which a user attempts access take on the same attributes as the invoking user. 919

Although an XACML resource is similar to an NGAC object, NGAC uses the term object as an 920
indirect references its data content. Every object is also an object attribute with the same name. 921
Given this one-to-one correspondence, the object can also be identified as an object attribute. 922
That is, every object is by definition an object attribute. The set of objects reflects entities 923
needing protection, such as files, clipboards, email messages, and record fields. 924

Similar to an XACML subject attribute value, NGAC user containers can represent roles, 925
affiliations, or other common characteristics pertinent to policy, such as security clearances. 926

Object containers (attributes) characterize data and other resources by identifying collections of 927
objects, such as those associated with certain projects, applications, or security classifications. 928
Object containers can also represent compound objects, such as folders, inboxes, table columns, 929
or rows, to satisfy the requirements of different data services. Policy class containers are used to 930
group and characterize collections of policy or data services at a broad level, with each container 931
representing a distinct set of related policy elements. Every user, user attribute, and object 932
attribute must be contained in at least one policy class. Policy classes can be mutually exclusive 933
or overlap to various degrees to meet a wide range of policy requirements. 934

NGAC recognizes a generic set of operations that include basic input and output operations (i.e., 935
read and write) that can be performed on the contents of objects that represent data service 936

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 20

resources, and a standard set of administrative operations that can be performed on NGAC 937
access control data that represent policies and attributes. In addition, an NGAC deployment may 938
consider and provide control over other types of data service operations besides the basic 939
input/output operations. Resource operations can also be defined specifically for an operating 940
environment. Administrative operations, on the other hand, pertain only to the creation and 941
deletion of NGAC data elements and relations, and are a stable part of the NGAC framework, 942
regardless of the operating environment. 943

4.2 Relations 944

NGAC does not express policies through rules, but instead through configurations of relations of 945
four types: assignments (define membership in containers), associations (derive privileges), 946
prohibitions (specify privilege exceptions), and obligations (dynamically alter access state). 947

4.2.1 Assignments and Associations 948

NGAC uses a tuple (x, y) to specify the assignment of element x to element y. In this publication 949
we use the notation x→y to denote the same assignment relation. The assignment relation always 950
implies containment (x is contained in y). We denote a chain of one or more assignment relations 951
by “→+”.The set of entities used in assignments include users, user attributes, and object 952
attributes (which include all objects), and policy classes. 953

To be able to carry out an operation, one or more access rights are required. As with operations, 954
two types of access rights apply: non-administrative and administrative. 955

Access rights to perform operations are acquired through associations. An association is a triple, 956
denoted by ua---ars---at, where ua is a user attribute, ars is a set of access rights, and at is an 957
attribute, where at may comprise either a user attribute or an object attribute. The attribute at in 958
an association is used as a referent for itself and the policy elements contained by the attribute. 959
Similarly, the first term of the association, attribute ua, is treated as a referent for the users and 960
user attributes contained in ua. The meaning of the association ua---ars---at is that the users 961
contained in ua can execute the access rights in ars on the policy elements referenced by at. The 962
set of policy elements referenced by at is dependent on (and meaningful to) the access rights in 963
ars. 964

Figure 5 illustrates two example assignment and association relations depicted as graphs—one an 965
access control policy configuration with policy class “Project Access” (Figure 5a), and the other 966
a data service configuration with “File Management” as its policy class (Figure 5b). Users and 967
user attributes are on the left side of the graphs, and objects and object attributes are on the right. 968
The arrows represent assignment relations and the dashed lines denote associations. Remember 969
that the set of referenced policy elements is dependent on the access rights in ars. Note that the at 970
attribute of each association is an object attribute and the access rights are read/write. In the 971
association Division---{r}---Projects, the policy elements referenced by Projects are objects o1 972
and o2, meaning that users u1 and u2 can read objects o1 and o2. If we had an association 973
Division---{create assign-to}---Projects, then the policy elements referenced by Projects would 974
be Projects, Project1, and Project2, meaning that users u1 and u2 may (administratively) create 975
assignment relations to Projects, Project1, and Project2.976

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 21

 977

Figure 5: Two Example Assignment and Association Graphs 978

4.2.2 Derived Privileges 979

Collectively associations and assignments indirectly specify privileges of the form (u, ar, e), with 980
the meaning that user u is permitted (or has a capability) to execute the access right ar on 981
element e, where e can represent a user, user attribute, or object attribute. Determining the 982
existence of a privilege (a derived relation) is a requirement of, but as we discuss later, not 983
sufficient in computing an access decision. 984

NGAC includes an algorithm for determining privileges with respect to one or more policy 985
classes and associations. Specifically, (u, ar, e) is a privilege, if and only if, for each policy class 986
pc in which e is contained, the following is true: 987

• The user u is contained by the user attribute of an association; 988
• The element e is contained by the policy element attribute at of that association; 989
• The policy element attribute at of that association is contained by the policy class pc, and 990
• The access right ar is a member of the access right set of that association. 991

Note that the algorithm for determining privileges applies to configurations that include one or 992
more policy classes. The left and right columns of Table 2 list derived privileges for Figures 5a 993
and 5b, when considered independent of one another. 994

Table 2: Derived Privileges for the Independent Configuration of Figures 5a and 5b 995

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u2, r, o1),
(u2, r, o2), (u2, w, o2), (u2, r, o3), (u2, w, o3)

(u1, r, o2), (u1, w, o2), (u2, r, o2), (u2, w, o2),
(u2, r, o3), (u2, w, o3), (u2, r, o4), (u2, w, o4)

 996

Figure 6 is an illustration of the graphs in Figures 5a and 5b when considered in combination. 997
Note that for the purposes of deriving privileges, user attribute to policy class assignments are 998
not considered, and as such are not shown. 999

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 22

 1000

Figure 6: Graphs from Figures 5a and 5b in Combination 1001

Table 3 lists the derived privileges for the graphs from Figures 5a and 5b when considered in 1002
combination. 1003

Table 3: Derived Privileges for the Combined Configuration of Figures 5a and 5b 1004

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u2, r, o1), (u2, r, o2), (u2, w, o2), (u2, r, o3), (u2, w, o3),
(u2, r, o4), (u2, w, o4)

 1005

Note that (u1, r, o1) is a privilege in Table 23 because o1 is only in policy class Project Access 1006
and there exists an association Division---{r}--- Projects, where u1 is in Division, r is in {r}, and 1007
o1 is in Projects. Note that (u1, w, o2) is not a privilege in Table 23 because o2 is in both Project 1008
Access and File Management policy classes, and although there exists an association Alice---{r, 1009
w}---o2, where u1 is in Alice, w is in {r, w}, and o2 is in o2 and File Management, no such 1010
association exists with respect to Project Access. 1011

NGAC configurations indirectly specify rules. The access control policy of Figure 5a specifies 1012
that users assigned to either Group1 or Group2 can read objects contained in Projects, but only 1013
Group1 users can write to Project1 objects and only Group2 users can write to Project2 objects. 1014
The Policy further specifies that Group2 users can read/write data objects in Gr2-Secret. While 1015
Figure 5a specifies policies for how its objects can be read and written, the configuration is 1016
considered incomplete in that it does not specify how its users, objects, policy elements, 1017
assignments, and associations were created and can be managed. 1018

Figure 5b depicts an access policy for a File Management data service. User u2 (Bob) has 1019
read/write access to objects assigned to object attributes (Proposals and Reports representing 1020
folders) that are contained in Bob Home (representing his home directory). The configuration 1021

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 23

also shows user u1 (Alice) with read/write access to object o2. This configuration is also 1022
incomplete in that one would expect a File Management data service with capabilities for users 1023
to create and manage their folders and to create and assign objects to their folders. Another 1024
feature common to a File Management data service is the capability for users to grant or give 1025
away access rights to objects that are under their control to other users. 1026

We specify missing management capabilities for the Project Access policy in Section 4.4.1 and 1027
File Management data service in Section 4.5. 1028

Although the graph depicted in figure 6 pertains to the intersection of policies, NGAC employs 1029
the Boolean logics of AND and OR to express the combinations of policies [12]. Figure 7 is a 1030
depiction of an NGAC equivalent configuration of the XACML Policy1 specified in Section 3.4. 1031
Both policies specify that users assigned to Intern can read AND Doctor can read and write 1032
Medical Records that are assigned to the same Ward as the user OR Doctors can read and write 1033
Medical Records assigned to Critical regardless of the Ward in which the Medical Record is 1034
assigned. 1035

 1036

Figure 7: NGAC's Equivalent Expression of XACML Policy1 1037

Figure 7 shows NGAC users and objects that correspond to the XACML subjects and resources 1038
in Table 1 and are assigned to the same attribute values in Table 1. 1039

Table 4: Derived Privileges for the Configuration of Figure 7 1040

(u3, r, o5), (u3, w, o5), (u3, r, o7), (u3, w, o7), (u4, r, o6)

 1041

As a consequence, the derived privileges of Figure 7 (listed in Table 4) are the same as the 1042
authorization state specified in Table 1. 1043

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 24

4.2.3 Prohibitions (Denies) 1044

In addition to assignments and associations, NGAC includes three types of prohibition relations: 1045
user-deny, user attribute-deny, and process-deny. In general, deny relations specify privilege 1046
exceptions. We respectively denote a user-based deny, user attribute-based deny, and process-1047
based deny relation by u_deny(u, ars, pe), ua_deny(ua, ars, pe), and p_deny(p, ars, pe), where u 1048
is a user, ua is a user attribute, p is a process, ars is an access right set, and pe is a policy element 1049
used as a referent for itself and the policy elements contained by the policy element. The 1050
respective meanings of these relations are that user u, users in ua, and process p cannot execute 1051
access rights in ars on policy elements in pe. User-deny relations and user attribute-deny 1052
relations can be created directly by an administrator or dynamically as a consequence of an 1053
obligation (see Section 4.2.4). An administrator, for example, could impose a condition where no 1054
user is able to alter their own Tax Return, in spite of the fact that the user is assigned to an IRS 1055
Auditor user attribute with capabilities to read/write all tax returns. When created through an 1056
obligation, user-deny and user attribute-deny relations can take on dynamic policy conditions. 1057
Such conditions can, for example, provide support for separation of duty policies (if a user 1058
executed capability x, that user would be immediately precluded from being able to perform 1059
capability y). In addition, the policy element component of each prohibition relation can be 1060
specified as its complement, denoted by ¬. The respective meaning of u_deny(u, ars, ¬pe), 1061
ua_deny(ua, ars, ¬pe), and p_deny(p, ars, ¬pe) is that the user u, and any user assigned to ua, 1062
and process p cannot execute the access rights in ars on policy elements not in pe. 1063

Process-deny relations are exclusively created using obligations. Their primary use is in the 1064
enforcement of confinement conditions (e.g., if a process reads Top Secret data, preclude that 1065
process from writing to any object not in Top Secret). 1066

4.2.4 Obligations 1067

Obligations consist of a pair (ep, r) (usually expressed as when ep do r) where ep is an event 1068
pattern and r is a sequence of administrative operations, called a response. The event pattern 1069
specifies conditions that if matched by the context surrounding a process’s successful execution 1070
of an operation on an object (an event), cause the administrative operations of the associated 1071
response to be immediately executed. The context may pertain to and the event pattern may 1072
specify parameters like the user of the process, the operation executed, and the attribute(s) of the 1073
object. 1074

Obligations can specify operational conditions in support of history-based policies and data 1075
services. Such conditions include conflict of interest (if a user reads information from a sensitive 1076
data set, that user is prohibited from reading data from a second data set) and Work Flow 1077
(approving (writing to a field of)) a work item enables a second user to read and approve the 1078
work item). Also, included among history-based policies are those that prevent leakage of data to 1079
unauthorized principals. The use of an obligation to prevent data leakage is discussed in Section 1080
4.5. 1081

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 25

4.3 NGAC Decision Function 1082

The NGAC access decision function controls accesses in terms of processes. The user on whose 1083
behalf the process operates must hold sufficient authority over the policy elements involved. The 1084
function process_user(p) denotes the user associated with process p. 1085

Access requests are of the form (p, op, argseq), where p is a process, op is an operation, and 1086
argseq is a sequence of one or more arguments, which is compatible with the scope of the 1087
operation. That is, an access request comprises an operation and a list of enumerated arguments 1088
that have their number, type, and order dictated by the operation. 1089

The access decision function to determine whether an access request can be granted requires a 1090
mapping from an operation and argument sequence pair to a set of access rights and policy 1091
element pairs (i.e., {(ar, pe)}) the process’s user must hold for the request to be granted. 1092

When determining whether to grant or deny an access request, the authorization decision 1093
function takes into account all privileges and restrictions (denies) that apply to a user and its 1094
processes, which are derived from relevant associations and denies, giving restrictions 1095
precedence over privileges: 1096

A process access request (p, op, argseq) with mapping (op, argseq)→{(ar, pe)}) is granted 1097
iff for each (ari, pei) in {(ar, pe)}, there exists a privilege (u, ari, pei) where u = 1098
process_user(p), and (ari, pei) is not denied for either u or p. 1099

In the context of Figure 6, an access request may be (p, read, o1) where p is u1’s process. The 1100
pair (read, o1) maps to (r, o1). Because there exists a privilege (u1, r, o1) in table 3 and (r, o1) is 1101
not denied for u1 or p, the access request would be granted. Assume the existence of associations 1102
Division---{create assign-to}---Projects, and Bob---{create assign-from}---Bob Home in the 1103
context of Figure 6, and an access request (p, assign, <o4, Project1>) where p is u2’s process. 1104
The pair (assign, <o4, Project1>) maps to {(create assign-from, o4), (create assign-to, Project1)}. 1105
Because privileges (u2, create assign-from, o4) and (u2, create assign-to, Project1) would exist 1106
under the assumption, and (create assign-from, o4) and (create assign-to, Project1) are not denied 1107
for u2 or p, the request would be granted. 1108

4.4 Administrative Considerations 1109

Many access rights categorized as administrative access rights, such as those needed to create a 1110
file and assign it to a folder, arguably seem non-administrative from a usage standpoint. 1111
Nevertheless, from a policy specification standpoint, they are considered administrative (e.g., in 1112
this case, an association with access rights for creating an object and assigning the object to an 1113
object attribute is needed). The main difference between the two types of access rights is that 1114
non-administrative actions pertain to activities on protected resources represented as objects, 1115
while administrative actions pertain to activities on the policy representation comprising the 1116
policy elements and relationships defined within and maintained by NGAC. 1117

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 26

4.4.1 Administrative Associations 1118

In order to execute an administrative operation, the requesting user must possess appropriate 1119
access rights. Just as access rights to perform read/write operations on resource objects are 1120
defined in terms of associations, so too are capabilities to perform administrative operations on 1121
policy elements and relations. In comparison with non-administrative access rights, where 1122
resource operations are synonymous with the access rights needed to carry out those operations 1123
(e.g., a “read” operation corresponding to an “r” access right), the authority associated with an 1124
administrative access right is not necessarily synonymous with an administrative operation. 1125
Instead, the authority stemming from one or more administrative access rights may be required 1126
for a single operation to be authorized. 1127

Some administrative access rights are explicitly divided into two parts, as denoted by the “from” 1128
and “to” suffixes. Both parts of the authority must be held to carry out the implied administrative 1129
operation. 1130

For example, consider the following two associations that provide administrative capabilities in 1131
support of the “Project Access” policy configuration depicted in Figure 5a: 1132

ProjectAccessAdmin --- {create-u-to, delete-u-from, create-ua-to, delete-ua-from, create-uua- 1133
 from, create-uua-to, delete-uua-from, create-uaua-from, create-uaua-to, delete-uaua- 1134
 from, delete-uaua-to }---Division 1135

ProjectAccessAdmin --- {create-o-to, delete-o-from, create-oa-to, delete-oa-to, create ooa- 1136
 from, create ooa-to, delete-ooa-from, create-oaoa-from, create-oaoa-to, delete-oaoa-from, 1137
 delete-oaoa-to }--- Projects 1138

The meaning of the first association is that users in ProjectAccessAdmin can create and delete 1139
users, user attributes, user to user-attribute (uua), and user-attribute to user-attribute (uaua) 1140
assignments in Division. The second association similarly establishes privileges to create and 1141
delete objects(o), object attributes(oa), object to object-attribute (ooa), and object-attribute to 1142
object-attribute (oaoa) assignments in Projects. 1143

With the preceding two associations, the next two associations complete the configuration begun 1144
by the configuration of Figure 5a, enabling complete administration. The associations enable 1145
users in ProjectAccessAdmin to create and delete associations from user attributes in Division to 1146
object attributes in Projects, with allocated read and/or write access rights. 1147

ProjectAccessAdmin --- {create-assoc-from, delete-assoc-from} --- Division. 1148
ProjectAccessAdmin --- {create-assoc-to, delete-assoc-to, r-allocate, w-allocate} --- Projects. 1149

4.4.2 Delegation 1150

The question remains, how are administrative capabilities created? The answer begins with a 1151
superuser with capabilities to perform all administrative operations on all access control data. 1152
The initial state consists of an NGAC configuration with empty data elements, attributes, and 1153
relations. A superuser either can directly create administrative capabilities or more practically 1154
can create administrators and delegate to them capabilities to create and delete administrative 1155

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 27

privileges. Delegation and rescinding of administrative capabilities is achieved through creating 1156
and deleting associations. The principle followed for allocating access rights via an association is 1157
that the creator of the association must have been allocated the access right over the attribute in 1158
question (as well as the necessary create-assoc-from and create-assoc-to rights) in order to 1159
delegate them. The strategy enables a systematic approach to the creation of administrative 1160
attributes and delegation of administrative capabilities, beginning with a superuser and ending 1161
with users with administrative and data service capabilities. 1162

4.4.3 NGAC Administrative Commands and Routines 1163

Administrative commands and routines are the means by which policy specifications are formed. 1164
Each access request involving an administrative operation corresponds on a one-to-one basis to 1165
an administrative routine, which uses the sequence of arguments in the access request to perform 1166
the access. As described earlier in this section, the access decision function grants the access 1167
request (and initiation of the respective administrative routine) only if the process holds all 1168
prohibition-free access rights over the items in the argument sequence needed to carry out the 1169
access. The administrative routine, in turn, uses one or more administrative commands to 1170
perform the access. 1171

Administrative commands describe rudimentary operations that alter the policy elements and 1172
relationships of NGAC, which comprise the authorization state. An administrative command is 1173
represented as a parameterized procedure, with a body that describes state changes to policy that 1174
occur when the described behavior is carried out (e.g., a policy element or relation Y changes 1175
state to Y′ when some function f is applied). Administrative commands are specified using the 1176
following format: 1177

 cmdname (x1: type1, x2: type2, …, xk: typek) 1178
 …preconditions … 1179
 { 1180
 Y′= f (Y, x1, x2, …, xk) 1181
 } 1182

Consider, as an example, the administrative command CreateAssoc shown below, which 1183
specifies the creation of an association. The preconditions here stipulate membership of the x, y, 1184
and z parameters respectively to the user attributes (UA), access right sets (ARs), and policy 1185
elements (PE) elements of the model. The body describes the addition of the tuple (x, y, z) to the 1186
set of associations (ASSOC) relation, which changes the state of the relation to ASSOC′. 1187

 createAssoc (x, y, z) 1188
 x ∈ UA ⋀ y ∈ ARs ⋀ z ∈ PE ⋀ (x, y, z) ∉ ASSOC 1189
 { 1190
 ASSOC′ = ASSOC ⋃ {(x, y, z)} 1191
 } 1192

Each administrative command entails a modification to the NGAC configuration that involves 1193
the creation or deletion of a policy element, the creation or deletion of an assignment between 1194
policy elements, or the creation or deletion of an association, prohibition, or obligation. 1195

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 28

Compared to administrative routines, administrative commands are elementary. That is, 1196
administrative commands provide the foundation for the NGAC framework, while administrative 1197
routines use one or more administrative commands to carry out their function. 1198

An administrative routine consists mainly of a parameterized interface and a sequence of 1199
administrative command invocations. Administrative routines build upon administrative 1200
commands to define the protection capabilities of the NGAC model. The body of an 1201
administrative routine is executed as an atomic transaction—an error or lack of capabilities that 1202
causes any of the constituent commands to fail execution causes the entire routine to fail, 1203
producing the same effect as though none of the commands were ever executed. Administrative 1204
routines are specified using the following format: 1205
 1206

rtnname (x1: type1, x2: type2, …, xk: typek) 1207
 … preconditions … 1208

{ 1209
cmd1; 1210
conditiona cmd2, cmd3; 1211
. . . 1212
conditionz cmdn; 1213

 } 1214
 1215
The name of the administrative routine, rtnname, precedes the routine’s declaration of formal 1216
parameters, x1: type1, x2: type2, …, xk: typek (k ≥ 0). Each formal parameter of an 1217
administrative routine can serve as an argument in any of the administrative command 1218
invocations, cmd1, cmd2, …, cmdn (n ≥ 0), that make up the body of the routine, and also in any 1219
condition prepended to a command. As with an administrative command, the body of an 1220
administrative routine is prefixed by preconditions, which in general ensure that the arguments 1221
supplied to the routine are valid, and that certain properties on which the routine relies are 1222
maintained. As illustrated above, an optional condition can precede one or more of the 1223
commands. 1224

For example, when a new user is created, an administrator typically creates a number of 1225
containers, links them together, and grants the authority for the user to access them as its work 1226
space. Rather than manually performing each step of this sequence of administrative actions for 1227
each new user, the entire sequence of repeated actions can be defined as a single administrative 1228
routine and executed in its entirety as an atomic action. 1229

To execute the routine, the user (administrative) must possess the necessary capabilities to 1230
execute each administrative command. 1231

4.5 Arbitrary Data Service Operations and Policies 1232

NGAC recognizes administrative operations for the creation and management of its data 1233
elements and relations that represent policies and attributes, and basic input and output 1234
operations (e.g., read and write) that can be performed on objects that represent data service 1235
resources. In accommodating data services, NGAC may establish and provide control over other 1236
types of operations, such as send, submit, approve, and create folder. However, it does not 1237

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 29

necessarily need to do so. This is because the basic data service capabilities to consume, 1238
manipulate, manage, and distribute access rights on data can be attained as combinations of 1239
read/write operations on data and administrative operations on data elements, attributes, and 1240
relations that may alter the access state for which users can read/write data. 1241

Consider the following administrative routine that creates a “file management” user and provides 1242
the user with capabilities to create and manage objects and folders, and control and share access 1243
to objects in the context of Figure 5b. The routine assumes the pre-existence of the user attribute 1244
“Users” assigned to the “File Management” policy class as shown in Figure 5b. 1245

create-file-mgmt-user(user-id, user-name, user-home) { 1246
 createUAinUA(user-name, Users); 1247
 createUinUA(user-id, user-name); 1248
 createOAinPC(user-home, File Management); 1249
 createAssoc(user-name, {r, w}, user-home); 1250
 createAssoc(user-name, {create-o-to, delete-o-from}, user-home); 1251
 createAssoc(user-name, {create-ooa-from, create-ooa-to, delete-ooa-from, create-oaoa- 1252
 from, create-oaoa-to, delete-oaoa-from}, user-home); 1253
 createAssoc(user-name, {create-assoc-from, delete-assoc-from}, Users); 1254
 createAssoc(user-name, {create-assoc-to, delete-assoc-to, r-allocate, w-allocate}, user- 1255
 home);} 1256

This routine with parameters (u1, Bob and Bob Home) could have been used to create “file 1257
management” data service capabilities for user u1 already in Figure 5b. Through the routine the 1258
user attribute “Bob” is created and assigned to “Users”, and user u1 is created and assigned to 1259
“Bob”. In addition, the object attribute “Bob Home” is created and assigned to policy class “File 1260
Management”. In addition, user u1 is delegated administrative capabilities to create, organize, 1261
and delete object attributes (presented folders) in Bob Home, and u1 is provided with capabilities 1262
to create, read, write, and delete objects that correspond to files and place those files into his 1263
folders. Finally, u1 is provided with discretionary capabilities to “grant” to other users in the 1264
“Users” container capabilities to perform read/write operations on individual files or to all files 1265
in a folder in his Home. 1266

As already indicated by Figure 5b, and subsequent to the execution of this administrative routine, 1267
user u1 can grant user u2 (Alice) read/write access to object o2 by using the following routine. 1268
 1269
 grant(user-name, rights, file/folder) { 1270
 createAssoc(user-name, rights, file/folder)} 1271

Through this routine Bob could, under his discretion, “grant” Alice read access to o3. However, 1272
even if Bob were to do so, Alice would not be able to read o3. This is because of a lack of a 1273
privilege (u1, r, o3) due to o3’s containment in the “Project Access” policy class. Although Bob 1274
cannot successfully provide Alice read access to object o3 through his delegated “grant” 1275
capability, Bob could “leak” the capability to read the content of o3 to Alice. This could be 1276
achieved by Bob first reading the content of o3 and then writing that content to o2. Even if Bob 1277
was trusted not to perform such actions, a malicious process acting on Bob’s behalf could do so, 1278

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 30

without Bob’s knowledge. To prevent this leakage we add the following obligation to our 1279
configuration: 1280

When any process p performs (r, o) where o→+ Gr2-Secret do create p-deny(p, {w}, ¬Gr2-1281
Secret) 1282

The effect of this obligation will prevent a process (and its user) from reading the contents of any 1283
object in Gr2-Secret and writing it to an object in a different container (not in Gr2-Secret). 1284

4.6 NGAC Functional Architecture 1285

NGAC’s functional architecture (shown in Figure 8), like XACML’s, encompasses four layers of 1286
functional decomposition: Enforcement, Decision, Administration, and Access Control Data, and 1287
involves several components that work together to bring about policy-preserving access and data 1288
services. Among these components is a PEP that traps application requests. An access request 1289
includes a process id, user id, operation, and a sequence of one or more operands mandated by 1290
the operation that pertain to either a data resource or an access control data element or relation. 1291
Administrative operational routines are implemented in the PAP and read/write routines are 1292
implemented in the RAP. 1293

 1294

Figure 8: NGAC Standard Functional Architecture 1295

To determine whether to grant or deny, the PEP submits the request to a PDP. The PDP 1296
computes a decision based on current configuration of data elements and relations stored in the 1297
PIP, via the PAP. Unlike the XACML architecture, the access request information from an 1298
NGAC PEP together with the NGAC relations (retrieved by the PDP) provide the full context for 1299
arriving at a decision. The PDP returns a decision of grant or deny to the PEP. If access is 1300
granted and the operation was read/write, the PDP also returns the physical location where the 1301
object’s content resides, the PEP issues a command to the appropriate RAP to execute the 1302
operation on the content, and the RAP returns the status. In the case of a read operation, the RAP 1303

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 31

also returns the data type of the content (e.g., Powerpoint) and the PEP invokes the correct data 1304
service application for its consumption. If the request pertained to an administrative operation 1305
and the decision was grant, the PDP issues a command to the PAP for execution of the operation 1306
on the data element or relation stored in the PIP, and the PAP returns the status to the PDP, 1307
which in turn relays the status to the PEP. If the returned status by either the RAP or PAP is 1308
“successful”, the PEP submits the context of the access to the Event Processing Point (EPP). If 1309
the context matches an event pattern of an obligation, the EPP automatically executes the 1310
administrative operations of that obligation, potentially changing the access state. Note that 1311
NGAC is data type agnostic. It perceives accessible entities as either data or access control data 1312
elements or relations, and it is not until after the access process is completed that the actual type 1313
of the data matters to the application. 1314

 1315

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 32

5 Analysis 1316

XACML is similar to NGAC insofar as they both provide flexible, mechanism-independent 1317
representations of policy rules that may vary in granularity, and they employ attributes in 1318
computing decisions. However, XACML and NGAC differ significantly in their expression of 1319
policies, treatment of attributes, computation of decisions, and representation of requests. In this 1320
section, we analyze these similarities and differences with respect to the degree of separation of 1321
access control logic from proprietary operating environments and four ABAC considerations 1322
identified in NIST SP 800-162: operational efficiency, attribute and policy management, scope 1323
and type of policy support, and support for administrative review and resource discovery. 1324

For the purposes of comparison we normalize some XACML and NGAC terminology. 1325

5.1 Separation of Access Control Functionality from Proprietary Operating 1326
Environments 1327

XACML and NGAC both separate access control functionality of data services from proprietary 1328
operating environments, but to different degrees. An XACML deployment may consist of 1329
multiple operating environments, each hosting one or more applications and sharing a common 1330
authorization infrastructure. Each of these operating environments implements its own method of 1331
authentication, and in support of its applications implements its own operational routines. 1332
Application specific operations included in XACML access requests correspond one-to-one with 1333
operational routines implemented in supporting operating environments. It is for this reason that 1334
an XACML-enabled application is dependent on an operating environment PEP. Requests are 1335
issued from, and decisions are returned to, an operating environment-specific PEP. 1336

Although an NGAC deployment could include a PEP with an Application Programming 1337
Interface (API) that recognizes operating environment-specific operations (e.g., send and 1338
forward operations for a messaging system), it does not necessarily need to do so. NGAC 1339
includes a PEP with an API that supports a set of generic, operating environment-agnostic 1340
operations (read, write, create, and delete policy elements and relations). This API enables a 1341
common, centralized PEP to be implemented to serve the requests of multiple applications. 1342
Although the generic operations may not meet the requirements of every application (e.g., 1343
transactions that perform computations on attribute values), calls from many applications can be 1344
accommodated. This includes operations that generically pertain to consumption, manipulation, 1345
and management of data, and distribution of access rights on data. For example, the “send” 1346
operation of a messaging data service could be implemented through a series of administrative 1347
operations on NGAC data elements and relations, where “inboxes” and “outboxes” are 1348
represented as object attributes. The administrative operations create and assign a message (an 1349
object) to the “outbox” of the sender and the “inbox” of the recipient, where the sender and 1350
recipient have read access rights to objects contained in their respective “outbox” and “inbox”. 1351
The file management data service described in Section 4 is another example of a data service that 1352
supports application specific operations for creating and managing files and folders implemented 1353
though NGAC generic operations. Still others could include operations in support of workflow, 1354
calendar, record management, and time and attendance. 1355

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 33

XACML does not envisage the design of a PEP that is data service agnostic. In other words, a 1356
PEP under the XACML architecture is tightly coupled to a specific operating environment for 1357
which it was designed to enforce access. However, based on the deployment feature described 1358
above, it is possible for the NGAC PEP to provide a level of abstraction between application 1359
calls and underlying object types and their associated privileges. 1360

As a consequence of this abstraction capability, NGAC can completely displace the need for an 1361
access control mechanism of an operating environment in that through the same API, set of 1362
operations, access control data elements and relations, and functional components, arbitrary data 1363
services can be delivered to users, and arbitrary, mission-tailored access control policies can be 1364
expressed and enforced over executions of application calls. 1365

5.2 Scope and Type of Policy Support 1366

Access control policy is a broad term that pertains to many types of controls. For purposes of this 1367
report, we subdivide these controls into two broad categories: Discretionary Access Control 1368
(DAC) and Mandatory Access Control (MAC). In addition, we further categorize MAC into two 1369
subcategories, those that support confinement and those that do not. 1370

DAC is an administrative policy that permits system users to allow or disallow other users’ 1371
access to resources/objects under their control. The means of restricting access to objects is often 1372
based on the identities of users and/or the attributes to which they are assigned. The controls are 1373
discretionary in the sense that a user with access to a resource is capable of passing that access 1374
on to other users without the intercession of a system administrator [15]. Although XACML can 1375
theoretically implement DAC policies, it is not efficient. Consider the propagation feature of 1376
DAC. DAC permits owners/creators of objects to grant some or all of their capabilities to other 1377
users, and the grantees can further propagate those capabilities on to other users. The overall 1378
DAC feature to grant privileges to another user and the ability of the grantee to propagate those 1379
privileges cannot be supported in XACML syntax using “Access Policies” alone. XACML is 1380
geared for specifying global access policies in terms of attributes. Since the only user attribute 1381
designator is “access-subject”, there is no predefined attribute category to denote the 1382
owner/creator of an object. 1383

Therefore, all the capabilities of the owner/creator of an object together with administrative 1384
capabilities to grant those privileges have to be specified using a Trusted Administrative policy. 1385
The capabilities held by owner/creator can be captured by designating the owner/creator of the 1386
object as the “access-subject”, and the administrative capability to grant privileges to others can 1387
be captured by designating the owner/creator as a delegate in that policy type. The creation of 1388
this trusted administrative policy, in turn, enables creation of derived administrative policies with 1389
the owner/creator as the policy issuer with the specified set of capabilities. Further, the 1390
specification of a “delegate” in this derived administrative policy (labeled NOT TRUSTED) 1391
provides a means for the owner/creator to grant capabilities to other users, as well as the ability 1392
for the grantee to propagate those capabilities to other users. However, while it is theoretically 1393
possible to implement DAC by leveraging XACML’s delegation feature, this approach involves 1394
significant administrative overhead. The solution requires the specification of a trusted 1395
administrative policy and a set of derived administrative policies for every object owner/creator, 1396
and for all grantees of the capabilities. 1397

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 34

NGAC offers a flexible means of providing users with administrative capabilities to include 1398
those necessary for the implementation of different flavors of DAC. As shown by the execution 1399
of the administrative routine “create-file-mgmt-user(user-id, user-name, user-home)” in Section 1400
4.5, user u1 (Bob) is created and given “File Management” data service capabilities. These 1401
capabilities include being able to create objects and assign them to his home, and consequently, 1402
having read/write access to those objects. In addition, Bob is given ownership and control 1403
capabilities over objects in his home (i.e., Bob can grant other users (e.g., Alice) read/write 1404
access to any object in his home). Because Alice is also a “File Management” user, Alice could 1405
create a copy of the object, place it in her home, and grant other users access to her copy. 1406

In contrast to DAC, MAC enables ordinary users’ capabilities to execute resource operations on 1407
resource objects, but not administrative capabilities that may influence those capabilities. MAC 1408
policies unavoidably impose rules on users in performing operations on resource objects. 1409

Expression of MAC policies is perhaps XACML’s strongest suit. XACML can specify rules in 1410
terms of attribute values that can be of varying types, such as strings and integers. There are 1411
undoubtedly certain policies that are expressible in terms of these rules that cannot be easily 1412
accommodated by NGAC. For example, a financial transaction may pertain to adding a person’s 1413
credit limit to their account balance. XACML also takes into consideration environmental 1414
attributes in expressing policies, and NGAC does not directly support such policies. These 1415
environmental-driven policies are dynamic in nature in that the authorization state can change 1416
without the involvement of any administrative action. For instance, the threat level can change 1417
from “Low” to “High”. XACML also includes the notion of an obligation that directs a PEP to 1418
take an action prior to or after an access request is approved or denied. XACML obligation can 1419
complement and refine MAC policies in a number of ways. While NGAC also uses the term 1420
obligation, an NGAC obligation refers to a different policy construct. 1421

MAC policies are often dependent on and include administrative policies. This is especially true 1422
in a federated or collaborative environment, where governance policies require different 1423
organizational entities to have different responsibilities for administering different aspects of 1424
policies and their dependent attributes. It is also often desirable to be able to express policies that 1425
prevent combinations of resource capabilities and administrative capabilities—for example, a 1426
policy that would prevent an administrator from granting him/herself access to sensitive 1427
resources. XACML is ill suited to naturally express such policies. Consider the MAC policy 1428
depicted by Figure 5a. Although XACML can certainly express and enforce this policy, it cannot 1429
easily express policies as to who can assign users to the various groups (attributes), while NGAC 1430
can. NGAC can create administrative attributes and provide users with administrative 1431
capabilities down to the granularity of a single configuration element. Furthermore, NGAC can 1432
deny administrative capabilities down to the same granularity. 1433

Although XACML has been shown to be capable of expressing aspects of standard RBAC [1] 1434
through an XACML profile [16], the profile falls short of demonstrating support for dynamic 1435
separation of duty, a key feature used for accommodating the principle of least privilege, and 1436
separation of duty, a key feature for combatting fraud. Annex B of Draft standard Next 1437
Generation Access Control – Generic Operations and Data Structures (NGAC-GOADS) [20] 1438
demonstrates NGAC support for all aspects of the RBAC standard. The appendix also 1439

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 35

demonstrates support for the Chinese wall policy [4], which cannot be entirely accommodated by 1440
XACML. 1441

NGAC has shown support for history-based separation of duty [7]. Simon and Zurko, in their 1442
seminal paper on separation of duty [19], describe history-based separation of duty as the most 1443
accommodating form of separation of duty, subsuming the policy objectives of other forms. 1444
Other history-based policies that can be accommodated by NGAC include two-person control, 1445
workflow, and conflict-of-interest. 1446

Despite the use of attributes, the policies discussed thus far have resulted in a user-based 1447
authorization state. In other words, the policies and attributes together constitute an authorization 1448
state of the form {(u, ar, o)}, where user u is authorized to access object o under the access right 1449
ar. Such policies ignore the fact that processes, not users, actually access object content. In 1450
general, user-based authorization controls (whether MAC or DAC) share a weakness: their 1451
inability to prevent the “leakage” of data to unauthorized principals through malware, or 1452
malicious or complacent user actions. 1453

To illustrate this weakness, assume the following authorization state {(u1, r, o1), (u1, w, o2), and 1454
(u2, r, o2)}. Note that it is impossible to determine if u2 can read the content of o1. Under one 1455
scenario, u1 can read and subsequently write the contents of o1 to o2. Even if policy depended 1456
on “trust in users”, we must all but assume the existence of a Trojan horse that can easily thwart 1457
policy. This threat exists because, in reality, users do not perform operations on objects, but 1458
under a user’s capabilities, processes perform operations (actions) on the content of objects 1459
(resources). Therefore, a program executed by u1 can read the contents of o1 and, without u1’s 1460
further action or knowledge, write that content to o2. Note that one cannot prevent this leakage 1461
even with the addition of a user-based deny condition or relation NOT (u2, r, o1). The 1462
importance of preventing inappropriate leakage of data (often called confinement) was 1463
recognized as early as the 1970s, with the establishment of the Bell and LaPadula security model 1464
[3] and the specific MAC policy defined in Trusted Computer Security Evaluation Criteria 1465
(TCSEC) [5]. 1466

Because XACML does not allow the specification and enforcement of policies that pertain to 1467
processes in isolation of their users, it excludes or imposes undue constraints on users in regard 1468
to MAC confinement policies. Another drawback of XACML is that its PDP is stateless, which 1469
places limitations on the policies that can be specified and enforced. Although XACML includes 1470
the concept of an obligation, it is not used to alter authorization state. 1471

Consider the following XACML TCSEC MAC policy specification: 1472

<Policy PolicyId = “Policy 3” rule-combining-algorithm=”only-one-applicable”> 1473
 // TCSEC MAC Policy Specification // 1474
 <Target> /* Policy applies to all subjects with clearance levels – Top-Secret, Secret, or 1475
 Unclassified and resources with classification levels – Top-Secret, Secret, or 1476
 Unclassified for both “read” and “write” actions */ 1477
 /* :Attribute-Category : Attribute ID : Attribute Value */ 1478
 :access-subject :Clearance :Top-Secret 1479
 :access-subject :Clearance :Secret 1480

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 36

 :access-subject :Clearance :Unclassified 1481
 :resource :Classification :Top-Secret 1482
 :resource :Classification :Secret 1483
 :resource :Classification :Unclassified 1484
 :action :action-id :read 1485
 :action :action-id :write 1486
 </Target> 1487
 1488
 /* Rule 1 and Rule 2 apply to permissible and non-permissible “reads” */ 1489
 <Rule RuleId = “Rule 1” Effect=”Permit”> 1490
 <Target> 1491
 /* :Attribute-Category : Attribute ID :Attribute Value */ 1492
 :action :action-id :read 1493
 </Target> 1494
 <Condition> 1495

 Function: string-greater-or-equal 1496
 /* :Attribute-Category :Attribute ID 1497
 :access-subject :Clearance 1498
 :resource :Classification 1499
 </Condition> 1500
 </Rule> 1501
 <Rule RuleId = “Rule 2” Effect=”Deny”> 1502
 <Target> 1503
 /* :Attribute-Category :Attribute ID : Attribute Value */ 1504
 :action :action-id :read 1505
 </Target> 1506
 <Condition> 1507

 Function: string-less 1508
 /* :Attribute-Category : Attribute ID 1509
 :access-subject :Clearance 1510
 :resource :Classification 1511
 </Condition> 1512
 </Rule> 1513
 1514
 /* Rule 3 & Rule 4 apply to permissible and non-permissible “writes” */ 1515
 <Rule RuleId = “Rule 3” Effect=”Permit”> 1516
 <Target> 1517
 /* :Attribute-Category : Attribute ID : Attribute Value */ 1518
 :action :action-id :write 1519
 </Target> 1520
 <Condition> 1521

 Function: string-less-or-equal 1522
 /* :Attribute-Category : Attribute ID 1523
 :access-subject :Clearance 1524
 :resource :Classification 1525
 </Condition> 1526

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 37

 </Rule> 1527
 <Rule RuleId = “Rule 4” Effect=”Deny”> 1528
 <Target> 1529
 /* :Attribute-Category : Attribute ID : Attribute Value */ 1530
 :action :action-id :write 1531
 </Target> 1532
 <Condition> 1533

 Function: string-greater 1534
 /* :Attribute-Category : Attribute ID 1535
 :access-subject :Clearance 1536
 :resource :Classification 1537
 </Condition> 1538
 </Rule> 1539
 </Policy> 1540
 1541

Assuming that a user was assigned to Top Secret, Secret, or Unclassified, Policy3 would indeed 1542
enforce the TCSEC MAC policy, but would prevent a user from ever writing to a resource below 1543
the user’s clearance level. 1544

Now consider NGAC’s specification of the same MAC policy, shown in Figure 9, where we 1545
assume users (not shown) are directly assigned to Top Secret or Secret (on the right side) and 1546
objects are directly assigned to Top Secret or Secret (on the left side). 1547

 1548

Figure 9: NGAC's Partial Expression of TCSEC MAC 1549

The assignments and associations of the graph specify Top Secret users can read and write Secret 1550
and Top Secret objects, and Secret users can read Secret objects and write to Secret and Top 1551
Secret objects. Note that the assignments and associations alone do not prevent the leakage of 1552
data of a higher classification to a lower classification. With the following two obligations, 1553
NGAC can prevent illicit leakage of data, while allowing the user the full set of capabilities 1554
permitted by the assignments and associations. In other words, a user could read Top Secret data 1555
and write to Secret data in the same session, but through two different processes. 1556

(1) when process p reads o→+TopSecret do create p-deny(p, {w},¬Top Secret); 1557
(2) when process p reads o→+Secret do create p-deny(p, {w}, ¬Secret-Top Secret). 1558

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 38

The first obligation specifies: when a process reads an object contained in Top Secret, deny the 1559
process from writing to any object outside the Top Secret (object attribute) container. Similarly, 1560
the second obligation specifies: when a process reads an object contained in the Secret-Top 1561
Secret container, deny the process from writing to any object outside the Secret-Top Secret 1562
container. 1563

Without support for confinement, XACML is arguably incapable of enforcement of a wide 1564
variety of policies. These confinement-dependent policies include some instances of RBAC, e.g., 1565
“only doctors can read medical records”, ORCON and Privacy [10], e.g., “I know who can 1566
currently read my data or personal information”, or conflict of interest [4], e.g., “a user with 1567
knowledge of information within one dataset cannot read information in another dataset”. 1568
Through imposing process level controls in conjunction with obligations, NGAC has shown [7] 1569
support for these and other confinement-dependent MAC controls. 1570

Although XACML and NGAC have the ability to combine policies, their motivations are 1571
different. XACML’s motivation is to resolve conflicts. That is, policies and rules may have 1572
different Effects (Permit or Deny), which must be resolved during evaluation by selectively 1573
applying one of several combining algorithms. NGAC’s motivation is to ensure the adherence of 1574
combinations of multiple policies when computing a decision (e.g., DAC and RBAC). 1575

5.3 Operational Efficiency 1576

While XACML and NGAC are similar in that they selectively identify and evaluate policies and 1577
conditions that pertain to a request, they differ significantly in their approach. An XACML 1578
request is a collection of attribute name-value pairs for the subject (user), action, resource, and 1579
environment that must be translated to an XACML canonical form for PDP consumption. 1580
XACML identifies applicable policies and rules within policies by matching attributes to 1581
Targets. The entire process involves collecting attributes and matching Target conditions over all 1582
policies (trusted and untrusted access policies) and all rules in applicable policies, issuing 1583
administrative requests (for determining a chain of trust for applicable untrusted access policies). 1584
If the attributes are not sufficient for the evaluation of an applicable policy or rule, the PDP may 1585
search for additional attributes. The access process involves searching at least two data stores 1586
(PIP and PRP). The PDP evaluates each applicable rule in a policy and applies a combining 1587
algorithm in rendering a policy level decision. The process continues over all applicable policies 1588
and renders an ultimate decision by applying a combining algorithm over the evaluation results 1589
of the policies. The PDP response is converted from its canonical form back to the native form. 1590

NGAC is inherently more operationally efficient. In response to an access request, a decision is 1591
computed using access control data stored in one database. NGAC identifies relevant policies 1592
and attributes directly through assignment relations. Like XACML, NGAC combines policies. 1593
However, unlike XACML, it does not compute and then combine multiple local decisions, but 1594
rather takes multiple policies into consideration when determining the existence of an 1595
appropriate privilege. If such a privilege does exist and no exceptions (prohibitions) exist, the 1596
request is granted, otherwise it is denied. Like policies and attributes, prohibitions are found 1597
through relations and not search. NGAC does not include a context handler for converting 1598
requests and decisions to and from its canonical form or for retrieving attributes. Although 1599

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 39

considered a component of its access control process, obligations do not come into play until 1600
after a decision has been rendered and data has been successfully altered or consumed. 1601

5.4 Attribute and Policy Management 1602

XACML and NGAC both offer a delegation mechanism in support of decentralized 1603
administration of access policies. Both allow an authority (delegator) to delegate all or parts of 1604
its own authority or someone else's authority to another user (delegate). Unlike NGAC, 1605
XACML’s delegation method is a partial solution. It is dependent on trusted and untrusted 1606
policies, where trusted policies are assumed valid, and their origin is established outside the 1607
delegation model. XACML enables policy statements to be written by multiple writers. Although 1608
XACML facilitates the independent writing, collection, and combination of policy components, 1609
XACML does not describe any normative way to coordinate the creation and modification of 1610
policy components among these writers. NGAC enables a systematic approach to the creation of 1611
administrative responsibilities. The approach begins with a single administrator that can create 1612
and delegate administrative capabilities to include further delegation authority to intermediate 1613
administrators. The process ends with users with data service, policy, and attribute management 1614
capabilities. 1615

Although one could imagine a means of administering attributes through the use of XACML 1616
policies, in practice the creation of attribute values and subject and resource assignments to those 1617
attributes is typically performed in different venues without any notion of coordination or 1618
governance. 1619

Because XACML is implemented in XML, it inherits XML’s benefits and drawbacks. The 1620
flexibility and expressiveness of XACML, while powerful, make the specification of policy 1621
complex and verbose [12]. Applying XACML in a heterogeneous environment requires fully 1622
specified data type and function definitions that produce a lengthy textual document, even if the 1623
actual policy rules are trivial. In general, platform-independent policies expressed in an abstract 1624
language are difficult to create and maintain by resource administrators [14]. Unlike XACML, 1625
NGAC is a relations-based standard, which avoids the syntactic and semantic complexity in 1626
defining an abstract language for expressing platform-independent policies [12]. NGAC policies 1627
are expressed in terms of configuration elements that are maintained at a centralized point and 1628
typically rendered and manipulated graphically. For example, to describe hierarchical relations 1629
between attributes, NGAC requires only the addition of links representing assignment relations 1630
between them; in XACML, relations need to be inserted in precise syntactic order. 1631

NGAC’s ability to express policies graphically aids in the management of policy expressions; 1632
administrators can “see” how the managed attributes are related to each other, as well as the 1633
policies under which the attributes are covered. 1634

XACML does not allow policies to be modified by ordinary users. NGAC manages its access 1635
control data (policies and attributes) through a standard set of administrative operations, applying 1636
the same PEP interface and decision making function it uses for accessing its objects (resources). 1637
In other words, NGAC does not make a distinction between ordinary users and administrators; 1638
users possess varying flavors of capabilities to access resource objects and access control data 1639
objects. On one extreme a user may have only capabilities for administering a mandatory policy, 1640

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 40

and denied the ability to provision their access to resources governed by that policy. On the other 1641
extreme users may have total control over their own data and be responsible for setting up their 1642
own policies. Examples of the latter extreme include social networking, messaging, and calendar 1643
application capabilities. 1644

XACML’s ability to specify policies as conditions provides policy expression efficiency. 1645
Consider the NGAC expression, shown in Figure 7, of the equivalent XACML Policy1 specified 1646
in Section 3.4. NGAC expresses the policy using five association relations, while XACML uses 1647
just three rules. Note that as the number of Wards that are considered by the policy increases, so 1648
will the number of NGAC association relations, but the number of XACML rules will always 1649
remain the same. Recognize that for this policy, the number of attribute assignments is the same 1650
for XACML and NGAC. On the other hand, for some policies, the number of XACML attribute 1651
assignments can far exceed those necessary for an NGAC equivalent policy. Consider the 1652
TCSEC MAC Policy expressed using XACML rules and NGAC relations specified in Section 1653
5.2. Note that under the NGAC configuration there is no need to directly specify policy or 1654
attributes regarding uncleared users or unclassified objects. More significantly, NGAC requires 1655
far fewer attribute assignments. For the XACML TCSEC MAC policy to work, all resources are 1656
required to be assigned to Unclassified, Secret, or Top Secret attributes. For the NGAC TCSEC 1657
MAC policy to work, only objects that are actually classified are required to be assigned to 1658
Secret or Top Secret attributes. 1659

5.5 Administrative Review and Resource Discovery 1660

A desired feature of access controls is review of capabilities of a user/subject and access control 1661
entries of an object/resource [15], [11]. This feature is also referred to as “before the fact audit” 1662
and resource discovery. “Before the fact audit” has been suggested by some as one of RBAC’s 1663
most prominent features [18], and includes being able to review the capabilities of a user or the 1664
consequences of assigning a user to a role. It also includes the capability for a user to discover or 1665
see accessible resources. Being able to review the access control entries of an object/resource is 1666
equally important. Who are the users/subjects that can access this object/resource and what are 1667
the consequences of assigning an object/resource to an attribute or deleting an assignment? 1668

NGAC supports efficient algorithms for both per-user and per-object review. Per-object review 1669
of access control entries (u, op), where u is a user and op is an operation, is clearly not as 1670
efficient as a pure access control list (ACL) mechanism, and per-user review of capabilities (op, 1671
o), where op is an operation and o is an object, is not as efficient as that of RBAC. However, this 1672
is due to NGAC’s consideration of conducting review in a multiple policy class environment. 1673
NGAC can efficiently support both per-object and per-user reviews of combined policies, where 1674
RBAC and ACL mechanisms can do only one type of review efficiently. Rule-based 1675
mechanisms, such as XACML, although able to combine policies, cannot do either efficiently 1676
[7]. This is because determining an authorization for a subject to perform an action on a resource 1677
can only be determined by issuing a request. In other words, there exists no method of 1678
determining the authorization state without testing all possible decision outcomes. 1679

 1680

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 41

Appendix A—Acronyms 1681

Selected acronyms and abbreviations used in this document are defined below. 1682

ABAC Attribute Based Access Control
ACL Access Control List
ANSI/INCITS American National Standards Institute/International Committee for

Information Technology Standards
API Application Programming Interface
DAC Discretionary Access Control
EPP Event Processing Point
FISMA Federal Information Security Modernization Act
IR Interagency Report
IT Information Technology
ITL Information Technology Laboratory
MAC Mandatory Access Control
NGAC Next Generation Access Control
NGAC-FA Next Generation Access Control Functional Architecture
NGAC-GOADS Next Generation Access Control Generic Operations and Abstract Data

Structures
NIST National Institute of Standards and Technology
OASIS Organization for the Advancement of Structured Information Standards
OMB Office of Management and Budget
ORCON Originator Controlled
PAP Policy Administration Point
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point
PM Policy Machine
PRP Policy Retrieval Point
RAP Resource Access Point
RBAC Role-Based Access Control
RS Resource Server
SAML Security Assertion Markup Language
SOA Service Oriented Architecture
SP Special Publication
TCSEC Trusted Computer Security Evaluation Criteria
XACML Extensible Access Control Markup Language
XML Extensible Markup Language
 1683

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 42

Appendix B—References 1684

[1] Information technology – Role-Based Access Control (RBAC), INCITS 359-2004,
American National Standard for Information Technology, American National
Standards Institute, 2004.

[2] Information technology - Next Generation Access Control - Functional Architecture
(NGAC-FA), INCITS 499-2013, American National Standard for Information
Technology, American National Standards Institute, March 2013.

[3] D. Bell and L. La Padula. Secure computer systems: unified exposition and
MULTICS. Report ESD-TR-75-306, The MITRE Corporation, Bedford,
Massachusetts, March 1976.

[4] D.F.C. Brewer and M.J. Nash, “The Chinese Wall Security Policy,” 1989 IEEE
Symposium on Security and Privacy, Oakland, California, USA, May 1-3, 1989, pp.
206-214. http://dx.doi.org/10.1109/SECPRI.1989.36295 [accessed 11/15/15]

[5] DoD Computer Security Center, Trusted Computer System Evaluation Criteria
(December 1985).

[6] D.F. Ferraiolo, S.I. Gavrila, V.C. Hu, and D.R. Kuhn, “Composing and Combining
Policies Under the Policy Machine,” Tenth ACM Symposium on Access Control
Models and Technologies (SACMAT ‘05), Stockholm, Sweden, 2005, pp. 11-20.
http://dx.doi.org/10.1145/1063979.1063982 [accessed 11/15/15] or
https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf [accessed 11/15/15]

[7] D.F. Ferraiolo, V. Atluria, and S.I. Gavrila, “The Policy Machine: A Novel
Architecture and Framework for Access Control Policy Specification and
Enforcement,” Journal of Systems Architecture, vol. 57, no. 4, pp. 412-424, April
2011. http://dx.doi.org/10.1016/j.sysarc.2010.04.005 [accessed 11/15/15]

[8] D. Ferraiolo, S. Gavrila, and W. Jansen, National Institute of Standards and
Technology (NIST) Internal Report (IR) 7987 Revision 1, “Policy Machine:
Features, Architecture, and Specification,” October 2015.
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7987r1.pdf [accessed 11/15/15]

[9] D. Ferraiolo, S. Gavrila, and W. Jansen, “On the Unification of Access Control and
Data Services,” in Proceedings of the IEEE 15th International Conference of
Information Reuse and Integration, 2014, pp. 450 – 457.
http://csrc.nist.gov/pm/documents/ir2014_ferraiolo_final.pdf [accessed 11/15/15]

[10] R. Graubart, On the need for a third form of access control, in: Proceedings of the
National Computer Security Conference, 1989, pp. 296 –304.

http://dx.doi.org/10.1109/SECPRI.1989.36295
http://dx.doi.org/10.1145/1063979.1063982
https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7987r1.pdf
http://csrc.nist.gov/pm/documents/ir2014_ferraiolo_final.pdf

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 43

[11] V.C. Hu, D.F. Ferraiolo, and D.R. Kuhn, National Institute of Standards and
Technology (NIST) Interagency Report (IR) 7316, “Assessment of Access Control
Systems,” September 2006. http://csrc.nist.gov/publications/nistir/7316/NISTIR-
7316.pdf [accessed 11/15/15]

[12] V. C. Hu, D.F. Ferraiolo, and K. Scarfone, Access Control Policy Combinations for
the Grid Using the Policy Machine, Cluster Computing and the Grid, 2007, pp. 225-
232.

[13] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K.
Scarfone, National Institute of Standards and Technology (NIST) Special Publication
(SP) 800-162, Guide to Attribute Based Access Control (ABAC) Definition and
Considerations, January 2014.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf [accessed
11/15/15]

[14] M. Lorch et al, “First Experience Using XACML for Access Control in Distributed
Systems, ACM Workshop on XML Security, Fairfax, Virginia, 2003.

[15] A Guide to Understanding Discretionary Access Control in Trusted Systems, NCSC-
TG-003, Version-1, National Computer Security Center, Fort George G. Meade,
Maryland, USA, September 30, 1987, 29 pp.
http://csrc.nist.gov/publications/secpubs/rainbow/tg003.txt [accessed 11/15/15]

[16] XACML Profile for Role Based Access Control (RBAC), Committee Draft 01,
February 2004.

[17] The eXtensible Access Control Markup Language (XACML), Version 3.0, OASIS
Standard, January 22, 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-os-en.pdf [accessed 11/15/15]

[18] 2010 Economic Analysis of Role-Based Access Control, RTI Number 0211876,
Research Triangle Institute, December 2010.

[19] R. Simon, M. Zurko, Separation of duty in role based access control environments,
in: Proc. of the New Security Paradigms Workshop, 1997.

[20] Information technology – Next Generation Access Control – Generic Operations and
Data Structures, INCITS 526, American National Standard for Information
Technology, American National Standards Institute, to be published.

 1685

http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
http://csrc.nist.gov/publications/secpubs/rainbow/tg003.txt
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 44

Appendix C—XACML 3.0 Encoding of Medical Records Access Policy 1686

/* This policy pertains to Medical Record (Read or Write) Access by users with role “Doctor” or 1687
“Intern”. Rule 1 denies access if the WardAssignment of the doctor or intern does not match the 1688
WardLocation of the patient. Rule 2 denies write access to intern unconditionally. Rule 3 permits 1689
access if the subject is a doctor and the PatientStatus is Critical without any other conditions. */ 1690

<Policy PolicyId=”Medical-Record-Access-by-Doctors-and-Interns” 1691
 RuleCombiningAlgId = “permit-overrides”> 1692
 1693
<Target> /* Policy Target covers all subjects with Doctor or Intern role, resources with medical-1694
records as Resource-id, and actions either read or write */ 1695
 1696
 <AnyOf> 1697
 <AllOf> /* Specifying the subject match – subjects with role-id equal to Doctor or Intern */ 1698
 <Match MatchId="string-equal"> /* Subject role = Doctor */ 1699
 <AttributeValue> Doctor </AttributeValue> 1700
 <AttributeDesignator Category=”access-subject” AttributeId=”role-id”/> 1701
 </Match> 1702
 <AllOf> 1703
 <AllOf> /* Specifying the subject match – subjects with role-id equal to Doctor */ 1704
 <Match MatchId="string-equal"> /* Subject role = Intern */ 1705
 <AttributeValue> Intern </AttributeValue> 1706
 <AttributeDesignator Category=”access-subject” AttributeId=”role-id”/> 1707
 </Match> 1708
 <AllOf> 1709
</AnyOf> 1710
 1711
 <AnyOf> 1712
 <AllOf> /* Specifying the resource match – resource with resource-id equal to medical- 1713
 records */ 1714
 <Match MatchId="string-equal"> 1715
 <AttributeValue> medical-records</AttributeValue> 1716
 <AttributeDesignator Category=”resource” AttributeId=”resource-id”/> 1717
 </Match> 1718
 </AllOf> 1719
</AnyOf> 1720
 1721
 <AnyOf> /* Specifying action match – action with either read or write value */ 1722
 <AllOf> /* read action */ 1723
 <Match MatchId="string-equal"> 1724
 <AttributeValue> read</AttributeValue> 1725
 <AttributeDesignator Category=”action” AttributeId=”action-id”/> 1726
 </Match> 1727
 </AllOf> 1728
 <AllOf> /* write action */ 1729
 <Match MatchId="string-equal"> 1730

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 45

 <AttributeValue> write</AttributeValue> 1731
 <AttributeDesignator Category=”action” AttributeId=”action-id”/> 1732
 </Match> 1733
 </AllOf> 1734
 </AnyOf> 1735
</Target> 1736

<Rule RuleId=”Rule 1” 1737
 Effect=”Deny”> /* denial of access to medical record for all subjects if the patient is not 1738
 in the same ward to which the doctor or intern is assigned */ 1739
 <Condition> 1740
 <Apply FunctionId=”string-not-equal”> 1741
 <Apply FunctionId=”string-one-and-only”> 1742
 <AtributeDesignator Category=”access-subject” AttributeId=”WardAssignment”> 1743
 </Apply> 1744
 <Apply FunctionId=”string-one-and-only”> 1745
 <AtributeSelector Category=”resource” 1746
 Path=”medical-records/patient/WardLocation/text()”/> 1747
 </Apply> 1748
 </Condition> 1749
 </Rule> 1750
 1751
 <Rule RuleId=”Rule 2” 1752
 Effect=”Deny”> /* unconditional denial of write access to Interns */ 1753
 <Condition> 1754
 <Apply FunctionId=”string-equal”> 1755
 <Apply FunctionId=”string-one-and-only”> 1756
 <AttributeValue> Intern</AttributeValue> 1757
 <AttributeDesignator Category=”access-subject” AttributeId=”role-id”/> 1758
 </Apply> 1759
 <Apply FunctionId=”string-one-and-only”> 1760
 <AttributeValue> write</AttributeValue> 1761
 <AtributeDesignator Category=”action” AttributeId=”action-id”> 1762
 </Apply> 1763
 </Condition> 1764
 </Rule> 1765
 1766
 <Rule RuleId=”Rule 3” 1767
 Effect=”Permit”> /* unconditional access to medical records for doctor if the patient status 1768
 is critical irrespective of the location of the patient */ 1769
 <Condition> 1770
 <Apply FunctionId=”and”> /* combines subject role value and patient status value */ 1771
 1772
 <Apply FunctionId=”string-one-and-only”> /* retrieves the subject role */ 1773
 <AttributeValue> doctor</AttributeValue> 1774
 <AttributeDesignator Category=”access-subject” AttributeId=”role-id”/> 1775
 </Apply> 1776

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 46

 1777
 <Apply FunctionId=”string-equal”> /* looks for medical records where patient 1778
 status is critical */ 1779
 <Apply FunctionId=”string-one-and-only”> 1780
 <AttributeSelector Category=”resource” 1781
 Path=”medical-records/patient/PatientStatus/text()”/> 1782
 </Apply> 1783
 <AttributeValue>Critical</AttributeValue> 1784
 </Apply> 1785
 </Apply> 1786
 </Condition> 1787
 </Rule> 1788
</Policy> 1789
 1790

	Executive Summary
	1 Introduction
	1.1 Purpose and Scope
	1.2 Audience
	1.3 Document Structure

	2 Background
	2.1 XACML
	2.2 NGAC
	2.3 Comparison of XACML and NGAC’s Origins

	3 XACML Specification
	3.1 Attributes and Policies
	3.2 Combining Algorithms
	3.3 Obligation and Advice Expressions
	3.4 Example Policies
	3.5 XACML Access Request
	3.6 Delegation
	3.7 XACML Reference Architecture

	4 NGAC Specification
	4.1 Basic Policy and Attribute Elements
	4.2 Relations
	4.2.1 Assignments and Associations
	4.2.2 Derived Privileges
	4.2.3 Prohibitions (Denies)
	4.2.4 Obligations

	4.3 NGAC Decision Function
	4.4 Administrative Considerations
	4.4.1 Administrative Associations
	4.4.2 Delegation
	4.4.3 NGAC Administrative Commands and Routines

	4.5 Arbitrary Data Service Operations and Policies
	4.6 NGAC Functional Architecture

	5 Analysis
	5.1 Separation of Access Control Functionality from Proprietary Operating Environments
	5.2 Scope and Type of Policy Support
	5.3 Operational Efficiency
	5.4 Attribute and Policy Management
	5.5 Administrative Review and Resource Discovery
	Appendix A— Acronyms
	Appendix B— References
	Appendix C— XACML 3.0 Encoding of Medical Records Access Policy

