

Stateful Hash-Based Signatures
Public Comments on Draft SP 800-208

(February 28, 2020 deadline)

Karsten Klein..- 2 -
AMD ...- 3 -

Andreas Huelsing...- 7 -
Thales DIS..- 9 -

ETSI TC CYBER WG QSC ...- 11 -
NSA's Center for Cybersecurity Standards...- 21 -

Crypto4A...- 22 -
Marc Stöttinger ..- 27 -

Stefan-Lukas Gazdag...- 29 -
Canadian Centre for Cyber Security ...- 31 -

Panos Kampanakis...- 32 -
Google...- 34 -

Karsten Klein

From: Karsten Klein
Date: Wednesday, January 15,2020, at 3:19pm

Hi there,

Concerning - Draft NIST SP 800-208.

I just finished a first read (I've extracted some items for further follow up) and have a general and a minor
comment:

Line 486 - With respect to how approved parameter sets are specified and footnote 3 in particular:
In general, an overview of all schemes (approved by NIST and existing in the referenced materials) with
an outcome (approved, approved with restrictions, not approved, not in scope) and a reasoning
(inefficient, ineffective, less secure due to...) could be used to avoid confusion of which parameter sets are
approved and which are not. This would also allow to unify the naming scheme and map the parameter
set naming used in the referenced RFCs (as it appears to be not homogeneous).
Eventually, this allows to omit the footnote. It really confused me, as it mixes scheme and parameter set
level)

In short: please consider how not approved and approved parameter sets are represented to avoid
confusion.

Line 502 - Numeric Identifier of XMSS-SHA2_20_256:
The Numeric Identifier for XMSS-SHA2_20_256 is 0x00000003 instead of 0x00000002; see RFC 8391 -
Table 7.

Best regards,
Karsten Klein

- 2 -

AMD

From: Don Matthews
Date: Thursday, January 23, 2020 at 4:39pm

NIST SP 800-208 Draft Review Comments
General Comments
This is a summary of requested modification found by reviewers from AMD.

Commonality of Parameter Sets for Both Algorithms
LMS and XMSS are similar algorithms that as defined in their respective RFCs contain different
parameter sets. We believe that there is some benefit to unifying the LMS and XMSS parameter sets as
much as possible. The specific parameters are: W value, tree height, and hierarchical definition (HSS
and XMSSMT).

• For the W value, LMS support 1, 2, 4, and 8 where XMSS only supports 16 (equivalent to LMS
w=4). We would expect that most devices would use 1, 2, or 4 trading off key size for
performance, while 8 would be used for interface constrained devices with a subsequent drop in
performance.

• For tree height, LMS supports 5, 10, 15, 20, and 25 while XMSS supports 10, 16, and 20. XMSSMT

has support for a height 5 tree along with heights of 10 and 20.
• For the hierarchical versions, XMSSMT has a complete parameter set with a variety of options but

HSS has no parameter set associated with it and therefore, leaves the use up to an individual
creator’s definition.

We expected that NIST would use the two IETF standards and create similar parameter sets for both. As
an example, having both LMS and XMSS support tree heights of 5, 10, and 20.

By creating a common set of parameters, NIST can allow the implementors to choose an algorithm
based on their analysis of implementation rather than choosing an algorithm that has parameters that
best fits their requirements.

It is understood that any changes to the parameter sets may create additional work over what would be
required to meet the IETF standard. Although, most implementations should be written such that new
parameter sets should work with existing code for algorithm implementation. An LMS implementation
should allow for heights of 5, 10, and 20. An XMSS + XMSSMT algorithm also should allow for heights of
5, 10, and 20. Therefore, a common parameter set that allowed for heights of 5, 10, 20 for both LMS
and XMSS would be possible.

Distributed Multi-Tree Hash-Based Signatures
We like this proposal that helps to alleviate concerns about system issues for solutions that require
longevity of key signing capabilities.

Concerns

- 3 -

• Large number of cryptographic modules are required if each tree from level 0 and level
1 is a different module

o The smallest LMS and XMSSMT solution has a top-level tree of height 5
• would require 33 cryptographic modules

o The cryptographic module associated with the top level is a single point of
failure.

• Recommendations below make It possible for the signature system to still
be functional even with the loss of the cryptographic module associated
with the top level.

Recommendations

• Suggested changes to limit the number of cryptographic modules
o Allow the top level to be based on LMS or XMSS with a height of 2, 3, or 4 and

the lower levels to be based on 4, 8, or 16 (respectively) cryptographic.
o Allow for the second layer to be implemented with LMS, HSS, XMSS, or XMSSMT

algorithms.
• helps alleviate any concern about the total number of signatures that can

be performed with a low height (height <= 5) top level tree.
o Create a new system with associated parameters.

• It would require parameters for the top level (LMS or XMSS with low
height) plus parameters for the lower level (LMS, HSS, XMSS, XMSSMT)
and parameters for the OTS (LM-OTS, WOTS+).

• Full parametrization of the complete system could get into long names.
• Suggested change to allow for loss of the cryptographic module associated with the top

level
o Have the signature of each lower level tree stored with the public key of the

lower level tree.
• Top level cryptographic module is only required for initial set up of sub

level cryptographic modules allowing for the cryptographic module to be
decommissioned.

o Since the top-level module is only used at system initialization it prevents glitch
attacks against the top level (as discussed in section 8).

FIPS Requirement
NIST has defined a process for algorithm validation (CAVP) and module validation (CMVP). SP 800-208 is
defining an algorithm that should fall under CAVP but has a mandate that it only runs on a CMVP
validated module.

In the past, FIPS has not posted a certification requirement for the solutions using NIST approved
cryptographic algorithms. Many government contracts require FIPS certification, at different levels, but
individual customers could determine if there was value in having a certified implementation. With the

- 4 -

FIPS certification requirements as specified in line 741-743 in this draft, it mandates FIPS testing on the
processing module to be able to implement these algorithms. This leads to two different concerns

• It is not possible for a company to implement 800-208, even for internal uses, without
getting FIPS validation on their cryptographic module(s) or purchasing a module from an
outside company

• It will lead to confusion over algorithm names. Referencing any of the algorithms (LMS,
HSS, XMSS, XMSSMT) doesn’t indicate if it is compliant with 800-208 since it may only be
compliant with the RFCs

o AES, and other algorithms, are defined by NIST and is always NIST compliant no
matter where used for cryptographic operations

o AES may or may not be CAVP tested

Some of the impetus for approval of Stateful Hash-Based Signatures was that companies may not be
able to wait for the PQC algorithm selection process. Adding a FIPS 140 level 3 requirement for all
implementations of 800-208 (see lines 741-743) could delay companies from using 800-208 as a
solution. This requirement could be especially problematic for any company that has not been involved
with a previous FIPS validation.

Specific items
Line 358 (Figure 1) – Figure 1 is representing both the hash chain but also the signature and verification
operation simultaneously. It may be easier for some to understand if this was broken into two different
figures. The new Figure 1 would consist of (using shorthand):

X -> HASH -> H(X) -> HASH -> H(H(X)) -> HASH -> H(H(H(X))) = pub

The new figure 2 would consist of (using shorthand):

X -> HASH -> H(X) = S S -> HASH -> H(S) -> HASH -> H(H(S)) = pub

|---------------------------| |---|

Signing Operation Verification Operation

Lines 449-450 (related to HSS) – “Shall be used for every LMS tree at that level” –implies that one can
have an HSS signature design that utilized a different LMS parameter set at each level. The only
requirement is that they use the same hash algorithm. Is your intention to allow for that type of design?

Line 491 (and others) – As discussed in the general comment previously, for XMSS, it may make sense to
allow for other W values (1, 2, 4, 8, 32) like what has been provided by LMS. This would allow from
performance/signature size tradeoffs and allow for similar configurations between LMS and XMSS.

LMS & HSS RNG requirements:

If a TRNG is available, should it not be possible to use the TRNG for all private keys? This capability is
prevented in line 561-562 “shall be generated using the pseudorandom key generation method”

If TRNG is not allowed for private key generation (as currently written), then the content in parentheses
should be removed from line 567 “and SEED (if using the pseudorandom key generation method)”

- 5 -

Line 577 – “generated using the pseudorandom key generation” – as with LMS comment above, if a
TRNG is available, this specification prevents it from being used for private key generation.

- 6 -

Andreas Huelsing

From: Andreas Huelsing
Date: Wednesday, January 29 at 10:58am

Dear NIST team,

Thanks for your work. I highly appreciate the current draft of SP 800-208. I only have a few
remarks.

a) As you do define a key generation mechanism, it might be worthwhile to define a
forward-secure one (as for example in the original XMSS paper). XMSS and LMS with
forward-secure key generation lead a forward-secure signature scheme. Forward-security
can add a strong guarantee for old signatures in case of key-compromise and essentially
comes for free in this setting.

b) I understand that there is no decision made about the NIST post-quantum standardization
project. However, if NIST is even considering to keep SPHINCS+ it might be helpful to
synchronize the addressing schemes of XMSS & SPHINCS+ as well as considering the
tree-less WOTS-PK compression. This would allow to treat XMSS as a sub-step of
SPHINCS+, requiring the same code-base. Especially, the code for XMSS signature
verification would be almost a full sub-set of the SPHINCS+ verification code.

c) While I essentially do agree with your accessment of the security proofs there are a few
nits:

- Line 1459: Should say second-preimage resistance.

- On the whole paragraph starting at 1457: Following the analysis in our recent
publication "The SPHINCS+ Signature Framework" we additionally require h_k to be
post-quantum, multi-function, multi-target decisional second preimage resistant.
Alternatively, one needs a statistical assumption about h_k which does not hold for
random functions (see the discussion about the tight security proof for SPHINCS+ on
the PQC mailing list).

- You could mention that LMS and XMSS are (non-tightly) secure in the standard
model if we are willing to assume collision resistance of the used hash function. In
this case, all the bitmasks and the prepended values can be arbitrary bit strings.

d) Regarding parameters: While I do think that limiting the choice of w and the used hash
function is a good idea, I do not see any benefit in limiting the number of options for the
total tree height and the number of layers. All implementations that I have seen are
generic with regard to these values. This allows users to adapt the schemes to their
constraints. What would be necessary in this case is defining upper bounds on both
values.

- 7 -

Best wishes,

Andreas

- 8 -

Thales DIS

From: Aline Gouet
Date: Tuesday, February 18, 2020 at 8:59am

Hello

Please find below comments on NIST draft 800-208 as a contribution of Thales DIS.

Best regards
Aline

Comment 1: In sub-section 1.1, the statement from line 273 to 275 discourages the use of
stateful HBS: “Stateful HBS schemes are only suitable for particular uses, as they require careful
state management. The recommendations are summarized in section 1.2 and described in detail
in [8]”. We believe that stateful HBS schemes can be efficient, secure and useful when some
implementation conditions are met. As the document itself is meant to be a general
recommendation, we would suggest to rephrase the sentence in a more assertive manner, e.g.
highlighting the importance of securely manage the state/counter in the implementation whatever
or independently from the use-case.

Comment 2: In sub-section 1.1, lines 276 to 279, recommendation 2) “the implementation will
have a long lifetime” seems to be different compared with and maybe contradict in some extend
with initial answer from NIST on Gemalto comments: “we are keen to discourage the use of
stateful hash-based signatures except in scenarios where signing is infrequent” (from
https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based-Signatures/documents/stateful-HBS-misuse-resistance-public-
comments-April2019.pdf).
We believe that stateful HBS are suitable for long term, frequent usage, as long as the security
recommendations are taken care of. Could you please clarify NIST’s position on this point?
It would also make sense to add a fourth recommendation: “4) the implementation relies on
hardware cryptographic modules, as described in section 8.1.”

Comment 3: Section 3 on General Discussion describes mainly similarities of LMS and XMSS
(in subsections 3.1, 3.2, 3.3) and only few differences between LMS and XMSS, i.e. mainly in
subsection 3.4 on bitmasks and prefixes. It would be useful for the developer to describe in a
similar way differences in final hashing of the Winternitz scheme and signature structure.

Comment 4: In section 3 on General discussion, there is no guidance on how to select one
signature scheme or the other one based on different criteria, such as for example the total
number of hashing (including the hashes used for bitmask generation) for comparable parameter
sets.

Comment 5: In sections 4 and 5, the parameter sets of LMS and XMSS are described using
original notation from RFC 8554 and RFC 8391. Since the naming for both schemes are not
unified, that would be helpful to inform the reader in Section 3 and highlight some equivalences
or differences in Notation. For example, it might be worth mentioning that in LMS description

- 9 -

https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based-Signatures/documents/stateful-HBS-misuse-resistance-public

is equal to parameter in XMSS. Another example is that has different meanings in XMSS
and in LMS, in LMS corresponds to logarithm of in XMSS.

Comment 6: The approved parameter sets for both LMS and XMSS are described in Section 4
and Section 5. For some parameter sets of XMSS, there are no equivalent parameters for LMS
and vice versa. For example, there are no XMSS parameters for 32 signatures while it is possible
for LMS. We believe that it is important to maintain the possibility to sign 32 messages which is
suitable for implementation on constrained secured elements and it would be good to either
provide similar parameter sets for both schemes or to explain the rationale of not having similar
parameters for both schemes.

Comment 7: The four approved hash functions are defined in the beginning of Section 4 and
Section 5. Since the most time consuming part of the signature is the OTS computation, it might
be beneficial to have the possibility to use a function based on a block-cipher for this part, e.g.
based on NIST SP 108 with PRF = CMAC-AES-256.

Comment 8: In Section 4, Tables 1, 3, 5 and 7, the parameter is indicated. Is there any reason
for mentioning this parameter? We believe that it is used only for specific implementation
described in original proposal, but it is not mandatory for different implementation, therefore it
might be confusing placing it among the structure influencing parameters.

Comment 9: In Section 3, Figure 5, the symbol is used for XOR operation. Maybe, it would be
better to use classical symbol instead.

Comment 10: In section 8, subsection 8.1, it is mentioned that “The cryptographic module shall
update the state of the private key in non-volatile storage before exporting a signature value or
accepting another request to sign a message”. Could you please clarify whether this requirement
also unable the possibility to use external memory to store the encrypted private key. (The
private key would be encrypted by a key of cryptographic module.)

Comment 11: General comment: beyond the algorithm standardization, there is a need to address
the need for a standardized key parameter encoding. This applies not only to state full HBS
schemes, but any new HBS scheme in general. A general recommendation is that
implementations should rely on standardized key encoding techniques, which should be
referenced.

- 10 -

ETSI TC CYBER WG QSC

From: ETSI CyberSupport
Date: Wednesday, February 19, 3:39am

LIAISON STATEMENT
Title: Responses to NIST’s call for comments on

Draft SP 800-208: Recommendation for
Stateful Hash-Based Signature Schemes

Date:

From (source): TC CYBER WG QSC
Contact(s): cybersupport@etsi.org

To: NIST
Copy to:

Response to: NIST’s call for comments on Draft SP 800-208
(if applicable)

Attachments:
(if applicable)

TC CYBER WG QSC – Responses to NIST’s call for comments
on Draft SP 800-208: Recommendation for Stateful Hash-Based
Signature Schemes
This document contains a non-exhaustive collection of comments from ETSI TC CYBER WG QSC on
NIST’s draft Special Publication 800-208: Recommendation for Stateful Hash-Based Signatures
Schemes.

The draft specifies approved profiles for the LMS/HSS and XMSS/XMSS^MT stateful hash-based
signature schemes. This means that it lists parameter sets for the schemes, but it relies on RFC 8391 and
RFC 8554 for detailed descriptions of the algorithms. This is problematic for several reasons:

• Although LMS and XMSS are very similar, the two RFCs use different and sometimes
conflicting notation. The NIST draft keeps the same notation as the RFCs, which will
inevitably cause confusion for readers who are not already familiar with the schemes.
Harmonising the notation is preferable, but not straightforward. One possible, but imperfect,
solution would be to add a section that defines the mappings between notations. An alternative
may be to consider producing two separate documents, one profiling LMS/HSS, and the other
profiling XMSS/XMSS^MT.

- 11 -

mailto:cybersupport@etsi.org

• The RFCs were only intended to describe the schemes “with enough specificity to ensure
interoperability between implementations”. Neither RFC gives a full description of signature
generation. Indeed, RFC 8391 provides example pseudocode for computing the authentication
path for XMSS, but strongly recommends that a different method is used. Further, both the
RFCs, as well as the draft SP, omit discussion on tree management strategies; RFC 8391
mentions it briefly, but general discussion is omitted. While algorithms such as the
Buchmann-Dahmen-Schneider (BDS) algorithm are not required for interoperability, some
mention of them may be beneficial for prospective implementors.

• There are some places where the RFCs are ambiguous. For example: when RFC 8554 refers to
the LM-OTS or LMS public key it is not always clear whether it means the full public key
including the typecodes and identifiers, or just the final hash values; RFC 8391 does not
describe what should happen when idx_sig, which is incremented with each signature, exceeds
the number of available one-time signatures.

Consequently, without further guidance it would be difficult for a non-expert to implement the signature
schemes correctly and efficiently from the NIST draft and the RFCs.

More detailed comments follow:

Line 131: “NIST would like feedback on whether there would be a benefit in reducing the number of
parameter sets…”

There are currently 80 LMS parameter sets, 12 XMSS parameter sets, and 32 XMSS^MT
parameter sets. This seems excessive. Fewer choices of parameters generally increases
interoperability of implementations, especially as there are now different choices of hash
functions. In general, the choice of which parameter sets to eliminate and which to include is
not straight-forward: parameter choices require different trade-offs, and those trade-offs may
be compounded by other implementation choices, such as tree management strategies.
However, certain parameter sets are impractical and can easily be eliminated. For example,
RFC 8554 allows for up to 8 layers in an HSS hierarchy, and each layer can be of height at
most 25, giving a maximum total tree height of 200. Time and compute resources for such a
parameter set may not be readily available, and the benefits of using such large constructions
are not clear. Conversely, it seems unlikely that the improved verification times are worth the
increased signature sizes for the LMS parameters where � = 1 or � = 2. Therefore, we
recommend NIST reduce the approved parameter sets to those that are practical or feasible to
use.

There an issue of redundancy in parameter sets: there exist multiple parameter sets that offer
the same signature size but require a varying number of hash function invocations. Such
parameter sets could be pruned down to the most performant options while the rest are
discarded, perhaps based on the number of signatures required, or for obtaining specific
trade-offs. Unfortunately, no closed-form formula currently exists that would exclude non-
optimal parameter sets.

Line 143: “NIST would like feedback on whether there is a need to be able to create one-level XMSS or
LMS keys in which the one-time keys are not all created or stored on same cryptographic
module…”

Resilience can already be provided by distributing a two-level HSS or XMSS^MT instance
over different cryptographic modules. Distributing a single-level LMS or XMSS tree would

- 12 -

likely require more significant changes to the interfaces for key generation, but only saves
the cost of an intermediate one-time signature.

Line 273: “Stateful HBS schemes are not suitable for general use because they require careful state
management that is often difficult to assure…”

Another feature of HBS schemes that makes them less suitable for general use is that a given
key pair can only sign a limited number of messages, and once that limit has been reached
the long-term signing key is no longer useable.

Line 276: “Instead, stateful HBS schemes are primarily intended for applications with the following
characteristics…”

It is also necessary to estimate the maximum number of messages that will need to be signed
over the lifetime of the implementation, as this determines which parameter set should be
used. This may be straightforward for some applications, but difficult for others; of course, it
may be possible to be conservative and use a significant overestimate, but at the cost of
reduced performance and increased signature sizes.

Further, there is also the notion of signature “loss” over the lifetime of the long-term key
pair, depending on how state is managed. For example, an implementation may partition the
state and advance it in distinct, non-overlapping blocks, accepting the risk that a system
restart would lose the number of signatures in a single block. Over time, with large enough
blocks, or with enough reboots, a significant portion of the total signatures may be lost.

It should be noted that the longer a hardware cryptographic module is in use, the greater the
probability of device failure becomes. In such a case, existing signatures can still be verified,
but no new signatures can be created under that same long-term key pair. As key back-up
and recovery is restricted by the draft, the eventuality of no longer being able to generate
signatures under a long-term key pair should be considered before deployment.

Footnote 2: “HSS allows for up to eight levels of trees and XMSS^MT allows for up to 12 levels of
trees.”

This restriction on the number of layers is important enough that it should be included in the
main body of the text, as it could easily be missed. Implementors will select parameter sets
from the tables within the SP, therefore parameter set restrictions should be explicit.

Line 427: “…which uniquely identifies where a particular hash invocation occurs within the scheme.”

As per the comment below regarding Line 576, the addressing scheme used in RFC 8391
does not uniquely identify where every hash invocation occurs within the scheme.

Line 428: “This address is then hashed along with a unique identifier for the long-term public key
(SEED) to create the prefix.”

There is an unhelpful (and potentially dangerous) conflict of notation between the use of
SEED in XMSS, where it is a public identifier, and in LMS, where it is a private value used
to derive the one-time private keys (see line 563).

- 13 -

Line 436: Figure 5

The diagram should use the symbol ⊕ to denote exclusive or instead of ⨂.

Line 438: “This Special Publication approves the use of LMS and HSS…”

The use of the word “and” implies that NIST approves stand-alone LMS implementations
that are not themselves HSS with L=1. Section 6 of RFC 8554 states that “Since HSS with
L=1 has very little overhead compared to LMS, all implementations MUST support HSS in
order to maximize interoperability”; the somewhat ambiguous language “all
implementations” is taken to mean “all implementations of LMS”. NIST should make it
explicit if they wish to allow non-HSS implementations of LMS. However, as LMS is often
used interchangeably with HSS (which could lead to undue confusion) it is recommended
that NIST only allow HSS, where single-layer LMS is explicitly HSS.

Line 444: “… the hash function used for the LMS system shall be the same as the hash function used in
the LM-OTS keys.”

RFC 8554 allows the use of different hash functions in LM-OTS and the LMS tree. If this
restriction is intended to be enforced by verifiers, then Section 8.2 needs to mandate an
explicit check of the typecodes in the public key, with the public key being rejected if they
do not correspond to the same hash function.

Line 447: “If the HSS instance has more than one level, then the hash function used for the tree at level
0 shall be used for every LMS tree at every other level.”

As expressed in Section 6.1 of RFC 8554, the HSS public key only includes the typecodes
for the LMS and LM-OTS signatures at level 0. The general HSS process described in RFC
8554 specifically allows the use of different parameter sets, and hence different hash
functions, at different levels. If this restriction is to be enforced by verifiers, then Section 8.2
of the draft needs to mandate an explicit check of the typecodes contained in each signature;
signatures are to be rejected if the typecodes do not correspond to the hash function specified
in the HSS public key.

Because the long-term public key only includes the typecodes for the LMS and LM-OTS
signatures at level 0, the signer could change the parameters used at other levels over time;
that is, different signatures could use different parameters. Although Section 6 of RFC 8554
makes the explicit requirement “…the signer MUST NOT change the parameter sets for a
specific level”, there is no way to detect or forbid this from the perspective of a verifier,
without storing extra state. Therefore, complete parameter sets (for all levels) should also be
included in, or derivable from the public key.

Considering the above comment regarding Line 438, if an LMS instance is defined as an
HSS instance with L=1, and if parameter sets are validated, there may be additional difficulty
with signature verification if using the distributed method described in Section 7.1 of the
draft, as each distinct module will use “L=1”, although the “virtual hierarchy” is larger.

Section 5.3 of RFC 8554 (LMS public key) does not set explicit requirements for the LMS
public key format. The language used is “the LMS public key can be represented as the byte
string u32str(type) || u32str(otstype) || I || T[1]”. In addition to the comments given above,
NIST could make the public key formats explicit requirements. Similarly, there is a lack of

- 14 -

	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	

	

requirements expressed for the LM-OTS or HSS public key formats.

There is also an unhelpful (and potentially dangerous) conflict of indexing conventions
between HSS, where level 0 corresponds to the “root” tree used to compute the HSS public
key, and XMSS^MT, where level 0 corresponds to the “leaf” trees used to sign messages.

Line 449: “For each level, the same LMS and LM-OTS parameters set shall be used for every LMS tree
at that level.”

For clarity, it may be worth explicitly stating that different levels may use different LMS and
LM-OTS parameters; e.g., they are allowed to have different tree heights. However, as
mentioned above, the verifier cannot check whether this statement has been adhered to.

Line 452: “The parameters �, �, ��, �, and ℎ specified in the tables are defined in Sections 4.1 and
5.1 of [2].”

There is an unhelpful (and potentially dangerous) conflict of notation between the use of �
in XMSS, where the Winternitz chains have length �, and in LMS, where they have length
2! . If the parameters are not explained, then there should at least be a warning that they
represent different things for the two schemes. Similarly, there is a conflict of notation
between the use of ℎ in HSS, where it is the height of the trees in a single level, and in
XMSS^MT, where it is the total height of the hypertree.

Line 459: Table 1

Although the signature lengths for LM-OTS are taken directly from RFC 8554, they are
rather misleading when taken in isolation, as the one-time signature scheme will never be
used by itself. It would be useful to have a separate table listing the public key and signature
sizes for the different LMS parameters.

Line 516: “For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as
follows:”

In RFC 8391, the SHA-256 and SHA-512 parameter sets pad the key so that it completely
fills a SHA-2 message block for �, � and ���, or two SHA-2 message blocks for �"#$. If
the same approach is used for the truncated SHA-256/192 parameter sets, then the functions
should be defined as:

�(���, �) = �%&'(SHA-256(toByte(0, 40) || ��� || �))
�(���, �) = �%&'(SHA-256(toByte(1, 40) || ��� || �))

�"#$(���,�) = �%&'(SHA-256(toByte(2, 56) || ��� || �))
���(���, �) = �%&'(SHA-256(toByte(3, 40) || ��� || �))

In the current draft the text reads “toByte(i, 4)”, representing integer i only in 4 bytes.

Line 545: “For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as
follows:”

In RFC 8391 it is explained that although a shorter identifier could be used with SHA3, �
bytes are used for consistency with the SHA2 implementations. The draft appears to stick

- 15 -

 	

with this convention in the case where � = 32, in lines 533 to 536, so it is recommended that
the functions defined in lines 547 to 550 pad their identifiers to 24 bytes.

Line 566: “If more than one LMS instance is being created (e.g., for an HSS instance), then a separate
key pair identifier �, and ���� (if using the pseudorandom key generation method) shall be
generated for each LMS instance.”

The previous paragraph of Section 6.1 mandates the use of the pseudorandom key generation
method.

Line 569: “When generating a signature, the n-byte randomizer C (see Section 4.5 of [2]) shall be
generated…”

The LM-OTS signatures are not deterministic because of the randomizer C. Therefore, if a
leaf node on a higher level signs a root node on a lower level more than once, the resulting
signatures will be different, which could allow an attacker to forge signatures. Section 6 of
RFC 8554 implicitly addresses this issue by stating that “It is expected that the above arrays
are maintained for the course of the HSS key.” NIST should make storage of these arrays a
requirement, or propose an alternative, deterministic, signing method.

Line 576: “The private �-byte strings in the WOTS+ private keys (��[�] in Section 3.1.3 of [1]) shall
be generated using the pseudorandom key generation method specified in Section 3.1.7 of
[1]:”

There is a serious flaw in the pseudorandom key generation process described in RFC 8391
and mandated in the NIST draft. The private key value ��(,* for one-time signature
instance j is derived from the private seed ����* via

��(,* = ��� H����* , ������(�, 32)M

The private key index � acts as the address for the PRF, but this address does not depend on
the index � of the one-time signature. Consequently, after observing � one-time signatures
there is a multi-target attack that recovers a private seed with around 2+,-./� calls to the
PRF. This reduces the classical security of XMSS and XMSS^MT with tree height ℎ by
around ℎ − 4 bits.

Expanding on the above, suppose we observe a WOTS+ signature � = (�/, �%, … , �01%) on
the message � = (�/, �%, … , �01%), where we implicitly include the checksum. For most
values of � the message word �(can be viewed as a uniformly random element of
{0, 1, … ,� − 1}, with the obvious exception being the most significant word of the
checksum. The probability that �(= 0, and so the probability that �(reveals the private
value ��(, will be 1/�.

Now suppose that we observe � WOTS+ signatures �%, �', … , �2 on the messages
�%, �', … , �2 . For a fixed � we expect �/� of the messages to have �(,* = 0, so we expect
the � signatures to reveal �/� private values; that is, we expect there to be �/� values where
�(,* = ��(,*. In general, we can choose the index � that reveals the most private values, which
will be higher than �/�, but not significantly so.

- 16 -

 	

 	

Because the �/� private values all have the form ��(,* = �(����*|| �) for private one-time
seeds ����* and a fixed index �, we can try to guess a seed by choosing a putative �-byte
value ����′, computing ��′ = �(����′|| �), and then comparing ��′ with our �/� target
values ��(,* . The probability that our guess will match one of the targets is �/�2+,, so we
would expect to recover one of the seeds after �2+,/� guesses.

For XMSS, the Winternitz parameter is always chosen to be � = 2. . Given a tree of
height ℎ, the maximum number of one-time signatures that can be observed is � =
23 . Consequently, the attack requires 2+,-.13 guesses.

A possible fix to this attack is to adopt the addressing method used for XMSS^MT in the
NIST PQC Round 2 SPHINCS+ submission.

Line 586: “Distributed Multi-Tree Hash-Based Signatures”

The methods described in this section of the draft effectively describe “virtual hypertree”
schemes, distributed across multiple hardware cryptographic modules, where no keying
material is exported from any module. To use this approach in practice will require a
significant amount of supporting software to facilitate communication between hardware
modules, keep track of which trees belong to which device, prevent malicious re-routing of
requests to inauthentic modules, and other operational requirements.

Consequently, such techniques will be difficult to deploy or use practically. With that in
mind, NIST may want to consider relaxing the constraints on exporting private data. Below
are some options NIST may consider that would allow for secure key backup and recovery:

• Backup and recovery should happen between two distinct machines that share the same code
(e.g., both are HSMs).

• This communication should be supported by a KEM, where the shared secret is ephemeral
and securely deleted after one use; this prevents redeployment.

• The state must be deleted from source machine after it has been exported to the other device.
This prevents redeployment as well.

Line 620: “Distributing the implementation of an XMSS^MT instance across multiple cryptographic
modules requires each cryptographic module to implement slightly modified versions of the
XMSS key and signature generation algorithms provided in [1].”

Distributing HSS across multiple cryptographic modules is reasonably straightforward, as
each intermediate signature is an independent instance of LMS. However, in XMSS^MT the
intermediate signatures are instances of a reduced variant of XMSS, which are all implicitly
viewed as being part of the same hypertree of total height ℎ; e.g., the hash function addresses
are given in terms of their locations in this hypertree.

The method of distributing XMSS^MT across multiple cryptographic modules suggested in
Section 7.2 preserves interoperability with RFC 8391 by modifying the standard XMSS key
generation and signing algorithms but is significantly more complicated to implement and
use. Further, if the process for provisioning a bottom-level cryptographic module fails for
some reason (see line 719) then this wastes a valuable signature from the top-level module.

- 17 -

A simpler approach would be to adapt the approach from HSS and use independent instances
of (full) XMSS for the intermediate signatures. The disadvantages of doing this are that it
would increase the length of the signatures, and the scheme would not be interoperable with
XMSS^MT as specified by RFC 8391.

Given that NIST is allowing additional parameter sets and hash functions for both HSS and
XMSS^MT, RFC-compliant implementations may not be able to verify all NIST-compliant
signatures. This raises the question of how much interoperability should be preserved? NIST
may want to break away from the RFCs entirely and set their own, distinct, requirements.

Line 641: “7.2.1 Modified XMSS Key Generation and Signature Algorithms”

The LMS and XMSS RFCs both contain explicit return statements in their pseudocode,
which improves clarity, but the pseudocode in the NIST draft does not. This is particularly
confusing in, for example, lines 708 and 712 where assignments are made to public key
values using information returned from calls to XMSS’_keygen.

It may be worth stating explicitly that Algorithm 10’ is a modified version of Algorithm 10
in RFC 8391; the same applies to Algorithm 12’. Similarly, it may be worth stating explicitly
that XMSS^MT external device keygen replaces Algorithm 15, and that XMSS^MT
external device sign replaces Algorithm 16.

There is a lack of clarity about where the structure SigPK lives in relation to the provisioned
cryptographic modules, and whether it needs to be protected.

Line 647: “Output: XMSS public key PK”

There may be scope for confusion here, as in RFC 8391 the output of Algorithm 10 is the
XMSS public key and the XMSS private key.

Line 651: “wots_sk[i] = WOTS_genSK();”

In RFC 8391, WOTS_genSK() (as described in Algorithm 3) sets each element of
wots_sk to a uniformly random n-byte string, but the NIST draft mandates the use of the
pseudorandom key generation method described in Section 3.1.7 of RFC 8391. This has the
potential to cause confusion as the WOTS_genSK()function requires access to a uniformly
random n-byte string S that should be stored as part of the private key.

Line 679: “SK = L || t || idx || wots_sk || SK_PRF || root || SEED”

No terminating semicolon. The same comment applies to lines 681, 683, 696, and 697.

This definition also conflicts with the use of “setter methods” in lines 657, 669, and 670.

Line 683: “PK = OID || root || SEED”

The format of the OID is not defined in RFC 8391, and it is not entirely clear how it relates
to the identifiers in Section 5 of the NIST draft. There may be some confusion between the
identifiers for XMSS and XMSS^MT as they appear to overlap.

- 18 -

Line 719: “if (getIdx(SigPK[t]) ≠ t) {”

This should be a while loop rather than an if statement. This process probably deserves
more detailed explanation in the surrounding text.

Line 729: “// Send XMSS’_sign() command to one of the bottom-level key
pairs”

In the example XMSS^MT signing algorithm described in RFC 8391, when one bottom-
level key pair is exhausted a new key pair is generated automatically for the next signature.
The method of external device operations presented in Section 7.2.2 suggest that the bottom-
level cryptographic modules are provisioned first during key generation, and then one of the
available modules is chosen for use during each signing call. In practice, there will likely
need to be a mechanism for switching between modules and dynamically re-provisioning
them when their key pairs have been exhausted.

Line 815: “The faulted signature remains a valid signature, so checking that the signature verifies is
insufficient to detect or prevent this attack.”

The faulted signature is highly likely to be valid, but it depends where the fault occurs. If it is
during one of the hash function calls that needs to be recomputed for verification, then the
signature will not be valid.

Line 816: “The only reliable way to prevent this attack is to compute each one-time signature once,
cache the result, and output it whenever needed.”

There are alternative mitigations. For example, one approach is to use redundancy: compute
the full signature twice, compare the results and only release a signature if the results match;
an attacker would need to induce two identical faults in order to obtain an exploitable
signature.

Line 841: “The randomized hashing process does not, however, impact the ability for a signer to create
a generic collision since the signer, knowing the private key, could choose the random value
to prepend to the message.”

It is not entirely clear why this discussion is included, since, as pointed out on line 851, this
should not really be considered an attack on the signature scheme. Randomised hashing is
intended to prevent someone other than the signer preparing a pair of colliding messages;
see, for example, the discussion in NIST SP 800-106. This is only a threat if the values � in
RFC 8391 and � in RFC 8554 are not sufficiently random.

Line 844: “The 196-bit hash functions in this recommendation…”

They are 192-bit hash functions.

Line 898: “union lmots_signature switch”

The indenting of the case statements is inconsistent.

The same comment holds for case statements beginning on lines 947 and 982.

- 19 -

Line 1452: “However, in the current version of XMSS^MT [1], the security analysis differs somewhat. In
the standard model, [17] shows that XMSS^MT is EUF-CMA. Further, [16] shows that
XMSS^MT is post-quantum existentially unforgeable under adaptive chosen message attacks
with respect to the QROM.”

Appendix C.4 somewhat overstates the provable security results for XMSS^MT. The
standard model result by Malkin et al in [17] holds for a general signature framework which
covers both XMSS^MT and HSS. It shows that hierarchical signature schemes are secure
provided that the underlying one-time signature schemes are secure, but with a significant
tightness gap.

The tight QROM proof by Hülsing et al from [16] does not apply to XMSS^MT as described
in [1]. Firstly, the result from [16] requires an assumption about the hash function family �
that is almost certainly not satisfied by any NIST approved cryptographic hash function; a
recent paper presented by Bernstein and Hülsing at ASIACRYPT 2019 replaces this with a
brand-new security notion which they call (multi-target) decisional second-preimage
resistance and which they believe should be difficult to attack. Secondly, the scheme
analysed in [16] differs from the version of XMSS^MT described in [1] in a few important
details; for example, the method for generating one-time private keys in [16] involves the
address of the one-time signature, which prevents the attack described above.

Line 1469: “The main difference between these schemes’ security analyses comes down to the use (and
the degree of use) of the random oracle model or quantum random oracle models.”

It is also arguable that the complexity of the security reduction and the number of
assumptions involved are also important. A simpler argument gives more confidence in the
correctness of the result.

- 20 -

NSA's Center for Cybersecurity Standards

From: Sharon Ehlers
Date: Monday, February 24, 2020, at 1:13pm

Comments for SP 800-208.

• The option of using SHA384 or SHA512 could be useful.

• The parameter sets for LMS and XMSS use similar but different notation and this could
cause some confusion. For example, w has two different meanings between the two
schemes and SEED is a private value in LMS and a public value in XMSS. Consider
making these differences clear.

• Section 7.1, page 20 line 618: Unable to find an Algorithm 9 in [2].

• Sections 7.2.1 and 7.2.2:
o Calls to XMSS' sign

need to know to which module it's being sent so layer/tree can to be
tracked in the external device keygen and external device sign.

o Lines 716-723: It is not clear what the purpose of this if statement is. Please
Clarify.

• Line 732: The definition of t is misleading. In the RFC, it is
h-(h/d) most significant bits of idx_sig. Here, since d=2, t=h/d most significant bits is
correct, but using t=h-(h/d) or t=h/2 most significant bits would be clearer. Furthermore,
the definition from the RFC, t=h-(h/d) most significant bits of idx_sig, is misleading as
well.
If idx_sig has exactly h bits, this is fine, but idx_sig has ceil(h/8) bytes, which is not
always h bits. In that case, the definition of t might not be grabbing the intended bits of
idx_sig. This definition comes up in the XMSS^MT sign and verify algorithms.

• p26: 196's should be 192's

- 21 -

Crypto4A

From: Jim Goodman
Date: Monday, February 24, 2020 at 3:25pm

Crypto4A’s Comments on NIST SP800-208 Draft Specification

Crypto4A’s comments are provided in two distinct parts: first we provide editorial comments regarding
the draft’s proposed language, and then we provide comments regarding the concepts being proposed
within the draft itself.

Editorial Comments
First, our editorial comments:

• Line 266: replace “some but not all of” with “some, but not all, of”

• Line 268: consider adding references for SHA-256 and SHAKE256 (i.e., [3] and [5] respectively)

• Line 280: change “is firmware” to “is authenticating firmware”

• Line 342: consider changing “public keys.” to “public keys using a Merkle tree construction.”

• Line 348: consider deleting “, as follows”

• Line 358: consider changing figure title to “A sample Winternitz chain for b = 4”

• Line 376: fix formatting to avoid CRLF’s in H**i(x_j) elements in the figure

• Line 385-386: consider changing “value, which will” to “value at the root of the tree, which will”

• Line 389: consider changing “public keys.” to “public keys (ki, i ϵ [0, 7]).”

• Line 390: consider changing “the tree.” to “the tree (hj, j ϵ [0, 7]).”

• Line 391: consider changing “the tree.” to “the tree (i.e., h01, h23, h45, and h67).”

• Line 419: change “different values” to “different prefix values”

• Line 436: the symbol for XORing xk and the bitmask looks an awful lot like some form of
multiplication, perhaps there’s a more “XOR-like” symbol that could be used instead?

• Line 489: change “functions is specified” to “functions are specified”

• Line 502: change XMSS-SHA2_20_256 entry’s Numeric Identifier from “0x00000002” to
“0x00000003”

• Line 518: change “toByte(0, 4)” to “toByte(0, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 519: change “toByte(1, 4)” to “toByte(1, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 520: change “toByte(2, 4)” to “toByte(2, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 521: change “toByte(3, 4)” to “toByte(3, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 547: change “toByte(0, 4)” to “toByte(0, 24)” (or perhaps you’d prefer to stay with 32?)

- 22 -

• Line 548: change “toByte(1, 4)” to “toByte(1, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 549: change “toByte(2, 4)” to “toByte(2, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 550: change “toByte(3, 4)” to “toByte(3, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 587: consider changing “of time and” to “of time, and”

• Line 683: consider adding additional line after 683 that states “return (PK)”

• Line 685: consider changing “Message M” to “Message M, XMSS private key SK”

• Line 686: consider changing “signature Sig” to “Updated SK, XMSS signature Sig”

• Line 703: consider adding additional line after 703 that states “return (SK || Sig)”

• Line 907: consider adding additional space at start of line for proper alignment

• Line 915: consider adding additional space at start of line for proper alignment

• Line 952: consider adding additional space at start of line for proper alignment

• Line 958: consider adding additional space at start of line for proper alignment

• Line 961: consider adding additional space at start of line for proper alignment

• Line 964: consider adding additional space at start of line for proper alignment

• Line 995: consider adding additional space at start of line for proper alignment

• Line 1279: consider adding two additional spaces at start of line for proper alignment

Qualitative Comments Regarding Concepts
In addition to the aforementioned editorial comments, we have identified several primary concerns
with the document, as well as just some general comments regarding various sections of the document:

• There is no disaster recovery (DR) option given the manner NIST is proposing to generate HBS
private keys, and the restrictions you’re imposing in Section 8.1. On line 745 you clearly state
that the cryptographic module shall not allow for the export of private keying material. While
we don’t expect NIST to have to provide guidance on DR, we also don’t believe it should be
explicitly precluding options by putting this sort of restriction on the cloning/exporting of HBS
private keys. Yes, state management is difficult to do, but processes can be put in place to
manage the activity (more on this later), and the benefits of being able to archive keys to avoid
having the entire hierarchy come crashing down if the top level HSM were to fail. Your
proposed solution attempts to mitigate this by distributing the private key generation across
multiple devices such that the top level HSM signs public keys presented by other HSMs (more
on this in a later comment) which have generated private keys for lower layers of the hierarchy.
This approach is still dependent on the top level HSM being present and operational so that it
can sign new public keys as they come online, which could be difficult for a long-lived keying
hierarchy. One way to overcome that is to have all of the subordinate HSMs present and
accounted for soon after the top level HSM has generated its HBS private key, so that they can
all request their public keys get signed before the top level HSM fails. Unfortunately, you’re
just moving the problem around as now those subordinate HSMs need to survive long enough

- 23 -

to carry out their roles as HBS signing authorities, and the amount of capital expenditure to
finance the bulk purchase of HSM devices may prove prohibitive. Hence, we think it would be
best for NIST to not preclude exporting private key materials, but rather focus on devising best
practices related to managing the risks associated with that operation, so that operators can
devise their own DR solutions.

• Over the past 25 years of handling DR principles around critical PKI root keys, we have evolved
very strong procedures for the secure extraction and re-injection of critical root key material in
HSMs. This has provided us with a high guarantee of having preserved the integrity,
confidentiality and availability of the keys by enforcing the tracking of private key material
whether it’s within an HSM or some form of secure external storage such as a safe or vault.
This was possible as the RSA/ECC keys were complete objects with no additional state that
needed to be maintained. Unfortunately, HBS introduces state to the management equation so
attempting to distribute HBS private key material across multiple HSMs is tantamount to
scattering the private key in both space and time. Hence, the proposed multi-HSM approach for
implementing a distributed multitree HBS (Section 7) is concerning to us from a security
perspective in its current form. What guarantees does the top level HSM have regarding the
validity of the signing request it receives from parties looking to have the public key of the HSS
private key they’ve generated on their HSM devices? Mechanically anyone could present a
public key for signing, thereby introducing the possibility of rogue parties now being able to
generate valid signatures. In a PKI CA world, they would manage this with revocation to punish
the bad actors who managed to fool the CA into signing their illegitimate certificate. In the
proposed 2-level HBS scheme there are no such revocation methods to save us after the fact, so
we need to do everything we can to prevent this situation from happening. Hence, there needs
to be some robust mechanism in place to validate requests BEFORE they are signed, which we
have found to be a very difficult problem to solve unless very rigid procedures are put in place
to eliminate the possibility (e.g., force the subordinate HSM to be brought into the room where
the root HSM is so that the root HSM operators can witness the HSS key generation process
and perform some sort of attestation that the HBS public key the subordinate HSM generates
corresponds to a private key generated on that subordinate HSM). This is likely to prove to be
a very onerous process akin to a full-on traditional root key generation ceremony in a
conventional PKI, so this needs to be considered and addressed somehow (e.g., guidance on
procedures, introduction of requirements to guarantee attestation of the authenticity of the
signing request, etc.).

• The existing hash-sigs github repository that provides a reference implementation for LMS-
HSS includes functions to pseudo-randomly generate LMS subtree {I, SEED} values from a
master seed value for a given LMS-HSS instance (i.e., hss_generate_root_seed_I_value() and
hss_generate_child_seed_I_value() in hss.c) , which allows the implementor to optimize the
private key data storage requirements by eliminating the need to store discrete pairs of {I,
SEED} for each layer of the tree since we can just recompute them from a single master seed
value. This method of pseudo-random value generation for I in particular was identified as an
option in RFC 8554 Section 7.1, so we don’t believe it represents a security compromise of any
proposed solution. Lines 566-568 of Section 6.1 appears to preclude this sort of implementation
option by forcing the implementer to generate a separate {I, SEED} pair for each LMS instance.
However, this requirement is itself quite vague as you put no requirements on how those values
are generated (i.e., can they be pseudo-random or do we need to generate using a random bit

- 24 -

generator that supports at least 8n bits of security strength)? We would prefer to be able to
continue using a pseudo-random method, but if that isn’t acceptable then perhaps the language
of the requirement can be made more precise to remove the aforementioned ambiguity.

• Section 6.1 also enforces the requirement that the same SEED value shall be used to generate
every private element in a single LMS instance (line 563). We feel this is overly restrictive, and
an implementor should be able to use one or more values/SEEDs provided they are generated
in a manner that meets the stated security criteria (i.e., using an approved random bit generator
where the instantiation of the random bit generator supports at least 8n bits of security strength).
Relaxing this constraint opens up the possibility of proposing novel DR-compatible solutions,
one of which we describe below.

• Would NIST consider a mechanism whereby the top-level LMS instance (we’re applying things
to LMS-HSS in the interest of simplicity, but the comments should extend to XMSS/XMSSMT

as well) is sectorized into cryptographically-isolated segments, each of which shares the same
I value but which has its own SEED value that was generated using a manner similar to the
pseudo-random generation of LMS-OTS private keys (but using a unique format to ensure it
doesn’t collide with that pseudo-random process, or any of the processes used in hash-sigs to
generate {I, SEED} pairs, and which can’t be used to guess another sector’s SEED value).
Sectorization would segment the 2h leaves of the top-level tree into 2s groups (a.k.a., sectors),
each containing 2h-s leaves. Each sector’s SEED value allows a device to generate signatures
from that sector’s set of leaves and NOT any other sectors’ leaves. Hence, you have
cryptographically-enforced state reuse protection if you assign different sectors to different
cryptographic modules (i.e., HSMi can’t generate valid signatures from the sector assigned to
HSMj). However, the sector generation process can ensure that all sectors share the top-level
public key value, so all sectors are part of the same HBS signing authority. These sectors can
then safely be exported from the top-level HSM and stored in a secure fashion using the same
techniques and procedures that have been proven over the years to handle the secure extraction
and handling of any regular private keys so that they can be loaded onto other HSMs (once and
only once) when needed (e.g., the existing HSM(s) fail and we need to recover the signing
capability for the given HBS public key, we use up all of the existing allocated sectors’
signatures and need to load new sectors into the HSM many years down the road, or we want
to load unique sectors into multiple HSMs in parallel to allow higher signing throughput). We
believe this will yield a feasible means of providing DR for HBS on HSMs (albeit with potential
over-allocation of the total tree size in order to accommodate the redundancies that facilitate
DR). Note that this approach can be used to create a one-layer tree with OTS keys being created
and stored on different HSMs as per the request made in the paragraph on lines 143-146 within
the Note to Reviewers section. In that use case, each sector would be loaded into a different
HSM, where the resulting unique SEED values would facilitate the generation of unique OTS
keys on each device.

• An additional note on revocation as per the proposed 2-level scheme described in Section 7.
Our interpretation is that the subordinate cryptographic modules are generating a single
certificate that verifies back to the primary cryptographic module’s top-level public key. In a
typical PKI the root CA would sign a subordinate CA’s public key, generating a certificate for
that subordinate CA public key that the user/application could validate. In the proposed
approach we’d have the root CA (i.e., top-level CM) sign the subordinate CA’s (i.e., subordinate

- 25 -

CM) public key, but that result would just appear as part of any HSS/XMSSMT signature the
subordinate CA generates (i.e., the first LMS/XMSS signature component that precedes the
subordinate CA’s pubic key element, and LMS/XMSS signature on the message). Hence there
is no discrete certificate that could be checked and revoked. Furthermore, if another subordinate
CA has been stood up, and it hasn’t been compromised, then will it be affected as a consequence
of revoking the other subordinate CA given it shares the same root CA public key as all other
subordinate CA’s in this stratified approach, and we don’t have a discrete top-level certificate
to use to achieve finer-grained revocation. We’ve kicked around ideas related to atypical
revocation mechanisms based on longest prefix-matching against portions of the HBS and its
components, but these are all custom hacks that don’t lend themselves well to a standardization
effort. How does NIST envision revocation working with the proposed 2-level scheme? Is it an
all-or-nothing sort of thing?

• A general comment regarding Figure 4, and the differences between HSS and XMSSMT: Figure
4 shows the top-level tree being marked as level 0, with the level value increasing as we progress
form top-to-bottom of the multi-level tree. This approach is fine for HSS, where a similar
numbering convention is used, but in XMSSMT we believe the standard numbers the top-level
tree as level (d-1) and proceeds to decrease the level value as we progress from top-to-bottom.
This may lead to confusion later on, and we think the difference merits some form of mention
in the text.

• The description/pseudocode for XMSSMT external device key generation is confusing to us.
Under what conditions would the IF statement in line 719 evaluate to true given the generation
calls on Lines 712 and 715, thereby necessitating us to essentially repeat the generation calls
using lines 721 and 722 respectively? Would the given code not just adjust the incorrect t value
by at most 1 given the correction is not iterative, but just a one-off? This confusion is somewhat
compounded by what seems to us to be under-specified inputs/outputs for Algorithms 10' and
12' in section 7.2.1. which are used extensively in Section 7.2.2.

• In Appendix A and Appendix B, the text indicates we’re extending the XDR syntax for [2] and
[1] respectively, but the subsequent descriptions in Lines 859-1002 and Lines 1007-1391 read
like they are the entire XDR specifications. Would it make sense to add comments into the XDR
elements to remind the reader that you’re supposed to also include all existing XDR
specification code into each definition? For example, for LMS-OTS algorithm type
(lmots_algorithm_type), add a new line between Lines 861 and 862 that says something along
the lines of “/* includes all existing lmots_algorithm_type values */” or
some similar language to remind the reader that existing definitions are retained as well.

- 26 -

Marc Stöttinger

From: Marc Stöttinger
Date: Friday, February 28, 2020, at 3:43am

Dear Author team of the document SP800-208,

as consortium members of the German nationally funded research project “QuantumRISC”, we
would like to provide you feedback on the draft NIST Special Publication 800-208 (SP 800-208).

The QuantumRISC project is funded by the German Federal Ministry of Education and Research
(BMBF) and brings together partners from both academia and industry. The project partners
jointly develop and improve post-quantum secure cryptographic schemes for low-end devices
with severe limitations on memory usage and power consumption while maintaining a high level
of security. The practical implementation of such schemes highly depends on their operability on
embedded devices. The main focus of the project is the development of quantum secure solutions
for the automotive domain; however, research findings will be transferable to other domains and
use cases. We investigate the interaction between existing vehicle systems and architectures as
well as the integration of PQC into the vehicle while allowing a future exchange of
cryptographic primitives (crypto agility).

The project consortium consists of the following partners: Continental AG, Elektrobit
Automotive GmbH, Fraunhofer Institute for Secure Information Technology SIT, RheinMain
University of Applied Sciences, MTG AG, Ruhr-University Bochum and Technical University
of Darmstadt.

We have the following three feedback comments to the current draft version:

1) Past experience has shown that developers find it difficult to deploy cryptography if the
specifications are distributed among different standards or if ambiguous representations
exist (e.g. RSA parameters with explicit NULL or empty). In order to improve
interoperability and to be able to use algorithms between different applications, object
identifiers and standardized representations of public keys are necessary. Therefore,
object identifiers (OID) should be specified for the two algorithms XMSS and LMS and
for the signatures and public keys. Public keys should be uniquely represented in ASN.1
to make it possible to issue interoperable certificates that contain public XMSS or LMS
keys.

For example, a public key could be represented as:

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

- 27 -

The 'algorithm' field could specify an OID and an explicit statement regarding the
parameters and the 'subjectPublicKey' field could provide a concrete specification of the
encoded public key (e.g., a 1-to-1 mapping to the specifications of the RFC). With SP
800-208, there is a chance to specify OIDs and representations in one document to
facilitate the use of XMSS and LMS.

What is the reason that XMSS and LMS variants are not harmonized to provide
parameter sets with the same tree heights? Different usage scenarios have different
requirements and more flexibility for the maximum number of signatures should be
provided. Hence, we would like to see similar parameter sets for XMSS and LMS with
respect to the tree heights and ideally with a smaller step size in the tree height in order to
choose a number of 2^5, 2^8, 2^10, 2^15, 2^16, 2^20, 2^25, 2^32, 2^40, ... signatures.
Alternatively, the tree height could not be specified in the parameter set but freely chosen
(in a certain range) for each key pair.

SP 800-208 references RFC 8391, which also provides a description of the XMSS
algorithm. Alongside the RFC document, there is also a C reference implementation of
XMSS. We note that each of these documents provides different algorithm definitions.
For example, algorithm 10 in SP 800-208 and algorithm 10 in RFC 8391 both specify the
XMSS key generation; yet they provide different implementations. Though the
algorithms are semantically identical, a uniformly standardized basis of algorithms would
likely prevent misunderstandings and implementation flaws. Similarly, the
implementation of algorithms in the C reference implementation does not follow the
pseudocode from RFC 8391. For example, algorithm 2 (WOTS Chaining) is defined
recursively in the RFC but implemented iteratively in the reference code. Having a
unified definition of algorithms throughout the provided documents would presumably
ease understanding and implementation.

Best regards,

Marc Stöttinger

- 28 -

Stefan-Lukas Gazdag

From: Stefan-Lukas Gazdag
Date: Friday, February 28, 2020, at 12:50pm

Hi,

thanks to NIST for all the great work regarding the PQC standardization process! Please find
enclosed some comments on draft SP 800-208.

We (genua GmbH) provide hybrid signatures (ECDSA and XMSS) for our latest software
updates. Both signatures have to be verified as valid, otherwise the update is rejected. Key
generation and signing is done on a secure key server. Authorized build servers in a restricted
development network may ask for a signature via an OpenSSH connection. First updates have
been applied to machines in the field. We look forward to HBS being used more widely by
others.

Open topic: OIDs
For the use in practice (explicitly taking a look at X.509 certificates) object identifiers (OIDs) are
needed. This far there are no OIDs defined by any organization (neither by any agency,
corporation, university or the IETF/IRTF). Without going into details about former discussions
on who should publish OIDs I just want to raise awareness that this should be dealt with.
Software using HBS so far uses "temporary" or private OIDs (that have somewhat been agreed
on between some software projects) or use software specific identifiers.

Line 273-275:
Yet another peculiarity is that you should choose a proper parameter set suiting your specific use
case (e. g. which signature size is still ok, while maintaining a specific security level). This also
means how many signatures will be written as the key has a limited life-time. Whereas classical
keys have an implicit life-time (forced by a validity date or due to the need of increasing the
security level due to advances in supercomputing, cryptanalysis, …), for HBS maybe a small key
writing e.g. a million keys would be enough (or may be exchanged in time) for a specific use
case while other scenarios would require a huge multi-level tree. All in all decisions that have to
be made beforehand in a different way than with classical schemes.

Line 278/279:
I'd argue that using HBS now is important in many other, probably most use cases of software
updates and code signing. History shows that software runs for way longer in the field than often
expected as users stick to their running systems. Thus old systems are likely to be found running
pre-quantum update mechanisms once a large enough quantum computer exists. Therefore it is
recommendable to apply HBS now to existing systems even it is "just" to ensure a proper
transition to other quantum-safe signature schemes later on. Also implementing and distributing
update mechanisms using hybrid signatures now might help having somewhat modular
mechanisms where exchanging a single scheme might be easier.

- 29 -

Line 436:
Please use the ⊕ symbol for exclusive-or

Line 502:
The correct numeric identifier of XMSS-SHA2_20_256 is 0x00000003

Line 587:
Not the most sophisticated solution but practicable: as the public keys for all the schemes are
quite small, a specific device or software might be provided with several HBS public keys.

Ling 641 and following:
Some pseudo-code lines are missing semicolons. Also, sometimes setter / getter methods are
used as in the RFC but sometimes they are omitted

Line 647:
Algorithm 10' / XMSS'_keyGen should also output the secret key SK

Line 774 and following:
In some uses cases performance might improve by the reservation approach described in [8],
which we've tried in practice. Reserving an interval of OTS keys, meaning writing an updated
secret key according to the interval chosen to non-volatile memory before signing alleviates
performance issues in practice. In case of any interrupt, some OTS keys stay unused, which in
most scenarios should not be a problem with somewhat stable cryptographic modules / key
servers.

Line 844:
s/196/192/

Kind Regards,
Stefan-Lukas Gazdag

- 30 -

Canadian Centre for Cyber Security

From: David E. Smith
Date: Friday, February 28, 2020, at 3:58pm

Please find below our editorial and technical comments on the Draft SP 800-208 issued for
comment in December 2019.

David Smith
Canadian Centre for Cyber Security

Line Type Comment
Starting at line 288, "If an attacker were able to obtain digital signatures for
two different messages created using the same OTS key, then it would become
computationally feasible for that attacker to forge signatures on arbitrary
messages".
Similarly, starting at line 775 and line 809 "...this is acceptable since it just
involves using an OTS key multiple times to sign the same message".

Comment: Per Section 6.1, 9.3 and [2], it seems that in LMS the OTS 288, generates a random prefix for every message to be signed (Algorithm 3 in 775, Technical Section 4.5 of [2]). In particular, a forgery would be possible given two 809 distinct signatures even if they were for the same message. Also, it would not
be acceptable to use an OTS key multiple times, even for the same message,
unless the random prefix was forced to be the same. XMSS also generates a
random prefix before signing, but it appears to be deterministically derived
from the private key and signature index (Algorithm 12 of Section 4.1.9 of
[1]), so signing the same message with the same OTS would result in the same
signature.

Replace "checksum is computed as sum_{k=0, n-1}(b-1-N_k)" with
368 Editorial "checksum is computed as sum_{k=0, n-1}(b-1-N_k), which requires

ceil(log_b(n*(b-1))) digits".
Replace "Figure 3 depicts a hash tree containing eight OTS public

389 Editorial keys." with "Figure 3 depicts a hash tree containing eight OTS public keys
k_0, ..., k_7".

Editorial Replace SHA2 with either SHA-256 (to match earlier in the draft) or SHA2-506 256 (to match [1]).

- 31 -

Panos Kampanakis

From: Panos Kampanakis
Date: Friday, February 28, 2020 at 4:49pm

Dear Quynh, NIST,

I would like to provide some more feedback regarding the SP 800-208 Draft for HBS after
discussing with some of our HSM peers implementing HBS. They pointed out to us some
practical concerns:

1) Section 8.1 mandates that private keys should not be extractable. Today HSMs allow for
extracting a classical private key using some Shamir sharing scheme so that key can be
reconstructed and reused in case of an HSM failure. I don’t think LMS is different. In a
hierarchical scenario where a top level HSM signs subordinate LMS trees, the top HSM
would need to survive for a long time (30 years for a traditional CA root) in order to be
able to sign any new subordinate tree coming online. That may not always be practical.
We should allow for the OTS private keys to be extractable using similar methods
(Shamir secret sharing or so) so someone could reconstruct the top HBS tree and sign
new messages in case of failure.

2) Section 6.1 requires a separate I and SEED value for each LMS instance. If someone
wanted to generate I with a PRF he should be able to, so that the subtrees of a hypertree
can be generated by using a master value instead of storing separate (I, SEED) pairs for
each tree in the hypertree. Generating I in a deterministic pseudorandom could point to
SP800-90A.

3) Section 6.1 requires one SEED per LMS tree. By allowing more SEED values, HSMs can
use them to be able to generate non-overlapping sections of the tree in order to prevent
state reuse in a DR scenario. Using different SEEDs in some of the LM-OTS leaves does
not compromise the security of LMS tree.

Panos
Cisco

- 32 -

From: Panos Kampanakis
Date: Friday, February 28, 2020 at 10:26pm

We would also like to propose for the SP to include the following parameters that are suitable for
all our (Cisco and probably many more vendor) image signing usecases

~~~~~~~~~~ 

- LMS_SHA256_M16_H5 with LMOTS_SHA256_N16_W8 
- LMS_SHA256_M24_H5 with LMOTS_SHA256_N24_W8 
- LMS_SHA256_M32_H5 with LMOTS_SHA256_N32_W8 

- LMS_SHA256_M16_H10 with LMOTS_SHA256_N16_W8 
- LMS_SHA256_M24_H10 with LMOTS_SHA256_N24_W8 
- LMS_SHA256_M32_H10 with LMOTS_SHA256_N32_W8 

- LMS_SHA256_M16_H15 with LMOTS_SHA256_N16_W8 
- LMS_SHA256_M24_H15 with LMOTS_SHA256_N24_W8 
- LMS_SHA256_M32_H15 with LMOTS_SHA256_N32_W8 

- LMS_SHA256_M16_H20 with LMOTS_SHA256_N16_W8 
- LMS_SHA256_M24_H20 with LMOTS_SHA256_N24_W8 
- LMS_SHA256_M32_H20 with LMOTS_SHA256_N32_W8 

- HSS (with 2-4 levels) with any of the above LMS trees at any level. 

~~~~~~~~~~ 

For N=M=16 we realize that that would provide 64-bit PQ security, but given NIST’s stance
with AES-128 (Grover not being parallelizable and thus AES-128 is considered secure) we could
use it when needing very small signatures at acceptable security.

Thank you,
Panos
Cisco Systems

- 33 -

Google

From: Stefan Kölbl, Roy D’Souza
Date: Friday, February 28, 2020, at 6:18pm

Google’s Comments on the NIST SP800-208 Draft Specification

Stefan Kölbl, Roy D’Souza
February 28, 2020

Google anticipates deployment of post-quantum hash-based signature schemes for verified boot,
and over-the-air updates, for a range of hardware modules. These modules vary significantly in
available power, computational capabilities and related resources.

When deciding between stateless and stateful schemes, for scenarios that are amenable to the
larger signature sizes of stateless schemes we would leverage a NIST-recommended scheme,
such as the anticipated SPHINCS+. Whereas for other contexts, where it is an imperative to limit
signature sizes, we would deploy a NIST-recommended stateful scheme such as LMS/HSS.

Deployment Scenarios

The following three deployment scenarios would most likely be constrained to usage of a stateful
scheme:

• Google Security Chips: All Chromebooks are deployed with an embedded Google
Security Chip that is candidate for being a quantum-ready hardware root of trust. It would
probably have computational abilities similar to an ARM Cortex M3, with limited
memory and flash.

• Battery Operated IoT Sensors: These include sensor devices such as Nest Detect, the
motion and perimeter sensors used by the Nest Guard secure alarm system. This class of
devices has the resource constraints of the previous category, and also needs to operate
on the equivalent of an AAA battery for over two years.

• Powered IoT Devices and Chromebooks: These are powered devices based on
Intel/AMD and ARM chips, and these lower cost devices have space and other resource
constraints that would benefit from compact signatures.

Our choice of stateful hash-based standardization candidates is LMS/HSS, and the following two
categories of parameters would be important for addressing the resource constraints of the
scenarios outlined above.

Variable (Sub-)Trees

It would be beneficial to have different parameters depending on the level of a multi-tree. The
cryptographic modules at a lower level might be deployed in more constrained environments,

- 34 -

while a higher-level tree, perhaps belonging to a more trustworthy third party, could afford more
expensive computations.

The cadence of firmware updates to devices, even within each category, could differ
significantly. A Chromebook might be updated every six weeks, while some IoT devices might
only be updated occasionally. Therefore it would be useful to have a choice of parameters for
LMS/HSS:

• LMS_SHA256_M24_H5 with LMOTS_SHA256_N24_W8
• LMS_SHA256_M32_H5 with LMOTS_SHA256_N32_W8

• LMS_SHA256_M24_H10 with LMOTS_SHA256_N24_W8
• LMS_SHA256_M32_H10 with LMOTS_SHA256_N32_W8

• LMS_SHA256_M24_H15 with LMOTS_SHA256_N24_W8
• LMS_SHA256_M32_H15 with LMOTS_SHA256_N32_W8

• LMS_SHA256_M24_H20 with LMOTS_SHA256_N24_W8
• LMS_SHA256_M32_H20 with LMOTS_SHA256_N32_W8

• HSS (with 2-4 levels) with any of the above LMS trees at any level.

Security Targets

In the ongoing NIST post-quantum cryptography standardization process five security levels
have been defined and the proposed schemes seem to fall into NIST security level 3 and 5, as
they do not rely on the collision resistance of the underlying hash function.

In some of our scenarios it might be useful to have variants of LMS/XMSS that target NIST
security level 1, as this would provide security comparable to ECDSA with P-256 or Ed25519,
while still providing a buffer against quantum adversaries given the limitations of Grover’s
algorithm (e.g., limited parallelization or that the quantum circuit of the hash functions will be
fairly large). Introducing new variants with n = 16 would reduce the signature size for the OTS
by over 50%:

• LMOTS_SHA256_N16_W1: 2196 bytes
• LMOTS_SHA256_N16_W2: 1108 bytes
• LMOTS_SHA256_N16_W4: 580 bytes
• LMOTS_SHA256_N16_W8: 308 bytes

- 35 -

	Karsten Klein
	AMD
	Andreas Huelsing
	Thales DIS
	ETSI TC CYBER WG QSC
	NSA's Center for Cybersecurity Standards
	Crypto4A
	Marc Stöttinger
	Stefan-Lukas Gazdag
	Canadian Centre for Cyber Security
	Panos Kampanakis
	Google

