

Stateful Hash-Based Signatures
Public Comments on Draft SP 800-208

(February 28, 2020 deadline)

Karsten Klein..- 2 -
AMD ...- 3 -

Andreas Huelsing...- 8 -
Thales DIS..- 10 -

ETSI TC CYBER WG QSC ...- 14 -
NSA's Center for Cybersecurity Standards...- 29 -

Crypto4A...- 31 -
The QuantumRISC Project ...- 40 -

Stefan-Lukas Gazdag...- 43 -
Canadian Centre for Cyber Security ...- 46 -

Panos Kampanakis...- 48 -
Google...- 52 -

Karsten Klein

From: Karsten Klein
Date: Wednesday, January 15,2020, at 3:19pm

Hi there,

Concerning - Draft NIST SP 800-208.

I just finished a first read (I've extracted some items for further follow up) and have a general and a minor
comment:

Line 486 - With respect to how approved parameter sets are specified and footnote 3 in particular:
In general, an overview of all schemes (approved by NIST and existing in the referenced materials) with
an outcome (approved, approved with restrictions, not approved, not in scope) and a reasoning
(inefficient, ineffective, less secure due to...) could be used to avoid confusion of which parameter sets are
approved and which are not. This would also allow to unify the naming scheme and map the parameter
set naming used in the referenced RFCs (as it appears to be not homogeneous).
Eventually, this allows to omit the footnote. It really confused me, as it mixes scheme and parameter set
level)

In short: please consider how not approved and approved parameter sets are represented to avoid
confusion.

NIST Response: As noted in Section 5, the approved parameter sets are specified in Sections 5.1
– 5.4. We believe that providing a list of parameter sets that included both approved and non-
approved parameter sets would be more likely to create confusion than to improve clarity. While
only parameter sets in Section 5.1 came from RFC 8391, we tried to follow that RFC’s naming
scheme when assigning names to the parameter sets in Sections 5.2 – 5.4.

Line 502 - Numeric Identifier of XMSS-SHA2_20_256:
The Numeric Identifier for XMSS-SHA2_20_256 is 0x00000003 instead of 0x00000002; see RFC 8391 -
Table 7.

NIST Response: Thank you. This was a typo and it has been corrected in the final version.

Best regards,
Karsten Klein

- 2 -

AMD

From: Don Matthews
Date: Thursday, January 23, 2020 at 4:39pm

NIST SP 800-208 Draft Review Comments
General Comments
This is a summary of requested modification found by reviewers from AMD.

Commonality of Parameter Sets for Both Algorithms
LMS and XMSS are similar algorithms that as defined in their respective RFCs contain different
parameter sets. We believe that there is some benefit to unifying the LMS and XMSS parameter sets as
much as possible. The specific parameters are: W value, tree height, and hierarchical definition (HSS
and XMSSMT).

• For the W value, LMS support 1, 2, 4, and 8 where XMSS only supports 16 (equivalent to LMS
w=4). We would expect that most devices would use 1, 2, or 4 trading off key size for
performance, while 8 would be used for interface constrained devices with a subsequent drop in
performance.

• For tree height, LMS supports 5, 10, 15, 20, and 25 while XMSS supports 10, 16, and 20. XMSSMT

has support for a height 5 tree along with heights of 10 and 20.
• For the hierarchical versions, XMSSMT has a complete parameter set with a variety of options but

HSS has no parameter set associated with it and therefore, leaves the use up to an individual
creator’s definition.

We expected that NIST would use the two IETF standards and create similar parameter sets for both. As
an example, having both LMS and XMSS support tree heights of 5, 10, and 20.

By creating a common set of parameters, NIST can allow the implementors to choose an algorithm
based on their analysis of implementation rather than choosing an algorithm that has parameters that
best fits their requirements.

It is understood that any changes to the parameter sets may create additional work over what would be
required to meet the IETF standard. Although, most implementations should be written such that new
parameter sets should work with existing code for algorithm implementation. An LMS implementation
should allow for heights of 5, 10, and 20. An XMSS + XMSSMT algorithm also should allow for heights of
5, 10, and 20. Therefore, a common parameter set that allowed for heights of 5, 10, 20 for both LMS
and XMSS would be possible.

NIST Response: We do not believe there is a substantial benefit in defining new parameter sets
for LMS/HSS or XMSS/XMSSMT just for the sake of making the parameter sets of the two
schemes more similar. The two schemes will need to have separate implementations, so
harmonizing their parameter sets would provide minimal benefit.

- 3 -

Distributed Multi-Tree Hash-Based Signatures
We like this proposal that helps to alleviate concerns about system issues for solutions that require
longevity of key signing capabilities.

Concerns

• Large number of cryptographic modules are required if each tree from level 0 and level
1 is a different module

o The smallest LMS and XMSSMT solution has a top-level tree of height 5
• would require 33 cryptographic modules

o The cryptographic module associated with the top level is a single point of
failure.

• Recommendations below make It possible for the signature system to still
be functional even with the loss of the cryptographic module associated
with the top level.

Recommendations

• Suggested changes to limit the number of cryptographic modules
o Allow the top level to be based on LMS or XMSS with a height of 2, 3, or 4 and

the lower levels to be based on 4, 8, or 16 (respectively) cryptographic.
o Allow for the second layer to be implemented with LMS, HSS, XMSS, or XMSSMT

algorithms.
• helps alleviate any concern about the total number of signatures that can

be performed with a low height (height <= 5) top level tree.
o Create a new system with associated parameters.

• It would require parameters for the top level (LMS or XMSS with low
height) plus parameters for the lower level (LMS, HSS, XMSS, XMSSMT)
and parameters for the OTS (LM-OTS, WOTS+).

• Full parametrization of the complete system could get into long names.
• Suggested change to allow for loss of the cryptographic module associated with the top

level
o Have the signature of each lower level tree stored with the public key of the

lower level tree.
• Top level cryptographic module is only required for initial set up of sub

level cryptographic modules allowing for the cryptographic module to be
decommissioned.

• Since the top-level module is only used at system initialization it prevents
glitch attacks against the top level (as discussed in section 8).

NIST Response: The text in the final version of the document has been revised in order to make
the idea behind distributed multi-tree hash-based signatures more clear.

- 4 -

o There is no need for all of the one-time keys of the top-level LMS or XMSS tree to be
used. There is also no requirement for each bottom-level LMS or XMSS key to be
created in a separate cryptographic module. For example, suppose the goal were to
implement XMSSMT and have two cryptographic modules each of which has 10 000 one-
time keys available for signing ordinary messages. The parameter set XMSSMT-
SHA2_20/2_256 could be used. A top-level XMSS tree would be created in one
cryptographic module, and then 10 bottom-level XMSS trees could be created in that
same cryptographic module. Another 10 bottom-levels XMSS trees could be created in a
second cryptographic module. Only 20 of the 1024 top-level XMSS tree’s one-time keys
would be used. The resulting signatures will be slightly longer than necessary (since the
top-level tree has a height of 10 instead of 5), but no additional cryptographic modules
would be needed.

o While it is not described in Section 7, an HSS or XMSSMT tree with more than two levels
could be created. However, the goal is for the signature to be verifiable by an unmodified
implementation. So, we would prefer avoiding the creation of new systems along with
their associated parameters, as that would require signature verification software to be
modified to be able to accept these new systems.

o The cryptographic module that holds the top-level tree is not a single point of failure in
the manner described. The text in Section 7 assumes that there is an external device (e.g.,
laptop computer) that is sending commands to the cryptographic modules and receiving
the responses. So, when a bottom-level tree is to be created, the external device sends the
key generation command to the appropriate cryptographic module, receives the resulting
public key (i.e., tree root), and then sends that public key to the cryptographic module
holding the top-level tree for signature. This external device will then store the resulting
signature for later use. So, the signature for each lower-level tree is not just stored in the
cryptographic module holding the top-level tree. In fact, since the signatures can be made
public, multiple copies of these signatures may be stored in multiple different locations.

FIPS Requirement
NIST has defined a process for algorithm validation (CAVP) and module validation (CMVP). SP 800-208 is
defining an algorithm that should fall under CAVP but has a mandate that it only runs on a CMVP
validated module.

In the past, FIPS has not posted a certification requirement for the solutions using NIST approved
cryptographic algorithms. Many government contracts require FIPS certification, at different levels, but
individual customers could determine if there was value in having a certified implementation. With the
FIPS certification requirements as specified in line 741-743 in this draft, it mandates FIPS testing on the
processing module to be able to implement these algorithms. This leads to two different concerns

• It is not possible for a company to implement 800-208, even for internal uses, without
getting FIPS validation on their cryptographic module(s) or purchasing a module from an
outside company

• It will lead to confusion over algorithm names. Referencing any of the algorithms (LMS,
HSS, XMSS, XMSSMT) doesn’t indicate if it is compliant with 800-208 since it may only be
compliant with the RFCs

o AES, and other algorithms, are defined by NIST and is always NIST compliant no
matter where used for cryptographic operations

- 5 -

o AES may or may not be CAVP tested

Some of the impetus for approval of Stateful Hash-Based Signatures was that companies may not be
able to wait for the PQC algorithm selection process. Adding a FIPS 140 level 3 requirement for all
implementations of 800-208 (see lines 741-743) could delay companies from using 800-208 as a
solution. This requirement could be especially problematic for any company that has not been involved
with a previous FIPS validation.

NIST Response: The “Authority” section near the beginning of the document explains that “This
publication may be used by nongovernmental organizations on a voluntary basis….” So,
companies are free to implement the schemes described in SP 800-208 (and RFCs 8391 and
8554) without getting their implementations validated under either CAVP or CMVP. (Federal
government agencies, would not, however, be free to use implementations that had not been
validated.)

The commenters may be correct that one could not claim that an unvalidated implementation is
“compliant with SP 800-208,” but that is not unique to this document. As noted in the comment,
one may implement AES without getting the implementation validated. However, FIPS 197 states
that “Implementations of the algorithm that are tested by an accredited laboratory and validated
will be considered as complying with this standard.” So, if the implementation were not
validated, one could claim to have implemented AES, but could not claim that the
implementation is “NIST compliant.” The same applies with the digital signature schemes in SP
800-208.

Federal government agencies cannot use cryptography that is not NIST-approved and must only
use FIPS 140 validated cryptographic modules. So, for government agencies, the implementation
would have to be validated whether SP 800-208 mentioned that requirement or not. While the
document does impose certain additional requirements (e.g., level 3 physical security), we believe
those requirements are appropriate given the risk that one-time key reuse poses.

Nongovernmental organizations that are not trying to sell to the Federal government do not need
to follow any of the requirements in SP 800-208, although we hope that such organizations
choosing to implement stateful hash-based signatures will review SP 800-208 and consider the
benefits of following its guidelines.

Specific items
Line 358 (Figure 1) – Figure 1 is representing both the hash chain but also the signature and verification
operation simultaneously. It may be easier for some to understand if this was broken into two different
figures. The new Figure 1 would consist of (using shorthand):

X -> HASH -> H(X) -> HASH -> H(H(X)) -> HASH -> H(H(H(X))) = pub

The new figure 2 would consist of (using shorthand):

X -> HASH -> H(X) = S S -> HASH -> H(S) -> HASH -> H(H(S)) = pub

|---------------------------| |---|

Signing Operation Verification Operation

- 6 -

NIST Response: The final document has been modified based on this suggested change.

Lines 449-450 (related to HSS) – “Shall be used for every LMS tree at that level” –implies that one can
have an HSS signature design that utilized a different LMS parameter set at each level. The only
requirement is that they use the same hash algorithm. Is your intention to allow for that type of design?

NIST Response: Yes, it was intentional. A sentence has been added to this paragraph to make it
clear that different parameter sets may be used at different levels.

Line 491 (and others) – As discussed in the general comment previously, for XMSS, it may make sense to
allow for other W values (1, 2, 4, 8, 32) like what has been provided by LMS. This would allow from
performance/signature size tradeoffs and allow for similar configurations between LMS and XMSS.

NIST Response: SP 800-208 is intended to profile the use of RFC 8391 and RFC 8554 rather than
specifying yet another hash-based signature scheme. Section 3.1.1 of RFC 8391 specifies that w
must be either 4 or 16, so we could not specify parameter sets for w values of 1, 2, 8, or 32, while
remaining conformant with the RFC. While it would be possible to define parameter sets for w =
4 while still remaining conformant with RFC 8391, we believe it is better in this case to maintain
consistency with the RFC by only defining parameter sets for w = 16.

LMS & HSS RNG requirements:

If a TRNG is available, should it not be possible to use the TRNG for all private keys? This capability is
prevented in line 561-562 “shall be generated using the pseudorandom key generation method”

If TRNG is not allowed for private key generation (as currently written), then the content in parentheses
should be removed from line 567 “and SEED (if using the pseudorandom key generation method)”

Line 577 – “generated using the pseudorandom key generation” – as with LMS comment above, if a
TRNG is available, this specification prevents it from being used for private key generation.

NIST Response: The parenthetical on line 567 has been deleted. While any implementation of SP
800-208 would need access to a TRNG (or non-deterministic random bit generator (NRBG) in the
terminology of SP 800-90), and it would be theoretically possible to use this NRBG to generate
all of the random data for these schemes, doing so would not be practical, so there would be
minimal benefit in allowing it as an option. In addition, allowing for all of the private elements to
be generated using an NRBG rather than generating them deterministically from a seed would
make testing with the Automated Cryptographic Validation Testing System (ACVTS) more
complicated.

- 7 -

Andreas Huelsing

From: Andreas Huelsing
Date: Wednesday, January 29 at 10:58am

Dear NIST team,

Thanks for your work. I highly appreciate the current draft of SP 800-208. I only have a few
remarks.

a) As you do define a key generation mechanism, it might be worthwhile to define a
forward-secure one (as for example in the original XMSS paper). XMSS and LMS with
forward-secure key generation lead a forward-secure signature scheme. Forward-security
can add a strong guarantee for old signatures in case of key-compromise and essentially
comes for free in this setting.

NIST Response: While the cost of switching from the currently specified method of key
generation to one that offered forward-security would be relatively small, it would add some
complexity to the implementation, and the benefits are not entirely clear.

In theory, if a forward-secure key generation method is used, and the cryptographic module
holding the private keying material becomes compromised, relying parties could be notified to
distrust some of the one-time keys while continuing to trust others. However, this may not be
practical to implement in practice. It would require having a secure means for distributing the
revocation information, which would likely mean a separate signing key that has not been
compromised. It would also require the issuer of the revocation information to be able to
determine when the compromise occurred in order to ensure that all potentially compromised
one-time keys are revoked.

Safely making use of the forward-secure property would also require sufficient knowledge about
the implementation of the cryptographic module in use. Even if NIST mandated the use of the
forward-secure key generation method specified in the original XMSS paper, that would not
ensure that every implementation securely deleted older state information after each signature
generation. Without knowing exactly when (or if) older state information was deleted, the only
safe option for users of cryptographic modules would be to not take advantage of the forward
security property. Given that the users of the cryptographic modules would not, in general, be
able to safely make use of the forward security property, it may be better not to suggest in SP
800-208 that the property is available when it may not be in every implementation.

b) I understand that there is no decision made about the NIST post-quantum standardization
project. However, if NIST is even considering to keep SPHINCS+ it might be helpful to
synchronize the addressing schemes of XMSS & SPHINCS+ as well as considering the
tree-less WOTS-PK compression. This would allow to treat XMSS as a sub-step of
SPHINCS+, requiring the same code-base. Especially, the code for XMSS signature
verification would be almost a full sub-set of the SPHINCS+ verification code.

- 8 -

NIST Response: We believe that the benefits of referencing an existing standard (RFC 8391)
outweigh the potential benefits of developing yet another stateful hash-based signature scheme
that happens to be more closely aligned with SPHINCS+. For the intended use cases specified in
Section 1.1 of the document, it would not be practical to implement the scheme in SP 800-208
and then later add an implementation of SPHINCS+, so increasing the amount of commonality
between them would be of limited benefit.

c) While I essentially do agree with your accessment of the security proofs there are a few
nits:

- Line 1459: Should say second-preimage resistance.

- On the whole paragraph starting at 1457: Following the analysis in our recent
publication "The SPHINCS+ Signature Framework" we additionally require h_k to be
post-quantum, multi-function, multi-target decisional second preimage resistant.
Alternatively, one needs a statistical assumption about h_k which does not hold for
random functions (see the discussion about the tight security proof for SPHINCS+ on
the PQC mailing list).

- You could mention that LMS and XMSS are (non-tightly) secure in the standard
model if we are willing to assume collision resistance of the used hash function. In
this case, all the bitmasks and the prepended values can be arbitrary bit strings.

NIST Response: Line 1459 has been changed to “decisional second-preimage-resistant” and a
reference to "The SPHINCS+ Signature Framework" has been added. We decided against
mentioning the security in the standard model.

d) Regarding parameters: While I do think that limiting the choice of w and the used hash
function is a good idea, I do not see any benefit in limiting the number of options for the
total tree height and the number of layers. All implementations that I have seen are
generic with regard to these values. This allows users to adapt the schemes to their
constraints. What would be necessary in this case is defining upper bounds on both
values.

NIST Response: While it may be relatively easy for implementations to support arbitrary tree
heights, all implementations need to be tested under the Cryptographic Algorithm Validation
Program (CAVP), and allowing implementations to use any tree height would make that testing
more complicated. SP 800-208 does not impose any limits on the number of layers other than the
limits that are imposed by RFC 8391 and RFC 8554.

Best wishes,

Andreas

- 9 -

Thales DIS

From: Aline Gouet
Date: Tuesday, February 18, 2020 at 8:59am

Hello

Please find below comments on NIST draft 800-208 as a contribution of Thales DIS.

Best regards
Aline

Comment 1: In sub-section 1.1, the statement from line 273 to 275 discourages the use of
stateful HBS: “Stateful HBS schemes are only suitable for particular uses, as they require careful
state management. The recommendations are summarized in section 1.2 and described in detail
in [8]”. We believe that stateful HBS schemes can be efficient, secure and useful when some
implementation conditions are met. As the document itself is meant to be a general
recommendation, we would suggest to rephrase the sentence in a more assertive manner, e.g.
highlighting the importance of securely manage the state/counter in the implementation whatever
or independently from the use-case.

NIST Response: While it is certainly true that proper state management is important regardless of
the use case, Section 1.1 is only intended to discuss intended applications. Section 1.2 already
highlights the importance of proper maintenance of state.

Comment 2: In sub-section 1.1, lines 276 to 279, recommendation 2) “the implementation will
have a long lifetime” seems to be different compared with and maybe contradict in some extend
with initial answer from NIST on Gemalto comments: “we are keen to discourage the use of
stateful hash-based signatures except in scenarios where signing is infrequent” (from
https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based-Signatures/documents/stateful-HBS-misuse-resistance-public-
comments-April2019.pdf).
We believe that stateful HBS are suitable for long term, frequent usage, as long as the security
recommendations are taken care of. Could you please clarify NIST’s position on this point?
It would also make sense to add a fourth recommendation: “4) the implementation relies on
hardware cryptographic modules, as described in section 8.1.”

NIST Response: We do not view these recommendations as contradictory. For example, if a
manufacturer is selling a device that will be used for a very long time, there will be a need to be
able to securely distribute firmware updates to that device as long as the device continues to be
supported. However, firmware updates may only be issued a few times a year, so the firmware
signing key may similarly be only used a few times a year.

We agree that stateful HBS is just as secure as other cryptographic algorithms as long as one-time
keys are never reused and that organizations should generally be able to avoid one-time key reuse
by following appropriate security recommendations. However, there is a risk that not all

- 10 -

https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based-Signatures/documents/stateful-HBS-misuse-resistance-public

organizations that implement or use stateful HBS will carefully follow all of the appropriate
security recommendations. For this reason, we believe that stateful HBS is primarily intended for
applications in which there is no practical alternative.

The suggested fourth recommendation would not be consistent with this section as it describes an
implementation requirement rather than a type of application.

Comment 3: Section 3 on General Discussion describes mainly similarities of LMS and XMSS
(in subsections 3.1, 3.2, 3.3) and only few differences between LMS and XMSS, i.e. mainly in
subsection 3.4 on bitmasks and prefixes. It would be useful for the developer to describe in a
similar way differences in final hashing of the Winternitz scheme and signature structure.

NIST Response: Section 3 is intended to provide a high-level description of hash-based signature
schemes. For those who are not implementing the schemes this description may be sufficient. For
those who will be implementing the schemes, reading this high-level description first may aid in
understanding the detailed descriptions in RFCs 8391 and 8554. For those who are only interested
in a high-level description, we believe the description of the final hashing is too detailed. For
those who intend to implement one or both of these schemes, we believe the descriptions in the
RFCs are sufficient.

Comment 4: In section 3 on General discussion, there is no guidance on how to select one
signature scheme or the other one based on different criteria, such as for example the total
number of hashing (including the hashes used for bitmask generation) for comparable parameter
sets.

NIST Response: While this is true, it is no different from other NIST publications. For example,
FIPS 186-4 describes RSA, DSA, and ECDSA, but does not provide any guidance on how to
select one of these signature schemes.

Comment 5: In sections 4 and 5, the parameter sets of LMS and XMSS are described using
original notation from RFC 8554 and RFC 8391. Since the naming for both schemes are not
unified, that would be helpful to inform the reader in Section 3 and highlight some equivalences
or differences in Notation. For example, it might be worth mentioning that in LMS description
is equal to parameter in XMSS. Another example is that has different meanings in XMSS
and in LMS, in LMS corresponds to logarithm of in XMSS.

NIST Response: A footnote has been added to Section 3.1 explaining the different meanings of w
in the two RFCs. For the other variables used in the descriptions of the two schemes, definitions
have been added to Section 2.3.

Comment 6: The approved parameter sets for both LMS and XMSS are described in Section 4
and Section 5. For some parameter sets of XMSS, there are no equivalent parameters for LMS
and vice versa. For example, there are no XMSS parameters for 32 signatures while it is possible
for LMS. We believe that it is important to maintain the possibility to sign 32 messages which is
suitable for implementation on constrained secured elements and it would be good to either
provide similar parameter sets for both schemes or to explain the rationale of not having similar
parameters for both schemes.

- 11 -

NIST Response: We do not believe the Special Publication itself is an appropriate place to
provide rationale for design decisions. However, the parameters sets were mainly derived from
those specified in RFCs 8391 and 8554, and so the two schemes do not have similar parameters in
some cases since similar parameters were not defined in the RFCs.

An LMS tree with a height of 5 seems mainly useful as part of a multilevel HSS tree. As the
parameter sets for XMSS only apply to single-level trees, the usefulness of a 5-level tree seems
less clear. As described in Forward Secure Signatures on Smart Cards, even smart cards can
support XMSS keys with trees of height 10 or more.

Comment 7: The four approved hash functions are defined in the beginning of Section 4 and
Section 5. Since the most time consuming part of the signature is the OTS computation, it might
be beneficial to have the possibility to use a function based on a block-cipher for this part, e.g.
based on NIST SP 108 with PRF = CMAC-AES-256.

NIST Response: While it may be possible to specify a one-time signature scheme that uses
CMAC-AES-256 rather than a hash function, doing so would not be straightforward. One could
not simply use the output of one CMAC operation as the key for the next one, as the CMAC
output would be at most 128 bits, whereas the key would need to be 256 bits. Also, even if a
workable scheme were specified, it is not clear that the security proofs that have been developed
for the OTS schemes would apply to a version in which the hash function was replaced by a
CMAC operation. Finally, we believe that the OTS schemes using hash functions are already
sufficiently fast. The key generation times in Table 3 of RFC 8554 suggest that generating each
OTS key takes only about 0.16 milliseconds, and creating a signature should take only about half
that time.

Comment 8: In Section 4, Tables 1, 3, 5 and 7, the parameter is indicated. Is there any reason
for mentioning this parameter? We believe that it is used only for specific implementation
described in original proposal, but it is not mandatory for different implementation, therefore it
might be confusing placing it among the structure influencing parameters.

NIST Response: ls was included in these tables since the tables were somewhat modeled on Table
1 in RFC 8554. However, the ls column has been removed, since its value can be computed from
n and w using the formulas in Appendix B of RFC 8554.

Comment 9: In Section 3, Figure 5, the symbol is used for XOR operation. Maybe, it would be
better to use classical symbol instead.

NIST Response: Thank you. The symbol in Figure 5 has been changed.

Comment 10: In section 8, subsection 8.1, it is mentioned that “The cryptographic module shall
update the state of the private key in non-volatile storage before exporting a signature value or
accepting another request to sign a message”. Could you please clarify whether this requirement
also unable the possibility to use external memory to store the encrypted private key. (The
private key would be encrypted by a key of cryptographic module.)

NIST Response: The final sentence of the first paragraph in Section 8.1 states that “The
cryptographic module shall not allow for the export of private keying material.” This prohibition

- 12 -

includes exporting private keying material in encrypted form, even if no copies of the decryption
key are available outside of the cryptographic module.

For most cryptographic algorithms storing private keying material outside of the cryptographic
module in encrypted form would not pose a security vulnerability. However, in a stateful HBS
scheme allowing private keying material to be stored outside of the module could lead to
problems with state management that could result in one-time key reuse. For example, when the
key is loaded into the cryptographic module for use, the module may have no way to verify that
the key being loaded represents the current state of the key rather than being an older copy of the
key that is being loaded. The only safe way for the cryptographic module to ensure that state
information is being properly maintained is to store this information internally.

Comment 11: General comment: beyond the algorithm standardization, there is a need to address
the need for a standardized key parameter encoding. This applies not only to state full HBS
schemes, but any new HBS scheme in general. A general recommendation is that
implementations should rely on standardized key encoding techniques, which should be
referenced.

NIST Response: As with other NIST standards, SP 800-208 will not specify encoding methods
(other than the XDR that is included). Other standards organizations, such as the IETF, are in a
better position to specify encoding methods.

- 13 -

ETSI TC CYBER WG QSC

From: ETSI CyberSupport
Date: Wednesday, February 19, 3:39am

LIAISON STATEMENT
Title: Responses to NIST’s call for comments on

Draft SP 800-208: Recommendation for
Stateful Hash-Based Signature Schemes

Date:

From (source): TC CYBER WG QSC
Contact(s): cybersupport@etsi.org

To: NIST
Copy to:

Response to: NIST’s call for comments on Draft SP 800-208
(if applicable)

Attachments:
(if applicable)

TC CYBER WG QSC – Responses to NIST’s call for comments
on Draft SP 800-208: Recommendation for Stateful Hash-Based
Signature Schemes
This document contains a non-exhaustive collection of comments from ETSI TC CYBER WG QSC on
NIST’s draft Special Publication 800-208: Recommendation for Stateful Hash-Based Signatures
Schemes.

The draft specifies approved profiles for the LMS/HSS and XMSS/XMSS^MT stateful hash-based
signature schemes. This means that it lists parameter sets for the schemes, but it relies on RFC 8391 and
RFC 8554 for detailed descriptions of the algorithms. This is problematic for several reasons:

• Although LMS and XMSS are very similar, the two RFCs use different and sometimes
conflicting notation. The NIST draft keeps the same notation as the RFCs, which will
inevitably cause confusion for readers who are not already familiar with the schemes.
Harmonising the notation is preferable, but not straightforward. One possible, but imperfect,
solution would be to add a section that defines the mappings between notations. An alternative
may be to consider producing two separate documents, one profiling LMS/HSS, and the other
profiling XMSS/XMSS^MT.

- 14 -

mailto:cybersupport@etsi.org

NIST Response: Section 2.3 was extended to include definitions of the variables from RFCs
8391 and 8554 that are referenced in the SP, specifically noting instances in which a single
variable is used in both RFCs, but with different meanings. NIST does not believe there is a
need to have separate documents for LMS/HSS and XMSS/XMSSMT. While it is true that RFC
8391 and RFC 8554 sometimes assign different meanings to the same identifier, we believe
that implementers understand that the definition of an identifier in one context does not apply
to the use of that identifier in a different context. For example, in FIPS 186-4 the identifiers p
and q are used to identify prime numbers in both RSA and DSA, but in RSA they represent the
private factors of the modulus n, whereas in DSA they represent public domain parameters.
The identifiers n and d are used in the descriptions of both RSA and DSA, but with different
meanings in each. Readers of FIPS 186-4 understand that the definitions of identifiers such as
p, q, n and d in the description of RSA do not apply to DSA and vice versa.

• The RFCs were only intended to describe the schemes “with enough specificity to ensure
interoperability between implementations”. Neither RFC gives a full description of signature
generation. Indeed, RFC 8391 provides example pseudocode for computing the authentication
path for XMSS, but strongly recommends that a different method is used. Further, both the
RFCs, as well as the draft SP, omit discussion on tree management strategies; RFC 8391
mentions it briefly, but general discussion is omitted. While algorithms such as the
Buchmann-Dahmen-Schneider (BDS) algorithm are not required for interoperability, some
mention of them may be beneficial for prospective implementors.

NIST Response: Noted. As is the case with other NIST algorithm publications, SP 800-208
specifies the requirements that implementations must meet, not how to meet them. Those who
are trying to implement these algorithms will read the RFCs. While RFC 8391 does not
describe tree management strategies itself, it does refer readers to papers that provide this
information. We strongly encourage implementers to review the existing literature for
guidance on how to most efficiently and safely implement these schemes.

• There are some places where the RFCs are ambiguous. For example: when RFC 8554 refers to
the LM-OTS or LMS public key it is not always clear whether it means the full public key
including the typecodes and identifiers, or just the final hash values; RFC 8391 does not
describe what should happen when idx_sig, which is incremented with each signature, exceeds
the number of available one-time signatures.

NIST Response: We believe that if there are details in these RFCs that are ambiguous, then it
would be better for them to be addressed in the RFCs (either via errata or updates).
Implementers may also refer to the reference implementations, when necessary. If NIST were
to attempt to address potential ambiguities in SP 800-208, then there would be the risk of
NIST unintentionally deviating from the RFCs. Note that details about such issues as how to
format public keys and signatures are out of scope for NIST algorithm specifications, except
in the case of data objects that are to be digitally signed (e.g., the root of a lower-level tree).
Other encoding details are better addressed elsewhere (e.g., RFC 8708).

Consequently, without further guidance it would be difficult for a non-expert to implement the signature
schemes correctly and efficiently from the NIST draft and the RFCs.

NIST Response: As noted above, issues related to encoding and efficient implementation
techniques are out of scope for SP 800-208. Implementers are strongly encouraged to review the

- 15 -

existing literature on hash-based signatures for information about how to implement these
schemes efficiently.

More detailed comments follow:

Line 131: “NIST would like feedback on whether there would be a benefit in reducing the number of
parameter sets…”

There are currently 80 LMS parameter sets, 12 XMSS parameter sets, and 32 XMSS^MT
parameter sets. This seems excessive. Fewer choices of parameters generally increases
interoperability of implementations, especially as there are now different choices of hash
functions. In general, the choice of which parameter sets to eliminate and which to include is
not straight-forward: parameter choices require different trade-offs, and those trade-offs may
be compounded by other implementation choices, such as tree management strategies.
However, certain parameter sets are impractical and can easily be eliminated. For example,
RFC 8554 allows for up to 8 layers in an HSS hierarchy, and each layer can be of height at
most 25, giving a maximum total tree height of 200. Time and compute resources for such a
parameter set may not be readily available, and the benefits of using such large constructions
are not clear. Conversely, it seems unlikely that the improved verification times are worth the
increased signature sizes for the LMS parameters where � = 1 or � = 2. Therefore, we
recommend NIST reduce the approved parameter sets to those that are practical or feasible to
use.

There an issue of redundancy in parameter sets: there exist multiple parameter sets that offer
the same signature size but require a varying number of hash function invocations. Such
parameter sets could be pruned down to the most performant options while the rest are
discarded, perhaps based on the number of signatures required, or for obtaining specific
trade-offs. Unfortunately, no closed-form formula currently exists that would exclude non-
optimal parameter sets.

NIST Response: While we agree that an instance of HSS with 8 layers of trees each having a
height of 25 would not be practical, we do not believe there is a practical way to prohibit its
use, as parameter sets are only defined for LMS, not HSS. As noted in Section 7.1 of SP 800-
208, a cryptographic module that implements LMS signing has no control over how LMS
instances are combined to create HSS instances. On the verification side, we expect verifiers
to process each LMS public key and signature in a chain individually, so that the overall
height of the multi-tree will not be relevant.

We also believe that the primary use case for stateful hash-based signatures will be scenarios
such as firmware signing, in which the same entity is in control of both the signing process
and the verification software, so that interoperability between arbitrary signing cryptographic
modules and arbitrary verification cryptographic modules will not be necessary.

Line 143: “NIST would like feedback on whether there is a need to be able to create one-level XMSS or
LMS keys in which the one-time keys are not all created or stored on same cryptographic
module…”

Resilience can already be provided by distributing a two-level HSS or XMSS^MT instance
over different cryptographic modules. Distributing a single-level LMS or XMSS tree would

- 16 -

likely require more significant changes to the interfaces for key generation, but only saves
the cost of an intermediate one-time signature.

NIST Response: Thank you for the feedback. Based on the feedback provided, we have
decided not to include such an option.

Line 273: “Stateful HBS schemes are not suitable for general use because they require careful state
management that is often difficult to assure…”

Another feature of HBS schemes that makes them less suitable for general use is that a given
key pair can only sign a limited number of messages, and once that limit has been reached
the long-term signing key is no longer useable.

NIST Response: Noted. However, the goal of this section is to highlight the potential security
risk associated with the use of stateful hash-based signatures. While the number of signatures
is limited, this can be addressed by choosing a parameter set that has enough one-time keys to
ensure that the limit will never be reached.

Line 276: “Instead, stateful HBS schemes are primarily intended for applications with the following
characteristics…”

It is also necessary to estimate the maximum number of messages that will need to be signed
over the lifetime of the implementation, as this determines which parameter set should be
used. This may be straightforward for some applications, but difficult for others; of course, it
may be possible to be conservative and use a significant overestimate, but at the cost of
reduced performance and increased signature sizes.

Further, there is also the notion of signature “loss” over the lifetime of the long-term key
pair, depending on how state is managed. For example, an implementation may partition the
state and advance it in distinct, non-overlapping blocks, accepting the risk that a system
restart would lose the number of signatures in a single block. Over time, with large enough
blocks, or with enough reboots, a significant portion of the total signatures may be lost.

It should be noted that the longer a hardware cryptographic module is in use, the greater the
probability of device failure becomes. In such a case, existing signatures can still be verified,
but no new signatures can be created under that same long-term key pair. As key back-up
and recovery is restricted by the draft, the eventuality of no longer being able to generate
signatures under a long-term key pair should be considered before deployment.

NIST Response: NIST is not aware of applications that would have the characteristics listed in
Section 1.1 that would require frequent signing. So, for the intended applications it should not
be overly difficult to choose a parameter set that provides enough one-time keys for the
intended lifetime of the HBS scheme without significantly increasing signature sizes or
reducing performance. In general, adding another tree level will add significantly to the
signature size and to signing and verification time, but increasing the height of a tree by 5
(which multiplies the number of available OTS keys by 32) will add a relatively small amount
to the signature size and signing/verification time.

As signing is not expected to be frequent, there should be no reason for HSMs to advance the
state in blocks rather than a single one-time key at a time. It will be necessary for the

- 17 -

parameter set to have more one-time keys than the number of signatures needed in order to
account for the possible loss (due to malfunction) of cryptographic modules, but it should not
be problematic to account for this.

While there is a risk that a cryptographic module may malfunction (or cease working) during
the intended lifetime of the HBS scheme, spreading the one-time keys across multiple
cryptographic modules, as suggested in Section 7, should help to ensure that the ability to
generate signatures is not lost.

Footnote 2: “HSS allows for up to eight levels of trees and XMSS^MT allows for up to 12 levels of
trees.”

This restriction on the number of layers is important enough that it should be included in the
main body of the text, as it could easily be missed. Implementors will select parameter sets
from the tables within the SP, therefore parameter set restrictions should be explicit.

NIST Response: Noted. This footnote is merely repeating information from the base standard.
While SP 800-208 does not restrict the number of levels beyond the restrictions imposed by
the base standards, NIST does not envision use cases in which it would be necessary to use so
many levels of trees. While two levels of trees are useful in order to easily spread one-time
keys across multiple cryptographic modules as described in Section 7, the need for more than
two levels of trees seems unclear.

Line 427: “…which uniquely identifies where a particular hash invocation occurs within the scheme.”

As per the comment below regarding Line 576, the addressing scheme used in RFC 8391
does not uniquely identify where every hash invocation occurs within the scheme.

NIST Response: Noted. Section 3.4 is referring to the generation of hash chains and Merkle
trees, not to the generation of secret keying material. The suggested key generation
mechanism in Section 3.1.7 of RFC 8391 uses neither prefixes nor bitmasks.

Line 428: “This address is then hashed along with a unique identifier for the long-term public key
(SEED) to create the prefix.”

There is an unhelpful (and potentially dangerous) conflict of notation between the use of
SEED in XMSS, where it is a public identifier, and in LMS, where it is a private value used
to derive the one-time private keys (see line 563).

NIST Response: Noted. While it may be felt that it would have been better if RFC 8391 and
RFC 8554 had not both used the identifier SEED, with one using it to refer to a public value
and one using it to refer to a private key, NIST cannot change these RFCs. Text has been
added to Section 2.3 to specifically note that SEED has different meanings in each of the
RFCs, and the body of the text in SP 800-208 is written in such a way to ensure it is clear
when the text is discussing LMS or XMSS.

Line 436: Figure 5

The diagram should use the symbol ⊕ to denote exclusive or instead of ⨂.

- 18 -

NIST Response: Corrected. Thank you.

Line 438: “This Special Publication approves the use of LMS and HSS…”

The use of the word “and” implies that NIST approves stand-alone LMS implementations
that are not themselves HSS with L=1. Section 6 of RFC 8554 states that “Since HSS with
L=1 has very little overhead compared to LMS, all implementations MUST support HSS in
order to maximize interoperability”; the somewhat ambiguous language “all
implementations” is taken to mean “all implementations of LMS”. NIST should make it
explicit if they wish to allow non-HSS implementations of LMS. However, as LMS is often
used interchangeably with HSS (which could lead to undue confusion) it is recommended
that NIST only allow HSS, where single-layer LMS is explicitly HSS.

NIST Response: Noted. The only difference between LMS and HSS with L=1 is the addition
of some parameter information at the beginning of the encoding for public keys and signatures
in HSS. As this encoding is outside the scope of SP 800-208, the difference is not relevant to
this specification. Also, in order to implement the scheme suggested in Section 7 of SP 800-
208, each cryptographic module would implement LMS and an external (non-cryptographic)
device would use the outputs of these modules to form HSS public keys and signatures. So,
while relying parties would receive HSS public keys and signatures, the signing cryptographic
modules would implement LMS, and so the Cryptographic Algorithm Validation Program
(CAVP) would be validating implementations of LMS key and signature generation.

Line 444: “… the hash function used for the LMS system shall be the same as the hash function used in
the LM-OTS keys.”

RFC 8554 allows the use of different hash functions in LM-OTS and the LMS tree. If this
restriction is intended to be enforced by verifiers, then Section 8.2 needs to mandate an
explicit check of the typecodes in the public key, with the public key being rejected if they
do not correspond to the same hash function.

NIST Response: The referenced text applies to “When generating a key pair for an LMS
instance.” There is no intention to require verifiers to enforce this restriction.

Line 447: “If the HSS instance has more than one level, then the hash function used for the tree at level
0 shall be used for every LMS tree at every other level.”

As expressed in Section 6.1 of RFC 8554, the HSS public key only includes the typecodes
for the LMS and LM-OTS signatures at level 0. The general HSS process described in RFC
8554 specifically allows the use of different parameter sets, and hence different hash
functions, at different levels. If this restriction is to be enforced by verifiers, then Section 8.2
of the draft needs to mandate an explicit check of the typecodes contained in each signature;
signatures are to be rejected if the typecodes do not correspond to the hash function specified
in the HSS public key.

Because the long-term public key only includes the typecodes for the LMS and LM-OTS
signatures at level 0, the signer could change the parameters used at other levels over time;
that is, different signatures could use different parameters. Although Section 6 of RFC 8554
makes the explicit requirement “…the signer MUST NOT change the parameter sets for a
specific level”, there is no way to detect or forbid this from the perspective of a verifier,

- 19 -

without storing extra state. Therefore, complete parameter sets (for all levels) should also be
included in, or derivable from the public key.

Considering the above comment regarding Line 438, if an LMS instance is defined as an
HSS instance with L=1, and if parameter sets are validated, there may be additional difficulty
with signature verification if using the distributed method described in Section 7.1 of the
draft, as each distinct module will use “L=1”, although the “virtual hierarchy” is larger.

Section 5.3 of RFC 8554 (LMS public key) does not set explicit requirements for the LMS
public key format. The language used is “the LMS public key can be represented as the byte
string u32str(type) || u32str(otstype) || I || T[1]”. In addition to the comments given above,
NIST could make the public key formats explicit requirements. Similarly, there is a lack of
requirements expressed for the LM-OTS or HSS public key formats.

There is also an unhelpful (and potentially dangerous) conflict of indexing conventions
between HSS, where level 0 corresponds to the “root” tree used to compute the HSS public
key, and XMSS^MT, where level 0 corresponds to the “leaf” trees used to sign messages.

NIST Response: The referenced text is in a paragraph that applies “When generating a key
pair for an HSS instance.” There is no intention to require verifiers to enforce this restriction.
It is also understood that using the scheme described in Section 7.1, there is no way for the
signing cryptographic modules to enforce this restriction.

While Section 5.3 of RFC 8554 does not set explicit requirements, Section 3.3 notes that “The
signature and public key formats are formally defined in XDR to provide an unambiguous,
machine-readable definition [RFC4506].” The text quoted above from Section 5.3 of RFC
8554 is consistent with the XDR for public keys that is specified in Section 3.3.

Line 449: “For each level, the same LMS and LM-OTS parameters set shall be used for every LMS tree
at that level.”

For clarity, it may be worth explicitly stating that different levels may use different LMS and
LM-OTS parameters; e.g., they are allowed to have different tree heights. However, as
mentioned above, the verifier cannot check whether this statement has been adhered to.

NIST Response: A sentence has been added explicitly noting that different tree levels may use
different LMS and LM-OTS parameters as long as the same hash function is used at every
level.

Line 452: “The parameters �, �, ��, �, and ℎ specified in the tables are defined in Sections 4.1 and
5.1 of [2].”

There is an unhelpful (and potentially dangerous) conflict of notation between the use of �
in XMSS, where the Winternitz chains have length �, and in LMS, where they have length
2!. If the parameters are not explained, then there should at least be a warning that they
represent different things for the two schemes. Similarly, there is a conflict of notation
between the use of ℎ in HSS, where it is the height of the trees in a single level, and in
XMSS^MT, where it is the total height of the hypertree.

- 20 -

	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	

	

NIST Response: Section 2.3 has been extended to include definitions of these variables,
highlighting instances in which a single variable has one meaning in RFC 8391 and a different
meaning in RFC 8554.

Line 459: Table 1

Although the signature lengths for LM-OTS are taken directly from RFC 8554, they are
rather misleading when taken in isolation, as the one-time signature scheme will never be
used by itself. It would be useful to have a separate table listing the public key and signature
sizes for the different LMS parameters.

NIST Response: The signature length column has been removed from Tables 1, 3, 5, and 7.

Line 516: “For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as
follows:”

In RFC 8391, the SHA-256 and SHA-512 parameter sets pad the key so that it completely
fills a SHA-2 message block for �, � and ���, or two SHA-2 message blocks for �"#$. If
the same approach is used for the truncated SHA-256/192 parameter sets, then the functions
should be defined as:

�(���, �) = �%&'(SHA-256(toByte(0, 40) || ��� || �))
�(���, �) = �%&'(SHA-256(toByte(1, 40) || ��� || �))

�"#$(���,�) = �%&'(SHA-256(toByte(2, 56) || ��� || �))
���(���, �) = �%&'(SHA-256(toByte(3, 40) || ��� || �))

In the current draft the text reads “toByte(i, 4)”, representing integer i only in 4 bytes.

NIST Response: We are aware that this is how the padding was specified for SHA-256 and
SHA-512 in RFC 8391. However, we chose not to follow that convention for the 192-bit hash
functions. Using the smaller amount of padding allows F(KEY, M) to be computed with just
one iteration of the compression function, resulting in faster computation.

Line 545: “For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as
follows:”

In RFC 8391 it is explained that although a shorter identifier could be used with SHA3, �
bytes are used for consistency with the SHA2 implementations. The draft appears to stick
with this convention in the case where � = 32, in lines 533 to 536, so it is recommended that
the functions defined in lines 547 to 550 pad their identifiers to 24 bytes.

NIST Response: As noted in the previous comment, the padding length was set in RFC 8391
so that the padded prefix and the key completely fills a message block. It is just coincidence
that the amount of padding needed to do this is n bytes. As was done in RFC 8391, the
padding for SHAKE256/192 was set to be consistent with the amount of padding specified for
SHA256/192.

Line 566: “If more than one LMS instance is being created (e.g., for an HSS instance), then a separate
key pair identifier �, and ���� (if using the pseudorandom key generation method) shall be
generated for each LMS instance.”

- 21 -

 	

The previous paragraph of Section 6.1 mandates the use of the pseudorandom key generation
method.

NIST Response: This was an editing mistake. The parenthetical, “(if using the pseudorandom
key generation method” should have been deleted.

Line 569: “When generating a signature, the n-byte randomizer C (see Section 4.5 of [2]) shall be
generated…”

The LM-OTS signatures are not deterministic because of the randomizer C. Therefore, if a
leaf node on a higher level signs a root node on a lower level more than once, the resulting
signatures will be different, which could allow an attacker to forge signatures. Section 6 of
RFC 8554 implicitly addresses this issue by stating that “It is expected that the above arrays
are maintained for the course of the HSS key.” NIST should make storage of these arrays a
requirement, or propose an alternative, deterministic, signing method.

NIST Response: Noted. The final version of the document has been modified to specify that
each one-time key may only be used to sign a message once, even in the case where multiple
levels of trees are implemented in a single cryptographic module and the OTS key is being
used to sign the root of a lower-level tree.

Line 576: “The private �-byte strings in the WOTS+ private keys (��[�] in Section 3.1.3 of [1]) shall
be generated using the pseudorandom key generation method specified in Section 3.1.7 of
[1]:”

There is a serious flaw in the pseudorandom key generation process described in RFC 8391
and mandated in the NIST draft. The private key value ��(,* for one-time signature
instance j is derived from the private seed ����* via

��(,* = ��� H����* , ������(�, 32)M

The private key index � acts as the address for the PRF, but this address does not depend on
the index � of the one-time signature. Consequently, after observing � one-time signatures
there is a multi-target attack that recovers a private seed with around 2+,-./� calls to the
PRF. This reduces the classical security of XMSS and XMSS^MT with tree height ℎ by
around ℎ − 4 bits.

Expanding on the above, suppose we observe a WOTS+ signature � = (�/, �%, … , �01%) on
the message � = (�/, �%, … , �01%), where we implicitly include the checksum. For most
values of � the message word �(can be viewed as a uniformly random element of
{0, 1, … ,� − 1}, with the obvious exception being the most significant word of the
checksum. The probability that �(= 0, and so the probability that �(reveals the private
value ��(, will be 1/�.

Now suppose that we observe � WOTS+ signatures �%, �', … , �2 on the messages
�%, �', … , �2 . For a fixed � we expect �/� of the messages to have �(,* = 0, so we expect
the � signatures to reveal �/� private values; that is, we expect there to be �/� values where

- 22 -

 	

 	

�(,* = ��(,*. In general, we can choose the index � that reveals the most private values, which
will be higher than �/�, but not significantly so.

Because the �/� private values all have the form ��(,* = �(����*|| �) for private one-time
seeds ����* and a fixed index �, we can try to guess a seed by choosing a putative �-byte
value ����′, computing ��′ = �(����′|| �), and then comparing ��′ with our �/� target
values ��(,* . The probability that our guess will match one of the targets is �/�2+,, so we
would expect to recover one of the seeds after �2+,/� guesses.

For XMSS, the Winternitz parameter is always chosen to be � = 2. . Given a tree of
height ℎ, the maximum number of one-time signatures that can be observed is � =
23 . Consequently, the attack requires 2+,-.13 guesses.

A possible fix to this attack is to adopt the addressing method used for XMSS^MT in the
NIST PQC Round 2 SPHINCS+ submission.

NIST Response: Thank you for pointing out this weakness in the pseudorandom key
generation offered as an example in RFC 8391. Just as all other aspects of XMSS and LMS
were designed to protect against multi-target attacks, we agree that the key generation
mechanism should protect against such attacks.

As suggested, we reviewed the key generation method specified in the NIST PQC Round 2
SPHINCS+ submission, which uses sk[i] = PRF(SK.seed, ADRS). This construction does
provide better multi-target protection, since ADRS has a different value for each chain in a
XMSS or XMSSMT key. We note, however, that ADRS does not identify the XMSS or
XMSSMT key itself. As a result, this construction does not fully protect against multi-target
attacks, if the attacker has access to signatures created using many different XMSS or
XMSSMT keys.

In order to fully protect against multi-target attacks, the final version of SP 800-208 specifies
that the private strings shall be generated using sk[i,j] = PRFkeygen(S_XMSS, SEED || ADRS).
A new function, PRFkeygen, was defined since RFC 8391 defines PRF as a function that “takes
as input an n-byte key and a 32-byte index.”

Line 586: “Distributed Multi-Tree Hash-Based Signatures”

The methods described in this section of the draft effectively describe “virtual hypertree”
schemes, distributed across multiple hardware cryptographic modules, where no keying
material is exported from any module. To use this approach in practice will require a
significant amount of supporting software to facilitate communication between hardware
modules, keep track of which trees belong to which device, prevent malicious re-routing of
requests to inauthentic modules, and other operational requirements.

Consequently, such techniques will be difficult to deploy or use practically. With that in
mind, NIST may want to consider relaxing the constraints on exporting private data. Below
are some options NIST may consider that would allow for secure key backup and recovery:

• Backup and recovery should happen between two distinct machines that share the same code
(e.g., both are HSMs).

- 23 -

• This communication should be supported by a KEM, where the shared secret is ephemeral
and securely deleted after one use; this prevents redeployment.

• The state must be deleted from source machine after it has been exported to the other device.
This prevents redeployment as well.

NIST Response: Section 7.2.2 provides a high-level description of the functionality that
supporting software would need to implement for XMSSMT. This does not seem to be a
significant amount of supporting software. In a typical implementation, there may be two
cryptographic modules (one for the top-level tree and one for a bottom-level tree) connected to
the external device (desktop computer) during key generation. As described in Section 7.2.2
the amount of “communication” between the two modules would be very limited – submitting
the public key from one module to the other module to be signed. During normal operations,
only a single cryptographic module (holding a bottom-level tree) would be connected. There is
no need to keep track of which trees belong to which device, as the signature itself indicates
from which tree it was generated. It is unclear why the commenters believe that the supporting
software would need to “prevent malicious re-routing of requests to inauthentic modules.”

Line 620: “Distributing the implementation of an XMSS^MT instance across multiple cryptographic
modules requires each cryptographic module to implement slightly modified versions of the
XMSS key and signature generation algorithms provided in [1].”

Distributing HSS across multiple cryptographic modules is reasonably straightforward, as
each intermediate signature is an independent instance of LMS. However, in XMSS^MT the
intermediate signatures are instances of a reduced variant of XMSS, which are all implicitly
viewed as being part of the same hypertree of total height ℎ; e.g., the hash function addresses
are given in terms of their locations in this hypertree.

The method of distributing XMSS^MT across multiple cryptographic modules suggested in
Section 7.2 preserves interoperability with RFC 8391 by modifying the standard XMSS key
generation and signing algorithms but is significantly more complicated to implement and
use. Further, if the process for provisioning a bottom-level cryptographic module fails for
some reason (see line 719) then this wastes a valuable signature from the top-level module.

A simpler approach would be to adapt the approach from HSS and use independent instances
of (full) XMSS for the intermediate signatures. The disadvantages of doing this are that it
would increase the length of the signatures, and the scheme would not be interoperable with
XMSS^MT as specified by RFC 8391.

Given that NIST is allowing additional parameter sets and hash functions for both HSS and
XMSS^MT, RFC-compliant implementations may not be able to verify all NIST-compliant
signatures. This raises the question of how much interoperability should be preserved? NIST
may want to break away from the RFCs entirely and set their own, distinct, requirements.

NIST Response: Noted. As indicated later, line 719 was added as an extra check that the
operation worked as expected. The need to try signature generation a second time should be
rare. While the failure would result in the “loss” of a one-time key in the top-level module,
this should not be a significant problem, as these keys are only used to sign the roots of
bottom-level keys. One would expect only a handful of the top-level tree’s one-time keys to be
used, and the top-level tree will have at least 32 one-time keys (and will more likely have at
least 1024 one-time keys).

- 24 -

Given that there are already two competing standards for stateful hash-based signatures, LMS
and XMSS, NIST does not believe that it would be beneficial to create yet another standard in
this same space.

Line 641: “7.2.1 Modified XMSS Key Generation and Signature Algorithms”

The LMS and XMSS RFCs both contain explicit return statements in their pseudocode,
which improves clarity, but the pseudocode in the NIST draft does not. This is particularly
confusing in, for example, lines 708 and 712 where assignments are made to public key
values using information returned from calls to XMSS’_keygen.

It may be worth stating explicitly that Algorithm 10’ is a modified version of Algorithm 10
in RFC 8391; the same applies to Algorithm 12’. Similarly, it may be worth stating explicitly
that XMSS^MT external device keygen replaces Algorithm 15, and that XMSS^MT
external device sign replaces Algorithm 16.

There is a lack of clarity about where the structure SigPK lives in relation to the provisioned
cryptographic modules, and whether it needs to be protected.

NIST Response: While the outputs of Algorithms 10' and 12' were already specified on lines
647 and 686, explicit return statements have been added.

While it does not specifically state “Algorithm 10,” the text at the beginning of Section 7.2
states that the algorithms in Section 7.2.1 are slightly modified versions of the XMSS key and
signature generation algorithms provided in RFC 8391. The XMSS key and signature
generation algorithms are provided in RFC 8391 as Algorithm 10 and Algorithm 12.

It should be clear from the context that variables used in Section 7.2.2 are stored on the
external device, not the provisioned cryptographic modules, as the algorithms described are to
be run on the external device.

Line 647: “Output: XMSS public key PK”

There may be scope for confusion here, as in RFC 8391 the output of Algorithm 10 is the
XMSS public key and the XMSS private key.

NIST Response: As noted in Section 7 and in Section 8, private keying material cannot be
exported. So, the private key is not an output. It is generated within the cryptographic module
and remains there.

Line 651: “wots_sk[i] = WOTS_genSK();”

In RFC 8391, WOTS_genSK() (as described in Algorithm 3) sets each element of
wots_sk to a uniformly random n-byte string, but the NIST draft mandates the use of the
pseudorandom key generation method described in Section 3.1.7 of RFC 8391. This has the
potential to cause confusion as the WOTS_genSK()function requires access to a uniformly
random n-byte string S that should be stored as part of the private key.

- 25 -

NIST Response: Algorithm 10' has been modified to explicitly mention the generation of
S_XMSS and to describe the method for pseudorandomly generating the one-time keys, rather
than just referring to WOTS_genSK().

Line 679: “SK = L || t || idx || wots_sk || SK_PRF || root || SEED”

No terminating semicolon. The same comment applies to lines 681, 683, 696, and 697.

This definition also conflicts with the use of “setter methods” in lines 657, 669, and 670.

NIST Response: The terminating semicolons have been added. It is unclear in what way the
definition conflicts with the use of “setter methods.”

Line 683: “PK = OID || root || SEED”

The format of the OID is not defined in RFC 8391, and it is not entirely clear how it relates
to the identifiers in Section 5 of the NIST draft. There may be some confusion between the
identifiers for XMSS and XMSS^MT as they appear to overlap.

NIST Response: This line has been clarified by adding a comment that refers to the XDR
syntax for xmssmt_public_key in Appendix C.3 of RFC 8391.

Line 719: “if (getIdx(SigPK[t]) ≠ t) {”

This should be a while loop rather than an if statement. This process probably deserves
more detailed explanation in the surrounding text.

NIST Response: The “If” statement has been changed to a “while” statement. However, a
single failure of this test should be very uncommon. If a second attempt fails, this is likely an
indication of a serious problem with the top-level signing module. A footnote has been added
to the comment preceding this line to provide even more explanation for the reason that this
step may be needed.

Line 729: “// Send XMSS’_sign() command to one of the bottom-level key
pairs”

In the example XMSS^MT signing algorithm described in RFC 8391, when one bottom-
level key pair is exhausted a new key pair is generated automatically for the next signature.
The method of external device operations presented in Section 7.2.2 suggest that the bottom-
level cryptographic modules are provisioned first during key generation, and then one of the
available modules is chosen for use during each signing call. In practice, there will likely
need to be a mechanism for switching between modules and dynamically re-provisioning
them when their key pairs have been exhausted.

NIST Response: Re-provisioning when key pairs have been exhausted is not recommended, as
any newly generated key bottom-level key pair would have to be signed by the top-level key.
If the module holding the top-level key has failed, this will be impossible.

- 26 -

In most cases, we expect each cryptographic module that holds bottom-level keys to be pre-
provisioned with enough one-time keys to generate all signatures that may need to be created
over the life of the HBS key pair. This could be a single bottom-level key with 210 or 220 one-
time keys, or a relatively small number of bottom-level keys that each has 210 or 220 one-time
keys. For example, in the case of signing firmware updates, it is highly likely that the total
number of firmware images that would need to be signed using a single HBS key would be far
less than 1000.

Line 815: “The faulted signature remains a valid signature, so checking that the signature verifies is
insufficient to detect or prevent this attack.”

The faulted signature is highly likely to be valid, but it depends where the fault occurs. If it is
during one of the hash function calls that needs to be recomputed for verification, then the
signature will not be valid.

NIST Response: The section in the document discussing fault injection resistance has been
removed.

Line 816: “The only reliable way to prevent this attack is to compute each one-time signature once,
cache the result, and output it whenever needed.”

There are alternative mitigations. For example, one approach is to use redundancy: compute
the full signature twice, compare the results and only release a signature if the results match;
an attacker would need to induce two identical faults in order to obtain an exploitable
signature.

NIST Response: The section in the document discussing fault injection resistance has been
removed.

Line 841: “The randomized hashing process does not, however, impact the ability for a signer to create
a generic collision since the signer, knowing the private key, could choose the random value
to prepend to the message.”

It is not entirely clear why this discussion is included, since, as pointed out on line 851, this
should not really be considered an attack on the signature scheme. Randomised hashing is
intended to prevent someone other than the signer preparing a pair of colliding messages;
see, for example, the discussion in NIST SP 800-106. This is only a threat if the values � in
RFC 8391 and � in RFC 8554 are not sufficiently random.

NIST Response: In most cases it is not an issue if the private key holder is able to generate
two messages that have the same signature, which is why preventing this is not required to
achieve EUF-CMA security. However, there are some limited cases, such as commitment
protocols, in which there is a need to ensure that there is a one-to-one relationship between
signatures and messages. The verifier is presented with a signature, which is intended to
represent the signer’s “commitment” to a particular message. If a signer could create two
messages with the same signature, the signer could cheat in such a protocol.

Line 844: “The 196-bit hash functions in this recommendation…”

They are 192-bit hash functions.

- 27 -

NIST Response: Corrected. Thank you.

Line 898: “union lmots_signature switch”

The indenting of the case statements is inconsistent.

The same comment holds for case statements beginning on lines 947 and 982.

NIST Response: Corrected. Thank you.

Line 1452: “However, in the current version of XMSS^MT [1], the security analysis differs somewhat. In
the standard model, [17] shows that XMSS^MT is EUF-CMA. Further, [16] shows that
XMSS^MT is post-quantum existentially unforgeable under adaptive chosen message attacks
with respect to the QROM.”

Appendix C.4 somewhat overstates the provable security results for XMSS^MT. The
standard model result by Malkin et al in [17] holds for a general signature framework which
covers both XMSS^MT and HSS. It shows that hierarchical signature schemes are secure
provided that the underlying one-time signature schemes are secure, but with a significant
tightness gap.

The tight QROM proof by Hülsing et al from [16] does not apply to XMSS^MT as described
in [1]. Firstly, the result from [16] requires an assumption about the hash function family �
that is almost certainly not satisfied by any NIST approved cryptographic hash function; a
recent paper presented by Bernstein and Hülsing at ASIACRYPT 2019 replaces this with a
brand-new security notion which they call (multi-target) decisional second-preimage
resistance and which they believe should be difficult to attack. Secondly, the scheme
analysed in [16] differs from the version of XMSS^MT described in [1] in a few important
details; for example, the method for generating one-time private keys in [16] involves the
address of the one-time signature, which prevents the attack described above.

NIST Response: The reference to “Mitigating Multi-Target Attacks in Hash-based Signatures”
has been replaced by a reference to “The SPHINCS+ Framework.”

Line 1469: “The main difference between these schemes’ security analyses comes down to the use (and
the degree of use) of the random oracle model or quantum random oracle models.”

It is also arguable that the complexity of the security reduction and the number of
assumptions involved are also important. A simpler argument gives more confidence in the
correctness of the result.

NIST Response: Noted. We agree that this is generally true, but do not feel the security
reductions for either scheme are so complex that they would influence our confidence in either
scheme’s security in this case.

- 28 -

NSA's Center for Cybersecurity Standards

From: Sharon Ehlers
Date: Monday, February 24, 2020, at 1:13pm

Comments for SP 800-208.

• The option of using SHA384 or SHA512 could be useful.

NIST Response: Using SHA-256 or SHAKE256 with a 256-bit output already provides security
comparable to AES-256. We believe this provides a sufficient level of security for any use case.

• The parameter sets for LMS and XMSS use similar but different notation and this could
cause some confusion. For example, w has two different meanings between the two
schemes and SEED is a private value in LMS and a public value in XMSS. Consider
making these differences clear.

NIST Response: Section 2.3 has been extended to provide definitions of the variables from
LMS and XMSS that are referenced in SP 800-208, highlighting instances in which the same
variable is used in both RFCs, but with different meanings.

• Section 7.1, page 20 line 618: Unable to find an Algorithm 9 in [2].

NIST Response: This was a typo and should have referred to Algorithms 7 and 8 rather than 8
and 9.

• Sections 7.2.1 and 7.2.2:
o Calls to XMSS' sign

need to know to which module it's being sent so layer/tree can to be
tracked in the external device keygen and external device sign.

NIST Response: Section 7.2 only describes an algorithm that will work with a two-layer
tree. In this case, it is important to distinguish between the top-level key and the bottom-
level keys, but it is not necessary to keep track of which bottom-level key is which. When
a message is signed, the signature includes an index value, idx_sig. As noted in Section
7.2.2, the high-order bits of idx_sig identify which XMSS key (tree) was used to create
the signature. Even in the case of the top-level key, the cryptographic module should
reject attempts to sign messages that aren’t exactly n bytes in length, which should reduce
the likelihood of an ordinary message being accidentally signed using the top-level key.

If a user were to attempt to implement XMSSMT with more than two layers, with each
layer being implemented in a separate cryptographic module, this would impose
somewhat more of a requirement on the user to keep track of which key is which.

o Lines 716-723: It is not clear what the purpose of this if statement is. Please
Clarify.

- 29 -

NIST Response: A footnote has been added to provide additional explanation for the
reason for this “if” statement (now a “while” statement).

• Line 732: The definition of t is misleading. In the RFC, it is
h-(h/d) most significant bits of idx_sig. Here, since d=2, t=h/d most significant bits is
correct, but using t=h-(h/d) or t=h/2 most significant bits would be clearer. Furthermore,
the definition from the RFC, t=h-(h/d) most significant bits of idx_sig, is misleading as
well.
If idx_sig has exactly h bits, this is fine, but idx_sig has ceil(h/8) bytes, which is not
always h bits. In that case, the definition of t might not be grabbing the intended bits of
idx_sig. This definition comes up in the XMSS^MT sign and verify algorithms.

NIST Response: The text in line 732 has been modified to compute t in an unambiguous manner.

• p26: 196's should be 192's

NIST Response: This has been corrected. Thank you.

- 30 -

Crypto4A

From: Jim Goodman
Date: Monday, February 24, 2020 at 3:25pm

Crypto4A’s Comments on NIST SP800-208 Draft Specification

Crypto4A’s comments are provided in two distinct parts: first we provide editorial comments regarding
the draft’s proposed language, and then we provide comments regarding the concepts being proposed
within the draft itself.

Editorial Comments
First, our editorial comments:

• Line 266: replace “some but not all of” with “some, but not all, of”

NIST Response: Draft SP 800-208 underwent an editorial review prior to being published, and the copy-
editor requested removal of the commas that this comment proposes to insert.

• Line 268: consider adding references for SHA-256 and SHAKE256 (i.e., [3] and [5] respectively)
NIST Response: Accepted.

• Line 280: change “is firmware” to “is authenticating firmware”

NIST Response: Accepted.

• Line 342: consider changing “public keys.” to “public keys using a Merkle tree construction.”

NIST Response: Declined. The Merkle tree construction is what is being referred to by “a method.”
Section 3.2 explains what that method is.

• Line 348: consider deleting “, as follows”

NIST Response: Declined. Without “as follows,” readers may be confused, believing that they are
expected to already know how a digest is signed using a hash chain. Including “as follows” assures the
reader that this will be explained later.

• Line 358: consider changing figure title to “A sample Winternitz chain for b = 4”

NIST Response: Accepted.

• Line 376: fix formatting to avoid CRLF’s in H**i(x_j) elements in the figure

NIST Response: Noted. This error was introduced when the document was converted to PDF, and an
updated version of the draft that only corrected this formatting problem was posted a few days after the
initial version was posted.

- 31 -

• Line 385-386: consider changing “value, which will” to “value at the root of the tree, which will”

NIST Response: Resolved by adding “the root of the tree” in parenthesis.

• Line 389: consider changing “public keys.” to “public keys (ki, i ϵ [0, 7]).”

NIST Response: Accepted.

• Line 390: consider changing “the tree.” to “the tree (hj, j ϵ [0, 7]).”

NIST Response: Accepted.

• Line 391: consider changing “the tree.” to “the tree (i.e., h01, h23, h45, and h67).”

NIST Response: Accepted.

• Line 419: change “different values” to “different prefix values”

NIST Response: Accepted.

• Line 436: the symbol for XORing xk and the bitmask looks an awful lot like some form of
multiplication, perhaps there’s a more “XOR-like” symbol that could be used instead?

NIST Response: The XOR symbol has been changed to Å.

• Line 489: change “functions is specified” to “functions are specified”

NIST Response: Accepted.

• Line 502: change XMSS-SHA2_20_256 entry’s Numeric Identifier from “0x00000002” to
“0x00000003”

NIST Response: Thank you. This was a typo and it has been corrected in the final version.

• Line 518: change “toByte(0, 4)” to “toByte(0, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 519: change “toByte(1, 4)” to “toByte(1, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 520: change “toByte(2, 4)” to “toByte(2, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 521: change “toByte(3, 4)” to “toByte(3, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 547: change “toByte(0, 4)” to “toByte(0, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 548: change “toByte(1, 4)” to “toByte(1, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 549: change “toByte(2, 4)” to “toByte(2, 24)” (or perhaps you’d prefer to stay with 32?)

• Line 550: change “toByte(3, 4)” to “toByte(3, 24)” (or perhaps you’d prefer to stay with 32?)

- 32 -

NIST Response: The choice of 4 rather than 24 or 32 was intentional, not an editorial mistake. When using
SHA-256/192, padding the prefix to only 4 bytes allows for the function F() to be computed with one
iteration of the compression function rather than 2, thus saving time. The amount of padding for
SHAKE256/192 was set to be consistent with the amount of padding for SHA-256/192.

• Line 587: consider changing “of time and” to “of time, and”

NIST Response: Draft SP 800-208 underwent an editorial review prior to being published, and the copy-
editor did not propose inserting a comma in this location.

• Line 683: consider adding additional line after 683 that states “return (PK)”

NIST Response: Accepted.

• Line 685: consider changing “Message M” to “Message M, XMSS private key SK”

NIST Response: Declined. A fundamental difference between Algorithms 10' and 12' in SP 800-208 and
the algorithms in RFC 8391 is that the private key is generated and stored within the cryptographic
module, and it can never be exported. So, the private key is never an input or an output, it is always stored
internally.

• Line 686: consider changing “signature Sig” to “Updated SK, XMSS signature Sig”

NIST Response: Declined. See previous comment.

• Line 703: consider adding additional line after 703 that states “return (SK || Sig)”

NIST Response: Resolved by adding a line that states “return Sig”. “SK” was not included for the reason
stated previously.

• Line 907: consider adding additional space at start of line for proper alignment

• Line 915: consider adding additional space at start of line for proper alignment

• Line 952: consider adding additional space at start of line for proper alignment

• Line 958: consider adding additional space at start of line for proper alignment

• Line 961: consider adding additional space at start of line for proper alignment

• Line 964: consider adding additional space at start of line for proper alignment

• Line 995: consider adding additional space at start of line for proper alignment

• Line 1279: consider adding two additional spaces at start of line for proper alignment

NIST Response: Accepted.

Qualitative Comments Regarding Concepts

- 33 -

In addition to the aforementioned editorial comments, we have identified several primary concerns
with the document, as well as just some general comments regarding various sections of the document:

• There is no disaster recovery (DR) option given the manner NIST is proposing to generate HBS
private keys, and the restrictions you’re imposing in Section 8.1. On line 745 you clearly state
that the cryptographic module shall not allow for the export of private keying material. While
we don’t expect NIST to have to provide guidance on DR, we also don’t believe it should be
explicitly precluding options by putting this sort of restriction on the cloning/exporting of HBS
private keys. Yes, state management is difficult to do, but processes can be put in place to
manage the activity (more on this later), and the benefits of being able to archive keys to avoid
having the entire hierarchy come crashing down if the top level HSM were to fail. Your
proposed solution attempts to mitigate this by distributing the private key generation across
multiple devices such that the top level HSM signs public keys presented by other HSMs (more
on this in a later comment) which have generated private keys for lower layers of the hierarchy.
This approach is still dependent on the top level HSM being present and operational so that it
can sign new public keys as they come online, which could be difficult for a long-lived keying
hierarchy. One way to overcome that is to have all of the subordinate HSMs present and
accounted for soon after the top level HSM has generated its HBS private key, so that they can
all request their public keys get signed before the top level HSM fails. Unfortunately, you’re
just moving the problem around as now those subordinate HSMs need to survive long enough
to carry out their roles as HBS signing authorities, and the amount of capital expenditure to
finance the bulk purchase of HSM devices may prove prohibitive. Hence, we think it would be
best for NIST to not preclude exporting private key materials, but rather focus on devising best
practices related to managing the risks associated with that operation, so that operators can
devise their own DR solutions.

NIST Response: If HBS private keys could be cloned/exported, then there would be a need to rely
on procedural mechanisms to avoid one-time key reuse. In the comments that NIST received last
year (https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based-
Signatures/documents/stateful-HBS-misuse-resistance-public-comments-April2019.pdf), Adam
Langley noted instances in which root CAs issued multiple CA certificates with the same serial
number. As noted in https://bugzilla.mozilla.org/show_bug.cgi?id=1405815, it seems that the
problem was that the CAs were relying on procedural mechanisms to avoid reusing serial
numbers. So, we have to accept that even in environments in which procedures should be
carefully followed, mistakes can happen. While NIST acknowledges that some organizations will
be able to develop procedures to avoid one-time key reuse and ensure that those procedures will
always be carefully followed, there is no assurance that every user of stateful hash-based
signatures would do the same.

Section 7 of SP 800-208 was written with the idea that all of the keys (the top-level key and all of
the bottom-level keys) would be generated at the same time as part of a key generation ceremony.
In most scenarios, we envision that only one of the cryptographic modules holding bottom-level
keys would be used for signing, and the rest would be set aside for DR purposes. Modules that are
merely sitting in storage should be unlikely to fail, so the total number of cryptographic modules
needed shouldn’t be too great.

• Over the past 25 years of handling DR principles around critical PKI root keys, we have evolved
very strong procedures for the secure extraction and re-injection of critical root key material in

- 34 -

https://bugzilla.mozilla.org/show_bug.cgi?id=1405815
https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based

HSMs. This has provided us with a high guarantee of having preserved the integrity,
confidentiality and availability of the keys by enforcing the tracking of private key material
whether it’s within an HSM or some form of secure external storage such as a safe or vault.
This was possible as the RSA/ECC keys were complete objects with no additional state that
needed to be maintained. Unfortunately, HBS introduces state to the management equation so
attempting to distribute HBS private key material across multiple HSMs is tantamount to
scattering the private key in both space and time. Hence, the proposed multi-HSM approach for
implementing a distributed multitree HBS (Section 7) is concerning to us from a security
perspective in its current form. What guarantees does the top level HSM have regarding the
validity of the signing request it receives from parties looking to have the public key of the HSS
private key they’ve generated on their HSM devices? Mechanically anyone could present a
public key for signing, thereby introducing the possibility of rogue parties now being able to
generate valid signatures. In a PKI CA world, they would manage this with revocation to punish
the bad actors who managed to fool the CA into signing their illegitimate certificate. In the
proposed 2-level HBS scheme there are no such revocation methods to save us after the fact, so
we need to do everything we can to prevent this situation from happening. Hence, there needs
to be some robust mechanism in place to validate requests BEFORE they are signed, which we
have found to be a very difficult problem to solve unless very rigid procedures are put in place
to eliminate the possibility (e.g., force the subordinate HSM to be brought into the room where
the root HSM is so that the root HSM operators can witness the HSS key generation process
and perform some sort of attestation that the HBS public key the subordinate HSM generates
corresponds to a private key generated on that subordinate HSM). This is likely to prove to be
a very onerous process akin to a full-on traditional root key generation ceremony in a
conventional PKI, so this needs to be considered and addressed somehow (e.g., guidance on
procedures, introduction of requirements to guarantee attestation of the authenticity of the
signing request, etc.).

NIST Response: As noted in this comment and in a later comment, Crypto4A appears to have
interpreted the procedures proposed in Section 7 of SP 800-208 as being comparable to
establishing a root CA and then using that root CA’s key to sign the keys of subordinate CAs.
This was never the intention. The procedures in Section 7 are intended to have the same effect as
cloning an RSA or (EC)DSA key, but without making copies of one-time keys. Just as the
operator of a root CA would not provide a copy of its private RSA or (EC)DSA key to the
operator of a subordinate CA, the top-level LMS or XMSS key in the scheme described in
Section 7 should not be used to sign a key that is held by some other entity.

As suggested, the generation of the top-level key and of all of the bottom-level keys should be
performed at the same time as part of the traditional key generation ceremony. When using RSA
or (EC)DSA, copies of the key may be made onto additional HSMs as part of the key generation
process, and there is no mechanism available that would allow for revoking one copy of this key
without revoking the other copies. There is no more of a need for a special, but standardized,
mechanism for revoking some of the one-time keys in an HBS scheme without revoking the
entire HBS key.

• The existing hash-sigs github repository that provides a reference implementation for LMS-
HSS includes functions to pseudo-randomly generate LMS subtree {I, SEED} values from a
master seed value for a given LMS-HSS instance (i.e., hss_generate_root_seed_I_value() and
hss_generate_child_seed_I_value() in hss.c) , which allows the implementor to optimize the

- 35 -

private key data storage requirements by eliminating the need to store discrete pairs of {I,
SEED} for each layer of the tree since we can just recompute them from a single master seed
value. This method of pseudo-random value generation for I in particular was identified as an
option in RFC 8554 Section 7.1, so we don’t believe it represents a security compromise of any
proposed solution. Lines 566-568 of Section 6.1 appears to preclude this sort of implementation
option by forcing the implementer to generate a separate {I, SEED} pair for each LMS instance.
However, this requirement is itself quite vague as you put no requirements on how those values
are generated (i.e., can they be pseudo-random or do we need to generate using a random bit
generator that supports at least 8n bits of security strength)? We would prefer to be able to
continue using a pseudo-random method, but if that isn’t acceptable then perhaps the language
of the requirement can be made more precise to remove the aforementioned ambiguity.

NIST Response: It is unclear why the commenter believes that the requirement is quite vague, or
that no requirements are placed on how the values are generated. The text clearly states that the
values I and SEED “shall be generated using an approved random bit generator [6] where the
instantiation of the random bit generator supports at least 8n bits of security strength.” This seems
quite unambiguous. The specified reference, [6], does include definitions of both
nondeterministic random bit generators and deterministic random bit generators, but that does not
seem to be the source of the confusion.

NIST does not believe that a cryptographic module would need to store very many LMS keys at
any given time, so storing a separate I and SEED value for each LMS key should not be a
significant issue.

• Section 6.1 also enforces the requirement that the same SEED value shall be used to generate
every private element in a single LMS instance (line 563). We feel this is overly restrictive, and
an implementor should be able to use one or more values/SEEDs provided they are generated
in a manner that meets the stated security criteria (i.e., using an approved random bit generator
where the instantiation of the random bit generator supports at least 8n bits of security strength).
Relaxing this constraint opens up the possibility of proposing novel DR-compatible solutions,
one of which we describe below.

NIST Response: If all of the one-time keys are to be generated and stored on the same
cryptographic module, then there does not seem to be any benefit in using multiple different
SEED values. While allowing such an option may not introduce a security vulnerability, the key
generation process needs to be fully specified so that it is testable by the Cryptographic
Algorithm Validation Program (CAVP), and allowing for additional flexibility, such as proposed
here, would make the compliance testing very difficult.

• Would NIST consider a mechanism whereby the top-level LMS instance (we’re applying things
to LMS-HSS in the interest of simplicity, but the comments should extend to XMSS/XMSSMT

as well) is sectorized into cryptographically-isolated segments, each of which shares the same
I value but which has its own SEED value that was generated using a manner similar to the
pseudo-random generation of LMS-OTS private keys (but using a unique format to ensure it
doesn’t collide with that pseudo-random process, or any of the processes used in hash-sigs to
generate {I, SEED} pairs, and which can’t be used to guess another sector’s SEED value).
Sectorization would segment the 2h leaves of the top-level tree into 2s groups (a.k.a., sectors),
each containing 2h-s leaves. Each sector’s SEED value allows a device to generate signatures

- 36 -

from that sector’s set of leaves and NOT any other sectors’ leaves. Hence, you have
cryptographically-enforced state reuse protection if you assign different sectors to different
cryptographic modules (i.e., HSMi can’t generate valid signatures from the sector assigned to
HSMj). However, the sector generation process can ensure that all sectors share the top-level
public key value, so all sectors are part of the same HBS signing authority. These sectors can
then safely be exported from the top-level HSM and stored in a secure fashion using the same
techniques and procedures that have been proven over the years to handle the secure extraction
and handling of any regular private keys so that they can be loaded onto other HSMs (once and
only once) when needed (e.g., the existing HSM(s) fail and we need to recover the signing
capability for the given HBS public key, we use up all of the existing allocated sectors’
signatures and need to load new sectors into the HSM many years down the road, or we want
to load unique sectors into multiple HSMs in parallel to allow higher signing throughput). We
believe this will yield a feasible means of providing DR for HBS on HSMs (albeit with potential
over-allocation of the total tree size in order to accommodate the redundancies that facilitate
DR). Note that this approach can be used to create a one-layer tree with OTS keys being created
and stored on different HSMs as per the request made in the paragraph on lines 143-146 within
the Note to Reviewers section. In that use case, each sector would be loaded into a different
HSM, where the resulting unique SEED values would facilitate the generation of unique OTS
keys on each device.

NIST Response: The proposal in this comment involves generating one-time keys on an HSM
and then exporting some of those keys to other HSMs. As noted previously, allowing the export
of one-time keys creates a risk that one-time keys could be reused. It might be possible to develop
a mechanism that avoids having multiple copies of a one-time key by always erasing the one-time
key from the source module when the key is transferred to another module. However, in order for
such a mechanism to be safe, in addition to ensuring that any one-time key exported by a
cryptographic module could not later be used by that same module, there would need to be a way
to ensure that any exported keys could not be imported into more than one module. (As noted
previously, we do not believe it is sufficient to rely on procedural means to ensure that copies of
one-time keys are not copied onto multiple modules, after which they are used more than once.)
While such a protocol could be designed, it would not be possible for the exporting cryptographic
module to ensure that the protocol was being followed correctly, which means that it would not
be possible for the Cryptographic Module Validation Program (CMVP) to validate that a
module’s implementation prevents one-time key reuse. The only reliable way for the CMVP to
ensure that one-time keys cannot be reused is to validate that they cannot be exported at all.

• An additional note on revocation as per the proposed 2-level scheme described in Section 7.
Our interpretation is that the subordinate cryptographic modules are generating a single
certificate that verifies back to the primary cryptographic module’s top-level public key. In a
typical PKI the root CA would sign a subordinate CA’s public key, generating a certificate for
that subordinate CA public key that the user/application could validate. In the proposed
approach we’d have the root CA (i.e., top-level CM) sign the subordinate CA’s (i.e., subordinate
CM) public key, but that result would just appear as part of any HSS/XMSSMT signature the
subordinate CA generates (i.e., the first LMS/XMSS signature component that precedes the
subordinate CA’s pubic key element, and LMS/XMSS signature on the message). Hence there
is no discrete certificate that could be checked and revoked. Furthermore, if another subordinate
CA has been stood up, and it hasn’t been compromised, then will it be affected as a consequence
of revoking the other subordinate CA given it shares the same root CA public key as all other

- 37 -

subordinate CA’s in this stratified approach, and we don’t have a discrete top-level certificate
to use to achieve finer-grained revocation. We’ve kicked around ideas related to atypical
revocation mechanisms based on longest prefix-matching against portions of the HBS and its
components, but these are all custom hacks that don’t lend themselves well to a standardization
effort. How does NIST envision revocation working with the proposed 2-level scheme? Is it an
all-or-nothing sort of thing?

NIST Response: As noted previously, the scheme described in Section 7 should not be compared
to the establishment of a 2-level PKI. The top-level LMS or XMSS key should never be used to
sign a key belonging to a different entity. The top-level and bottom-level keys should be thought
of as one (HSS or XMSSMT) key. If a root CA makes multiple copies of its RSA key for disaster
recovery purposes, and one of the copies of the key becomes compromised, the “entire” RSA key
must be revoked. There is no way to revoke just the compromised copy of the key. If a root CA
were using the scheme in Section 7, then generating a bottom-level LMS or XMSS key should be
thought of as being the equivalent of making a copy of the root CA’s RSA private key, with the
security consequences being the same if that key is compromised.

• A general comment regarding Figure 4, and the differences between HSS and XMSSMT: Figure
4 shows the top-level tree being marked as level 0, with the level value increasing as we progress
form top-to-bottom of the multi-level tree. This approach is fine for HSS, where a similar
numbering convention is used, but in XMSSMT we believe the standard numbers the top-level
tree as level (d-1) and proceeds to decrease the level value as we progress from top-to-bottom.
This may lead to confusion later on, and we think the difference merits some form of mention
in the text.

NIST Response: In Figure 4 (now Figure 5), the 0’s and 1’s representing the levels were replaced
by a’s and b’s in order to avoid using the notation of one scheme versus the other.

• The description/pseudocode for XMSSMT external device key generation is confusing to us.
Under what conditions would the IF statement in line 719 evaluate to true given the generation
calls on Lines 712 and 715, thereby necessitating us to essentially repeat the generation calls
using lines 721 and 722 respectively? Would the given code not just adjust the incorrect t value
by at most 1 given the correction is not iterative, but just a one-off? This confusion is somewhat
compounded by what seems to us to be under-specified inputs/outputs for Algorithms 10' and
12' in section 7.2.1. which are used extensively in Section 7.2.2.

NIST Response: It is certainly hoped that the “If” statement on line 719 would not evaluate to
true. However, a tree index value, t, needs to be specified as an input to the key generation
process on line 712, while the caller to the signing process on line 715 cannot be allowed to
specify which one-time key to use to perform the signing. Since Algorithm 12' specifies that the
signer should iterate through its one-time keys, the caller should be able to know which one-time
key will be used for signing and thus specify that same value for the input on line 715. As noted
in the comment on lines 716-718, line 719 is simply a check to ensure that the expected one-time
key was used to sign the bottom-level key’s root. If, for some unknown reason, that did not
happen, then the key cannot be used, and so one needs to try the key generation again.

The “if” statement has been replaced with a “while” statement, and a footnote has been added to
provide more explanation for why the key generation may need to be repeated.

- 38 -

• In Appendix A and Appendix B, the text indicates we’re extending the XDR syntax for [2] and
[1] respectively, but the subsequent descriptions in Lines 859-1002 and Lines 1007-1391 read
like they are the entire XDR specifications. Would it make sense to add comments into the XDR
elements to remind the reader that you’re supposed to also include all existing XDR
specification code into each definition? For example, for LMS-OTS algorithm type
(lmots_algorithm_type), add a new line between Lines 861 and 862 that says something along
the lines of “/* includes all existing lmots_algorithm_type values */” or
some similar language to remind the reader that existing definitions are retained as well.

NIST Response: Adding the proposed comment to each data structure seems excessive. However,
a sentence was added to the beginning of each appendix.

- 39 -

The QuantumRISC Project

From: Marc Stöttinger
Date: Friday, February 28, 2020, at 3:43am

Dear Author team of the document SP800-208,

as consortium members of the German nationally funded research project “QuantumRISC”, we
would like to provide you feedback on the draft NIST Special Publication 800-208 (SP 800-208).

The QuantumRISC project is funded by the German Federal Ministry of Education and Research
(BMBF) and brings together partners from both academia and industry. The project partners
jointly develop and improve post-quantum secure cryptographic schemes for low-end devices
with severe limitations on memory usage and power consumption while maintaining a high level
of security. The practical implementation of such schemes highly depends on their operability on
embedded devices. The main focus of the project is the development of quantum secure solutions
for the automotive domain; however, research findings will be transferable to other domains and
use cases. We investigate the interaction between existing vehicle systems and architectures as
well as the integration of PQC into the vehicle while allowing a future exchange of
cryptographic primitives (crypto agility).

The project consortium consists of the following partners: Continental AG, Elektrobit
Automotive GmbH, Fraunhofer Institute for Secure Information Technology SIT, RheinMain
University of Applied Sciences, MTG AG, Ruhr-University Bochum and Technical University
of Darmstadt.

We have the following three feedback comments to the current draft version:

1) Past experience has shown that developers find it difficult to deploy cryptography if the
specifications are distributed among different standards or if ambiguous representations
exist (e.g. RSA parameters with explicit NULL or empty). In order to improve
interoperability and to be able to use algorithms between different applications, object
identifiers and standardized representations of public keys are necessary. Therefore,
object identifiers (OID) should be specified for the two algorithms XMSS and LMS and
for the signatures and public keys. Public keys should be uniquely represented in ASN.1
to make it possible to issue interoperable certificates that contain public XMSS or LMS
keys.

For example, a public key could be represented as:

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

- 40 -

The 'algorithm' field could specify an OID and an explicit statement regarding the
parameters and the 'subjectPublicKey' field could provide a concrete specification of the
encoded public key (e.g., a 1-to-1 mapping to the specifications of the RFC). With SP
800-208, there is a chance to specify OIDs and representations in one document to
facilitate the use of XMSS and LMS.

NIST Response: NIST agrees that it is important to clearly specify encodings and identifiers (e.g.,
OIDs), but does not believe that SP 800-208 is the appropriate place to specify this information.
Just as the underlying signature schemes are defined in IETF publications RFC 8391 and RFC
8554, work is underway in the IETF to specify how to use these signature schemes in various
protocols (see RFC 8708, https://tools.ietf.org/html/draft-ietf-cose-hash-sig,
https://tools.ietf.org/html/draft-vangeest-x509-hash-sigs, and https://tools.ietf.org/html/draft-mu-
curdle-ssh-xmss).

2) What is the reason that XMSS and LMS variants are not harmonized to provide
parameter sets with the same tree heights? Different usage scenarios have different
requirements and more flexibility for the maximum number of signatures should be
provided. Hence, we would like to see similar parameter sets for XMSS and LMS with
respect to the tree heights and ideally with a smaller step size in the tree height in order to
choose a number of 2^5, 2^8, 2^10, 2^15, 2^16, 2^20, 2^25, 2^32, 2^40, ... signatures.
Alternatively, the tree height could not be specified in the parameter set but freely chosen
(in a certain range) for each key pair.

NIST Response: The differences in the parameter set options between LMS/HSS and
XMSS/XMSSMT in SP 800-208 are the result of their differences in RFC 8391 and RFC 8554. We
do not believe there is a substantial benefit in defining new parameter sets for LMS/HSS or
XMSS/XMSSMT just for the sake of making the parameter sets of the two schemes more similar.
Allowing for any tree height to be chosen would making testing more difficult, and there does not
seem to be a compelling need. In practice, working with a tree of height 10 instead of one of
height 8 would not result in substantially longer signatures, or signing and verification times. The
additional tree height would also not significantly increase the amount of memory required to
implement the schemes.

3) SP 800-208 references RFC 8391, which also provides a description of the XMSS
algorithm. Alongside the RFC document, there is also a C reference implementation of
XMSS. We note that each of these documents provides different algorithm definitions.
For example, algorithm 10 in SP 800-208 and algorithm 10 in RFC 8391 both specify the
XMSS key generation; yet they provide different implementations. Though the
algorithms are semantically identical, a uniformly standardized basis of algorithms would
likely prevent misunderstandings and implementation flaws. Similarly, the
implementation of algorithms in the C reference implementation does not follow the
pseudocode from RFC 8391. For example, algorithm 2 (WOTS Chaining) is defined
recursively in the RFC but implemented iteratively in the reference code. Having a
unified definition of algorithms throughout the provided documents would presumably
ease understanding and implementation.

NIST Response: Algorithm 10' in Section 7.2.1 of SP 800-208 does not specify XMSS key
generation, so it is not semantically identical to Algorithm 10 in RFC 8391. Algorithm 10' in

- 41 -

https://tools.ietf.org/html/draft-mu
https://tools.ietf.org/html/draft-vangeest-x509-hash-sigs
https://tools.ietf.org/html/draft-ietf-cose-hash-sig

Section 7.2.1 of SP 800-208 is intended for use in implementing XMSSMT in a distributed
manner. Algorithm 10 in RFC 8391 could not be used for this purpose, as it only works for
XMSS (i.e., it assumes that L=0, t=0, and d=1).

NIST had no involvement in the development of either RFC 8391 or the C reference
implementation. However, RFC 8391 explicitly notes that the algorithms in that document are
written for simplicity, not efficiency, and so recommends against using them in implementations.

Best regards,

Marc Stöttinger

- 42 -

Stefan-Lukas Gazdag

From: Stefan-Lukas Gazdag
Date: Friday, February 28, 2020, at 12:50pm

Hi,

thanks to NIST for all the great work regarding the PQC standardization process! Please find
enclosed some comments on draft SP 800-208.

We (genua GmbH) provide hybrid signatures (ECDSA and XMSS) for our latest software
updates. Both signatures have to be verified as valid, otherwise the update is rejected. Key
generation and signing is done on a secure key server. Authorized build servers in a restricted
development network may ask for a signature via an OpenSSH connection. First updates have
been applied to machines in the field. We look forward to HBS being used more widely by
others.

Open topic: OIDs
For the use in practice (explicitly taking a look at X.509 certificates) object identifiers (OIDs) are
needed. This far there are no OIDs defined by any organization (neither by any agency,
corporation, university or the IETF/IRTF). Without going into details about former discussions
on who should publish OIDs I just want to raise awareness that this should be dealt with.
Software using HBS so far uses "temporary" or private OIDs (that have somewhat been agreed
on between some software projects) or use software specific identifiers.

NIST Response: OIDs have been specified in RFC 8708 for LMS/HSS. While this is not
sufficient, NIST believes that it would be more appropriate for other standards organizations,
such as the IETF, to specify OIDs and encoding formats rather than NIST.

Line 273-275:
Yet another peculiarity is that you should choose a proper parameter set suiting your specific use
case (e. g. which signature size is still ok, while maintaining a specific security level). This also
means how many signatures will be written as the key has a limited life-time. Whereas classical
keys have an implicit life-time (forced by a validity date or due to the need of increasing the
security level due to advances in supercomputing, cryptanalysis, …), for HBS maybe a small key
writing e.g. a million keys would be enough (or may be exchanged in time) for a specific use
case while other scenarios would require a huge multi-level tree. All in all decisions that have to
be made beforehand in a different way than with classical schemes.

NIST Response: While the fixed limit in the number of signatures that can be created is a
difference from traditional signature schemes, the concern in this section is mainly the security
risk resulting from the need to maintain state. We believe that for applications that have the
characteristics described in Section 1.1, the number of signatures that will need to be created will
be relatively small, so it shouldn’t be too difficult to choose a parameter set that can generate
enough signatures.

- 43 -

Line 278/279:
I'd argue that using HBS now is important in many other, probably most use cases of software
updates and code signing. History shows that software runs for way longer in the field than often
expected as users stick to their running systems. Thus old systems are likely to be found running
pre-quantum update mechanisms once a large enough quantum computer exists. Therefore it is
recommendable to apply HBS now to existing systems even it is "just" to ensure a proper
transition to other quantum-safe signature schemes later on. Also implementing and distributing
update mechanisms using hybrid signatures now might help having somewhat modular
mechanisms where exchanging a single scheme might be easier.

NIST Response: The referenced text specifically notes that stateful HBS may be applicable if the
implementation will have a long lifetime and it would not be practical to transition to a different
digital signature scheme once the implementation has been deployed. In most cases of software
update, we believe it would be practical to update the software update mechanism itself in order
to be able to work with a newer digital signature scheme.

While it is true that not all systems are updated as quickly as they should be, this is becoming less
of an issue as automatic updating becomes more prevalent. In addition, while we cannot predict
when quantum computers that will be capable of breaking current signature algorithms will
become available, it is likely that it will be possible to start deploying updated software update
mechanisms with new (stateless) post-quantum signature algorithms years before the current
signature algorithms become insecure.

Line 436:
Please use the ⊕ symbol for exclusive-or

NIST Response: This has been corrected in the final version. Thank you.

Line 502:
The correct numeric identifier of XMSS-SHA2_20_256 is 0x00000003

NIST Response: This has been corrected in the final version. Thank you.

Line 587:
Not the most sophisticated solution but practicable: as the public keys for all the schemes are
quite small, a specific device or software might be provided with several HBS public keys.

NIST Response: Thank you for noting this. The final version of SP 800-208 notes that this is an
option.

Ling 641 and following:
Some pseudo-code lines are missing semicolons. Also, sometimes setter / getter methods are
used as in the RFC but sometimes they are omitted

NIST Response: This issue has been corrected in the final version of the document.

Line 647:
Algorithm 10' / XMSS'_keyGen should also output the secret key SK

- 44 -

NIST Response: As noted in Sections 7 and 8, cryptographic modules conforming to SP 800-208
cannot export private keying material. So, the cryptographic module cannot output SK. The
cryptographic module must generate and store SK, but must not output it.

Line 774 and following:
In some uses cases performance might improve by the reservation approach described in [8],
which we've tried in practice. Reserving an interval of OTS keys, meaning writing an updated
secret key according to the interval chosen to non-volatile memory before signing alleviates
performance issues in practice. In case of any interrupt, some OTS keys stay unused, which in
most scenarios should not be a problem with somewhat stable cryptographic modules / key
servers.

NIST Response: We believe that for the applications described in Section 1.1, signing will be
infrequent, and so reserving multiple OTS keys at a time will not be beneficial.

Line 844:
s/196/192/

NIST Response: This has been corrected in the final version. Thank you.

Kind Regards,
Stefan-Lukas Gazdag

- 45 -

Canadian Centre for Cyber Security

From: David E. Smith
Date: Friday, February 28, 2020, at 3:58pm

Please find below our editorial and technical comments on the Draft SP 800-208 issued for
comment in December 2019.

David Smith
Canadian Centre for Cyber Security

Line Type Comment
Starting at line 288, "If an attacker were able to obtain digital signatures for
two different messages created using the same OTS key, then it would become
computationally feasible for that attacker to forge signatures on arbitrary
messages".
Similarly, starting at line 775 and line 809 "...this is acceptable since it just
involves using an OTS key multiple times to sign the same message".

Comment: Per Section 6.1, 9.3 and [2], it seems that in LMS the OTS
generates a random prefix for every message to be signed (Algorithm 3 in
Section 4.5 of [2]). In particular, a forgery would be possible given two 288,
distinct signatures even if they were for the same message. Also, it would not 775, Technical
be acceptable to use an OTS key multiple times, even for the same message, 809
unless the random prefix was forced to be the same. XMSS also generates a
random prefix before signing, but it appears to be deterministically derived
from the private key and signature index (Algorithm 12 of Section 4.1.9 of
[1]), so signing the same message with the same OTS would result in the same
signature.

NIST Response: The final version of SP 800-208 has been modified to forbid using
an OTS key more than once, even to sign the same message a second time (e.g.,
recomputing the signature on the root of a lower-level tree). This avoids the potential
mistake described here and also protects against fault injection attacks.
Replace "checksum is computed as sum_{k=0, n-1}(b-1-N_k)" with
"checksum is computed as sum_{k=0, n-1}(b-1-N_k), which requires
ceil(log_b(n*(b-1))) digits".

368 Editorial NIST Response: We believe this level of detail is not needed for the high-level
description. The checksum formula itself may be unnecessary, but it was included in
case it helps some people understand the sentence that follows: “The checksum is
designed so that the value is non-negative and any increase in a digit in the message
digest will result in the checksum becoming smaller.”
Replace "Figure 3 depicts a hash tree containing eight OTS public

389 Editorial keys." with "Figure 3 depicts a hash tree containing eight OTS public keys
k_0, ..., k_7".

- 46 -

NIST Response: Accepted.
Replace SHA2 with either SHA-256 (to match earlier in the draft) or SHA2-
256 (to match [1]).

506 Editorial
NIST Response: Noted. The current text aligns with RFC 8391 [1], which says: “To
implement the keyed hash functions, the following is used for SHA2 with n = 32”

- 47 -

Panos Kampanakis

From: Panos Kampanakis
Date: Friday, February 28, 2020 at 4:49pm

Dear Quynh, NIST,

I would like to provide some more feedback regarding the SP 800-208 Draft for HBS after
discussing with some of our HSM peers implementing HBS. They pointed out to us some
practical concerns:

1) Section 8.1 mandates that private keys should not be extractable. Today HSMs allow for
extracting a classical private key using some Shamir sharing scheme so that key can be
reconstructed and reused in case of an HSM failure. I don’t think LMS is different. In a
hierarchical scenario where a top level HSM signs subordinate LMS trees, the top HSM
would need to survive for a long time (30 years for a traditional CA root) in order to be
able to sign any new subordinate tree coming online. That may not always be practical.
We should allow for the OTS private keys to be extractable using similar methods
(Shamir secret sharing or so) so someone could reconstruct the top HBS tree and sign
new messages in case of failure.

NIST Response: As noted in the response to Crypto4A, Section 7 of SP 800-208 was written
under the assumption that all of the operational and spare cryptographic modules would be
instantiated with keys at the beginning so that the cryptographic module holding the top-level key
would not be a single point of failure.

While there may be many mechanisms available to protect traditional private keys (e.g., secret
sharing) while allowing the keys to be copied, these mechanisms do not apply to stateful HBS,
since they cannot address the state management issue. As long as copies of keys can be made,
there is the risk that the same key (with the same state) will be loaded onto more than one
cryptographic module and that this will result in one-time key reuse. While we understand that
many organizations would be able to put procedural mechanisms in place to prevent this one-time
key reuse, past experience has shown that we cannot rely on all organizations that may choose to
use stateful HBS to be able to do this reliably.

2) Section 6.1 requires a separate I and SEED value for each LMS instance. If someone
wanted to generate I with a PRF he should be able to, so that the subtrees of a hypertree
can be generated by using a master value instead of storing separate (I, SEED) pairs for
each tree in the hypertree. Generating I in a deterministic pseudorandom could point to
SP800-90A.

NIST Response: Noted. The requirement for both I and SEED is that they “shall be generated
using an approved random bit generator (see the SP 800-90 series of publications [6]) where the
instantiation of the random bit generator supports at least 128 [8n] bits of security strength” This
includes the option to use any of the deterministic random bit generators from SP 800-90A.

3) Section 6.1 requires one SEED per LMS tree. By allowing more SEED values, HSMs can
use them to be able to generate non-overlapping sections of the tree in order to prevent

- 48 -

state reuse in a DR scenario. Using different SEEDs in some of the LM-OTS leaves does
not compromise the security of LMS tree.

NIST Response: Noted. However, as long as all of the SEEDs are generated in the same
cryptographic module and cannot be exported, there is no security benefit in allowing the use of
more than one SEED. Allowing this option, though, would complicate testing key generation
under the Cryptographic Module Validation Program (CAVP).

Panos
Cisco

- 49 -

From: Panos Kampanakis
Date: Friday, February 28, 2020 at 10:26pm

We would also like to propose for the SP to include the following parameters that are suitable for
all our (Cisco and probably many more vendor) image signing usecases

~~~~~~~~~~ 

- LMS_SHA256_M16_H5 with LMOTS_SHA256_N16_W8 
- LMS_SHA256_M24_H5 with LMOTS_SHA256_N24_W8 
- LMS_SHA256_M32_H5 with LMOTS_SHA256_N32_W8 

- LMS_SHA256_M16_H10 with LMOTS_SHA256_N16_W8 
- LMS_SHA256_M24_H10 with LMOTS_SHA256_N24_W8 
- LMS_SHA256_M32_H10 with LMOTS_SHA256_N32_W8 

- LMS_SHA256_M16_H15 with LMOTS_SHA256_N16_W8 
- LMS_SHA256_M24_H15 with LMOTS_SHA256_N24_W8 
- LMS_SHA256_M32_H15 with LMOTS_SHA256_N32_W8 

- LMS_SHA256_M16_H20 with LMOTS_SHA256_N16_W8 
- LMS_SHA256_M24_H20 with LMOTS_SHA256_N24_W8 
- LMS_SHA256_M32_H20 with LMOTS_SHA256_N32_W8 

- HSS (with 2-4 levels) with any of the above LMS trees at any level. 

~~~~~~~~~~ 

For N=M=16 we realize that that would provide 64-bit PQ security, but given NIST’s stance
with AES-128 (Grover not being parallelizable and thus AES-128 is considered secure) we could
use it when needing very small signatures at acceptable security.

Thank you,
Panos
Cisco Systems

NIST Response: We understand that the Post-Quantum Cryptography standardization effort is
considering digital signature algorithms that offer Level 1 security, which is defined as security
comparable to that offered by AES 128. As noted in the Post-Quantum Cryptography FAQs,
NIST believes it is likely that AES 128 (and other algorithms that provide a comparable level of
security) will remain secure for decades to come. However, the FAQs also suggest that if
quantum computers turn out to be much less expensive than anticipated, then AES 128 may not
be sufficiently secure, whereas AES 192 and AES 256 would continue to be safe. In the unlikely
event that this were to happen, NIST would issue guidance regarding any transitions of
symmetric key algorithms and hash functions that may be needed.

As noted in Section 1.1 of SP 800-208, NIST believes that stateful hash-based signatures are
primarily intended for applications that have long lifetimes and for which transitioning to a

- 50 -

different signature scheme would not be practical. For applications that have such properties,
which may need to remain secure for decades and which would be unable to follow any potential
future transition guidance, we believe it is appropriate to be more conservative in specifying
acceptable security levels.

- 51 -

Google

From: Stefan Kölbl, Roy D’Souza
Date: Friday, February 28, 2020, at 6:18pm

Google’s Comments on the NIST SP800-208 Draft Specification

Stefan Kölbl, Roy D’Souza
February 28, 2020

Google anticipates deployment of post-quantum hash-based signature schemes for verified boot,
and over-the-air updates, for a range of hardware modules. These modules vary significantly in
available power, computational capabilities and related resources.

When deciding between stateless and stateful schemes, for scenarios that are amenable to the
larger signature sizes of stateless schemes we would leverage a NIST-recommended scheme,
such as the anticipated SPHINCS+. Whereas for other contexts, where it is an imperative to limit
signature sizes, we would deploy a NIST-recommended stateful scheme such as LMS/HSS.

Deployment Scenarios

The following three deployment scenarios would most likely be constrained to usage of a stateful
scheme:

• Google Security Chips: All Chromebooks are deployed with an embedded Google
Security Chip that is candidate for being a quantum-ready hardware root of trust. It would
probably have computational abilities similar to an ARM Cortex M3, with limited
memory and flash.

• Battery Operated IoT Sensors: These include sensor devices such as Nest Detect, the
motion and perimeter sensors used by the Nest Guard secure alarm system. This class of
devices has the resource constraints of the previous category, and also needs to operate
on the equivalent of an AAA battery for over two years.

• Powered IoT Devices and Chromebooks: These are powered devices based on
Intel/AMD and ARM chips, and these lower cost devices have space and other resource
constraints that would benefit from compact signatures.

Our choice of stateful hash-based standardization candidates is LMS/HSS, and the following two
categories of parameters would be important for addressing the resource constraints of the
scenarios outlined above.

Variable (Sub-)Trees

It would be beneficial to have different parameters depending on the level of a multi-tree. The
cryptographic modules at a lower level might be deployed in more constrained environments,

- 52 -

while a higher-level tree, perhaps belonging to a more trustworthy third party, could afford more
expensive computations.

The cadence of firmware updates to devices, even within each category, could differ
significantly. A Chromebook might be updated every six weeks, while some IoT devices might
only be updated occasionally. Therefore it would be useful to have a choice of parameters for
LMS/HSS:

• LMS_SHA256_M24_H5 with LMOTS_SHA256_N24_W8
• LMS_SHA256_M32_H5 with LMOTS_SHA256_N32_W8

• LMS_SHA256_M24_H10 with LMOTS_SHA256_N24_W8
• LMS_SHA256_M32_H10 with LMOTS_SHA256_N32_W8

• LMS_SHA256_M24_H15 with LMOTS_SHA256_N24_W8
• LMS_SHA256_M32_H15 with LMOTS_SHA256_N32_W8

• LMS_SHA256_M24_H20 with LMOTS_SHA256_N24_W8
• LMS_SHA256_M32_H20 with LMOTS_SHA256_N32_W8

• HSS (with 2-4 levels) with any of the above LMS trees at any level.

NIST Response: Thank you for the feedback. All of the above parameter sets are included in SP 800-
208. Given the limited feedback that was provided about parameter sets, none of the parameter sets
listed in the draft version of SP 800-208 were removed.

Security Targets

In the ongoing NIST post-quantum cryptography standardization process five security levels
have been defined and the proposed schemes seem to fall into NIST security level 3 and 5, as
they do not rely on the collision resistance of the underlying hash function.

In some of our scenarios it might be useful to have variants of LMS/XMSS that target NIST
security level 1, as this would provide security comparable to ECDSA with P-256 or Ed25519,
while still providing a buffer against quantum adversaries given the limitations of Grover’s
algorithm (e.g., limited parallelization or that the quantum circuit of the hash functions will be
fairly large). Introducing new variants with n = 16 would reduce the signature size for the OTS
by over 50%:

• LMOTS_SHA256_N16_W1: 2196 bytes
• LMOTS_SHA256_N16_W2: 1108 bytes
• LMOTS_SHA256_N16_W4: 580 bytes
• LMOTS_SHA256_N16_W8: 308 bytes

NIST Response: We understand that the Post-Quantum Cryptography standardization effort is
considering digital signature algorithms that offer Level 1 security, which is defined as security
comparable to that offered by AES 128. As noted in the Post-Quantum Cryptography FAQs,

- 53 -

NIST believes it is likely that AES 128 (and other algorithms that provide a comparable level of
security) will remain secure for decades to come. However, the FAQs also suggest that if
quantum computers turn out to be much less expensive than anticipated, then AES 128 may not
be sufficiently secure, whereas AES 192 and AES 256 would continue to be safe. In the unlikely
event that this were to happen, NIST would issue guidance regarding any transitions of
symmetric key algorithms and hash functions that may be needed.

As noted in Section 1.1 of SP 800-208, NIST believes that stateful hash-based signatures are
primarily intended for applications that have long lifetimes and for which transitioning to a
different signature scheme would not be practical. For applications that have such properties,
which may need to remain secure for decades and which would be unable to follow any potential
future transition guidance, we believe it is appropriate to be more conservative in specifying
acceptable security levels.

- 54 -

	Karsten Klein
	AMD
	Andreas Huelsing
	Thales DIS
	ETSI TC CYBER WG QSC
	NSA's Center for Cybersecurity Standards
	Crypto4A
	The QuantumRISC Project
	Stefan-Lukas Gazdag
	Canadian Centre for Cyber Security
	Panos Kampanakis
	Google

