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Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in 
Federal information systems. The Special Publication 800-series reports on ITL’s research, 
guidelines, and outreach efforts in information system security, and its collaborative activities 
with industry, government, and academic organizations. 

 
Abstract 

 
This Recommendation specifies three methods for format-preserving encryption, called FF1, 
FF2, and FF3. Each of these methods is a mode of operation of the AES algorithm, which is used 
to construct a round function within the Feistel structure for encryption.   
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1 Purpose 
This publication is the seventh part in a series of Recommendations regarding the modes of 
operation of block cipher algorithms. The purpose of this part is to provide approved methods for 
format-preserving encryption (FPE).  

2 Authority 
This publication has been developed by the National Institute of Standards and Technology 
(NIST) in furtherance of its statutory responsibilities under the Federal Information Security 
Management Act (FISMA) of 2002, Public Law 107-347.  
 
NIST is responsible for developing standards and guidelines, including minimum requirements 
for federal information systems, but such standards and guidelines shall not apply to national 
security systems.  
 
This recommendation has been prepared for use by Federal agencies. It may be used by 
nongovernmental organizations on a voluntary basis and is not subject to copyright. (Attribution 
would be appreciated by NIST.) 
 
Nothing in this publication should be taken to contradict the standards and guidelines made 
mandatory and binding on federal agencies by the Secretary of Commerce under statutory 
authority. Nor should these guidelines be interpreted as altering or superseding the existing 
authorities of the Secretary of Commerce, Director of the OMB, or any other federal official.  
 
Conformance testing for implementations of this Recommendation will be conducted within the 
framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic 
Module Validation Program (CMVP). The requirements of this Recommendation are indicated 
by the word “shall.” Some of these requirements may be out-of-scope for CAVP or CMVP 
validation testing, and thus are the responsibility of entities using, implementing, installing, or 
configuring applications that incorporate this Recommendation.  

3 Introduction  
This publication specifies three block cipher modes of operation—or, simply, modes—for 
format-preserving encryption (FPE).     
 
Previously approved encryption modes transform bit strings—sequences of 0s and 1s—into 
other bit strings, but these modes are not directly applicable to decimal strings, like Social 
Security numbers (SSNs) or credit card numbers (CCNs), or to other data formats.   
 
Given any finite set of symbols, like the decimal numerals, FPE transforms data that is formatted 
as a sequence of the symbols in such a way that the encrypted form of the data has the same 
format and length as the original data. Thus, an FPE-encrypted SSN also appears to be an SSN.   
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Consequently, FPE facilitates the targeting of encryption to sensitive information, as well as the 
retrofitting of encryption technology to legacy applications, where a conventional encryption 
mode might not be feasible because it would disrupt data fields/pathways.  FPE has emerged as a 
useful cryptographic tool, whose applications include financial-information security, data 
sanitization, and transparent encryption of fields in legacy databases. 
 
The three FPE modes specified in this publication are abbreviated FF1, FF2, and FF3, to indicate 
that they are format-preserving, Feistel-based encryption modes.  They were submitted to NIST 
under the names FFX[Radix], VAES3, and BPS-BC, in [2], [13], and [3], respectively. Each 
mode fits within a larger framework, called FFX, for constructing FPE mechanisms, that was 
submitted to NIST in [1]. The “X” indicates the flexibility to instantiate the framework with 
different parameter sets, as well as FFX’s evolution from the FFSEM specification earlier 
submitted to NIST in [12].   
 
The FFX framework itself is not specified in this publication; in fact, FF1, FF2, and FF3 are not 
presented explicitly as instantiations of FFX parameter sets, but rather as separate algorithms, in 
order to simplify the individual specifications. 
 
FF1, FF2, and FF3 each employ the Feistel structure of encryption—see Sec. 5.4—which also 
underlies the Data Encryption Algorithm [8]. At the core of FF1, FF2, and FF3 are somewhat 
different Feistel round functions that are derived from an approved block cipher with 128-bit 
blocks, i.e., the AES algorithm1 [6].  
 
In addition to the formatted data for which the modes provide confidentiality, each mode also 
takes a “tweak” input, i.e., additional information that is not necessarily secret. This functionality 
can be especially important for FPE modes, because the number of possible values for the 
confidential data is often relatively small. In particular, the encrypted form of the data can vary 
in different instances when the tweak inputs are different. See Appendix C for further discussion 
of tweaks.   
 
The three modes offer somewhat similar performance profiles. FF1 supports the greatest range of 
lengths for the protected, formatted data and the tweak. FF2 generates a subkey for the block 
cipher in the Feistel round function, which can help protect the original key from side-channel 
analysis. FF3 offers the lowest round count, eight, compared to ten for FF1 and FF2, and is the 
least flexible in the tweaks that it supports.  
 
The BPS mechanism for FPE—named after its designers, Brier, Peyrin, and Stern—was 
submitted to NIST in [3]; FF3 is essentially equivalent to the BPS-BC component of BPS, 
instantiated with a 128-bit block cipher. The full BPS mode—in particular, its chaining 
mechanism for longer input strings—is not approved in this Recommendation.  

                                                 
1 The term “algorithm” here indicates a high-level cryptographic technique that may encompass more than one 
computational procedure; for example, an “encryption algorithm” like the AES algorithm has transformations for 
both encryption and decryption. This publication also contains ten numbered algorithms in the original sense of the 
word, i.e., as a list of instructions for executing a single computational procedure. 
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4 Definitions and Notation  

4.1 Definitions  

alphabet A finite set of two or more symbols.  

approved 
FIPS-approved or NIST-recommended: an algorithm or technique 
that is either 1) specified in a FIPS or a NIST Recommendation, or 
2) adopted in a FIPS or a NIST Recommendation.  

base The number of characters in a given alphabet; represented as radix 
in this publication.  

bit A binary digit: 0 or 1.  

bit string  A finite, ordered sequence of bits. 

block  For a given block cipher, a bit string whose length is the block size 
of the block cipher. 

block cipher 
A parameterized family of permutations on bit strings of a fixed 
length; the parameter that determines the permutation is a bit string 
called the key.  

block cipher 
mode of operation 

An algorithm for the cryptographic transformation of data that is 
based on a block cipher.  

block size For a given block cipher and key, the fixed length of the input (or 
output) bit strings.  

block string A bit string that can be represented as the concatenation of a finite, 
ordered sequence of blocks.  

byte A string of eight bits.  

byte string A bit string that can be represented as the concatenation of a finite, 
ordered sequence of bytes.  

character A symbol in an alphabet.  

character string A finite, ordered sequence of characters. 

ciphertext The numeral string that is the encrypted form of a plaintext. 
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decryption 
function 

For a given block cipher and key, the function of an FPE mode that 
takes a ciphertext numeral string and a tweak as input and returns 
the corresponding plaintext numeral string as output.  

designated cipher 
function 

For a given block cipher and key, the choice of either the forward 
transformation or the inverse transformation.  

encryption 
function 

For a given block cipher and key, the function of an FPE mode that 
takes a plaintext numeral string and a tweak as input and returns a 
ciphertext numeral string as output.  

exclusive-OR  The bitwise addition, modulo 2, of two bit strings of equal length. 

Feistel structure 

A framework for constructing an encryption mode. The framework 
consists of several iterations, called rounds, in which a keyed 
function, called the round function, is applied to one part of the data 
in order to modify the other part of the data; the roles of the two 
parts are swapped for the next round.  

forward 
transformation 

For a given block cipher, the permutation of blocks that is 
determined by the choice of a key. 

inverse 
transformation 

For a given block cipher, the inverse of the permutation of blocks 
that is determined by the choice of a key. 

key For a given block cipher, the secret bit string that parameterizes the 
permutations. 

mode See “block cipher mode of operation.”  

numeral For a given base, a nonnegative integer less than the base. 

numeral string For a given base, a character string that is comprised of numerals for 
the base. 

plaintext A numeral string whose confidentiality is protected by an FPE 
mode.  

prerequisite A required input to an algorithm that has been established prior to 
the invocation of the algorithm. 

shall Is required to. Requirements apply to conforming implementations. 

should Is recommended to. 

tweak The input parameter to the encryption and decryption functions 
whose confidentiality is not protected by the mode.  
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4.2 Acronyms 

AES Advanced Encryption Standard. 

CAVP Cryptographic Algorithm Validation Program. 

CCN credit card number. 

CMVP Cryptographic Module Validation Program. 

FIPS Federal Information Processing Standard. 

FISMA Federal Information Security Management Act. 

FPE format-preserving encryption. 

IETF Internet Engineering Task Force. 

ITL Information Technology Laboratory. 

NIST National Institute of Standards and Technology. 

PRF pseudorandom function. 

RFC Request For Comment. 

SSN Social Security number. 

 

4.3 Operations and Functions   

BYTELEN(T)  The number of bytes in a byte string, T. 

CIPHK (X) The output of the designated cipher function of the block cipher 
under the key K applied to the block X. 

LEN(X) The length of the character string X.  

LOGb(x) The base b logarithm of the real number x ≠ 0. 

NUMradix(X) The number that the numeral string X represents in base radix, with 
the most significant character first. 

PRF(X) The output of the function PRF applied to the block X with the 
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designated cipher function of the block cipher under the key K. 

REV(X) Given a bit string, X, the string that consists of the bits of X in 
reverse order. 

STR
m
radix (x) 

Given a nonnegative integer x less than radixm, the representation of 
x as a string of m characters in base radix, with the most significant 
character first. 

⌊x⌋ The greatest integer that does not exceed the real number x.  

x The least integer that is not less than the real number x.  

[x]s Given a nonnegative integer x less than 256s, the representation of x 
as a string of s bytes. 

[i..j] The set of integers between two integers i and j, including i and j. 

x mod m The nonnegative remainder of the real number x modulo the positive 
integer m. 

X[i] The ith character of the string X.  

X[i .. j] The substring of characters of a string X from X[i] to X[j], including 
X[i] and X[j]. 

X ⊕ Y The bitwise exclusive-OR of bit strings X and Y whose bit lengths 
are equal. 

X  || Y The concatenation of bit strings X and Y. 

0s The bit string that consists of s consecutive ‘0’ bits.  

4.4 Examples of Basic Operations and Functions 

In this publication, the Courier New font indicates the two binary bits, 0 and 1. 
 
Given positive real numbers b and x, the base b logarithm of x, denoted LOGb(x), is the unique 
real number for which bLOGb (x) = x. For example, LOG2(64) = 6, LOG2(10) ≈ 3.32, and LOG13(169) = 
2. 
 
Given a real number x, the floor function, denoted ⌊x⌋, is the greatest integer that does not exceed 
x. For example, ⌊2.1⌋= 2, and ⌊4⌋= 4. 
 
Given a real number x, the ceiling function, denoted x, is the least integer that is not less than x. 
For example, 2.1 = 3, and 4 = 4.  
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Given two integers i and j with i ≤ j, the set of integers between i and j, including i and j, is 
denoted [i..j].  For example, [2 .. 5] = {2, 3, 4, 5}. 
 
Given a real number x, and a positive integer m, the remainder of x modulo m, denoted x mod m, 
is x–m⌊x/m⌋. For example, 20 mod 7 = 6, and -3 mod 7 = 4. 
 
Given a positive integer s, 0s denotes the string that consists of s ‘0’ bits. For example, 08

 = 
00000000.  
 
The concatenation operation on character strings is denoted ||. For example, 001 || 10111 = 
00110111, and if the base is 16, for example, 1 3 13 7 || 0 8 10 = 1 3 13 7 0 8 10.  
 
Given bit strings of equal length, the exclusive-OR (XOR) operation, denoted ⊕, specifies the 
addition, modulo 2, of the bits in corresponding bit positions. For example, 10011 ⊕ 10101 = 
00110.  
 
Given a character string X, the length of X is denoted LEN(X). For example, LEN(%$$) = 3, and 
LEN(00010) = 5. 
 
Given a byte string X, the length of X in bytes is denoted BYTELEN(X). For example, 
BYTELEN(1011100110101100) = 2.   
  
Given a character string X, and any index i, i.e., with 1 ≤ i ≤ LEN(X), the ith character of X is 
denoted X[i]. For a pair of indices (i, j), with 1≤ i ≤ j ≤ LEN(X), the substring of characters from  
X[i] to X[j] is denoted X[i .. j].  For example, if X = &$*#@@%, then X[2]=$, X[3..5]=*#@. 
  
Given a base, radix, and a length, m, there are radixm distinct numeral strings. Given an integer x 
such that 0 ≤ x < radixm, the integer-to-string function, denoted STR

m
radix (x), is the representation 

of x as a numeral string of length m in base radix, with the most significant character first, i.e., on 
the left. For example, STR

4
12(559) is the string of four numerals in base 12 that represents 559, 

namely, 0 3 10 7. An algorithm for computing STR
m
radix (x) is given in Sec. 5.5. 

 
A separate notation is given for the conversion of integers to byte strings: [x]s= STR8s

2(x). For 
example, [1]1  = 00000001. 
    
Given a (non-empty) numeral string X in base radix of length m, the string-to-integer function, 
denoted NUMradix(X), is the integer x such that STR

m
radix (x) = X. In other words, NUMradix(X) is the 

non-negative integer less than radixLEN(X) whose most-significant-character-first representation in 
base radix is X. For example, NUM2(00011010) = 26. An algorithm for computing NUMradix(X) 
is given in Sec. 5.5. 
 
Given a bit string, X, the string REV(X) is the concatenation of the bits of X in reverse order. For 
example, REV(00001) = 10000. 
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5 Preliminaries 

5.1 Character Strings 

A finite set of two or more symbols is called an alphabet, and the elements of an alphabet are 
called characters. A character string is a finite sequence of characters from an alphabet.  
Individual characters may repeat in the string.  Thus, for example, given the alphabet of lower-
case English letters, 
 

{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}, 
 
the words “hello” and “cannot” are character strings, but “Hello” and “can’t” are not, 
because the symbols “H” and “’” are not in the alphabet. 
 
The number of characters in an alphabet is called the base, denoted radix, so that radix ≥ 2 by 
definition. For a given base, a numeral is a nonnegative integer that is less than the base.  
 
The base is a parameter of FF1, FF2, and FF3, and their specifications assume that the alphabet 
is the set of numerals for the base: 
 

{0, 1, …, radix-1}. 
 

Therefore, to apply FF1, FF2, or FF3 to character strings from an arbitrary alphabet, the string 
must first be converted, via a one-to-one correspondence, into a string of numerals for the base of 
the alphabet. For example, the natural conversion from lower-case English letters to base 26 
numerals is  
 

a→0, b→1, c→2, … x→23, y→24, z→25, 
 

although other one-to-one correspondences are possible. The choice and implementation of 
conversion methods from particular alphabets to their appropriate alphabets of numerals is 
outside the scope of this publication. 

 
The interpretation of a numeral string as a number depends on the base and the ordering 
convention; algorithms for functions that convert numeral strings to numbers and vice versa are 
given in Sec. 5.5.  Individual numerals, and other numbers in the specifications, are represented 
in base 10.  
 
The basic operations and functions on strings are defined with examples in Sec. 4.4. 

5.2 Underlying Block Cipher and Key 

The encryption and decryption functions of FF1, FF2, and FF3 feature a block cipher as the main 
component; thus, each of these FPE mechanisms is a mode of operation (mode, for short) of the 
block cipher.  
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For any given key, K, the underlying block cipher of the mode is a permutation, i.e., an invertible 
transformation on bit strings of a fixed length; the fixed-length bit strings are called blocks, and 
the length of a block is called the block size. For an FPE mode, as part of the choice of the 
underlying block cipher with the key, either the forward transformation or the inverse 
transformation2 is specified as the designated cipher function, denoted CIPHK. The inverse of 
CIPHK is not needed for the modes that are specified in this publication.  
 
For each of the three modes, the underlying block cipher shall be approved, and the block size 
shall be 128 bits. Currently, the AES block cipher, with key lengths of 128, 192, or 256 bits, is 
the only block cipher that fits this profile.  
 
The choice of the key length affects the security of the FPE modes, e.g., against brute-force 
search, and also affects the details of the implementation of the AES algorithm.  Otherwise, the 
key length does not affect the implementation of FF1, FF2, and FF3, and the choice of the key 
length is not explicitly indicated in their specifications Methods for generating cryptographic 
keys are discussed in [9]; the goal is to select the keys uniformly at random, i.e., for each 
possible key to occur with equal probability.  
 
The key shall be kept secret, i.e., disclosed only to parties that are authorized to know the 
protected information. Compliance with this requirement is the responsibility of the entities 
using, implementing, installing, or configuring applications that incorporate this 
Recommendation. The management of cryptographic keys is outside the scope of this 
publication. 

5.3 Encryption and Decryption Functions 

For a given key, denoted K, for the designated block cipher, FF1, FF2, and FF3 each consist of 
two related functions: encryption and decryption. The encryption function takes as input a 
numeral string called the plaintext, denoted X, and an additional parameter, called the tweak, 
denoted T; the function returns a numeral string called the ciphertext, denoted Y, with the same 
length as X. Similarly, the inputs to the decryption function are a numeral string X and a tweak T; 
the output is a numeral string Y of the same length as X. 
 
For FF1, the encryption function and the decryption function are denoted FF1.Encrypt(K, T, X) 
and FF1.Decrypt(K, T, X), with analogous notation for FF2 and FF3. 
 
For a given tweak, the decryption function is the inverse of the encryption function, so that  
 

FF1.Decrypt(K, T, FF1.Encrypt(K, T, X)) = X. 
 

Thus, when a ciphertext is the input to the decryption function, along with the same tweak that 
was used to generate the ciphertext, the output is the corresponding plaintext.   
 

                                                 
2 The forward transformation and the inverse transformations are sometimes referred to as the “enrypt” and 
“decrypt” functions, respectively, of the block cipher; however, in this publication, those terms are reserved for 
functions of the FPE modes.  
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The tweak may be any information that can be associated to the input numeral string and does 
not need to be kept secret.  Although implementations may fix the value of the tweak, the use of 
variable tweaks is strongly recommended as a security enhancement; see Appendix C. In FF1 
and FF3, tweaks are bit strings; in FF2, tweaks may also be character strings in a different base. 
The tweak lengths that can be supported differ for each of the three modes; see the individual 
specifications in Sec. 6. 
 
The key, K, is indicated in the notation as an input for the encryption and decryption functions; 
however, in the specifications in this publication, the key is listed as a prerequisite, i.e., an input 
that is usually established prior to the invocation of the function.3 Several other prerequisites are 
omitted from the above notation, such as the underlying block cipher, the designation of CIPHK, 
and the base for the numeral strings.  

5.4 Feistel Structure 

FFX schemes, including FF1, FF2, and FF3, are based on the Feistel structure for encryption. 
The Feistel structure consists of several iterations, called rounds, of a reversible transformation, 
which consists of three elements: 1) the data is split into two parts; 2) a keyed function, FK, 
called the round function, is applied to one part of the data in order to modify the other part of 
the data; and 3) the roles of the two parts are swapped for the next round. The structure is 
illustrated in Figure 1 below. Four rounds are shown in this example, but ten rounds are actually 
specified for FF1 and FF2, and eight rounds for FF3. 
 
The two parts of the input numeral string, denoted A0 and B0, consist of u and v characters, 
respectively; the total number of characters, u+v, is denoted n. The rounds are indexed from 0 to 
3 in the figure. During round i, the round function FK is applied to Bi, with the tweak T, the round 
number i, and the length n, as additional inputs, and the result is used to modify Ai, via modular 
addition4, indicated by +, on the numbers that the strings represent5. The string that represents 
the resulting number is named with a temporary variable, Ci. The roles of the parts are swapped 
for the next round, so that the modified Ai, i.e., Ci, becomes Bi+1, and Bi becomes Ai+1.  
 
The rectangles containing the two parts of the data in each round are different sizes to illustrate 
that, if n is odd, then u cannot equal v. In order to accommodate such cases, the round function is 
constructed so that the lengths of its input and output strings depend on whether the round 
number index, i, is even or odd.  
 
The Feistel structure for decryption is almost identical; the only changes are 1) modular addition 
is replaced by modular subtraction, and 2) the order of the round indices is reversed.  For 
example, in Figure 1, the arguments to FK would begin at n, T, 3 at the top, and end at n, T, 0 at 
the bottom.  
 

                                                 
3 The distinction doesn’t affect the execution of the function: all inputs are required, independent of when they were 
established or provided to the implementation. 
4 In principle, the addition operation can be any other reversible operation on strings that preserves their length; for 
example, the FFX specification [1] supports an option for characterwise addition.  
5 The ordering convention for the interpretation of strings is different for FF3 than for FF1 and FF2. 
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Figure 1: Illustration of the Feistel Structure 
 

5.5 Component Functions 

This section gives algorithms for the component functions that are called in the specifications of 
FF1, FF2, and FF3. The conversion functions NUMradix(X) and STR

m
radix(x)—defined in Sec. 4.4 

with examples—are specified in Algorithms 1 and 2. These functions support the ordering 
convention for the numeral strings in FF1 and FF2, namely, that the first (i.e., left-most) numeral 
of the string is the most-significant numeral. 

  

A0 B0 

B1 ← C0 A1 ← B0 

A2 ← B1 B2 ← C1 

B3 ← C2 A3 ← B2 

A4 ← B3 B4 ← C3 

n, T, 0 

u characters v characters 

  

  FK 

  

  

  

n, T, 1 

n, T, 2 

n, T, 3 

  FK 

FK   

  FK + 

+ 

+ 

+ 
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The function REV(X) )—defined in Sec. 4.4 with an example—is specified in Algorithm 3. It is 
used to adapt NUMradix(X) and STR

m
radix (x) to the opposite ordering convention, for the numeral 

strings in FF3. 
 
The PRF function, specified in Algorithm 4, essentially invokes the Cipher Block Chaining 
encryption mode [7] on the input bit string and returns the final block of the ciphertext; this 
function is the pseudorandom core of the Feistel round function for FF1.Encrypt and 
FF1.Decrypt. 
 
Algorithm 1: NUMradix (X)  
 
Prerequisite: 
Base, radix. 
 
Input: 
Numeral string, X. 
 
Output: 
Number, x. 
 
Steps: 
1.   Let x = 0. 
2. For i from 1 to LEN(X), let x = x ⋅ radix + X[i]. 
3. Return x. 
  
Algorithm 2: STR

m
radix (x) 

 
Prerequisites: 
Base, radix; 
String length, m. 
 
Input: 
Number, x, such that x < radixm. 
 
Output: 
Numeral string, X. 
 
Steps: 
1.   For i from 1 to m: 
 i. X[m+1-i] = x mod radix;  

 ii. x = x/ radix. 
2.  Return X. 
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Algorithm 3: REV (X)  
 
Input: 
Character string, X. 
 
Output: 
Character string, Y. 
 
Steps: 
1. For i from 1 to LEN(X) let Y[i]=X[LEN(X)+1-i]. 
2. Return Y[0 .. LEN (X)-1].    
 
Algorithm 4: PRF(X)  
 
Prerequisites: 
Approved, 128-bit block cipher, CIPH; 
Key, K, for the block cipher; 
 
Input:  
Nonempty bit string, X, such that LEN(X) is a multiple of 128. 
 
Output: 
Block, Y. 
 
Steps: 
1.   Let m = LEN(X)/128.  
2. Partition X into m blocks X1,…, Xm, so that X = X1 || …|| Xm  and LEN(Xi) = 128 for all i 

from 1 to m. 

3. Let Y0 = 0128, and for j from 1 to m let Yj = CIPHK(Yj-1 ⊕ Xj). 
4.  Return Ym.  

6 Mode Specifications 
The specifications of FF1, FF2, and FF3 are presented in this section, organized into 
prerequisites, inputs, outputs, steps, and descriptions of the steps. In addition to the key and 
designated cipher function, each mode has prerequisites for the choices of the base, radix, and of 
the range of lengths, [minlen .. maxlen], for the numeral string inputs that the implementation 
supports.  FF1 and FF2 also have a prerequisite for the choice of the maximum tweak length, 
maxTlen, that the implementation supports, and FF2 has an additional parameter, tweakradix, for 
the choice of the base for tweak strings.  For all of these parameters, the choices that are allowed 
for the individual modes are described within the prerequisites.  
 
The parameter choices may affect interoperability. The behavior of an implementation when 
presented with incorrect inputs is out of the scope of this Recommendation. 
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6.1 FF1 

The specifications for the FF1.Encrypt and FF1.Decrypt functions are given in Algorithms 5 and 
6 below. The tweak, T, is optional in that it may be the empty string, with byte length t=0. 
 
The parameters radix, minlen, maxlen, and maxTlen in FF1.Encrypt and FF1.Decrypt shall meet 
the following requirements: 
 

• radix ∈ [2 .. 216]; 
• radixminlen ≥ 100; 
• minlen ≥  2; 
• maxlen < 232; and 
• maxTlen < 232. 

 
Algorithm 5: FF1.Encrypt(K, T, X)  
 
Prerequisites: 
Approved, 128-bit block cipher, CIPH; 
Key, K, for the block cipher;  
Base, radix, for the character alphabet; 
Range of supported message lengths, [minlen .. maxlen]; 
Maximum byte length for tweaks, maxTlen.  
  
 
Inputs: 
Character string, X, in base radix of length n such that n ∈ [minlen .. maxlen]; 
Tweak T, a byte string of byte length t, such that t ∈ [0 .. maxTlen]. 
 
Output: 
Character string, Y, such that LEN(Y) = n. 
 
Steps: 
1. Let u = n/2; v = n – u. 
2.  Let A = X[1 .. u]; B = X[u + 1 .. n]. 
3. Let b =  v LOG2(radix) / 8; d = 4 b/4 + 4 
4. Let P = [1]1 || [2]1 || [1]1 || [radix]3 || [10]1 || [u mod 256]1 || [n]4 || [t]4. 
5. For i from 0 to 9: 
 i. Let Q = T || [0](−t−b−1) mod 16 || [i]1 || [NUMradix(B)]b. 
 ii. Let R = PRF(P || Q). 
 iii. Let S be the first d bytes of the following string of ⌈ d/16⌉  blocks: 
  R || CIPHK (R ⊕ [1]16) || CIPHK (R ⊕ [2]16) || … || CIPHK (R ⊕ [⌈ d/16⌉  -1]16). 
 iv. Let y = NUM2(S). 
 v. If i is even, let m = u; else, let m = v.  
 vi. Let c = (NUMradix(A) + y) mod radix m. 
 vii. Let C = STR

m
radix (c). 
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 viii.  Let A = B. 
 ix. Let B = C. 
6. Return A || B.  
 
Description 
The “split” of the numeral string X into two substrings, A and B, is performed in Steps 1 and 2.  
If n is even, LEN(A)=LEN(B); otherwise, LEN(A)=LEN(B)–1. The byte lengths b and d, which are 
used in Steps 5i and 5iii, are defined in Step 3.6 A fixed block, P, used as the initial block for the 
invocation of the function PRF in Step 5ii, is defined in Step 4. An iteration loop for the ten 
Feistel rounds of FF1 is initiated in Step 5, executing nine substeps for each round, as follows:   
 
The tweak, T, the substring, B, and the round number, i, are encoded as a binary string, Q, in 
Step 5i. The function PRF is applied to the concatenation of P and Q in Step 5ii, to produce a 
block, R, which is either truncated or expanded to a byte string, S, with the appropriate number 
of bytes, d, in Step 5iii. (In Figure 1Error! Reference source not found., S corresponds to the 
output of FK.) In Steps 5iv to 5vii, S is combined with the substring A to produce a numeral string 
C in the same base and with the same length. (In Figure 1, the combining of S with A is indicated 
by the “+” operation.) In particular, in Step 5iv, S is converted to a number, y. In Step 5v, the 
length, m, of A for this Feistel round is determined. In Step 5vi, y is added to the number 
represented by the substring A and the result is reduced modulo the mth power of radix, yielding 
a number, c, which is converted to a numeral string in Step 5vii. In Steps 5viii and 5ix, the roles 
of A and B are swapped for the next round: the substring B is renamed as the substring A, and the 
modified A (i.e., C) is renamed as B.  
 
This completes one round of the Feistel structure in FF1. After the tenth round, the concatenation 
of A and B is returned as the output in Step 6.                     
 
Algorithm 6: FF1.Decrypt(K, T, X)  
 
Prerequisites: 
Approved, 128-bit block cipher, CIPH; 
Key, K, for the block cipher;  
Base, radix, for the character alphabet; 
Range of supported message lengths, [minlen .. maxlen]; 
Maximum byte length for tweaks, maxTlen. 
 
Inputs: 
Numeral string, X, in base radix of length n such that n ∈ [minlen .. maxlen]; 
Tweak byte string, T, of byte length t such that  t ∈ [0 .. maxTlen]. 
 
Output: 
Numeral string, Y, such that LEN(Y) = n. 

                                                 
6 When B is encoded as a byte string in Step 5i, b is the number of bytes in the encoding. The definition of d ensures 
that the output of the Feistel round function is at least 4 bytes longer than this encoding of B, which minimizes any 
bias in the modular reduction in Step 5vi. 
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Steps: 
1. Let u = n/2; v = n – u. 
2.  Let A = X[1 .. u]; B = X[u + 1 .. n]. 
3. Let b =  v LOG2(radix)  / 8; d = 4 b/4 + 4 
4. Let P =  [1]1 || [2]1 || [1]1  || [radix]3 ||  [10]1 [u mod 256]1 || [n]4 || [t]4. 
5. For i from 9 to 0: 
 i. Let Q = T || [0](−t−b−1) mod 16 || [i]1 || [NUMradix (B)]b. 
 ii. Let R = PRF(P || Q). 
 iii. Let S be the first d bytes of the following string of ⌈ d/16⌉  blocks: 
  R || CIPHK (R ⊕ [1]16) || CIPHK (R ⊕ [2]16) || … || CIPHK (R ⊕ [⌈ d/16⌉  -1]16). 
 iv. Let y = NUM2(S). 
 v. If i is even, let m = u; else, let m = v.  
 vi. Let c = (NUMradix(A) – y) mod radix m. 
 vii. Let C = STR

m
radix (c). 

 viii.  Let A = B. 
 ix. Let B = C. 
6. Return A || B.  
 
Description: 
The FF1.Decrypt algorithm is almost identical to the FF1.Encrypt algorithm; the only differences 
are in Step 5, where the order of the indices is reversed, and in Step 5vi, where modular addition 
is replaced by modular subtraction. 
  

6.2 FF2 
The specifications for the FF2.Encrypt and FF2.Decrypt functions are given in Algorithms 7 and 
8 below. The tweak, T, is optional in that it may be the empty string, with byte length t=0. 
 
The parameters radix, tweakradix, minlen, maxlen, and maxTlen in FF2.Encrypt and 
FF2.Decrypt shall meet the following requirements: 
 

• radix ∈ [2 .. 28]; 
• tweakradix ∈ [2 .. 28]; 
• radixminlen ≥ 100; 
• minlen ≥  2; 
• maxlen ≤ 2120/LOG2(radix)  if radix is a power of 2; 
• maxlen ≤ 298/LOG2(radix)  if radix is not a power of 2; and 
• maxTlen< 104/LOG2(tweakradix). 

 
 
Algorithm 7: FF2.Encrypt(K, T, X)  
 
Prerequisites: 
Approved, 128-bit block cipher, CIPH; 
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Key, K, for the block cipher;  
Base, radix, for the character alphabet; 
Base, tweakradix, for the tweak character alphabet; 
Range of supported message lengths, [minlen .. maxlen] 
Maximum supported tweak length, maxTlen. 
 
Inputs: 
Numeral string, X, in base radix of length n such that n ∈ [minlen .. maxlen]; 
Tweak numeral string, T, in base tweakradix of length t such that t ∈ [0 .. maxTlen]. 
 
Output: 
Numeral string, Y, such that LEN(Y) = n. 
 
Steps: 
1. Let u = n/2; v = n – u. 
2.  Let A = X[1 .. u]; B = X[u + 1 .. n]. 
3. If t>0, P = [radix]1 || [t]1 || [n]1 || [NUM tweakradix (T)]13; else P = [radix]1 || [0]1 || [n]1 || [0]13. 
4. Let J = CIPHK(P) 
5. For i from 0 to 9: 
 i. Let Q ← [i]1 ||  [NUM radix (B)]15 
 ii. Let Y ← CIPHJ(Q). 
 iii Let y ← NUM2(Y). 
 iv. If i is even, let m = u; else, let m = v.  
 v. Let c = (NUMradix(A) + y) mod radix m. 
 vi. Let C = STR

m
radix (c). 

 vii.  Let A = B. 
 viii. Let B = C. 
 
6. Return A || B.  
 
Description: 
The “split” of the numeral string X into two substrings, A and B, is performed in Steps 1 and 2.  
If n is even, LEN(A)=LEN(B); otherwise, LEN(A)=LEN(B)–1. A fixed block, P, is defined in Step 3 
from encodings of the base, radix, and the tweak, T. The block cipher under the key K, i.e., 
CIPHK, is applied to P in Step 4 to produce a 128-bit subkey, J. An iteration loop for the ten 
Feistel rounds of FF2 is initiated in Step 5, executing eight substeps for each round, as follows: 
 
The substring, B, and the round number, i, are encoded as a binary string, Q, in Step 5i. The 
block cipher under the subkey J is applied to Q in Step 5ii to produce a block, Y. (In Error! 
Reference source not found., Y corresponds to the output of FK.) In Steps 5iii to 5vi, Y is 
combined with the substring A to produce a numeral string C in the same base and with the same 
length. (In Figure 1, the combining of Y with A is indicated by the “+” operation.) In particular, 
in Step 5iii, Y is converted to a number, y. In Step 5iv, the length, m, of A for this Feistel round is 
determined, and in Step 5v, the number y is reduced modulo the mth power of the base radix. In 
Step 5v, the number y is added to the number represented by the substring A and the result is 
reduced modulo the mth power of radix, yielding a number, c, which is converted to a numeral 
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string in Step 5vi. In Steps 5vii and 5viii, the roles of A and B are swapped for the next round: 
the substring B is renamed as the substring A, and the modified A (i.e., C) is renamed as B.  
 
This completes one round of the Feistel structure in FF2. After the tenth round, the concatenation 
of A and B is returned as the output in Step 6.  
 
Algorithm 8: FF2.Decrypt(K, T, X)  
 
Prerequisites: 
Approved, 128-bit block cipher, CIPH; 
Key, K, for the block cipher;  
Base, radix, for the character alphabet; 
Base, tweakradix, for the tweak character alphabet; 
Range of supported message lengths, [minlen .. maxlen] 
Maximum supported tweak length, maxTlen. 
 
Inputs: 
Numeral string, X, in base radix of length n such that n ∈ [minlen .. maxlen]; 
Tweak numeral string, T, in base tweakradix of length t such that t ∈ [0 .. maxTlen]. 
 
Output: 
Numeral string, Y, such that LEN(Y) = n. 
 
Steps: 
1. Let u = n/2; v = n – u. 
2.  Let A = X[1 .. u]; B = X[u + 1 .. n]. 
3. If t>0, P = [radix]1 || [t]1 || [n]1 || [NUMtweakradix (T)]13; else P = [radix]1 || [0]1 || [n]1 || [0]13. 
4. Let J = CIPHK(P) 
5. For i from 9 to 0: 
 i. Let Q ← [i]1 || | [NUM radix (B)]15 
 ii. Let Y ← CIPHJ(Q). 
 iii Let y ← NUM2(Y). 
 iv. If i is even, let m = u; else, let m = v.  
 v. Let z = y mod radix m. 
 vi. Let c = (NUMradix(A) – y) mod radix m. 
 vii. Let C = STR

m
radix (c). 

 viii.  Let A = B. 
 ix. Let B = C. 
6. Return A || B.  
 
Description: 
The FF2.Decrypt algorithm is almost identical to the FF2.Encrypt algorithm: the only differences 
are in Step 5, where the order of the indices is reversed, and in Step 5v, where modular addition 
is replaced by modular subtraction. 
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6.3 FF3 

The specifications for the FF3.Encrypt and FF3.Decrypt functions are given in Algorithms 9 and 
10 below. 
 
The parameters radix, minlen, and maxlen in FF3.Encrypt and FF3.Decrypt shall meet the 
following requirements: 
 

• radix ∈ [2 .. 216]; 
• radixminlen ≥ 100;  
• minlen ≥  2; and 
• maxlen ≤ 2logradix(296). 

 
Algorithm 9: FF3.Encrypt(K, T, X)  
 
Prerequisites: 
Approved, 128-bit block cipher, CIPH; 
Key, K, for the block cipher;  
Base, radix, for the character alphabet such that radix ∈ [2 .. 216]; 
Range of supported message lengths, [minlen .. maxlen], such that minlen ≥  2 and maxlen ≤ 
2logradix(296)]. 
 
Inputs: 
Numeral string, X, in base radix of length n such that n ∈ [minlen .. maxlen]; 
Tweak bit string, T, such that LEN(T) = 64. 
 
Output: 
Numeral string, Y, such that LEN(Y) = n. 
 
Steps: 
1. Let u = ⌈ n/2⌉ ; v = n – u. 
2.  Let A = X[1 .. u]; B = X[u + 1 .. n]. 
3. Let TL = T[0..31] and TR = T[32..63] 
4. For i from 0 to 7: 
 i. If i is even, let m = u and W = TR, else let m = v and W =TL. 
 ii. Let P = REV([NUMradix(REV(B))]12) || W ⊕ REV([i]4). 
 iii Let Y = CIPHK (P). 
 iv. Let y = NUM2(REV(Y)).  
 v. Let c = (NUMradix(REV(A)) + y) mod radix m.  
 vi.  Let C = REV(STR

m
radix (c)). 

 vii.  Let A = B. 
 viii. Let B = C. 
5. Return A || B.  
 
Description: 
The “split” of the numeral string X into two substrings, A and B, is performed in Steps 1 and 2.  
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If n is even, LEN(A)=LEN(B); otherwise, LEN(A)=LEN(B)+1.7  The tweak, T, is partitioned into a 
32-bit left tweak, TL, and a 32-bit right tweak, TR, in Step 3. An iteration loop for the eight Feistel 
rounds of FF3 is initiated in Step 4, executing eight substeps for each round, as follows:  
 
In Step 4i, the parity of the round number, i, determines the length, m, of the substring A, and 
whether TL or TR will be used as W in Step 4ii, in which a 32-bit encoding of i, XORed with W, is 
concatenated with a 96-bit encoding of B to produce a block, P. In Step 4iii, the block cipher 
under the key, i.e., CIPHK, is applied to P, to produce a block, Y. (In Figure 1, Y corresponds to 
the output of FK.) In Steps 4iv to 4vii, Y is combined with the substring A to produce a numeral 
string C in the same base and with the same length. (In Figure 1,  the combining of Y with A is 
indicated by the “+” operation, although this operation is different than for FF1 and FF2 in that 
FF3 uses the opposite ordering convention for the conversion of strings to numbers and vice 
versa.) In particular, in Step 4iv, Y is converted to a number, y. In Step 4v, the number y is added 
to the number represented by the substring A and the result is reduced modulo the mth power of 
radix, yielding a number, c, which is converted to a numeral string in Step 5vi. In Steps 4vii and 
4viii, the roles of A and B are swapped for the next round: the substring B is renamed as the 
substring A, and the modified A (i.e., C) is renamed as B.  
 
This completes one round of the Feistel structure in FF3. After the eighth round, the 
concatenation of A and B is returned as the output in Step 5. 
 
Algorithm 10: FF3.Decrypt(K, T, X)  
 
Prerequisites: 
Approved, 128-bit block cipher, CIPH; 
Key, K, for the block cipher;  
Base, radix, for the character alphabet such that radix ∈ [2 .. 216]; 
Range of supported message lengths, [minlen .. maxlen], such that minlen ≥  2 and maxlen ≤ 
2logradix(296). 
 
Inputs: 
Numeral string, X, in base radix of length n such that n ∈ [minlen .. maxlen]; 
Tweak bit string, T, such that LEN(T) = 64. 
 
Output: 
Numeral string, Y, such that LEN(Y) = n. 
 
Steps: 
1. Let u = ⌈n /2⌉ ; v = n – u. 
2.  Let A = X[1 .. u]; B = X[u + 1 .. n]. 
3. Let TL = T[0..31] and TR = T[32..63] 
4. For i from 7 to 0: 
 i. If i is even, let m = u and W = TR, else let m = v and W =TL. 
 ii. Let P = REV([NUMradix(REV(B))]12) || W ⊕ REV([i]4). 

                                                 
7 If n is odd, A is one character longer than B, in contrast to FF1 and FF2, where B is one character longer than A. 
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 iii Let Y = CIPHK (P). 
 iv. Let y = NUM2(REV(Y)).  
 vi. Let c = (NUMradix(REV(A)) – y) mod radix m.  
 vii.  Let C = REV(STR

m
radix (c)). 

 viii.  Let A = B. 
 ix. Let B = C. 
5. Return A || B. 
 
 Description: 
The FF3.Decrypt algorithm is almost identical to the FF3.Encrypt algorithm: the only differences 
are in Step 4, where the order of the indices is reversed, and in Step 4v, where modular addition 
is replaced by modular subtraction. 
 

7 Conformance 
An implementation may claim conformance to any of the following six functions:   
 

FF1.Encrypt  FF2.Encrypt  FF3.Encrypt 
FF1.Decrypt  FF2.Decrypt  FF3.Decrypt 
 

Component functions such as PRF are not approved for use independent of these eight functions. 
 
In order to claim conformance with this Recommendation, an implementation of FF1, FF2, or 
FF3 must support at least one set of values for its parameters.  
 
Two implementations can only interoperate when they support a common value for the base.  
Similarly, two implementations of FF2 can only interoperate when they also support a common 
value for the tweak base.   
 
Moreover, each mode has two parameters, minlen and maxlen, that determine the lengths for the 
numeral strings that are supported by an implementation of the encryption or decryption function 
for the mode.  FF1 and FF2 also have a parameter, maxTlen, that determines the lengths of the 
tweak strings they support. The selection of these parameters may also affect interoperability.  
 
For every algorithm that is specified in this Recommendation, a conforming implementation may 
replace the given set of steps with any mathematically equivalent set of steps. In other words, 
different procedures that produce the correct output for any input are permitted. 
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Appendix A:  Parameter Choices 
The length of the key affects its resistance to brute-force search. The requirement for each mode 
that radixminlen ≥ 100 precludes a generic meet-in-the-middle attack on the Feistel structure [10].  
A requirement on maxlen for FF2—namely, that maxlen ≤ 298/LOG2(radix) if radix is not a 
power of 2—minimizes the bias in the generation of z. 
 
Otherwise, the choices of the mode parameters, e.g., radix, minlen, and maxlen, are determined 
by the needs of the application, not by security considerations.  
 
Two potential parameters of the Feistel structure are fixed for FF1, FF2, and FF3, namely, the 
number of Feistel rounds and the imbalance, i.e., the lengths into which the input numeral string 
is split: these were chosen in each case to balance performance requirements and security 
considerations. See H of [1] for a discussion.  
 
For FF1 and FF2, the maximum tweak length parameter, maxTlen, should be chosen to 
accommodate non-secret information that may be associated to a plaintext. The security rationale 
for tweaks is discussed in Appendix C.  

Appendix B: Security Goal 
The designers of FFX aimed to achieve strong-pseudorandom permutation (PRP) security for a 
conventional block cipher [5].  In the FFX proposal to NIST [1], the designers of FFX cite the 
history of cryptographic results concerning Feistel networks as underlying their selection of the 
FFX mechanism. They assert that, under the assumption that the underlying round function is a 
good pseudorandom function (PRF), contemporary cryptographic results and experience indicate 
that FFX achieves cryptographic goals including nonadaptive message-recovery security, 
chosen-plaintext, and even PRP-security against an adaptive chosen-ciphertext attack. The 
quantitative security depends on the number of rounds used, the imbalance, and the adversary’s 
access to plaintext/ciphertext pairs.   See [1] for details. 

Appendix C: Tweaks 
Tweaks have been supported in stand-alone block ciphers, such as Schroeppel’s Hasty Pudding 
[11], and the notion was later formalized and investigated by Liskov, Rivest, and Wagner [4]. 
Tweaks are important for FPE modes, because FPE may be used in settings where the number of 
character strings is relatively small. In such settings, the tweak should vary with each instance of 
the encryption whenever possible. 
 
For example, suppose that in an application for CCNs the leading six digits and the trailing four 
digits need to be available, unencrypted, to the application, so that only the remaining six digits 
in the middle of the CCNs are encrypted. There are a million different possibilities for these 
middle-six digits, so, in a database of 100 million CCNs, about a hundred distinct CCNs would 
be expected to share each possible value for these six digits. If these hundred CCNs were 
encrypted with the same tweak, then their ciphertexts would be the same.  
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If, however, the other ten digits had been the tweak for the encryption of the middle-six digits, 
then the hundred ciphertexts would almost certainly be different. Therefore, for example,  
learning that CCN 123456-123456-9876 encrypts to 123456-770611-9876 would not allow the 
decryption of 111111-770611-9999, as the mapping of 123456 to 770611 is specific to the 
surrounding digits 123456/9876. 
 
In general, it is recommended to use information that is available and statically associated to a 
plaintext as a tweak for that plaintext. Ideally, the non-secret tweak associated to a plaintext is 
associated only to that plaintext. 
 
Extensive tweaking means that fewer plaintexts are enciphered under any given tweak. This 
corresponds, in the security model that is described in [1], to fewer queries to the target instance 
of the encryption. The relevant metric is the maximum number of plaintexts that are encrypted 
with the same tweak, which is likely to be significantly less than the total number of plaintexts 
enciphered. 
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