

(DRAFT) NIST Special Publication 800-52 1

Revision 2 2

Guidelines for the Selection, 3

Configuration, and Use of Transport 4

Layer Security (TLS) Implementations 5

 6

Kerry McKay 7
David Cooper 8

 9

 10

 11

 12

 13

 14

C O M P U T E R S E C U R I T Y 15

 16

17

(DRAFT) NIST Special Publication 800-52 18

Revision 2 19

Guidelines for the Selection, 20

Configuration, and Use of Transport 21

Layer Security (TLS) Implementations 22

 23

Kerry McKay 24
David Cooper 25

Computer Security Division 26
Information Technology Laboratory 27

 28
 29
 30
 31
 32
 33
 34

 35
 36
 37

November 2017 38
 39
 40

 41
 42
 43

U.S. Department of Commerce 44
Wilbur L. Ross, Jr., Secretary 45

 46
National Institute of Standards and Technology 47

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology 48

Authority 49

This publication has been developed by NIST in accordance with its statutory responsibilities under the 50
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., Public Law 51
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 52
minimum requirements for federal information systems, but such standards and guidelines shall not apply 53
to national security systems without the express approval of appropriate federal officials exercising policy 54
authority over such systems. This guideline is consistent with the requirements of the Office of Management 55
and Budget (OMB) Circular A-130. 56

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 57
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 58
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 59
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 60
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 61
however, be appreciated by NIST. 62

National Institute of Standards and Technology Special Publication 800-52 Revision 2 63
Natl. Inst. Stand. Technol. Spec. Publ. 800-52 Rev. 2, 68 pages (November 2017) 64

CODEN: NSPUE2 65

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 66
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 67
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 68
available for the purpose. 69
There may be references in this publication to other publications currently under development by NIST in accordance 70
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 71
may be used by federal agencies even before the completion of such companion publications. Thus, until each 72
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 73
planning and transition purposes, federal agencies may wish to closely follow the development of these new 74
publications by NIST. 75
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 76
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 77
https://csrc.nist.gov/publications. 78

 79
Public comment period: November 15, 2017 through February 1, 2018 80

National Institute of Standards and Technology 81
Attn: Computer Security Division, Information Technology Laboratory 82

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 83
Email: sp80052-comments@nist.gov 84

 All comments are subject to release under the Freedom of Information Act (FOIA). 85

https://csrc.nist.gov/publications

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

ii

Reports on Computer Systems Technology 86

The Information Technology Laboratory (ITL) at the National Institute of Standards and 87
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 88
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 89
methods, reference data, proof of concept implementations, and technical analyses to advance the 90
development and productive use of information technology. ITL’s responsibilities include the 91
development of management, administrative, technical, and physical standards and guidelines for 92
the cost-effective security and privacy of other than national security-related information in federal 93
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 94
outreach efforts in information system security, and its collaborative activities with industry, 95
government, and academic organizations. 96

Abstract 97

Transport Layer Security (TLS) provides mechanisms to protect data during electronic 98
dissemination across the Internet. This Special Publication provides guidance to the selection and 99
configuration of TLS protocol implementations while making effective use of Federal 100
Information Processing Standards (FIPS) and NIST-recommended cryptographic algorithms. It 101
requires that TLS 1.2 configured with FIPS-based cipher suites be supported by all government 102
TLS servers and clients and recommends that agencies develop migration plans to support TLS 103
1.3 by January 1, 2020. This Special Publication also provides guidance on certificates and TLS 104
extensions that impact security. 105
 Keywords 106

information security; network security; SSL; TLS; Transport Layer Security 107

 108
Acknowledgements 109

The authors, Kerry McKay and David Cooper of the National Institute of Standards and 110
Technology (NIST), would like to thank the many people who assisted with the development of 111
this document. In particular, we would like to acknowledge Tim Polk of NIST and Santosh 112
Chokhani of CygnaCom Solutions, who were co-authors on the first revision of this document. 113
We would also like to acknowledge Matthew J. Fanto and C. Michael Chernick of NIST and 114
Charles Edington III and Rob Rosenthal of Booz Allen and Hamilton who wrote the initial 115
published version of this document. 116

 117

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

iii

Note to Reviewers 118

Several developments have occurred since SP 800-52 Revision 1 regarding the use of RSA key 119
transport for key establishment in TLS. Research has shown that prominent TLS 120
implementations are incorrectly handling RSA key transport, leaving the key establishment 121
vulnerable to Bleichenbacher attacks. In addition, SP 800-131A currently disallows the use of 122
RSA key-transport using PKCS #1 v1.5 padding after December 31, 2017 (see 123
https://csrc.nist.gov/News/2017/Transition-Plans-for-Key-Establishment-Schemes). For these 124
reasons, all cipher suites that use RSA key transport to establish the premaster secret have been 125
removed from the recommended cipher suite list. 126

This may be problematic in architectures that currently rely on static RSA keys to support the 127
decryption of TLS sessions by network monitoring devices. For TLS version 1.2 and below, this 128
use case could be supported by switching to cipher suites that use static Diffie-Hellman (or static 129
Elliptic Curve Diffie-Hellman) keys. However, these cipher suites are not widely supported, and 130
this option is not available in TLS 1.3. Enterprise and datacenter monitoring could theoretically 131
be supported through a TLS 1.3 extension, re-architecting data flows with a man-in-the-middle, 132
or other measures outside the scope of TLS. A document proposing a TLS extension has 133
submitted to the Internet Engineering Task Force (IETF). The National Cybersecurity Center of 134
Excellence (NCCoE) plans to prototype this extension and other solutions that agencies and 135
organizations can use a template. 136

The Triple Data Encryption Algorithm (TDEA), also known as 3DES, is no longer approved for 137
use with TLS (see Department of Homeland Security Binding Operational Directive BOD-18-01, 138
https://cyber.dhs.gov/assets/report/bod-18-01.pdf). The 64-bit block size does not provide 139
adequate protection in applications such as TLS where large amounts of data are encrypted under 140
the same key. 141

This draft also requires agencies to develop migration plans to support TLS 1.3 by January 1, 142
2020. 143

https://csrc.nist.gov/News/2017/Transition-Plans-for-Key-Establishment-Schemes
https://cyber.dhs.gov/assets/report/bod-18-01.pdf

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

iv

Executive Summary 144

Office of Management and Budget (OMB) Circular A-130, Managing Information as a Strategic 145
Resource, requires managers of publicly accessible information repositories or dissemination 146
systems that contain sensitive but unclassified data to ensure that sensitive data is protected 147
commensurate with the risk and magnitude of the harm that would result from the loss, misuse, 148
or unauthorized access to or modification of such data. Given the nature of interconnected 149
networks and the use of the Internet to share information, the protection of this sensitive data can 150
become difficult if proper mechanisms are not employed to protect the data. Transport Layer 151
Security (TLS) provides such a mechanism to protect sensitive data during electronic 152
dissemination across the Internet. 153
TLS is a protocol created to provide authentication, confidentiality, and data integrity protection 154
between two communicating applications. TLS is based on a precursor protocol called the Secure 155
Sockets Layer Version 3.0 (SSL 3.0) and is considered to be an improvement to SSL 3.0. SSL 156
3.0 is specified in [33]. The Transport Layer Security version 1 (TLS 1.0) specification is an 157
Internet Request for Comments, RFC 2246 [24]. Each document specifies a similar protocol that 158
provides security services over the Internet. TLS 1.0 has been revised to version 1.1, as 159
documented in RFC 4346 [25], and TLS 1.1 has been further revised to version 1.2, as 160
documented in RFC 5246 [26]. In addition, some extensions have been defined to mitigate some 161
of the known security vulnerabilities in implementations using TLS versions 1.0, 1.1, and 1.2. 162
TLS 1.3, described in [56], is a significant update to previous versions that includes protections 163
against security concerns that arose in previous versions of TLS. 164
This Special Publication provides guidance to the selection and configuration of TLS protocol 165
implementations while making effective use of NIST-approved cryptographic schemes and 166
algorithms. In particular, it requires that TLS 1.2 be configured with cipher suites using NIST-167
approved schemes and algorithms as the minimum appropriate secure transport protocol.1 When 168
interoperability with non-government systems is required, TLS 1.1 and TLS 1.0 may be 169
supported. Agencies are required to develop migration plans to support to TLS 1.3 by 2020. This 170
Special Publication also identifies TLS extensions for which mandatory support must be 171
provided and other recommended extensions. 172
The use of the recommendations provided in this Special Publication would promote: 173

• More consistent use of authentication, confidentiality and integrity mechanisms for the 174
protection of information transported across the Internet; 175

• Consistent use of the recommended cipher suites that encompass NIST-approved 176
algorithms and open standards; 177

• Protection against known and anticipated attacks on the TLS protocol; and 178

1 While SSL 3.0 is the most secure of the SSL protocol versions, it is not approved for use in the protection of Federal
information because it relies in part on the use of cryptographic algorithms that are not NIST-approved. TLS 1.2 is approved
for the protection of Federal information when properly configured. TLS versions 1.1 and 1.0 are approved only when it is
required for interoperability with non-government systems and is configured according to these guidelines.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

v

• Informed decisions by system administrators and managers in the integration of TLS 179
implementations. 180

While these guidelines are primarily designed for Federal users and system administrators to 181
adequately protect sensitive but unclassified U.S. Federal Government data against serious 182
threats on the Internet, they may also be used within closed network environments to segregate 183
data. (The client-server model and security services discussed also apply in these situations). 184
This Special Publication supersedes NIST Special Publication 800-52 Revision 1. This Special 185
Publication should be used in conjunction with existing policies and procedures. 186

 187

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

vi

 188
Table of Contents 189

Executive Summary ... iv 190
1 Introduction .. 1 191

1.1 Background ... 1 192
1.2 History of TLS ... 1 193
1.3 Scope .. 2 194

1.3.1 Alternative Configurations .. 3 195
1.4 Document Conventions ... 3 196

2 TLS Overview ... 4 197
2.1 Handshake Protocol .. 4 198
2.2 Shared Secret Negotiation .. 5 199
2.3 Confidentiality ... 5 200
2.4 Integrity ... 5 201
2.5 Authentication ... 6 202
2.6 Anti-Replay ... 6 203
2.7 Key Management .. 7 204

3 Minimum Requirements for TLS Servers ... 8 205
3.1 Protocol Version Support .. 8 206
3.2 Server Keys and Certificates .. 9 207

3.2.1 Server Certificate Profile ... 10 208
3.2.2 Obtaining Revocation Status Information for the Client Certificate 12 209
3.2.3 Server Public-Key Certificate Assurance .. 13 210

3.3 Cryptographic Support .. 13 211
3.3.1 Cipher Suites .. 14 212
3.3.2 Implementation Considerations .. 19 213
3.3.3 Validated Cryptography .. 20 214

3.4 TLS Extension Support ... 21 215
3.4.1 Mandatory TLS Extensions .. 21 216
3.4.2 Conditional TLS Extensions ... 22 217
3.4.3 Discouraged TLS Extensions ... 26 218

3.5 Client Authentication ... 27 219
3.5.1 Path Validation ... 27 220

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

vii

3.5.2 Trust Anchor Store ... 28 221
3.5.3 Checking the Client Key Size ... 28 222
3.5.4 Server Hints List ... 28 223

3.6 Session Resumption ... 29 224
3.7 Compression Methods .. 29 225
3.8 Operational Considerations .. 29 226

4 Minimum Requirements for TLS Clients .. 31 227
4.1 Protocol Version Support .. 31 228
4.2 Client Keys and Certificates .. 31 229

4.2.1 Client Certificate Profile .. 31 230
4.2.2 Obtaining Revocation Status Information for the Server Certificate ... 33 231
4.2.3 Client Public-Key Certificate Assurance ... 34 232

4.3 Cryptographic Support .. 34 233
4.3.1 Cipher Suites .. 34 234
4.3.2 Validated Cryptography .. 35 235

4.4 TLS Extension Support ... 35 236
4.4.1 Mandatory TLS Extensions .. 35 237
4.4.2 Conditional TLS Extensions ... 36 238
4.4.3 Discouraged TLS Extension ... 38 239

4.5 Server Authentication .. 38 240
4.5.1 Path Validation ... 39 241
4.5.2 Trust Anchor Store ... 39 242
4.5.3 Checking the Server Key Size .. 39 243
4.5.4 User Interface ... 40 244

4.6 Session Resumption ... 40 245
4.7 Compression Methods .. 40 246
4.8 Operational Considerations .. 40 247

 248
List of Appendices 249

Appendix A— Acronyms .. 42 250
Appendix B— Interpreting Cipher Suite Names ... 44 251

B.1 Interpreting Cipher Suites Names in TLS 1.0, 1.1, and 1.2 44 252
B.2 Interpreting Cipher Suites Names in TLS 1.3 .. 45 253

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

viii

Appendix C— Pre-shared Keys ... 46 254
Appendix D— Future Capabilities .. 48 255

D.1 U.S. Federal Public Trust PKI ... 48 256
D.2 DANE .. 48 257

Appendix E— Determining the Need for TLS 1.0 and 1.1 .. 50 258
Appendix F— References ... 51 259
Appendix G— Revision History ... 58 260

G.1 Original ... 58 261
G.2 Revision 1 ... 58 262
G.3 Revision 2 ... 58 263

 264

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 1

1 Introduction 265

Many networked applications rely on the Secure Sockets Layer (SSL) and Transport Layer 266
Security (TLS) protocols to protect data transmitted over insecure channels. The Internet’s 267
client-server model and communication protocol design principles have been described in many 268
books, such as [54], [19], and [37]. TLS often works with a public-key infrastructure (PKI) that 269
generates public-key certificates in compliance with [20]. Books such as [1] and [40], as well as 270
technical journal articles (e.g., [53]) and NIST publications (e.g., SP 800-32 [44]), describe how 271
PKI can be used to protect information. 272

This document assumes that the reader of these guidelines is familiar with TLS protocols and 273
public-key infrastructure concepts, including, for example, X.509 certificates. The references 274
cited above and in Appendix F further explain the background concepts that are not fully 275
explained in these guidelines. 276

1.1 Background 277

The TLS protocol is used to secure communications in a wide variety of online transactions such 278
as financial transactions (e.g., banking, trading stocks, e-commerce), healthcare transactions 279
(e.g., viewing medical records or scheduling medical appointments), and social transactions (e.g., 280
email or social networking). Any network service that handles sensitive or valuable data, 281
whether it is personally identifiable information (PII), financial data, or login information, needs 282
to adequately protect that data. TLS provides a protected channel for sending data between the 283
server and the client. The client is often, but not always, a web browser. 284

TLS is a layered protocol that runs on top of a reliable transport protocol – typically the 285
Transmission Control Protocol (TCP). Application protocols, such as the Hypertext Transfer 286
Protocol (HTTP) and the Internet Message Access Protocol (IMAP), can run above TLS. TLS is 287
application independent, and used to provide security to any two communicating applications 288
that transmit data over a network via an application protocol. It can be used to create a virtual 289
private network (VPN) that connects an external system to an internal network, allowing that 290
system to access a multitude of internal services and resources as if it were in the network. 291

Memorandum M-15-132 requires all publicly accessible Federal websites and web services only 292
provide service through a secure connection.3 The initiative to secure connections will enhance 293
privacy and prevent modification of the data from government sites in transit. 294

1.2 History of TLS 295

The SSL protocol was designed by the Netscape Corporation to meet security needs of client and 296
server applications. Version 1 of SSL was never released. SSL 2.0 was released in 1995, but had 297
well-known security vulnerabilities, which were addressed by the 1996 release of SSL 3.0. 298

2 https://obamawhitehouse.archives.gov/sites/default/files/omb/memoranda/2015/m-15-13.pdf

3 See https://https.cio.gov/ for more details on this initiative.

https://obamawhitehouse.archives.gov/sites/default/files/omb/memoranda/2015/m-15-13.pdf
https://https.cio.gov/

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 2

During this timeframe, the Microsoft Corporation released a protocol known as Private 299
Communications Technology (PCT), and later released a higher performance protocol known as 300
the Secure Transport Layer Protocol (STLP). PCT and STLP never commanded the market share 301
that SSL 2.0 and SSL 3.0 commanded. The Internet Engineering Task Force (IETF), a technical 302
working group responsible for developing Internet standards to ensure communications 303
compatibility across different implementations, attempted to resolve security engineering and 304
protocol incompatibility issues between the protocols as best it could. The IETF standards track 305
Transport Layer Security protocol Version 1.0 (TLS 1.0) emerged and was codified by the IETF 306
as RFC 2246 [24]. While TLS 1.0 is based on SSL 3.0, and the differences between them are not 307
dramatic, they are significant enough that TLS 1.0 and SSL 3.0 do not interoperate. 308

TLS 1.1, specified in RFC 4346 [25], was developed to address weaknesses discovered in TLS 309
1.0, primarily in the areas of initialization vector selection and padding error processing. 310
Initialization vectors were made explicit4 to prevent a certain class of attacks on the Cipher 311
Block Chaining (CBC) mode of operation used by TLS. The handling of padding errors was 312
altered to treat a padding error as a bad message authentication code, rather than a decryption 313
failure. In addition, the TLS 1.1 RFC acknowledges attacks on CBC mode that rely on the time 314
to compute the message authentication code (MAC). The TLS 1.1 specification states that to 315
defend against such attacks, an implementation must process records in the same manner 316
regardless of whether padding errors exist. Further implementation considerations for CBC 317
modes (which were not included in RFC 4346 [25]) are discussed in Section 3.3.2. 318

TLS 1.2, specified in RFC 5246 [26], made several cryptographic enhancements, particularly in 319
the area of hash functions, with the ability to use or specify the SHA-2 family algorithms for 320
hash, MAC, and Pseudorandom Function (PRF) computations. TLS 1.2 also adds authenticated 321
encryption with associated data (AEAD) cipher suites. 322

TLS 1.3, specified in [56], represents a significant change to TLS that aims to address threats 323
that have arisen over the years. Among the changes are a new handshake protocol, a new key 324
derivation process that uses the HMAC-based Extract-and-Expand Key Derivation Function 325
(HKDF) [43], and the removal of cipher suites that use static RSA or DH key exchanges, the 326
CBC mode of operation, or SHA-1. The list of extensions that can be used with TLS 1.3 has 327
been reduced considerably. 328

1.3 Scope 329

Security is not a single property possessed by a single protocol. Rather, security includes a 330
complex set of related properties that together provide the required information assurance 331
characteristics and information protection services. Security requirements are usually derived 332
from a risk assessment of the threats or attacks that an adversary is likely to mount against a 333
system. The adversary is likely to take advantage of implementation vulnerabilities found in 334
many system components, including computer operating systems, application software systems, 335
and the computer networks that interconnect them. Thus, in order to secure a system against a 336

4 The initialization vector (IV) must be sent; it cannot be derived from a state known by both parties, such as the previous
message.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 3

myriad of threats, security must be judiciously placed in the various systems and network layers. 337

These guidelines focus only on network security, and they focus directly on the small portion of 338
the network communications stack that is referred to as the transport layer. Several other NIST 339
publications address security requirements in the other parts of the system and network layers. 340
Adherence to these guidelines only protects the data in transit. Other applicable NIST standards 341
and guidelines should be used to ensure protection of systems and stored data. 342

These guidelines focus on the common use cases where clients and servers must interoperate 343
with a wide variety of implementations, and authentication is performed using public-key 344
certificates. To promote interoperability, implementations often support a wide array of 345
cryptographic options. However, there are much more constrained TLS implementations where 346
security is needed but broad interoperability is not required, and the cost of implementing unused 347
features may be prohibitive. For example, minimal servers are often implemented in embedded 348
controllers and network infrastructure devices such as routers, and then used with browsers to 349
remotely configure and manage the devices. There are also cases where both the client and server 350
for an application’s TLS connection are under the control of the same entity, and therefore 351
allowing a variety of options for interoperability is not necessary. The use of an appropriate 352
subset of the capabilities specified in these guidelines may be acceptable in such cases. 353

The scope is further limited to TLS when used in conjunction with TCP/IP. For example, 354
Datagram TLS (DTLS) is outside the scope of these guidelines. NIST may issue separate 355
guidelines for DTLS at a later date. 356

1.3.1 Alternative Configurations 357

TLS may be used to secure the communications of a wide variety of applications in a diverse set 358
of operating environments. As such, there is not a single configuration that will work well for all 359
scenarios. These guidelines attempt to provide general-use recommendations. However, the 360
needs of an agency or application may differ from general needs. Deviations from these 361
guidelines are acceptable, provided that agencies and system administrators assess and 362
accept the risks associated with alternative configurations in terms of both security and 363
interoperability. 364

1.4 Document Conventions 365

Throughout this document, key words are used to identify requirements. The key words “shall,” 366
“shall not,” “should,” and “should not” are used. These words are a subset of the IETF Request 367
for Comments (RFC) 2119 key words, and have been chosen based on convention in other 368
normative documents [15]. In addition to the key words, the words “need,” “can,” and “may” are 369
used in this document, but are not intended to be normative. The key word “NIST-approved” is 370
used to indicate that a scheme or algorithm is described in a Federal Information Processing 371
Standard (FIPS) or is recommended by NIST. 372

The recommendations in this document are grouped by server recommendations and client 373
recommendations. Section 3 provides detailed guidance for the selection and configuration of 374
TLS servers. Section 4 provides detailed guidance for the selection, configuration, and use of 375
TLS clients. 376

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 4

2 TLS Overview 377

TLS exchanges records via the TLS record protocol. A TLS record contains several fields, 378
including version information, application protocol data, and the higher-level protocol used to 379
process the application data. TLS protects the application data by using a set of cryptographic 380
algorithms to ensure the confidentiality, integrity, and authenticity of exchanged application data. 381
TLS defines several protocols for connection management that sit on top of the record protocol, 382
where each protocol has its own record type. These protocols, discussed in Section 2.1, are used 383
to establish and change security parameters, and to communicate error and warning conditions to 384
the server and client. Sections 2.2 through 2.6 describe the security services provided by the TLS 385
protocol and how those security services are provisioned. Section 2.7 discusses key management. 386

2.1 Handshake Protocol 387

There are three subprotocols in the TLS protocol that are used to control the session connection: 388
the handshake, change cipher spec, and alert protocols. The TLS handshake protocol is used to 389
negotiate the session parameters. The alert protocol is used to notify the other party of an error 390
condition. The change cipher spec protocol is used in TLS 1.0, 1.1, and 1.2 to change the 391
cryptographic parameters of a session. In addition, the client and the server exchange application 392
data that is protected by the security services provisioned by the negotiated cipher suite. These 393
security services are negotiated and established with the handshake. The handshake protocol is 394
similar in TLS 1.0, 1.1, and 1.2, whereas the handshake of TLS 1.3 is different than in previous 395
TLS versions. 396

The handshake protocol consists of a series of message exchanges between the client and the 397
server. The handshake protocol initializes both the client and server to use cryptographic 398
capabilities by negotiating a cipher suite of algorithms and functions, including key 399
establishment, digital signature, confidentiality and integrity algorithms. Clients and servers can 400
be configured so that one or more of the following security services are negotiated during the 401
handshake: confidentiality, message integrity, authentication, and replay protection. A 402
confidentiality service provides assurance that data is kept secret, preventing eavesdropping. A 403
message integrity service provides confirmation that unauthorized data modification is detected, 404
thus preventing undetected deletion, addition, or modification of data. An authentication service 405
provides assurance of the sender or receiver’s identity, thereby detecting forgery. Replay 406
protection ensures that an unauthorized user does not capture and successfully replay previous 407
data. In order to comply with these guidelines, both the client and the server must be configured 408
for data confidentiality and integrity services. 409

The handshake protocol is used to optionally exchange X.509 public-key certificates5 to 410
authenticate the server and the client to each other. 411

The handshake protocol is responsible for establishing the session parameters. The client and 412
server negotiate algorithms for authentication, confidentiality and integrity, as well as derive 413

5 The use of X.509 public-key certificates is fundamental to TLS. For a comprehensive explanation of X.509 public-key
certificates see [1] or [40]. In these guidelines, the terms “certificate” and “public-key certificate” are used interchangeably.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 5

symmetric keys and establish other session parameters, such as extensions. The negotiated set of 414
cryptographic algorithms is called the cipher suite. 415

Alerts are used to convey information about the session, such as errors or warnings. For example, 416
an alert can be used to signal a decryption error (decrypt_error) or that access has been denied 417
(access_denied). Some alerts are used for warnings, and others are considered fatal and lead to 418
immediate termination of the session. A close_notify alert message is used to signal normal 419
termination of a session. Like all other messages after the handshake protocol is completed, alert 420
messages are encrypted and optionally compressed. 421

Details of the handshake, change cipher spec (in TLS versions prior to 1.3) and alert protocols 422
are outside the scope of these guidelines; they are described in RFC 5246 [26] and [56]. 423

2.2 Shared Secret Negotiation 424

The client and server establish keying material during the TLS handshake protocol. The 425
derivation of the premaster secret depends on the key exchange method that is agreed upon and 426
the version of TLS used. For example, when Diffie-Hellman is used as the key-exchange 427
algorithm in TLS 1.2 and earlier versions, the client and server send each other their parameters, 428
and the resulting key is used as the premaster secret. The premaster secret, along with random 429
values exchanged by the client and server in the hello messages, is used to compute the master 430
secret. In TLS 1.3, the master secret is derived by iteratively invoking an extract-then-expand 431
function with previously derived secrets. The master secret is used to derive session keys, which 432
are used by the negotiated security services to protect the data exchanged between the client and 433
the server, thus providing a secure channel for the client and the server to communicate. 434

The establishment of these secrets is secure against eavesdroppers. When the TLS protocol is 435
used in accordance with these guidelines, the application data, as well as the secrets, are not 436
vulnerable to attackers who place themselves in the middle of the connection. The attacker 437
cannot modify the handshake messages without being detected by the client and the server 438
because the Finished message, which is exchanged after security parameter establishment, 439
provides integrity protection to the entire exchange. In other words, an attacker cannot modify or 440
downgrade the security of the connection by placing itself in the middle of the negotiation. 441

2.3 Confidentiality 442

Confidentiality is provided for a communication session by the negotiated encryption algorithm 443
for the cipher suite and the encryption keys derived from the master secret and random values, 444
one for encryption by the client (the client write key), and another for encryption by the server 445
(the server write key). The sender of a message (client or server) encrypts the message using a 446
derived encryption key; the receiver uses the same (independently derived) key to decrypt the 447
message. Both the client and server know these keys, and decrypt the messages using the same 448
key that was used for encryption. The encryption keys are derived from the shared master secret. 449

2.4 Integrity 450

The keyed MAC algorithm, specified by the negotiated cipher suite, provides message integrity. 451
Two MAC keys are derived: 1) a MAC key to be used when the client is the message sender and 452

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 6

the server is the message receiver (the client write MAC key), and 2) a second MAC key to be 453
used when the server is the message sender and the client is the message receiver (the server 454
write MAC key). The sender of a message (client or server) calculates the MAC for the message 455
using the appropriate MAC key, and encrypts both the message and the MAC using the 456
appropriate encryption key. The sender then transmits the encrypted message and MAC to the 457
receiver. The receiver decrypts the received message and MAC, and calculates its own version of 458
the MAC using the MAC algorithm and sender’s MAC key. The receiver verifies that the MAC 459
that it calculates matches the MAC sent by the sender. 460

Two types of constructions are used for MAC algorithms in TLS. TLS versions 1.0, 1.1 and 1.2 461
support the use of the Keyed-Hash Message Authentication Code (HMAC) using the hash 462
algorithm specified by the negotiated cipher suite. With HMAC, MACs for server-to-client 463
messages are keyed by the server write MAC key, while MACs for client-to-server messages 464
are keyed by the client write MAC key. These MAC keys are derived from the shared master 465
secret. 466

TLS 1.2 added AEAD cipher modes of operation, such as Counter with CBC-MAC (CCM) [47] 467
and Galois Counter Mode (GCM) [55, 59], as an alternative way of providing integrity and 468
confidentiality. In AEAD modes, the sender uses its write key for both encryption and integrity 469
protection. The client and server write MAC keys are not used. The recipient decrypts the 470
message and verifies the integrity information using the sender's write key. In TLS 1.3, only 471
AEAD symmetric algorithms are used for confidentiality and integrity. 472

2.5 Authentication 473

Server authentication is performed by the client using the server’s public-key certificate, which 474
the server presents during the handshake. The exact nature of the cryptographic operation for 475
server authentication is dependent on the negotiated security parameters and extensions. In most 476
cases, authentication is performed explicitly by verifying digital signatures using public keys that 477
are present in certificates, and implicitly by the use of the server public key by the client during 478
the establishment of the master secret. A successful Finished message implies that both parties 479
calculated the same master secret and thus, the server must have known the private key 480
corresponding to the public key used for key establishment. 481

Client authentication is optional, and only occurs at the server’s request. Client authentication is 482
based on the client’s public-key certificate. The exact nature of the cryptographic operation for 483
client authentication depends on the negotiated cipher suite’s key-exchange algorithm and the 484
negotiated extensions. For example, when the client’s public-key certificate contains an RSA 485
public key, the client signs a portion of the handshake message using the private key 486
corresponding to that public key, and the server verifies the signature using the public key to 487
authenticate the client. 488

2.6 Anti-Replay 489

TLS provides inherent protection against replay attacks, except when 0-RTT data (optionally 490

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 7

sent in the first flight of handshake messages) is sent in TLS 1.3.6 The integrity-protected 491
envelope of the message contains a monotonically increasing sequence number. Once the 492
message integrity is verified, the sequence number of the current message is compared with the 493
sequence number of the previous message. The sequence number of the current message must be 494
greater than the sequence number of the previous message in order to further process the 495
message. 496

2.7 Key Management 497

The security of the server’s private key is critical to the security of TLS. If the server’s private 498
key is weak or can be obtained by a third party, the third party can masquerade as the server to 499
all clients. Similarly, if a third party can obtain a public-key certificate for a public key 500
corresponding to its own private key in the name of a legitimate server from a certification 501
authority (CA) trusted by the clients, the third party can masquerade as the server to the clients. 502
Requirements and recommendations to mitigate these concerns are addressed later in these 503
guidelines. 504

Similar threats exist for clients. If a client’s private key is weak or can be obtained by a third 505
party, the third party can masquerade as the client to a server. Similarly, if a third party can 506
obtain a public-key certificate for a public key corresponding to his own private key in the name 507
of a client from a CA trusted by the server, the third party can masquerade as that client to the 508
server. Requirements and recommendations to mitigate these concerns are addressed later in 509
these guidelines. 510

Since the random numbers generated by the client and server contribute to the randomness of the 511
session keys, the client and server must be capable of generating random numbers with at least 512
112 bits of security7 each. The various TLS session keys derived from these random values and 513
other data are valid for the duration of the session. Because the session keys are only used to 514
protect messages exchanged during an active TLS session, and are not used to protect any data at 515
rest, there is no requirement for recovering TLS session keys. However, all versions of TLS 516
provide mechanisms to store a key related to a session, which allows sessions to be resumed in 517
the future. Keys for a resumed session are derived during an abbreviated handshake that uses the 518
stored key as a form of authentication. 519

 520

6 While TLS 1.3 does not inherently provide replay protection with 0-RTT data, the TLS 1.3 specification does recommend
mechanisms to protect against replay attacks (see Section 8 of [56]).

7 Bits of security provided by NIST-approved algorithms are described in SP 800-57 part 1 [6], Section 5.6.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 8

3 Minimum Requirements for TLS Servers 521

This section provides a minimum set of requirements that a server must implement in order to 522
meet these guidelines. Requirements are organized in the following sections: TLS protocol 523
version support; server keys and certificates; cryptographic support; TLS extension support; 524
client authentication; session resumption; compression methods; and operational considerations. 525

Specific requirements are stated as either implementation requirements or configuration 526
requirements. Implementation requirements indicate that Federal agencies shall not procure TLS 527
server implementations unless they include the required functionality, or can be augmented with 528
additional commercial products to meet requirements. Configuration requirements indicate that 529
TLS server administrators are required to verify that particular features are enabled or disabled, 530
or in some cases, configured appropriately, if present. 531

3.1 Protocol Version Support 532

Servers that support government-only applications8 shall be configured to use TLS 1.2, and 533
should be configured to use TLS 1.3. These servers should not be configured to use TLS 1.1, 534
and shall not use TLS 1.0, SSL 3.0, or SSL 2.0. TLS versions 1.2 and 1.3 are represented by 535
major and minor number tuples (3, 3) and (3, 4), respectively, and may appear in that format 536
during configuration.9 Agencies shall develop migration plans to support TLS 1.3 by January 1, 537
2020. After this date, use of TLS 1.3 shall be supported in the government's servers. 538

Servers that support citizen or business-facing applications (i.e., the client may not be part of a 539
government IT system)10 shall be configured to negotiate TLS 1.2, should be configured to 540
negotiate TLS 1.3, and may be configured to negotiate TLS versions 1.1 and 1.0 in order to 541
enable interaction with citizens and businesses. See Appendix E for discussion on determining 542
whether to support TLS 1.0 and TLS 1.1. These servers shall not allow the use of SSL 2.0 or 543
SSL 3.0. 544

Some server implementations are known to implement version negotiation incorrectly. For 545
example, there are TLS 1.0 servers that terminate the connection when the client offers a version 546
newer than TLS 1.0. Servers that incorrectly implement TLS version negotiation shall not be 547
used. 548

8 A government-only application is an application where the intended users are exclusively government employees or contractors
working on behalf of the government. This includes applications that are accessed on a government employee’s bring-your-
own-device (BYOD) system. This is in contrast to applications that are publicly accessible.

9 Historically TLS 1.0 was assigned major and minor tuple (3,1) to align it as SSL 3.1. TLS 1.1 is represented by the major and
minor tuple (3,2).

10 For the purposes of this document, clients that reside on “bring your own device” (BYOD) systems, or privately-owned
systems used to perform telework, are considered to be part of the government IT system, as they access services that are not
available to the public.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 9

3.2 Server Keys and Certificates 549

The TLS server shall be configured with one or more public-key certificates and the associated 550
private keys. TLS server implementations should support the use of multiple server certificates 551
with their associated private keys to support algorithm and key size agility. 552

Several options for TLS server certificates meet the requirement for NIST-approved 553
cryptography: an RSA signature certificate; an Elliptic Curve Digital Signature Algorithm 554
(ECDSA) signature certificate; a Digital Signature Algorithm (DSA)11 signature certificate; a 555
Diffie-Hellman (DH) certificate; and an Elliptic Curve Diffie-Hellman (ECDH) certificate. 556

At a minimum, TLS servers conforming to this specification shall be configured with an RSA 557
signature certificate or an ECDSA signature certificate. If the server is configured with an 558
ECDSA signature certificate, a Suite B named curve should be used for the public key in the 559
certificate.12 560

TLS servers that are accessible to systems residing on a different network (e.g., connected to the 561
Internet) shall be configured with certificates issued by a CA, rather than self-signed certificates. 562
Furthermore, TLS server certificates shall be issued by a CA that publishes revocation 563
information in Online Certificate Status Protocol (OCSP) [61] responses. The CA may 564
additionally publish revocation information in a certificate revocation list (CRL) [20]. The 565
source(s) for the revocation information shall be included in the CA-issued certificate in the 566
appropriate extension to promote interoperability. 567

A TLS server that has been issued certificates by multiple CAs can select the appropriate 568
certificate based on the client specified “Trusted CA Keys” TLS extension, as described in 569
Section 3.4.2.7. A TLS server that has been issued certificates for multiple server names can 570
select the appropriate certificate based on the client specified “Server Name” TLS extension, as 571
described in Section 3.4.1.2. A TLS server certificate may also contain multiple names in the 572
Subject Alternative Name extension in order to allow the use of multiple server names of the 573
same name form (e.g., DNS name) or multiple server names of multiple name forms (e.g., DNS 574
names, IP address, etc.). 575

Application processes for obtaining certificates differ and require different levels of proof when 576
associating certificates to domains. An applicant can obtain a domain-validated (DV) certificate 577
by proving control over a DNS domain. An Organization Validation (OV) certificate requires 578
further vetting, such as verifying the entity’s details. An Extended Validation (EV) certificate has 579
the most thorough identity vetting process. This recommendation does not provide guidance on 580
which verification level to use. 581

Section 3.2.1 specifies a detailed profile for server certificates. Basic guidelines for RSA, 582
ECDSA, DSA, DH, and ECDH certificates are provided. Section 3.2.2 specifies requirements for 583

11 In the names for the TLS cipher suites, DSA is referred to as DSS (Digital Signature Standard), for historical reasons.

12 The Suite B curves are known as P-256 and P-384. These curves are defined in FIPS 186-4 [66], and their inclusion in Suite B
is documented in [60].

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 10

revocation checking. Section 3.5.4 specifies requirements for the “hints list.” 584

3.2.1 Server Certificate Profile 585

The server certificate profile, described in this section, provides requirements and 586
recommendations for the format of the server certificate. To comply with these guidelines, the 587
TLS server certificate shall be an X.509 version 3 certificate; both the public key contained in 588
the certificate and the signature shall provide at least 112 bits of security. Prior to TLS 1.2, the 589
server Certificate message required that the signing algorithm for the certificate be the same as 590
the algorithm for the certificate key (see Section 7.4.2 of [25]). If the server supports TLS 591
versions prior to TLS 1.2, the certificate should be signed with an algorithm consistent with the 592
public key:13,14 593

• Certificates containing RSA, ECDSA, or DSA public keys should be signed with those 594
same signature algorithms, respectively; 595

• Certificates containing Diffie-Hellman public keys should be signed with DSA; and 596

• Certificates containing ECDH public keys should be signed with ECDSA. 597
The extended key usage extension limits how the keys in a certificate are used. There is a key 598
purpose specifically for server authentication, and the server should be configured to allow its 599
use. The use of the extended key usage extension will facilitate successful server authentication, 600
as some clients may require the presence of an extended key usage extension. The use of the 601
server DNS name in the Subject Alternative Name field ensures that any name constraints on the 602
certification path will be properly enforced. 603

The server certificate profile is listed in Table 3-1. In the absence of agency-specific certificate 604
profile requirements, this certificate profile should be used for the server certificate. 605

Table 3-1: TLS Server Certificate Profile 606

Field Critical Value Description

Version N/A 2 Version 3

Serial Number N/A Unique positive integer Must be unique

13 This recommendation is an artifact of requirements in TLS 1.0 and 1.1.

14 Algorithm-dependent guidelines exist for the generation of public and private key pairs. For guidance on the generation of DH
and ECDH key pairs, see SP 800-56A [8]. For guidance regarding the generation of RSA, DSA and ECDSA key pairs, see
[66].

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 11

Field Critical Value Description

Issuer Signature Algorithm N/A Values by CA key type:
sha256WithRSAEncryption {1 2 840
113549 1 1 11}, or stronger

CA with RSA key

ecdsa-with-SHA256 {1 2 840 10045 4 3
2}, or stronger

CA with elliptic curve key

id-dsa-with-sha256 {2 16 840 1 101 3 4 3
2}, or stronger

CA with DSA key

Issuer Distinguished Name
(DN)

N/A Unique X.500 issuing CA DN A single value shall be encoded in each
Relative Distinguished Name (RDN). All
attributes that are of DirectoryString type
shall be encoded as a PrintableString.

Validity Period N/A 3 years or less Dates through 2049 expressed in UTCTime

Subject Distinguished Name N/A Unique X.500 subject DN per agency
requirements

A single value shall be encoded in each
RDN. All attributes that are of
DirectoryString type shall be encoded as a
PrintableString.
CN={host IP address | host DNS name}

Field
Critical

Value Description

Subject Public Key
Information

N/A Values by certificate type:
rsaEncryption {1 2 840 113549 1 1 1} RSA signature certificate

2048-bit RSA key modulus, or other
approved lengths as defined in [66] and [6]
Parameters: NULL

ecPublicKey {1 2 840 10045 2 1} ECDSA signature certificate or ECDH
certificate
Parameters: namedCurve OID for named
curve specified in [66]. The curve should
be P-256 or P-384
SubjectPublic Key: Uncompressed EC
Point.

id-dsa {1 2 840 10040 4 1} DSA signature certificate
Parameters: p, q, g (2048-bit large prime,
i.e., p)

dhpublicnumber {1 2 840 10046 2 1} DH certificate
Parameters: p, g, q (2048-bit large prime,
i.e., p)

Issuer’s Signature N/A Same value as in Issuer Signature
Algorithm

Extensions

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 12

Field Critical Value Description

Authority Key Identifier No Octet String Same as subject key identifier in issuing
CA certificate
Prohibited: Issuer DN, Serial Number tuple

Subject Key Identifier No Octet String Same as in PKCS-10 request or calculated
by the issuing CA

Key Usage Yes Values by certificate type:
digitalSignature RSA signature certificate, ECDSA

signature certificate, or DSA signature
certificate

keyAgreement ECDH certificate, DH certificate

Extended Key Usage No id-kp-serverAuth {1 3 6 1 5 5 7 3 1} Required

id-kp-clientAuth {1 3 6 1 5 5 7 3 2} Optional

 Prohibited: anyExtendedKeyUsage; all
others unless consistent with key usage
extension

Certificate Policies No Optional

Subject Alternative Name No DNS host name, or IP address if there is
no DNS name assigned

Multiple SANs are permitted, e.g., for load
balanced environments.

Authority Information Access No id-ad-caIssuers Required. Access method entry contains
HTTP URL for certificates issued to
issuing CA

id-ad-ocsp Required. Access method entry contains
HTTP URL for the issuing CA OCSP
responder

CRL Distribution Points No See comments Optional. HTTP value in distributionPoint
field pointing to a full and complete CRL.
Prohibited: reasons and cRLIssuer fields,
and nameRelativetoCRLIssuer CHOICE

Signed Certificate
Timestamps List

No See comments Optional. This extension contains a
sequence of Signed Certificate
Timestamps, which provide evidence that
the certificate has been submitted to
Certificate Transparency logs.

 607

3.2.2 Obtaining Revocation Status Information for the Client Certificate 608

The server shall perform revocation checking of the client certificate when client authentication 609
is used. Revocation information shall be obtained by the server from one or more of the 610
following locations: 611

1. Certificate Revocation List (CRL) or OCSP [61] response in the server’s local store; 612
2. OCSP response from a locally configured OCSP responder; 613
3. OCSP response from the OCSP responder location identified in the OCSP field in the 614

Authority Information Access extension in the client certificate; or 615
4. CRL from the CRL Distribution Points extension in the client certificate. 616

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 13

When the local store does not have the current or a cogent15 CRL or OCSP response, and the 617
OCSP responder and the CRL distribution point are unavailable or inaccessible at the time of 618
TLS session establishment, the server will either deny the connection or accept a potentially 619
revoked or compromised certificate. The decision to accept or reject a certificate in this situation 620
should be made according to agency policy. 621

3.2.3 Server Public-Key Certificate Assurance 622

The policies, procedures, and security controls under which a public-key certificate is issued by a 623
CA are documented in a certificate policy. The use of a certificate policy that is designed with 624
the secure operation of PKI in mind and adherence to the stipulated certificate policy mitigates 625
the threat that the issuing CA can be compromised or that the registration system, persons or 626
process can be compromised to obtain an unauthorized certificate in the name of a legitimate 627
entity, and thus compromise the clients. With this in mind, the CA Browser Forum, a private-628
sector organization, has carried out some efforts in this area by writing the Extended Validation 629
guideline [17]. Under another effort, the CA Browser Forum published requirements for issuing 630
certificates from publicly trusted CAs in order for those CAs and their trust anchor to remain in 631
browser trust stores [16]. 632

Several concepts are under development that further mitigate the risks associated with the 633
compromise of a CA or X.509 certificate registration system, process or personnel. These 634
include the Certificate Transparency project (see Section 3.4.2.11) and other emerging concepts, 635
which are discussed in Appendix D. 636

The policy under which a certificate has been issued may optionally be represented in the 637
certificate using the certificatePolicies extension, specified in [20] and updated in [73]. When 638
used, one or more certificate policy object identifiers (OID) are asserted in this extension, with 639
each OID representing a specific certificate policy. Many TLS clients (e.g., browsers), however, 640
do not offer the ability to accept or reject certificates based on the policies under which they 641
were issued. Therefore, it is generally necessary for TLS server certificates to be issued by CAs 642
that only issue certificates in accordance with a certificate policy that specifies adequate security 643
controls. 644

When an agency is obtaining a certificate for a TLS server for which all the clients are under the 645
agency’s control, the agency may issue the certificate from its own CA if it can configure the 646
clients to trust that CA. In other cases, the agency should obtain a certificate from a publicly-647
trusted CA; a CA that clients that will be connecting to the server have already been configured 648
to trust. 649

3.3 Cryptographic Support 650

Cryptographic support in TLS is provided through the use of various cipher suites. A cipher suite 651

15 A CRL is considered “cogent” when the “CRL Scope” [20] is appropriate for the certificate in question.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 14

specifies a collection of algorithms for key exchange (in TLS 1.2 and earlier only), and for 652
providing confidentiality and integrity services to application data. The cipher suite negotiation 653
occurs during the TLS handshake protocol. The client presents cipher suites that it supports to 654
the server, and the server selects one of them to secure the session data. 655

In addition to the selection of appropriate cipher suites, system administrators may also have 656
additional considerations specific to the implementation of the cryptographic algorithms, as well 657
as cryptographic module validation requirements. Acceptable cipher suites are listed in Section 658
3.3.1, grouped by certificate type and protocol version. Implementation considerations are 659
discussed in Section 3.3.2, and recommendations regarding cryptographic module validation are 660
described in Section 3.3.3. 661

3.3.1 Cipher Suites 662

Cipher suites specify the cryptographic algorithms that will be used for a session. Cipher suites 663
in TLS 1.0 through TLS 1.2 have the form: 664

TLS_KeyExchangeAlg_WITH_EncryptionAlg_MessageAuthenticationAlg 665

For example, the cipher suite TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uses ephemeral 666
ECDH key establishment, with parameters signed using RSA, confidentiality is provided by 667
AES-128 in cipher block chaining mode, and message authentication is performed using 668
HMAC_SHA.16 For further information on cipher suite interpretation, see Appendix B. 669

Cipher suites are formatted differently in TLS 1.3. These cipher suites do not specify the key 670
exchange algorithm, and have the form: 671

 TLS_AEAD_HASH 672

For example, the cipher suite TLS_AES_128_GCM_SHA256 uses AES-128 in Galois Counter 673
Mode for confidentiality and message authentication, and uses SHA-256 for the HKDF. TLS 1.3 674
cipher suites cannot be used for TLS 1.2 connections, and TLS 1.2 cipher suites cannot be 675
negotiated with TLS 1.3. 676

When negotiating a cipher suite, the client sends a handshake message with a list of cipher suites 677
it will accept. The server chooses from the list and sends a handshake message back indicating 678
which cipher suite it will accept. Although the client may order the list with the strongest cipher 679
suites listed first, the server may choose any of the cipher suites proposed by the client. 680
Therefore, there is no guarantee that the negotiation will settle on the strongest common suite. If 681
no cipher suites are common to the client and server, the connection is aborted. 682

The server shall be configured to only use cipher suites that are composed entirely of NIST-683
approved algorithms (i.e., [7, 8, 11, 27-29, 65-67, 69]). A complete list of acceptable cipher 684
suites for general use is provided in this section, grouped by certificate type and TLS protocol 685

16 SHA indicates the use of the SHA-1 hash algorithm.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 15

version. The Internet Assigned Numbers Authority (IANA) value for each cipher suite is given 686
after its text description, in parentheses.17 687

In some situations, such as closed environments, it may be appropriate to use pre-shared keys. 688
Pre-shared keys are symmetric keys that are already in place prior to the initiation of a TLS 689
session, which are used in the derivation of the premaster secret. For cipher suites that are 690
acceptable in pre-shared key environments, see Appendix C. 691

The following cipher suite listings are grouped by certificate type and TLS protocol version. The 692
cipher suites in these lists include the cipher suites that contain NIST-approved cryptographic 693
algorithms. Cipher suites that do not appear in this section or in Appendix C shall not be used. 694

Cipher suites using ephemeral DH and ephemeral ECDH (i.e., those with DHE or ECDHE in the 695
second mnemonic) provide perfect forward secrecy.18 When ephemeral keys are used to establish 696
the master secret, each ephemeral key-pair (i.e., the server ephemeral key-pair and the client 697
ephemeral key-pair) shall have at least 112 bits of security. 698

3.3.1.1 Cipher Suites for TLS 1.2 and Earlier Versions 699

The first revision of this guidance required support for a small set of cipher suites to promote 700
interoperability and align with TLS specifications. There are no longer any mandatory cipher 701
suite requirements. Cipher suites that comprise AES and other NIST-approved algorithms are 702
acceptable to use, although they are not necessarily equal in terms of security. Cipher suites that 703
use TDEA (3DES) are no longer allowed, due to the limited amounts of data that can be 704
processed under a single key. The server shall be configured to only use cipher suites for which 705
it has a valid certificate containing a signature providing at least 112 bits of security. 706

By removing requirements that specific cipher suites be supported, system administrators have 707
more freedom to meet the needs of their environment and applications. It also increases agility 708
by allowing administrators to immediately disable cipher suites when attacks are discovered 709
without breaking compliance. 710

If a subset of the cipher suites that are acceptable for the server certificate(s) are supported, the 711
following list gives general guidance on choosing the strongest options: 712

1. Prefer ephemeral keys over static keys (i.e., prefer DHE over DH, and prefer ECDHE 713
over ECDH). Ephemeral keys provide perfect forward secrecy. 714

2. Prefer GCM or CCM modes over CBC mode. The use of an authenticated encryption 715
mode prevents several attacks (see Section 3.3.2 for more information). Note that these 716
are not available in versions prior to TLS 1.2. 717

17 The full list of IANA values for TLS parameters can be found at https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml.

18 Perfect forward secrecy is the condition in which the compromise of a long-term private key used in deriving a session key
subsequent to the derivation does not cause the compromise of the session key.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 16

3. Prefer CCM over CCM_8. The latter contains a shorter authentication tag, which 718
provides a lower authentication strength. 719

This list does not have to be strictly followed, as some environments or applications may 720
have special circumstances. Note that this list may become outdated if an attack emerges on 721
one of the preferred components. If an attack significantly impacts the recommended cipher 722
suites, NIST will address the issue in an announcement on the NIST Computer Security 723
Resource Center. 724

3.3.1.1.1 Cipher Suites for ECDSA Certificates 725

TLS version 1.2 includes authenticated encryption modes, and support for the SHA-256 and 726
SHA-384 hash algorithms, which are not supported in prior versions of TLS. These cipher suites 727
are described in [59] and [55]. TLS 1.2 servers that are configured with ECDSA certificates may 728
be configured to support the following cipher suites, which are only supported by TLS 1.2: 729

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2B) 730
• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x2C) 731
• TLS_ECDHE_ECDSA_WITH_AES_128_CCM (0xC0, 0xAC) 732
• TLS_ECDHE_ECDSA_WITH_AES_256_CCM (0xC0, 0xAD) 733
• TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 (0xC0, 0xAE) 734
• TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 (0xC0, 0xAF) 735
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (0xC0, 0x23) 736
• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x24) 737

TLS servers may be configured to support the following cipher suites when ECDSA certificates 738
are used with TLS versions 1.2, 1.1, or 1.0: 739

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA19 (0xC0, 0x09) 740
• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (0xC0, 0x0A) 741

3.3.1.1.2 Cipher Suites for RSA Certificates 742

TLS 1.2 servers that are configured with RSA certificates may be configured to support the 743
following cipher suites: 744

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2F) 745
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x30) 746
• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 (0x00, 0x9E) 747

19 In TLS versions 1.0 and 1.1, DHE and ECDHE cipher suites use SHA-1 for signature generation on the ephemeral parameters
(including keys) in the ServerKeyExchange message. While the use of SHA-1 for digital signature generation is generally
disallowed by [10], exceptions can be granted by protocol-specific guidance. SHA-1 is allowed for generating digital
signatures on ephemeral parameters in TLS. Due to the random nature of the ephemeral keys, a third party is unlikely to
cause effective collision. The server and client do not have anything to gain by causing a collision for the connection.
Because of the client random and server random values, the server, the client, or a third party cannot use a colliding set of
messages to masquerade as the client or server in future connections. Any modification to the parameters by a third party
during the handshake will ultimately result in a failed connection.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 17

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (0x00, 0x9F) 748
• TLS_DHE_RSA_WITH_AES_128_CCM (0xC0, 0x9E) 749
• TLS_DHE_RSA_WITH_AES_256_CCM (0xC0, 0x9F) 750
• TLS_DHE_RSA_WITH_AES_128_CCM_8 (0xC0, 0xA2) 751
• TLS_DHE_RSA_WITH_AES_256_CCM_8 (0xC0, 0xA3) 752
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xC0, 0x27) 753
• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x28) 754
• TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 (0x00, 0x67) 755
• TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x00, 0x6B) 756

TLS servers may be configured to support the following cipher suites when RSA certificates are 757
used with TLS versions 1.2, 1.1, or 1.0: 758

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xC0, 0x13) 759
• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xC0, 0x14) 760
• TLS_DHE_RSA_WITH_AES_128_CBC_SHA (0x00, 0x33) 761
• TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x00, 0x39) 762

3.3.1.1.3 Cipher Suites for DSA Certificates 763

TLS 1.2 servers that are configured with DSA certificates may be configured to support the 764
following cipher suites: 765

• TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 (0x00, 0xA2) 766
• TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 (0x00, 0xA3) 767
• TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 (0x00, 0x40) 768
• TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 (0x00, 0x6A) 769

TLS servers may be configured to support the following cipher suites when DSA certificates are 770
used with TLS versions 1.2, 1.1, or 1.0: 771

• TLS_DHE_DSS_WITH_AES_128_CBC_SHA (0x00, 0x32) 772
• TLS_DHE_DSS_WITH_AES_256_CBC_SHA (0x00, 0x38) 773

3.3.1.1.4 Cipher Suites for DH Certificates 774

DH certificates contain a static key, and are signed using either DSA or RSA. Unlike cipher 775
suites that use ephemeral DH, these cipher suites contain static DH parameters. While the use of 776
static keys is technically acceptable, the use of ephemeral key cipher suites is encouraged and 777
preferred over the use of the cipher suites listed in this section. 778

TLS 1.2 servers that are configured with DSA-signed DH certificates may be configured to 779
support the following cipher suites: 780

• TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (0x00, 0xA4) 781
• TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (0x00, 0xA5) 782
• TLS_DH_DSS_WITH_AES_128_CBC_SHA256 (0x00, 0x3E) 783

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 18

• TLS_DH_DSS_WITH_AES_256_CBC_SHA256 (0x00, 0x68) 784

TLS servers may be configured to support the following cipher suites when DSA-signed DH 785
certificates are used with TLS versions 1.2, 1.1, or 1.0: 786

• TLS_DH_DSS_WITH_AES_128_CBC_SHA (0x00, 0x30) 787
• TLS_DH_DSS_WITH_AES_256_CBC_SHA (0x00, 0x36) 788

TLS 1.2 servers that are configured with RSA-signed DH certificates may be configured to 789
support the following cipher suites: 790

• TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (0x00, 0xA0) 791
• TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (0x00, 0xA1) 792
• TLS_DH_RSA_WITH_AES_128_CBC_SHA256 (0x00, 0x3F) 793
• TLS_DH_RSA_WITH_AES_256_CBC_SHA256 (0x00, 0x69) 794

TLS servers may be configured to support the following cipher suites when RSA-signed DH 795
certificates are used with TLS versions 1.2, 1.1, or 1.0: 796

• TLS_DH_RSA_WITH_AES_128_CBC_SHA (0x00, 0x31) 797
• TLS_DH_RSA_WITH_AES_256_CBC_SHA (0x00, 0x37) 798

3.3.1.1.5 Cipher Suites for ECDH Certificates 799

ECDH certificates contain a static key, and are signed using either ECDSA or RSA. Unlike 800
cipher suites that use ephemeral ECDH, these cipher suites contain static ECDH parameters. The 801
use of ephemeral key cipher suites is encouraged and preferred over the use of the cipher suites 802
listed in this section. 803

TLS 1.2 servers that are configured with ECDSA-signed ECDH certificates may be configured 804
to support the following cipher suites: 805

• TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2D) 806
• TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x2E) 807
• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 (0xC0, 0x25) 808
• TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x26) 809

TLS servers may be configured to support the following cipher suites when ECDSA-signed 810
ECDH certificates are used with TLS versions 1.2, 1.1, or 1.0: 811

• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA (0xC0, 0x04) 812
• TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA (0xC0, 0x05) 813

TLS 1.2 servers that are configured with RSA-signed ECDH certificates may be configured to 814
support the following cipher suites: 815

• TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x31) 816

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 19

• TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x32) 817
• TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 (0xC0, 0x29) 818
• TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x2A) 819

TLS servers may be configured to support the following cipher suites when RSA-signed ECDH 820
certificates are used with TLS versions 1.2, 1.1, or 1.0: 821

• TLS_ECDH_RSA_WITH_AES_128_CBC_SHA (0xC0, 0x0E) 822
• TLS_ECDH_RSA_WITH_AES_256_CBC_SHA (0xC0, 0x0F) 823

3.3.1.2 Cipher Suites for TLS 1.3 824

TLS 1.3 servers may be configured to support the following cipher suites: 825

• TLS_AES_128_GCM_SHA256 (013x, 0x01) 826
• TLS_AES_256_GCM_SHA384 (0x13, 0x02) 827
• TLS_AES_128_CCM_SHA256 (0x13, 0x04) 828
• TLS_AES_128_CCM_8_SHA256 (0x13, 0x05) 829

These cipher suites may be used with either RSA or ECDSA server certificates; DSA and DH 830
certificates cannot be used with TLS 1.3. These cipher suites may also be used with pre-shared 831
keys, as specified in Appendix C. 832

3.3.2 Implementation Considerations 833

System administrators need to fully understand the ramifications of selecting cipher suites and 834
configuring applications to support only those cipher suites. The security guarantees of the 835
cryptography are limited to the weakest cipher suite supported by the configuration. When 836
configuring an implementation, there are several factors that affect the selection of supported 837
cipher suites. 838
RFC 4346 [25] describes timing attacks on CBC cipher suites, as well mitigation techniques. 839
TLS implementations shall use the bad_record_mac error to indicate a padding error when 840
communications are secured using a CBC cipher suite. Implementations shall compute the MAC 841
regardless of whether padding errors exist. 842

In addition to the CBC attacks addressed in RFC 4346 [25], the Lucky 13 attack [2] 843
demonstrates that a constant-time decryption routine is also needed to prevent timing attacks. 844
TLS implementations should support constant-time decryption, or near constant-time 845
decryption. 846

The POODLE attack exploits nondeterministic padding in SSL 3.0 [49]. The vulnerability does 847
not exist in the TLS protocols, but the vulnerability can exist in a TLS implementation when the 848
SSL decoder code is reused to process TLS data [45]. TLS implementations shall correctly 849
decode the CBC padding bytes. 850

Note that CBC-based attacks can be prevented by using AEAD cipher suites (e.g., GCM, CCM), 851
which are supported in TLS 1.2. 852

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 20

3.3.2.1 Algorithm Support 853

Many TLS servers and clients support cipher suites that are not composed of only NIST-854
approved algorithms. If the server were configured to support cipher suites that are not 855
recommended in this document, they may be chosen during the handshake. Therefore, it is 856
important that the server is configured to only use recommended cipher suites. This is 857
particularly important for server implementations that do not allow the server administrator to 858
specify preference order. In such servers, the only way to ensure that a server uses NIST-859
approved algorithms for encryption is to disable cipher suites that use other encryption 860
algorithms. 861

If the server implementation does allow the server administrator to specify a preference, the 862
system administrator is encouraged to use the preference recommendations listed in Section 863
3.3.1.1. 864

3.3.2.2 Cipher Suite Scope 865

The selection of a cryptographic algorithm may be system-wide and not application specific for 866
some implementations. For example, disabling an algorithm for one application on a system 867
might disable that algorithm for all applications on that system. 868

3.3.3 Validated Cryptography 869

The cryptographic module used by the server shall be a FIPS 140-validated cryptographic 870
module [70]. All cryptographic algorithms that are included in the configured cipher suites shall 871
be within the scope of the validation, as well as the random number generator. Note that the TLS 872
1.1 pseudorandom function (PRF) uses MD5 and SHA-1 in parallel so that if one hash function 873
is broken, security is not compromised. While MD5 is not a NIST-approved algorithm, the TLS 874
1.1 PRF is specified as acceptable in SP 800-135 [22]. TLS 1.3 uses the HMAC-based Extract-875
and-Expand Key Derivation Function (HKDF), described in RFC 5869 [43], to derive the 876
session keys. Note that in TLS 1.1, the use of SHA-1 is found acceptable for specific cases of 877
signing ephemeral keys and for signing for client authentication. This is acceptable due the 878
difficulty for a third party to cause a collision that is not detected, and the client and server 879
cannot exploit the collision they can cause, as further explained in footnote 19. In TLS 1.2, the 880
default hash function in the PRF is SHA-256. Other than the SHA-1 exception listed for specific 881
instances above, all cryptography used shall provide at least 112 bits of security. All server and 882
client certificates shall contain public keys that offer at least 112 bits of security. All server and 883
client certificates and certificates in their certification paths shall be signed using key pairs that 884
offer at least 112 bits of security and SHA-224 or a stronger hashing algorithm. All ephemeral 885
keys used by the client and server shall offer at least 112 bits of security. All symmetric 886
algorithms used to protect the TLS data shall use keys that offer at least 112 bits of security. 887

The random number generator shall be tested and validated in accordance with SP 800-90A [9] 888
under the NIST Cryptographic Algorithm Validation Program (CAVP) and successful results of 889
this testing shall be indicated on the cryptographic module’s FIPS 140 validation certificate. 890

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 21

The server random value, sent in the ServerHello message, contains a 4-byte timestamp20 value 891
and 28-byte random value in TLS version 1.0, 1.1, and 1.2, and contains a 32-byte random value 892
in TLS 1.3. The validated random number generator shall be used to generate the random bytes 893
of the server random value.21 The validated random number generator should be used to 894
generate the 4-byte timestamp of the server random value. 895

3.4 TLS Extension Support 896

Several TLS extensions are described in RFCs. This section contains recommendations for a 897
subset of the TLS extensions that the Federal agencies shall, should, or should not use as they 898
become prevalent in commercially available TLS servers and clients. 899

System administrators must carefully consider the risks of supporting extensions that are not 900
listed as mandatory. Only extensions whose specification have an impact on security are 901
discussed here, but the reader is advised that supporting any extension can have unintended 902
security consequences. In particular, enabling extensions increases the potential for 903
implementation flaws and could leave a system vulnerable. For example, the Heartbleed bug [72] 904
was a flaw in an implementation of the heartbeat extension [62]. Although the extension has no 905
inherent security implications, the implementation flaw exposed server data, including private 906
keys, to attackers. 907

In general, it is advised that servers only be configured to support extensions that are required by 908
the application or enhance security. Extensions that are not needed should not be enabled. 909

3.4.1 Mandatory TLS Extensions 910

The server shall support the use of the following TLS extensions. 911

1. Renegotiation Indication 912
2. Server Name Indication 913
3. Session Hash and Extended Master Secret 914
4. Signature Algorithms 915
5. Certificate Status Request extension 916

3.4.1.1 Renegotiation Indication 917

In TLS versions 1.0 to 1.2, session renegotiation is vulnerable to an attack in which the attacker 918
forms a TLS connection with the target server, injects content of its choice, and then splices in a 919
new TLS connection from a legitimate client. The server treats the legitimate client’s initial TLS 920
handshake as a renegotiation of the attacker’s negotiated session and thus believes that the initial 921

20 The timestamp value does not need to be correct in TLS. It can be any 4-byte value, unless otherwise restricted by higher-level
or application protocols.

21 TLS 1.3 implementations include a downgrade protection mechanism embedded in the random value that overwrites the last
eight bytes of the server random value with a fixed value. When negotiating TLS 1.2, the last eight bytes of the server
random will be set to 44 4F 57 4E 47 52 44 01. When TLS 1.1 or below is negotiated, the last eight bytes of the random
value will be set to 44 4F 57 4E 47 52 44 00. This overwrite is separate from the validated random bit generator.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 22

data transmitted by the attacker is from the legitimate client. The session renegotiation extension 922
is defined to prevent such a session splicing or session interception. The extension uses the 923
concept of cryptographically binding the initial session negotiation and session renegotiation. 924

Server implementations shall perform initial and subsequent renegotiations in accordance with 925
RFC 5746 [57] and [56]. 926

3.4.1.2 Server Name Indication 927

Multiple virtual servers may exist at the same network address. The server name indication 928
extension allows the client to specify which of the servers located at the address it is trying to 929
connect with. This extension is available in all versions of TLS. The server shall be able to 930
process and respond to the server name indication extension received in a ClientHello message 931
as described in [30]. 932

3.4.1.3 Session Hash and Extended Master Secret 933

Bhargavan et al. have shown that an active attacker can synchronize two TLS sessions such that 934
they share the same master secret, thus allowing the attacker to perform a man-in-the-middle 935
attack [13]. The Session Hash and Extended Master Secret extension, specified in RFC 7627 936
[42], prevents such attacks by binding the master secret to a hashed log of the full handshake. 937
The server shall support the use of this extension. 938

3.4.1.4 Signature Algorithms 939

Servers shall support the processing of the signature algorithms extension received in a 940
ClientHello message. The extension, its syntax, and processing rules are described in Sections 941
7.4.1.4.1, 7.4.2, and 7.4.3 of RFC 5246 [26] and Section 4.2.3 of the TLS 1.3 specification [56]. 942
Note that the extension described in the TLS 1.3 specification updates the extension described in 943
RFC 5246 by adding an additional signature scheme. 944

3.4.1.5 Certificate Status Request 945

When the client wishes to receive the revocation status of the TLS server certificate from the 946
TLS server, the client includes the Certificate Status Request (status_request) extension in the 947
ClientHello message. Upon receipt of the status_request extension, a server with a certificate 948
issued by a CA that supports OCSP shall include the certificate status along with its certificate 949
by sending a CertificateStatus message immediately following the Certificate message.22 While 950
the extension itself is extensible, only OCSP-type certificate status is defined in [30]. This 951
extension is also called OCSP stapling. 952

3.4.2 Conditional TLS Extensions 953

Support the use of the following TLS extensions under the circumstances described in the 954

22 In TLS 1.3 the server includes the certificate status in the Certificate message.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 23

following paragraphs: 955

1. The Fallback Signaling Cipher Suite Value (SCSV) extension shall be supported if the 956
server supports versions of TLS prior to TLS 1.2 and does not support TLS 1.3. 957

2. The Encrypt-then-MAC extension shall be supported if the server is configured to 958
negotiate CBC cipher suites. 959

3. The Negotiated Groups extension shall be supported if the server supports ephemeral 960
ECDH cipher suites or if the server supports TLS 1.3. 961

4. The EC Point Format extension shall be supported if the server supports EC cipher 962
suites. 963

5. The Multiple Certificate Status extension should be supported if status information for 964
the server’s certificate is available via OCSP, and the extension is supported by the server 965
implementation. 966

6. The Trusted CA Indication extension shall be supported if the server communicates with 967
memory-constrained clients (e.g., low-memory client devices in the Internet of Things), 968
and the server has been issued certificates by multiple CAs. 969

7. The Truncated HMAC extension may be supported if the server communicates with 970
constrained device clients and the server implementation does not support variable-length 971
padding. 972

8. The Signed Certificate Timestamps extension should be supported if the server’s 973
certificate was issued by a publicly trusted CA, and the certificate does not include a 974
Signed Certificate Timestamps List extension. 975

9. The Supported Versions, Cookie, and Key Share extensions shall be supported if the 976
server supports TLS 1.3. 977

10. The Pre-Shared Key extension may be supported if the server supports TLS 1.3. 978
11. The Pre-Shared Key Exchange Modes extension shall be supported if the server supports 979

TLS 1.3 and the Pre-Shared Key extension. 980

3.4.2.1 Fallback Signaling Cipher Suite Value (SCSV) 981

TLS 1.3 includes a downgrade protection mechanism that previous versions do not. In versions 982
prior to TLS 1.3, an attacker can use an external version negotiation means to force unnecessary 983
protocol downgrades on a connection. In particular, the attacker can make it appear that the 984
connection failed with the requested TLS version, and some client implementations will try the 985
connection again with a downgraded protocol version. This extension, described in RFC 7507 986
[48], provides a mechanism to prevent unintended protocol downgrades. Clients signal when a 987
connection is a fallback, and if the server deems it inappropriate (i.e., the server supports a higher 988
TLS version), the server returns a fatal alert. 989

When TLS versions prior to TLS 1.2 are supported by the server, and TLS version 1.3 is not 990
supported, the fallback SCSV extension shall be supported. 991

3.4.2.2 Encrypt-then-MAC 992

Several attacks on CBC cipher suites have been possible due to the MAC-then-encrypt order of 993
operations used in TLS versions 1.0, 1.1, and 1.2. The Encrypt-then-MAC extension alters the 994
order that the encryption and MAC operations are applied to the data. This is believed to provide 995

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 24

stronger security, and mitigate or prevent several known attacks on CBC cipher suites. Servers 996
that are configured to negotiate CBC cipher suites shall support this extension as described in 997
[36]. 998

3.4.2.3 Negotiated Groups 999

The Negotiated Groups extension23 (supported_groups) allows the client to indicate the groups 1000
that it supports to the server. The extension was originally called the Supported Elliptic Curves 1001
extension (elliptic_curves), and was only used for elliptic curve groups, but it may now also be 1002
used to negotiate finite field groups. In TLS 1.3, the Negotiated Groups extension must be used 1003
to negotiate both elliptic curve and finite field groups. Servers that support either ephemeral 1004
ECDH cipher suites or TLS 1.3 shall support this extension. When elliptic curve cipher suites 1005
are configured, at least one of the NIST-approved curves, P-256 (secp256r1) and P-384 1006
(secp384r1), shall be supported as described in RFC 4492 [14]. The finite field groups 1007
ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, and ffdhe8192 may be supported (see RFC 7919 1008
[35]). 1009

3.4.2.4 Key Share 1010

The Key Share extension is used in TLS 1.3 to send cryptographic parameters. Servers that 1011
support TLS 1.3 shall support this extension as described in Section 4.2.7 of the TLS 1.3 1012
specification [56]. 1013

3.4.2.5 EC Point Format 1014

Servers that support EC cipher suites shall be able to process the supported EC point format 1015
received in the ClientHello message by the client. The servers shall process this extension in 1016
accordance with Section 5.1 of RFC 4492 [14]. 1017

Servers that support EC cipher suites shall also be able to send the supported EC point format in 1018
the ServerHello message as described in Section 5.2 of RFC 4492 [14]. 1019

3.4.2.6 Multiple Certificate Status 1020

The multiple certificate status extension improves on the Certificate Status Request extension 1021
described in Section 3.4.1.5 by allowing the client to request the status of all certificates provided 1022
by the server in the TLS handshake. When the server returns the revocation status of all the 1023
certificates in the server certificate chain, the client does not need to query any revocation service 1024
providers, such as OCSP responders. This extension is documented in RFC 6961 [51]. Servers 1025
that have this capability and that have certificates issued by CAs that support OCSP should be 1026
configured to support this extension. 1027

3.4.2.7 Trusted CA Indication 1028

The trusted CA indication (trusted_ca_keys) extension allows a client to specify which CA root 1029

23 Called “Supported Groups” in RFC 7919.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 25

keys it possesses. This is useful for sessions where the client is memory-constrained and 1030
possesses a small number of root CA keys. Servers that communicate with memory-constrained 1031
clients and that have been issued certificates by multiple CAs shall be able to process and 1032
respond to the trusted CA indication extension received in a ClientHello message as described in 1033
[30]. 1034

3.4.2.8 Truncated HMAC 1035

The Truncated HMAC extension allows a truncation of the HMAC output to 80 bits for use as a 1036
MAC tag. An 80-bit MAC tag complies with the recommendations in SP 800-107 [21], but 1037
reduces the security provided by the integrity algorithm. Because forging a MAC tag is an online 1038
attack, and the TLS session will terminate immediately when an invalid MAC tag is encountered, 1039
the risk introduced by using this extension is low. However, truncated MAC tags shall not be 1040
used in conjunction with variable-length padding, due to attacks described by Paterson et al. 1041
[50]. This extension cannot be used with TLS 1.3. 1042

3.4.2.9 Pre-Shared Key 1043

The Pre-Shared Key extension (pre_shared_key), available in TLS 1.3, is used to indicate the 1044
identity of the pre-shared key to be used for PSK key establishment. In TLS 1.3 pre-shared keys 1045
may either be established out-of-band, as in TLS 1.2 are below, or in a previous connection, in 1046
which case they are used for session resumption. Servers that support TLS 1.3 may be 1047
configured to support this extension in order to support session resumption or to support the use 1048
of pre-shared keys that are established out-of-band. 1049

3.4.2.10 Pre-Shared Key Exchange Modes 1050

A TLS 1.3 client must send the Pre-Shared Key Exchange Modes extension 1051
(psk_key_exchange_modes) if it sends the Pre-Shared Key extension. TLS 1.3 servers use the 1052
list of key exchange modes present in the extension to select an appropriate key exchange 1053
method. TLS servers that support TLS 1.3 and the Pre-Shared Key extension shall support this 1054
extension. 1055

3.4.2.11 Signed Certificate Timestamps 1056

The Certificate Transparency project (described in RFC 6962 [46]) strives to reduce the impact 1057
of certificate-based threats by making the issuance of CA-signed certificates more transparent. 1058
This is done through the use of public logs of certificates, public log monitoring, and public 1059
certificate auditing. Certificate logs are cryptographically assured records of certificates that are 1060
open to public scrutiny. Certificates may be appended to logs, but they cannot be removed, 1061
modified, or inserted into the middle of a log. Monitors watch certificate logs for suspicious 1062
certificates, such as those that were not authorized by the domain they claim to represent. 1063
Auditors have the ability to check the membership of a particular certificate in a log, as well as 1064
verify the integrity and consistency of logs. 1065

Evidence that the server’s certificate has been submitted to Certificate Transparency logs may be 1066
provided to clients either in the certificate itself or in a Signed Certificate Timestamps TLS 1067
extension (signed_certificate_timestamp). Servers with certificates issued by publicly trusted 1068

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 26

CAs that do not include a Signed Certificate Timestamps List extension should support the 1069
Signed Certificate Timestamps TLS extension. 1070

3.4.2.12 Supported Versions 1071

The supported versions extension was added in TLS 1.3. The extension is sent in the ClientHello 1072
message to indicate which versions of TLS the client supports. A TLS 1.3 server shall be able to 1073
process this extension. When it is absent from the ClientHello message, the server shall use the 1074
version negotiation specified in TLS 1.2 and earlier. 1075

3.4.2.13 Cookie 1076

The cookie extension was added in TLS 1.3. It allows the server to force the client to prove that 1077
it is reachable at its apparent network address, and offload state to the client. Servers that support 1078
TLS 1.3 may support the cookie extension in accordance with the TLS 1.3 specification [56]. 1079

3.4.3 Discouraged TLS Extensions 1080

The following extension should not be used: 1081

1. Client Certificate URL 1082
2. Early Data Indication 1083

3.4.3.1 Client Certificate URL 1084

The Client Certificate URL extension allows a client to send a URL pointing to a certificate, 1085
rather than sending a certificate to the server during mutual authentication. This can be very 1086
useful for mutual authentication with constrained clients. However, this extension can be used 1087
for malicious purposes. The URL could belong to an innocent server on which the client would 1088
like to perform a denial of service attack, turning the TLS server into an attacker. A server that 1089
supports this extension also acts as a client while retrieving a certificate, and therefore becomes 1090
subject to additional security concerns. For these reasons, the Client Certificate URL extension 1091
should not be supported. However, if an agency determines that the risks are minimal, and this 1092
extension is needed for environments where clients are in constrained devices, the extension may 1093
be supported. If the client certificate URL extension is supported, the server shall be configured 1094
to mitigate the security concerns described above and in Section 11.3 of [30]. 1095

3.4.3.2 Early Data Indication 1096

In TLS 1.3, the Early Data Indication extension (early_data) allows the client to send application 1097
data in the ClientHello message when pre-shared keys are used. This includes pre-shared keys 1098
that are established out-of-band, as well those used for session resumption. TLS does not protect 1099
this early data against replay attacks. Servers should not process early data received in the 1100
ClientHello message. If the server is configured to send the Early Data Indication extension, the 1101
server shall use methods of replay protection, such as those described in Section 8 of the TLS 1102
1.3 specification [56]. 1103

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 27

3.5 Client Authentication 1104

Where strong cryptographic client authentication is required, TLS servers may use the TLS 1105
protocol client authentication option to request a client certificate to cryptographically 1106
authenticate the client.24 For example, the Personal Identity Verification (PIV) Authentication 1107
certificate [68] (and the associated private key) provides a suitable option for strong 1108
authentication of Federal employees and contractors. To ensure that agencies are positioned to 1109
take full advantage of the PIV Card, all TLS servers that perform client authentication shall 1110
implement certificate-based client authentication. 1111

The client authentication option requires the server to implement the X.509 path validation 1112
mechanism and a trust anchor store. Requirements for these mechanisms are specified in 1113
Sections 3.5.1 and 3.5.2, respectively. To ensure that cryptographic authentication actually 1114
results in strong authentication, client keys shall contain at least 112 bits of security. Section 1115
3.5.3 describes mechanisms that can contribute, albeit indirectly, to enforcing this requirement. 1116
Section 3.5.4 describes the client’s use of the server hints list. 1117

The TLS server shall be configurable to terminate the connection with a fatal “handshake 1118
failure” alert when a client certificate is requested, and the client does not have a suitable 1119
certificate. 1120

3.5.1 Path Validation 1121

The client certificate shall be validated in accordance with the certification path validation rules 1122
specified in Section 6 of [20]. In addition, the revocation status of each certificate in the 1123
certification path shall be validated using the Online Certificate Status Protocol (OCSP) or a 1124
certificate revocation list (CRL). OCSP checking shall be in compliance with RFC 6960 [61]. 1125

Revocation information shall be obtained as described in Section 3.2.2. 1126

The server shall be able to determine the certificate policies that the client certificate is trusted 1127
for by using the certification path validation rules specified in Section 6 of [20]. Server and 1128
backend applications may use this determination to accept or reject the certificate. Checking 1129
certificate policies assures the server that only client certificates that have been issued with 1130
acceptable assurance, in terms of CA and registration system and process security, are accepted. 1131

Not all commercial products may support the public-key certification path validation and 1132
certificate policy processing rules listed and cited above. When implementing client 1133
authentication, the Federal agencies shall either use the commercial products that meet these 1134

24 The CertificateVerify message is sent to explicitly verify a client certificate that has a signing capability. In TLS 1.1 (and TLS
1.0), this message uses SHA-1 to generate a signature on all handshake messages that came before it. SP 800-131A [10]
states that the use of SHA-1 for digital signature generation is disallowed after 2013. Even if a collision is found, the client
must use its private key to authenticate itself by signing the hash. Due to the client random and server random values, the
server, the client, or a third party cannot use a colliding set of messages to masquerade as the client or server in future
connections. Any modification to this message, preceding messages, or subsequent messages will ultimately result in a
failed connection. Therefore, SHA-1 is allowed for generating digital signatures in the TLS CertificateVerify message.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 28

requirements or augment commercial products to meet these requirements. 1135

The server shall be able to provide the client certificate, and the certificate policies for which the 1136
client certification path is valid, to the applications in order to support access control decisions. 1137

3.5.2 Trust Anchor Store 1138

Having an excessive number of trust anchors installed in the TLS application can expose the 1139
application to all the PKIs emanating from those trust anchors. The best way to minimize the 1140
exposure is to only include the trust anchors in the trust anchor store that are absolutely 1141
necessary for client public-key certificate authentication. 1142

The server shall be configured with only the trust anchors that the server trusts, and of those, 1143
only the ones that are required to authenticate the clients, in the case where the server supports 1144
client authentication in TLS. These trust anchors are typically a small subset of the trust anchors 1145
that may be included on the server by default. Also, note that this trust anchor store is distinct 1146
from the machine trust anchor store. Thus, the default set of trust anchors shall be examined to 1147
determine if any of them are required for client authentication. Some specific enterprise and/or 1148
PKI service provider trust anchor may need to be added. 1149

In the U.S. Federal environment, in most situations, the Federal Common Policy Root or the 1150
agency root (if cross certified with the Federal Bridge Certification Authority or the Federal 1151
Common Policy Root) should be sufficient to build a certification path to the client certificates. 1152

System administrators of a TLS server that supports certificate-based client authentication shall 1153
perform an analysis of the client certificate issuers and use that information to determine the 1154
minimum set of trust anchors required for the server. The server shall be configured to only use 1155
those trust anchors. 1156

3.5.3 Checking the Client Key Size 1157

The only direct mechanism for a server to check whether the key size and algorithms presented 1158
in a client public-key certificate are acceptable is for the server to examine the public key and 1159
algorithm in the client’s certificate. An indirect mechanism is to check that the certificate 1160
policies extension in the client public-key certificate indicates the minimum cryptographic 1161
strength of the signature and hashing algorithms used, and for the server to perform certificate 1162
policy processing and checking. The server shall check the client key length if client 1163
authentication is performed, and the server implementation provides a mechanism to do so. 1164
Federal Agencies shall use the key size guidelines provided in [10] to check the client key size. 1165

3.5.4 Server Hints List 1166

Clients may use the list of trust anchors sent by the server in the CertificateRequest message to 1167
determine if the client’s certification path terminates at one of these trust anchors. The list sent 1168
by the server is known as a “hints list.” When the server and client are in different PKI domains, 1169
and the trust is established via direct cross-certification between the two PKI domains (i.e., the 1170
server PKI domain and the client PKI domain) or via transitive cross-certification (i.e., through 1171
cross-certifications among multiple PKI domains), the client may erroneously decide that its 1172

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 29

certificate will not be accepted by the server since the client’s trust anchor is not sent in the hints 1173
list. To mitigate this failure, the server shall either 1) maintain the trust anchors of the various 1174
PKIs whose subscribers are the potential clients for the server, and include them in the hints list, 1175
or 2) be configured to send an empty hints list so that the client can always provide a certificate it 1176
possesses. The hints list shall be distinct from the server’s trust anchor store.25 In other words, 1177
the server shall continue to only populate its trust anchor store with the trust anchor of the 1178
server’s PKI domain and the domains it needs to trust directly for client authentication. Note that 1179
the distinction between the server hints list and the server’s own trust store is as follows: 1) the 1180
hints list is the list of trust anchors that a potential client might trust; and 2) the server’s trust 1181
store is the list of trust anchors that the server explicitly trusts. 1182

3.6 Session Resumption 1183

Previous TLS sessions can be resumed, allowing for a connection to be established using an 1184
abbreviated handshake. All versions of TLS offer session resumption, although the mechanism 1185
for performing resumption differs. A server may be configured to ignore requests to resume a 1186
session, if the implementation allows it. 1187

TLS 1.3 allows the client to send data in the first flight of handshake, known as 0-RTT data. This 1188
practice may provide opportunities for attackers, such as replay attacks.26 The TLS 1.3 1189
specification describes two mechanisms to mitigate threats introduced by 0-RTT data. One of 1190
these mechanisms is single-use tickets, which allows each session ticket to be used only once. It 1191
may be difficult to implement this mechanism in an environment with distributed servers, as a 1192
session database must be shared between servers. ClientHello recording is a second mechanism 1193
that defends against replay attacks by recording a unique value derived from the ClientHello and 1194
rejecting duplicates. To limit the size of the list, the server can maintain a list only within a 1195
specified time window. In general, 0-RTT data should not be accepted by the server. If the 1196
server does allow 0-RTT data, then the server should use the single-use ticket mechanism in 1197
accordance with the TLS 1.3 specification (see Section 8 of [56]). 1198

3.7 Compression Methods 1199

The use of compression may enable attackers to perform attacks using compression-based side 1200
channels (e.g., [58], [12]). Because of this, only the null compression method, which disables 1201
TLS compression, should be used. If compression is used, the methods defined in RFC 3749 1202
[39] or RFC 3943 [34] may be used. 1203

3.8 Operational Considerations 1204

The sections above specify TLS-specific functionality. This functionality is necessary, but is not 1205
sufficient, to achieve security in an operational environment. 1206

25 Depending on the server and client trust anchors, the two lists could be identical, could have some trust anchors in common, or
have no trust anchors in common.

26 TLS does not inherently provide replay protection for 0-RTT data.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 30

Federal agencies shall ensure that TLS servers include appropriate network security protections 1207
as specified in other NIST guidelines, such as SP 800-53 [41]. 1208

The server shall operate on a secure operating system.27 Where the server relies on a FIPS 140 1209
Level 1 cryptographic module, the software and private key shall be protected using the 1210
operating system identification, authentication and access control mechanisms. In some highly 1211
sensitive applications, server private keys may require protection using a FIPS 140 Level 2 or 1212
higher hardware cryptographic module. 1213

The server and associated platform shall be kept up-to-date in terms of security patches. This is 1214
critical to various aspects of security. 1215

 1216

27 A secure operating system contains and uses the following features: operating system protection from applications and
processes; operating system mediated isolation among applications and processes; user identification and authentication;
access control based on authenticated user identity, and event logging of security-relevant activities.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 31

4 Minimum Requirements for TLS Clients 1217

This section provides a minimum set of requirements that a TLS client must meet in order to 1218
adhere to these guidelines. Requirements are organized as follows: TLS protocol version 1219
support; client keys and certificates; cryptographic support; TLS extension support; server 1220
authentication; session resumption; compression methods; and operational considerations. 1221

Specific requirements are stated as either implementation requirements or configuration 1222
requirements. Implementation requirements indicate that Federal agencies shall not procure TLS 1223
client implementations unless they include the required functionality. Configuration 1224
requirements indicate that system administrators are required to verify that particular features are 1225
enabled, or in some cases, configured appropriately if present. 1226

4.1 Protocol Version Support 1227

The client shall be configured to use TLS 1.2 and should be configured to use TLS 1.3. The 1228
client may be configured to use TLS 1.1 and TLS 1.0 to facilitate communication with private 1229
sector servers. The client shall not be configured to use SSL 2.0 or SSL 3.0. Agencies shall 1230
develop migration plans to support TLS 1.3 by January 1, 2020. 1231

4.2 Client Keys and Certificates 1232

Some applications may require client authentication. For TLS, this can be achieved by 1233
performing mutual authentication using certificates. 1234

4.2.1 Client Certificate Profile 1235

When certificate-based client authentication is needed, the client shall be configured with a 1236
certificate that adheres to the recommendations presented in this section. A client certificate may 1237
be configured on the system or located on an external device (e.g., a PIV Card). For this 1238
specification, the TLS client certificate shall be an X.509 version 3 certificate; both the public 1239
key contained in the certificate and the signature shall provide at least 112 bits of security. If the 1240
client supports TLS versions prior to TLS 1.2, the certificate should be signed with an algorithm 1241
that is consistent with the public key:28 1242

• Certificates containing RSA (signature), ECDSA, or DSA public keys should be signed 1243
with those same signature algorithms, respectively; 1244

• Certificates containing Diffie-Hellman certificates should be signed with DSA; and 1245
• Certificates containing ECDH public keys should be signed with ECDSA. 1246

The client certificate profile is listed in Table 4-1. In the absence of an agency-specific client 1247
certificate profile, this profile should be used for client certificates. 1248

28 This recommendation is an artifact of requirements in TLS 1.0 and 1.1.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 32

Table 4-1: TLS Client Certificate Profile 1249

Field Critical Value Description

Version N/A 2 Version 3

Serial Number N/A Unique positive integer Must be unique

Issuer Signature Algorithm N/A Values by CA key type:
sha256WithRSAEncryption {1 2 840
113549 1 1 11}, or stronger

CA with RSA key

ecdsa-with-SHA256 {1 2 840 10045 4 3
2}, or stronger

CA with elliptic curve key

id-dsa-with-sha256 {2 16 840 1 101 3 4 3
2}, or stronger

CA with DSA key

Issuer Distinguished Name N/A Unique X.500 Issuing CA DN A single value shall be encoded in each
RDN. All attributes that are of
directoryString type shall be encoded as a
printable string.

Validity Period N/A 3 years or less Dates through 2049 expressed in UTCTime

Subject Distinguished Name N/A Unique X.500 subject DN per agency
requirements

A single value shall be encoded in each
RDN. All attributes that are of
directoryString type shall be encoded as a
printable string.

Subject Public Key
Information

N/A Values by certificate type:
rsaEncryption {1 2 840 113549 1 1 1} RSA signature certificate

2048-bit RSA key modulus, or other
approved lengths as defined in [FIPS186-4]
and [6]
Parameters: NULL

ecPublicKey {1 2 840 10045 2 1} ECDSA signature certificate or ECDH
certificate
Parameters: namedCurve OID for names
curve specified in FIPS 186-4. The curve
shall be P-256 or P-384
SubjectPublic Key: Uncompressed EC
Point.

id-dsa {1 2 840 10040 4 1} DSA signature certificate
Parameters: p, q, g

dhpublicnumber {1 2 840 10046 2 1} DH certificate
Parameters: p, g, q

Issuer’s Signature N/A Same value as in Issuer Signature
Algorithm

Extensions
Authority Key Identifier No Octet String Same as subject key identifier in issuing

CA certificate
Prohibited: Issuer DN, Serial Number tuple

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 33

Field Critical Value Description

Subject Key Identifier No Octet String Same as in PKCS-10 request or calculated
by the issuing CA

Key Usage Yes digitalSignature RSA certificate, DSA certificate, ECDSA
certificate

keyAgreement ECDH certificate, DH certificate

Extended Key Usage No id-kp-clientAuth {1 3 6 1 5 5 7 3 2} Required

anyExtendedKeyUsage {2 5 29 37 0} The anyExtendedKeyUsage OID should be
present if the extended key usage extension
is included, but there is no intention to limit
the types of applications with which the
certificate may be used (e.g., the certificate
is a general-purpose authentication
certificate).

 Prohibited: all others unless consistent with
key usage extension

Certificate Policies No Per issuer’s X.509 certificate policy

Subject Alternative Name No RFC 822 e-mail address, Universal
Principal Name (UPN), DNS Name,
and/or others

Optional

Authority Information Access No id-ad-caIssuers Required. Access method entry contains
HTTP URL for certificates issued to
issuing CA

id-ad-ocsp Optional. Access method entry contains
HTTP URL for the issuing CA OCSP
responder

CRL Distribution Points No See comments Optional: HTTP value in distributionPoint
field pointing to a full and complete CRL.
Prohibited: reasons and cRLIssuer fields,
and nameRelativetoCRLIssuer CHOICE

 1250

If a client has multiple certificates that meet the requirements of the TLS server, the TLS client 1251
(e.g., a browser) may ask the user to select from a list of certificates. The extended key usage 1252
(EKU) extension limits the operations for which the keys in a certificate may be used, and so the 1253
use of the EKU extension in client certificates may eliminate this request. If the EKU extension 1254
is included in client certificates, then the id-kp-client-auth key purpose OID should be included 1255
in the certificates to be used for TLS client authentication and should be omitted from any other 1256
certificates. 1257

Client certificates are also filtered by TLS clients on the basis of an ability to build a path to one 1258
of the trust anchors in the hints list sent by the server, as described in Section 3.5.4. 1259

4.2.2 Obtaining Revocation Status Information for the Server Certificate 1260

The client shall perform revocation checking of the server certificate. Revocation information 1261
can be obtained by the client from one of the following locations: 1262

1. OCSP response or responses in the server’s CertificateStatus message ([30], [51]) (or 1263
Certificate message in TLS 1.3); 1264

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 34

2. Certificate Revocation List (CRL) or OCSP response in the client’s local certificate store; 1265
3. OCSP response from a locally configured OCSP responder; 1266
4. OCSP response from the OCSP responder location identified in the OCSP field in the 1267

Authority Information Access extension in the server certificate; or 1268
5. CRL from the CRL Distribution Point extension in the server certificate. 1269

When the server does not provide the revocation status, the local certificate store does not have 1270
the current or a cogent CRL or OCSP response, and the OCSP responder and the CRL 1271
distribution point are unavailable or inaccessible at the time of TLS session establishment, the 1272
client will either terminate the connection or accept a potentially revoked or compromised 1273
certificate. The decision to accept or reject a certificate in this situation should be made 1274
according to agency policy. 1275

Other emerging concepts that can be useful in lieu of revocation checking are further discussed 1276
in Appendix D.2. 1277

4.2.3 Client Public-Key Certificate Assurance 1278

The client public-key certificate may be trusted by the servers on the basis of the policies, 1279
procedures and security controls used to issue the client public-key certificate as described in 1280
Section 3.5.1. For example, these guidelines recommend that the PIV Authentication certificate 1281
be the norm for authentication of Federal employees and long-term contractors. PIV 1282
Authentication certificate policy is defined in the Federal PKI Common Policy Framework [32], 1283
and PIV-I Authentication certificate policy is defined in the X.509 Certificate Policy for the 1284
Federal Bridge Certification Authority [64]. Depending on the requirements of the server-side 1285
application, other certificate policies may also be acceptable. Guidance regarding other 1286
certificate policies is outside the scope of these guidelines. 1287

4.3 Cryptographic Support 1288

4.3.1 Cipher Suites 1289

The acceptable cipher suites for a TLS client are the same as those for a TLS server. General-1290
purpose cipher suites are listed in Section 3.3.1, and cipher suites appropriate for pre-shared key 1291
environments for TLS 1.2 and prior versions are listed in Appendix C. When ephemeral keys are 1292
used to establish the master secret, each ephemeral key-pair (i.e., the server ephemeral key-pair 1293
and the client ephemeral key-pair) shall have at least 112 bits of security. 1294

The client should not be configured to use cipher suites other than those listed in Section 3.3.1 1295
or Appendix C. 1296
To mitigate attacks against CBC mode, TLS implementations that support versions prior to TLS 1297
1.3 shall use the bad_record_mac error to indicate a padding error. Implementations shall 1298
compute the MAC regardless of whether padding errors exist. TLS implementations should 1299
support constant-time decryption, or near constant-time decryption. This does not apply to TLS 1300
1.3 implementations, as they do not support cipher suites that use CBC mode. 1301

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 35

4.3.2 Validated Cryptography 1302

The client shall use validated cryptography, as described for the server in Section 3.3.3. 1303

The validated random number generator shall be used to generate the random bytes (32 bytes in 1304
TLS 1.3; 28 bytes in prior TLS versions) of the client random value. The validated random 1305
number generator should be used to generate the 4-byte timestamp of the client random value for 1306
TLS versions prior to TLS 1.3. 1307

4.4 TLS Extension Support 1308

Some servers will refuse the connection if any TLS extensions are included in the ClientHello 1309
message. Interoperability with servers that do not properly handle TLS extensions may require 1310
multiple connection attempts by the client. 1311

4.4.1 Mandatory TLS Extensions 1312

The client shall be configured to use the following extensions: 1313

1. Renegotiation Indication 1314
2. Server Name Indication 1315
3. Session Hash and Extended Master Secret 1316
4. Signature Algorithms 1317
5. Certificate Status Request 1318

4.4.1.1 Renegotiation Indication 1319

The Renegotiation Indication extension is required by these guidelines as described in Section 1320
3.4.1.1. Clients shall perform the initial and subsequent renegotiations in accordance with RFC 1321
5746 [57]. 1322

4.4.1.2 Server Name Indication 1323

The server name indication extension is described in Section 3.4.1.2. The client shall be capable 1324
of including this extension in a ClientHello message, as described in RFC 6066 [30]. 1325

4.4.1.3 Session Hash and Extended Master Secret 1326

The Session Hash and Extended Master Secret extension, described in Section 3.4.1.3, prevents 1327
man-in-the-middle attacks by binding the master secret to a hashed log of the full handshake. 1328
The client shall support this extension. 1329

4.4.1.4 Signature Algorithms 1330

The clients shall assert acceptable hashing and signature algorithm pairs in this extension in TLS 1331
1.2 and TLS 1.3 ClientHello messages. The extension, its syntax, and processing rules are 1332
described in Sections 7.4.1.4.1, 7.4.4, 7.4.6 and 7.4.8 of RFC 5246 [26] and in Section 4.2.3 of 1333
the TLS 1.3 specification [56]. Note that the extension described in the TLS 1.3 specification 1334
updates the extension described in RFC 5246 by adding an additional signature scheme. 1335

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 36

4.4.1.5 Certificate Status Request 1336

The client shall include the “status_request” extension in the ClientHello message. 1337

4.4.2 Conditional TLS Extensions 1338

A TLS client supports the following TLS extensions under the circumstances described: 1339

1. The Fallback Signaling Cipher Suite Value (SCSV) extension shall be supported if the 1340
client supports versions of TLS prior to TLS 1.2 and does not support TLS 1.3. 1341

2. The Negotiated Groups extension shall be supported if the client supports ephemeral 1342
ECDH cipher suites or if the client supports TLS 1.3. 1343

3. The EC Point Format TLS extension shall be supported if the client supports EC cipher 1344
suite(s). 1345

4. The Multiple Certificate Status extension should be enabled if the extension is supported 1346
by the client implementation. 1347

5. The Trusted CA Indication extension should be supported by clients that run on memory-1348
constrained devices where only a small number of CA root keys are stored. 1349

6. The Encrypt-then-MAC extension shall be supported when CBC mode cipher suites are 1350
configured. 1351

7. The Truncated HMAC extension may be supported by clients that run on constrained 1352
devices when variable-length padding is not supported. 1353

8. The Supported versions, Cookie, and Key Share extensions shall be supported by TLS 1354
1.3 clients. 1355

9. The Pre-Shared Key extension may be supported by TLS 1.3 clients. 1356
10. The Pre-Shared Key Exchange Modes extension shall be supported by TLS 1.3 clients 1357

that support the Pre-Shared Key extension. 1358

4.4.2.1 Fallback Signaling Cipher Suite Value (SCSV) 1359

This extension, described in Section 3.4.2.1, provides a mechanism to prevent unintended 1360
protocol downgrades in TLS versions prior to TLS 1.3. Clients signal when a connection is a 1361
fallback, and if the server supports a higher TLS version, the server returns a fatal alert. If the 1362
client does not support TLS 1.3, and is attempting to connect with a TLS version prior to TLS 1363
1.2, the client shall include TLS_FALLBACK_SCSV at the end of the cipher suite list in the 1364
ClientHello message. 1365

4.4.2.2 Negotiated Groups 1366

The Negotiated Groups extension (supported_groups) is described in Section 3.4.2.3. Client 1367
implementations shall send this extension in TLS 1.3 ClientHello messages and in ClientHello 1368
messages that include ephemeral ECDH cipher suites. When elliptic curve cipher suites are 1369
configured, at least one of the NIST-approved curves, P-256 (secp256r1) and P-384 (secp384r1), 1370
shall be supported as described in RFC 4492 [14]. The finite field groups ffdhe2048, ffdhe3072, 1371
ffdhe4096, ffdhe6144, and ffdhe8192 may be supported (see RFC 7919 [35]). 1372

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 37

4.4.2.3 Key Share 1373

The Key Share extension is used to send cryptographic parameters. Clients that support TLS 1.3 1374
shall support this extension as described in Section 4.2.7 of the TLS 1.3 specification [56]. 1375

4.4.2.4 EC Point Format 1376

The clients that support EC cipher suites shall be capable of specifying supported EC point 1377
formats in the ClientHello message, in accordance with Section 5.1 of [14]. 1378

Clients that support EC cipher suites shall support the processing of at least one29 of the EC 1379
point formats received in the ServerHello message, as described in Section 5.2 of [14]. 1380

4.4.2.5 Multiple Certificate Status 1381

The multiple certificate status extension is described in Section 3.4.2.6. This extension improves 1382
on the Certificate Status Request extension described in Section 3.4.1.5 by allowing the client to 1383
request the status of all certificates provided by the server in the TLS handshake. This extension 1384
is documented in RFC 6961 [51]. Client implementations that have this capability should be 1385
configured to include this extension in the ClientHello message. 1386

4.4.2.6 Trusted CA Indication 1387

Clients that run on memory-constrained devices where only a small number of CA root keys are 1388
stored should be capable of including the trusted CA indication (trusted_ca_keys) extension in a 1389
ClientHello message as described in [30]. 1390

4.4.2.7 Encrypt-then-MAC 1391

The Encrypt-then-MAC extension, described in Section 3.4.2.2, can mitigate or prevent several 1392
known attacks on CBC cipher suites. In order for this modified order of operations to be applied, 1393
both server and client need to implement the Encrypt-then-MAC extension and negotiate its use. 1394
When CBC mode cipher suites are configured, clients shall support this extension as described 1395
in RFC 7366 [36]. The client shall include this extension in the ClientHello message whenever 1396
the ClientHello message includes CBC cipher suites. 1397

4.4.2.8 Truncated HMAC 1398

The Truncated HMAC extension is described in Section 3.4.2.8. Clients running on constrained 1399
devices may support this extension. The Truncated HMAC extension shall not be used in 1400
conjunction with variable-length padding, due to attacks described by Paterson et al. [50]. This 1401
extension cannot be used with TLS 1.3. 1402

29 The uncompressed point format must be supported, as described in Sections 5.1.2 and 5.2 of [14].

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 38

4.4.2.9 Supported Versions 1403

The supported versions extension was added in TLS 1.3. The client sends this extension in the 1404
ClientHello message to indicate which versions of TLS it is able to negotiate. A TLS 1.3 client 1405
shall send this extension in the ClientHello message. 1406

4.4.2.10 Cookie 1407

The cookie extension, added in TLS 1.3, allows the server to force the client to prove that it is 1408
reachable at its apparent network address, and offload state to the client. Clients that support TLS 1409
1.3 shall support the cookie extension in accordance with the TLS 1.3 specification [56]. 1410

4.4.2.11 Pre-shared Key 1411

The Pre-Shared Key extension (pre_shared_key), available in TLS 1.3, is used to indicate the 1412
identity of the pre-shared key to be used for PSK key establishment. In TLS 1.3 pre-shared keys 1413
may either be established out-of-band, as in TLS 1.2 and prior versions, or in a previous 1414
connection, in which case they are used for session resumption. Clients that support TLS 1.3 may 1415
be configured to use this extension in order to allow session resumption or to allow the use of 1416
pre-shared keys that are established out-of-band. 1417

4.4.2.12 Pre-Shared Key Exchange Modes 1418

A TLS 1.3 client must send the Pre-Shared Key Exchange Modes extension 1419
(psk_key_exchange_modes) if it sends the Pre-Shared Key extension, otherwise the server will 1420
abort the handshake. TLS clients that support TLS 1.3 and the Pre-Shared Key extension shall 1421
implement this extension. 1422

4.4.3 Discouraged TLS Extension 1423

The following extensions should not be used: 1424

1. Client Certificate URL 1425
2. Early Data Indication 1426

The reasons for discouraging the use of these extensions can be found in Section 3.4.3. 1427

4.5 Server Authentication 1428

The client shall be able to build the certification path for the server certificate presented in the 1429
TLS handshake with at least one of the trust anchors in the client trust store, if an appropriate 1430
trust anchor is present in the store. The client may use all or a subset of the following resources 1431
to build the certification path: local certificate store, certificates received from the server during 1432
the handshake, LDAP, resources declared in CA Repository field of the Subject Information 1433
Access extension in various CA certificates, and resources declared in the CA Issuers field of the 1434
Authority Information Access extension in various certificates. 1435

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 39

4.5.1 Path Validation 1436

The client shall validate the server certificate in accordance with the certification path validation 1437
rules specified in Section 6 of [20]. The revocation status of each certificate in the certification 1438
path shall be checked using Online Certificate Status Protocol (OCSP) or a certificate revocation 1439
list (CRL). OCSP checking shall be in compliance with [61]. Revocation information shall be 1440
obtained as described in Section 4.2.2. 1441

Not all clients support name constraint checking. The Federal agencies should only procure 1442
clients that perform name constraint checking in order to obtain assurance that unauthorized 1443
certificates are properly rejected. As an alternative, the Federal agency may procure clients that 1444
use one or more of the features discussed in Appendix D.1. 1445

The client shall terminate the TLS connection if path validation fails. 1446

Federal agencies shall only use clients that check that the DNS name or IP address, whichever is 1447
presented in the client TLS request, matches a DNS name or IP address contained in the server 1448
certificate. The client shall terminate the TLS connection if the name check fails. 1449

4.5.2 Trust Anchor Store 1450

Having an excessive number of trust anchors installed in the TLS client can increase the chances 1451
for the client to be spoofed. As the number of trust anchors increase, the number of CAs that the 1452
client trusts increases, and the chances that one of these CAs or its registration system or process 1453
will be compromised to issue TLS server certificates also increases. 1454

Clients shall not overpopulate their trust stores with various CA certificates that can be verified 1455
via cross-certification. Direct trust of these certificates can expose the clients unduly to a variety 1456
of situations, including but not limited to, revocation or compromise of these trust anchors. 1457
Direct trust also increases the operational and security burden on the clients to promulgate 1458
addition and deletion of trust anchors. Instead, the client shall rely on the server overpopulating 1459
or not providing the hints list to mitigate the client certificate selection and path-building 1460
problem as discussed in Section 3.5.4. 1461

4.5.3 Checking the Server Key Size 1462

The only direct mechanism for a client to check if the key size presented in a server public 1463
certificate is acceptable is for the client to examine the server public key in the certificate. An 1464
indirect mechanism is to ensure that the server public-key certificate was issued under a policy 1465
that indicates the minimum cryptographic strength of the signature and hashing algorithms used. 1466
In some cases, this can be done by the client performing certificate policy processing and 1467
checking. However, since many TLS clients cannot be configured to accept or reject certificates 1468
based on the policies under which they were issued, this may require ensuring that the trust 1469
anchor store only contains CAs that issue certificates under acceptable policies. The client shall 1470
check the server public key length if the client implementation provides a mechanism to do so. 1471
The client shall also check the server public key length if the server uses ephemeral keys for the 1472
creation of the master secret, and the client implementation provides a mechanism to do so. 1473

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 40

The length of each write key is determined by the negotiated cipher suite. Restrictions on the 1474
length of the shared session keys can be enforced by configuring the client to only support cipher 1475
suites that meet the key length requirements. 1476

4.5.4 User Interface 1477

When the TLS client is a browser, the browser interface can be used to determine if a TLS 1478
session is in effect. The indication that a TLS session is in effect varies by browser. Examples of 1479
indicators include a padlock in the URL bar, the word “secure” preceding the URL, or a different 1480
color for the URL bar. Some clients, such as browsers, may allow further investigation of the 1481
server certificate and negotiated session parameters by clicking on the lock (or other indicator). 1482
Users should examine the interface for the presence of the indicator to ensure that the TLS 1483
session is in force and should also visually examine web site URLs to ensure that the user 1484
intended to visit the indicated web site. Users should be aware that URLs can appear to be 1485
legitimate, but still not be valid. For example, the numeric “1” and the letter “l” appear quite 1486
similar or the same to the human eye. 1487

Client authentication keys may be located outside of the client (e.g., PIV Cards). Users shall 1488
follow the policies and procedures for protecting client authentication keys outside of the client. 1489

4.6 Session Resumption 1490

Session resumption considerations and server recommendations were given in Section 3.6. There 1491
are no specific recommendations for clients regarding session resumption when using TLS 1.2, 1492
1.1, or 1.0. Clients typically will not know if any anti-replay mechanisms are in place to prevent 1493
replay attacks on 0-RTT data in TLS 1.3. Therefore, clients using TLS 1.3 should not send 0-1494
RTT data. 1495

4.7 Compression Methods 1496

The client shall follow the same compression recommendations as the server, which are 1497
described in Section 3.7. 1498

4.8 Operational Considerations 1499

The client and associated platform shall be kept up-to-date in terms of security patches. This is 1500
critical to various aspects of security. 1501

Once the TLS-protected data is received at the client, and decrypted and authenticated by the 1502
TLS layer of the client system, the unencrypted data is available to the applications on the client 1503
platform. 1504

These guidelines do not mitigate the threats against the misuse or exposure of the client 1505
credentials that resides on the client machine. These credentials could contain the private key 1506
used for client authentication or other credentials (e.g., a one-time password (OTP) or user ID 1507
and password) for authenticating to a server-side application. 1508

For these reasons, the use of TLS does not obviate the need for the client to use appropriate 1509

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 41

security measures, as described in applicable Federal Information Processing Standards and 1510
NIST Special Publications, to protect computer systems and applications. Users shall operate 1511
client systems in accordance with agency and administrator instructions. 1512

 1513

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 42

Appendix A—Acronyms 1514

Selected acronyms and abbreviations used in this paper are defined below. 1515

3DES Triple Data Encryption Algorithm (TDEA)

AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard

CA Certification Authority
CBC Cipher Block Chaining
CCM Counter with CBC-MAC
CRL Certificate Revocation List

DES Data Encryption Standard
DH Diffie-Hellman key exchange
DHE Ephemeral Diffie-Hellman key exchange
DNS Domain Name System
DNSSEC DNS Security Extensions
DSA Digital Signature Algorithm
DSS Digital Signature Standard (implies DSA)

EC Elliptic Curve
ECDHE Ephemeral Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm

FIPS Federal Information Processing Standard

GCM Galois Counter Mode

HKDF HMAC-based Extract-and-Expand Key Derivation Function

HMAC Keyed-hash Message Authentication Code

IETF Internet Engineering Task Force

KDF Key derivation function

MAC Message Authentication Code

OCSP Online Certificate Status Protocol
OID Object Identifier

PIV Personal Identity Verification
PKI Public Key Infrastructure
PRF Pseudo-random Function
PSK Pre-shared Key

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 43

RFC Request for Comments

SHA Secure Hash Algorithm
SSL Secure Sockets Layer

TLS Transport Layer Security

URL Uniform Resource Locator
 1516

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 44

Appendix B—Interpreting Cipher Suite Names 1517

TLS cipher suite names consist of a set of mnemonics separated by underscores (i.e., “_”). The 1518
naming convention in TLS 1.3 differs from the convention shared in TLS 1.0, 1.1, and 1.2. 1519
Section B.1 provides guidance for interpreting the names of cipher suites that are recommended 1520
in these guidelines for TLS versions 1.0, 1.1, and 1.2. Section B.2 provides guidance for 1521
interpreting the names of cipher suites for TLS 1.3. In all TLS cipher suites, the first mnemonic 1522
is the protocol name, i.e., “TLS”. 1523

B.1 Interpreting Cipher Suites Names in TLS 1.0, 1.1, and 1.2 1524

One or two mnemonics follow the protocol name, indicating the key-exchange algorithm. If 1525
there is only one mnemonic, it must be PSK, based on the recommendations in these guidelines. 1526
The single mnemonic PSK indicates that the premaster secret is established using only 1527
symmetric algorithms with pre-shared keys, as described in RFC 4279 [31]. Pre-shared key 1528
cipher suites that are approved for use with TLS 1.2 are listed in Appendix C. If there are two 1529
mnemonics following the protocol name, the first key exchange mnemonic should be DH, 1530
ECDH, DHE, or ECDHE. When the first key exchange mnemonic is DH or ECDH, it indicates 1531
that the server’s public key in its certificate is for either DH or ECDH key exchange, and the 1532
second mnemonic indicates the signature algorithm that was used by the issuing CA to sign the 1533
server certificate. When the first key exchange mnemonic is DHE or ECDHE, it indicates that 1534
ephemeral DH or ECDH will be used for key exchange, with the second mnemonic indicating 1535
the server signature public key type that will be used to authenticate the server’s ephemeral 1536
public key.30 1537

Next is the word WITH, followed by the mnemonic for the symmetric encryption algorithm and 1538
associated mode of operations. 1539

The last mnemonic is generally the hashing algorithm to be used for HMAC, if applicable.31 In 1540
cases where HMAC is not applicable (e.g., AES-GCM), or the cipher suite was defined after the 1541
release of the TLS 1.2 RFC, this mnemonic represents the hashing algorithm used with the PRF. 1542

The following examples illustrate how to interpret the cipher suite names: 1543

• TLS_DH_DSS_WITH_AES_256_CBC_SHA256: The server is using a DH certificate. If 1544
the signature algorithms extension is provided by the client, then the certificate is signed 1545
using one of the algorithms specified by the extension. Otherwise, the certificate is signed 1546
using DSA. Once the handshake is completed, the messages are encrypted using AES-1547
256 in CBC mode. SHA-256 is used for both the PRF and HMAC computations. Cipher 1548

30 In this case, the signature algorithm used by the CA to sign the certificate is not articulated in the cipher suite.

31 HMAC is not applicable when the symmetric encryption mode of operation is authenticated encryption. Note that the CCM
mode cipher suites do not specify the last mnemonic and require that SHA-256 be used for the PRF.

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 45

suites that specify secure hash algorithms other than SHA-1 are not supported prior to 1549
TLS 1.2. 1550

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: Ephemeral ECDH is used for 1551
key exchange. The server’s ephemeral public key is authenticated using the server’s 1552
ECDSA public key. The CA signature algorithm used to certify the server’s ECDSA 1553
public key is not specified by the cipher suite. Once the handshake is completed, the 1554
messages are encrypted and authenticated using AES-256 in GCM mode, and SHA-384 1555
is used for the PRF. Since an authenticated encryption mode is used, messages neither 1556
have nor require an HMAC message authentication code. 1557

B.2 Interpreting Cipher Suites Names in TLS 1.3 1558

TLS 1.3 cipher suites are formatted differently from those described in the previous section. In 1559
particular, these cipher suites only specify an authenticated encryption algorithm (which provides 1560
confidentiality, integrity, and message authentication) and a hash algorithm for use with the 1561
HKDF. The negotiation of the key exchange method is handled elsewhere in the TLS handshake. 1562

The following examples illustrate how to interpret TLS 1.3 cipher suite names. 1563
• TLS_AES_256_GCM_SHA384: messages are encrypted and authenticated with AES-1564

256 in GCM mode, and SHA-384 is used with the HKDF. 1565
• TLS_AES_128_CCM_SHA256: messages are encrypted and authenticated with AES-1566

128 in CCM mode, and SHA-256 is used with the HKDF. 1567

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 46

Appendix C—Pre-shared Keys 1568

Pre-shared keys (PSK) are symmetric keys that are already in place prior to the initiation of a 1569
TLS session (e.g., as the result of a manual distribution). The use of PSKs in TLS versions prior 1570
to TLS 1.3 is described in RFC 4279 [31], RFC 5487 [4], and RFC 5489 [5]. Pre-shared keys are 1571
used for session resumption in TLS 1.3. In general, pre-shared keys should not be used in TLS 1572
versions prior to TLS 1.3, or for initial session establishment in TLS 1.3. However, the use of 1573
pre-shared keys may be appropriate for some closed environments that have adequate key 1574
management support. For example, they might be appropriate for constrained environments with 1575
limited processing, memory, or power. If PSKs are appropriate and supported, then the following 1576
additional guidelines shall be followed. 1577

Recommended pre-shared key (PSK) cipher suites for TLS 1.2 are listed below. Cipher suites for 1578
TLS 1.3 (see Section 3.3.1.2) can all be used with pre-shared keys. Pre-shared keys shall be 1579
distributed in a secure manner, such as a secure manual distribution or using a key-establishment 1580
certificate. These cipher suites employ a pre-shared key for entity authentication (for both the 1581
server and the client) and may also use ephemeral Diffie-Hellman (DHE) or ephemeral Elliptic 1582
Curve Diffie-Hellman (ECDHE) algorithms for key establishment. For example, when DHE is 1583
used, the result of the Diffie-Hellman computation is combined with the pre-shared key and 1584
other input to determine the premaster secret. 1585

The pre-shared key shall have a minimum security strength of 112 bits. Because these cipher 1586
suites require pre-shared keys, these suites are not generally applicable to common secure web 1587
site applications and are not expected to be widely supported in TLS clients or TLS servers. 1588
NIST suggests that these suites be considered for infrastructure applications, particularly if 1589
frequent authentication of the network entities is required. 1590
Pre-shared key cipher suites may only be used in networks where both the client and server 1591
belong to an organization. Cipher suites using pre-shared keys shall not be used with TLS 1.0 or 1592
TLS 1.1, and shall not be used when a government client or server communicates with non-1593
government systems. 1594

TLS 1.2 servers and clients using pre-shared keys may support the following cipher suites: 1595

• TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 (0x00, 0xAA) 1596
• TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 (0x00, 0xAB) 1597
• TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 (0xC0, 0x37) 1598
• TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 (0xC0, 0x38) 1599
• TLS_DHE_PSK_WITH_AES_128_CCM (0xC0, 0xA6) 1600
• TLS_DHE_PSK_WITH_AES_256_CCM (0xC0, 0xA7) 1601
• TLS_PSK_DHE_WITH_AES_128_CCM_8 (0xC0, 0xAA) 1602
• TLS_PSK_DHE_WITH_AES_256_CCM_8 (0xC0, 0xAB) 1603
• TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 (0x00, 0xB2) 1604
• TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 (0x00, 0xB3) 1605
• TLS_PSK_WITH_AES_128_GCM_SHA256 (0x00, 0xA8) 1606
• TLS_PSK_WITH_AES_256_GCM_SHA384 (0x00, 0xA9) 1607
• TLS_PSK_WITH_AES_128_CCM (0xC0, 0xA4) 1608

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 47

• TLS_PSK_WITH_AES_256_CCM (0xC0, 0xA5) 1609
• TLS_PSK_WITH_AES_128_CCM_8 (0xC0, 0xA8) 1610
• TLS_PSK_WITH_AES_256_CCM_8 (0xC0, 0xA9) 1611
• TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00, 0xAE) 1612
• TLS_PSK_WITH_AES_256_CBC_SHA384 (0x00, 0xAF) 1613
• TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA (0xC0, 0x35) 1614
• TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA (0xC0, 0x36) 1615
• TLS_DHE_PSK_WITH_AES_128_CBC_SHA (0x00, 0x90) 1616
• TLS_DHE_PSK_WITH_AES_256_CBC_SHA (0x00, 0x91) 1617
• TLS_PSK_WITH_AES_128_CBC_SHA (0x00, 0x8C) 1618
• TLS_PSK_WITH_AES_256_CBC_SHA (0x00, 0x8D) 1619

 1620

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 48

Appendix D—Future Capabilities 1621

This section identifies emerging concepts and capabilities that are applicable to TLS. As these 1622
concepts mature, and commercial products are available to support them, these guidelines will be 1623
revised to provide specific recommendations. 1624

D.1 U.S. Federal Public Trust PKI 1625

The Identity, Credential, and Access Management (ICAM) Subcommittee of the Federal CIO 1626
Council’s Information Security and Identity Management Committee is developing a new public 1627
trust root and issuing CA infrastructure to issue TLS server certificates for Federal web services 1628
on the public Internet. The intent is for this new root to be included in all of the commonly used 1629
trust stores so that Federal agencies can obtain their TLS server certificates from this PKI rather 1630
than from commercial CAs. The certificate policy for this PKI is being developed at 1631
https://devicepki.idmanagement.gov. 1632

Once this PKI is operational and is included in the commonly used trust stores, Federal agencies 1633
should consider obtaining their TLS server certificates from this PKI. 1634

D.2 DANE 1635

DNS-based Authentication of Named Entities (DANE) leverages DNS security extensions 1636
(DNSSEC) to provide mechanisms for securely obtaining information about TLS server 1637
certificates from the DNS. RFC 6698 [38] specifies a resource record that may be made available 1638
in DNS that includes a certificate (or the public key of a certificate), along with an indicator of 1639
how the certificate is to be used. There are four options: 1640

1. The DNS record contains an end-entity certificate. In addition to the server public-key 1641
certificate validation as specified in Section 4.5, the client verifies that the TLS server 1642
certificate matches the certificate provided in the DNS records. 1643

2. The DNS record contains a domain-issued end-entity certificate.32 The client can use the 1644
certificate if it verifies that the TLS server certificate matches the one provided in the 1645
DNS records (i.e., the client forgoes server public-key certificate validation as specified 1646
in Section 4.5). 1647

3. The DNS record contains a CA certificate. In addition to the server public-key certificate 1648
validation as specified in Section 4.5, the client verifies that the certification path for the 1649
TLS server certificate includes the CA certificate provided in the DNS records. 1650

4. The DNS record contains a certificate that is to be used as a trust anchor. The client 1651
validates the TLS server certificate as specified in Section 4.5 using the trust anchor 1652
provided in the DNS records instead of the trust anchors in the client’s local trust anchor 1653
store. 1654

32 In this context, a “domain-issued” certificate is one that is issued by the domain name administrator without involving a third-
party CA. It corresponds to usage case 3 in Section 2.1.1 of RFC 6698.

https://devicepki.idmanagement.gov/

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 49

In each case, the client verifies the digital signatures on the DNS records in accordance with the 1655
DNSSEC, as described in RFC 4033 [3]. 1656

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 50

Appendix E—Determining the Need for TLS 1.0 and 1.1 1657

Enabling TLS 1.0 when it is not needed may leave systems and users vulnerable to attacks (such 1658
as the BEAST attack and the Klima attack [63]). However, disabling TLS 1.0 when there is a 1659
need may deny access to users who are unable to install or upgrade to a browser that is capable 1660
of TLS 1.3, 1.2 or 1.1. 1661
The system administrator must consider the benefits and risks of using TLS 1.0, in the context of 1662
applications supported by the server, and decide whether the benefits of using TLS 1.0 outweigh 1663
the risks. This decision should be driven by the service(s) running on the server and the versions 1664
supported by clients accessing the server. Services that do not access high-value information 1665
(such as personally identifiable information or financial data) may benefit from using TLS 1.0 by 1666
increasing accessibility with little increased risk. On the other hand, services that do access high-1667
value data may increase the likelihood of a breach for relatively little gain in terms of 1668
accessibility. The decision to support TLS 1.0 must be assessed on a case-by-case basis by the 1669
system administrator. 1670
These guidelines do not give specific recommendations on steps that can be taken to make this 1671
determination. There are tools available (such as the Data Analytics Program [71]) that can 1672
provide information to system administrators that can be used to assess the impact of supporting, 1673
or not supporting, TLS 1.0. For example, DAP data on visitor OS and browser versions can help 1674
administrators determine what percentage of visitors to agency websites cannot negotiate TLS 1675
1.2 (or TLS 1.1) by default. 1676
Many products that implement TLS 1.1 also implement TLS 1.2. Because of this, it may be 1677
unnecessary for servers to support TLS 1.1. Administrators can determine whether TLS 1.1 is 1678
needed by assessing whether it must support connections with clients where 1.1 is the highest 1679
TLS version available. 1680

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 51

Appendix F—References 1681

[1] Adams, C., and Lloyd, S., Understanding PKI: Concepts, Standard, and Deployment 1682
Considerations (Macmillan Technology Publishing. ISBN 1-57870-166-X, 1999) 1683

[2] AlFardan, N.J., and Paterson, K.G., Lucky Thirteen: Breaking the TLS and DTLS Record 1684
Protocols, February 2013, http://www.isg.rhul.ac.uk/tls/TLStiming.pdf 1685

[3] Arends, R., Austein, R., Larson, M., Massey, D., and Rose, S., DNS Security Introduction 1686
and Requirements, Internet Engineering Task Force (IETF) Request for Comments (RFC) 4033, 1687
March 2005, https://doi.org/10.17487/RFC4033 1688

[4] Badra, M., Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois 1689
Counter Mode, Internet Engineering Task Force (IETF) Request for Comments (RFC) 5487, 1690
March 2009, https://doi.org/10.17487/RFC5487 1691

[5] Badra, M., and Hajjeh, I., ECDHE_PSK Cipher Suites for Transport Layer Security 1692
(TLS), Internet Engineering Task Force (IETF) Request for Comments (RFC) 5489, March 1693
2009, https://doi.org/10.17487/RFC5489 1694

[6] Barker, E., Recommendation for Key Management Part 1: General, NIST Special 1695
Publication (SP) 800-57 Part 1 Revision 4, National Institute of Standards and Technology, 1696
Gaithersburg, Maryland, January 2016, https://doi.org/10.6028/NIST.SP.800-57pt1r4 1697

[7] Barker, E., Chen, L., and Moody, D., Recommendation for Pair-Wise Key-Establishment 1698
Schemes Using Integer Factorization Cryptography, NIST Special Publication (SP) 800-56B 1699
Revision 1, National Institute of Standards and Technology, Gaithersburg, Maryland September 1700
2014, https://doi.org/10.6028/NIST.SP.800-56Br1 1701

[8] Barker, E., Chen, L., Roginsky, A., and Smid, M., Recommendation for Pair-Wise Key 1702
Establishment Schemes Using Discrete Logarithm Cryptography, Special Publication (SP) 800-1703
56A Revision 2, National Institute of Standards and Technology, Gaithersburg, Maryland, May 1704
2013, https://doi.org/10.6028/NIST.SP.800-56Ar2 1705

[9] Barker, E., and Kelsey, J., Recommendation for Random Number Generation Using 1706
Deterministic Random Bit Generators, NIST Special Publication (SP) 800-90A Revision 1, 1707
National Institute of Standards and Technology, Gaithersburg, Maryland June 2015, 1708
https://doi.org/10.6028/NIST.SP.800-90Ar1 1709

[10] Barker, E., and Roginsky, A., Transitions: Recommendation for Transitioning the Use of 1710
Cryptographic Algorithms and Key Lengths, NIST Special Publication (SP) 800-131A Revision 1711
1, National Institute of Standards and Technology, Gaithersburg, Maryland November 2015, 1712
https://doi.org/10.6028/NIST.SP.800-131Ar1 1713

[11] Barker, W.C., and Barker, E., Recommendation for the Triple Data Encryption Algorithm 1714
(TDEA) Block Cipher, NIST Special Publication (SP) 800-67 Revision 1, National Institute of 1715
Standards and Technology, Gaithersburg, Maryland, January 2012, 1716
https://doi.org/10.6028/NIST.SP.800-67r1 1717

http://www.isg.rhul.ac.uk/tls/TLStiming.pdf
https://doi.org/10.17487/RFC4033
https://doi.org/10.17487/RFC5487
https://doi.org/10.17487/RFC5489
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-56Br1
https://doi.org/10.6028/NIST.SP.800-56Ar2
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-131Ar1
https://doi.org/10.6028/NIST.SP.800-67r1

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 52

[12] Be'ery, T., and Shulman, A., A Perfect CRIME? Only TIME Will Tell, Blackhat Europe, 1718
2013, https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf 1719

[13] Bhargavan, K., Lavaud, A.D., Fournet, C., Pironti, A., and Strub, P.Y., Triple 1720
Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS, 2014 IEEE 1721
Symposium on Security and Privacy, May 2014, pp. 98-113, https://doi.org/10.1109/SP.2014.14 1722

[14] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and Moeller, B., Elliptic Curve 1723
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS), Internet Engineering 1724
Task Force (IETF) Request for Comments (RFC) 4492, May 2006, 1725
https://doi.org/10.17487/RFC4492 1726

[15] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, Internet 1727
Engineering Task Force (IETF) Request for Comments (RFC) 2119, March 1997, 1728
https://doi.org/10.17487/RFC2119 1729

[16] CA/Browser Forum, Baseline Requirements Certificate Policy for the Issuance and 1730
Management of Publicly-Trusted Certificates, Version 1.4.1, September 2016, 1731
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.4.1.pdf 1732

[17] CA/Browser Forum, Guidelines For The Issuance And Management Of Extended 1733
Validation Certificates, Version 1.6.0, July 2016, https://cabforum.org/wp-content/uploads/EV-1734
V1_6_0.pdf 1735

[18] Chernick, C.M., III, C.E., Fanto, M.J., and Rosenthal, R., Guidelines for the Selection 1736
and Use of Transport Layer Security (TLS) Implementations, NIST Special Publication (SP) 800-1737
52, National Institute of Standards and Technology, Gaithersburg, Maryland, June 2005, 1738

[19] Comer, D.E., Internetworking with TCP/IP, Principles, Protocols, and Architectures 1739
(Prentice Hall, fourth edn., ISBN 0-13- 018380-6, 2000) 1740

[20] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and Polk, W., Internet 1741
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, 1742
Internet Engineering Task Force (IETF) Request for Comments (RFC) 5280, 2008, 1743
https://doi.org/10.17487/RFC5280 1744

[21] Dang, Q., Recommendation for Applications Using Approved Hash Algorithms, NIST 1745
Special Publication (SP) 800-107 Revision 1, National Institute of Standards and Technology, 1746
Gaithersburg, Maryland August 2012, https://doi.org/10.6028/NIST.SP.800-107r1 1747

[22] Dang, Q., Recommendation for Existing Application-Specific Key Derivation Functions, 1748
NIST Special Publication (SP) 800-135 Revision 1, National Institute of Standards and 1749
Technology, Gaithersburg, Maryland, December 2011, https://doi.org/10.6028/NIST.SP.800-1750
135r1 1751

[23] Dang, Q., and Barker, E., Recommendation for Key Management, Part 3: Application-1752
Specific Key Management Guidance, NIST Special Publication (SP) 800-57 Part 3 Revision 1, 1753
National Institute of Standards and Technology, Gaithersburg, Maryland, January 2015, 1754

https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.17487/RFC4492
https://doi.org/10.17487/RFC2119
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.4.1.pdf
https://cabforum.org/wp-content/uploads/EV-V1_6_0.pdf
https://cabforum.org/wp-content/uploads/EV-V1_6_0.pdf
https://doi.org/10.17487/RFC5280
https://doi.org/10.6028/NIST.SP.800-107r1
https://doi.org/10.6028/NIST.SP.800-135r1
https://doi.org/10.6028/NIST.SP.800-135r1

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 53

https://doi.org/10.6028/NIST.SP.800-57pt3r1 1755

[24] Dierks, T., and Allen, C., The TLS Protocol Version 1.0, Internet Engineering Task Force 1756
(IETF) Request for Comments (RFC) 2246, January 1999, https://doi.org/10.17487/RFC2246 1757

[25] Dierks, T., and Rescorla, E., The Transport Layer Security (TLS) Protocol Version 1.1, 1758
Internet Engineering Task Force (IETF) Request for Comments (RFC) 4346, 2006, 1759
https://doi.org/10.17487/RFC4346 1760

[26] Dierks, T., and Rescorla, E., The Transport Layer Security (TLS) Protocol Version 1.2, 1761
Internet Engineering Task Force (IETF) Request for Comments (RFC) 5246, August 2008, 1762
https://doi.org/10.17487/RFC5246 1763

[27] Dworkin, M., Recommendation for Block Cipher Modes of Operation: Galois/Counter 1764
Mode (GCM) and GMAC, NIST Special Publication (SP) 800-38D, National Institute of 1765
Standards and Technology, Gaithersburg, Maryland, November 2007, 1766
https://doi.org/10.6028/NIST.SP.800-38D 1767

[28] Dworkin, M., Recommendation for Block Cipher Modes of Operation: Methods and 1768
Techniques, NIST Special Publication (SP) 800-38A, National Institute of Standards and 1769
Technology, Gaithersburg, Maryland, December 2001, https://doi.org/10.6028/NIST.SP.800-1770
38A 1771

[29] Dworkin, M., Recommendation for Block Cipher Modes of Operation: the CCM Mode 1772
for Authentication and Confidentiality, NIST Special Publication (SP) 800-38C, National 1773
Institute of Standards and Technology, Gaithersburg, Maryland, May 2004, 1774
https://doi.org/10.6028/NIST.SP.800-38C 1775

[30] Eastlake, D., 3rd, Transport Layer Security (TLS) Extensions: Extension Definitions, 1776
Internet Engineering Task Force (IETF) Request for Comments (RFC) 6066, January 2011, 1777
https://doi.org/10.17487/RFC6066 1778

[31] Eronen, P., and Tschofenig, H., Pre-Shared Key Ciphersuites for Transport Layer 1779
Security (TLS), Internet Engineering Task Force (IETF) Request for Comments (RFC) 4279, 1780
December 2005, https://doi.org/10.17487/RFC4279 1781

[32] Federal Public Key Infrastructure Authority, X.509 Certificate Policy For The U.S. 1782
Federal PKI Common Policy Framework, Version 1.27, June 2017, 1783
https://www.idmanagement.gov/wp-content/uploads/sites/1171/uploads/fpki-x509-cert-common-1784
policy.pdf 1785

[33] Freier, A., Karlton, P., and Kocher, P., The Secure Sockets Layer (SSL) Protocol Version 1786
3.0, Internet Engineering Task Force (IETF) Request for Comments (RFC) 6101, August 2011, 1787
https://doi.org/10.17487/RFC6101 1788

[34] Friend, R., Transport Layer Security (TLS) Protocol Compression Using Lempel-Ziv-Stac 1789
(LZS), Internet Engineering Task Force (IETF) Request for Comments (RFC) 3943, November 1790
2004, https://doi.org/10.17487/RFC3943 1791

https://doi.org/10.6028/NIST.SP.800-57pt3r1
https://doi.org/10.17487/RFC2246
https://doi.org/10.17487/RFC4346
https://doi.org/10.17487/RFC5246
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.17487/RFC6066
https://doi.org/10.17487/RFC4279
https://www.idmanagement.gov/wp-content/uploads/sites/1171/uploads/fpki-x509-cert-common-policy.pdf
https://www.idmanagement.gov/wp-content/uploads/sites/1171/uploads/fpki-x509-cert-common-policy.pdf
https://doi.org/10.17487/RFC6101
https://doi.org/10.17487/RFC3943

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 54

[35] Gillmor, D., Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for 1792
Transport Layer Security (TLS), Internet Engineering Task Force (IETF) Request for Comments 1793
(RFC) 7919, August 2016, https://doi.org/10.17487/RFC7919 1794

[36] Gutmann, P., Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram 1795
Transport Layer Security (DTLS), Internet Engineering Task Force (IETF) Request for 1796
Comments (RFC) 7366, September 2014, https://doi.org/10.17487/RFC7366 1797

[37] Hall, E., Internet Core Protocols: The Definitive Guide (O'Reilly & Associates, Inc., 1798
ISBN 1-56592-572-6, 2000) 1799

[38] Hoffman, P., and Schlyter, J., The DNS-Based Authentication of Named Entities (DANE) 1800
Transport Layer Security (TLS) Protocol: TLSA, Internet Engineering Task Force (IETF) 1801
Request for Comments (RFC) 6698, August 2012, https://doi.org/10.17487/RFC6698 1802

[39] Hollenbeck, S., Transport Layer Security Protocol Compression Methods, Internet 1803
Engineering Task Force (IETF) Request for Comments (RFC) 3749, May 2004, 1804
https://doi.org/10.17487/RFC3749 1805

[40] Housley, R., and Polk, T., Planning for PKI, Best Practices Guide for Deploying Public 1806
Key Infrastructure (John Wiley & Sons. ISBN 0-471-39702-4, 2001) 1807

[41] Joint Task Force Transformation Initiative, Security and Privacy Controls for Federal 1808
Information Systems and Organizations, NIST Special Publication (SP) 800-53 Revision 4, 1809
National Institute of Standards and Technology, Gaithersburg, Maryland, April 2013, 1810
https://doi.org/10.6028/NIST.SP.800-53r4 1811

[42] K. Bhargavan, E., Delignat-Lavaud, A., Pironti, A., Langley, A., and Ray, M., Transport 1812
Layer Security (TLS) Session Hash and Extended Master Secret Extension, Internet Engineering 1813
Task Force (IETF) Request for Comments (RFC) 7627, September 2015, 1814
https://doi.org/10.17487/RFC7627 1815

[43] Krawczyk, H., and Eronen, P., HMAC-based Extract-and-Expand Key Derivation 1816
Function (HKDF), Internet Engineering Task Force (IETF) Request for Comments (RFC) 5869, 1817
May 2010, https://doi.org/10.17487/RFC5869 1818

[44] Kuhn, D.R., Hu, V.C., Polk, W.T., and Chang, S.-J., Introduction to Public Key 1819
Technology and the Federal PKI Infrastructure, NIST Special Publication (SP) 800-32, National 1820
Institute of Standards and Technology, Gaithersburg, Maryland, February 2001, 1821
https://doi.org/10.6028/NIST.SP.800-32 1822

[45] Langley, A., The POODLE bites again, 1823
https://www.imperialviolet.org/2014/12/08/poodleagain.html 1824

[46] Laurie, B., Langley, A., and Kasper, E., Certificate Transparency, Internet Engineering 1825
Task Force (IETF) Request for Comments (RFC) 6962, June 2013, 1826
https://doi.org/10.17487/RFC6962 1827

https://doi.org/10.17487/RFC7919
https://doi.org/10.17487/RFC7366
https://doi.org/10.17487/RFC6698
https://doi.org/10.17487/RFC3749
https://doi.org/10.6028/NIST.SP.800-53r4
https://doi.org/10.17487/RFC7627
https://doi.org/10.17487/RFC5869
https://doi.org/10.6028/NIST.SP.800-32
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://doi.org/10.17487/RFC6962

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 55

[47] McGrew, D., and Bailey, D., AES-CCM Cipher Suites for Transport Layer Security 1828
(TLS), Internet Engineering Task Force (IETF) Request for Comments (RFC) 6655, July 2012, 1829
https://doi.org/10.17487/RFC6655 1830

[48] Moeller, B., and Langley, A., TLS Fallback Signaling Cipher Suite Value (SCSV) for 1831
Preventing Protocol Downgrade Attacks, Internet Engineering Task Force (IETF) Request for 1832
Comments (RFC) 7507, April 2015, https://doi.org/10.17487/RFC7507 1833

[49] Möller, B., Duong, T., and Kotowicz, K., This POODLE Bites: Exploiting The SSL 3.0 1834
Fallback, September 2014, https://www.openssl.org/~bodo/ssl-poodle.pdf 1835

[50] Paterson, K.G., Ristenpart, T., and Shrimpton, T., Tag size does matter: attacks and 1836
proofs for the TLS record protocol. Proc. 17th international conference on The Theory and 1837
Application of Cryptology and Information Security, Seoul, South Korea, 2011, Proceedings of 1838
the 17th international conference on The Theory and Application of Cryptology and Information 1839
Security, https://doi.org/10.1007/978-3-642-25385-0 1840

[51] Pettersen, Y., The Transport Layer Security (TLS) Multiple Certificate Status Request 1841
Extension, Internet Engineering Task Force (IETF) Request for Comments (RFC) 6961, 2013, 1842
https://doi.org/10.17487/RFC6961 1843

[52] Polk, T., McKay, K., and Chokhani, S., Guidelines for the Selection, Configuration, and 1844
Use of Transport Layer Security (TLS) Implementations, NIST Special Publication (SP) 800-52 1845
Revision 1, National Institute of Standards and Technology, Gaithersburg, Maryland, April 2014, 1846
https://doi.org/10.6028/NIST.SP.800-52r1 1847

[53] Polk, W.T., Hastings, N.E., and Malpani, A., Public key infrastructures that satisfy 1848
security goals, IEEE Internet Computing, 2003, 7, (4), pp. 60-67 1849

[54] Rescorla, E., SSL and TLS: Designing and Building Secure Systems (Addison-Wesley. 1850
ISBN 0201615983, 2001) 1851

[55] Rescorla, E., TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois 1852
Counter Mode (GCM), Internet Engineering Task Force (IETF) Request for Comments (RFC) 1853
5289, August 2008, https://doi.org/10.17487/RFC5289 1854

[56] Rescorla, E., The Transport Layer Security (TLS) Protocol Version 1.3, July 2017, 1855
https://datatracker.ietf.org/doc/draft-ietf-tls-tls13/ 1856

[57] Rescorla, E., Ray, M., Dispensa, S., and Oskov, N., Transport Layer Security (TLS) 1857
Renegotiation Indication Extension, Internet Engineering Task Force (IETF) Request for 1858
Comments (RFC) 5746, February 2010, https://doi.org/10.17487/RFC5746 1859

[58] Rizzo, J., and Duong, T., The CRIME Attack, EKOparty Security Conference, 2012 1860

[59] Salowey, J., Choudhury, A., and McGrew, D., AES Galois Counter Mode (GCM) Cipher 1861
Suites for TLS, Internet Engineering Task Force (IETF) Request for Comments (RFC) 5288, 1862
August 2008, https://doi.org/10.17487/RFC5288 1863

https://doi.org/10.17487/RFC6655
https://doi.org/10.17487/RFC7507
https://www.openssl.org/%7Ebodo/ssl-poodle.pdf
https://doi.org/10.1007/978-3-642-25385-0
https://doi.org/10.17487/RFC6961
https://doi.org/10.6028/NIST.SP.800-52r1
https://doi.org/10.17487/RFC5289
https://datatracker.ietf.org/doc/draft-ietf-tls-tls13/
https://doi.org/10.17487/RFC5746
https://doi.org/10.17487/RFC5288

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 56

[60] Salter, M., and Housley, R., Suite B Profile for Transport Layer Security (TLS), Internet 1864
Engineering Task Force (IETF) Request for Comments (RFC) 6460, January 2012, 1865
https://doi.org/10.17487/RFC6460 1866

[61] Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., and Adams, C., X.509 1867
Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP, Internet 1868
Engineering Task Force (IETF) Request for Comments (RFC) 6960, 2013, 1869
https://doi.org/10.17487/RFC6960 1870

[62] Seggelmann, R., Tuexen, M., and Williams, M., Transport Layer Security (TLS) and 1871
Datagram Transport Layer Security (DTLS) Heartbeat Extension, Internet Engineering Task 1872
Force (IETF) Request for Comments (RFC) 6520, February 2012, 1873
https://doi.org/10.17487/RFC6520 1874

[63] Sheffer, Y., Holz, R., and Saint-Andre, P., Summarizing Known Attacks on Transport 1875
Layer Security (TLS) and Datagram TLS (DTLS), Internet Engineering Task Force (IETF) 1876
Request for Comments (RFC) 7457, February 2015, https://doi.org/10.17487/RFC7457 1877

[64] The Federal Bridge Certification Authority, X.509 Certificate Policy For The Federal 1878
Bridge Certification Authority (FBCA), Version 2.31, June 2017, 1879
https://www.idmanagement.gov/wp-content/uploads/sites/1171/uploads/FBCA-Certificate-1880
Policy-v2.31-06-29-17.pdf 1881

[65] U.S. Department of Commerce, Advanced Encryption Standard, Federal Information 1882
Processing Standards (FIPS) Publication 197, November 2001, 1883
https://doi.org/10.6028/NIST.FIPS.197 1884

[66] U.S. Department of Commerce, Digital Signature Standard (DSS), Federal Information 1885
Processing Standards (FIPS) Publication 186-4, July 2013, 1886
https://doi.org/10.6028/NIST.FIPS.186-4 1887

[67] U.S. Department of Commerce, The Keyed-Hash Message Authentication Code (HMAC), 1888
Federal Information Processing Standards (FIPS) Publication 198-1, July 2008, 1889
https://doi.org/10.6028/NIST.FIPS.198-1 1890

[68] U.S. Department of Commerce, Personal Identity Verification (PIV) of Federal 1891
Employees and Contractors, Federal Information Processing Standards (FIPS) Publication 201-1892
2, August 2013, https://doi.org/10.6028/NIST.FIPS.201-2 1893

[69] U.S. Department of Commerce, Secure Hash Standard (SHS), Federal Information 1894
Processing Standards (FIPS) Publication 180-4, August 2015, 1895
https://doi.org/10.6028/NIST.FIPS.180-4 1896

[70] U.S. Department of Commerce, Security Requirements for Cryptographic Modules, 1897
Federal Information Processing Standards (FIPS) Publication 140-2, May 2001, 1898
https://doi.org/10.6028/NIST.FIPS.140-2 1899

[71] U.S. General Services Administration, DAP: Digital Analytics Program, 1900

https://doi.org/10.17487/RFC6460
https://doi.org/10.17487/RFC6960
https://doi.org/10.17487/RFC6520
https://doi.org/10.17487/RFC7457
https://www.idmanagement.gov/wp-content/uploads/sites/1171/uploads/FBCA-Certificate-Policy-v2.31-06-29-17.pdf
https://www.idmanagement.gov/wp-content/uploads/sites/1171/uploads/FBCA-Certificate-Policy-v2.31-06-29-17.pdf
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.201-2
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.140-2

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 57

https://www.digitalgov.gov/services/dap/, [accessed December 5, 2016] 1901

[72] US-CERT/NIST, CVE-2014-0160, National Vulnerability Database, 2014, 1902
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160 1903

[73] Yee, P., Updates to the Internet X.509 Public Key Infrastructure Certificate and 1904
Certificate Revocation List (CRL) Profile, Internet Engineering Task Force (IETF) Request for 1905
Comments (RFC) 6818, January 2013, https://doi.org/10.17487/RFC6818 1906

1907

https://www.digitalgov.gov/services/dap/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://doi.org/10.17487/RFC6818

NIST SP 800-52 REV. 2 (DRAFT) GUIDELINES FOR TLS IMPLEMENTATIONS

 58

Appendix G—Revision History 1908

G.1 Original 1909

The original version of SP 800-52 was published in June 2005 [18]. At the time, only TLS 1.0 1910
was final (TLS 1.1 was still under development). TLS 1.1 became a standard in April 2006, and 1911
TLS 1.2 became a standard in August 2008. SP 800-52 became outdated, and guidance on keys 1912
and cipher suites was incorporated into SP 800-57 Part 3 [23]. In March 2013, SP 800-52 was 1913
withdrawn. 1914

G.2 Revision 1 1915

The first revision of SP 800-52 was published in April 2014 [52]. The revision was a new 1916
document that bore little resemblance to the original. At the time, TLS 1.2 was still not prevalent 1917
and the Federal PKI consisted mainly of RSA certificates. Recommendations were made with 1918
this in mind so that federal agencies could follow the guidelines with either existing technology 1919
or technology that was under development. Agencies were advised to develop a plan to migrate 1920
to TLS 1.2. 1921

After revision 1 was posted, the guidance on keys and cipher suites was removed from SP 800-1922
57 Part 3. 1923

G.3 Revision 2 1924

Since revision 1, support for TLS 1.2 and cipher suites using ephemeral key exchanges has 1925
increased, and new attacks have come to light. Revision 2 (this document) requires that TLS 1.2 1926
be supported, and contains several changes to certificate and cipher suite recommendations. 1927

Revision 2 includes recommendations for TLS 1.3. TLS 1.3 is not yet widely supported, but 1928
many vendors are working to quickly add support for it to their products. TLS 1.3 offers many 1929
improvements over previous versions of TLS, so revision 2 advises agencies to develop a plan to 1930
migrate to TLS 1.3. 1931

Revision 2 also has increased discussion on TLS attacks and guidance on mitigation. 1932

Certificate requirements have also changed in this revision. In particular, status information for 1933
TLS server certificates is required to be made available via the Online Certificate Status 1934
Protocol. This revision of the TLS guidelines relaxes requirements on which signature 1935
algorithms can sign which key types in certificates. 1936

	Executive Summary
	1 Introduction
	1.1 Background
	1.2 History of TLS
	1.3 Scope
	1.3.1 Alternative Configurations

	1.4 Document Conventions

	2 TLS Overview
	2.1 Handshake Protocol
	2.2 Shared Secret Negotiation
	2.3 Confidentiality
	2.4 Integrity
	2.5 Authentication
	2.6 Anti-Replay
	2.7 Key Management

	3 Minimum Requirements for TLS Servers
	3.1 Protocol Version Support
	3.2 Server Keys and Certificates
	3.2.1 Server Certificate Profile
	3.2.2 Obtaining Revocation Status Information for the Client Certificate
	3.2.3 Server Public-Key Certificate Assurance

	3.3 Cryptographic Support
	3.3.1 Cipher Suites
	3.3.1.1 Cipher Suites for TLS 1.2 and Earlier Versions
	3.3.1.1.1 Cipher Suites for ECDSA Certificates
	3.3.1.1.2 Cipher Suites for RSA Certificates
	3.3.1.1.3 Cipher Suites for DSA Certificates
	3.3.1.1.4 Cipher Suites for DH Certificates
	3.3.1.1.5 Cipher Suites for ECDH Certificates

	3.3.1.2 Cipher Suites for TLS 1.3

	3.3.2 Implementation Considerations
	3.3.2.1 Algorithm Support
	3.3.2.2 Cipher Suite Scope

	3.3.3 Validated Cryptography

	3.4 TLS Extension Support
	3.4.1 Mandatory TLS Extensions
	3.4.1.1 Renegotiation Indication
	3.4.1.2 Server Name Indication
	3.4.1.3 Session Hash and Extended Master Secret
	3.4.1.4 Signature Algorithms
	3.4.1.5 Certificate Status Request

	3.4.2 Conditional TLS Extensions
	3.4.2.1 Fallback Signaling Cipher Suite Value (SCSV)
	3.4.2.2 Encrypt-then-MAC
	3.4.2.3 Negotiated Groups
	3.4.2.4 Key Share
	3.4.2.5 EC Point Format
	3.4.2.6 Multiple Certificate Status
	3.4.2.7 Trusted CA Indication
	3.4.2.8 Truncated HMAC
	3.4.2.9 Pre-Shared Key
	3.4.2.10 Pre-Shared Key Exchange Modes
	3.4.2.11 Signed Certificate Timestamps
	3.4.2.12 Supported Versions
	3.4.2.13 Cookie

	3.4.3 Discouraged TLS Extensions
	3.4.3.1 Client Certificate URL
	3.4.3.2 Early Data Indication

	3.5 Client Authentication
	3.5.1 Path Validation
	3.5.2 Trust Anchor Store
	3.5.3 Checking the Client Key Size
	3.5.4 Server Hints List

	3.6 Session Resumption
	3.7 Compression Methods
	3.8 Operational Considerations

	4 Minimum Requirements for TLS Clients
	4.1 Protocol Version Support
	4.2 Client Keys and Certificates
	4.2.1 Client Certificate Profile
	4.2.2 Obtaining Revocation Status Information for the Server Certificate
	4.2.3 Client Public-Key Certificate Assurance

	4.3 Cryptographic Support
	4.3.1 Cipher Suites
	4.3.2 Validated Cryptography

	4.4 TLS Extension Support
	4.4.1 Mandatory TLS Extensions
	4.4.1.1 Renegotiation Indication
	4.4.1.2 Server Name Indication
	4.4.1.3 Session Hash and Extended Master Secret
	4.4.1.4 Signature Algorithms
	4.4.1.5 Certificate Status Request

	4.4.2 Conditional TLS Extensions
	4.4.2.1 Fallback Signaling Cipher Suite Value (SCSV)
	4.4.2.2 Negotiated Groups
	4.4.2.3 Key Share
	4.4.2.4 EC Point Format
	4.4.2.5 Multiple Certificate Status
	4.4.2.6 Trusted CA Indication
	4.4.2.7 Encrypt-then-MAC
	4.4.2.8 Truncated HMAC
	4.4.2.9 Supported Versions
	4.4.2.10 Cookie
	4.4.2.11 Pre-shared Key
	4.4.2.12 Pre-Shared Key Exchange Modes

	4.4.3 Discouraged TLS Extension

	4.5 Server Authentication
	4.5.1 Path Validation
	4.5.2 Trust Anchor Store
	4.5.3 Checking the Server Key Size
	4.5.4 User Interface

	4.6 Session Resumption
	4.7 Compression Methods
	4.8 Operational Considerations

	Appendix A— Acronyms
	Appendix B— Interpreting Cipher Suite Names
	B.1 Interpreting Cipher Suites Names in TLS 1.0, 1.1, and 1.2
	B.2 Interpreting Cipher Suites Names in TLS 1.3

	Appendix C— Pre-shared Keys
	Appendix D— Future Capabilities
	D.1 U.S. Federal Public Trust PKI
	D.2 DANE

	Appendix E— Determining the Need for TLS 1.0 and 1.1
	Appendix F— References
	Appendix G— Revision History
	G.1 Original
	G.2 Revision 1
	G.3 Revision 2

