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Abstract 
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Authority 

This document has been developed by the National Institute of Standards and Technology 
(NIST) in furtherance of its statutory responsibilities under the Federal Information Security 
Management Act (FISMA) of 2002, Public Law 107-347.  

NIST is responsible for developing standards and guidelines, including minimum requirements, 
for providing adequate information security for all agency operations and assets, but such 
standards and guidelines shall not apply to national security systems.   

This Recommendation has been prepared for use by federal agencies. It may be used by 
nongovernmental organizations on a voluntary basis and is not subject to copyright. (Attribution 
would be appreciated by NIST.)  

Nothing in this document should be taken to contradict standards and guidelines made 
mandatory and binding on federal agencies by the Secretary of Commerce under statutory 
authority. Nor should these guidelines be interpreted as altering or superseding the existing 
authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. 

Conformance testing for implementations of this Recommendation will be conducted within the 
framework of the Cryptographic Module Validation Program (CMVP) and the Cryptographic 
Algorithm Validation Program(CAVP). The requirements of this Recommendation are indicated 
by the word “shall.” Some of these requirements may be out-of-scope for CMVP or CAVP 
validation testing, and thus are the responsibility of entities using, implementing, installing or 
configuring applications that incorporate this Recommendation. 
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1. Introduction 

Many U.S. Government Information Technology (IT) systems need to employ well-established 
cryptographic schemes to protect the integrity and confidentiality of the data that they process. 
Algorithms such as the Advanced Encryption Standard (AES) as defined in Federal Information 
Processing Standard (FIPS) 197, Triple DES as specified in NIST Special Publication (SP) 800-
67, and HMAC as defined in FIPS 198 make attractive choices for the provision of these 
services. These algorithms have been standardized to facilitate interoperability between systems. 
However, the use of these algorithms requires the establishment of keying material between the 
participating entities in advance. Trusted couriers may manually distribute this secret keying 
material. However, as the number of entities using a system grows, the work involved in the 
distribution of the secret keying material could grow rapidly. Therefore, it is essential to support 
the cryptographic algorithms used in modern U.S. Government applications with automated key-
establishment schemes. 

A key-establishment scheme can be characterized as either a key-agreement scheme or a key 
transport scheme. The asymmetric-key-based key-establishment schemes in this 
Recommendation are based on the Diffie-Hellman (DH) and Menezes-Qu-Vanstone (MQV) 
algorithms. Asymmetric-key-based key-establishment schemes are also specified in SP 800-56B, 
Recommendation for Pair-Wise Key-establishment Schemes Using Integer Factorization 
Cryptography.  The selection of schemes specified in this Recommendation is based on 
standards for key-establishment schemes developed by the Accredited Standards Committee 
(ASC) X9, Inc.: ANS X9.42, Agreement of Symmetric Keys using Discrete Logarithm 
Cryptography, and ANS X9.63, Key Agreement and Key Transport using Elliptic Curve 
Cryptography.  

2. Scope and Purpose 

This Recommendation provides the specifications for key-establishment schemes that are 
appropriate for use by the U.S. Federal Government and is intended for use in conjunction with 
NIST Special Publication 800-57, Recommendation for Key Management [SP 800-57]. This 
Recommendation (i.e., SP 800-56A) and the Recommendation for Key Management [SP 800-57] 
are intended to provide sufficient information for a vendor to implement secure key 
establishment using asymmetric algorithms in FIPS 140 [FIPS 140] validated modules. 

A scheme may be a component of a protocol, which in turn provides additional security 
properties not provided by the scheme when considered by itself. Note that protocols, per se, are 
not specified in this Recommendation. 
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3. Definitions, Symbols and Abbreviations 

3.1 Definitions 

Approved FIPS-approved or NIST-Recommended. An algorithm or technique that 
is either 1) specified in a FIPS or NIST Recommendation, or 2) adopted 
in a FIPS or NIST Recommendation and specified either (a) in an 
appendix to the FIPS or NIST Recommendation, or (b) in a document 
referenced by the FIPS or NIST Recommendation. 

Assumption This term is used to indicate the conditions that are required to be true 
when an approved key-establishment scheme is executed in accordance 
with this Recommendation.  

Assurance of  
private-key 
possession 

Confidence that an entity possesses a private key corresponding to a 
public key.  

Assurance of 
validity 

Confidence that either a key or a set of domain parameters is 
arithmetically correct. 

Binding Assurance of the integrity of an asserted relationship between items of 
information that is provided by cryptographic means. Also see Trusted 
association. 

Bit length The length in bits of a bit string. 

Bit string An ordered sequence of 0’s and 1’s. 

Byte A bit string consisting of eight bits. A byte is represented by a 
hexadecimal string of length two. The right-most hexadecimal character 
represents the rightmost four bits of the byte, and the left-most 
hexadecimal character of the byte represents the left-most four bits of the 
byte. For example, 9d represents the bit string 10011101. 

Byte string An ordered sequence of bytes. 

Certification 
Authority (CA) 

The entity in a Public-Key Infrastructure (PKI) that is responsible for 
issuing public key certificates and exacting compliance to a PKI policy. 

Cofactor The order of the elliptic curve group divided by the (prime) order of the 
generator point (i.e. the base point) specified in the domain parameters. 

Destroy In this Recommendation, to destroy is an action applied to a key or a 
piece of secret data. After a key or a piece of secret data is destroyed, no 
information about its value can be recovered.  
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Domain parameters The parameters used with a cryptographic algorithm that are common to a 
domain of users. 

Entity An individual (person), organization, device, or process. “Party” is a 
synonym. 

Ephemeral key pair A key pair, consisting of a public key (i.e., an ephemeral public key) and 
a private key (i.e., an ephemeral private key) that is intended for a very 
short period of use. The key pair is ordinarily used in exactly one 
transaction of a cryptographic scheme; an exception to this is when the 
ephemeral key pair is used in multiple transactions for a key-transport 
broadcast. Contrast with a static key pair. 

Hash function A function that maps a bit string of arbitrary length to a fixed-length bit 
string. Approved hash functions are expected to satisfy the following 
properties: 

1. One-way: It is computationally infeasible to find any input that 
maps to any pre-specified output, and 

2. Collision resistant: It is computationally infeasible to find any two 
distinct inputs that map to the same output. 

Approved hash functions are specified in [FIPS 180]. 

Identifier A bit string that is associated with a person, device or organization. It 
may be an identifying name, or may be something more abstract (for 
example, a nickname or a string consisting of an IP address). 

Key agreement  A (pair-wise) key-establishment procedure in which the resultant secret  
keying material is a function of information contributed by both 
participants, so that neither party can predetermine the value of the secret  
keying material independently from the contributions of the other party. 
Contrast with key transport.  

Key-agreement 
transaction 

An execution of a key-agreement scheme. 

Key confirmation A procedure to provide assurance to one party (the key confirmation 
recipient) that another party (the key confirmation provider) actually 
possesses the correct secret keying material and/or shared secret.  

Key confirmation 
provider 

The party that provides assurance to the other party (the recipient) that the 
two parties have indeed established a shared secret or shared keying 
material. 
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Key derivation 
method 

The process by which keying material is derived from a shared secret and 
other information. 

Key establishment  The procedure that results in keying material that is shared among 
different parties.  

Key-establishment 
key pair 

 A private/public key pair used in a key-establishment scheme. It can be a 
static key pair or an ephemeral key pair.  

Key-establishment 
transaction 

An execution of a key-establishment scheme. It can be either a key-
agreement transaction or a key-transport transaction. 

Key transport  In this Recommendation, a (pair-wise) key-establishment procedure 
whereby one party (the sender) selects a value for the secret keying 
material and then securely distributes that value to another party (the 
receiver). Contrast with key agreement. 

Key-transport 
transaction 

An execution of a key-transport scheme. 

Key wrapping In this Recommendation, key wrapping is a method of protecting keying 
material using a symmetric-key-based authenticated encryption method, 
such as a block cipher key-wrapping mode specified in [SP 800-38F] that 
provides both confidentiality and integrity protection. 

Key-wrapping key In this Recommendation, a key-wrapping key is a symmetric key 
established through a key-agreement transaction and used with a key-
wrapping algorithm to protect the keying material to be transported. 

Keying material Data that is represented as a binary string such that any non-overlapping 
segments of the string with the required lengths can be used as symmetric 
cryptographic keys. In this Recommendation, keying material is derived 
from a shared secret established during an execution of a key-
establishment scheme or generated by the sender in a key transport 
scheme. As used in this Recommendation, secret keying material may 
include keys, secret initialization vectors, and other secret parameters. 

MAC tag Data obtained from the output of a MAC algorithm that can be used by an 
entity to verify the integrity and the origination of the information used as 
input.  
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Message 
Authentication Code 
(MAC) algorithm 

A MAC algorithm is a family of cryptographic functions – parameterized 
by a symmetric key – that can be used to provide data origin 
authentication, as well as data integrity, by producing a MAC tag on 
arbitrary data (the message). In this Recommendation, an approved 
MAC algorithm is used for key confirmation and may also be employed 
in certain key derivation methods. 

Nonce A time-varying value that has at most a negligible chance of repeating. 
For example, the nonce may be a random value that is generated anew for 
each use, a timestamp, a sequence number, or some combination of these. 

Owner For a static public key, static private key and/ or the static key pair 
containing those components, the owner is the entity that is authorized to 
use the static private key corresponding to the static public key, whether 
that entity generated the static key pair itself or a trusted party generated 
the key pair for the entity. For an ephemeral key pair, ephemeral private 
key or ephemeral public key, the owner is the entity that generated the 
ephemeral key pair and uses the ephemeral private key associated with 
the public key of that key pair. 

Party See entity. 

Public-key 
certificate 

A data structure that contains an entity’s identifier(s), the entity's public 
key (including an indication of the associated set of domain parameters) 
and possibly other information, along with a signature on that data set that 
is generated by a trusted party, i.e. a certificate authority, thereby binding 
the public key to the included identifier(s).  

Receiver The party that receives secret keying material via a key-transport 
transaction. Contrast with sender. 

Recipient A party that (1) receives a public key; or (2) obtains assurance from an 
assurance provider (e.g., assurance of the validity of a candidate public 
key or assurance of possession of the private key corresponding to a 
public key); or (3) receives key confirmation from a key confirmation 
provider.  

Scheme A (cryptographic) scheme consists of an unambiguous specification of a 
set of transformations that are capable of providing a (cryptographic) 
service when properly implemented and maintained. A scheme is a 
higher-level construct than a primitive and a lower-level construct than a 
protocol. 

Security strength 
(Also “Bits of 
security”) 

A number associated with the amount of work (that is, the number of 
operations) that is required to break a cryptographic algorithm or system.  
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Security properties The security features (e.g., entity authentication or key confirmation) that 
a cryptographic scheme may, or may not, provide. 

Sender The party that sends secret keying material to the receiver in a key-
transport transaction. 

Shall This term is used to indicate a requirement of a Federal Information 
Processing Standard (FIPS) or a requirement that needs to be fulfilled to 
claim conformance to this Recommendation. Note that shall may be 
coupled with not to become shall not. 

Shared secret A secret value that has been computed using a key-agreement scheme and 
is used as input to a key derivation method. 

Should This term is used to indicate an important recommendation. Ignoring the 
recommendation could result in undesirable results. Note that should may 
be coupled with not to become should not. 

Static key pair A key pair, consisting of a private key (i.e., a static private key) and a 
public key (i.e., a static public key) that is intended for use for a relatively 
long period of time and is typically intended for use in multiple key 
establishment transactions. Contrast with an ephemeral key pair.  

Symmetric-key 
algorithm 

A cryptographic algorithm that uses a single secret key for different 
operations, such as for encryption and decryption. 

Trusted association Assurance of the integrity of an asserted relationship between items of 
information that may be provided by cryptographic or non-cryptographic 
(e.g., physical) means. Also see Binding. 

Trusted party A trusted party is a party that is trusted by an entity to faithfully perform 
certain services for that entity. An entity could be a trusted party for itself.

Trusted third party A third party, such as a CA, that is trusted by its clients to perform certain 
services. (By contrast, in a key establishment transaction, the participants, 
parties U and V, are considered to be the first and second parties.) 

3.2 Symbols and Abbreviations 

General: 

AES Advanced Encryption Standard (as specified in [FIPS 197]). 

ASC The American National Standards Institute (ANSI) Accredited Standards 
Committee. 
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ANS American National Standard. 

ASN.1 Abstract Syntax Notation One. 

C(ie) Notation for a category of key-establishment schemes, in which i 

ephemeral key pairs are used, where i ∈ {0, 1, 2}. 

C(ie,js) Notation for a subcategory of key-establishment schemes, in which i 
ephemeral key pairs and j static key pairs are used. In this 
Recommendation, schemes in the subcategories C(0e, 2s), C(1e, 2s), 
C(1e, 1s), C(2e, 0s), and C(2e, 2s) are defined. 

CA Certification Authority. 

CDH The cofactor ECC Diffie-Hellman key-agreement primitive. 

DH The (non-cofactor) FFC Diffie-Hellman key-agreement primitive. 

DLC Discrete Logarithm Cryptography, which is comprised of both Finite 
Field Cryptography (FFC) and Elliptic Curve Cryptography (ECC). 

EC Elliptic Curve. 

ECC Elliptic Curve Cryptography, the public-key cryptographic methods using 
operations in an elliptic curve group.  

FF Finite Field. 

FFC Finite Field Cryptography, the public-key cryptographic methods using 
operations in a multiplicative group of a finite field. 

H An auxiliary function used in certain key derivation methods. H is either 
an approved hash function, hash, or an HMAC-hash based on an 
approved hash function, hash, with a salt value used as the HMAC key. 

HMAC-hash Keyed-hash Message Authentication Code (as specified in [FIPS 198]) 
with an approved hash function hash. 

ID The bit string denoting the identifier associated with an entity. 

KC Key Confirmation. 

KDF Key Derivation Function. 

MAC Message Authentication Code.  
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MAC(MacKey, 
MacData) 

A MAC algorithm with MacKey as the key, and MacData as the data.  

MacTag A MAC tag.  

MQV The Menezes-Qu-Vanstone key-agreement primitive. 

Null The empty bit string 

SHA Secure Hash Algorithm (as specified in [FIPS 180]).  

TbitLen(X) A truncation function that outputs the most significant (i.e., leftmost) 
bitLen bits of the input bit string, X, when the bit length of X is greater 
than bitLen; otherwise, the function outputs X. For example, T2(1011) = 
10, T3(1011) = 101, and T4(1011) = 1011.  

TTP Trusted Third Party. 

U, V Represent the two parties in a (pair-wise) key establishment scheme. 

{X} Indicates that the inclusion of X is optional. 

X || Y Concatenation of two bit strings X and Y. 

[a, b] The set of integers x, such that a ≤ x ≤ b. 

x The ceiling of x; the smallest integer  x. For example, 5 = 5, 5.3 = 6. 

Z A shared secret (represented as a byte string) that is used to derive secret 
keying material using a key derivation method. 

Ze A component of the shared secret (represented as a byte string) that is 
computed using ephemeral keys in a Diffie-Hellman primitive. 

Zs A component of the shared secret (represented as a byte string) that is 
computed using static keys in a Diffie-Hellman primitive. 

 

The following notations are used for FFC and ECC in this Recommendation.  Note that the 
notation sometimes differs between the two scheme types, due to the differing notations used in 
the two standards on which this Recommendation is based (i.e., ANS X9.42 and ANS X9.63). 
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FFC: 

GF(p) The finite field with p elements, where p is an (odd) prime number. The 
elements of GF(p) can be represented by the set of integers {0, 1, …, p-1}. 
The addition and multiplication operations for GF(p) can be realized by 
performing the corresponding integer operations and reducing the results 
modulo p. 

GF(p)* The multiplicative group of non-zero field elements in GF(p). 

g An FFC domain parameter; the selected generator of the multiplicative 
subgroup of prime order q in GF(p)*.  

k mod p The modular reduction of the (arbitrary) integer k by the (positive) integerp 
(the modulus). For the purposes of this Recommendation, j = k mod p is the 

unique integer satisfying the following two conditions: 0 ≤ j < p and k − j is 

a multiple of p. 

p An FFC domain parameter; an odd prime number that determines the size 
of the finite field GF(p).  

pgenCounter An FFC domain parameter; a value that may be output during domain 
parameter generation to provide assurance at a later time that the resulting 
domain parameters were generated using a canonical process. 

q An FFC domain parameter; q is the (odd) prime number equal to the order 
of the multiplicative subgroup of GF(p)* generated by the FFC domain 
parameter g. Note that q is a divisor of p – 1. 

rU, rV The ephemeral private keys of party U and party V, respectively. These are 
integers in the range [2, q-2]. 

tU, tV The ephemeral public keys of party U and party V, respectively. These are 
integers in the range [2, p-1], representing elements in the finite field GF(p).

SEED An FFC domain parameter; an initialization value that is used during 
domain parameter generation that can also be used to provide assurance at a 
later time that the resulting domain parameters were generated using a 
canonical process. 

xU, xV The static private keys of party U and party V, respectively. These are 
integers in the range [2, q-2]. 

yU, yV The static public keys of party U and party V, respectively. These are 
integers in the range [2, p-1], representing elements in the finite field GF(p).
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ECC: 

a, b ECC domain parameters; two elements in the finite field GF(q) that define the 
equation of an elliptic curve, y2 = x3 + ax + b when q is a prime or y2 + xy = x3 + 
ax2 + b, when q = 2m for an integer m.  

avf(Q) The associate value of the elliptic curve point Q. 

de,U, de,V The ephemeral private keys of party U and party V, respectively. These are 
integers in the range [2, n-2]. 

ds,U, ds,V The static private keys of party U and party V, respectively. These are integers in 
the range [2, n-2]. 

FR Field Representation indicator (an ECC domain parameter); an indication of the 
basis used for representing field elements. FR is NULL if the field has odd prime 
order or if a Gaussian normal basis is used. If a polynomial basis representation 
is used for a field of order 2m, then FR indicates the reduction polynomial (a 
trinomial or a pentanomial).  

G An ECC domain parameter, which is a distinguished (affine) point in an elliptic 
curve group that generates a subgroup of prime order n.  

GF(q)  The finite field with q elements, where either q is an odd prime p or q is equal to 
2m, for some prime integer m.  The elements of GF(q) are represented by the set 
of integers {0, 1, …, p-1} in the case that q is an odd prime p, or as bit strings of 
length m bits in the case that q = 2m. 

h An ECC domain parameter; the cofactor, a positive integer that is equal to the 
order of the elliptic curve group, divided by the order of the cyclic subgroup 
generated by the distinguished point G. That is, nh is the order of the elliptic 
curve, where n is the order of the cyclic subgroup generated by the distinguished 
point G. 

n An ECC domain parameter; a prime that is the order of the cyclic subgroup 
generated by the distinguished point G.  

Ø The “point at infinity”; a special element of an elliptic curve group that serves as 
the (additive) identity. 

q An ECC domain parameter; the field size. Either q is an odd prime p or q is 
equal to 2m, for some prime integer m. 

Qe,U, Qe,V The ephemeral public keys of party U and party V, respectively. These are points 
on the elliptic curve defined by the domain parameters. 
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Qs,U, Qs,V The static public keys of party U and party V, respectively. These are points on 
the elliptic curve defined by the domain parameters. 

SEED An optional ECC domain parameter; an initialization value that is used during 
domain parameter generation that can also be used to provide assurance at a later 
time that the resulting domain parameters were generated using a canonical 
process. 

xP, yP Elements of the finite field GF(q), representing the x and y coordinates, 
respectively, of a point P.  

4. Overview of Key-Establishment Schemes  

Secret cryptographic keying material may be electronically established between parties by using 
a key-establishment scheme, that is, by using either a key-agreement scheme or a key-transport 
scheme. 

During a pair-wise key-agreement scheme, the secret keying material to be established is not sent 
directly from one entity to another. Instead, the two parties exchange information from which 
they each compute a shared secret that is used (along with other exchanged/known data) to 
derive the secret keying material. The method used to combine the information made available to 
both parties provides assurance that neither party can control the output of the key-agreement 
process.  

The key-agreement schemes described in this Recommendation employ public-key techniques 
utilizing Discrete Logarithm Cryptography (DLC). The security of these DLC-based key-
agreement schemes depends upon the intractability of the discrete logarithm problem in certain 
settings.  

In this Recommendation, the approved key-agreement schemes are described in terms of the 
roles played by parties “U” and “V.” These are specific labels that are used to distinguish 
between the two participants engaged in key agreement – irrespective of the actual labels that 
may be used by a protocol employing a particular approved key-agreement scheme.  

To be in conformance with this Recommendation, a protocol employing any of the approved 
pair-wise key-agreement schemes shall unambiguously assign the roles of U and V to the 
participants by clearly defining which participant performs the actions ascribed by this 
Recommendation to party U, and which performs the actions ascribed herein to party V.   

During key transport, one party selects the secret keying material to be transported. The secret 
keying material is then wrapped using a shared key-wrapping key and an approved key-wrapping 
algorithm (in particular, it is encrypted with integrity protection) and sent to the other party. The 
party that selects, wraps, and sends the secret keying material is called the “sender,” and the 
other party is called the “receiver.” The key-transport techniques described in this 
Recommendation combine a DLC key-agreement scheme with a key-wrapping technique. First, 
an approved key-agreement scheme is used to establish a key-wrapping key that is shared 
between party U and party V.  Then, party U (now acting as the key-transport sender) wraps the 
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keying material that will be transported, using an approved key-wrapping algorithm; party V 
(acting as the key-transport receiver) later uses the same key-wrapping key to unwrap the 
transported keying material. (See Section 7 for details, including restrictions on the key-
agreement schemes that are approved for such key-transport applications.) 

This Recommendation specifies a number of processes that are associated with key 
establishment (including processes for generating domain parameters and for deriving secret 
keying material from a shared secret). Some of these processes are used to provide assurance (for 
example, assurance of the arithmetic validity of a public key or assurance of possession of a 
private key associated with a public key). The party that provides the assurance is called the 
“provider” (of the assurance), and the party that obtains the assurance is called the “recipient” (of 
the assurance). For any of the specified processes, equivalent processes may be used. Two 
processes are equivalent if, when the same values are input to each process (either as input 
parameters or as values made available during the process), the same output is produced. 

Sections 4.1, 4.2, and 4.3 describe the various steps that may be performed to establish secret 
keying material. 

4.1 Key Establishment Preparations 

The owner of a private/public key pair is the entity that is authorized to use the private key of 
that key pair. The precise steps required may depend upon the key establishment scheme and the 
type of key pair (static or ephemeral). 

The first step is to obtain appropriate domain parameters that are generated as specified in 
Section 5.5.1; either the owner itself generates the domain parameters, or the owner obtains 
domain parameters that another entity (e.g., a trusted third party) has generated. Having obtained 
the domain parameters, the owner obtains assurance of the validity of those domain parameters; 
approved methods for obtaining this assurance are provided in Section 5.5.2.  

If the owner will be using a key establishment scheme that requires that the owner have a static 
key pair, the owner obtains this key pair. Either the owner or a trusted third party generates the 
key pair as specified in Section 5.6.1. If the key pair is generated by a trusted third party, then the 
key pair shall be transported to the owner in a protected manner. If the key establishment scheme 
requires an ephemeral key pair, the owner generates it (as close to the time of use as possible) as 
specified in Section 5.6.1. Before using a static or ephemeral key pair in a key-establishment 
transaction, its owner is required to confirm its validity by obtaining the assurances specified in 
Section 5.6.2.1. 

An identifier is used to label the entity that owns a static key pair used in a key establishment 
transaction; an identifier may also be used to label the owner of an ephemeral key pair. This label 
may uniquely distinguish the owner from all other entities, in which case it could rightfully be 
considered an identity. However, the label may be something less specific – an organization, 
nickname, etc. – hence, the term identifier is used in this Recommendation, rather than the term 
identity. For example, an identifier could be “Vegetable.gardener123”, rather than an identifier 
that names a particular person. A key pair’s owner (or an agent trusted to act on the owner’s 
behalf) is responsible for ensuring that the identifier associated with its static public key is 
appropriate for the applications in which it will be used. 
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For each static key pair, this Recommendation assumes that there is a trusted association 
between the intended owner’s identifier(s) and the intended owner’s static public key. The 
association may be provided using cryptographic mechanisms or by physical means. The use of 
cryptographic mechanisms may require the use of a binding authority (i.e., a trusted authority) 
that binds the information in a manner that can be verified by others; an example of such a 
trusted authority is a registration authority working with a CA who creates a certificate 
containing both the static public key and the identifier. The binding authority shall verify the 
owner’s intent to associate a specific identifier chosen for the owner and the public key; the 
means for accomplishing this is beyond the scope of this Recommendation. The binding 
authority shall also obtain assurance of the validity of the domain parameters associated with the 
owner’s key pair, the arithmetic validity of the owner’s static public key, and the owner’s 
possession of the static private key corresponding to that static public key (see Section 5.5.2, 
Section 5.6.2.2.1 [method 1], and Section 5.6.2.2.3, respectively.)   

As an alternative to reliance upon a binding authority, trusted associations between identifiers 
and static public keys may be established by the direct exchange of this information between 
entities, using a mutually trusted method (e.g., a trusted courier or a face-to-face exchange). In 
this case, each entity receiving an identifier and the associated static public key shall be 
responsible for obtaining the same assurances that would have been obtained on their behalf by a 
binding authority (see the previous paragraph). Entities shall also be responsible for maintaining 
(by cryptographic or other means) the trusted associations between any identifiers and static 
public keys received through such exchanges. 

If an entity engaged in a key-establishment transaction owns a static key pair that is employed 
during the transaction, then the identifier used to label that party shall be one that has a trusted 
association with the static public key of that key pair. If an entity engaged in a key-establishment 
transaction contributes only an ephemeral public key during the transaction, but an identifier is 
still desired/required for that party, then a non-null identifier shall be selected/assigned in 
accordance with the requirements of the protocol relying upon the transaction.  

Figure 1 depicts the steps that may be required of an owner in order to obtain its key pair(s) in 
preparation for key establishment. 
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    TTP generates 

Ready for key establishment 

Scheme 
dependent 

 

Figure 1: Owner Key Establishment Preparations 

 

4.2 Key Agreement Process 

Some discrepancies in the order of the steps may occur, however, depending upon the 
communication protocol in which the key-agreement process is performed. Depending on the 
key-agreement scheme and the available keys, the party whose actions are described could be 
either of the two participants in the key-agreement scheme (i.e., either party U or party V). Note 
that some of the actions shown in Figure 2 may be absent from certain schemes. For example, 
key confirmation as defined in Section 5.9 is optional, which is indicated with dashed frames and 
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dashed arrows. The specifications of this Recommendation indicate when a particular action is 
required.  

If required by the key agreement scheme, a party that requires the other entity’s static public key 
acquires that key (as well as the associated identifier) and obtains assurance of its validity. 
Approved methods for obtaining assurance of the validity of the other entity’s static public key 
are provided in Section 5.6.2.2.1. Assurance that the other entity is in possession of the 
corresponding static private key must also be obtained prior to using the derived keying material 
for purposes beyond those of the key agreement transaction itself. See Section 5.6.2.2.3 for 
approved methods for obtaining this assurance. (Note: the restriction above does not, for 
example, prohibit the use of derived keying material for key confirmation performed during the 
key agreement transaction.). 

If a party receives an ephemeral public key from the other entity for use in the key agreement 
transaction, that party must obtain assurance of its validity. Approved methods for obtaining 
assurance of the validity of the other entity’s ephemeral public key are provided in Section 
5.6.2.2.2 

If required by the key agreement scheme, a party generates an ephemeral key pair (in accordance 
with Section 5.6.1) and provides the ephemeral public key of that key pair to the other entity; the 
ephemeral private key is not provided to the other entity. 

If required or desired for use in the key agreement transaction, a party generates a nonce (as 
specified in Section 5.4) and provides it to the other entity. 

Depending upon the circumstances, additional public information (e.g., a party’s static public 
key, an identifier, etc.) may be provided to or obtained from the other entity. 

If either of the participants in the key agreement transaction requires evidence that the other 
participant has computed the same shared secret and/or derived the same secret keying material, 
(unilateral or bilateral) key confirmation may be performed as specified in Section 5.9. 

Figure 2 depicts the steps that may be required of an entity when establishing secret keying 
material with another entity by using one of the key-agreement schemes described in this 
Recommendation. 
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Figure 2: Key Agreement Process 

4.3 DLC-based Key Transport Process 

The process begins by establishing a key-wrapping key using an appropriate key-agreement 
scheme (see Sections 6 and 7), with the intended key-transport sender acting as party U, and the 
intended key-transport receiver acting as party V. Key confirmation may optionally be 
performed at the end of the key agreement process to provide assurance that both parties possess 
the same key-wrapping key. Party U then selects secret keying material to be transported, wraps 
the keying material using the key-wrapping key and sends the wrapped keying material to party 
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V. After receiving and unwrapping the transported keying material, party V may optionally 
perform key confirmation to provide assurance to party U that the transported keying material 
has been received and correctly unwrapped. Figure 3 depicts the steps that are performed when 
transporting secret keying material from one entity to another using a key transport scheme. 
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Key transport completed 

Provide key 
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Key transport receiver 

Figure 3: Key Transport Process 
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5. Cryptographic Elements 

This section describes the basic computations that are performed and the assurances that need to 
be obtained when performing DLC-based key establishment. The schemes described in Section 6 
are based upon the correct implementation of these computations and assurances. 

5.1 Cryptographic Hash Functions 

In this Recommendation, cryptographic hash functions may be used in key derivation and in 
MAC tag computation during key confirmation. An approved hash function shall be used when 
a hash function is required. [FIPS 180] specifies approved hash functions.  

5.2 Message Authentication Code (MAC) Algorithm 

A Message Authentication Code (MAC) algorithm defines a family of MAC functions that is 
parameterized by a symmetric key. The input to a MAC function includes a symmetric key, 
called MacKey and a binary data string called MacData. That is, a MAC function is represented 
as MAC(MacKey, MacData). In this Recommendation, a MAC function is used in key 
confirmation and may be used for key derivation.  

Approved MAC algorithms are specified in [FIPS 198] (i.e., HMAC) and [SP 800-38B] (i.e., 
CMAC). HMAC requires the use of an approved hash function; CMAC requires the use of an 
approved block cipher algorithm. 

When used for key derivation, HMAC shall be selected as the function H in accordance with 
Table 6 and Table 7 of Section 5.8. The selection of CMAC is defined in [800-56C]. 

When used for key confirmation, an entity is required to compute a MAC tag on received or 
derived data using a MAC function determined by a MacKey that is derived from a shared secret. 
The MAC tag is sent to the other entity participating in the key-establishment scheme in order to 
provide assurance that the shared secret or derived keying material was correctly computed. 
MAC tag computation and verification are defined in Sections 5.2.1 and 5.2.2.  

5.2.1 MAC Tag Computation for Key Confirmation 

The computation of the MAC tag is represented as follows: 

MacTag = TMacLen[MAC(MacKey, MacData)]. 

The MAC tag computation shall be performed using an approved MAC algorithm (See [FIPS 
198] and [SP 800-38B]) to obtain MacOutputLen bits, the full output length of the MAC 
algorithm. The MacOutputLen bits may be followed by applying a truncation function TMacLen to 
obtain MacLen bits, where MacLen is required to be less than or equal to MacOutputLen. In the 
above equation, MAC represents an approved MAC algorithm; MacKey represents a symmetric 
key obtained from the DerivedKeyingMaterial (see Section 5.8 and Section 5.9.1); MacLen 
represents the length of MacTag; and MacData represents the data on which the MAC tag is 
computed. The minimum for MacLen and the minimum length of MacKey are specified in Table 
8 and Table 9 of Section 5.9.3.  
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5.2.2 MAC Tag Verification for Key Confirmation 

To check a received MAC tag, MacTag (e.g., received during key confirmation), a new MAC 
tag, MacTag is computed using the values of MacKey, MacLen, and MacData possessed by the 
recipient (as specified in Section 5.2.1). MacTag is compared with the received MacTag. If their 
values are equal, then it may be inferred that the same MacKey, MacLen, and MacData values 
were used in the two MAC tag computations. 

5.3 Random Number Generation  

Whenever this Recommendation requires the use of a randomly generated value (for example, 
for obtaining keys or nonces), the values shall be generated using an approved random bit 
generator (RBG), such as those specified in [SP800-90A] providing an appropriate security 
strength. 

5.4  Nonces 

A nonce is a time-varying value that has (at most) a negligible chance of repeating (where the 
meaning of “negligible” may be application specific). In certain schemes specified in this 
Recommendation, a party may be required to provide a (public) nonce that is used for key-
agreement and/or key-confirmation purposes. This circumstance arises when a scheme does not 
require that party to provide an ephemeral public key to the other party as part of the key-
establishment process. 

This Recommendation requires the use of a nonce (supplied by Party U) in the C(0e, 2s) key-
agreement schemes specified in Section 6.3. A nonce (supplied by party V) is also required by 
the C(1e, 2s) and C(0e, 2s) schemes when party V obtains key confirmation from party U in 
conformance with this Recommendation (see Section 6.2.1.5 and Section 6.3.3, respectively).  

A nonce may be composed of one (or more) of the following components (other components 
may also be appropriate): 

1. A random value that is generated anew for each nonce, using an approved random bit 
generator. A nonce containing a component of this type is called a random nonce.  

2. A timestamp of sufficient resolution (detail) so that it is different each time it is used. 

3. A monotonically increasing sequence number, or 

4. A combination of a timestamp and a monotonically increasing sequence number, such 
that the sequence number is reset when and only when the timestamp changes. (For 
example, a timestamp may show the date but not the time of day, so a sequence number 
is appended that will not repeat during a particular day.) 

The specified use of a nonce in key-derivation and/or key-confirmation computations does not 
provide the same benefits as the use of an ephemeral key pair in a key-agreement scheme. (For 
example, party U’s contribution of a public nonce during the execution of a C(0e, 2s) scheme 
does not protect the secrecy of derived keying material against a future compromise of party U’s 
static private key, but the use of an ephemeral key pair by party U during the execution of a 
C(1e, 2s) scheme can provide such protection.) Still, the contribution of an appropriately formed 

 30



  

 

nonce can support some of the security goals (e.g., assurance of the “freshness” of derived 
keying material) that might otherwise be supported by the contribution of an ephemeral public 
key generated (and used) in conformance with this Recommendation. 

Whenever it is required for key-agreement and/or key-confirmation purposes as specified in this 
Recommendation, a nonce should be a random nonce. The security strength supported by the 
instantiation of this random bit generator and the bit length of the random bit string shall be at 
least one-half of the minimum bit length required for the subgroup order, as determined by the 
applicable parameter-size set. However, the bit length of the random bit string should be (at 
least) equal to the bit length of the subgroup order included among the domain parameters that 
are actually employed during key agreement (i.e., log 2 q in the FFC case, or log 2 n in the 
ECC case). The minimum bit lengths required for the subgroup order by various parameter-size 
sets are specified in Table 1 of Section 5.5.1.1 (for the FFC case) and in Table 2 of Section 
5.5.1.2 (for the ECC case). For details concerning the security strength supported by an 
instantiation of a random bit generator, see [SP 800-90A].  

As part of the proper implementation of this Recommendation, system users and/or agents 
trusted to act on their behalf should determine that the components selected for inclusion in any 
required nonces meet their security requirements. The application tasked with performing key 
establishment on behalf of a party should determine whether or not to proceed with a key-
establishment transaction based upon the perceived adequacy of the method(s) used to form the 
required nonces. Such knowledge may be explicitly provided to the application in some manner, 
or may be implicitly provided by the operation of the application itself.   

5.5 Domain Parameters 

Discrete Logarithm Cryptography (DLC), which includes Finite Field Cryptography (FFC) and 
Elliptic Curve Cryptography (ECC), requires that the public and private key pairs be generated 
with respect to a particular set of domain parameters. A candidate set of domain parameters is 
said to be valid when it conforms to all the requirements specified in this Recommendation. Both 
parties executing a key-establishment scheme shall have assurance of domain parameter validity 
prior to using them (e.g., to generate key pairs). Although domain parameters are public 
information, they shall be managed so that the correct correspondence between a given key pair 
and its set of domain parameters is maintained for all parties that use the key pair. Domain 
parameters may remain fixed for an extended time period, and one set of domain parameters may 
be used with multiple key pairs and with multiple key-establishment schemes.  

For this Recommendation, only one set of domain parameters shall be used during any key 
establishment transaction. That is, when a key establishment scheme uses both a static key pair 
and an ephemeral key pair, they shall be generated using the same set of domain parameters.  

5.5.1 Domain Parameter Generation 

5.5.1.1 FFC Domain Parameter Generation 

If p is a prime number, then GF(p) denotes the finite field with p elements, which can be 
represented by the set of integers {0, 1, …, p1}. The addition and multiplication operations for 
GF(p) can be realized by performing the corresponding integer operations and reducing the 
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results modulo p. The multiplicative group of non-zero field elements is denoted by GF(p)*. In 
this Recommendation, an FFC key-establishment scheme requires the use of public keys that are 
restricted to a (unique) cyclic subgroup of GF(p)* with prime order q (where q divides p – 1). If 
g is a generator of this cyclic subgroup, then its elements can be represented as {1, g mod p,  
g2 mod p, …, gq-1 mod p}, and 1 = gq mod p. 

Domain parameters for an FFC scheme are of the form (p, q, g{, SEED, pgenCounter}), where p 
is the (odd) prime field size, q is an (odd) prime divisor of p – 1, g is a generator of the cyclic 
subgroup of GF(p)* of order q, and SEED and pgenCounter are optional parameters used in the 
canonical process of generating and validating p, q, and possibly g (depending on the method of 
generation). FFC Domain parameters shall be generated using a method specified in [FIPS 186], 
based on a parameter-size set selected from Table 1 (i.e., parameter set FA, FB or FC). 

Table 1: FFC Parameter-Size Sets 

FFC Parameter-Size Set Name FA FB FC 

Bit length of field size p (i.e., )  p2log 1024 2048 20481 

Bit length of subgroup order q (i.e.,  q2log ) 160 224 256 

As shown in Table 1, there are three parameter-size sets (named FA, FB, and FC). For U.S. 
government applications, one or more of the parameter-size sets provided in Table 1 shall be 
used for the FFC schemes, based on security strength requirements. See the comparable security 
table in the Recommendation for Key Management [SP 800-57] to assess the comparable 
security of any particular parameter-size set. [SP 800-57] provides guidance on selecting an 
appropriate security strength and an appropriate FFC parameter set2. If an FFC parameter-size 
set cannot provide the required security strength, then Elliptic Curve Cryptography should be 
used (see Section 5.5.1.2). 

For this Recommendation, the size of p (the public key size) is either 1024 or 2048 bits. The size 
of q is a specific bit length, depending on the FFC parameter-size set selected. The leftmost (i.e., 
most significant) bit of p and q shall be a “1” (e.g., for a 1024-bit prime p, where bit 1 is the 
most significant bit and bit 1024 is the least significant, bit 1 shall be a 1). 

5.5.1.2 ECC Domain Parameter Generation  

For ECC, let GF(q) denote the finite field with q elements, where either q is an odd prime p, or q 
is equal to 2m, for some prime integer m. An elliptic curve defined over GF(q) is determined by 

                                                 

1 Parameter-size set FC is included with the same bit length for the field size as set FB to allow finite field 
applications with a 2048-bit field order to have the option of increasing the private key size to 256 bits without 
having to increase the field order (a more substantial change). FC is not intended to provide more security than FB; 
i.e., parameter sets FB and FC provide keys with the same security strength. 

2 In [SP 800-57], l is used to denote the bit length of the field size, and N denotes the bit length of the subgroup 
order. 
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either an equation of the form y2 = x3+ax+b (when q = p) or by an equation of the form y2+xy = 
x3+ax2+b (when q = 2m), where a and b are (appropriately chosen) elements of GF(q). For the 
purposes of this Recommendation, an affine point P on the corresponding elliptic curve is one 
that can be represented as an ordered pair (xP, yP), whose coordinates are elements of GF(q) that 
satisfy the given equation. Together with an appropriate binary operation “+” (elliptic-curve 
addition) and the introduction of a special point Ø (the “point at infinity”) that serves as the 
(additive) identity, the set of (affine and infinite) elliptic curve points forms a group.  

As specified in this Recommendation, an ECC key-establishment scheme requires the use of 
public keys that are affine elliptic curve points chosen from a specific cyclic subgroup with 
prime order n. Suppose that the point G is a generator for this cyclic subgroup. If, for each 
positive integer d, dG denotes G + G +…+ G (the elliptic-curve sum of d copies of G), then the 
elements of the cyclic subgroup can be represented as {Ø, G, 2G,…, 
 (n – 1)G }. Note that nG = Ø. The full elliptic curve group (including Ø and all of the affine 
points on the curve) has order nh, where the integer h is called a cofactor of the cyclic subgroup 
generated by G. 

Domain parameters for an ECC scheme have the form (q, FR, a, b{, SEED}, G, n, h). The 
parameter q is the field size. As noted above, q may be an odd prime p, or q may be equal to 2m, 
for some prime integer m. The field representation parameter FR is an indication of the method 
used to represent elements of the finite field GF(q). FR is null if q is equal to an odd prime p. In 
this case, the elements of the finite field are represented by the integers 0 through p – 1. FR is 
also null if q = 2m, and GF(2m) uses a Gaussian normal basis representation (of the type specified 
in [ANS X9.62]). If q = 2m, and GF(2m) uses a polynomial basis representation, then FR is the 
reduction polynomial – either a trinomial or a pentanomial. The parameters a and b are elements 
of GF(q) that define the equation of an elliptic curve. G = (xG,  yG) is an affine point on the 
elliptic curve determined by a and b that is used to generate a cyclic subgroup of prime order n. 
The parameter h is the cofactor of the cyclic subgroup generated by G. The bit string SEED is an 
optional parameter used in the canonical process of generating and validating a, b, and possibly 
G (depending on the method of generation). 

The ECC domain parameters shall either be generated as specified in [ANS X9.62] or selected 
from the recommended elliptic curve domain parameters specified in [FIPS 186]. (Note: ANS 
X9.62, rather than ANS X9.63, specifies the most current methods of generating ECC domain 
parameters at the time of writing this revision of the Recommendation.) 

Table 2: ECC Parameter-Size Sets 

ECC Parameter-Size Set Name EA EB EC ED EE 

Bit length of ECC subgroup order n 

(i.e., )  n2log

160-
223 

224-
255 

256-
383 

384-
511 

512+ 

Maximum bit length of ECC cofactor h 10 14 16 24 32 

As shown in Table 2, there are five parameter-size sets (named EA, EB, EC, ED and EE) for 
ECC. The five different cofactor maximums each ensure that the subgroup of order n is unique 
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and that cofactor multiplication is reasonably efficient. For U.S. government applications, one or 
more of the parameter-size sets provided in Table 2 shall be used for the ECC schemes, based on 
security strength requirements. See the comparable security strength table in the 
Recommendation for Key Management [SP 800-57] to assess the comparable security of any 
particular parameter-size set. The Recommendation for Key Management [SP 800-57] provides 
guidance on selecting the appropriate security strength and an appropriate ECC key size. 

5.5.2 Assurances of Domain Parameter Validity 

Secure key establishment depends on the arithmetic validity of the set of domain parameters used 
by the parties. Each party shall have assurance of the validity of a candidate set of domain 
parameters. Each party shall obtain assurance that the candidate set of domain parameters is 
valid in at least one of the following three ways: 

1. The party itself generates the set of domain parameters as specified in Section 5.5.1. 

2. The party performs an explicit domain parameter validation as specified in: 

a. [FIPS 186] for FFC, based on a parameter-size set selected from Table 1.  

b. [ANS X9.62] for ECC, based on a parameter-size set selected from Table 2. 

3. The party has received assurance from a trusted third party (for example, a CA or NIST3) 
that the set of domain parameters was valid at the time that they were generated by reason 
of either method 1 or 2 above. 

As part of the proper implementation of this Recommendation, system users and/or agents 
trusted to act on their behalf should determine which of the methods above meet their security 
requirements. The application tasked with performing key establishment on behalf of a party 
should determine whether or not to proceed with a key establishment transaction, based upon the 
perceived adequacy of the method(s) used to obtain assurance of domain parameter validity. 
Such knowledge may be explicitly provided to the application in some manner, or may be 
implicitly provided by the operation of the application itself. 

5.5.3 Domain Parameter Management 

The set of domain parameters used shall be protected against modification or substitution until 
the set is deactivated (if and when it is no longer needed). Each private/public key pair shall be 
correctly associated with its specific set of domain parameters.  

5.6 Key-Establishment Key Pairs 

This section specifies requirements for the generation of key pairs to be used in key-
establishment transactions, provides methods for obtaining assurances that valid key pairs are 
used during key establishment, and specifies key management requirements for the static and 
ephemeral key pairs used in key establishment.  

 
3 NIST-recommended curves can be found in [FIPS 186]. 
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5.6.1 Key-Pair Generation 

These generation methods assume the use of valid domain parameters (see Section 5.5). Prior to 
performing key-pair generation with the selected domain parameters, the party generating the 
key pair shall obtain assurance of domain parameter validity in accordance with Section 5.5.2. 

5.6.1.1 FFC Key-Pair Generation 

For the FFC schemes, each static and ephemeral key pair shall be generated using an approved 
method (see Appendix B of [FIPS 186]) and the selected valid domain parameters (i.e.,  
p, q, g{, SEED, pgenCounter}). Given a set of valid domain parameters, each valid private key is 
a randomly selected integer in the range [2, q2]. Each valid static public key y is related to the 
corresponding (valid) static private key x by the following formula:  
y = gx mod p.  Similarly, each valid ephemeral public key t is related to the corresponding (valid) 
ephemeral private key r by the following formula: t = gr mod p.  

5.6.1.2 ECC Key-Pair Generation 

For the ECC schemes, each static and ephemeral private key d and public key Q shall be 
generated using an approved method (see Appendix B of [FIPS 186]) and the selected domain 
parameters (i.e., q, FR, a, b{, SEED}, G, n, h). Given valid domain parameters, each valid 
private key d is an integer that is randomly selected in the range [2, n2]. Whether static or 
ephemeral, each valid public key Q is related to the corresponding (valid) private key d by the 
following formula: Q = (xQ, yQ) = dG. 

5.6.2 Required Assurances  

To explain the assurance requirements associated with key-establishment key pairs, some 
terminology needs to be introduced. The owner of a static key pair is defined as the entity that is 
authorized to use the private key that corresponds to the public key; this is independent of 
whether or not the owner generated the key pair. The recipient of a static public key is defined as 
the entity that is participating in a key establishment transaction with the owner and obtains the 
key before or during the current transaction. The owner of an ephemeral public key is the entity 
that generated the key as part of a key-establishment transaction. The recipient of an ephemeral 
public key is the entity that receives that public key during a key-establishment transaction with 
its owner. 

Secure key establishment depends upon the use of valid key-establishment keys. Prior to 
obtaining the assurances described in this section, the owner of a key pair and the recipient of the 
public key of that key pair shall obtain assurance of the validity of the associated domain 
parameters (see Section 5.5.2). 

The security of key-agreement schemes also depends on limiting knowledge of the private keys 
to those who have been authorized to use them (i.e., their respective owners) and to the trusted 
third party that may have generated them. In addition to preventing unauthorized entities from 
gaining access to private keys, it is also important that owners have access to their private keys.  

Note that as time passes, an owner may lose possession of the correct value of the private key 
component of their key pair, either by choice or due to an error; for this reason, current assurance 
of possession of a static private key can be of value for some applications, and renewing 
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assurance of possession may be necessary. See Section 5.6.2.2.3.2 for techniques that the 
recipient of a static public key can use to directly obtain more current assurance of the owner’s 
possession of the corresponding private key. 

Prior to or during a key-establishment transaction, the participants in the transaction (i.e., parties 
U and V) shall obtain the appropriate assurances about the key pairs used during that transaction. 
The types of assurance that may be sought by one or both of the parties (U and/or V) concerning 
the components of a key pair (i.e., the private key and public key) are discussed in Sections 
5.6.2.1 and 5.6.2.2. The methods that will be specified to provide/obtain these assurances 
presuppose the validity of the domain parameters associated with the key pair (see Section 5.5).  

The following sections include tables that summarize the types of assurance that are required by 
the parties to a key-establishment transaction. Table 4 in Section 5.6.2.1 summarizes assurances 
that a key-pair owner may want to renew periodically. The shaded table entries indicate a type of 
key pair (static or ephemeral) and a type of assurance that might be sought for such a key pair. 
The unshaded table entries indicate who can perform the actions necessary to obtain the 
assurance. 

5.6.2.1 Assurances Required by the Key Pair Owner  

Prior to the use of a static or ephemeral key pair in a key-establishment transaction, the key-pair 
owner shall confirm the validity of the key pair by obtaining the following assurances: 

 Assurance of correct generation – assurance that the key pair was generated as specified 
in Section 5.6.1 (see Section 5.6.2.1.1 for the methods for obtaining this assurance). 

 Assurance of private-key validity – assurance that the private key is an integer in the 
correct range, as determined by the domain parameters (see Section 5.6.2.1.2 for the 
methods for obtaining this assurance). 

 Assurance of public-key validity – assurance that the public key has the correct 
representation for a non-identity element of the correct cryptographic subgroup, as 
uniquely determined by the domain parameters (see Section 5.6.2.1.3 for the methods for 
obtaining this assurance). 

 Assurance of pair-wise consistency – assurance that the private key and public key have 
the correct mathematical relationship to each other (see Section 5.6.2.1.4 for the methods 
for obtaining this assurance).  

Table 3 indicates the assurances to be obtained by the owner of a key pair for both static and 
ephemeral keys, identifies who can perform the actions necessary for the owner to obtain each 
assurance, and indicates the sections of this document where further information is provided.   
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Table 3: Initial Assurances Required by the Key-Pair Owner 

Types of Assurance 
Key-Pair 

Type Correct 
Generation 

Private-Key 
Validation 

Public-Key 
Validation 

Pair-wise 
Consistency 

Static 
Ownera or 

TTPb   
Ownerc Ownerd or 

TTPe 
Ownerf 

 

Ephemeral 
Ownera Ownerc Ownerd Ownerf 

a See Section 5.6.2.1.1, method a. 
b See Section 5.6.2.1.1, method b 
c See Section 5.6.2.1.2 
d See Section 5.6.2.1.3, method a and b. 
e See Section 5.6.2.1.3, method c. 
f See Section 5.6.2.1.4. 

A static key pair owner may optionally renew certain assurances regarding its key pair at any 
time. Table 4 indicates which of the assurances obtained by the owner of a static key pair can be 
renewed and indicates the sections of this document where further information is provided. Note 
that for ephemeral key pairs, only initial assurances are required; renewed assurance for 
ephemeral key pairs is not applicable, since ephemeral key pairs are short-lived. Also, note that 
the assurance of the correct generation of a static key pair is not renewable since, after the fact, it 
is not feasible to verify that its private component was randomly selected.  

Table 4: Optional Renewal of Assurances by the Key-Pair Owner 

Types of Assurance 
Key-Pair 

Type Correct 
Generation 

Private-Key 
Validation 

Public-Key 
Validation 

Pair-wise 
Consistency 

Static Infeasible Ownera Ownerb Ownerc 

a. See Section 5.6.2.1.2. 
b. See Section 5.6.2.1.3. 
c. See Section 5.6.2.1.4. 

Note that the methods used to obtain the required assurances are not necessarily independent. For 
example, the key-pair owner may employ a key-generation routine that is consistent with the 
criteria of Section 5.6.1 and also incorporates the actions required to provide (initial) assurance 
of the validity and consistency of the private and public components of the resulting key pair. 

As part of the proper implementation of this Recommendation, system users and/or agents 
trusted to act on their behalf should determine which of the methods above meet their security 
requirements. The application tasked with performing key establishment on behalf of a party 
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should determine whether or not to proceed with a key-establishment transaction, based upon the 
perceived adequacy of the method(s) used to obtain the above assurances. 

5.6.2.1.1 Owner Assurance of Correct Generation 

Prior to the use of a key pair in a key-establishment transaction, the owner of a static or 
ephemeral key-establishment key pair shall obtain an initial assurance that the key pair has been 
correctly formed (in a manner that is consistent with the criteria of Section 5.6.1) using one of 
the following methods: 

a. The owner generates the key pair as specified in Section 5.6.1 (this applies to both static 
and ephemeral key pairs), or 

b. A trusted third party (trusted by the owner and any recipient of the public key) generates 
a static key pair as specified in Section 5.6.1 and provides it to the owner. Note that, in 
this case, the TTP needs to be trusted by both the owner and any public-key recipient to 
generate the key pair as specified in Section 5.6.1 and not to use the owner’s private key 
to masquerade as the owner. This method is not appropriate for ephemeral key pairs, 
since the owner generates ephemeral keys. 

5.6.2.1.2 Owner Assurance of Private-Key Validity 

Prior to the use of a key pair in a key-establishment transaction, the owner of a static or 
ephemeral key-establishment key pair shall obtain an initial assurance that the private key is an 
integer in the correct range ([2, q2] for FFC or [2, n2] for ECC), as determined by the domain 
parameters (see Sections 5.5.1.1 and 5.5.1.2) using one of the following methods: 

a. The owner generates the key pair as specified in Section 5.6.1 (this applies to both static 
and ephemeral key pairs), or 

b. After receiving the static key pair from a trusted third party (trusted by the owner), the 
owner performs a separate check to determine that the private key is in the correct range; 
note that only static key pairs may be generated by a TTP. 

To renew this assurance for a static key pair, the owner shall perform a separate check to 
determine that the private key is in the correct range as determined by the domain parameters. 

5.6.2.1.3 Owner Assurance of Public-Key Validity 

Prior to a key-establishment transaction, the owner of a key pair shall obtain an initial assurance 
that the static or ephemeral public key has the (unique) correct representation for a non-identity 
element of the correct cryptographic subgroup, as determined by the domain parameters, using 
one of the following methods: 

a. The owner generates the key pair as specified in Section 5.6.1 and performs a full public-
key validation or an equivalent procedure as part of its generation process (see Sections 
5.6.2.3.1 and 5.6.2.3.2), or 

b. The owner performs a full public-key validation as a separate process from the key-pair 
generation process (see Sections 5.6.2.3.1 and 5.6.2.3.2); either the owner or a TTP could 
have generated the key pair; or 
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c. A trusted third party (trusted by the owner) performs a full public-key validation (see 
Sections 5.6.2.3.1 and 5.6.2.3.2) and provides the validation result to the owner. This 
TTP could, for example, be a binding authority (see Section 4.1) and/or a TTP that 
generated the key pair (see method b in Section 5.6.2.1.1). In the case of TTP generation, 
the TTP may employ a key-generation routine that performs a full public-key validation 
or an equivalent procedure as part of its key-pair generation process, or the full public-
key validation may be performed as a separate process from the key-pair generation 
process following the generation of the key pair. 

To renew this assurance for a static public key (if desired), the owner shall perform a successful 
full public-key validation (see Sections 5.6.2.3.1 and 5.6.2.3.2). Note that renewed assurance of 
validity for an ephemeral public key is not applicable, since ephemeral key pairs are short-lived.  

5.6.2.1.4 Owner Assurance of Pair-wise Consistency 

Prior to a key-establishment transaction, the owner of a key pair shall obtain an initial assurance 
that the private key and public key have the correct mathematical relationship to each other by 
using one of the following methods: 

a. The owner generates the key pair as specified in Section 5.6.1 (this applies to both static 
and ephemeral key pairs), or 

b. Subsequent to key generation as specified in Section 5.6.1 by the owner or a trusted third 
party, the owner performs one of the following alternative consistency tests. If a 
consistency test fails, the tested key pair shall not be used. 

Alternative 1:  

The public key shall be recomputed from the private key and the domain parameters in 
order to obtain assurance that the private and public keys are consistent.  

FFC schemes: Check that gx mod p = y, where x is the private key, y is the associated 
public key of the key pair, and both the generator g and prime modulus p are domain 
parameters associated with the key pair.   

ECC schemes: Check that dG = Q, where d is the private key Q is the associated 
public key of the key pair, and the generator G is a domain parameter associated with 
the key pair.   

The test fails if the check specified above fails. 

Alternative 2:  

Using the static key pair to be tested for pair-wise consistency and the domain parameters 
associated with that key pair, separately perform the computations that would be required 
of both party U and party V in an approved DLC key-agreement scheme to generate 
derived keying material. The static key pair to be tested shall be used as party V’s key 
pair. Any other key pairs required to generate the shared secret shall be  
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a. pre-determined (generated as specified in Section 5.6.1 using the same domain 
parameters4 as those used for the static key pair to be tested for consistency); 

b. pair-wise consistent; and 

c. used only for pair-wise consistency testing.  

The following are the main procedures for the pair-wise consistency test: 

1. Select a DLC key-agreement scheme from Section 6 with which the static key 
pair will be used to perform the pair-wise consistency test. 

2. Use the static key pair to be tested and any pre-determined key pairs required for 
the scheme with the appropriate DLC primitive for that scheme to generate  the 
shared secrets ZU and ZV for party U and party V, respectively. 

FCC schemes: Use the DLC key-agreement primitive in either Section 5.7.1.1 or 
5.7.2.1, as appropriate for the scheme to be used for the pair-wise-consistency 
test.    

ECC Schemes: Use the DLC primitive in either Section 5.7.1.2 or 5.7.2.3, as 
appropriate for the scheme to be used for the pair-wise-consistency test.  

Depending on the scheme selected, the DH schemes specified in Section 6 may 
require one or two pre-determined key pairs for party U. If the key-agreement 
scheme requires party V to have only one key pair, then the static key pair to be 
tested for pair-wise consistency shall be used as that key pair.  If the scheme 
requires party V to have two key pairs (i.e., an ephemeral key pair and a static key 
pair), then the static key pair to be tested shall be used as the static key pair, and 
the other key pair shall be a pre-determined key pair distinct from the pre-
determined key pair(s) used for party U. 

For the schemes using MQV primitives specified in Section 5.7.2, MQV1 and 
one-pass form shall be used for FFC and ECC primitives, respectively. In both 
cases, party U requires two pre-determined key pairs. The static key pair to be 
tested will be used as both of party V’s contributions to the primitive. Note that 
the MQV1 and One-Pass forms of the primitives differ from the MQV2 and Full 
MQV form of the primitive only in the number of key pairs required by party V; 
for the MQV1 and One-Pass primitives, party V only uses the key pair to be 
tested, whereas for MQV2 and Full MQV form, an additional pre-determined key 
pair is required for party V. 

3. Derive keying material KU using an approved key-derivation function (KDF) as 
specified in Section 5.8 for party U using ZU; derive keying material KV using the 
same KDF for party V using ZV. The length of KU and KV shall be at least the 
length of the KDF output block. 

The test fails if KU ≠ KV. 

 
4 If an implementation allows the use of multiple sets of domain parameters, each set of domain parameters will 

require a static key pair for pair-wise consistency testing. 

 40



  

 

To renew assurance of pair-wise consistency for a static key pair (if desired), one of the above 
alternative consistency tests in method b shall be employed by the owner. Note that renewed 
assurance for ephemeral key pairs is not applicable, since ephemeral key pairs are short-lived. 

5.6.2.1.5 Owner Assurance of Possession of the Private Key 

Prior to a key-establishment transaction, the owner of a key pair shall obtain an initial assurance 
of possession of the private key using one of the following methods: 

a. The owner generates the key pair as specified in Section 5.6.1 (this applies to both static 
and ephemeral key pairs), or 

b. When a trusted third party (trusted by the owner) generates a static key pair and provides 
it to the owner, the owner performs one of the consistency tests in Section 5.6.2.1.4; if a 
pair-wise consistency test fails, the tested key pair shall not be used. 

To renew this assurance for a static private key (if desired), one of the alternative pair-wise 
consistency tests in method b of Section 5.6.2.1.4 shall be employed by the owner. Note that 
renewed assurance of the possession of an ephemeral private key is not applicable, since 
ephemeral key pairs are short-lived. 

5.6.2.2 Assurances Required by a Public Key Recipient 

In order to successfully employ any of the schemes specified in this Recommendation, each 
participant in a key-establishment transaction must receive at least one public key owned by the 
other participant. The public key(s) may be received during the transaction (which is usually the 
case for an ephemeral public key) or prior to the transaction (as is sometimes the case for a static 
public key). Regardless of the timing, a transaction participant is said to be acting as a “public-
key recipient” when it receives the other participant's public key(s). Note that besides the 
participants (i.e.party U and party V), a binding authority (e.g., a CA) may be a public key 
recipient (e.g., when obtaining assurance of possession). 

Prior to or during a key-establishment transaction, the recipient of a public key shall obtain the 
following indicated assurances: 

 Assurance of public-key validity – assurance that the public key of the other party (i.e., 
the claimed owner of the public key) has the (unique) correct representation for a non-
identity element of the correct cryptographic subgroup, as determined by the domain 
parameters (see Sections 5.6.2.2.1 and 5.6.2.2.2). This assurance is required for both 
static and ephemeral public keys. 

 Assurance of private-key possession – assurance that the claimed owner of a public key-
establishment key (i.e., the other party) actually has the (correct) private key associated 
with that public key. This assurance is required for static private keys (see Section 
5.6.2.2.3). Assurance of private-key possession for ephemeral keys is optional; however, 
methods for obtaining this assurance are discussed in Section 5.6.2.2.4. 

Table 5 summarizes the assurances required by a public-key recipient for both the static and 
ephemeral public keys of the other party, identifying the party that may perform the actions 
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necessary for the recipient to obtain the assurance and indicating the sections in this document 
where further information is provided. 

Table 5: Assurances Required by a Public-Key Recipient 

Type of Assurance 
Key-Pair 

Type Public-Key 
Validation 

Private-Key 
Possession 

Static Recipienta or TTPb Recipientd or TTPe 

Ephemeral Recipientc Not Requiredf 

a See Section 5.6.2.2.1, method 1. 
b See Section 5.6.2.2.1, method 2. 
c See Section 5.6.2.2.2  
d. See Section 5.6.2.2.3.2 
e. See Section 5.6.2.2.3.1 
f However, see Section 5.6.2.2.4 

The recipient of a static public key may optionally renew its assurance that the owner of that 
public key (i.e., the other party) still possesses the static private key associated with the public 
key. Note that renewed assurance of possession of ephemeral private keys by the other party is 
not applicable, since ephemeral key pairs are short-lived. 

As part of the proper implementation of this Recommendation, system users and/or agents 
trusted to act on their behalf should determine which of the methods above meet their security 
requirements. The application tasked with performing key establishment on behalf of the 
recipient should determine whether or not to proceed with a key-establishment transaction, 
based upon the perceived adequacy of the method(s) used to obtain the assurance above. 

5.6.2.2.1 Recipient Assurance of Static Public-Key Validity 

The recipient of another party’s static public key shall obtain assurance of the validity of that 
public key in one or more of the following ways: 

1. The recipient performs a successful full public-key validation of the received public key 
(see Sections 5.6.2.3.1 and 5.6.2.3.2). 

2. The recipient receives assurance that a trusted third party (trusted by the recipient) has 
performed a successful full public-key validation of the received public key (see Sections 
5.6.2.3.1 and 5.6.2.3.2). This TTP could, for example, be a binding authority, such as a 
CA (see Section 4.1), and/or the TTP that generated the key pair (in accordance with 
method b of Section 5.6.2.1.1) and provided it to the owner (i.e., the other party). In the 
case of TTP generation, the TTP may employ a key-generation routine that performs a 
full public-key validation or an equivalent procedure as part of its key-pair generation 
process, or the full public-key validation may be performed as a separate process from 
the generation of the key pair for the other party. 
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5.6.2.2.2 Recipient Assurance of Ephemeral Public-Key Validity 

The recipient of another party’s ephemeral public key shall obtain assurance of the validity of 
that public key using one or more of the following methods: 

1. The recipient or a third party trusted by the recipient performs a successful full 
public-key validation on the received public key (see Sections 5.6.2.3.1 and 
5.6.2.3.2). 

2. If using an ECC method (only), the recipient or a third party trusted by the recipient 
performs a successful partial public-key validation on the received public key (see 
Section 5.6.2.3.3). 

5.6.2.2.3 Recipient Assurance of the Owner’s Possession of a Static Private Key 

The recipient of another party’s static public key shall obtain an initial assurance that the other 
party (i.e., the claimed owner of the public key) actually possesses the associated private key, 
either prior to or concurrently with performing a key-agreement transaction with that other party. 
Assurance of the validity of the corresponding public key shall be obtained prior to obtaining 
this assurance.  

As part of the proper implementation of this Recommendation, system users and/or agents 
trusted to act on their behalf should determine which of the methods for obtaining assurance of 
possession meet their security requirements. The application tasked with performing key 
establishment on behalf of a party should determine whether or not to proceed with a key-
establishment transaction, based upon the perceived adequacy of the method(s) used. Such 
knowledge may be explicitly provided to the application in some manner, or may be implicitly 
provided by the operation of the application itself. 

If a binding authority is used to bind the key pair owner’s identifier to his static public key: At 
the time of binding an owner’s identifier to his static public key, the binding authority (i.e., a 
trusted third party, such as a CA) shall obtain assurance that the owner is in possession of the 
correct static private key. This assurance shall either be obtained using one of the methods 
specified in Section 5.6.2.2.3.2 (e.g., with the binding authority acting as the public-key 
recipient) or by using an approved alternative (see SP 800-57, Part 1, Sections 5.2 and 
8.1.5.1.1.2).  

Recipients not acting in the role of a binding authority shall obtain this assurance – either 
through a trusted third party (see Section 5.6.2.2.3.1) or directly from the owner (i.e., the other 
party) (see Section 5.6.2.2.3.2) – before using the derived keying material for purposes beyond 
those required during the key-agreement transaction itself. If the recipient chooses to obtain this 
assurance directly from the other party (i.e., the claimed owner of that public key), then to 
comply with this Recommendation, the recipient shall use one of the methods specified in 
Section 5.6.2.2.3.2.  

5.6.2.2.3.1 Recipient Obtains Assurance from a Trusted Third Party 

The recipient of a static public key may receive assurance that its owner (i.e., the other party in 
the key-agreement transaction) is in possession of the correct static private key from a trusted 
third party (trusted by the recipient), either before or during a key-agreement transaction that 
makes use of that static public key. The methods used by a third party trusted by the recipient to 
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obtain that assurance are beyond the scope of this Recommendation (see however, the discussion 
in Section 5.6.2.2.3 above and Section 8.1.5.1.1.2 of SP 800-57 [7]).  

5.6.2.2.3.2 Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other Party) 

When two parties engage in a key-agreement transaction, there is (at least) an implicit claim of 
ownership made whenever a static public key is provided on behalf of a particular party. That 
party is considered to be a claimed owner of the corresponding static key pair – as opposed to 
being a true owner – until adequate assurance can be provided that the party is actually the one 
authorized to use the static private key. The claimed owner can provide such assurance by 
demonstrating its knowledge of that private key. 

If all of the following conditions are met during a key-agreement transaction that incorporates 
key confirmation as specified in this Recommendation, then in the course of establishing keying 
material, the recipient of a static public key may be able to directly obtain (initial or renewed) 
assurance of the claimed owner’s (i.e., the other party’s) current possession of the corresponding 
static private key: 

1)  The recipient of the static public key contributes an ephemeral public key to the key-
agreement process, one that is intended to be arithmetically combined with the claimed 
owner’s (i.e., the other party’s) static private key in computations performed by the 
claimed owner. (If an appropriate key-agreement scheme is employed, the claimed owner 
will be challenged to demonstrate current knowledge of his static private key by 
successfully performing those computations during the transaction.) 

2) The recipient of the static public key is also a key-confirmation recipient, with the 
claimed owner (i.e., other party) serving as the key-confirmation provider. (By 
successfully providing key confirmation, the claimed owner can demonstrate that he is 
the true owner of the received static public key and that he currently knows the 
corresponding static private key.) 

There are a number of key-agreement schemes specified in this Recommendation that can be 
used while satisfying both of the conditions above. In order to claim conformance with this 
Recommendation, the key-agreement transaction during which the recipient of a static public 
key seeks to obtain assurance of its owner’s current possession of the corresponding static 
private key shall employ one of the following approved key-agreement schemes, 
incorporating key confirmation as specified in the indicated sections, with the recipient of 
that static public key acting as party U and serving as a key-confirmation recipient:  

 dhHybridOneFlow (see Section 6.2.1.1, and either Section 6.2.1.5.2 or Section 6.2.1.5.3), 

 (Cofactor) One-Pass Unified Model (see Section 6.2.1.2, and either Section 6.2.1.5.2 or 
Section 6.2.1.5.3),  

 MQV1 (see Sections 6.2.1.3,  and either Section 6.2.1.5.2 or Section 6.2.1.5.3), 

 One-Pass MQV (see Sections 6.2.1.4, and either Section 6.2.1.5.2 or Section 6.2.1.5.3),  

 dhOneFlow (see Sections 6.2.2.1 and 6.2.2.3.1), or  

 (Cofactor) One-Pass Diffie-Hellman (see Sections 6.2.2.2 and 6.2.2.3.1). 
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5.6.2.2.4 Recipient Assurance of the Owner’s Possession of an Ephemeral Private Key 

This Recommendation does not require the recipient of an ephemeral public key to obtain 
assurance of the possession of the corresponding ephemeral private key by its claimed owner 
(i.e., the other participant in a key-establishment transaction). However, such assurance may be 
desired by the recipient, insisted upon by the recipient’s organization, and/or required by a 
particular application.  

Ephemeral key pairs are generated by their owner when needed (typically for a single use), and 
their private components are destroyed shortly thereafter (See Section 5.6.3.3 for details). Thus, 
the opportunity for the recipient of an ephemeral public key to obtain assurance that its claimed 
owner is in possession of the corresponding ephemeral private key is limited to the (single) key-
establishment transaction during which it was received.  

If all of the following conditions are met during a key-agreement transaction that incorporates 
key confirmation as specified in this Recommendation, then in the course of establishing keying 
material, the recipient of an ephemeral public key may be able to obtain assurance that the other 
participant (i.e., the claimed owner) is in possession of the corresponding ephemeral private key: 

 1) The recipient of the ephemeral public key also receives a static public key that is 
presumed to be owned by the other party and is used in the key-agreement transaction. 
(Therefore, the other party is the claimed owner of both the received static public key and 
the received ephemeral public key.) 

2)  The recipient of the ephemeral public key contributes its own (distinct) ephemeral public 
key to the key-agreement process, one that is intended to be arithmetically combined with 
the claimed owner’s ephemeral private key in computations performed by the claimed 
owner. (If an appropriate key-agreement scheme is employed, the claimed owner will be 
challenged to demonstrate current knowledge of his ephemeral private key by 
successfully performing those computations during the transaction.) 

3) The recipient of the ephemeral public key is also a key-confirmation recipient, with the 
claimed owner serving as the key-confirmation provider. (By successfully providing key 
confirmation, the claimed owner can demonstrate that he actually is the owner of the 
received static public key and that he knows the ephemeral private key corresponding to 
the received ephemeral public key.) 

There are a limited number of key-agreement schemes specified in this Recommendation that 
can be used while satisfying all three of the conditions above. In order to claim conformance 
with this Recommendation, the key-agreement transaction during which the recipient of an 
ephemeral public key seeks to obtain assurance of the claimed owner’s possession of the 
corresponding ephemeral private key shall employ one of the following approved key-
agreement schemes, incorporating key confirmation as specified in the indicated sections, 
with the recipient of the ephemeral public key serving as a key-confirmation recipient:  

 dhHybrid1 (see Section 6.1.1.1, and Section 6.1.1.5) or  

  (Cofactor) Full Unified Model (see Sections 6.1.1.2 and 6.1.1.5). 
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Note: If key confirmation is provided in both directions in a key-agreement transaction 
employing one of the schemes above, then each party can obtain assurance of the other party’s 
possession of their ephemeral private key. 

5.6.2.3 Public Key Validation Routines 

5.6.2.3.1 FFC Full Public-Key Validation Routine 

FFC full public-key validation refers to the process of checking all the arithmetic properties of a 
candidate FFC public-key to ensure that it has the (unique) correct representation in the correct 
subgroup (and, therefore, is also in the correct multiplicative group) of the finite field specified 
by the associated FFC domain parameters. FFC full public-key validation does not require 
knowledge of the associated private key and so may be done at any time by anyone. This routine 
shall be used with static and/or ephemeral FFC public keys when assurance of the validity of 
such keys is to be obtained as specified in Sections 5.6.2.1.3, 5.6.2.2.1, or 5.6.2.2.2. 

Input:  

1. (p, q, g{, SEED, pgenCounter}): A valid set of FFC domain parameters, and  

2. y: A candidate FFC public key. 

Process: 

1. Verify that 2  y  p-2. 

(This step is to ensure that the public key has the unique correct representation and range 
for the field.) 

2. Verify that 1= yq mod p.  

(This step is to ensure that the public key has the correct order and thus is in the correct 
subgroup.) 

Output: If any of the above verifications fail, then output an error indicator. Otherwise, output 
an indication of successful validation. 

5.6.2.3.2 ECC Full Public-Key Validation Routine 

ECC full public-key validation refers to the process of checking all the arithmetic properties of a 
candidate ECC public key to ensure that it has the (unique correct) representation in the correct 
(additive) subgroup (and, therefore, is also in the correct EC group) specified by the associated 
ECC domain parameters. ECC full public-key validation does not require knowledge of the 
associated private key and so may be done at any time by anyone. This routine shall be used 
with static and/or ephemeral ECC public keys when assurance of the validity of such keys is to 
be obtained in accordance with the requirements of Section 5.6.2.1.3 or Section 5.6.2.2.1, or as 
specified in method 1 of Section 5.6.2.2.2. 

Input:  

1. (q, FR, a, b{, SEED}, G, n, h): A valid set of ECC domain parameters, and  
2. Q = (xQ, yQ ): A candidate ECC public key.  
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Process:  

1. Verify that Q is not the point at infinity Ø. This can be done by inspection if the point is 
entered in the standard affine representation. 

 (Partial check of the public key for an invalid range in the EC group.) 

2. Verify that xQ and yQ are integers in the interval [0, p1] in the case that q is an odd 
prime p, or that xQ and yQ are bit strings of length m bits in the case that q = 2m.  

 (Ensures that each coordinate of the public key has the unique correct representation of 
an element in the underlying field.) 

3. If q is an odd prime p, verify that (yQ)2
 xQ)3 + axQ + b in GF(p) , where the arithmetic 

is performed modulo p.  

 If q = 2m, verify that (yQ)2 + xQ yQ = (xQ)3 + a(xQ)2 + b in GF(2m), where the arithmetic is 
performed as dictated by the field representation parameter FR. 

 (This step is to ensure that the public key is on the correct elliptic curve.) 

4. Verify that nQ = Ø.  

 (This step is to ensure that the public key has the correct order. Along with the 
verification in step 1, ensures that the public key is in the correct range in the correct EC 
subgroup; that is, it is in the correct EC subgroup and is not the identity element Ø.) 

Output: If any of the above verifications fail, then output an error indicator. Otherwise, output 
an indication of successful validation. 

5.6.2.3.3 ECC Partial Public-Key Validation Routine 

ECC partial public-key validation refers to the process of checking some (but not all) of the 
arithmetic properties of a candidate ECC public key to ensure that it is in the correct group (but 
not necessarily the correct subgroup) specified by the associated ECC domain parameters. ECC 
partial public-key validation omits the validation of subgroup membership, and therefore is 
usually faster than ECC full public key validation. ECC partial public-key validation does not 
require knowledge of the associated private key and so may be done at any time by anyone. This 
routine shall be used with ephemeral ECC public keys when assurance of the validity of such 
keys is to be obtained in accordance with method 2 of Section 5.6.2.2.2. 

Input:  

1. (q, FR, a, b{, SEED}, G, n, h): A valid set of ECC domain parameters, and  
2. Q = (xQ, yQ): A candidate ECC public key. 

Process:  

1. Verify that Q is not the point at infinity Ø. This can be done by inspection if the point is 
entered in the standard affine representation. 

 (Partial check of the public key for an invalid range in the EC group.) 
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2. Verify that xQ and yQ are integers in the interval [0, p-1] in the case that q is an odd prime 
p, or that xQ and yQ are bit strings of length m bits in the case that q = 2m.  

(Ensures that each coordinate of the public key has the unique correct representation of 
an element in the underlying field.) 

3. If q is an odd prime p, verify that (yQ) 2
 xQ)3 + axQ + b in GF(p), where the arithmetic 

is performed modulo p.  

 If q = 2m, verify that (yQ)2 + xQ yQ = (xQ)3 + a(xQ)2 + b in GF(2m), where the arithmetic is 
performed as dictated by the field representation parameter FR.  

 (This step is to ensure that the public key is on the correct elliptic curve.) 

 (Note: Since its order is not verified, there is no check that the public key is in the correct 
EC subgroup.) 

Output: If any of the above verifications fail, then output an error indicator. Otherwise, output 
an indication of validation success. 

5.6.3 Key Pair Management 

5.6.3.1 Common Requirements on Static and Ephemeral Key Pairs 

The following are common requirements on static and ephemeral key pairs (see the 
Recommendation for Key Management [7]): 

1. Each private/public key pair shall be correctly associated with its corresponding specific 
set of domain parameters. A key pair shall not be used with more than one set of domain 
parameters.  

2. Each key pair shall be generated as specified in Section 5.6.1. 

3. Private keys shall be protected from unauthorized access, disclosure, modification and 
substitution.  

4. Public keys shall be protected from unauthorized modification and substitution. This is 
often accomplished by using public-key certificates that have been signed by a 
Certification Authority (CA).  

5.6.3.2 Specific Requirements on Static Key Pairs 

The additional specific requirements for static key pairs are as follows: 

1. The owner of a static key pair shall confirm the validity of the key pair by obtaining 
assurance of the correct generation of the key pair, private and public-key validity, and 
pair-wise consistency. The owner shall know the methods used to provide/obtain these 
assurances. (See Section 5.6.2.1 for further details.) 

2. A recipient of a static public key shall be assured of the integrity and correct association 
of (a) the public key, (b) the set of domain parameters for that key, and (c) an identifier 
for the entity that owns the key pair (that is, the party with whom the recipient intends to 
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establish a key). This assurance is often provided by verifying a public-key certificate 
that was signed by a trusted third party (for example, a CA), but may be provided by 
direct distribution of the keying material from the owner, provided that the recipient 
trusts the owner to do this. See Section 4.1. 

3. A recipient of a static public key shall obtain assurance of the validity of the public key. 
This assurance may be provided, for example, through the use of a public-key certificate 
if the CA obtains sufficient assurance of public-key validity as part of its certification 
process. See Section 5.6.2.2.1.  

4. A recipient of a static public key shall have assurance of the owner’s possession of the 
corresponding private key (see Section 5.6.2.2.3). The recipient shall know the method 
used to provide assurance to the recipient of the owner’s possession of the private key. 
This assurance may be provided, for example, through the use of a public-key certificate 
if the CA obtains sufficient assurance of possession as part of its certification process. 

5. A static key pair may be used in more than one key-establishment scheme. However, one 
static public/private key pair shall not be used for different purposes (for example, a 
digital signature key pair is not to be used for key establishment or vice versa) with the 
following possible exception: when requesting the (initial) certificate for a public static 
key-establishment key, the key-establishment private key associated with the public key 
may be used to sign the certificate request. See SP 800-57, Part 1 on Key Usage for 
further information. 

5.6.3.3 Specific Requirements on Ephemeral Key Pairs 

The additional specific requirements on ephemeral key pairs are as follows: 

1. An ephemeral private key shall be used in exactly one key-establishment transaction, 
with one exception: an ephemeral private key may be used in multiple DLC key-transport 
transactions that are transporting identical secret keying material simultaneously (or 
within a short period of time; see the broadcast scenario in Section 7). After its use, an 
ephemeral private key shall be destroyed. 

2. An ephemeral key pair should be generated as close to its time of use as possible. Ideally, 
an ephemeral key pair is generated just before the ephemeral public key is transmitted. 

3. The owner of an ephemeral key pair shall confirm the validity of the key pair by 
obtaining assurance of correct generation, private- and public-key validity, and pair-wise 
consistency. The owner shall know the methods used to provide/obtain these assurances. 
These assurances can be obtained by virtue of the technique used by the owner to 
generate the key pair. (See Section 5.6.2.1 for further details.) 

4. A recipient of an ephemeral public key shall have assurance of the validity of the public 
key (see Section 5.6.2.2.2).  

5. If a recipient of an ephemeral public key requires assurance that the claimed owner of 
that public key has possession of the corresponding private key, then, in order to obtain 
that assurance in compliance with this Recommendation, such assurance shall be 
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obtained as specified in Section 5.6.2.2.4. Although other methods are sometimes used to 
provide such assurance, this Recommendation makes no statement as to their adequacy. 

5.7 DLC Primitives 

A primitive is a relatively simple operation that is defined to facilitate implementation in 
hardware or in a software subroutine. Each key-establishment scheme shall use exactly one DLC 
primitive. Each scheme in Section 6 shall use an appropriate primitive from the following list: 

1. The FFC DH primitive (Section 5.7.1.1 of this Recommendation): This primitive shall be 
used by the dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes, 
which are based on finite field cryptography and the Diffie-Hellman algorithm. 

2. The ECC CDH primitive (Section 5.7.1.2 of this Recommendation and called the 
Modified Diffie-Hellman primitive in ANS X9.63): This primitive shall be used by the 
Full Unified Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass 
Diffie-Hellman and Static Unified Model schemes, which are based on elliptic curve 
cryptography and the Diffie-Hellman algorithm. 

3. The FFC MQV primitive (Section 5.7.2.1 of this Recommendation): This primitive shall 
be used by the MQV2 and MQV1 schemes, which are based on finite field cryptography 
and the MQV algorithm. 

4. The ECC MQV primitive (Section 5.7.2.2 of this Recommendation): This primitive shall 
be used by the Full MQV and One-Pass MQV schemes, which are based on elliptic curve 
cryptography and the MQV algorithm. 

The shared secret output from these primitives shall be used as input to a key derivation method 
(see Section 5.8). 

5.7.1 Diffie-Hellman Primitives 

5.7.1.1 Finite Field Cryptography Diffie-Hellman (FFC DH) Primitive 

A shared secret Z is computed using the domain parameters (p, q, g{, SEED, pgenCounter}), the 
other party’s public key and one’s own private key. This primitive is used in Section 6 by the 
dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes. Assume that the 
party performing the computation is party A, and the other party is party B. Note that party A 
could be either party U or party V. 

Input:  

1. (p, q, g{, SEED, pgenCounter}): Domain parameters,  

2. xA : One’s own private key, and  

3. yB : The other party’s public key. 

Process: 

1. p  yz Ax
B mod
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2. If z = 1, destroy all intermediate values used in the attempted computation of Z (including 
z) and output an error indicator. 

3. Else, convert z to Z using the integer-to-byte-string conversion routine defined in 
Appendix C.1. 

4. Destroy the results of all intermediate calculations used in the computation of Z 
(including z). 

5. Output Z. 

Output: The shared secret Z or an error indicator. 

5.7.1.2 Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH) Primitive 
A shared secret Z is computed using the domain parameters (q, FR, a, b{, SEED}, G, n, h), the 
other party’s public key, and one’s own private key. This primitive is used in Section 6 by the 
Full Unified Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass Diffie-
Hellman and Static Unified Model schemes. Assume that the party performing the computation 
is party A, and the other party is party B. Note that party A could be either party U or party V. 

Input:  

1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters,  
2. dA : One’s own private key, and 

3. QB : The other party’s public key. 

Process: 

1. Compute the point P = hdAQB. 

2. If P = Ø, destroy all intermediate values used in the attempted computation of Z 
(including z) and output an error indicator. 

3. Else, convert z = xP to Z, using the field-element-to-byte string conversion routine 
defined in Appendix C.2, where xP is the x-coordinate of P. 

4. Destroy the results of all intermediate calculations used in the computation of Z 
(including z). 

5. Output Z. 

Output: The shared secret Z or an error indicator. 

5.7.2 MQV Primitives 

5.7.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive 

A shared secret Z is computed using the domain parameters (p, q, g{, SEED, pgenCounter}), the 
other party’s public keys and one’s own public and private keys. Assume that the party 
performing the computation is party A, and the other party is party B. Note that party A could be 
either party U or party V. 
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Input:  

1. (p, q, g{, SEED, pgenCounter}): Domain parameters, 

2. xA : One’s own static private key, 

3. yB : The other party’s static public key, 

4. rA : One’s own second private key,5 

5. tA : One’s own second public key, and 

6. tB : The other party’s second public key. 

Process: 

1. 



 qw 2log
2

1
. 

2. ww . AA tT 2)2mod( 

3. q . xTrS AAAA mod)( 

4. ww . BB tT 2)2mod( 

5. p . ytz AB ST
BB mod)))(((

6. If z = 1, destroy all intermediate values used in the attempted computation of Z (including 
z) and output an error indicator.  

7. Else, convert z to Z using the integer-to-byte-string conversion routine defined in 
Appendix C.1. 

8. Destroy the results of all intermediate calculations used in the computation of Z 
(including z). 

9. Output Z. 

Output: The shared secret Z or an error indicator. 

5.7.2.1.1 MQV2 Form of the FFC MQV Primitive 

This form of invoking the FFC MQV primitive is used in Section 6.1.1.3 by the MQV2 scheme. 
In this form, each party uses both a static key pair and an ephemeral key pair. Assume that the 
party performing the computation is party A, and the other party is party B. Note that party A 
could be either party U or party V.  

                                                 
5 In the FFC MQV primitive, a second key may be either ephemeral or static, depending on which form is being 
used, see Sections 5.7.2.1.1 and 5.7.2.1.2. 
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In this form, one’s own second private and public keys (items 4 and 5 of the input list in Section 
5.7.2.1) are one’s own ephemeral private and public keys (rA and tA), and the other party’s 
second public key (item 6 in Section 5.7.2.1) is the other party’s ephemeral public key (tB). 

5.7.2.1.2 MQV1 Form of the FFC MQV Primitive 

This form of invoking the FFC MQV primitive is used in Section 6.2.1.3 by the MQV1 scheme. 
In this form, party U uses a static key pair and an ephemeral key pair, but party V uses only a 
static key pair. One-Pass MQV is done using the MQV primitive by using party V’s static key 
pair as the second key pair (as party V has no ephemeral key pair). 

Party U uses party V’s static public key for the other party’s second public key; that is, when 
party U uses the algorithm in Section 5.7.2.1, item 6 of the input list becomes party V’s static 
public key (yB). 

Party V uses his/her static private key for his second private key; that is, when party V uses the 
algorithm in Section 5.7.2.1, input 4 of the input list becomes party V’s static private key xA, and 
item 5 becomes his static public key (yA). 

5.7.2.2 ECC MQV Associate Value Function 
The associate value function is used by the ECC MQV family of key-agreement schemes to 
compute an integer that is associated with an elliptic curve point. This Recommendation defines 
avf(Q) to be the associate value function of a public key Q using the domain parameters (q, FR, 
a, b{, SEED}, G, n, h). 

Input:  

1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters, and  
2. Q: A public key (that is, Q is a point in the subgroup of order n and not equal to the point 

at infinity Ø). 

Process: 

1. Convert xQ to an integer xqi using the convention specified in Appendix C.3. 

2. Calculate  

xqm = xqi  mod  (where f =  2/2 f  n2log ).  

3. Calculate the associate value function 

avf(Q) = xqm + . (See footnote 2/2 f 6). 

Output: avf(Q), the associate value of Q. 

                                                 
6 Note that avf(Q) can be computed using only bit operations. 
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5.7.2.3 Elliptic Curve Cryptography MQV (ECC MQV) Primitive 
The ECC MQV primitive is computed using the domain parameters (q, FR, a, b{, SEED}, G, n, 
h), the other party’s public keys, and one’s own public and private keys. Assume that the party 
performing the computation is party A, and the other party is party B. Note that party A could be 
either party U or party V. 

Input:  

1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters, 
2. ds,A : One’s own static private key, 

3. Qs,B :  The other party’s static public key, 

4. de,A : One’s own second private key,7 

5. Qe,A : One’s own second public key, and 

6. Qe,B : The other party’s second public key. 

Process: 

1. implicitsigA = (de,A + avf(Qe,A)ds,A ) mod n. 

2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B). 

3. If P = Ø, destroy all intermediate values used in the attempted computation of Z 
(including z) and output an error indicator. 

4. Else, convert z=xP  to Z, using the field-element-to-byte-string conversion routine defined 
in Appendix C.2, where xP is the x-coordinate of P. 

5. Destroy the results of all intermediate calculations used in the computation of Z 
(including z). 

6. Output Z. 

Output: The shared secret Z or an error indicator. 

5.7.2.3.1 Full MQV Form of the ECC MQV Primitive 

This form of invoking the ECC MQV primitive is used in Section 6.1.1.4 by the Full MQV 
scheme. In this form, each party has both a static key pair and an ephemeral key pair. Assume 
that the party performing the computation is party A, and the other party is party B. Note that 
party A could be either party U or party V. 

In this form, one’s own second private and public keys (item 4 and 5 of the input list in Section 
5.7.2.3) are one’s own ephemeral private and public keys (de,A and Qe,A), and the other party’s 

 
7 In the ECC MQV primitive, a second key may be either ephemeral or static, depending on which form is being 
used, see Sections 5.7.2.3.1 and 5.7.2.3.2. 
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second public key (item 6 of the input list in Section 5.7.2.3) is the other party’s ephemeral 
public key (Qe,B). 

5.7.2.3.2 One-Pass Form of the ECC MQV Primitive 

This form of invoking the ECC MQV primitive is used in Section 6.2.1.4 by the One-Pass MQV 
scheme. In this form, party U has a static key pair and an ephemeral key pair, but party V has 
only a static key pair. One-Pass MQV uses the MQV primitive with party V’s static key pair as 
the second key pair (as party V has no ephemeral keys). 

Party U uses party V’s static public key as the other party’s second public key. When party U 
uses the algorithm in Section 5.7.2.3, input 6 of the input list becomes party V’s static public key 
(Qs,B). 

Party V uses his static private key as his second private key. When party V uses the algorithm in 
Section 5.7.2.3, item 4 of the input list becomes party V’s static private key ds,A, and item 5 
becomes the his static public key (Qs,A). 

5.8 Key-Derivation Methods for Key Agreement Schemes 

This section introduces approved key-derivation methods for use in key establishment as 
specified in this Recommendation. An approved key-derivation method shall be used to derive 
keying material from the shared secret, Z, that is computed during the execution of a key-
agreement scheme specified in this Recommendation.  

Key-derivation methods that conform to this Recommendation include the use of an approved 
single-step key-derivation function (KDF), as well as the use of an approved two-step 
(extraction-then-expansion) key-derivation procedure – see Sections 5.8.1 and 5.8.2, 
respectively. Additional approved application-specific key-derivation methods are discussed in 
Section 5.8.3. Other key-derivation methods may be temporarily allowed for backward 
compatibility; these other allowable methods – and any restrictions on their use – will be 
specified in [FIPS 140 IG].  

When employed during the execution of a key-agreement scheme as specified in this 
Recommendation, the agreed-upon key-derivation method uses input that includes a freshly 
computed shared secret, Z. The derived keying material shall be computed in its entirety before 
outputting any portion of it, and (all copies of) Z shall be destroyed immediately following its 
use.  

The output produced by a key-derivation method using input that includes the shared secret 
computed during the execution of any key-agreement scheme specified in this Recommendation 
shall only be used as secret keying material – such as a symmetric key used for data encryption 
or message integrity, a secret initialization vector, or, perhaps, a master (key derivation) key that 
will be used to generate additional keying material (possibly using a different process – see [SP 
800-108]). Non-secret keying material (such as a non-secret initialization vector) shall not be 
generated from input that includes the shared secret. 
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5.8.1 The Single-step Key-Derivation Function 

This section specifies an approved key-derivation function (KDF) that is executed in a single 
step, rather than the two-step procedure discussed in Section 5.8.2. The input to the KDF 
includes the shared secret Z (represented as a byte string). 

This single-step KDF uses an auxiliary function H, which can be either 1) an approved hash 
function, denoted as hash, as defined in [FIPS 180] or 2) an HMAC with an approved hash 
function hash, denoted as HMAC-hash, as defined in [FIPS 198]. Table 6 and Table 7 identify 
the minimum output block length for the hash functions and HMACs required for each FFC and 
ECC parameter-size set.  

Table 6: Minimum Output Length of H for FFC Domain Parameter-Size Sets 

FFC Parameter Set Name FA FB FC 

Maximum security strength supported (in bits) 80 112 112 

Bit length of field size p (i.e., )  p2log 1024 2048 2048 

Bit length of subgroup order q (i.e.,  q2log ) 160 224 256 

Minimum output length of H (in bits) 80 112 128 

When an FFC parameter set is selected in a key-establishment scheme, any approved hash 
function, hash, can be used to define the auxiliary function, H, whether H = hash or H = HMAC-
hash (see Section 5.8.1.1).  

Table 7: Minimum Output Length of H for ECC Domain Parameter Sets 

ECC Parameter Set Name EA EB EC ED EE 

Maximum security strength supported (in bits) 80 112 128 192 256 

Bit length of ECC subgroup order n 

(i.e., )  n2log

160-
223 

224-
255 

256-
383 

384-
511 

512+ 

Minimum output length of H (in bits) 80 112 128 192 256 

Regardless of the form chosen for the auxiliary function H (i.e., H = hash or H = HMAC hash), 
the approved hash function, hash, used to define H shall be selected as follows: 

 For ECC parameter sets EA, EB and EC, any approved hash function can be used as 
hash. 

 For parameter sets ED and EE, any approved hash function other than SHA-1 can be 
used as hash; SHA-1 shall not be used, since the output block length of SHA-1 is only 
160 bits. 
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 For parameter set EE, any approved hash function with an output block length greater 
than or equal to 256 bits can be used as hash; hash functions with output block lengths 
less than 256 bits (e.g., SHA-224 and SHA-512/224) shall not be used. 

5.8.1.1 The Single-Step KDF Specification 

This section specifies an approved single-step key-derivation function (KDF), whose input 
includes the shared secret Z (represented as a byte string) and other information.  

The KDF is specified as follows: 

Function call: kdf (Z, OtherInput),  

where OtherInput consists of keydatalen and OtherInfo. 

Auxiliary Function H (two options): 

Option 1: H(x) = hash(x), where hash is an approved hash function (see Section 5.1) 
meeting the selection requirements specified in this Recommendation (see 
Sections 5.5.1 and 5.8.1), and the input, x, is a bit string.  

Option 2: H(x) = HMAC-hash(salt, x), where HMAC-hash is an instantiation of the HMAC 
function (as defined in [FIPS 198]) employing an approved hash function, hash 
(see Section 5.1), and hash meets the selection requirements specified in this 
Recommendation (see Sections 5.5.1 and 5.8.1). An implementation-dependent 
byte string, salt, serves as the HMAC key, and x (the input to H) is a bit string that 
serves as the HMAC “message” – as specified in [FIPS 198].  

Implementation-Dependent Parameters:  

1. hashlen: an integer that indicates the length (in bits) of the output block of the hash function, 
hash, employed by the auxiliary function, H, that is used to derive blocks of secret keying 
material. 

2. max_H_inputlen: an integer that indicates the maximum permitted length (in bits) of the bit 
string, x, that is used as input to the auxiliary function, H.  

3. salt: a (public or private) byte string that is only required when an HMAC-based auxiliary  
function is implemented (see Option 2 above). The salt could be, for example, a value 
computed from nonces exchanged as part of a key-establishment protocol that employs one 
or more of the key-agreement schemes specified in this Recommendation, a value already 
shared by the protocol participants, or a value that is pre-determined by the protocol. In this 
case, the length of the salt can be any agreed-upon length. However, if there is no means of 
selecting the salt, then it shall be an all-zero byte string whose bit length equals that specified 
as the length of the input block for the hash function, hash. 

Input: 

1. Z: a byte string that represents the shared secret z.  

2. keydatalen: An integer that indicates the length (in bits) of the secret keying material to be 
derived; keydatalen shall be less than or equal to hashlen  (232 –1).  

3. OtherInfo: A bit string of context-specific data (see Section 5.8.1.2 for details). 
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Process: 

1. reps =  keydatalen / hashlen. 

2. If reps > (232 1), then ABORT: return an error indicator. 

3. Initialize a 32-bit, big-endian bit string counter as 0000000116 (i.e. 0x00000001). 

4. If counter || Z || OtherInfo is more than max_H_inputlen bits long,  
then ABORT: return an error indicator. 

5. For i = 1 to reps by 1, do the following: 

5.1  Compute K(i) = H(counter || Z || OtherInfo). 

5.2  Increment counter (modulo 232), treating it as an unsigned 32-bit integer. 

6. Let K_Last be set to K(reps) if (keydatalen / hashlen) is an integer; otherwise, let K_Last 
be set to the (keydatalen mod hashlen) leftmost bits of K(reps). 

7. Set DerivedKeyingMaterial = K(1)  || K(2)  || … || K(reps-1)  || K_Last. 

Output: 

The bit string DerivedKeyingMaterial of length keydatalen bits (or an error indicator).  

Notes:  

When an approved key-agreement scheme is used to determine a shared secret Z, the 
participants should know which entity is acting as “party U” and which entity is acting as 
“party V” to ensure (among other things) that they will derive the same keying material. (See 
Section 6 for descriptions of the specific actions required of parties U and V during the 
execution of each of the approved key-agreement schemes.) The roles of party U and V 
shall be assigned to the key-establishment participants by the protocol employing the key-
agreement scheme.  

In step 5.1 above, the entire output of the hash function hash shall be used whether H(x) = 
hash(x) or H(x) = HMAC-hash(salt, x).  Therefore, the bit length of each output block of H is 
hashlen bits. Some of the hash functions specified in [FIPS 180] are defined with an internal 
truncation operation (e.g., SHA-384). In these cases, the “entire output” of hash is the output 
value as defined in [FIPS 180] (e.g., for SHA-384, the entire output is defined to be the 384 
bits resulting from the internal truncation, so hashlen = 384, in this case). Any truncation 
performed by the KDF (external to hash) is done in step 6. 

5.8.1.2 OtherInfo  

The bit string OtherInfo should be used to ensure that the derived keying material is adequately 
“bound” to the context of the key agreement transaction. Although other methods may be used to 
bind keying material to the transaction context, this Recommendation makes no statement as to 
the adequacy of these other methods. Failure to adequately bind the derived keying material to 
the transaction context could adversely affect the types of assurance that can be provided by 
certain key agreement schemes. 

Context-specific information that may be appropriate for inclusion in OtherInfo: 
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 Public information about parties U and V, such as their identifiers. 
 The public keys contributed by each party to the key agreement transaction. (In the case 

of a static public key, one could include a certificate that contains the public key.) 
 Other public and/or private information shared between parties U and V before or during 

the transaction, such as nonces or pre-shared secrets. 
 An indication of the protocol or application employing the key derivation method. 
 Protocol-related information, such as a label or session identifier. 
 The desired length of the derived keying material. 
 An indication of the key-agreement scheme and/or key-derivation method used. 
 An indication of the domain parameters associated with the asymmetric key pairs 

employed for key establishment. 
 An indication of other parameter or primitive choices (e.g., hash functions, MacTag 

lengths, etc.). 
 An indication of how the derived keying material should be parsed, including an 

indication of which algorithm(s) will use the (parsed) keying material. 

For rationale in support of including entity identifiers, scheme identifiers, and/or other 
information in OtherInfo, see Appendix B. 

The meaning of each information item and each item’s position within the bit string OtherInfo 
shall be specified. In addition, each item of information included in OtherInfo shall be 
unambiguously represented, for example, as a fixed-length bit string or in the form Datalen || 
Data, where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a 
fixed-length, big-endian counter that indicates the length (in bytes) of Data. These requirements 
can be satisfied, for example, by using ASN.1 DER encoding as specified in 5.8.1.2.2 for 
OtherInfo. 

Recommended formats for OtherInfo are specified in Sections 5.8.1.2.1 and 5.8.1.2.2. One of 
these two formats should be used by the single-step KDF specified in Section 5.8.1.1 when the 
auxiliary function employed is H = hash. When the recommended formats are used, the included 
items of information shall be divided into (three, four, or five) subfields as defined below. 

AlgorithmID: A required subfield that indicates how the derived keying material will be 
parsed and for which algorithm(s) the derived secret keying material will be used. For 
example, AlgorithmID might indicate that bits 1-112 are to be used as a 112-bit HMAC key 
and that bits 113-240 are to be used as a 128-bit AES key. 

PartyUInfo: A required subfield containing public information about party U. At a minimum, 
PartyUInfo shall include IDU, an identifier for party U, as a distinct item of information. 
This subfield could also include information about the public key(s) contributed to the key 
agreement transaction by party U. The nonce provided by party U as required in a C(0e, 2s) 
scheme (see Section 6.3) shall be included in this subfield. 

PartyVInfo: A required subfield containing public information about party V. At a minimum, 
PartyVInfo shall include IDV, an identifier for party V, as a distinct item of information. This 
subfield could also include information about the public key(s) contributed to the key 
agreement transaction by party V. The nonce provided by party V when acting as a key-
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confirmation recipient in a C(1e, 2s) scheme or a C(0e, 2s) scheme should be included in this 
field (see Sections 6.2.1.5 and 6.3.3). 

SuppPubInfo: An optional subfield containing additional, mutually known public information 
(e.g., keydatalen, the domain parameters associated with the keys used to derive the shared 
secret, an identifier for the particular key-agreement scheme that was used to form Z, an 
indication of the protocol or application employing that scheme, a session identifier, etc. This 
is particularly useful if these aspects of the key-agreement transaction can vary – see 
Appendix B for further discussion). 

SuppPrivInfo: An optional subfield containing additional, mutually known private 
information (e.g., a shared secret symmetric key that has been communicated through a 
separate channel). 

5.8.1.2.1 The Concatenation Format for OtherInfo 

This section specifies the concatenation format for OtherInfo. This format has been designed to 
provide a simple means of binding the derived keying material to the context of the key-
agreement transaction, independent of other actions taken by the relying application. Note: When 
the single-step KDF specified in Section 5.8.1.1 is used with H = hash as the auxiliary function 
and this concatenation format for OtherInfo, the resulting key-derivation method is the 
Concatenation Key Derivation Function specified in the original version of SP 800-56A. 

For this format, OtherInfo is a bit string equal to the following concatenation: 

        AlgorithmID || PartyUInfo || PartyVInfo {|| SuppPubInfo }{|| SuppPrivInfo }, 

where the five subfields are bit strings comprised of items of information as described in Section 
5.8.1.2.  

Each of the three required subfields AlgorithmID, PartyUInfo, and PartyVInfo shall be the 
concatenation of a pre-determined sequence of substrings in which each substring represents a 
distinct item of information. Each such substring shall have one of these two formats: either it is 
a fixed-length bit string, or it has the form Datalen || Data – where Data is a variable-length 
string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that 
indicates the length (in bytes) of Data. (In this variable-length format, a null string of data shall 
be represented by a zero value for Datalen, indicating the absence of following data.) A protocol 
using this format for OtherInfo shall specify the number, ordering and meaning of the 
information-bearing substrings that are included in each of the subfields AlgorithmID, 
PartyUInfo, and PartyVInfo, and shall also specify which of the two formats (fixed-length or 
variable-length) is used by each such substring to represent its distinct item of information. The 
protocol shall specify the lengths for all fixed-length quantities, including the Datalen counters. 

Each of the optional subfields SuppPrivInfo and SuppPubInfo (when allowed by the protocol 
employing the one-step KDF) shall be the concatenation of a pre-determined sequence of 
substrings representing additional items of information that may be used during key derivation 
upon mutual agreement of parties U and V. Each substring representing an item of information 
shall be of the form Datalen || Data, where Data is a variable-length string of zero or more 
(eight-bit) bytes and Datalen is a fixed-length, big-endian counter that indicates the length (in 
bytes) of Data; the use of this form for the information allows U and V to omit a particular 
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information item without confusion about the meaning of the other information that is provided 
in the SuppPrivInfo or SuppPubInfo subfield. The substrings representing items of information 
that parties U and V choose not to contribute are set equal to Null, and are represented in this 
variable-length format by setting Datalen equal to zero. If a protocol allows the use of the 
OtherInfo subfield SuppPrivInfo and/or the subfield SuppPubInfo, then the protocol shall specify 
the number, ordering and meaning of additional items of information that may be used in the 
allowed subfield(s) and shall specify the fixed-length of the Datalen counters. 

5.8.1.2.2 The ASN.1 Format for OtherInfo  
The ASN.1 format for OtherInfo provides an alternative means of binding the derived keying 
material to the context of the key-agreement transaction, independent of other actions taken by 
the relying application. Note: When the single-step KDF specified in Section 5.8.1.1 is used with 
H = hash as the auxiliary function and this ASN.1 format for OtherInfo, the resulting key-
derivation method is the ASN.1 Key Derivation Function specified in the original version of SP 
800-56A. 

For the ASN.1 format, OtherInfo is a bit string resulting from the ASN.1 DER encoding (see 
[ISO/IEC 8825-1]) of a data structure comprised of a sequence of three required subfields 
AlgorithmID, PartyUInfo, and PartyVInfo, and, optionally, a subfield  SuppPubInfo and/or a 
subfield SuppPrivInfo – as described in Section 5.8.1.2. A protocol using this format for 
OtherInfo shall specify the type, ordering and number of distinct items of information included 
in each of the (three, four, or five) subfields employed. 

5.8.1.2.3 Other Formats for OtherInfo 

Formats other than those provided in Sections 5.8.1.2.1 and 5.8.1.2.2 (e.g., those providing the 
items of information in a different arrangement) may be used for OtherInfo, but the context-
specific information described in the preceding sections should be included (see the discussion 
in Section 5.8.1.2). This Recommendation makes no statement as to the adequacy of other 
formats. 

5.8.2   The Extraction-then-Expansion Key-Derivation Procedure      

This Recommendation permits the use of an approved extraction-then-expansion key-derivation 
procedure as an alternative to the single-step key-derivation function specified in Section 5.8.1. 
When the extraction-then-expansion key-derivation procedure is employed in an approved key-
agreement scheme, the secret keying material is derived in two steps. The first step is called 
(randomness) extraction, and the second step is called (key) expansion. In the extraction step, the 
input is the shared secret Z (represented as a byte string) along with a salt. The output of the 
extraction step is a key-derivation key. In the expansion step, the key-derivation key is used with 
additional data, such as that included in the OtherInfo used by the KDFs specified above; also 
see Appendix B for guidance) to derive the keying material with required length. The details of 
the approved extraction-then-expansion key-derivation procedure are specified in [SP 800-56C].  

5.8.3   Application-Specific Key-Derivation Methods 

Additional approved application-specific key-derivation methods are enumerated in [SP 800-
135]. Unless an explicit exception is made in that document, any hash function employed by the 
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key-derivation methods enumerated in [SP 800-135] shall be approved and shall also meet the 
selection requirements specified in this Recommendation for the auxiliary function H (see 
Sections 5.5.1 and 5.8.1). 

5.9   Key Confirmation 

The term key confirmation (KC) refers to actions taken to provide assurance to one party (the 
key-confirmation recipient) that another party (the key-confirmation provider) is in possession of 
a (supposedly) shared secret and/or confirm that the other party has the correct version of keying 
material that was derived or transported during a key-establishment transaction. (Correct, that is, 
from the perspective of the key-confirmation recipient.) Such actions are said to provide 
unilateral key confirmation when they provide this assurance to only one of the participants in 
the key-establishment transaction; the actions are said to provide bilateral key confirmation when 
this assurance is provided to both participants (i.e., when unilateral key confirmation is provided 
in both directions). 

Oftentimes, key confirmation is obtained (at least implicitly) by some means external to the key-
establishment scheme employed during a transaction (e.g., by using a symmetric key that was 
established during the transaction to decrypt an encrypted message sent later by the key-
confirmation provider), but this is not always the case. In some circumstances, it may be 
appropriate to incorporate the exchange of explicit key-confirmation information as an integral 
part of the key-establishment scheme itself. The inclusion of key confirmation may enhance the 
security services that can be offered by a key-establishment scheme. For example, when certain 
key-agreement schemes incorporate key confirmation (as described in this Recommendation), 
they can be used to provide the recipient with assurance that the provider is in possession of the 
private key corresponding to a particular public key, from which the recipient may infer that the 
provider is the owner of that key pair (see Sections 5.6.2.2.3 and 5.6.2.2.4).  

For key confirmation to comply with this Recommendation, key confirmation shall be 
incorporated into an approved key-establishment scheme as specified in the sections that follow.  

5.9.1 Unilateral Key Confirmation for Key-Agreement Schemes 

As specified in this Recommendation, unilateral key confirmation occurs when one participant in 
the execution of a key-agreement scheme (the key-confirmation “provider”) demonstrates to the 
satisfaction of the other participant (the key-confirmation “recipient”) that both the provider and 
the recipient have possession of the same secret MacKey.  

MacKey is a symmetric key derived using the (shared) secret Z that was computed by each party 
during that particular execution of the key-agreement scheme (see Section 5.8 for key 
derivation). MacKey and certain context-specific MacData (as specified in Sections 5.9.1.1) are 
used by the provider as input to an approved MAC algorithm to obtain a MacTag that is sent to 
the recipient. The recipient performs an independent computation of the MacTag. If the MacTag 
value computed by the key-confirmation recipient matches the MacTag value received from the 
key-confirmation provider, then key confirmation is successful. (See Section 5.2 for MacTag 
generation and verification, and Section 5.9.3 for MAC security discussion.) 
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Successful key confirmation provides assurance to the recipient that the same Z value has been 
computed by both parties and that the two parties have used Z in the same way to derive shared 
keying material. 

Unilateral key confirmation is an optional feature that can be incorporated into any key-
agreement scheme in which the key-confirmation provider is required to own a static key-
establishment key pair that is used in the key-establishment process. If the intended key-
confirmation recipient is not required to contribute an ephemeral public key to the key-
establishment process, then the recipient shall instead contribute a nonce that is used as part of 
the input to the key-derivation method employed by the scheme. Each party is required to have 
an identifier, chosen in accordance with the assumptions stated for the key-agreement scheme. 

5.9.1.1 Adding Unilateral Key Confirmation to a Key-Agreement Scheme 

To include unilateral key confirmation from a provider (who has a static key pair) to a recipient, 
the following steps shall be incorporated into the scheme. Additional details will be provided for 
each scheme in the appropriate subsections of Section 6. In the discussion that follows, the key-
confirmation provider, P, may be either party U or party V, as long as P has a static key pair. The 
key-confirmation recipient, R, is the other party. 

1. If the recipient, R, is not required to generate an ephemeral key pair as part of the key-
agreement scheme, then R shall contribute a random nonce to be used (in addition to the 
shared secret Z) as input to the key-derivation method employed by the scheme; see Section 
5.4 for a discussion of the length and security strength required for the nonce. 

2. The provider, P, computes 

   MacDataP = message_stringP || IDP || IDR || EphemDataP || EphemDataR {|| TextP} 

where  

- message_stringP is a six byte string with a value of “KC_1_U” when party U is 
providing the MacTag, or “KC_1_V” when party V is providing the MacTag. (Note 
that these values will be changed for bilateral key confirmation, as specified in 
Section 5.9.2.) 

- IDP is the identifier used to label the key-confirmation provider. 

- IDR is the identifier used to label the key confirmation recipient.  

- EphemDataP and EphemDataR are ephemeral values (corresponding to ephemeral 
public keys or nonces) contributed by the provider and recipient, respectively. Their 
precise values are specified in the subsections of Section 6 that describe how key 
confirmation can be incorporated into the particular schemes included in this 
Recommendation. EphemDataP is null only in the case that the provider has 
contributed neither an ephemeral public key nor a nonce during the scheme. For 
example, in a C(1e, 2s) scheme with unilateral key confirmation from party V to party 
U as introduced in Section 5.2.1.5.2, party V only contributes a static key pair; in this 
case, EphemDataV can be null. 
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- TextP  is an optional bit string that may be used during key confirmation and that is 
known by both parties. 

3. After computing the shared secret Z and applying the key-derivation method to obtain 
DerivedKeyingMaterial (see Section 5.8), the provider parses DerivedKeyingMaterial 
into two parts, MacKey and KeyData: 

   MacKey || KeyData = DerivedKeyingMaterial. 

4. The provider computes MacTagP (see Sections 5.2.1 and 5.9.3): 

   MacTagP = TMacLen[MAC (MacKey, , MacDataP)], 

and sends it to the recipient. 

5. The recipient forms MacDataP, determines MacKey, computes MacTagP in the same 
manner as the provider, and then compares its computed MacTagP to the value received 
from the provider. If the received value is equal to the derived value, then the recipient is 
assured that the provider has derived the same value for MacKey and that the provider 
shares the recipient’s value of MacTagP. The assurance of a shared value for MacKey 
provides assurance to the recipient that the provider also shares the secret value (Z) from 
which MacKey and KeyData are derived. Thus, the recipient also has assurance that the 
provider could compute KeyData correctly. 

Both parties shall destroy the MacKey once it is no longer needed to provide or obtain key 
confirmation. 

If, during a particular key-agreement transaction, it happens that MacTagP cannot be verified by 
the recipient, then key confirmation has failed and all of the derived keying material (MacKey 
and KeyData) shall be destroyed by each participant. In particular, DerivedKeyingMaterial shall 
not be revealed by either participant to any other party (not even to the other participant), and the 
derived keying material shall not be used for any further purpose. In the case of a key-
confirmation failure, the key-agreement transaction shall be discontinued. 

Unilateral key confirmation may be added in either direction to any of the C(2e, 2s), C(1e, 2s) 
and C(0e, 2s) schemes; it may also be added to the C(1e, 1s) schemes, but only when party V 
(the party contributing the static key pair) is the key confirmation provider, and party U is the 
key confirmation recipient. (See the relevant subsections of Section 6.) 

5.9.2 Bilateral Key Confirmation for Key-Agreement Schemes 

Bilateral key confirmation is an optional feature that can be incorporated into any key-agreement 
scheme in which each party is required to own a static key-establishment key pair that is used in 
the key-establishment process. Bilateral key confirmation is accomplished by performing 
unilateral key confirmation in both directions (with U providing MacTagU to recipient V, and V 
providing MacTagV to recipient U) during the same scheme. If a party is not also required to 
contribute an ephemeral public key to the key-establishment process, then that party shall instead 
contribute a random nonce that is used as part of the input to the key-derivation method 
employed by the scheme; see Section 5.4 for a discussion of the length and security strength 
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required for the nonce. Each party is required to have an identifier, chosen in accordance with the 
assumptions stated for the key-agreement scheme.  

5.9.2.1 Adding Bilateral Key Confirmation to a Key-Agreement Scheme 

To include bilateral key confirmation, two instances of unilateral key confirmation (as specified 
in Section 5.9.1.1, subject to the modifications listed below) shall be incorporated into the 
scheme, once with party U as the key-confirmation provider (i.e., P = U and R = V) and once 
with party V as the provider (i.e., P = V and R = U). Additional details will be provided for each 
scheme in the appropriate subsections of Section 6. 

In addition to setting P = U and R = V in one instance of the unilateral key-confirmation 
procedure described in Section 5.9.1.1 and setting P = V and R = U in a second instance, the 
following changes/clarifications apply when using the procedure for bilateral key confirmation:  

1. When computing MacTagU, the value of the six-byte message_stringU that forms the 
initial segment of MacDataU is “KC_2_U”. 

2. When computing MacTagV, the value of the six-byte message_stringV that forms the 
initial segment of MacDataV is “KC_2_V”. 

3. If used at all, the value of the (optional) byte string TextU used to form the final segment 
of MacDataU can be different than the value of the (optional) byte string TextV used to 
form the final segment of MacDataV, provided that both parties are aware of the value(s) 
used. 

Bilateral key confirmation may be added to the C(2e, 2s), C(1e, 2s) and C(0e, 2s) schemes, as 
specified in the relevant subsections of Section 6. 

5.9.3 Security Strength of the Mac Tag 

In this Recommendation, a MagTag used for key confirmation shall be generated using an 
approved MAC algorithm, which can be an HMAC [FIPS 198] with an approved hash function 
or a CMAC [SP 800-38B] with an approved block cipheher (see Section 5.2). The domain 
parameter set shall be used to determine the minimum length of the key (MacKey length) used to 
compute the MacTag and the minimum length of the MacTag, the (possibly truncated) result 
from the MAC computation using the MAC algorithm with MacKey, as shown in Table 8 and 
Table 9 for the FFC and ECC domain parameter sets, respectively.  

Table 8: Minimum MacKey Length and MacLen for FFC Domain Parameter Sets 

FFC Parameter Set Name FA FB FC 

Maximum security strength supported (in bits) 80 112 112 

Bit length of the field size p (i.e., )  p2log 1024 2048 2048 
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FFC Parameter Set Name FA FB FC 

Bit length of the subgroup order q (i.e.,  q2log ) 160 224 256 

Minimum MacKey length (in bits) 80 112 128 

Minimum MacLen, i.e., the MacTag length (in bits) 80 112 128 

HMAC using any approved hash function or AES CMAC with any approved AES key length 
(128, 192 or 256 bits) can be used with all the FFC domain parameter sets described in Table 8. 

Table 9: Minimum MacKey Length and MacLen for ECC Domain Parameter Sets 

ECC Parameter Set Name EA EB EC ED EE 

Maximum security strength supported (in bits) 80 112 128 192 256 

Bit length of ECC the subgroup order n (i.e., 
)  n2log

160-
223 

224-
255 

256-
383 

384-
511 

512+ 

Minimum MacKey length (in bits) 80 112 128 192 256 

Minimum MacLen, i.e., the MacTag length (in bits) 80 112 128 192 256 

As shown in Table 9, when an HMAC is used for key confirmation for the ECC schemes, any 
approved hash function can be used for the ECC domain parameter sets EA, EB, and EC; 
however, HMAC with the SHA-1 hash function shall not be used for domain parameter sets ED 
and EE, because the maximum length of the MacTag that an HMAC with SHA-1 can generate is 
only 160 bits. For the same reason, an HMAC with SHA-224 and SHA-512/224 shall not be 
used for key confirmation with ECC parameter set EE. AES CMAC can be used for key 
confirmation with any AES key length (128, 192, 256 bits) for the ECC domain parameter sets 
EA, EB, and EC; however, AES CMAC shall not be used for domain parameter sets ED and EE, 
because the maximum length of the MacTag that an AES CMAC can generate is only 128 bits, 
the AES output block length.  

6. Key Agreement 

This Recommendation provides three categories of key-agreement schemes (see Table 10). The 
classification of the categories is based on the number of ephemeral keys used by the two parties 
to the key agreement process, parties U and V. In category C(ie), parties U and V have a total of 
i ephemeral key pairs. The first category, C(2e), consists of schemes requiring the generation of 
ephemeral key pairs by both parties; a C(2e) scheme is suitable for an interactive key 
establishment protocol. The second category, C(1e), consists of schemes requiring the generation 
of an ephemeral key pair by only one party; a C(1e) scheme is suitable for a store and forward 
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scenario, but may also be used in an interactive key establishment protocol. The third category, 
C(0e), consists of schemes that do not use ephemeral keys.  

Key confirmation may be added to many of these schemes to provide assurance that the 
participants share the same keying material; see Section 5.9 for details on key confirmation. Each 
party should have such assurance. Although other methods are often used to provide this 
assurance, this Recommendation makes no statement as to the adequacy of these other methods. 

Table 10: Key-agreement Scheme Categories 

Category Comment 

C(2e): Two ephemeral key pairs Each party generates an ephemeral key pair. 

C(1e): One ephemeral key pair Only party U generates an ephemeral key pair. 

C(0e): Zero ephemeral key pairs No ephemeral keys are used. 

Each category is comprised of one or more subcategories that are classified by the use of static 
keys by the parties (see Table 11). In subcategory C(ie, js), parties U and V have a total of i 
ephemeral key pairs and j static key pairs. The suitability for interactive or store-and-forward 
protocols of each subcategory is discussed in Section 8.  

Table 11: Key-agreement scheme subcategories 

Category Subcategory 

C(2e, 2s): Each party generates an ephemeral key pair and uses a 
static key pair. 

C(2e): Two ephemeral key 
pairs  

 C(2e, 0s): Each party generates an ephemeral key pair; no static 
key pairs are used. 

C(1e, 2s): Party U generates an ephemeral key pair and uses a 
static key pair; party V uses only a static key pair. 

C(1e): One ephemeral key 
pair 

 C(1e, 1s): Party U generates an ephemeral key pair, but uses no 
static key pair; party V uses only a static key pair. 

C(0e): Zero ephemeral key 
pairs  

C(0e, 2s): Each party uses only a static key pair. 

The schemes may be further classified by whether they use finite field cryptography (FFC) or 
elliptic curve cryptography (ECC). A scheme may use either Diffie-Hellman or MQV primitives 
(see Section 5.7). Thus, for example, notation C(2e, 2s, FFC DH) completely classifies the 
dhHybrid1 scheme of Section 6.1.1.1 as a scheme with two ephemeral keys and two static keys 
that uses finite field cryptography and a Diffie-Hellman primitive (see Table 12). The names of 
these schemes are taken from ANS X9.42 and ANS X9.63.  
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Table 12: Key-agreement schemes 

Category Subcategory Primitive Scheme Notation 

C(2e) C(2e, 2s) FFC DH dhHybrid1 C(2e, 2s, FFC DH) 

C(2e) C(2e, 2s) ECC CDH (Cofactor) Full Unified Model C(2e, 2s ECC CDH) 

C(2e) C(2e, 2s) FFC MQV MQV2 C(2e, 2s, FFC 
MQV) 

C(2e) C(2e, 2s) ECC MQV Full MQV C(2e, 2s, ECC 
MQV) 

C(2e) C(2e, 0s) FFC DH dhEphem C(2e, 0s, FFC DH) 

C(2e) C(2e, 0s) ECC CDH (Cofactor) Ephemeral Unified 
Model 

C(2e, 0s ECC CDH) 

C(1e) C(1e, 2s) FFC DH dhHybridOneFlow C(1e, 2s, FFC DH) 

C(1e) C(1e, 2s) ECC CDH (Cofactor) One-Pass Unified 
Model 

C(1e, 2s, ECC 
CDH) 

C(1e) C(1e, 2s) FFC MQV MQV1 C(1e, 2s, FFC 
MQV) 

C(1e) C(1e, 2s) ECC MQV One-Pass MQV C(1e, 2s, ECC 
MQV) 

C(1e) C(1e, 1s) FFC DH dhOneFlow C(1e, 1s, FFC DH) 

C(1e) C(1e, 1s) ECC CDH (Cofactor) One-Pass Diffie-
Hellman 

C(1e, 1s, ECC 
CDH) 

C(0e) C(0e, 2s) FFC DH dhStatic C(0e, 2s, FFC DH) 

C(0e) C(0e, 2s) ECC CDH (Cofactor) Static Unified 
Model 

C(0e, 2s, ECC 
CDH) 

Each party in a key-agreement process shall use the same set of valid domain parameters. These 
parameters shall be established, and assurance of their validity shall be obtained prior to the 
generation of key pairs and the initiation of the key-agreement process. See Section 5.5 for a 
discussion of domain parameters. 

If Party U uses a static key pair in a given key-agreement transaction, then Party U shall have an 
identifier, IDU, that has an association with the static key pair that is known (or discoverable) 
and trusted by party V (i.e., there shall be a trusted association between IDU and party U’s static 
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public key). If party U does not contribute a static public key as part of a key-agreement 
transaction, then IDU (if required for that transaction) is a non-null identifier selected in 
accordance with the relying application/protocol. Similar rules apply to Party V’s identifier, IDV. 

A general flow diagram is provided for each subcategory of schemes. The dotted-line arrows 
represent the distribution of static public keys that may be distributed by the parties themselves 
or by a third party, such as a Certification Authority (CA). The solid-line arrows represent the 
distribution of ephemeral public keys or nonces that occur during the key-agreement or key-
confirmation process. Note that the flow diagrams in this Recommendation omit explicit mention 
of various validation checks that are required. The flow diagrams and descriptions in this 
Recommendation assume a successful completion of the key-establishment process. The error 
conditions are handled in the process text. 

For each scheme, there are conditions that must be satisfied to enable proper use of that scheme. 
These conditions are listed as the assumptions. Failure to meet all such conditions could yield 
undesirable results, such as the inability to communicate or the loss of security. As part of the 
proper implementation of this Recommendation, system users and/or agents trusted to act on 
their behalf (including application developers, system installers, and system administrators) are 
responsible for ensuring that all assumptions are satisfied at the time a key-establishment 
transaction takes place. 

6.1 Schemes Using Two Ephemeral Key Pairs, C(2e) 

In this category, each party generates an ephemeral key pair and sends the ephemeral public key 
to the other party. This category consists of two subcategories that are determined by the use of 
static keys by the parties. In the first subcategory, each party contributes both static and 
ephemeral keys (see Section 6.1.1), while in the second subcategory, each party contributes only 
ephemeral keys (see Section 6.1.2).  

6.1.1 C(2e, 2s) Schemes 

Figure 4 depicts a typical flow for a C(2e, 2s). For these schemes, each party (U and V) 
contributes a static key pair and generates an ephemeral key pair during the key agreement 
process. All key pairs shall be generated using the same domain parameters. Party U and party V 
obtain each other’s static public keys, which have been generated prior to the key-establishment 
process. Both parties generate ephemeral private/public key pairs and exchange the ephemeral 
public keys. Using the static and ephemeral keys, both parties generate a shared secret. The 
secret keying material is derived from the shared secret.  
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U V

U’s Static Public Key 

V’s Static Public Key 

U’s Ephemeral Public Key 

V’s Ephemeral Public Key 

Obtain static public 
keys 

Exchange 
ephemeral 
public keys 

Figure 4: C(2e, 2s) schemes: Each party contributes a static and an ephemeral key pair 

 

Assumptions: In order to execute a C(2e, 2s) key-establishment scheme in compliance with this 
Recommendation, the following assumptions shall be true.  

1. Each party has an authentic copy of the same set of domain parameters, D, that have been 
generated as specified in Section 5.5.1. For FFC schemes, D = (p, q, g{, SEED, 
pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h). Furthermore, each 
party has obtained assurance of the validity of these domain parameters as specified in 
Section 5.5.2.  

2. Each party has been designated as the owner of a static key pair that was generated as 
specified in Section 5.6.1 using the set of domain parameters, D. For FFC schemes, the 
static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Each party has 
obtained assurance of the validity of its own static public key as specified in Section 
5.6.2.1.3 and has obtained assurance of its possession of the correct value for its own 
private key as specified in Section 5.6.2.1.5.  

3. The parties have agreed upon an approved key-derivation method (see Section 5.8), as 
well as other associated parameters related to cryptographic elements to be used (see 
Section 5). If key confirmation is used, the parties have also agreed upon an approved 
MAC and associated parameters (see Table 8 and Table 9 in Section 5.9.3). 

4. Prior to or during the key-agreement process, each party receives the other party’s static 
public key in a trusted manner (e.g., from a certificate signed by a trusted CA or directly 
from the other party, who is trusted by the recipient). Each party has obtained assurance 
of the validity of the other party’s static public key as specified in Section 5.6.2.2. 
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5. The recipient of a static public key has obtained assurance that its (claimed) owner is (or 
was) in possession of the corresponding static private key, as specified in Section 
5.6.2.2.3. 

6. When an identifier is used to label a party during the key agreement process, that 
identifier has a trusted association to that party’s static public key. (In other words, 
whenever both the identifier and static public key of one participant are employed in the 
key-agreement process, they are associated in a manner that is trusted by the other 
participant.) When an identifier is used to label a party during the key-agreement process, 
both parties are aware of the particular identifier employed for that purpose. 

6.1.1.1 dhHybrid1, C(2e, 2s, FFC DH) Scheme 

This section describes the dhHybrid1 scheme. Assurance of secure key establishment using this 
scheme can only be obtained when the assumptions in Section 6.1.1 are true. In particular, it is 
assumed that party U has obtained the static public key yV of party V, and party V has obtained 
the static public key yU of party U. 

With the exception of key derivation, dhHybrid1 is “symmetric” in the actions of parties U and 
V. Only the actions performed by party U are specified here; a specification of the actions 
performed by party V may be obtained by systematically replacing the letter “U” by “V” (and 
vice versa) in the description of the key-agreement transformation. Note, however, that U and V 
must use identical orderings of the bit strings that are input to the key-derivation function. 

Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z. 

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in 
Section 5.6.1.1. Send the public key tU to V. Receive an ephemeral public key tV 
(purportedly) from V. If tV is not received, destroy the ephemeral private key rU, and 
return an error indicator without performing the remaining actions. 

2. Verify that tV is a valid public key for the parameters D as specified in Section 5.6.2.3. If 
assurance of public key validity cannot be obtained, destroy the ephemeral private key 
rU, and return an error indicator without performing the remaining actions. 

3. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs from the set of 
domain parameters D, U’s static private key xU, and V’s static public key yV. If the call to 
the FFC DH primitive outputs an error indicator, destroy the ephemeral private key rU, 
destroy the results of all intermediate calculations used in the attempted computation of 
Zs, and return an error indicator without performing the remaining actions. 

4. Use the FCC DH primitive to derive a shared secret Ze from the set of domain parameters 
D, U’s ephemeral private key rU, and V’s ephemeral public key tV.. If this call to the FFC 
DH primitive outputs an error indicator, destroy Zs and the ephemeral private key rU,, 
destroy the results of all intermediate calculations used in the attempted computation of 
Ze, and return an error indicator without performing the remaining actions. 

5. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs.  
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6. Use the agreed-upon key derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z and the 
ephemeral private key rU, and return an error indicator without performing the remaining 
actions. 

7. If the ephemeral private key rU will not be used in a broadcast scenario for subsequent 
key-establishment transactions using this scheme (see Section 7), then destroy rU. 

8. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note 1: Key confirmation can be incorporated into this scheme. See Section 6.1.1.5 for 
details. 

Note 2: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) 
for subsequent key-establishment transactions using this scheme, then the same ephemeral 
key pair (rU, tU) may be used in other key-establishment transactions occurring during the 
same broadcast (i.e., step 1 above would not be repeated). After the final broadcast 
transaction, the ephemeral private key ru shall be destroyed (see step 7 above). 

dhHybrid1 is summarized in Table 13. 

Table 13: dhHybrid1 Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

D = (p, q, g{, SEED, pgenCounter}) 

 

D = (p, q, g{, SEED, pgenCounter}) 

 

Static Data 

 

Static private key xU 

Static public key yU 

Static private key xV 

Static public key yV 

Ephemeral Data Ephemeral private key rU 

Ephemeral public key tU 

Ephemeral private key rV 

Ephemeral public key tV 

Computation 1. Compute Zs by calling FFC DH 
using xU and yV 

2. Compute Ze by calling FFC DH 
using rU and tV 

3. Compute Z = Ze || Zs 

1. Compute Zs by calling FFC DH 
using xV and yU 

2. Compute Ze by calling FFC DH 
using rV and tU 

3. Compute Z = Ze || Zs 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

1. Compute DerivedKeyingMaterial

2. Destroy Z 
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6.1.1.2 (Cofactor) Full Unified Model, C(2e, 2s, ECC CDH) Scheme 

This section describes the Full Unified Model scheme. Assurance of secure key establishment 
using this scheme can only be obtained when the assumptions in Section 6.1.1 are true. In 
particular, it is assumed that party U has obtained the static public key  Qs,V of party V, and party 
V has obtained the static public key Qs,U of party U.  

With the exception of key derivation, the Full Unified Model is “symmetric” in the actions of 
parties U and V. Only the actions performed by party U are specified here; a specification of the 
actions performed by party V may be obtained by systematically replacing the letter “U” by “V” 
(and vice versa) in the description of the key-agreement transformation. Note, however, that U 
and V must use identical orderings of the bit strings that are input to the key-derivation function. 

Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z.  

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in 
Section 5.6.1.2. Send the public key Qe,U to V. Receive an ephemeral public key Qe,V 
(purportedly) from V. If Qe,V is not received, destroy the ephemeral private key de,U, and 
return an error indicator without performing the remaining actions. 

2. Verify that Qe,V is a valid public key for the parameters D as specified in Section 5.6.2.3. 
If assurance of public key validity cannot be obtained, destroy the ephemeral private key 
de,U, and return an error indicator without performing the remaining actions.. 

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs from the set of 
domain parameters D, U’s static private key ds,U, and V’s static public key Qs,V. If the call 
to the ECC CDH primitive outputs an error indicator, destroy the ephemeral private key 
de,U, destroy the results of all intermediate calculations used in the attempted computation 
of Zs, and return an error indicator without performing the remaining actions. 

4. Use the ECC CDH primitive to derive a shared secret Ze from the set of domain 
parameters D, U’s ephemeral private key de,U, and V’s ephemeral public key Qe,V. If this 
call to the ECC CDH primitive outputs an error indicator, destroy Zs and the ephemeral 
private key de,U, destroy the results of all intermediate calculations used in the attempted 
computation of Ze, and return an error indicator without performing the remaining 
actions.  

5. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs.  

6. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z and the 
ephemeral private key de,U, and return an error indicator without performing the 
remaining actions. 

7. If the ephemeral private key de,U will not be used in a broadcast scenario (see Section 7) 
for subsequent key-establishment transactions using this scheme, then destroy de,U. 

8. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 
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Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note 1: Key confirmation can be incorporated into this scheme. See Section 6.1.1.5 for details. 

Note 2: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 
subsequent key-establishment transactions using this scheme, then the same ephemeral key pair 
(rU, tU) may be used in other key-establishment transactions occurring during the same broadcast 
(i.e., step 1 above would not be repeated). After the final broadcast transaction, the ephemeral 
private key ru shall be destroyed (see step 7 above). 

The Full Unified Model is summarized in Table 14. 

Table 14: Full Unified Model Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

D = (q, FR, a, b{, SEED}, G, n, h) D = (q, FR, a, b{, SEED}, G, n, h) 

Static Data 

 

Static private key ds,U 

Static public key Qs,U 

Static private key ds,V 

Static public key Qs,V 

Ephemeral Data 

 

Ephemeral private key de,U 

Ephemeral public key Qe,U 

Ephemeral private key de,V 

Ephemeral public key Qe,V 

Computation 1. Compute Zs by calling ECC 
CDH using ds,U and Qs,V 

2. Compute Ze by calling ECC 
CDH using de,U and Qe,V 

3. Compute Z = Ze || Zs 

1. Compute Zs by calling ECC 
CDH using ds,V and Qs,U 

2. Compute Ze by calling ECC 
CDH using de,V and Qe,U 

3. Compute Z = Ze || Zs 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

6.1.1.3 MQV2, C(2e, 2s, FFC MQV) Scheme 

This section describes the MQV2 scheme. Assurance of secure key establishment using this 
scheme can only be obtained when the assumptions in Section 6.1.1 are true. In particular, it is 
assumed that party U has obtained the static public key yV of party V, and party V has obtained 
the static public key yU of party U. 

With the exception of key derivation, MQV2 is “symmetric” in the actions of parties U and V. 
Only the actions performed by party U are specified here; a specification of the actions 
performed by party V may be obtained by systematically replacing the letter “U” by “V” (and 
vice versa) in the description of the key-agreement transformation. Note, however, that U and V 
must use identical orderings of the bit strings that are input to the key-derivation function. 
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Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z.  

 Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in 
Section 5.6.1.1. Send the public key tU to V. Receive an ephemeral public key tV 
(purportedly) from V. If tV is not received, destroy the ephemeral private key rU, and 
return an error indicator without performing the remaining actions. 

2. Verify that tV is a valid public key for the parameters D as specified in Section 5.6.2.3. If 
assurance of public key validity cannot be obtained, destroy the ephemeral private key 
rU, and return an error indicator without performing the remaining actions. 

3. Use the MQV2 form of the FFC MQV primitive in Section 5.7.2.1 to derive a shared 
secret Z from the set of domain parameters D, U’s static private key xU, V’s static public 
key yV, U’s ephemeral private key rU, U’s ephemeral public key tU, and V’s ephemeral 
public key tV. If the call to the FFC MQV primitive outputs an error indicator, destroy the 
ephemeral private key rU, destroy the results of all intermediate calculations used in the 
attempted computation of Z, and return an error indicator without performing the 
remaining actions. 

4. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z and the 
ephemeral private key rU, and return an error indicator without performing the remaining 
actions. 

5. If the ephemeral private key tU will not be used in a broadcast scenario (see Section 7) for 
subsequent key-establishment transactions using this scheme, then destroy rU. 

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note 1: Key confirmation can be incorporated into this scheme. See Section 6.1.1.5 for details. 

Note 2: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 
subsequent key-establishment transactions using this scheme, then the same ephemeral key pair 
(rU, tU) may be used in other key-establishment transactions occurring during the same broadcast 
(i.e., step 1 above would not be repeated). After the final broadcast transaction, the ephemeral 
private key ru shall be destroyed (see step 5 above). 

MQV2 is summarized in Table 15. 

Table 15: MQV2 Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

D =(p, q, g{, SEED, pgenCounter}) D =(p, q, g{, SEED, pgenCounter}) 
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Static Data Static private key xU 

Static public key yU 

Static private key xV 

Static public key yV 

Ephemeral Data Ephemeral private key rU 

Ephemeral public key tU 

Ephemeral private key rV 

Ephemeral public key tV 

Computation Compute Z by calling FFC MQV 
using xU, yV, rU, tU, and tV 

Compute Z by calling FFC MQV 
using xV, yU, rV, tV, and tU  

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

6.1.1.4 Full MQV, C(2e, 2s, ECC MQV) Scheme 

This section describes the Full MQV scheme. Assurance of secure key establishment using this 
scheme can only be obtained when the assumptions in Section 6.1.1 are true. In particular, it is 
assumed that party U has obtained the static public key Qs,V of party V, and party V has obtained 
the static public key Qs,U of party U. 

With the exception of key derivation, the Full MQV scheme is “symmetric” in the actions of 
parties U and V. Only the actions performed by party U are specified here; a specification of the 
actions performed by party V may be obtained by systematically replacing the letter “U” by “V” 
(and vice versa) in the description of the key-agreement transformation. Note, however, that U 
and V must use identical orderings of the bit strings that are input to the key derivation function. 

Party U shall execute the following transformation to a) establish a shared secret value Z with 
party V, and b) derive secret keying material from Z.  

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in 
Section 5.6.1.2. Send the public key Qe,U to V. Receive an ephemeral public key Qe,V 
(purportedly) from V. If Qe,V is not received, destroy the ephemeral private key de,U, and 
return an error indicator without performing the remaining actions. 

2. Verify that Qe,V is a valid public key for the parameters D as specified in Section 5.6.2.3. 
If assurance of public key validity cannot be obtained, destroy the ephemeral private key 
de,U, and return an error indicator without performing the remaining actions. 

3. Use the Full MQV form of the ECC MQV primitive in Section 5.7.2.3.1 to derive a 
shared secret value Z from the set of domain parameters D, U’s static private key ds,U, 
V’s static public key Qs,V, U’s ephemeral private key de,U, U’s ephemeral public key 
Qe,U, and V’s ephemeral public key Qe,V. If the call to the ECC MQV primitive outputs 
an error indicator, destroy the ephemeral private key de,U, destroy the results of all 
intermediate calculations used in the attempted computation of Z, and return an error 
indicator without performing the remaining actions. 
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4. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z and the 
ephemeral private key de,U, and return an error indicator without performing the 
remaining actions. 

5. If the ephemeral private key Qe,U will not be used in a broadcast scenario (see Section 7) 
for subsequent key-establishment transactions using this scheme, then destroy de,U. 

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note 1: Key confirmation can be incorporated into this scheme. See Section 6.1.1.5 for details. 

Note 2: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 
subsequent key-establishment transactions using this scheme, then the same ephemeral key pair 
(rU, tU) may be used in other key-establishment transactions occurring during the same broadcast 
(i.e., step 1 above would not be repeated). After the final broadcast transaction, the ephemeral 
private key ru shall be destroyed (see step 7 above). 

The Full MQV is summarized in Table 16. 

Table 16: Full MQV Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

D = (q, FR, a, b{, SEED}, G, n, h) D = (q, FR, a, b{, SEED}, G, n, h) 

Static Data 

 

1. Static private key ds,U 

2. Static public key Qs,U 

1. Static private key ds,V 

2. Static public key Qs,V 

Ephemeral Data 

 

1. Ephemeral private key de,U 

2. Ephemeral public key Qe,U 

1. Ephemeral private key de,V 

2. Ephemeral public key Qe,V 

Computation Compute Z by calling ECC MQV 
using ds,U, Qs,V, de,U, Qe,U, and Qe,V 

Compute Z by calling ECC MQV 
using ds,V, Qs,U, de,V, Qe,V, and Qe,U 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

6.1.1.5 Incorporating Key Confirmation into a C(2e, 2s) Scheme 

The subsections that follow illustrate how to incorporate key confirmation (as described in 
Section 5.9) into the C(2e, 2s) key-agreement schemes described above. 
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The flow depictions separate the key-establishment flow from the key-confirmation flow. The 
depictions and accompanying discussions presume that the assumptions of the scheme have been 
satisfied, that the key-agreement transaction has proceeded successfully through key derivation, 
and that the received MacTags are successfully verified as specified in Section 5.2.2.  

6.1.1.5.1 C(2e, 2s) Scheme with Unilateral Key Confirmation Provided by U to V 

Figure 5 depicts a typical flow for a C(2e, 2s) scheme with unilateral key confirmation from 
party U to party V. In this scenario, party U and party V assume the roles of key-confirmation 
provider and recipient, respectively. The successful completion of this process provides party V 
with a) assurance that party U has derived the same secret Z value; and b) assurance that party U 
has actively participated in the process. 

 

U V

U’s Static Public Key 

V’s Static Public Key 

U’s Ephemeral Public Key 

V’s Ephemeral Public Key 

Obtain static 
public keys 

U’s key 
confirmation 

Exchange 
ephemeral 
public keys 

MacTagU 

 

Figure 5: C(2e, 2s) scheme with unilateral  key confirmation from U to V 

To provide (and receive) key confirmation (as described in Section 5.9.1.1), U (and V) set  

             EphemDataU = EphemPubKeyU,  and EphemDataV = EphemPubKeyV: 
  
Party U provides MacTagU to V (as specified in Section 5.9.1.1, with P = U and R = V), where 
MacTagU is computed (as specified in Section 5.2.1) using  

  MacDataU  = “KC_1_U” || IDU || IDV || EphemPubKeyU || EphemPubKeyV {|| TextU}. 

Party V (the key-confirmation recipient) uses the same format for MacDataU to compute its own 
version of MacTagU, and then verifies that the newly computed MacTagU matches the value 
provided by U. 
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6.1.1.5.2 C(2e, 2s) Scheme with Unilateral Key Confirmation Provided by V to U 

Figure 6 depicts a typical flow for a C(2e, 2s) scheme with unilateral key confirmation from 
party V to party U. In this scenario, party V and party U assume the roles of key-confirmation 
provider and recipient, respectively. The successful completion of the key-confirmation process 
provides party U with a) assurance that party V has derived the same secret Z value; and b) 
assurance that party V has actively participated in the process.  

 

U V

U’s Static Public Key 

V’s Static Public Key 

U’s Ephemeral Public Key 

V’s Ephemeral Public Key, MacTagV 

 

Obtain static public 
keys 

V sends an 
ephemeral public 
key with key 
confirmation 

U sends an 
ephemeral 
public key 

Figure 6: C(2e, 2s) scheme with unilateral  key confirmation from V to U 

To provide (and receive) key confirmation (as described in Section 5.9.1.1), V (and U) set  

            EphemDataV  = EphemPubKeyV,  and EphemDataU = EphemPubKeyU: 
  
Party V provides MacTagV to U (as specified in Section 5.9.1.1, with P = V and R = U), where 
MacTagV is computed (as specified in Section 5.2.1) using  

  MacDataV  = “KC_1_V” || IDV || IDU || EphemPubKeyV || EphemPubKeyU {|| TextV}. 

Party U (the key-confirmation recipient) uses the same format for MacDataV to compute its own 
version of MacTagV and then verifies that the newly computed MacTagV matches the value 
provided by V. 

Note that in Figure 6, party V’s ephemeral public key (EphemPubKeyV) and the MacTag 
(MacTagV) are depicted as being sent in the same message (to reduce the number of passes in the 
combined key-agreement/key-confirmation process). They may also be sent separately. 

6.1.1.5.3 C(2e, 2s) Scheme with Bilateral Key Confirmation 

Figure 7 depicts a typical flow for a C(2e, 2s) scheme with bilateral key confirmation. In this 
method, party U and party V assume the roles of both the provider and the recipient in order to 
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obtain bilateral key confirmation. The successful completion of the key-confirmation process 
provides each party with a) assurance that the other party has derived the same secret Z value, 
and b) also provides each party with assurance that the other party has actively participated in the 
process. 

 

U V

U’s Static Public Key 

V’s Static Public Key 

U’s Ephemeral Public Key 

V’s Ephemeral Public Key, MacTagV 

 

Obtain static public 
keys 

U’s key 
confirmation 

V sends an ephemeral 
public key with key 
confirmation 

U sends an ephemeral 
public key 

MacTagU 

Figure 7: C(2e, 2s) scheme with bilateral  key confirmation 

To provide bilateral key confirmation (as described in Section 5.9.2.1), U and V exchange and 
verify MacTags that have been computed (as specified in Sections 5.2.1) using  

              EphemDataU = EphemPubKeyU, and EphemDataV = EphemPubKeyV: 

Party V provides MacTagV to U (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = V and  
R = U); MacTagV is computed by V (and verified by U) using  

  MacDataV  = “KC_2_V” || IDV || IDU || EphemPubKeyV || EphemPubKeyU {|| TextV}. 

Party U provides MacTagU to V (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = U and  
R = V); MacTagU is computed by U (and verified by V) using  

  MacDataU  = “KC_2_U” || IDU || IDV || EphemPubKeyU || EphemPubKeyV {|| TextU}. 

Note that in Figure 7, party V’s ephemeral public key (EphemPubKeyV) and the MacTag 
(MacTagV) are depicted as being sent in the same message (to reduce the number of passes in the 
combined key-agreement/key-confirmation process). They may also be sent separately, and if 
sent separately, then the order in which the MacTags are sent could be reversed. 
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6.1.2 C(2e, 0s) Schemes 

For this category, only Diffie-Hellman schemes are specified. Each party generates ephemeral 
key pairs with the same domain parameters. The two parties exchange ephemeral public keys 
and then compute the shared secret. The secret keying material is derived using the shared secret 
(see Figure 8). 

U V

U’s Ephemeral Public Key 

V’s Ephemeral Public Key 

Exchange 
ephemeral 
public keys 

 

Figure 8: C(2e, 0s) schemes: each party contributes only an ephemeral key pair 

 

Assumptions: In order to execute a C(2e, 0s) key-establishment scheme in compliance with this 
Recommendation, the following assumptions shall be true. 

1. Each party has an authentic copy of the same set of domain parameters, D. These 
parameters have been generated as specified in Section 5.5.1. For FFC schemes, D = (p, 
q, g{, SEED, pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h). 
Furthermore, each party has obtained assurance of the validity of these domain 
parameters as specified in Section 5.5.2. 

2. The parties have agreed upon an approved key-derivation method, as well as an 
approved algorithm to be used with that method (e.g., a hash function) and other 
associated parameters to be used (see Section 5.8).  

3. When an identifier is used to label a party during the key-agreement process, it has been 
selected/assigned in accordance with the requirements of the protocol relying upon the 
use of the key-agreement scheme, and its value is known to both parties.  

6.1.2.1 dhEphem, C(2e, 0s, FFC DH) Scheme 

This section describes the dhEphem scheme. Assurance of secure key establishment using this 
scheme can only be obtained when the assumptions in Section 6.1.2 are true.  

With the exception of key derivation, dhEphem is “symmetric” in the actions of parties U and V. 
Only the actions performed by party U are specified here; a specification of the actions 
performed by party V may be obtained by systematically replacing the letter “U” by “V” (and 
vice versa) in the description of the key-agreement transformation. Note, however, that U and V 
must use identical orderings of the bit strings that are input to the key-derivation function. 
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Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z. 

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in 
Section 5.6.1.1. Send the public key tU to V. Receive an ephemeral public key tV 
(purportedly) from V. If tV is not received, destroy the ephemeral private key rU, and 
return an error indicator without performing the remaining actions. 

2. Verify that tV is a valid public key for the parameters D as specified in Section 5.6.2.3. If 
assurance of public key validity cannot be obtained, destroy the ephemeral key rU), and 
return an error indicator without performing the remaining actions. 

3. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z from the set of 
domain parameters D, U’s ephemeral private key rU, and V’s ephemeral public key tV. 
Then destroy the ephemeral private key rU. If the call to the FFC DH primitive outputs an 
error indicator, destroy the results of all intermediate calculations used in the attempted 
computation of Z, and return an error indicator without performing the remaining actions. 

4. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z, and return an 
error indicator without performing the remaining action. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

dhEphem is summarized in Table 17. 

Table 17: dhEphem Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter}) 

Static Data N/A N/A 

Ephemeral Data Ephemeral private key rU 

Ephemeral public key tU 

Ephemeral private key rV 

Ephemeral public key tV 

Computation Compute Z by calling FFC DH using 
rU and tV  

Compute Z by calling FFC DH using 
rV and tU 
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Party U Party V  

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial

2. Destroy Z 

 

1. Compute DerivedKeyingMaterial

2. Destroy Z 

6.1.2.2 (Cofactor) Ephemeral Unified Model, C(2e, 0s, ECC CDH) 

This section describes the Ephemeral Unified Model scheme. Assurance of secure key 
establishment using this scheme can only be obtained when the assumptions in Section 6.1.2 are 
true. 

With the exception of key derivation, Ephemeral Unified Model is “symmetric” in the actions of 
parties U and V. Only the actions performed by party U are specified here; a specification of the 
actions performed by party V may be obtained by systematically replacing the letter “U” by “V” 
(and vice versa) in the description of the key-agreement transformation. Note, however, that U 
and V must use identical orderings of the bit strings that are input to the key derivation function. 

Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z.  

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in 
Section 5.6.1.2. Send the public key Qe,U to V. Receive an ephemeral public key Qe,V 
(purportedly) from V. If Qe,V is not received, destroy the ephemeral private key de,U, and 
return an error indicator without performing the remaining actions. 

2. Verify that Qe,V is a valid public key for the parameters D as specified in Section 5.6.2.3. 
If assurance of public key validity cannot be obtained, destroy the ephemeral private key 
de,U, and return an error indicator without performing the remaining actions. 

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the set of 
domain parameters D, U’s ephemeral private key de,U, and V’s ephemeral public key Qe,V. 
Then destroy the ephemeral private key de,U. If the call to the ECC CDH primitive 
outputs an error indicator, destroy the results of all intermediate calculations used in the 
attempted computation of Z, and return an error indicator without performing the 
remaining actions. 

4. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z, and return an 
error indicator without performing the remaining action. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

The Ephemeral Unified Model is summarized in Table 18. 
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Table 18: Ephemeral Unified Model Key-agreement Scheme 

 Party U Party V 

Domain 
Parameters 

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h) 

Static Data N/A N/A 

Ephemeral Data 

 

Ephemeral private key de,U 

Ephemeral public key Qe,U 

Ephemeral private key de,V 

Ephemeral public key Qe,V 

Computation Compute Z by calling ECC CDH 
using de,U and Qe,V 

Compute Z by calling ECC CDH 
using de,V and Qe,U 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial

2. Destroy Z 

1. Compute DerivedKeyingMaterial

2. Destroy Z 

6.1.2.3  Key Confirmation for C(2e, 0s) 

In a C(2e, 0s) key-agreement scheme, none of the parties contributes a static key pair. Only 
ephemeral key pairs are used to derive the secret value Z. Without a trusted association with an 
identifier of either party, key confirmation cannot achieve the expected purposes. Therefore, in 
this Recommendation, key confirmation is not incorporated for the C(2e, 0s) key-agreement 
schemes.  

6.2 Schemes Using One Ephemeral Key Pair, C(1e) 

This category consists of two subcategories that are determined by the use (or non-use) of a static 
key pair by each of the parties. Only party U generates an ephemeral key pair. In the first 
subcategory, both party U and party V use a static key pair, and party U also generates an 
ephemeral key pair (see Section 6.2.1). In the second subcategory, party U generates an 
ephemeral key pair, but uses no static key pair; party V uses only a static key pair (see Section 
6.2.2).  

6.2.1 C(1e, 2s) Schemes 

For these schemes, party U uses both static and ephemeral private/public key pairs. Party V uses 
only a static private/public key pair. Party U and party V obtain each other’s static public keys in 
a trusted manner. Party U also sends its ephemeral public key to party V. A shared secret is 
generated by both parties using the available static and ephemeral keys. The secret keying 
material is derived using the shared secret (see Figure 9). 
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U V

U’s Static Public Key 

V’s Static Public Key 

U’s Ephemeral Public Key U sends an ephemeral 
public key 

Obtain static public 
keys  

Figure 9: C(1e, 2s) schemes: U contributes a static and an ephemeral key pair while V 
contributes only a static key pair  

Assumptions: In order to execute a C(1e, 2s) key-establishment scheme in compliance with this 
Recommendation, the following assumptions shall be true. 

1. Each party has an authentic copy of the same set of domain parameters, D. These 
parameters have been generated as specified in Section 5.5.1. For FFC schemes, D = (p, 
q, g{, SEED, pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h). 
Furthermore, each party has obtained assurance of the validity of these domain 
parameters as specified in Section 5.5.2. 

2. Each party has been designated as the owner of a static key pair that was generated as 
specified in Section 5.6.1 using the set of domain parameters, D. For FFC schemes, the 
static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Each party has 
obtained assurance of the validity of its own static public key as specified in Section 
5.6.2.1. Each party has also obtained assurance of its possession of the correct value for 
its own private key as specified in Section 5.6.3.1.  

3. The parties have agreed upon an approved key-derivation method, as well as an 
approved algorithm to be used with that method (e.g., a hash function) and other 
associated parameters to be used for key derivation (see Section 5.8).  

4. If key confirmation is used, the parties have also agreed upon an approved MAC and 
associated parameters (see Table 8 and Table 9 in Section 5.9.3). 

5. Prior to or during the key-agreement process, each party receives the other party’s static 
public key in a trusted manner (e.g., from a certificate signed by a trusted CA or directly 
from the other party, who is trusted by the recipient). Each party has obtained assurance 
of the validity of the other party’s static public key as specified in Section 5.6.2.2.1. 
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6. The recipient of a static public key has obtained assurance that its (claimed) owner is (or 
was) in possession of the corresponding static private key, as specified in Section 
5.6.2.2.3.  

7. When an identifier is used to label a party during the key-agreement process, that 
identifier has a trusted association to that party’s static public key. (In other words, 
whenever both the identifier and static public key of one participant are employed in the 
key-agreement process, they are associated in a manner that is trusted by the other 
participant.) When an identifier is used to label a party during the key-agreement process, 
both parties are aware of the particular identifier employed for that purpose. 

6.2.1.1 dhHybridOneFlow, C(1e, 2s, FFC DH) Scheme 

This section describes the dhHybridOneFlow scheme. Assurance of secure key establishment 
using this scheme can only be obtained when the assumptions in Section 6.2.1 are true. In 
particular, it is assumed that party U has obtained the static public key yV of party V, and party V 
has obtained the static public key yU of party U. 

In this scheme, each party has different actions, which are presented separately below. However, 
note that U and V must use identical orderings of the bit strings that are input to the key-
derivation function. 

Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z. 

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in 
Section 5.6.1.1. Send the public key tU to V. 

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs from the set of 
domain parameters D, U’s static private key xU, and V’s static public key yV. If the call to 
the FFC DH primitive outputs an error indicator, destroy the ephemeral private key rU, 
destroy the results of all intermediate calculations used in the attempted computation of 
Zs, and return an error indicator without performing the remaining actions. 

3. Use the FCC DH primitive to derive a shared secret Ze from the set of domain parameters 
D, U’s ephemeral private key rU, and V’s static public key yV. If this call to the FFC DH 
primitive outputs an error indicator, destroy Zs and the ephemeral private key rU,, destroy 
the results of all intermediate calculations used in the attempted computation of Ze, and 
return an error indicator without performing the remaining actions. 

4. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 

5. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z and the 
ephemeral private key rU,, and return an error indicator without performing the remaining 
actions. 
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6. If the ephemeral private key rU will not be used in a broadcast scenario (see Section 7) 
for subsequent key-establishment transactions using this scheme, then destroy rU. 

7. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 
subsequent key-establishment transactions using this scheme, then the same ephemeral key pair 
(rU, tU) may be used in other key-establishment transactions occurring during the same broadcast 
(i.e., step 1 above would not be repeated). After the final broadcast transaction, the ephemeral 
private key ru shall be destroyed (see step 6 above). 

Party V shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party U, and b) derive secret keying material from Z. 

Actions: V derives secret keying material as follows: 

1. Receive an ephemeral public key tU (purportedly) from U. If tU is not received, return an 
error indicator without performing the remaining actions. 

2. Verify that tU is a valid public key for the parameters D as specified in Section 5.6.2.3. If 
assurance of public key validity cannot be obtained, return an error indicator without 
performing the remaining actions. 

3. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret value Zs from the 
set of domain parameters D, V’s static private key xV, and U’s static public key yU. If the 
call to the FFC DH primitive outputs an error indicator, destroy the results of all 
intermediate calculations used in the attempted computation of Zs, and return an error 
indicator without performing the remaining actions.  

4. Use the FCC DH primitive to derive a shared secret Ze from the set of domain parameters 
D, V’s static private key xV, and U’s ephemeral public key tU.  If this call to the FFC DH 
primitive outputs an error indicator, destroy Zs, destroy the results of all intermediate 
calculations used in the attempted computation of Ze, and return an error indicator 
without performing the remaining actions. 

5. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 

6. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z, and return an 
error indicator without performing the remaining action. 

7. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator.  

Note:  Key confirmation can be incorporated into this scheme. See Section 6.2.1.5 for details. 

dhHybridOneFlow is summarized in Table 19.  
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Table 19: dhHybridOneFlow Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter}) 

Static Data Static private key xU 

Static public key yU 

Static private key xV 

Static public key yV 

Ephemeral Data Ephemeral private key rU 

Ephemeral public key tU 

N/A 

Computation 1. Compute Zs by calling FFC DH 
using xU and yV 

2. Compute Ze by calling FFC DH 
using rU and yV  

3. Compute Z = Ze || Zs 

1. Compute Zs by calling FFC DH 
using xV and yU  

2. Compute Ze by calling FFC DH 
using xV and tU  

3. Compute Z = Ze || Zs 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial

2. Destroy Z 

1. Compute DerivedKeyingMaterial

2. Destroy Z 

6.2.1.2 (Cofactor) One-Pass Unified Model, C(1e, 2s, ECC CDH) Scheme 

This section describes the One-Pass Unified Model scheme. Assurance of secure key 
establishment using this scheme can only be obtained when the assumptions in Section 6.2.1 are 
true. In particular, it is assumed that party U has obtained the static public key Qs,V of party V, 
and party V has obtained the static public key Qs,U of party U.  

In this scheme, each party has different actions, which are presented separately below. However, 
note that U and V must use identical orderings of the bit strings that are input to the key 
derivation function. 

Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z.  

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in 
Section 5.6.1.2. Send the public key Qe,U to V.  

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs from the set of 
domain parameters D, U’s static private key ds,U, and V’s static public key Qs,V. If the call 
to the ECC CDH primitive outputs an error indicator, destroy the ephemeral private key 
de,U,, destroy the results of all intermediate calculations used in the attempted 
computation of Zs, and return an error indicator without performing the remaining 
actions.. 
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3. Use the ECC CDH primitive to derive a shared secret Ze – another element of the finite 
field of size q – from the set of domain parameters D, U’s ephemeral private key de,U, and 
V’s static public key Qs,V. If this call to the ECC CDH primitive outputs an error 
indicator, destroy Zs and the ephemeral private key de,U,, destroy the results of all 
intermediate calculations used in the attempted computation of Ze, and return an error 
indicator without performing the remaining actions. 

4. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 

5. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z and the 
ephemeral private key de,U, and return an error indicator without performing the 
remaining actions. 

6. If the ephemeral private key de,U will not be used in a broadcast scenario (see Section 7) 
for subsequent key establishment transactions using this scheme, then destroy de,U. 

7. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 
subsequent key-establishment transactions using this scheme, then the same ephemeral key pair 
(rU, tU) may be used in other key-establishment transactions occurring during the same broadcast 
(i.e., step 1 above would not be repeated. After the final broadcast transaction, the ephemeral 
private key ru shall be destroyed (see step 6 above). 

Party V shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party U, and b) derive secret keying material from Z.  

Actions: V derives secret keying material as follows: 

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not received, 
return an error indicator without performing the remaining actions. 

2. Verify that Qe,U is a valid public key for the parameters D as specified in Section 5.6.2.3. 
If assurance of public key validity cannot be obtained, return an error indicator without 
performing the remaining actions. 

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs from the set of 
domain parameters D, V’s static private key ds,V, and U’s static public key Qs,U. If the call 
to the ECC CDH primitive outputs an error indicator,, destroy the results of all 
intermediate calculations used in the attempted computation of Zs, and return an error 
indicator without performing the remaining actions. 

4. Use the ECC CDH primitive to derive a shared secret Ze from the set of domain 
parameters D, V’s static private key ds,V, and U’s ephemeral public key Qe,U. If this call to 
the ECC CDH primitive outputs an error indicator, destroy Zs,,  destroy the results of all 
intermediate calculations used in the attempted computation of Ze, and return an error 
indicator without performing the remaining actions. 
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5. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 

6. Use the agreed-upon key derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z, and return an 
error indicator without performing the remaining action. 

7. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note:  Key confirmation can be incorporated into this scheme. See Section 6.2.1.5 for details. 

The One-Pass Unified Model is summarized in Table 20. 

Table 20: One-Pass Unified Model Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h) 

Static Data Static private key ds,U 

Static public key Qs,U 

Static private key ds,V 

Static public key Qs,V 

Ephemeral Data 

 

Ephemeral private key de,U 

Ephemeral public key Qe,U 

N/A 

Computation 1. Compute Zs by calling ECC 
CDH using ds,U and Qs,V  

2. Compute Ze by calling ECC 
CDH using de,U and Qs,V 

3. Compute Z = Ze || Zs 

1. Compute Zs by calling ECC DH 
using ds,V and Qs,U 

2. Compute Ze by calling ECC DH 
using ds,V and Qe,U  

3. Compute Z = Ze || Zs 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial

2. Destroy Z 

1. Compute DerivedKeyingMaterial

2. Destroy Z 

6.2.1.3 MQV1, C(1e, 2s, FFC MQV) Scheme 

This section describes the MQV1 scheme. Assurance of secure key establishment using this 
scheme can only be obtained when the assumptions in Section 6.2.1 are true. In particular, it is 
assumed that party U has obtained the static public key yV of party V, and party V has obtained 
the static public key yU of party U.  
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In this scheme, each party has different actions, which are presented separately below. However, 
note that U and V must use identical orderings of the bit strings that are input to the key-
derivation function.  

Party U shall execute the following key-agreement transformation in order to a) establish a 
shared secret value Z with party V, and b) derive secret keying material from Z.  

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in 
Section 5.6.1.1. Send the public key tU to V. 

2. Use the MQV1 form of the FFC MQV primitive in Section 5.7.2.1.2 to derive a shared 
secret Z from the set of domain parameters D, U’s static private key xU, V’s static public 
key yV, U’s ephemeral private key rU, U’s ephemeral public key tU, and (for a second 
time) V’s static public key yV. If the call to the FFC MQV primitive outputs an error 
indicator, destroy the ephemeral private key rU, destroy the results of all intermediate 
calculations used in the attempted computation of Z, and return an error indicator without 
performing the remaining actions. 

3. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the key-
derivation method outputs an error indicator, destroy all copies of Z and the ephemeral 
private key rU, and return an error indicator without performing the remaining actions. 

4. If the ephemeral private key rU will not be used in a broadcast scenario (see Section 7) 
for subsequent key-establishment transactions using this scheme, then destroy rU. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator.  

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 
subsequent key-establishment transactions using this scheme, then the same ephemeral key pair 
(rU, tU) may be used in other key-establishment transactions occurring during the same broadcast 
(i.e., step 1 above would not be repeated). After the final broadcast transaction, the ephemeral 
private key ru shall be destroyed (see step 4 above). 

Party V shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party U, and b) derive secret keying material from Z.  

Actions: V derives secret keying material as follows: 

1. Receive an ephemeral public key tU (purportedly) from U. If tU is not received, return an 
error indicator without performing the remaining actions. 

2. Verify that tU is a valid public key for the parameters D as specified in Section 5.6.2.3. If 
assurance of public key validity cannot be obtained, return an error indicator without 
performing the remaining actions. 

3. Use the MQV1 form of the FFC MQV primitive in Section 5.7.2.1.2 to derive a shared 
secret Z from the set of domain parameters D, V’s static private key xV, U’s static public 
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key yU, V’s static private key xV (for a second time), V’s static public key yV, and U’s 
ephemeral public key tU. If the call to the FFC MQV primitive outputs an error indicator, 
destroy the results of all intermediate calculations used in the attempted computation of 
Z, and return an error indicator without performing the remaining actions. 

4. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the key-
derivation method outputs an error indicator, destroy all copies of Z, and return an error 
indicator without performing the remaining action. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note:  Key confirmation can be incorporated into this scheme. See Section 6.1.1.5 for details. 

MQV1 is summarized in Table 21. 

Table 21: MQV1 Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter}) 

Static Data Static private key xU 

Static public key yU 

Static private key xV 

Static public key yV 

Ephemeral Data Ephemeral private key rU 

Ephemeral public key tU 

N/A 

Computation 
C 

Compute Z by calling FFC MQV 
using xU, yV, rU, tU, and yV (again) 

 

Compute Z by calling FFC MQV 
using xV, yU, xV (again), yV, and tU 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

6.2.1.4 One-Pass MQV, C(1e, 2s, ECC MQV) Scheme 

This section describes the One-Pass MQV scheme. Assurance of secure key establishment using 
this scheme can only be obtained when the assumptions in Section 6.2.1 are true. In particular, it 
is assumed that party U has obtained the static public key Qs,V of party V, and party V has 
obtained the static public key Qs,U of party U.  

In this scheme, each party has different actions, which are presented separately below. However, 
note that U and V must use identical orderings of the bit strings that are input to the key-
derivation function. 
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Party U shall execute the following transformation to a) establish a shared secret value Z with 
party V, and b) derive secret keying material from Z.  

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in 
Section 5.6.1.2. Send the public key Qe,U to V.  

2. Use the One-Pass MQV form of the ECC MQV primitive in Section 5.7.2.3.2 to derive a 
shared secret value Z from the set of domain parameters D, U’s static private key ds,U, 
V’s static public key Qs,V, U’s ephemeral private key de,U, U’s ephemeral public key Qe,U, 
and (for a second time) V’s static public key Qs,V. If the call to the ECC MQV primitive 
outputs an error indicator, destroy the ephemeral private key de,U, destroy the results of 
all intermediate calculations used in the attempted computation of Z, and return an error 
indicator without performing the remaining actions. 

3. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV). (See Section 5.8.) If the key-
derivation method outputs an error indicator, destroy all copies of Z and the ephemeral 
private key de,U, and return an error indicator without performing the remaining actions. 

4. If the ephemeral private key de,U will not be used in a broadcast scenario (see Section 7) 
for subsequent key-establishment transactions using this scheme, then destroy de,U. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 
subsequent key-establishment transactions using this scheme, then the same ephemeral key pair 
(rU, tU) may be used in other key-establishment transactions occurring during the same broadcast 
(i.e., step 1 above would not be repeated). After the final broadcast transaction, the ephemeral 
private key ru shall be destroyed (see step 4 above). 

Party V shall execute the following transformation to a) establish a shared secret value Z with 
party U, and b) derive shared secret keying material from Z.  

Actions: V derives secret keying material as follows: 

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not received, 
return an error indicator without performing the remaining actions. 

2. Verify that Qe,U is a valid public key for the parameters D as specified in Section 
5.6.2.3.2 or 5.6.2.3.3. If assurance of public key validity cannot be obtained, return an 
error indicator without performing the remaining actions. 

3. Use the One-Pass MQV form of the ECC MQV primitive in Section 5.7.2.3.2 to derive a 
shared secret value Z from the set of domain parameters D, V’s static private key ds,V, U’s 
static public key Qs,U, V’s static private key ds,V (for a second time), V’s static public key 
Qs,V, and U’s ephemeral public key Qe,U. If the call to the ECC MQV primitive outputs an 
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error indicator, destroy the results of all intermediate calculations used in the attempted 
computation of Z, and return an error indicator without performing the remaining actions. 

4. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z, and return an 
error indicator without performing the remaining action. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note:  Key confirmation is to be incorporated into this scheme. See Section 6.2.1.5 for details. 

The One-Pass MQV scheme is summarized in Table 22. 

Table 22: One-Pass MQV Model Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h) 

Static Data Static private key ds,U 

Static public key Qs,U 

Static private key ds,V 

Static public key Qs,V 

Ephemeral Data 

 

Ephemeral private key de,U 

Ephemeral public key Qe,U 

N/A 

Computation Compute Z by calling ECC MQV 
using ds,U, Qs,V, de,U, Qe,U, and Qs,V 
(again) 

Compute Z by calling ECC MQV 
using ds,V, Qs,U, ds,V (again), Qs,V, and 

Qe,U 

 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial

2. Destroy Z  

1. Compute DerivedKeyingMaterial

2. Destroy Z 

6.2.1.5 Incorporating Key Confirmation into a C(1e, 2s) Scheme 

The subsections that follow illustrate how to incorporate key confirmation (as described in 
Section 5.9) into the C(1e, 2s) key-agreement schemes described above. Note that V cannot act 
as a key-confirmation recipient unless a nonce (NonceV) is provided by V to U and is used (in 
addition to the shared secret Z) as input to the key-derivation method employed by the scheme. 
In terms of the preceding descriptions of C(1e, 2s) schemes, this would be accomplished by 
including NonceV (in a protocol-specific fashion) in the OtherInput used during key derivation.  
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The flow depictions separate the key-establishment flow from the key-confirmation flow. The 
depictions and accompanying discussions presume that the assumptions of the scheme have been 
satisfied, that the key-agreement transaction has proceeded successfully through key derivation, 
and that the received MacTags are successfully verified as specified in Section 5.2.2. 

6.2.1.5.1 C(1e, 2s) Scheme with Unilateral Key Confirmation Provided by U to V  

Figure 10 depicts a typical flow for a C(1e, 2s) scheme with unilateral key confirmation from 
party U to party V. In this situation, party U and party V assume the roles of key-confirmation 
provider and recipient, respectively. Since V does not contribute an ephemeral public key during 
the key-agreement process, a nonce (NonceV) shall be provided by V to U and used (in addition 
to the shared secret Z) as input to the key-derivation method employed by the scheme. NonceV is 
used as EphemDataV during MacTag computations. The successful completion of the key 
confirmation process provides party V with assurance that party U has derived the same secret Z 
value. If NonceV is a random nonce, then party V also obtains assurance that party U has actively 
participated in the process; see Section 5.4 for a discussion of the length and security strength 
required for the nonce. 

 

U V

U’s Static Public Key 

V’s Static Public Key 

U’s Ephemeral Public Key 

U’s key 
confirmation 

V sends a nonce 

U sends an ephemeral 
public key 

Obtain static public 
keys 

NonceV 

MacTagU 

Figure 10: C(1e, 2s) scheme with unilateral key confirmation from U to V 

To provide (and receive) key confirmation (as described in Section 5.9.1.1), U (and V) set  

             EphemDataU = EphemPubKeyU,  and EphemDataV = NonceV: 
  
Party U provides MacTagU to V (as specified in Section 5.9.1.1, with P = U and R = V), where 
MacTagU is computed (as specified in Section 5.2.1) using  
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  MacDataU = “KC_1_U” || IDU || IDV || EphemPubKeyU || NonceV {|| TextU}. 

Party V (the key-confirmation recipient) uses the same format for MacDataU to compute its own 
version of MacTagU and then verifies that the newly computed MacTag matches the value 
provided by U. 

6.2.1.5.2 C(1e, 2s) Scheme with Unilateral Key Confirmation Provided by V to U 

Figure 11 depicts a typical flow for a C(1e, 2s) scheme with unilateral key confirmation from party 
V to party U. In this scenario, party V and party U assume the roles of key-confirmation provider 
and recipient, respectively. The successful completion of the key-confirmation process provides 
party U with a) assurance that party V has derived the same secret Z value; and b) assurance that 
party V has actively participated in the process. 

U V

U’s Static Public Key 

V’s Static Public Key 

U’s Ephemeral Public Key 

V’s key 
confirmation 

U sends an ephemeral 
public key 

Obtain static public 
keys 

MacTagV 

 

Figure 11: C(1e, 2s) scheme with unilateral key confirmation from V to U 

To provide (and receive) key confirmation (as described in Section 5.9.1.1), both parties set  

            EphemDataV = Null, and EphemDataU = EphemPubKeyU: 
  
Party V provides MacTagV to U (as specified in Section 5.9.1.1, with P = V and R = U), where 
MacTagV is computed (as specified in Section 5.2.1) using  

  MacDataV = “KC_1_V” || IDV || IDU || Null || EphemPubKeyU {|| Text}. 

Party U (the key-confirmation recipient) uses the same format for MacDataV to compute its own 
version of MacTagV, and then verifies that the newly computed MacTag matches the value 
provided by V. 
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6.2.1.5.3 C(1e, 2s) Scheme with Bilateral Key Confirmation  

Figure 12 depicts a typical flow for a C(1e, 2s) scheme with bilateral key confirmation. In this 
method, party U and party V assume the roles of both the provider and the recipient in order to 
obtain bilateral key confirmation. Since V does not contribute an ephemeral public key during 
the key-agreement process, a nonce (NonceV) shall be provided by V to U and used (in addition 
to the shared secret Z) as input to the key-derivation method employed by the scheme. NonceV is 
used as the EphemDataV during MacTag computations. The successful completion of the key-
confirmation process provides each party with assurance that the other party has derived the 
same secret Z value. Party U obtains assurance that party V has actively participated in the 
process; if NonceV is a random nonce, then party V also obtains assurance that party U has 
actively participated in the process; see Section 5.4 for a discussion of the length and security 
strength required for the nonce. 

 

U V

U’s Static Public Key 

V’s Static Public Key 

U’s Ephemeral Public Key 

U’s key confirmation 

V’s key confirmation 
with a nonce 

U sends an ephemeral 
public key 

Obtain static public 
keys  

NonceV, MacTagV 

MacTagU 

Figure 12: C(1e, 2s) scheme with bilateral key confirmation 

To provide bilateral key confirmation (as described in Section 5.9.2.1), U and V exchange and 
verify MacTags that have been computed (as specified in Sections 5.2.1) using  

             EphemDataU = EphemPubKeyU and EphemDataV = NonceV: 

Party V provides MacTagV to U (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = V and  
R = U); MacTagV is computed by V (and verified by U) using  

  MacDataV  = “KC_2_V” || IDV || IDU || NonceV || EphemPubKeyU {|| TextV}. 

Party U provides MacTagU to V (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = U and  
R = V); MacTagU is computed by U (and verified by V) using  
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  MacDataU  = “KC_2_U” || IDU || IDV || EphemPubKeyU || NonceV {|| TextU}. 

Note that in Error! Reference source not found., party V’s nonce (NonceV) and the MacTag 
(MacTagV) are depicted as being sent in the same message (to reduce the number of passes in the 
combined key-agreement/key-confirmation process). They may also be sent separately (as long 
as NonceV is sent before the MacTags are exchanged). The MacTagV and MacTagU can be sent 
in any order, as long as NonceV is available to generate and verify both MAC tags. 

6.2.2 C(1e, 1s) Schemes 

For each of C(1e, 1s) schemes, Party U generates an ephemeral key pair, but uses no static key 
pair; party V has only a static key pair. Party U obtains party V’s static public key in a trusted 
manner (for example, from a certificate signed by a trusted CA or directly from party V, who is 
trusted) and sends its ephemeral public key to Party V. The parties compute a shared secret using 
their private keys and the other party’s public key. Each party uses the shared secret to derive 
secret keying material (see Figure 13). 

U V

V’s Static Public Key 

U’s Ephemeral Public Key 

U obtains V’s static 
public key  

U sends an ephemeral 
public key  

 

Figure 13: C(1e, 1s) schemes: U contributes an ephemeral key pair, and V contributes a 
static key pair 

Assumptions: In order to execute a C(1e, 1s) key-establishment scheme in compliance with this 
Recommendation, the following assumptions shall be true. 

1. Each party has an authentic copy of the same set of domain parameters, D. These 
parameters have been generated as specified in Section 5.5.1. For FFC schemes, D = (p, 
q, g{, SEED, pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h). 
Furthermore, each party has obtained assurance of the validity of these domain 
parameters as specified in Section 5.5.2. 

2. Party V has been designated as the owner of a static key pair that was generated as 
specified in Section 5.6.1 using the set of domain parameters, D. For FFC schemes, the 
static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Party V has 
obtained assurance of the validity of its own static public key as specified in Section 
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5.6.2.1. Party V has obtained assurance of its possession of the correct value of its own 
private key as specified in Section 5.6.2.1.5. 

3. The parties have agreed upon an approved key-derivation method, as well as an 
approved algorithm to be used with that method (e.g., a hash function) and other 
associated parameters to be used (see Section 5.8).  

4. If key confirmation is used, the parties have agreed upon an approved MAC and 
associated parameters (see Table 8 and Table 9 in Section 5.9.3). 

5. Prior to or during the key-agreement process, party U receives party V’s static public key 
in a trusted manner (e.g., from a certificate signed by a trusted CA or directly from party 
V, who is trusted by the recipient) Party U has obtained assurance of the validity of party 
V’s static public key as specified in Section 5.6.2.2.1. 

6. When an identifier is used to label either party during the key-agreement process, both 
parties are aware of the particular identifier employed for that purpose. In particular, 
when an identifier is used to label party V during the key-agreement process, that 
identifier has a trusted association to that party V’s static public key. (In other words, 
whenever both the identifier and static public key of one participant are employed in the 
key-agreement process, they are associated in a manner that is trusted by the other 
participant.) When an identifier is used to label party U during the key-agreement 
process, it has been selected/assigned in accordance with the requirements of the protocol 
relying upon the use of the key-agreement scheme. 

The following is an assumption for using the derived keying material for purposes beyond the 
C(1e,1s) scheme itself. 

Party U has obtained assurance that party V is (or was) in possession of the appropriate 
static private key, as specified in Section 5.6.2.2.3.  

6.2.2.1 dhOneFlow, C(1e, 1s, FFC DH) Scheme 

This section describes the dhOneFlow scheme. Assurance of secure key establishment using this 
scheme can only be obtained when the assumptions in Section 6.2.2 are true. In particular, it is 
assumed that party U has obtained the static public key yV of party V.  

In this scheme, each party has different actions, which are presented separately below. However, 
note that U and V must use identical orderings of the bit strings that are input to the key-
derivation function. 

Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z. 

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in 
Section 5.6.1.1. Send the public key tU to V. 

2. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z from the set of 
domain parameters D, U’s ephemeral private key rU, and V’s static public key yV. If the 
call to the FFC DH primitive outputs an error indicator, destroy the ephemeral private 
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key rU, destroy the results of all intermediate calculations used in the attempted 
computation of Z, and return an error indicator without performing the remaining actions. 

3. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z and the 
ephemeral private key rU, and return an error indicator without performing the remaining 
actions. 

4. If the ephemeral private key rU will not be used in a broadcast scenario (see Section 7) 
for subsequent key-establishment transactions using this scheme, then destroy rU. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 
subsequent key-establishment transactions using this scheme, then the same ephemeral key pair 
(rU, tU) may be used in other key-establishment transactions occurring during the same broadcast 
(i.e., step 1 above would not be repeated). After the final broadcast transaction, the ephemeral 
private key ru shall be destroyed (see step 4 above). 

Party V shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party U, and b) derive secret keying material from Z. 

Actions: V derives secret keying material as follows: 

1. Receive an ephemeral public key tU (purportedly) from U. If tU is not received, return an 
error indicator without performing the remaining actions. 

2. Verify that tU is a valid public key for the parameters D as specified in Section 5.6.2.3. If 
assurance of public key validity cannot be obtained, return an error indicator without 
performing the remaining actions. 

3. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z from the set of 
domain parameters D, V’s static private key xV, and U’s ephemeral public key tU. If the 
call to the FFC DH primitive outputs an error indicator, destroy the results of all 
intermediate calculations used in the attempted computation of Z, and return an error 
indicator without performing the remaining actions. 

4. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z, and return an 
error indicator without performing the remaining action. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note:  Key confirmation can be incorporated into this scheme. See Section 6.2.2.3 for details. 
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dhOneFlow is summarized in Table 23. 

Table 23: dhOneFlow Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter}) 

Static Data N/A Static private key xV 

Static public key yV 

Ephemeral Data Ephemeral private key rU 

Ephemeral public key tU 

N/A 

Computation Compute Z by calling FFC DH using 
rU and yV  

Compute Z by calling FFC DH using 
xV and tU  

Derive Secret 
Material 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

6.2.2.2 (Cofactor) One-Pass Diffie-Hellman, C(1e, 1s, ECC CDH) Scheme 

This section describes the One-Pass Diffie-Hellman scheme. Assurance of secure key 
establishment using this scheme can only be obtained when the assumptions in Section 6.2.2 are 
true. In particular, it is assumed that party U has obtained the static public key Qs,V of party V.  

In this scheme, each party has different actions, which are presented separately below. However, 
note that U and V must use identical orderings of the bit strings that are input to the key 
derivation function.  

Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z.  

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in 
Section 5.6.1.2. Send the public key Qe,U to V.  

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the set of 
domain parameters D, U’s ephemeral private key de,U, and V’s static public key Qs,V. If 
this call to the ECC CDH primitive outputs an error indicator, destroy the ephemeral 
private key de,U, destroy the results of all intermediate calculations used in the attempted 
computation of Z, and return an error indicator without performing the remaining actions.  

3. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z and the 
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ephemeral private key de,U, and return an error indicator without performing the 
remaining actions. 

4. If the ephemeral private key de,U will not be used in a broadcast scenario (see Section 7) 
for subsequent key-establishment transactions using this scheme, then destroy de,U. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 
subsequent key-establishment transactions using this scheme, then the same ephemeral key pair 
(rU, tU) may be used in other key-establishment transactions occurring during the same broadcast 
(i.e., step 1 above would not be repeated). After the final broadcast transaction, the ephemeral 
private key ru shall be destroyed (see step 4 above). 

Party V shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party U, and b) derive secret keying material from Z.  

Actions: V derives secret keying material as follows: 

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not received, 
return an error indicator without performing the remaining actions. 

2. Verify that Qe,U is a valid public key for the parameters D as specified in Section 5.6.2.3. 
If assurance of public key validity cannot be obtained, return an error indicator without 
performing the remaining actions. 

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the set of 
domain parameters D, V’s static private key ds,V, and U’s ephemeral public key Qe,U. If 
this call to the ECC CDH primitive outputs an error indicator, destroy the results of all 
intermediate calculations used in the attempted computation of Z, and return an error 
indicator without performing the remaining actions. 

4. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, if available). (See Section 5.8.) If the 
key-derivation method outputs an error indicator, destroy all copies of Z, and return an 
error indicator without performing the remaining action. 

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note:  Key confirmation can be incorporated into this scheme. See Section 6.2.2.3 for details. 

The One-Pass Diffie-Hellman is summarized in Table 24. 

 

 

 102



  

 

Table 24: One-Pass Diffie-Hellman Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h) 

Static Data N/A Static private key ds,V 

Static public key Qs,V 

Ephemeral Data 

 

Ephemeral private key de,U 

Ephemeral public key Qe,U 

N/A 

Computation Compute Z by calling ECC CDH 
using de,U and Qs,V  

Compute Z by calling ECC CDH 
using ds,V and Qe,U  

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

1. Compute DerivedKeyingMaterial 

2. Destroy Z 

6.2.2.3 Incorporating Key Confirmation into a C(1e, 1s) Scheme 

The subsection that follows illustrates how to incorporate key confirmation (as described in 
Section 5.9) into the C(1e, 1s) key-agreement schemes described above. Note that only unilateral 
key confirmation from V to U is specified, since only party V has a static key pair that is used in 
the key-establishment process. 

The flow depiction separates the key-establishment flow from the key-confirmation flow. The 
depiction and accompanying discussion presumes that the assumptions of the scheme have been 
satisfied, that the key-agreement transaction has proceeded successfully through key derivation, 
and that the received MacTag is successfully verified as specified in Section 5.2.2.  

6.2.2.3.1 C(1e, 1s) Scheme with Unilateral Key Confirmation Provided by V to U 

Figure 14 depicts a typical flow for a C(1e, 1s) scheme with unilateral key confirmation from party 
V to party U. In this scenario, party V and party U assume the roles of the key-confirmation provider 
and recipient, respectively. The successful completion of the key-confirmation process provides 
party U with a) assurance that party V has derived the same secret Z value; and b) assurance that 
party V has actively participated in the process. 
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Figure 14: C(1e, 1s) scheme with unilateral key confirmation from V to U 

To provide (and receive) key confirmation (as described in Section 5.9.1.1), both parties set  

             EphemDataV = Null, and EphemDataU = EphemPubKeyU: 
  
Party V provides MacTagV to U (as specified in Section 5.9.1.1, with P = V and R = U), where 
MacTagV is computed (as specified in Section 5.2.1) using  

  MacDataV  = “KC_1_V” || IDV || IDU || Null || EphemPubKeyU {|| TextV}. 

Party U (the key-confirmation recipient) uses the same format for MacDataV to compute its own 
version of MacTagV and then verifies that the newly computed MacTag matches the value 
provided by V. 

6.3 C(0e, 2s) Schemes 

In this category, the parties use only static key pairs. Each party obtains the other party’s static 
public keys. A nonce is sent by party U to party V to ensure that the derived keying material is 
different for each key-establishment transaction. The parties calculate the shared secret using 
their own static private key and the other party’s static public key. Secret keying material is 
derived using the key-derivation method, the shared secret, and the nonce (see Figure 15). 
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U V

U’s Static Public Key 

V’s Static Public Key 

NonceU 

U sends a nonce 

Obtain static public 
keys  

Figure 15: C(0e, 2s) schemes: each party contributes only a static key pair 

Assumptions: In order to execute a C(0e, 2s) key-establishment scheme in compliance with this 
Recommendation, the following assumptions shall be true. 

1. Each party has an authentic copy of the same set of domain parameters, D. These 
parameters have been generated as specified in Section 5.5.1. For FFC schemes, D = (p, 
q, g{, SEED, pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h). 
Furthermore, each party has assurance of the validity of these domain parameters as 
specified in Section 5.5.2. 

2. Each party has been designated as the owner of a static key pair that was generated as 
specified in Section 5.6.1 using the set of Domain parameters, D. For FFC schemes, the 
static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Each party has 
obtained assurance of the validity of its own static public key as specified in Section 
5.6.2.1. Each party has obtained assurance of its possession of the correct value for its 
own private key as specified in Section 5.6.2.1.5.  

3. The parties have agreed upon an approved key-derivation method (see Section 5.8), as 
well as an approved algorithm (e.g., a hash function) appropriate for use with the key-
derivation method and other associated parameters to be used (see Section 5.8.1). In 
addition, the parties have agreed on the form of the nonce (see Section 5.4). If key 
confirmation is used, the parties have agreed upon the form of the approved MAC and 
associated parameters (see Table 8 and Table 9 in Section 5.9.3). 

4. Prior to or during the key-agreement process, each party receives the other party’s static 
public key in a trusted manner (e.g., from a certificate signed by a trusted CA or directly 
from the other party, who is trusted by the recipient). Each party has obtained assurance 
of the validity of the other party’s static public key as specified in Section 5.6.2.2. 

5. The recipient of a static public key has obtained assurance that its (claimed) owner is (or 
was) in possession of the corresponding static private key, as specified in Section 5.6.3.2. 
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6. When an identifier is used to label a party during the key-agreement process, that 
identifier has a trusted association to that party’s static public key. (In other words, 
whenever both the identifier and static public key of one participant are employed in the 
key-agreement process, they are associated in a manner that is trusted by the other 
participant.) When an identifier is used to label a party during the key-agreement process, 
both parties are aware of the particular identifier employed for that purpose.   

6.3.1 dhStatic, C(0e, 2s, FFC DH) Scheme 

This section describes the dhStatic scheme. Assurance of secure key establishment using this 
scheme can only be obtained when the assumptions in Section 6.3 are true. In particular, it is 
assumed that party U has obtained the static public key yV of party V, and party V has obtained 
the static public key yU of party U. 

In this scheme, each party has different actions, which are presented separately below. However, 
note that U and V must use identical orderings of the bit strings that are input to the key-
derivation function. In particular, this requirement applies to the placement of NonceU in the 
PartyUInfo subfield of OtherInfo used by the key-derivation method (see Section 5.8). 

Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z. 

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Obtain a nonce, NonceU (see Section 5.4). Send NonceU to V.  

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Z from the set of 
domain parameters D, U’s static private key xU, and V’s static public key yV. If the call to 
the FFC DH primitive outputs an error indicator, destroy NonceU, destroy the results of 
all intermediate calculations used in the attempted computation of Z, and return an error 
indicator without performing the remaining actions. 

3. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDu and IDv, and NonceU.). NonceU shall be in the 
PartyUInfo subfield of OtherInfo. If the key-derivation method outputs an error indicator, 
destroy NonceU and all copies of Z, and return an error indicator without performing the 
remaining actions. 

4. If NonceU will not be used in a broadcast scenario (see Section 7) for subsequent key-
establishment transactions using this scheme, then destroy NonceU. 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note: If NonceU is used in a broadcast scenario by party U (see Section 7) for subsequent key-
establishment transactions using this scheme, then the same NonceU may be used in other key-
establishment transactions occurring during the same broadcast (i.e., step 1 above would not be 
repeated). After the final broadcast transaction, the ephemeral private key ru shall be destroyed 
(see step 4 above). 
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Party V shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party U, and b) derive secret keying material from Z. 

Actions: V derives secret keying material as follows: 

1. Obtain U’s nonce, NonceU, from U. If NonceU is not available, return an error indicator 
without performing the remaining actions. 

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret from the set of 
domain parameters D, V’s static private key xV, and U’s static public key yU. If the call to 
the FFC DH primitive outputs an error indicator, destroy the results of all intermediate 
calculations used in the attempted computation of Z, and return an error indicator without 
performing the remaining actions. 

3. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV (if available), and NonceU). NonceU 
shall be in the PartyUInfo subfield of OtherInfo. If the key-derivation method outputs an 
error indicator, destroy NonceU and all copies of Z, and return an error indicator without 
performing the remaining action. 

4. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note:  Key confirmation can be incorporated into this scheme. See Section 6.3.3 for details. 

dhStatic is summarized in Table 25.  

Table 25: dhStatic Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter}) 

Static Data Static private key xU 

Static public key yU 

Static private key xV 

Static public key yV 

Ephemeral Data NonceU  

Computation Compute Z by calling FFC DH 
using xU, and yV 

Compute Z by calling FFC DH using 
xV, and yU 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial 
using NonceU 

2. Destroy Z 

1. Compute DerivedKeyingMaterial 
using NonceU 

2. Destroy Z 
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6.3.2 (Cofactor) Static Unified Model, C(0e, 2s, ECC CDH) Scheme 

This section describes the Static Unified Model scheme. Assurance of secure key establishment 
using this scheme can only be obtained when the assumptions in Section 6.3 are true. In 
particular, it is assumed that party U has obtained the static public key Qs,V of party V, and party 
V has obtained the static public key Qs,U of party U. 

In this scheme, each party has different actions, which are presented separately below. However, 
note that U and V must use identical orderings of the bit strings that are input to the key-
derivation function. The same requirement applies to the placement of NonceU in the PartyUInfo 
subfield of OtherInfo (see item 4 below). 

Party U shall execute the following key-agreement transformation to a) establish a shared secret 
value Z with party V, and b) derive secret keying material from Z. 

Actions: U generates a shared secret and derives secret keying material as follows: 

1. Obtain a nonce, NonceU (see Section 5.4). Send NonceU to V.  

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the set of 
domain parameters D, U’s static private key ds,U, and V’s static public key Qs,V. If the 
call to the ECC CDH primitive outputs an error indicator, destroy the results of all 
intermediate calculations used in the attempted computation of Z, and return an error 
indicator without performing the remaining actions. 

3. Use the agreed-upon key-derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV, and NonceU). NonceU shall be in the 
PartyUInfo subfield of OtherInfo. If the key-derivation method outputs an error indicator, 
destroy all copies of Z, and return an error indicator without performing the remaining 
actions. 

4. If NonceU will not be used in a broadcast scenario (see Section 7) for subsequent key-
establishment transactions using this scheme, then destroy NonceU 

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note: If NonceU is used in a broadcast scenario by party U (see Section 7) for subsequent key-
establishment transactions using this scheme, then the same NonceU may be used in other key-
establishment transactions occurring during the same broadcast (i.e., step 1 above would not be 
repeated). After the final broadcast transaction, the ephemeral private key ru shall be destroyed 
(see step 4 above). 

Party V shall execute the following key-agreement transformation to a) establish a shared secret 
value, Z, with party U, and b) derive secret keying material from Z. 

Actions: V derives secret keying material as follows: 

1. Obtain U’s nonce, NonceU, from U. If NonceU is not if available, output an error indicator 
and stop. 
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2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the set of 
domain parameters D, V’s static private key ds,V, and U’s static public key Qs,U. If the call 
to the ECC CDH primitive outputs an error indicator, destroy the results of all 
intermediate calculations used in the attempted computation of Z, and return an error 
indicator without performing the remaining actions. 

3. Use the agreed-upon key derivation method to derive secret keying material 
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and 
OtherInput (including the identifiers IDU and IDV (if available), and NonceU. NonceU 
shall be in the PartyUInfo subfield of OtherInfo. If the key-derivation method outputs an 
error indicator, destroy all copies of Z, and return an error indicator without performing 
the remaining action. 

4. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error indicator. 

Note:  Key confirmation can be incorporated into this scheme. See Section 6.3.3 for details. 

Static Unified Model is summarized in Table 26. 

Table 26: Static Unified Model Key-agreement Scheme Summary 

 Party U Party V 

Domain 
Parameters 

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h) 

Static Data Static private key ds,U 

Static public key Qs,U 

Static private key ds,V 

Static public key Qs,V 

Ephemeral Data NonceU  

Computation Compute Z by calling ECC CDH 
using ds,U, and Qs,V  

Compute Z by calling ECC CDH 
using ds,V, and Qs,U 

Derive Secret 
Keying Material 

1. Compute DerivedKeyingMaterial 
using NonceU 

2. Destroy Z 

1. Compute DerivedKeyingMaterial 
using NonceU 

2. Destroy Z 

6.3.3 Incorporating Key Confirmation into a C(0e, 2s) Scheme 

The subsections that follow illustrate how to incorporate key confirmation (as described in 
Section 5.9) into the C(0e, 2s) key-agreement schemes described above. Note that party V cannot 
act as a key-confirmation recipient unless a nonce (NonceV) is provided by V to U and is used (in 
addition to the shared secret Z) as input to the key-derivation method employed by the scheme. 
In terms of the preceding descriptions of C(0e, 2s) schemes, this would be accomplished by 
including NonceV (in a protocol-specific fashion) in the OtherInput used during key derivation. 
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The flow depictions separate the key-establishment flow from the key-confirmation flow. The 
depictions and accompanying discussions presume that the assumptions of the scheme have been 
satisfied, that the key-agreement transaction has proceeded successfully through key derivation, 
and that the received MacTags are successfully verified as specified in Section 5.2.2. 

6.3.3.1 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by U to V 

Figure 16 depicts a typical flow for a C(0e, 2s) scheme with unilateral key confirmation from party 
U to party V. In this scenario, party U and party V assume the roles of key-confirmation provider 
and recipient, respectively. A nonce (NonceV) shall be provided by V to U and used (in addition to 
the shared secret Z and the nonce provided by party U) as input to the key-derivation method 
employed by the scheme. NonceV is used as the EphemDataV during MacTag computations. The 
successful completion of the key-confirmation process provides party V with assurance that party U 
has derived the same secret Z value. If NonceV is a random nonce, then party V also obtains 
assurance that party U has actively participated in the process; see Section 5.4 for a discussion of the 
length and security strength required for the nonce. 

 

U V

U’s Static Public Key 

V’s Static Public Key 

NonceU 

U’s key confirmation 

V sends a nonce 

U sends a nonce 

Obtain static 
public keys  

NonceV 

MacTagU 

Figure 16: C(0e, 2s) scheme with unilateral key confirmation from U to V 

To provide (and receive) key confirmation (as described in Section 5.9.1.1), U (and V) set  

             EphemDataU = NonceU,  and EphemDataV = NonceV: 
  
Party U provides MacTagU to V (as specified in Section 5.9.1.1, with P = U and R = V), where 
MacTagU is computed (as specified in Section 5.2.1) using  

  MacDataU = “KC_1_U” || IDU || IDV || NonceU || NonceV {|| TextU}. 
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Party V (the key-confirmation recipient) uses the same format for MacDataU to compute its own 
version of MacTagU and then verifies that the newly computed MacTag matches the value provided 
by U. 

6.3.3.2 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by V to U 

Figure 17 depicts a typical flow for a C(0e, 2s) scheme with unilateral key confirmation from 
party V to party U. In this situation, party V and party U assume the roles of key-confirmation 
provider and recipient, respectively. The successful completion of the key-confirmation process 
provides party U with assurance that party V has derived the same secret Z value; if NonceU is a 
random nonce, then party U also obtains assurance that party V has actively participated in the 
process; see Section 5.4 for a discussion of the length and security strength required for the 
nonce. 

 

U V

U’s Static Public Key 

V’s Static Public Key 

NonceU 

V’s key confirmation 

U sends a nonce 

Obtain static public 
keys  

MacTagV 

Figure 17: C(0e, 2s) scheme with unilateral key confirmation from V to U 

To provide (and receive) key confirmation (as described in Section 5.9.1.1), Both parties set  

            EphemDataV = Null, and EphemDataU = NonceU: 
  
Party V provides MacTagV to U (as specified in 5.9.1.1, with P = V and R = U), where MacTagV 
is computed (as specified in Section 5.2.1) using  

  MacDataV = “KC_1_V” || IDV || IDU || Null  || NonceU {|| TextV}. 

Party U (the key-confirmation recipient) uses the same format for MacDataV to compute its own 
version of MacTagV, and then verifies that the newly computed MacTag matches the value 
provided by V. 
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6.3.3.3 C(0e, 2s) Scheme with Bilateral Key Confirmation 

Error! Reference source not found. depicts a typical flow for a C(0e, 2s) scheme with bilateral 
key confirmation. In this method, party U and party V assume the roles of both the provider and 
the recipient in order to obtain bilateral key confirmation. A nonce (NonceV) shall be provided 
by V to U and used (in addition to the shared secret Z and the nonce, NonceU, provided by party 
U) as input to the key-derivation method employed by the scheme. NonceV is used as the 
EphemDataV during MacTag computations. The successful completion of the key confirmation 
process provides each party with assurance that the other party has derived the same secret Z 
value. If NonceU is a random nonce, then party U obtains assurance that party V has actively 
participated in the process; if NonceV is a random nonce, then party V obtains assurance that 
party U has actively participated in the process. See Section 5.4 for a discussion about the length 
and security strength required for the nonce. 

 

U V

U’s Static Public Key 

V’s Static Public Key 

NonceU 

U’s key confirmation 

V sends a nonce with key 
confirmation 

U sends a nonce 

Obtain static public 
keys 

NonceV,  MacTagV 

MacTagU 

Figure 18: C(0e, 2s) scheme with bilateral key confirmation 

To provide bilateral key confirmation (as described in Section 5.9.2.1), U and V exchange and 
verify MacTags that have been computed (as specified in Sections 5.2.1) using  

            EphemDataU = NonceU, and EphemDataV = NonceV: 

Party V provides MacTagV to U (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = V and  
R = U); MacTagV is computed by V (and verified by U) using  

  MacDataV  = “KC_2_V” || IDV || IDU || NonceV || NonceU {|| TextV}. 

Party U provides MacTagU to V (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = U and R 
= V); MacTagU is computed by U (and verified by V) using  
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  MacDataU  = “KC_2_U” || IDU || IDV || NonceU || NonceV {|| TextU}. 

Note that in Error! Reference source not found., party V’s nonce (NonceV ) and the MacTag 
(MacTagV) are depicted as being sent in the same message (to reduce the number of passes in the 
combined key-agreement/key-confirmation process). In fact, they can be sent in other orders and 
combinations (as long as NonceU and NonceV are available to generate and verify both MAC 
tags). 

 

7. DLC-Based Key Transport 

A DLC-based key-transport scheme uses both a key-agreement scheme and a key-wrapping 
algorithm in a single transaction to establish keying material. During this transaction, a key-
wrapping key shall be established using an approved key-agreement scheme. This key shall be 
used by party U to wrap secret keying material using an approved key-wrapping algorithm; the 
wrapped keying material is then sent to party V (i.e., party U in the key-agreement scheme will 
be the key-transport sender, and party V will be the key-transport receiver). Approved key-
wrapping algorithms are provided in SP 800-38F. 

To comply with this Recommendation, the key-transport transaction shall use only approved 
key-agreement schemes that employ party V’s static key pair8 and require an ephemeral 
contribution by party U9. In particular, a C(2e, 2s), C(1e, 2s), C(1e, 1s) or C(0e, 2s) key-
agreement scheme shall be used in which party U is the intended key-transport sender; a C(2e, 
0s) scheme shall not be used to establish the key-wrapping key (regardless of which party is the 
intended key-transport sender). Although other methods may be used by protocols that 
incorporate key transport, this Recommendation makes no statement as to the adequacy of those 
methods.   

Key confirmation may optionally be provided by party V following the unwrapping of the 
received keying material, either instead of or in addition to any key confirmation that may be 
performed as part of the key-agreement scheme. When key confirmation is performed following 
the unwrapping process in accordance with this Recommendation, parties U and V shall have 
agreed upon an approved MAC algorithm and associated parameters (see Table 8 and Figure 9 
in Section 5.9.3). 

7.1 Key Transport Scheme 

The DLC-based key-transport scheme is as follows: 

1. An agreed-upon C(2e, 2s), C(1e, 2s), C(1e, 1s) or C(0e, 2s) key-agreement scheme is 
used between party U and party V to establish DerivedKeyingMaterial, which includes a 
KeyWrappingKey that will subsequently be used by party U for key-transport. Key 

 
8 To prevent receiver identifier spoofing; since the receiver has used a static key pair during key agreement, the 
sender has assurance of the identifier of the intended receiver. 

9 To provide the key-transport sender with assurance of the freshness of the key-wrapping key. 
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confirmation (as specified in Section 5.9 and Section 6) may optionally be incorporated 
in the key-agreement scheme to provide assurance that the DerivedKeyingMaterial is the 
same for both parties.  

2. Party U obtains the KeyWrappingKey from the DerivedKeyingMaterial.  

3. Party U selects secret keying material, TransportedKeyingMaterial, to transport to the 
receiver. If key confirmation is to be performed following key-transport, this 
TransportedKeyingMaterial shall include a fresh (i.e., new) MacKey to be used for key 
confirmation and the KeyData to be used subsequent to key transport (see Section 7.2). 

4. Party U calculates WrappedKeyingMaterial = KeyWrap(KeyWrappingKey, 
TransportedKeyingMaterial) using KeyWrap( ), an approved key wrapping algorithm. 

5. Party U sends WrappedKeyingMaterial to party V. 

6. Party V receives WrappedKeyingMaterial from party U. 

7. Party V obtains the KeyWrappingKey from the DerivedKeyingMaterial. 

8. Party V calculates TransportedKeyingMaterial = KeyUnwrap(KeyWrappingKey, 
WrappedKeyingMaterial) using KeyUnwrap( ), the key-unwrapping algorithm that 
corresponds to KeyWrap( ). 

9. If key confirmation is to be performed subsequent to key transport to provide assurance 
to party U that the correct TransportedKeyingMaterial has been obtained by party V, then 
both parties U and V shall proceed as specified in Section 7.2. 

Note that if the key-agreement scheme used in Step 1 is such that party V does not contribute an 
ephemeral key pair to the calculation of the shared secret (that is, a C(1e, 2s), C(1e, 1s), or C(0e, 
2s) scheme has been used) and key confirmation is not included in the key-agreement scheme, 
then Steps 1 through 5 can be performed by party U without direct involvement of party V. This 
can be useful in a store-and-forward environment, such as e-mail. 

Key transport schemes can be used in broadcast scenarios. In a broadcast scenario, an exception 
is made to the rule in this Recommendation that ephemeral keys shall not be reused (see Section 
5.6.3.3). That is, party U may use the same ephemeral key pair in step 1 above in multiple 
instances of DLC-based key-agreement (employing the same scheme) if the same secret keying 
material is being transported to multiple entities for use following key transport10, and if all these 
instances of key transport occur “simultaneously” (or within a short period of time). However, 
the security properties of the key-establishment scheme may be affected by reusing the 
ephemeral key in this manner. 

 
10 Note that when key confirmation is performed after key transport, the MacKey is different for each instance of key 
confirmation, but KeyData is the same for each key-transport receiver participating in the broadcast (see Section 
7.2). 
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7.2 Key Confirmation for Transported Keying Material 

If key confirmation is to be provided in compliance with this Recommendation following the 
transport of keying material (as specified in Section 7.1), party U shall generate a fresh MacKey 
and include it as part of the TransportedKeyingMaterial to be transported (see Section 7.1). The 
transported MacKey shall be used for the computation and verification of the MacTag provided 
by party V to party U.  

For each instance of key confirmation following key transport, this MacKey shall be generated 
anew using an approved random bit generator that is instantiated at or above the security 
strength required for the key establishment transaction. In broadcast scenarios, a different 
MacKey shall be included in the TransportedKeyingMaterial for each key-transport receiver that 
is expected to provide key confirmation to party U. 

The domain parameter set used by the key-agreement scheme employed to establish the key-
wrapping key shall be used to determine the minimum MacKey length and the length of the 
MacTag, as specified in Tables 8 and 9 in Section 5.9.3. 

The transported keying material shall be formatted as follows: 

TranportedKeyingMaterial = MacKey || KeyData. 

The KeyData may be null, or may contain keying material to be used subsequent to key 
transport. The MacKey shall be used during key confirmation and then immediately destroyed by 
both party U and party V. 

The MacKey portion of the transported keying material and an approved MAC algorithm (see 
Sections 5.2 and 5.9.3) are used by each party to compute a MacTag (of an appropriate, agreed-
upon length) on the MacData (see Section 5.9.1.1) represented as  
 

MacData = “KC_KT” || IDV || IDU || EphemDataV || EphemDataU || WrappedKeyingMaterial { || 
Text}, 

where IDV is the identifier associated with party V, and IDU is the identifier associated with 
party U. These identifiers shall be the same as those used to label parties U and V during the 
key-agreement portion of the key-transport transaction. EphemDataV is the ephemeral public key 
or nonce contributed by party V during the establishment of the key-wrapping key used for key 
transport; if no ephemeral data was contributed by party V, then Null shall be used. EphemDataU 
is the ephemeral public key or nonce that was contributed by party U during the establishment of 
the key-wrapping key. WrappedKeyingMaterial is the ciphertext of the keying material that has 
been transported, and Text is an optional bit string that may be used during key-confirmation that 
is known by both parties. 

Party V (the MacTag sender) computes a MacTag  (using the MacKey obtained from the 
TranportedKeyingMaterial and MacData formed as described above) and provides it to Party U. 
Party U (the MacTag receiver) computes a MacTag (using the MacKey that was included in the 
TranportedKeyingMaterial and the MacData formed as described above). Party U then verifies 
that this newly computed MacTag matches the MacTag value provided by party V 
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8. Rationale for Selecting a Specific Scheme 

The subsections that follow offer possible justifications for selecting schemes from each 
subcategory, C(ie, js). These rationales will provide the user or developer with additional 
information that may help when making a choice as to which key-agreement scheme to use. The 
rationales include brief discussions of security properties. They do not present an in-depth 
discussion of all possible security properties of all schemes. The specific security properties that 
can be achieved depend on whether a static key is used, whether an ephemeral key is used, how 
the shared secret is calculated, and whether key confirmation can be incorporated. In general, the 
security properties for each scheme within a subcategory are the same; when this is not the case, 
the exceptions are identified. 

A scheme should not be chosen based solely on the number of security properties it possesses. 
Rather, a scheme should be selected based on how well the scheme fulfills system requirements. 
For instance, if messages are exchanged over a large-scale network where each round trip 
consumes a considerable amount of time, a scheme with fewer passes might be preferable to a 
scheme with more passes, even though the latter may possess more security properties. It is 
important to keep in mind that a key-agreement scheme may be a component of a larger protocol 
that offers additional security properties beyond those provided by the key-agreement scheme 
alone. Protocols, per se, are not specified in this Recommendation.  

Note: In order to provide concise descriptions of the security properties possessed by the various 
schemes, it is necessary to make some assumptions concerning the format and type of data that is 
used during key derivation. These assumptions are made solely for the purposes of Sections 8.1 
through 8.6; they are not intended to preclude the options specified elsewhere in this 
Recommendation. When discussing the rationale for selecting a scheme, it is assumed that the 
OtherInfo input to the key-derivation method employed during a particular key-agreement 
transaction uses either the concatenation format or the ASN.1 format (see Section 5.8.1.2). In 
cases where an approved extraction-then-expansion key-derivation procedure is employed, it is 
assumed that this OtherInfo is used as the Context input during the key-expansion step, as 
specified in [SP 800-56C]. It is also assumed that OtherInfo does not include pre-shared secrets, 
but that OtherInfo does include (at least) sufficiently specific identifiers for the participants in the 
transaction and an identifier for the key-agreement scheme being used during the transaction. 
Finally, it is assumed that all required nonces employed during the transaction are random 
nonces that contain a component consisting of a random bit string formed in accordance with the 
recommendations of Section 5.4.  

8.1 Rationale for Choosing a C(2e, 2s) Scheme 

Since these schemes require each participant to own a static key pair that is used in their key-
agreement transaction, each party has assurance that no unintended party (i.e., no parties other 
than the owners of the corresponding static key pairs) can compute the shared secret, Z, without 
the compromise of a static private key. 

Since these schemes also require each participant to generate an ephemeral key pair that is used 
in their transaction, each party has assurance that the shared secret varies from one C(2e, 2s) 
transaction to the next. Even if both the static and ephemeral private keys of one party from one 
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transaction are compromised, the shared secrets from other legitimate C(2e, 2s) transactions (i.e., 
transactions between honest parties) are protected by the use of different ephemeral private keys. 

If a particular entity’s static private key is acquired by an adversary, then the adversary could 
masquerade as that entity while engaging in any C(2e, 2s) key-agreement transaction that permits 
the use of the compromised key pair. If an MQV scheme (MQV2 or MQV) is employed during 
the transaction, the adversary is limited to using the compromised static private key for that type 
of masquerade. The use of the Full Unified model or dhHybrid1 scheme, however, offers the 
adversary additional opportunities for masquerading: If an adversary compromises an entity’s 
static private key, then the adversary may be able to impersonate other parties during a Full 
Unified model- or dhHybrid1-based key-agreement transaction with that entity. Also, the 
compromise of the static component of a shared secret formed by two parties using the Full 
Unified Model or dhHybrid1 scheme will permit an adversary to masquerade as either party to 
the other party in future key-agreement transactions that rely on the same scheme and the same 
two static key pairs. 

Key confirmation can be provided in either or both directions as part of these schemes by using 
the methods specified in Section 6.1.1.5. This allows the key-confirmation recipient to obtain 
assurance that the key-confirmation provider has possession of the MacKey derived from the 
shared secret Z and has used it with the appropriate MacData to compute the received MacTag. 
In the absence of a compromise of private information11, a key-confirmation recipient can obtain 
assurance that the correct identifier is associated with the key-confirmation provider and that the 
provider is the owner of the static public key associated with that identifier. A key-confirmation 
recipient can also receive assurance of active (and successful) participation by the key-
confirmation provider in the key-agreement transaction.  

8.2 Rationale for Choosing a C(2e, 0s) Scheme 

These schemes require each participant to generate an ephemeral key pair that is used in their 
key-agreement transaction. No static key pairs are employed. Because the ephemeral private 
keys used in the computation of their shared secret are destroyed immediately after use, these 
schemes offer assurance to each party that the shared secret, Z, computed during a legitimate 
C(2e, 0s) transaction (i.e., one involving two honest parties) is protected against the compromise 
of shared secrets and/or private keys from other (prior or future) transactions.  

Unlike a static public key, which is assumed to have a trusted association with an identifier for 
its owner, there is no assumption of a trusted association between an ephemeral public key and 
an identifier. Thus, these schemes offer no assurance to either party of the accuracy of any 
identifier that may be used to label the entity with whom they have established a shared secret. 
The use of C(2e, 0s) schemes may be appropriate in applications where any trusted association 
desired/required between an identifier and an ephemeral public key is enforced by methods 
external to the scheme. 

This Recommendation does not specify how to incorporate key confirmation in these schemes. 

 
11 For example, a static private key or a static Z component. 
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8.3 Rationale for Choosing a C(1e, 2s) Scheme 

These schemes require each participant to own a static key pair that is used in their key-
agreement transaction; in addition, party U is required to generate and use an ephemeral key pair. 
Different assurances are provided to parties U and V by the utilization of a C(1e, 2s) scheme. 

The use of static key pairs in the key-agreement transaction provides each party with assurance 
that no unintended party (i.e., no parties other than the owners of the corresponding static key 
pairs) can compute the shared secret, Z, without the compromise of a static private key.  

Party U, whose ephemeral key pair is used in the computations, has assurance that the shared 
secret will vary from one C(1e, 2s) transaction to the next. Party V cannot obtain such assurance, 
in general, since party V’s contribution to the computation of Z is static. Party V can, however, 
obtain assurance that the derived keying material will vary if, for example, party V contributes a 
nonce that is used as input to the key-derivation method employed during these transactions (as 
is required when party V is a recipient of key confirmation performed as specified in this 
Recommendation). 

The compromise of party U’s static private key does not, by itself, compromise the shared secret 
computed during any legitimate C(1e, 2s) transaction (i.e., one involving two honest parties). 
Likewise, the compromise of only party U’s ephemeral private key would not compromise the 
shared secret Z for that transaction. However, the compromise of an entity’s static private key 
may lead to the compromise of the shared secrets computed during past, current, and future C(1e, 
2s) transactions in which that entity acts as party V; to compromise the shared secrets, the 
adversary must also acquire the public keys contributed by whomever acts as party U in those 
transactions.  

If an adversary learns a particular entity’s static private key, then, in addition to masquerading as 
that entity, the adversary could masquerade as anyone else when acting as party U in a C(1e, 2s) 
transaction in which the compromised entity acts as party V. Similarly, the compromise of the 
static component of a shared secret formed by two entities using the One-Pass Unified Model or 
dhHybrid1OneFlow scheme will permit an adversary to masquerade as either entity (while acting 
as party U) to the other entity (acting as party V) in future key-agreement transactions that rely 
on the same scheme and the same two static key pairs.  

Key confirmation can be provided in either or both directions as part of these schemes by using 
the methods specified in Section 6.2.1.5. This allows the key-confirmation recipient to obtain 
assurance that the key-confirmation provider has possession of the MacKey derived from the 
shared secret Z and has used it with the appropriate MacData to compute the received MacTag. 
In the absence of a compromise of private information12, a key-confirmation recipient can obtain 
assurance that the correct identifier has been used to label the key-confirmation provider and that 
the provider is the owner of the static public key associated with that identifier. A key-

                                                 
12 For example, a static private key or a static Z component. 
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confirmation recipient can also receive assurance of active (and successful) participation by the 
key-confirmation provider in the key-agreement transaction. 

8.4 Rationale for Choosing a C(1e, 1s) Scheme 

In these schemes, party U is required to generate and use an ephemeral key pair, while party V is 
required to own a static key pair that is used in the key-agreement transaction. Different 
assurances are provided to parties U and V by the utilization of a C(1e, 1s) scheme. 

The use of party V’s static public key provides party U with assurance that no unintended party 
(i.e., no parties other than party U and the owner of V’s static public key) can compute the 
shared secret, Z, without the compromise of private material (e.g., a private key). Party V has no 
such assurance, in general, since party V has no assurance concerning the accuracy of any 
identifier that may be used to label party U (unless the protocol using this scheme includes 
additional elements that establish a trusted association between an identifier for party U and the 
ephemeral public key that U contributes). 

Since party U generates the ephemeral key pair that is used in the computation of Z, party U has 
assurance that the shared secret will vary from one C(1e, 1s) transaction to the next. Party V has 
no such assurance, since party V’s contribution to the computation of Z is static. 

There is no assurance provided to either party that the security of the shared secret is protected 
against the compromise of a private key. A compromise of party U’s ephemeral private key 
compromises the shared secret for the particular transaction in which it was used. However, the 
compromise of party V’s static private key may lead to the compromise of shared secrets 
resulting from past, current, and future C(1e, 1s) transactions in which that entity acts as party V; 
to compromise the shared secrets, the adversary must also acquire the ephemeral public keys 
contributed by whomever acts as party U in those transactions. 

Party V may provide key confirmation to party U as specified in Section 6.2.2.3. This allows 
party U to obtain assurance that party V has possession of the MacKey derived from the shared 
secret Z and has used it with the appropriate MacData to compute the received MacTag. In the 
absence of a compromise of private information (e.g., a private key), party U can obtain 
assurance that the correct identifier has been used to label party V, and that party V is indeed the 
owner of the static public key associated with that identifier. Assuming that party V’s static 
private key has not been compromised, the key-confirmation recipient, party U, can also receive 
assurance of active (and successful) participation by party V in the key-agreement transaction. 

8.5 Rationale for Choosing a C(0e, 2s) Scheme 

These schemes require each participant to own a static key pair that is used in their key-
agreement transaction; in addition, party U is required to generate a nonce, which is sent to party 
V and used (by both parties) as input to their chosen key-derivation method. 

The use of static key pairs in their key-agreement transaction provides each party with assurance 
that no unintended party (i.e., no parties other than the owners of the corresponding static key 
pairs) can compute their shared secret, Z, without the compromise of a static private key. 
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Although the value of Z is static (as long as the two parties employ the same static key pairs), 
party U, whose (required) nonce is used in the key-derivation computations, has assurance that 
the derived keying material will vary from one C(0e, 2s) transaction to the next. In general, party 
V has no such assurance – unless, for example, party V also contributes a nonce that is used as 
input to the key-derivation method employed during the transaction (as is required when party V 
is a recipient of key confirmation performed as specified in this Recommendation). 

If the (static) value of Z formed by the two entities is ever compromised, then all of the keying 
material derived in past, current, and future C(0e, 2s) key-agreement transactions between these 
same two entities that employ these same static key pairs may be compromised as well, since the 
same Z value is used to derive keying material in each instance. However, to compromise the 
keying material from a particular transaction, the adversary must also acquire the nonce 
contributed by the entity that acted as party U in that transaction. The compromise of the static Z 
value will also permit an adversary to masquerade as either entity to the other entity in future 
C(0e, 2s) key-agreement transactions. 

If an entity’s static private key is compromised, then shared secrets of current, prior and future 
C(0e, 2s) transactions involving that entity’s static key pair may be compromised, irrespective of 
the role (whether party U or party V) played by the compromised entity. Regardless of what 
entity acts in the other role, the adversary may be able to compute the shared secret Z and 
proceed to compromise the derived keying material, as described above. To complete the attack 
against a particular transaction, the adversary must acquire the static public key contributed by 
the other entity participating in that transaction, as well as the nonce contributed by whichever 
entity acted as party U during the transaction.  

Of course, if a static private key has been compromised by an adversary, then the adversary can 
masquerade as the owner of the corresponding static key pair in key-agreement transactions with 
any other party. In addition, the adversary can masquerade as any entity (whether acting as party 
U or party V) while engaging in a C(0e, 2s) key-agreement transaction with the owner of the 
compromised key pair.  

Key confirmation can be provided in either or both directions as part of these schemes by using 
the methods specified in Section 6.3.3.1. This allows the key-confirmation recipient to obtain 
assurance that the key-confirmation provider has possession of the MacKey derived from the 
shared secret Z and has used it with the appropriate MacData to compute the received MacTag. 
In the absence of a compromise of private information13, a key-confirmation recipient can obtain 
assurance that the correct identifier has been used to label the key-confirmation provider, and 
that the provider is the owner of the static public key associated with that identifier. A key-
confirmation recipient can also receive assurance of active (and successful) participation by the 
key-confirmation provider in the key-agreement transaction. 

8.6 Choosing a Key-Agreement Scheme for use in Key Transport 

The key-agreement scheme employed while performing DLC-based key transport as specified in 
this Recommendation is required to be a C(2e, 2s), C(1e, 2s), C(1e, 1s) or C(0e, 2s) scheme in 

 
13 For example, a static private key or a static Z value. 
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which the intended key-transport sender acts as party U, and the intended key-transport receiver 
acts as party V. The security properties of these schemes (in particular, the assurances that they 
can provide to parties U and V) have been discussed in the previous sections. In this section, the 
emphasis is on how the security properties of these schemes affect the assurances that can be 
provided by key transport. 

Note: Unless it is explicitly stated otherwise, the analysis that follows is restricted to key-
transport transactions that involve only two parties – the sender (party U) and one receiver (party 
V). The broadcast scenario (involving multiple receivers) will be addressed briefly at the 
conclusion of the section.) 

The use of party V’s static public key provides party U with assurance that no unintended party 
(i.e., no parties other than party U and the owner of V’s static public key) can compute the 
shared secret Z, from which the key-wrapping key is derived, without the compromise of private 
material (e.g., the private component of one or more key pairs, or a static Z value).  

When a C(2e, 2s), C(1e, 2s), or C(1e, 1s) scheme is employed, party U generates an ephemeral 
key pair that is used in the computation of Z. This provides assurance to party U that the shared 
secret and key-wrapping key will vary from one key-transport transaction to the next. Assurance 
of the freshness of the key-wrapping key can also be obtained by party U when a C(0e, 2s) 
scheme is employed, since U is required to contribute a nonce (see Section 5.4) that is used in the 
derivation of the key-wrapping key. In the absence of a compromise of private material14,  the 
freshness of the key-wrapping key provides assurance to party U (the key-transport sender) that 
the wrapped keying material transported during that particular transaction is protected against the 
compromise of key-wrapping keys from other transactions (past or future). 

Assuming that no key pairs and/or static Z values are compromised, the required use of party V’s 
static public key, together with the required ephemeral contribution from party U provides 
assurance to party U that only the intended key-transport receiver will be able to derive the 
(fresh) key-wrapping key and use it to unwrap the transported keying material. 

If a C(2e, 2s), C(1e, 2s), or C(0e, 2s) scheme is employed, the use of party U’s static public key 
provides party V (the key-transport receiver) with assurance that no unintended party (i.e., no 
parties other than party V and the owner of party U’s static public key) can compute the shared 
secret Z, from which the key-wrapping key is derived, without the compromise of private 
material (e.g., the private component of one or more key pairs, or a static Z value). The trusted 
association of an identifier with party U’s static public key provides party V with a method for 
accurately labeling the (purported) key-transport sender.  

If a C(1e, 1s) scheme is employed, party U (the key-transport sender) is only required to provide 
an ephemeral public key to party V. Since there is no assumption of a trusted association 
between an ephemeral public key and an identifier, the use of a C(1e, 2s) scheme (in and of 
itself) offers no assurance to party V of the accuracy of any identifier that may be associated with 
party U. Any trusted association desired/required between an identifier and the (purported) 

 
14 For example, a static private key or a static Z value. 
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sender (party U) would have to be provided by methods external to the key-establishment 
scheme. 

When a C(2e, 2s) scheme is employed, party V generates an ephemeral key pair that is used in 
the computation of Z. This provides assurance to party V that both the shared secret and the key-
wrapping key derived from it will vary from one key-transport transaction to the next. Assurance 
of the freshness of the key-wrapping key may also be obtained by party V when a C(1e, 2s), 
C(1e, 1s) or C(0e, 2s) scheme is employed, if party V contributes a nonce (see Section 5.4) that 
is used in the derivation of the key-wrapping key. In the absence of a compromise of private 
material, assurance of the freshness of the key-wrapping key would provide assurance to party V 
that the wrapped keying material transported during that particular transaction is protected 
against the compromise of key-wrapping keys used in other transactions (past or future). 

Key confirmation from party V (the intended key-transport receiver) to party U (the intended 
key-transport sender) can be incorporated in a C(2e, 2s), C(1e, 2s), C(1e, 1s) or C(0e, 2s) scheme 
(as specified in Section 6.1.1.5.2, Section 6.2.1.5.2, Section 6.2.2.3, or Section 6.3.3.2, 
respectively) following the derivation of the key-wrapping key. This enables party V to provide 
assurance to party U that V has derived the correct key-wrapping key. A failure of key 
confirmation would alert party U that party V may not be able to unwrap the transported keying 
material, and the key-transport transaction could be discontinued before the keying material is 
wrapped and sent. 

Key confirmation from party U (the intended key-transport sender) to party V (the intended key-
transport receiver) can be incorporated in a C(2e, 2s), C(1e, 2s), or C(0e, 2s) scheme (as 
specified in Section 6.1.1.5.1, Section 6.2.1.5.1, or Section 6.3.3.1, respectively) prior to the key-
transport portion of the transaction; in the case of a C(1e, 2s) or C(0e, 2s) scheme, party V would 
be required to contribute a nonce that is used as input to the key-derivation method when the 
key-warping key is derived. Key confirmation provided by party U enables party V to obtain 
assurance that party V has derived the same key that party U will employ to wrap the transported 
keying material. A failure of key confirmation may, for example, prompt party V to discontinue 
the current key-transport transaction (without attempting to unwrap any transported keying 
material) and notify party U that they must try again to establish a shared key-wrapping key. 

As specified in Section 7.2, key confirmation can also be performed following the transport of 
the wrapped keying material, allowing party U to obtain assurance that party V has successfully 
employed the derived key-wrapping key to unwrap the transported keying material. Confirming 
party V’s success in unwrapping the transported keying material also confirms that party V has 
correctly derived the key-wrapping key during the key-agreement portion of the transaction. 
Therefore, at the risk of transporting keying material that cannot be unwrapped, key confirmation 
following the transport of wrapped keying material (as specified in Section 7.2) provides an 
alternative to incorporating key confirmation (from party V to party U) in the key-agreement 
scheme. 

The use of a C(1e, 2s), C(1e, 1s) or C(0e, 2s) scheme in DLC-based key transport allows for one-
pass implementations of key transport (in cases where key confirmation is not required). 
Assuming that party V’s static public key has been obtained previously, party U can include the 
wrapped keying material and all of the data required for party V to derive the key-wrapping key 
in a single message. On the other hand, the use of a C(2e, 2s) scheme necessitates the exchange 
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of two or more messages, since each party must (at least) provide an ephemeral public key to the 
other party in the transaction.  

There are additional considerations that apply to the broadcast scenario, in which one sender 
transports the same keying material “simultaneously” (or within a short period of time) to 
multiple receivers for use following the key-transport transaction(s).  

As noted in Section 7.1, this Recommendation’s general prohibition against the reuse of an 
ephemeral key pair is relaxed in broadcast scenarios, permitting (but not requiring) the key-
transport sender (acting as party U in the key-agreement portion of the transaction) to use the 
same ephemeral key pair when establishing key-wrapping keys with the multiple key-transport 
receivers. However, parties must proceed with caution when engaging in such practices (see, for 
example, “On Reusing Ephemeral Keys in Diffie-Hellman Key Agreement Protocols,” by A. 
Menezes and B. Ustaoglu; available at http://cacr.uwaterloo.ca/techreports/2008/cacr2008-
24.pdf).  

As part of the proper implementation of this Recommendation, party U should not reuse an 
ephemeral public key when establishing key-wrapping keys for key transport in a broadcast 
scenario unless they and/or agents trusted to act on their behalf have determined the conditions 
(including the choice of key-agreement scheme) under which this practice meets the security 
requirements of both the sender (i.e., party U) and the receivers. 

If, in a broadcast scenario, party U requires multiple receivers to provide evidence that they have 
successfully unwrapped the keying material sent to them, using key confirmation as specified in 
Section 7.2, it is imperative for party U to transport a unique MAC key to each receiver (as 
required by this Recommendation). In the absence of the compromise of any key-wrapping keys, 
this will deter one receiver from masquerading as another when returning a key-confirmation 
MacTag to party U (the key-transport sender). 
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9. Key Recovery 

For some applications, the secret keying material used to protect data may need to be recovered 
(for example, if the normal reference copy of the secret keying material is lost or corrupted). In 
this case, either the secret keying material or sufficient information to reconstruct the secret 
keying material needs to be available (for example, the keys, domain parameters and other inputs 
to the scheme used to perform the key establishment process). 

Keys used during the key establishment process shall be handled in accordance with the 
following: 

1. A static key pair may be saved. 

2. An ephemeral public key may be saved. 

3. An ephemeral private key shall be destroyed after use and, therefore, shall not be 
recoverable. 

4. A symmetric key may be saved. 

Note: This implies that keys derived from schemes where both parties generate ephemeral key 
pairs (i.e., the C(2e, 2s) and C(2e, 0s) schemes) cannot be made recoverable by reconstruction of 
the secret keying material by parties requiring the ephemeral private key in their calculations. 
For those schemes where only party U generates an ephemeral key pair (i.e., the C(1e, 2s) and 
C(1e, 1s schemes), only party V can recover the secret keying material by reconstruction. 

General guidance on key recovery and the protections required for each type of key is provided 
in the Recommendation for Key Management [SP 800-57]. 

10. Implementation Validation  

When the NIST Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic 
Module Validation Program (CMVP) have established a validation program for this 
Recommendation, a vendor shall have its implementation tested and validated by the CAVP and 
CMVP in order to claim conformance to this Recommendation. Information on the CMVP is 
available at http://csrc.nist.gov/cryptval/. 

An implementation claiming conformance to this Recommendation shall include one or more of 
the following capabilities: 

 Domain parameter generation as specified in Section 5.5.1. 

 Explicit domain parameter validation as specified in Section 5.5.2, item 2.  

  Key pair generation as specified in Section 5.6.1; documentation shall include how 
assurance of domain parameter validity is expected to be achieved by the key pair owner. 
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 Explicit public key validation as specified in Section 5.6.2.3.1 for FFC or as specified in 
Sections 5.6.2.3.2 or 5.6.2.3.3 for ECC.  

 A key-agreement scheme from Section 6, together with an approved key derivation 
method from Section 5.8 or an application-specific KDF from SP 800-135. Other key 
derivation methods may be temporarily allowed for backward compatibility; these other 
allowable methods and any restrictions on their use will be specified in FIPS 140-2 
Annex D.  If key confirmation is also claimed, the appropriate key confirmation 
technique from Section 5.9 shall be used. Documentation shall include how assurance of 
private key possession and assurance of domain parameter and public key validity are 
expected to be achieved by both the owner and the recipient. 

 A key transport scheme as specified in Section 7. 

An implementer shall also identify the appropriate specifics of the implementation, including: 

 The security strength(s) of supported cryptographic algorithms; this will determine the 
parameter set requirements (see Table 1 and Table 2 in Section 5.5.1), 

 The domain parameter generation method (see Section 5.5.1). 

 The hash function (see Section 5.1), 

 The MAC key length(s) (see Table 8 and Table 9 in Section 5.9.3), 

 The MAC length(s) (see Table 8  and Table 9 in Section 5.9.3). 

 The type of cryptography: FFC or ECC, 

 The key-establishment schemes available (see Section 6), 

 The key derivation method to be used, including the format of OtherInfo (see Section 
5.8), 

 The type of nonces to be generated (see Section 5.4), 

 The NIST- Recommended elliptic curve(s) available (if appropriate),  

 The key wrap algorithm, and 

 The key confirmation scheme (see Section 5.9). 
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Appendix B: Rationale for Including Identifiers in the KDF 
Input 

It is strongly recommended that identifiers for both parties to a key-agreement transaction be 
included among the data input to the key-derivation method – as a simple and efficient means of 
binding those identifiers to the derived keying material. (See Sections 5.8.)   

The inclusion of sufficiently-specific identifiers for party U and party V provides assurance that 
the keying material derived by those parties will be different from the keying material that is 
derived by other parties (or by the same parties acting in opposite roles). As a result, key-
agreement schemes gain resilience against unknown-key-share attacks and/or other exploitation 
techniques that depend on some type of confusion over the role played by each party (e.g., party 
U versus party V). See, for example, references [CBH 2005], [Menezes 2007], [RBB 2001], [BM 
1998], and [CMU  2009], which all recommend the inclusion of identifiers in the key derivation 
method as a means of eliminating certain vulnerabilities. 

In addition to identifiers, the inclusion of other context-specific information in the key-derivation 
input data can be used to draw finer distinctions between key-agreement transactions, providing 
assurance that parties will not derive the same keying material unless they agree on all of the 
included information. This can protect against attacks that rely on confusion concerning the 
context in which key-establishment takes place and/or how the derived keying material is to be 
used, see [CMU 2009]. Examples of additional context-specific information include (but are not 
limited to) the protocol employing the key-derivation method, protocol-defined session numbers, 
the key-agreement scheme that was employed to produce the shared secret Z, any ephemeral 
public keys and/or nonces exchanged during the key-agreement transaction, the bit length of the 
derived keying material, and its intended use. 

Protocols employing an approved key-agreement scheme may employ alternative methods to 
bind participant identifiers (and/or other context-specific data) to the derived keying material or 
otherwise provide assurance that the participants in a key-agreement transaction share the same 
view of the context in which the keying material was established (including their respective roles 
and identifiers). However, this Recommendation makes no statement as to the adequacy of these 
other methods. 
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Appendix C: Data Conversions (Normative) 

C.1 Integer-to-Byte String Conversion 

Input: A non-negative integer C and the intended length n of the byte string satisfying 

    28n > C 

When called from an FFC Scheme, n = t / 8 bytes, where t = log2 p where p is 
the large prime field order. 

Output: A byte string S of length n bytes. 

1. Let S1, S2,…, Sn be the bytes of S from leftmost to rightmost. 

2. The bytes of S shall satisfy: 

  C = 28(n-i)Si for i = 1 to n. 

C.2 Field-Element-to-Byte String Conversion 

Input:   An element  in the field Fq. 

Output:  A byte string S of length n = t / 8 bytes, where t = log2 q. 

1. If q is an odd prime, then  must be an integer in the interval [0, q-1];  shall be 
converted to a byte string of length n bytes using the technique specified in Appendix C.1 
above. 

2. If q = 2m, then  must be a bit string of length m bits. Let s1, s2, …, sm be the bits of  
from leftmost to rightmost. Let S1, S2, …, Sn be the bytes of S from leftmost to rightmost. 
The rightmost bit sm shall become the rightmost bit of the last byte Sn, and so on through 
the leftmost bit s1, which shall become the (8n - m + 1)th bit of the first byte S1. The 
leftmost (8n - m) bits of the first byte S1 shall be zero. 

C.3 Field-Element-to-Integer Conversion 

Input:   An element  in the field Fq. 

Output:  An integer x. 

1. If q is an odd prime, then x =  (no conversion is required). 

2. If q = 2m, then  must be a bit string of length m bits. Let s1, s2, …, sm be the bits of  
from leftmost to rightmost.  shall be converted to an integer x satisfying: 

x = 2(m-i) si  for i = 1 to m. 
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Appendix D: Revisions (Informative) 

The original version of this document was published in March, 2006. In March, 2007, the 
following revision was made to allow the dual use of keys during certificate requests: 

In Section 5.6.4.2, the second item was originally as follows: 

“A static key pair may be used in more than one key-establishment scheme. However, 
one static public/private key pair shall not be used for different purposes (for example, a 
digital signature key pair is not to be used for key establishment or vice versa).” 

The item was changed to the following, where the changed text is indicated in italics: 

“A static key pair may be used in more than one key-establishment scheme. However, 
one static public/private key pair shall not be used for different purposes (for example, a 
digital signature key pair is not to be used for key establishment or vice versa) with the 
following possible exception: when requesting the (initial) certificate for a public static 
key-establishment key, the key establishment private key associated with the public key 
may be used to sign the certificate request. See SP 800-57, Part 1 on Key Usage for 
further information.” 

 

In August 2012 version, the following revisions were made; 

 Abstract – The March 2007 version cites ANS X9.42 and X9.63; this version directly 
provides information on the key establishment schemes (DH, MQV) and the underlying 
mathematics structure (discrete logs on finite field, elliptic curve). 

 Section 3.1 – Added definitions of assumption, binding, bit string, byte, byte string, 
destroy, key-establishment pair, key wrapping key, trusted association; removed 
definitions on assurance of identifier, initiator, responder, (instead initiator and responder, 
all the schemes are defined in terms of party U and party V, see revision in Section 4), 
extended keying material to derived keying material (derived from the shared secret) and 
transported keying material (generated by the sendor in a key transport scheme.) 

 Section 3.2 – The notations, C(ie), C(ie, js), MAC(MacKey, MacData), MacTag, 
T_bitlen(X), were introduced; the notation |x | is removed. 

 Section 3.2 – Notations Z, Ze, Zs are used for both FFC and ECC and therefore moved up 
as general notations.  

 Section 3.2 – The terms GF(p), GF(p)* were introduced for FFC.  

 Section 4 – Used U and V to name the parties, rather than user the initiator and responder 
as the parties. Discussions about identifiers vs. identity and binding have been moved to 
Section 4.1. 

 Section 4.1 – Added discussions on the concept of a trusted association;  

 Section 5 – Table 1 in March 2007 version has been removed; the information is now 
provided in Tables 6 and 7 in Section 5.8.1, and Tables 8 and 9 in Section 5.9.3.   
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 Section 5.2 – Provided more details on MAC inputs (MacKey and MacData).  Added text 
that MACs can be used for key derivation, as well as key confirmation.  Added SP 800-
38B (CMAC) as an approved MAC.  Refers to the new Tables 6 and 7. 

 Section 5.2.1 -  MacLen now is a parameter, rather than an input variable. Refers to new 
Tables 8 and 9, instead of old Tables 1 and 2. Discusses the truncation of the MAC 
output. 

 Section 5.4 – More discussion has been added about the use of nonces, including new 
requirements and recommendations. 

 Section 5.5.1.1 – More information is provided about finite fields.  Added the 
requirement that the leftmost bit of p and q be a 1. Table 1 has been shortened to address 
just the values of p and q; information about the hash function is now provided in Tables 
6 and 7 of Section 5.8.1, and in Tables 8 and 9 of Section 5.9.3. 

 Section 5.5.1.2 – More information is provided about elliptic curves.  More details are 
provided on parameter values. Table 2 has been shorted to just address n and h; 
information about the hash function is now provided in Tables 6 and 7 of Section 5.8.1, 
and in Tables 8 and 9 of Section 5.9.3. 

 Section 5.5.2 – A note about parameters generated by using SHA-1has been removed. 
The validation methods are referred to other documents (FIPS 186 and ANS X9.62). It is 
not a right place for such statement.  

 Section 5.6 has been reorganized to make it clearer to understand key generation and 
obtaining the required assurances. 

 Section 5.6.1.1 – FFC key-pair generation has been revised to require a randomly 
selected integer in the range in the range [2, q2], rather than requiring a private key for 
FFC key pair generation to be unpredictable and generated by an approved RNG.  
Generation in accordance with FIPS 186-3 (as referenced therein) fulfills these 
requirements. 

 Section 5.6.1.2 – ECC key-pair generation has been revised to require a randomly 
selected integer in the range in the range [2, n2], rather than requiring a private key for 
ECC key pair generation to be unpredictable and generated by an approved RNG.  
Generation in accordance with FIPS 186-3 (as referenced therein) fulfills these 
requirements. 

 New Section 5.6.2 – Discusses assurances and why they are required.  Added Tables 3, 4, 
and 5 which summarize types of assurance.   

 New Section 5.6.2.1 – Discusses the assurances required by a key-pair owner about its 
own key pair, including owner assurance of correct generation, static and ephemeral 
public-key validity, pair-wise consistency and private-key possession.   

 New Section 5.6.2.2 – Discusses the assurances required by a public-key recipient, 
including static and ephemeral public-key validity, and static and ephemeral private-key 
possession. 
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 New Sections 5.6.3.2 and 5.6.3.3 – Different requirements are included for static and 
ephemeral key pairs.  Included a case that an agent may act on behalf of a system user.   

 Section 5.7 – Added requirements to destroy all values if there is an error and to destroy 
intermediate calculations have been added for each FFC and ECC primitive. Conversion 
calls have been added to convert to a string. Note that this removed such statements for 
the action steps for each scheme in Section 6. 

 Section 5.8 – Key derivation has been divided into single-step key derivation methods 
(Section 5.8.1), an extract-then-expand key-derivation procedure (Section 5.8.2) and 
application-specific key-derivation methods (Section 5.8.3). 

 Section 5.8.1 – Instead of using a hash function, the one-step method is now defined with 
a function H, which can be a hash function or an HMAC with an approved hash function. 
Added tables defining minimum length for the hash functions with regard to each 
parameter set;; and added more complete discussions about OtherInfo, including the 
concatenation and ASN.1 formats included in the previous version. HMAC with an 
approved hash function is now approved for key derivation, in addition to the hash 
function specified in the previous version.  

 Section 5.8.2 – Added reference to an approved two-step method – an extraction-then-
expansion method – that is specified in SP 800-56C.  

 Section 5.8.3 – Added reference to the application-specific key derivation methods 
provided in SP 800-135.  

 Moved general introduction of key confirmation to Section 5.9 – Incorporates the 
material from Section 8 (with additional introductory material).  

 New Section 5.9.1.1 – Emphasizes more clearly that a nonce is required if there is no 
ephemeral key; added guidance on what to do if key confirmation fails. 

 New Section 5.9.2 – Emphasizes that if no ephemeral key is used, then a nonce is 
required. 

 New Section 5.9.3 – Discussions about the  security strength of the MacTag are provided, 
along with tables on the minimum MacKey length and MacLen values. 

 Section 6 – The notation C(ie) replaces C(i), and C(ie, js) replaces C(i, j). If U does not 
contribute a static key, then the requirement for a non-null identifier is now transaction 
dependent, rather than required.  Rationale for choosing the C(ie, js) schemes has been 
moved to a new Section 8, instead of after each class of schemes. Assumptions are 
specified for each type of scheme, rather than prerequisites. 

 Section 6.1.1 (and similarly for Sections 6.2.1, 6.2.2 and 6.3) –Added a new assumption 
that if an identifier is used as a label, then the identifier must have a trusted association to 
that party’s static key. The discussion on the need for a trusted association has been 
added. 

 Section 6.1.1.1 (dhHybrid1) – More guidance is provided about error handling.  
Specifically allows the reuse of an ephemeral key pair in a broadcast scenario.  This is 
also provided in Sections 6.1.1.2, 6.1.1.3 and 6.1.1.4. 
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 New Section 6.1.1.5 (and similarly in new Sections 6.1.2.3, 6.2.1.5, 6.2.2.3 and 6.3.3) – 
Key confirmation is incorporated to each applied subcategory of schemes.  This material 
was previously provided in Section 8.4 of the previous version. 

 Section 6.2.1 (C(1e,2s) schemes) – Added additional assumptions which were included in 
the previous prerequisites.  This includes obtaining assurance of static public key validity 
and private keys possession of the key-pair owner. 

 Section 7 –  Has been revised to specify DLC-based key-agreement and key transport in 
the same key-establishment transaction, with party U acting as the key-transport sender.  
In addition, optional key confirmation from party V to party U following the key-
transport process has been specified. 

 Section 8 –  The rationale for choosing each scheme type has been moved from Section 6 
of the previous version. A new section on the rationale associated with key-transport has 
been included. 

 All figures are replaced to reflect the content, text, and terminology changes.  

 Old Appendix A, Summary of Differences between this Recommendation and ANS X9 
Standards, was removed. Note that X9.42 was withdrawn, while X9.63 has modified to 
be consistent with this Recommendation.  

 Appendix B – The requirement of including identifiers as part of the OtherInfo is 
replaced with text that. it is strongly recommended that identifiers for both parties to a 
key-agreement transaction be included among the data input to a key-derivation method.  
A paragraph has been added stating that there may be other ways to bind identifiers to 
derived keying material, but the recommendation makes no statement on the adequacy of 
this. 

 The new Appendix A includes all the informative references, which was in Appendix D 
in March 2007 version. 

 The old Appendix E becomes Appendix D and the changes on March 2007 version are 
added as listed here.  

 


	1. Introduction
	2. Scope and Purpose
	3. Definitions, Symbols and Abbreviations
	3.1 Definitions
	3.2 Symbols and Abbreviations

	4. Overview of Key-Establishment Schemes 
	4.1 Key Establishment Preparations
	4.2 Key Agreement Process
	4.3 DLC-based Key Transport Process

	5. Cryptographic Elements
	5.1 Cryptographic Hash Functions
	5.2 Message Authentication Code (MAC) Algorithm
	5.2.1 MAC Tag Computation for Key Confirmation
	5.2.2 MAC Tag Verification for Key Confirmation

	5.3 Random Number Generation 
	5.4  Nonces
	5.5 Domain Parameters
	5.5.1 Domain Parameter Generation
	5.5.1.1 FFC Domain Parameter Generation
	5.5.1.2 ECC Domain Parameter Generation 

	5.5.2 Assurances of Domain Parameter Validity
	5.5.3 Domain Parameter Management

	5.6 Key-Establishment Key Pairs
	5.6.1 Key-Pair Generation
	5.6.1.1 FFC Key-Pair Generation
	5.6.1.2 ECC Key-Pair Generation

	5.6.2 Required Assurances 
	5.6.2.1 Assurances Required by the Key Pair Owner 
	5.6.2.1.1 Owner Assurance of Correct Generation
	5.6.2.1.2 Owner Assurance of Private-Key Validity
	5.6.2.1.3 Owner Assurance of Public-Key Validity
	5.6.2.1.4 Owner Assurance of Pair-wise Consistency
	5.6.2.1.5 Owner Assurance of Possession of the Private Key

	5.6.2.2 Assurances Required by a Public Key Recipient
	5.6.2.2.1 Recipient Assurance of Static Public-Key Validity
	5.6.2.2.2 Recipient Assurance of Ephemeral Public-Key Validity
	5.6.2.2.3 Recipient Assurance of the Owner’s Possession of a Static Private Key
	5.6.2.2.3.1 Recipient Obtains Assurance from a Trusted Third Party
	5.6.2.2.3.2 Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other Party)


	5.6.2.3 Public Key Validation Routines
	5.6.2.3.1 FFC Full Public-Key Validation Routine
	5.6.2.3.2 ECC Full Public-Key Validation Routine
	5.6.2.3.3 ECC Partial Public-Key Validation Routine
	Process: 



	5.6.3 Key Pair Management
	5.6.3.1 Common Requirements on Static and Ephemeral Key Pairs
	5.6.3.2 Specific Requirements on Static Key Pairs
	5.6.3.3 Specific Requirements on Ephemeral Key Pairs


	5.7 DLC Primitives
	5.7.1 Diffie-Hellman Primitives
	5.7.1.1 Finite Field Cryptography Diffie-Hellman (FFC DH) Primitive
	5.7.1.2 Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH) Primitive

	5.7.2 MQV Primitives
	5.7.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive
	5.7.2.1.1 MQV2 Form of the FFC MQV Primitive
	5.7.2.1.2 MQV1 Form of the FFC MQV Primitive

	5.7.2.2 ECC MQV Associate Value Function
	5.7.2.3 Elliptic Curve Cryptography MQV (ECC MQV) Primitive
	5.7.2.3.1 Full MQV Form of the ECC MQV Primitive
	5.7.2.3.2 One-Pass Form of the ECC MQV Primitive



	5.8 Key-Derivation Methods for Key Agreement Schemes
	5.8.1 The Single-step Key-Derivation Function
	5.8.1.1 The Single-Step KDF Specification
	5.8.1.2 OtherInfo 
	5.8.1.2.1 The Concatenation Format for OtherInfo
	5.8.1.2.2 The ASN.1 Format for OtherInfo 
	5.8.1.2.3 Other Formats for OtherInfo



	5.8.2   The Extraction-then-Expansion Key-Derivation Procedure     
	5.8.3   Application-Specific Key-Derivation Methods
	5.9   Key Confirmation
	5.9.1 Unilateral Key Confirmation for Key-Agreement Schemes
	5.9.1.1 Adding Unilateral Key Confirmation to a Key-Agreement Scheme

	5.9.2 Bilateral Key Confirmation for Key-Agreement Schemes
	5.9.2.1 Adding Bilateral Key Confirmation to a Key-Agreement Scheme

	5.9.3 Security Strength of the Mac Tag


	6. Key Agreement
	6.1 Schemes Using Two Ephemeral Key Pairs, C(2e)
	6.1.1 C(2e, 2s) Schemes
	6.1.1.1 dhHybrid1, C(2e, 2s, FFC DH) Scheme
	6.1.1.2 (Cofactor) Full Unified Model, C(2e, 2s, ECC CDH) Scheme
	6.1.1.3 MQV2, C(2e, 2s, FFC MQV) Scheme
	6.1.1.4 Full MQV, C(2e, 2s, ECC MQV) Scheme
	6.1.1.5 Incorporating Key Confirmation into a C(2e, 2s) Scheme
	6.1.1.5.1 C(2e, 2s) Scheme with Unilateral Key Confirmation Provided by U to V
	6.1.1.5.2 C(2e, 2s) Scheme with Unilateral Key Confirmation Provided by V to U
	6.1.1.5.3 C(2e, 2s) Scheme with Bilateral Key Confirmation


	6.1.2 C(2e, 0s) Schemes
	6.1.2.1 dhEphem, C(2e, 0s, FFC DH) Scheme
	6.1.2.2 (Cofactor) Ephemeral Unified Model, C(2e, 0s, ECC CDH)
	6.1.2.3  Key Confirmation for C(2e, 0s)


	6.2 Schemes Using One Ephemeral Key Pair, C(1e)
	6.2.1 C(1e, 2s) Schemes
	6.2.1.1 dhHybridOneFlow, C(1e, 2s, FFC DH) Scheme
	6.2.1.2 (Cofactor) One-Pass Unified Model, C(1e, 2s, ECC CDH) Scheme
	6.2.1.3 MQV1, C(1e, 2s, FFC MQV) Scheme
	6.2.1.4 One-Pass MQV, C(1e, 2s, ECC MQV) Scheme
	6.2.1.5 Incorporating Key Confirmation into a C(1e, 2s) Scheme
	6.2.1.5.1 C(1e, 2s) Scheme with Unilateral Key Confirmation Provided by U to V 
	6.2.1.5.2 C(1e, 2s) Scheme with Unilateral Key Confirmation Provided by V to U
	6.2.1.5.3 C(1e, 2s) Scheme with Bilateral Key Confirmation 


	6.2.2 C(1e, 1s) Schemes
	6.2.2.1 dhOneFlow, C(1e, 1s, FFC DH) Scheme
	6.2.2.2 (Cofactor) One-Pass Diffie-Hellman, C(1e, 1s, ECC CDH) Scheme
	6.2.2.3 Incorporating Key Confirmation into a C(1e, 1s) Scheme
	6.2.2.3.1 C(1e, 1s) Scheme with Unilateral Key Confirmation Provided by V to U



	6.3 C(0e, 2s) Schemes
	6.3.1 dhStatic, C(0e, 2s, FFC DH) Scheme
	6.3.2 (Cofactor) Static Unified Model, C(0e, 2s, ECC CDH) Scheme
	6.3.3 Incorporating Key Confirmation into a C(0e, 2s) Scheme
	6.3.3.1 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by U to V
	6.3.3.2 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by V to U
	6.3.3.3 C(0e, 2s) Scheme with Bilateral Key Confirmation



	7. DLC-Based Key Transport
	7.1 Key Transport Scheme
	7.2 Key Confirmation for Transported Keying Material

	8. Rationale for Selecting a Specific Scheme
	9. Key Recovery
	10. Implementation Validation 
	C.1 Integer-to-Byte String Conversion
	C.2 Field-Element-to-Byte String Conversion
	C.3 Field-Element-to-Integer Conversion




