

The attached DRAFT document (provided here for historical purposes), released on August 7,
2017, has been superseded by the following publication:

Publication Number: NIST Special Publication (SP) 800-56C Revision 1

Title: Recommendation for Key Derivation through Extraction-
then-Expansion

Publication Date: April 2018

• Final Publication: https://doi.org/10.6028/NIST.SP.800-56Cr1 (which links to
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr1.pdf).

• Related Information on CSRC:
Final: https://csrc.nist.gov/publications/detail/sp/800-56C/rev-1/final

https://doi.org/10.6028/NIST.SP.800-56Cr1
https://csrc.nist.gov/publications/detail/sp/800-56C/rev-1/final

Draft NIST Special Publication 800-56C 1

Revision 1 2

Recommendation for Key-Derivation 3

Methods in Key-Establishment Schemes 4
 5

 6
Elaine Barker 7

Lily Chen 8
Rich Davis 9

 10
 11
 12
 13
 14
 15
 16
 17

C O M P U T E R S E C U R I T Y 18
 19

20

Draft NIST Special Publication 800-56C 21

Revision 1 22

Recommendation for Key-Derivation 23

Methods in Key-Establishment Schemes 24

 25
 26

Elaine Barker 27
Lily Chen 28

Computer Security Division 29
Information Technology Laboratory 30

 31
Rich Davis 32

National Security Agency 33
 34

 35
 36
 37
 38
 39
 40
 41
 42

August 2017 43
 44
 45

 46
 47
 48

U.S. Department of Commerce 49
Wilbur L. Ross, Jr., Secretary 50

 51
National Institute of Standards and Technology 52

Kent Rochford, Acting NIST Director and Under Secretary of Commerce for Standards and Technology 53

Authority 54

This publication has been developed by NIST in accordance with its statutory responsibilities under 55
the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., 56
Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and 57
guidelines, including minimum requirements for federal information systems, but such standards 58
and guidelines shall not apply to national security systems without the express approval of 59
appropriate federal officials exercising policy authority over such systems. This guideline is 60
consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130. 61

Nothing in this publication should be taken to contradict the standards and guidelines made 62
mandatory and binding on federal agencies by the Secretary of Commerce under statutory 63
authority. Nor should these guidelines be interpreted as altering or superseding the existing 64
authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. This 65
publication may be used by nongovernmental organizations on a voluntary basis and is not subject 66
to copyright in the United States. Attribution would, however, be appreciated by NIST. 67

National Institute of Standards and Technology Special Publication 800-56C Revision 1 68
Natl. Inst. Stand. Technol. Spec. Publ. 800-56C Rev. 1, 30 pages (August 2017) 69

CODEN: NSPUE2 70

Certain commercial entities, equipment, or materials may be identified in this document in order to describe 71
an experimental procedure or concept adequately. Such identification is not intended to imply 72
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment 73
are necessarily the best available for the purpose. 74

There may be references in this publication to other publications currently under development by NIST in 75
accordance with its assigned statutory responsibilities. The information in this publication, including 76
concepts and methodologies, may be used by federal agencies even before the completion of such companion 77
publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, 78
where they exist, remain operative. For planning and transition purposes, federal agencies may wish to 79
closely follow the development of these new publications by NIST. 80

Organizations are encouraged to review all draft publications during public comment periods and provide 81
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 82
http://csrc.nist.gov/publications. 83

Public comment period: August 7, 2017 through November 6, 2017: 84

National Institute of Standards and Technology 85
Attn: Computer Security Division, Information Technology Laboratory 86

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 87
Email: 800-56C_Comments@nist.gov 88

 89

 90

 91

http://csrc.nist.gov/publications

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

ii

Reports on Computer Systems Technology 92

The Information Technology Laboratory (ITL) at the National Institute of Standards and 93
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 94
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, 95
test methods, reference data, proof of concept implementations, and technical analyses to 96
advance the development and productive use of information technology. ITL’s 97
responsibilities include the development of management, administrative, technical, and 98
physical standards and guidelines for the cost-effective security and privacy of other than 99
national security-related information in federal information systems. The Special 100
Publication 800-series reports on ITL’s research, guidelines, and outreach efforts in 101
information system security, and its collaborative activities with industry, government, and 102
academic organizations. 103
 104

Abstract 105

This Recommendation specifies techniques for the derivation of keying material from a 106
shared secret established during a key-establishment scheme defined in NIST Special 107
Publications 800-56A or 800-56B. 108
 109

Keywords 110

Expansion; extraction; extraction-then-expansion; hash function; key derivation; key 111
establishment; message authentication code. 112

Acknowledgements 113

The authors would like to thank NIST colleagues, Quynh Dang, Sharon Keller, John 114
Kelsey, Allen Roginsky, Meltem Sonmez Turan, Apostol Vassilev, Tim Polk, and 115
colleague Miles Smid formerly of Orion Security Solutions, for helpful discussions and 116
valuable comments. 117

The authors also gratefully appreciate the thoughtful and instructive comments received 118
during the public comment periods, which helped to improve the quality of this publication. 119

Conformance Testing 120

Conformance testing for implementations of the functions that are specified in this 121
publication will be conducted within the framework of the Cryptographic Algorithm 122
Validation Program (CAVP) and the Cryptographic Module Validation Program (CMVP). 123
The requirements on these implementations are indicated by the word “shall.” Some of 124
these requirements may be out-of-scope for CAVP or CMVP validation testing, and thus 125
are the responsibility of entities using, implementing, installing, or configuring 126
applications that incorporate this Recommendation. 127
 128
 129

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

iii

Table of Contents 130

 Introduction .. 1 131

 Scope and Purpose ... 1 132

 Definitions, Symbols and Abbreviations ... 1 133

3.1 Definitions ... 1 134

3.2 Symbols and Abbreviations .. 6 135

 One-Step Key Derivation ... 8 136

4.1 Specification of Key-Derivation Functions .. 9 137

4.2 The Auxiliary Function H(x) and Related Parameters 13 138

 Two-Step Key Derivation... 15 139

5.1 Specification of Key-Derivation Procedure ... 16 140

5.2 The Auxiliary MAC Algorithm and Related Parameters 19 141

 Application-Specific Key-Derivation Methods .. 20 142

 Selecting Hash Functions and MAC Algorithms 20 143

 Further Discussion .. 22 144

8.1 Using a Truncated Hash Function .. 22 145

8.2 The Choice of a Salt Value ... 22 146

8.3 MAC Algorithms used for Extraction and Expansion 22 147

8.4 Destruction of Sensitive Locally Stored Data 23 148

 149

List of Figures 150

Figure 1: The Extraction-then-Expansion Key-Derivation Procedure 15 151

 152

List of Tables 153

Table 1: H(x) = hash(x) (Option 1) ... 13 154

Table 2: H(x) = HMAC-hash(salt, x) (Option 2) .. 13 155

Table 3: H(x) = KMAC#(salt, x, H_outputlen, “KDF”) (Option 3) 14 156

Table 4: MAC(salt, Z, …) = HMAC-hash(salt, Z) (For Randomness Extraction) 19 157

Table 5: MAC(salt, Z, …) = AES-N-CMAC(salt, Z) (For Randomness Extraction) . 20 158

 159

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

1

1 Introduction 160

During the execution of a public-key-based key-establishment scheme specified in either 161
of the NIST Special Publications [SP 800-56A] or [SP 800-56B], a key-derivation method 162
may be required to obtain secret cryptographic keying material. This Recommendation 163
specifies the key-derivation methods that can be used, as needed, in those key-164
establishment schemes. 165

 166

2 Scope and Purpose 167

This Recommendation specifies two categories of key-derivation methods that can be 168
employed, as required, as part of a key-establishment scheme specified in [SP 800-56A] or 169
[SP 800-56B]. 170

The first category consists of a family of one-step key-derivation functions, which derive 171
keying material of a desired length from a shared secret generated during the execution of 172
a key-establishment scheme (and possibly other information as well). 173

The second category consists of an extraction-then-expansion key-derivation procedure, 174
which involves two steps: 175

1) Randomness extraction, to obtain a single cryptographic key-derivation key from a 176
shared secret generated during the execution of a key-establishment scheme, and 177

2) Key expansion, to derive keying material of the desired length from that key-178
derivation key and other information. Since NIST’s [SP 800-108] specifies several 179
families of key-derivation functions that are approved for deriving additional 180
keying material from a given cryptographic key-derivation key, those functions are 181
employed in the second (key-expansion) step of these two-step procedures. 182

In addition to the key-derivation methods whose specifications are provided in this 183
document, [SP 800-135] describes several variants (of both the one-step and two-step 184
methods) that are approved for specific applications. 185

 186

3 Definitions, Symbols and Abbreviations 187

3.1 Definitions 188

Approved FIPS approved or NIST Recommended. An algorithm or technique
that is either 1) specified in a FIPS or NIST Recommendation, 2)
adopted in a FIPS or NIST Recommendation or 3) specified in a list
of NIST-approved security functions.

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

2

Big-endian The property of a byte string having its bytes positioned in order of
decreasing significance. In particular, the leftmost (first) byte is the
most significant (containing the most significant eight bits of the
corresponding bit string) and the rightmost (last) byte is the least
significant (containing the least significant eight bits of the
corresponding bit string).

For the purposes of this Recommendation, it is assumed that the
bits within each byte of a big-endian byte string are also positioned
in order of decreasing significance (beginning with the most
significant bit in the leftmost position and ending with the least
significant bit in the rightmost position).

Bit length The number of bits in a bit string. E.g., the bit length of the string
0110010101000011 is sixteen bits. The bit length of the empty (i.e.,
null) string is zero.

Bit string An ordered sequence of bits (represented as 0’s and 1’s). Unless
otherwise stated in this document, bit strings are depicted as
beginning with their most significant bit (shown in the leftmost
position) and ending with their least significant bit (shown in the
rightmost position). E.g., the most significant (leftmost) bit of 0101
is 0, and its least significant (rightmost) bit is 1. If interpreted as the
4-bit binary representation of an unsigned integer, 0101
corresponds to five.

Byte A bit string consisting of eight bits.

Byte length The number of consecutive (non-overlapping) bytes in a byte string.
For example, 0110010101000011 = 01100101 || 01000011 is two
bytes long. The byte length of the empty string is zero.

Byte string An ordered sequence of bytes, beginning with the most significant
(leftmost) byte and ending with the least significant (rightmost)
byte. Any bit string whose bit length is a multiple of eight can be
viewed as the concatenation of an ordered sequence of bytes, i.e., a
byte string. E.g., the bit string 0110010101000011 can be viewed
as a byte string, since it is the concatenation of two bytes: 01100101
followed by 01000011.

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

3

Estimated
maximum
security strength

An estimate of the largest security strength that can be attained by
a cryptographic mechanism, given the explicit and implicit
assumptions that are made regarding its implementation and
supporting infrastructure (e.g., the algorithms employed, the
selection of associated primitives and/or auxiliary functions, the
choices for various parameters, the methods of generation and/or
protection for any required keys, etc.). The estimated maximum
security strengths of various approved cryptographic mechanisms
are provided in [SP 800-57].

Concatenation
As used in this Recommendation, the concatenation, X || Y, of bit
string X followed by bit string Y is the ordered sequence of bits
formed by appending Y to X in such a way that the leftmost (i.e.,
initial) bit of Y follows the rightmost (i.e., final) bit of X.

Hash function A function that maps a bit string of arbitrary length to a fixed-length
bit string. Approved hash functions are designed to satisfy the
following properties:

1. (One-way) It is computationally infeasible to find any input
that maps to any pre-specified output, and

2. (Collision resistant) It is computationally infeasible to find
any two distinct inputs that map to the same output.

Approved hash functions are specified in [FIPS 180] and
[FIPS 202].

Key-derivation
function

As used in this Recommendation, either a one-step key-derivation
method, or a PRF-based key-derivation function as specified in [SP
800-108].

Key-derivation
method

As used in this Recommendation, a process that derives keying
material from a shared secret. This Recommendation specifies both
one-step and two-step key-derivation methods.

Key-derivation
procedure

As used in this Recommendation, a two-step key-derivation method
consisting of randomness extraction followed by key expansion.

Key-derivation
key

As used in this Recommendation, a key that is used during the key-
expansion step of a key-derivation procedure to derive the output
keying material. This key-derivation key is obtained from a shared
secret during the randomness-extraction step.

Key establishment A procedure that results in keying material that is shared among
different parties.

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

4

Key expansion The second step in the key-derivation procedure specified in this
Recommendation, in which a key-derivation key is used to derive
keying material having the desired length.

Keying material As used in this Recommendation, a bit string output by a key-
derivation method, that can be parsed into non-overlapping
segments of appropriate bit lengths to provide the cryptographic
keys and/or any other secret parameters required by the relying
application.

Message
Authentication
Code (MAC)
algorithm

A family of cryptographic functions that is parameterized by a
symmetric key. Each of the functions can act on input data (called
a “message”) of variable length to produce an output value of a
specified length. The output value is called the MAC of the input
message. MAC(k, x, …) is used to denote the MAC of message x
computed using the key k (and any additional algorithm-specific
parameters). An approved MAC algorithm is expected to satisfy
the following property (for each supported security strength):

 Without knowledge of the key k, it must be computationally
infeasible to predict the (as-yet-unseen) value of MAC(k, x, …)
with a probability of success that is a significant improvement
over simply guessing either the MAC value or k, even if one has
already seen the results of using that same key to compute
MAC(k, xj, …) for (a bounded number of) other messages xj ≠ x.

A MAC algorithm can be employed to provide authentication of the
origin of data and/or to provide data-integrity protection. In this
Recommendation, approved MAC algorithms are used to
determine families of pseudorandom functions (indexed by the
choice of key) that may be employed during key derivation; the use
of MAC algorithms for key confirmation is addressed in [SP 800-
56A] and [SP 800-56B].

Nonce A varying value that has at most a negligible chance of repeating –
for example, a random value that is generated anew for each use, a
timestamp, a sequence number, or some combination of these.

Pseudorandom
function family
(PRF)

An indexed family of (efficiently computable) functions, each
defined for the same particular pair of input and output spaces. The
indexed functions are pseudorandom in the following sense:

If a function from the family is selected by choosing an index value
uniformly at random, and one’s knowledge of the selected function
is limited to the output values corresponding to a feasible number
of (adaptively) chosen input values, then the selected function is
computationally indistinguishable from a function chosen
uniformly at random from the set of all possible functions mapping

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

5

the input space to the output space.

Randomness
extraction

The first step in the two-step key-derivation procedure specified in
this Recommendation; during this step, a key-derivation key is
produced from a shared secret.

Salt As used in this Recommendation, a byte string (which may be
secret or non-secret) that is used as a MAC key by either 1) a MAC-
based auxiliary function H employed in one-step key derivation, or,
2) a MAC employed in the randomness-extraction step during two-
step key derivation.

Security strength A number characterizing the amount of work that is expected to
suffice to “defeat” an implemented cryptographic mechanism (e.g.,
by compromising its functionality and/or circumventing the
protection that its use was intended to facilitate). In this
Recommendation, security strength is measured in bits. If the
security strength of a particular implementation of a cryptographic
mechanism is s bits, it is expected that the equivalent of (roughly)
2s basic operations of some sort will be sufficient to defeat it in
some way.

Shared secret The secret byte string that is computed/generated during the
execution of an approved key-establishment scheme and used as
input to a key-derivation method as part of that transaction.

Shall A requirement that needs to be fulfilled to claim conformance to
this Recommendation. Note that shall may be coupled with not to
become shall not.

Support
(a security
strength)

A security strength of s bits is said to be supported by a particular
choice of algorithm, primitive, auxiliary function, parameters (etc.)
for use in the implementation of a cryptographic mechanism if that
choice will not prevent the resulting implementation from attaining
a security strength of at least s bits.

In this Recommendation, it is assumed that implementation choices
are intended to support a security strength of 112 bits or more (see
[SP 800-57] and [SP 800-131A]).

Targeted
security strength

The maximum security strength that is intended to be supported by
one or more implementation-related choices (such as algorithms,
primitives, auxiliary functions, parameter sizes and/or actual
parameters) for the purpose of implementing a cryptographic
mechanism.

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

6

3.2 Symbols and Abbreviations 189

0x A marker used to indicate that the following symbols are to
be interpreted as a bit string written in hexadecimal notation
(using the symbols 0, 1, …, 9, and A, B, …, F to denote 4-
bit binary representations of the integers zero through nine
and ten through fifteen, respectively). A byte can be
represented by a hexadecimal string of length two; the
leftmost hexadecimal symbol corresponds to the most
significant four bits of the byte, and the rightmost
hexadecimal symbol corresponds to the least significant four
bits of the byte. For example, 0x9D represents the bit string
10011101 (assuming that the bits are positioned in order of
decreasing significance).

AES Advanced Encryption Standard (the block cipher specified in
[FIPS 197]).

AES-N

(N = 128, 192, or 256)

The variant of the AES block cipher that requires an N-bit
encryption/decryption key; the three variants specified in
[FIPS 197] are AES-128, AES-192, and AES-256.

AES-CMAC The Cipher-based Message Authentication Code (CMAC)
mode of operation for the AES block cipher, as specified in
[SP 800-38B].

AES-N-CMAC(k, x)

(N = 128, 192, or 256)

An implementation of AES-CMAC based on the AES-N
variant of the AES block cipher (for N = 128, 192, or 256);
its output is a 128-bit MAC computed over the “message” x
using the key k.

counter An unsigned integer, represented as a big-endian four-byte
string, that is employed by the one-step key-derivation
method specified in Section 4.1.

Context A bit string of context-specific data; a subcomponent of the
FixedInfo that is included as part of the input to the two-step
key-derivation method specified in Section 5.1.

default_salt A default value assigned to salt (if necessary) to implement
an auxiliary function H selected according to Option 2 or 3
in the one-step key-derivation method specified in Section
4.1.

DerivedKeyingMaterial Keying material that is derived from a shared secret Z (and
other data) through the use of a key-derivation method.

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

7

ECC Elliptic curve cryptography.

enc8(x) A one-byte encoding of an integer x, where 0 ≤ x ≤ 255, with
bit 0 being the low-order (least significant) bit and bit 7
being the high-order (most significant) bit.

FFC Finite field cryptography.

FixedInfo A bit string of context-specific data whose value does not
change during the execution of a key-derivation method
specified in this Recommendation.

H The auxiliary function used to produce blocks of keying
material during the execution of the one-step key-derivation
method specified in Section 4.1.

hash A hash function. Approved choices for hash are specified in
[FIPS 180] and [FIPS 202].

HMAC Keyed-hash Message Authentication Code, as specified in
[FIPS 198].

HMAC-hash(k, x) An implementation of HMAC using the hash function hash;
its output is a MAC computed over “message” x using the
key k.

H_outputlen A positive integer that indicates the length (in bits) of the
output of either 1) the auxiliary function H used in the one-
step key-derivation method specified in Section 4.1, or, 2) an
auxiliary HMAC algorithm used in the two-step key-
derivation method specified in Section 5.1.

IFC Integer factorization cryptography.

IV Initialization vector; as used in this Recommendation, it is a
bit string used as an initial value during the execution of an
approved PRF-based KDF operating in Feedback Mode, as
specified in [SP 800-108].

KDF Key-derivation function.

KDK The key-derivation key resulting from the randomness-
extraction step and then used in the key-expansion step
during the execution of the key-derivation procedure
specified in Section 5.1.

KDM Key-derivation method.

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

8

KMAC Keccak Message Authentication Code, as specified in
[SP 800-185].

KMAC#(k, x, l, S) A variant of KMAC (either KMAC128 or KMAC256, as
specified in [SP 800-185]); its output is an l-bit MAC
computed over the “message” x using the key k and
“customization string” S.

L A positive integer specifying the desired length (in bits) of
the derived keying material.

[L]2 An agreed-upon encoding of the integer L as a bit string.

MAC Message Authentication Code.

MAC(k, x, …) An instance of a MAC algorithm computed over the
“message” x using the key k (and any additional algorithm-
specific parameters).

max_H_inputlen The maximum length (in bits) for strings used as input to the
auxiliary function H employed by the one-step key-
derivation method specified in Section 4.1.

OtherInput A collective term for any and all additional data (other than
the shared secret itself) used as input to a key-derivation
method specified in this Recommendation.

PRF Pseudorandom Function.

s Security strength (in bits).

SHA Secure Hash Algorithm, as specified in [FIPS 180] (i.e.,
SHA-1, SHA-224, SHA-512/224, SHA-256, SHA-512/256,
SHA-384, or SHA-512) or [FIPS 202] (i.e., SHA3-224,
SHA3-256, SHA3-384, or SHA3-512).

Z Shared secret (determined according to the specifications in
either [SP 800-56A] or [SP 800-56B]).

 190

4 One-Step Key Derivation 191

This section specifies a family of approved key-derivation functions (KDFs) that are 192
executed in a single step; a two-step procedure is specified in Section 5. The input to each 193
specified KDF includes the shared secret generated during the execution of a key-194
establishment scheme specified in [SP 800-56A] or [SP 800-56B], an indication of the 195
desired bit length of the keying material to be output, and, perhaps, other information (as 196

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

9

determined by the particular implementation of the key-establishment scheme and/or key-197
derivation function). 198

Implementations of these one-step KDFs depend upon the choice of an auxiliary function 199
H, which can be either 1) an approved hash function, denoted as hash, as defined in [FIPS 200
180] or [FIPS 202]; 2) HMAC with an approved hash function hash, denoted as HMAC-201
hash, and defined in [FIPS 198]; or 3) a KMAC variant, as defined in [SP 800-185]. Tables 202
1, 2, and 3 in Section 4.2 describe the possibilities for H, and also include any restrictions 203
on the associated implementation-dependent parameters. H shall be chosen in accordance 204
with the selection requirements specified in Section 7. 205

When an approved MAC algorithm (HMAC or KMAC) is used to define the auxiliary 206
function H, it is permitted to use a known salt value as the MAC key. In such cases, it is 207
assumed that the MAC algorithm will satisfy the following property (for each of its 208
supported security strengths): 209

 Given knowledge of the key k, and (perhaps) partial knowledge of a message x that 210
includes an unknown substring z, it must be computationally infeasible to predict the 211
(as-yet-unseen) value of MAC(k, x, …) with a probability of success that is a significant 212
improvement over simply guessing either the MAC value or the value of z, even if one 213
has already seen the values of MAC(kj, xj, …) for a feasible number of other (kj, xj) 214
pairs, where each key kj is known and each (partially known) message xj includes the 215
same unknown substring z, provided that none of the (kj, xj) pairs is identical to (k, x). 216

 This property is consistent with the use of the MAC algorithm as the specification of a 217
family of pseudorandom functions defined on the appropriate message space and indexed 218
by the choice of MAC key. Under Option 2 and Option 3 of the KDF specification below, 219
the auxiliary function H is a particular selection from such a family. 220

4.1 Specification of Key-Derivation Functions 221

A family of one-step key-derivation functions is specified as follows: 222

Function call: KDM(Z, OtherInput). 223

Options for the Auxiliary Function H: 224
Option 1: H(x) = hash(x), where hash is an approved hash function meeting the 225

selection requirements specified in Section 7, and the input, x, is a bit string. 226
Option 2: H(x) = HMAC-hash(salt, x), where HMAC-hash is an implementation of the 227

HMAC algorithm (as defined in [FIPS 198]) employing an approved hash 228
function, hash, that meets the selection requirements specified in Section 7. 229
An implementation-dependent byte string, salt, whose (non-null) value may 230
be optionally provided in OtherInput, serves as the HMAC key, and x (the 231
input to H) is a bit string that serves as the HMAC “message” – as specified 232
in [FIPS 198]. 233

Option 3: H(x) = KMAC#(salt, x, H_outputlen, S), where KMAC# is a particular 234
implementation of either KMAC128 or KMAC256 (as defined in [SP 800-235

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

10

185]) that meets the selection requirements specified in Section 7. An 236
implementation-dependent byte string, salt, whose (non-null) value may be 237
optionally provided in OtherInput, serves as the KMAC# key, and x (the input 238
to H) is a bit string that serves as the KMAC# “message” – as specified in [SP 239
800-185]. The parameter H_outputlen determines the bit length chosen for 240
the output of the KMAC variant employed. The “customization string” S shall 241
be the byte string 01001011 || 01000100 || 01000110, which represents the 242
sequence of characters “K”, “D”, and “F” in 8-bit ASCII. (This three-byte 243
string is denoted by “KDF” in this document.) 244

Implementation-Dependent Parameters: 245
1. H_outputlen – a positive integer that indicates the length (in bits) of the output of the 246

auxiliary function, H, that is used to derive blocks of secret keying material. If Option 247
1 or Option 2 is chosen, then H_outputlen corresponds to the bit-length of the output 248
block of the particular hash function used in the implementation of H; therefore, 249
H_outputlen is in the set {160, 224, 256, 384, 512}, with the precise value determined 250
by the choice for hash (see Section 4.2 for details). If Option 3 is chosen, then 251
H_outputlen shall either be set equal to the length (in bits) of the secret keying 252
material to be derived (see input L below) or selected from the set {160, 224, 256, 253
384, 512}. 254

2. max_H_inputlen – a positive integer that indicates the maximum permitted length (in 255
bits) of the bit string, x, that is used as input to the auxiliary function, H. If Option 1 256
or Option 2 is chosen for the implementation of H, then an upper bound on 257
max_H_inputlen may be determined by the choice of hash (see Section 4.2 for 258
details); max_H_inputlen values smaller than a specification-imposed upper bound 259
may be dictated by the particular use case. If hash is specified in [FIPS 202], or if 260
Option 3 is chosen for the implementation of H, then there is no specification-261
imposed upper bound on max_H_inputlen; the value assigned to max_H_inputlen 262
may be determined by the needs of the relying applications/parties. 263

3. default_salt – a (secret or non-secret) byte string that is needed only if either Option 2 264
(HMAC-hash) or Option 3 (KMAC#) is chosen for the implementation of the 265
auxiliary function H. This byte string is used as the value of salt if a (non-null) value 266
is not included in OtherInput (see below). 267
If H(x) = HMAC-hash(salt, x), then, in the absence of an agreed-upon alternative, the 268
default_salt shall be an all-zero byte string whose bit length equals that specified as 269
the bit length of an input block for the hash function, hash. (Input-block lengths for 270
the approved hash functions that can be employed to implement HMAC-hash are 271
listed in Table 1 of Section 4.2.) 272
If H(x) = KMAC128(salt, x, H_outputlen, “KDF”), then, in the absence of an agreed-273
upon alternative, the default_salt shall be an all-zero string of 164 bytes (i.e., an all-274
zero string of 1312 bits). 275
If H(x) = KMAC256(salt, x, H_outputlen, “KDF”), then, in the absence of an agreed-276
upon alternative, the default_salt shall be an all-zero string of 132 bytes (i.e., an all-277
zero string of 1056 bits). 278

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

11

Input: 279
1. Z – a byte string that represents the shared secret. 280

2. OtherInput, which includes: 281
a. {salt} – a (secret or non-secret) byte string that can be (optionally) provided if 282

either Option 2 (HMAC-hash) or Option 3 (KMAC#) is chosen for the 283
implementation of the auxiliary function H, since those options require a salt 284
value that is used as a MAC key. 285
The salt included in OtherInput could be, for example, a value computed from 286
nonces exchanged as part of a key-establishment protocol that employs one or 287
more of the key-agreement schemes specified in [SP 800-56A] or [SP 800-56B], 288
a value already shared by the protocol participants, or a value that is pre-289
determined by the protocol. The possibilities for the length of salt are determined 290
as follows: 291
(1) The HMAC-hash algorithm as defined in [FIPS 198] can accommodate MAC 292

keys of any bit length permitted for input to the hash function, hash. 293
Therefore, when Option 2 is chosen, the length of the byte string salt can be 294
as large as allowed for any string used as input to hash. However, if the bit 295
length of salt is greater than the bit length specified for a single input block 296
for hash, then the value of salt is replaced by hash(salt) as part of the HMAC 297
computation. See Table 2 for details. 298

(2) The KMAC128 and KMAC256 algorithms specified in [SP 800-185] can 299
accommodate MAC keys of any length up to 22040 – 1 bits. Therefore, when 300
Option 3 is chosen, salt can be a byte string of any agreed-upon length that 301
does not exceed 22037 – 1 bytes (i.e., 22040 – 8 bits). The input salt value will 302
be (re)formatted (using a byte-padding function) during the execution of the 303
KMAC algorithm to obtain a string whose length is a multiple of either 168 304
bytes (for KMAC128) or 136 bytes (for KMAC256). See Table 3 for details. 305

If a salt value required by H is omitted from OtherInput (or if a required salt value 306
included in OtherInput is the null string), then the value of default_salt shall be 307
used as the value of salt when H is executed. 308

b. L – a positive integer that indicates the length (in bits) of the secret keying 309
material to be derived; L shall not exceed H_outputlen × (232 –1). 310
(L = keydatalen in the notation of previous versions of [SP 800-56A], while L = 311
KBits in the notation of [SP 800-56B].) 312

c. FixedInfo – a bit string of context-specific data that is appropriate for the relying 313
key-establishment scheme. As its name suggests, the value of FixedInfo does not 314
change during the execution of the process described below. 315
FixedInfo may, for example, include appropriately formatted representations of 316
the values of salt and/or L. The inclusion of additional copies of the values of salt 317
and L in FixedInfo would ensure that each block of derived keying material is 318
affected by all of the information conveyed in OtherInput. See [SP 800-56A] and 319

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

12

[SP 800-56B] for more detailed recommendations concerning the format and 320
content of FixedInfo (also known as OtherInfo in earlier versions those 321
documents). 322

Process: 323
1. If L > 0, then set reps = L / H_outputlen ; otherwise, output an error indicator 324

and exit this process without performing the remaining actions (i.e., omit steps 2 325
through 8). 326

2. If reps > (232 −1), then output an error indicator and exit this process without 327
performing the remaining actions (i.e., omit steps 3 through 8). 328

3. Initialize a big-endian 4-byte unsigned integer counter as 0x00000000, 329
corresponding to a 32-bit binary representation of the number zero. 330

4. If counter || Z || FixedInfo is more than max_H_inputlen bits long, then output an 331
error indicator and exit this process without performing any of the remaining 332
actions (i.e., omit steps 5 through 8). 333

5. Initialize Result(0) as an empty bit string (i.e., the null string). 334

6. For i = 1 to reps, do the following: 335

6.1 Increment counter by 1. 336

6.2 Compute K(i) = H(counter || Z || FixedInfo). 337

6.3 Set Result(i) = Result(i – 1) || K(i). 338

7. Set DerivedKeyingMaterial equal to the leftmost L bits of Result(reps). 339

8. Output DerivedKeyingMaterial. 340

Output: 341
The bit string DerivedKeyingMaterial of length L bits (or an error indicator). 342

Notes: 343
In step 6.2 above, if H(x) = hash(x) or H(x) = HMAC-hash(salt, x), the entire output 344
block of the hash function hash shall be used when computing the output of H. Some 345
approved hash functions (e.g., SHA-512/224, SHA-512/256, and SHA-384, as 346
specified in [FIPS 180]) include an internal truncation operation. In such a case, the 347
“entire output” of hash is the output block as defined in its specification. (For example, 348
in the case of SHA-384, the entire output is defined to be a 384-bit block resulting from 349
the internal truncation of a certain 512-bit value). 350
If H(x) = KMAC#(salt, x, H_outputlen, S), then choosing H_outputlen = L will likely 351
be the most efficient way to produce the desired L bits of keying material. 352
The derived keying material DerivedKeyingMaterial shall be computed in its entirety 353
before outputting any portion of it. 354

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

13

4.2 The Auxiliary Function H(x) and Related Parameters 355

Tables 1, 2, and 3 enumerate the possibilities for the auxiliary function H and provide 356
additional information concerning the values of related parameters such as H_outputlen 357
and max_H_inputlen. The tables also indicate the range of security strengths that can be 358
supported by each choice for H (when used as specified in Section 4.1). 359

Table 1: H(x) = hash(x) (Option 1) 360

Hash
Function

(hash)

Byte / Bit
Length of

Input Blocks

H_outputlen
(in bits)

when H = hash

max_H_inputlen
(in bits)

when H = hash

Security
Strength s

supported by H
(in bits)

SHA-1 64 / 512 160
≤ 264 – 1

112 ≤ s ≤ 160
SHA-224 64 / 512 224 112 ≤ s ≤ 224
SHA-256 64 / 512 256 112 ≤ s ≤ 256

SHA-512/224 128 / 1024 224

≤ 2128 – 1

112 ≤ s ≤ 224
SHA-512/256 128 / 1024 256 112 ≤ s ≤ 256
SHA-384 128 / 1024 384 112 ≤ s ≤ 384
SHA-512 128 / 1024 512 112 ≤ s ≤ 512

SHA3-224 144 / 1152 224
Arbitrarily long

inputs can be
accommodated.

112 ≤ s ≤ 224
SHA3-256 136 / 1088 256 112 ≤ s ≤ 256
SHA3-384 104 / 832 384 112 ≤ s ≤ 384
SHA3-512 72 / 576 512 112 ≤ s ≤ 512

 361

Table 2: H(x) = HMAC-hash(salt, x) (Option 2) 362

Hash
Function

(hash)

Effective
Byte / Bit
Length*

of salt for
HMAC-hash

H_outputlen
(in bits)

when H =
HMAC-hash

max_H_inputlen
(in bits)

when H =
HMAC-hash

Security
Strength s

supported by H
(in bits)

SHA-1 64 / 512 160
≤ 264 – 513

112 ≤ s ≤ 160
SHA-224 64 / 512 224 112 ≤ s ≤ 224
SHA-256 64 / 512 256 112 ≤ s ≤ 256

SHA-512/224 128 / 1024 224

≤ 2128 – 1025

112 ≤ s ≤ 224
SHA-512/256 128 / 1024 256 112 ≤ s ≤ 256
SHA-384 128 / 1024 384 112 ≤ s ≤ 384
SHA-512 128 / 1024 512 112 ≤ s ≤ 512

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

14

SHA3-224 144 / 1152 224
Arbitrarily long

inputs can be
accommodated.

112 ≤ s ≤ 224
SHA3-256 136 / 1088 256 112 ≤ s ≤ 256
SHA3-384 104 / 832 384 112 ≤ s ≤ 384
SHA3-512 72 / 576 512 112 ≤ s ≤ 512

* A shorter salt (used by H as an HMAC key) will be padded, by appending an all-zero 363
bit string, to obtain a string of the indicated length (the length of a single input block for 364
hash); a longer salt will be hashed to produce a shorter string (of bit length H_outputlen), 365
which will then be padded (by appending an all-zero bit string) to obtain a string of the 366
indicated length. (See [FIPS 198] for additional information.) 367

Table 3: H(x) = KMAC#(salt, x, H_outputlen, “KDF”) (Option 3) 368

KMAC
Variant

(KMAC#)

Length of a
byte-

padded
salt value

Suggested
Maximum

Byte
Length

of salt for
KMAC#

H_outputlen
(in bits) when
H = KMAC#

max_H_inputlen
(in bits) when
H = KMAC#

Security
Strength s

supported by
H = KMAC#

(in bits)

KMAC128 Multiple of
168 bytes

168 – 4 =
164 ** Choice of 160,

224, 256, 384,
512, or L.

Arbitrarily long
inputs can be

accommodated.

112 ≤ s ≤ 128

KMAC256 Multiple of
136 bytes

136 – 4 =
 132 *** 112 ≤ s ≤ 256

 369
** Using 164 bytes (or less) leaves room for 4 bytes of prepended header information and 370
minimizes the length of bytepad(encode_string(salt), 168), which is the (re)formatted 371
value of salt used in the computation of KMAC128(salt, x, H_outputlen, “KDF”): 372

 KMAC128(salt, x, H_outputlen, “KDF”) = Keccak[256](String, H_outputlen), 373

where String is the concatenation of 374

bytepad(encode_string(“KDF”) || encode_string(“KMAC”), 168) and 375
bytepad(encode_string(salt), 168) || x || right_encode(H_outputlen) || 00. 376

When salt is a 164-byte string, bytepad(encode_string(salt), 168) is this 168-byte string: 377

left_encode(168) || encode_string(salt) = enc8(1) || enc8(168) || enc8(1) || enc8(164) || salt. 378

If salt is shorter than 164 bytes, then the string left_encode(168) || encode_string(salt) is 379
padded as necessary (by appending an all-zero bit string) to obtain a 168-byte string. If salt 380
is any longer than 164 bytes, then bytepad(encode_string(salt), 168) consists of two or 381
more 168-byte blocks. 382

*** Using 132 bytes (or less) leaves room for 4 bytes of prepended header information and 383

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

15

minimizes the length of bytepad(encode_string(salt), 136), the (re)formatted value of salt 384
used in the computation of KMAC256(salt, x, H_outputlen, “KDF”): 385

 KMAC256(salt, x, H_outputlen, “KDF”) = Keccak[512](String, H_outputlen), 386

where String is the concatenation of 387

bytepad(encode_string(“KDF”) || encode_string(“KMAC”), 136) and 388
bytepad(encode_string(salt), 136) || x || right_encode(H_outputlen) || 00. 389

When salt is a 132-byte string, bytepad(encode_string(salt), 136) is this 136-byte string: 390

left_encode(136) || encode_string(salt) = enc8(1) || enc8(136) || enc8(1) || enc8(132) || salt. 391

If salt is shorter than 132 bytes, then the string left_encode(136) || encode_string(salt) is 392
padded as necessary (by appending an all-zero bit string) to obtain a 136-byte string. If salt 393
is any longer than 132 bytes, then bytepad(encode_string(salt), 136) consists of two or 394
more 136-byte blocks. 395

See [SP 800-185] for the definitions of left_encode, right_encode, encode_string, and 396
bytepad. 397

 398
5 Two-Step Key Derivation 399

This section specifies an approved (two-step) extraction-then-expansion key-derivation 400
procedure. Like the one-step key-derivation functions described in Section 4, the input to 401
this two-step procedure includes Z, the shared secret generated during the execution of a 402
key-establishment scheme that is specified in either [SP 800-56A] or [SP 800-56B]); L, a 403
positive integer indicating the desired length (in bits) of the output keying material; and 404
other information (as determined by the particular implementation of the key-establishment 405
scheme and/or key-derivation method). In contrast to the one-step methods, a salt value is 406
required to be included as part of the input. 407

The extraction-then-expansion key-derivation procedure is pictured in Figure 1. 408

 409

 410

 411

 412

 413 Figure 1: The Extraction-then-Expansion Key-Derivation Procedure

salt
Randomness
Extraction

Key
Expansion

KDK

Z L, {IV,} FixedInfo

DerivedKeyingMaterial

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

16

The first (randomness-extraction) step uses either HMAC, as defined in [FIPS 198], or 414
AES-CMAC, as defined in [SP 800-38B]. In either case, there are two inputs: salt, which 415
serves as a MAC key, and the shared secret, Z, which serves as the “message.” The resulting 416
MAC output is used as a key-derivation key, KDK. The use of this KDK is restricted to a 417
single execution of the key-expansion step of this procedure. 418

The second (key-expansion) step uses the key-derivation key, KDK, along with the integer 419
L and other appropriate data, as the input to a PRF-based key-derivation function specified 420
in [SP 800-108]. The output returned by that key-derivation function is either secret keying 421
material (in the form of DerivedKeyingMaterial, a bit string of length L) or an error 422
indicator. 423

5.1 Specification of Key-Derivation Procedure 424

The extraction-then-expansion key-derivation procedure is specified as follows: 425

Function call: KDM(Z, OtherInput). 426

Options for the Auxiliary MAC Algorithm: 427
The MAC algorithm employed for randomness extraction shall be either an 428
implementation of HMAC as defined in [FIPS 198], based on an approved hash 429
function hash (i.e., HMAC-hash), or an implementation of AES-CMAC as defined in 430
[SP 800-38B] (i.e., AES-N-CMAC for N = 128, 192, or 256); in either case, the 431
(untruncated) output of the MAC algorithm is used as the key-derivation key for 432
subsequent key expansion. Tables 4 and 5 in Section 5.2 describe the possibilities for 433
the auxiliary MAC algorithm, which shall be chosen in accordance with the selection 434
requirements specified in Section 7. 435

Implementation-Dependent Auxiliary PRF-based KDF: 436
One of the general-purpose PRF-based key-derivation functions defined in [SP 800-437
108] shall be used for key expansion. These key-derivation functions employ an 438
approved MAC algorithm as the PRF. In this Recommendation, the PRF used in key 439
expansion is determined by the MAC algorithm that is used for randomness extraction. 440
Specifically: 441

a. If HMAC-hash is used in the randomness-extraction step, then the same HMAC-442
hash (with the same hash function hash) shall be used as the PRF in the key-443
expansion step; and 444

b. If either AES-128-CMAC, AES-192-CMAC, or AES-256-CMAC is used in the 445
randomness-extraction step, then only AES-128-CMAC (i.e., the CMAC mode of 446
AES-128) shall be used as the PRF in the key-expansion step. 447

The rationale for these rules is discussed in Section 8.3. 448

 449

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

17

Input: 450

1. Z – a byte string that represents the shared secret. It is used as the “message” during the 451
execution of the MAC algorithm employed in the randomness-extraction step. 452

2. OtherInput, which includes: 453

a. salt – a (secret or non-secret) byte string used as the MAC key during the execution 454
of the randomness-extraction step (i.e., step 1 in the process shown below). This 455
salt could be, for example, a value computed from nonces exchanged as part of a 456
key-establishment protocol that employs one or more of the key-agreement 457
schemes specified in [SP 800-56A] or [SP 800-56B], a value already shared by the 458
protocol participants, or a value that is pre-determined by the protocol. The 459
possibilities for the length of salt are determined by the auxiliary MAC algorithm 460
that is used for randomness extraction: 461

(1) The HMAC-hash algorithm as defined in [FIPS 198] can accommodate keys of 462
any length up to the maximum bit length permitted for input to the hash 463
function, hash; therefore, the length of the byte string salt can be as large as 464
allowed for any string used as input to hash. However, if the bit length of salt 465
is greater than the bit length specified for a single input block for hash, then the 466
value of salt is replaced by hash(salt) as part of the HMAC computation. (Input-467
block lengths for the approved hash functions that can be employed to 468
implement HMAC-hash are included in column 4 of Table 1 in Section 4.2; 469
also see Table 4 of Section 5.2.) In the absence of an agreed-upon alternative, 470
the input salt value shall be an all-zero byte string whose length is equal to that 471
of a single input block for hash. 472

(2) AES-N-CMAC requires keys that are N bits long (for N = 128, 192, or 256), 473
depending upon the AES variant that is used in the implementation. The bit 474
length of salt shall be the bit length required of a key for that AES variant (128 475
bits for AES-128, 192 bits for AES-192, or 256 bits for AES-256). In the 476
absence of an agreed-upon alternative, the input salt value shall be an all-zero 477
string of the required bit length. 478

b. L – a positive integer that indicates the length (in bits) of the secret keying material 479
to be derived using the auxiliary PRF-based KDF during the execution of the key-480
expansion step (i.e., step 2 in the process shown below). The maximum value 481
allowed for L is determined by the mode (i.e., Counter Mode, Feedback Mode, or 482
Double-Pipeline Iteration Mode) and implementation details of the chosen KDF, as 483
specified in [SP 800-108]. An error event will occur during the execution of the 484
KDF if L is too large.1 485

1 The restrictions on the size of L that are given in [SP 800-108] are stated in terms of n = L/h, where h denotes the bit
length of an output block of the PRF used to implement the auxiliary KDF. In the case of Counter Mode, the restriction
is n ≤ 2r – 1, where r ≤ 32 is the (implementation-dependent) bit length allocated for the KDF’s counter variable. For

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

18

(Note that L = keydatalen in the notation of previous versions of [SP 800-56A], 486
while L = KBits in the notation of [SP 800-56B].) 487

c. {IV} – a bit string included (if required) for use as an initial value during execution 488
of the auxiliary PRF-based KDF; an IV shall be included in OtherInput if and only 489
if the chosen PRF-based KDF is operating in Feedback Mode. It can be either secret 490
or non-secret. It may be an empty string. If the PRF-based KDF is operating in 491
either Counter Mode or Double-Pipeline Iteration Mode, an IV shall not be 492
included in OtherInput. (See [SP 800-108] for details.) 493

d. FixedInfo, including: 494

(1) Label – a bit string that identifies the purpose for the derived keying material. 495
For example, it can be the ASCII code for a character string. The value and 496
encoding method used for the Label are defined in a larger context, for example, 497
in the protocol that uses this key-derivation procedure. As an alternative to 498
including this string as a separate component of FixedInfo, Label could be 499
incorporated in Context (see below). 500

(2) Context – a bit string of context-specific data appropriate for the relying key-501
establishment scheme/protocol and the chosen PRF-based KDF. 502
For recommendations concerning the format and context-specific content of 503
Context, see the specifications of FixedInfo and/or OtherInfo in [SP 800-56A] 504
and/or [SP 800-56B], respectively. 505

(3) [L]2 – an agreed-upon encoding of L as a bit string that is appropriate for use by 506
the chosen PRF-based KDF (see [SP 800-108] for details). As an alternative to 507
including this string as a separate component of FixedInfo, [L]2 could be 508
incorporated in Context (see above). 509

Process: 510

[Randomness Extraction] 511
1. Call MAC(salt, Z, …) to obtain KDK or an error indicator; if an error occurs, output 512

an error indicator, and exit from this process without performing step 2. 513

[Key Expansion] 514
2. Call KDF(KDK, L, {IV,} FixedInfo) to obtain DerivedKeyingMaterial or an error 515

indicator (see [SP 800-108] for details). If an error occurs, output an error indicator; 516
otherwise output DerivedKeyingMaterial. 517

the other KDF modes, the restriction is simply n ≤ 232 – 1.

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

19

Output: 518
The bit string DerivedKeyingMaterial of length L bits (or an error indicator). 519

Notes: 520
When HMAC-hash is used as the auxiliary MAC algorithm, the length of KDK is the 521
length of an (untruncated) output block from the hash function hash. When AES-522
CMAC is used, then (regardless of the AES variant employed) KDK is a 128-bit binary 523
string. KDK is used (locally) as a key-derivation key by the auxiliary KDF during the 524
key-expansion step, and then shall be destroyed (along with all other sensitive locally 525
stored data) after its use. Its value shall not be an output of the key-derivation 526
procedure. 527

[RFC 5869] specifies a version of the above extraction-then-expansion key-derivation 528
procedure using HMAC for both the extraction and expansion steps. For an extensive 529
discussion concerning the rationale for the extract-and-expand mechanisms specified in 530
this Recommendation, see [LNCS 6223]. 531

5.2 The Auxiliary MAC Algorithm and Related Parameters 532

Tables 4 and 5 enumerate the possibilities for the auxiliary MAC algorithm used for 533
randomness extraction and provide additional information concerning the lengths of the 534
MAC key (i.e., the salt value) and the extracted key-derivation key (i.e., KDK). The tables 535
also indicate the range of security strengths that can be supported by each choice for MAC 536
(when used as specified in Section 5.1). 537

Table 4: MAC(salt, Z, …) = HMAC-hash(salt, Z) (For Randomness Extraction) 538

Hash
Function

(hash)

Effective
Byte / Bit
Length*

of salt for
HMAC-hash

Bit Length of
Extracted KDK

Security
Strength s
supported

(in bits)

SHA-1 64 / 512 160 112 ≤ s ≤ 160
SHA-224 64 / 512 224 112 ≤ s ≤ 224
SHA-256 64 / 512 256 112 ≤ s ≤ 256

SHA-512/224 128 / 1024 224 112 ≤ s ≤ 224
SHA-512/256 128 / 1024 256 112 ≤ s ≤ 256
SHA-384 128 / 1024 384 112 ≤ s ≤ 384
SHA-512 128 / 1024 512 112 ≤ s ≤ 512

SHA3-224 144 / 1152 224 112 ≤ s ≤ 224
SHA3-256 136 / 1088 256 112 ≤ s ≤ 256
SHA3-384 104 / 832 384 112 ≤ s ≤ 384
SHA3-512 72 / 576 512 112 ≤ s ≤ 512

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

20

 539
* A shorter salt (which is used as an HMAC key) will be padded, by appending an all-zero 540
bit string, to obtain a string of the indicated length (the length of a single input block for 541
hash); a longer salt will be hashed to produce a shorter string, which will then be padded 542
(by appending an all-zero bit string) to obtain a string of the indicated length. (See [FIPS 543
198] for additional information.) 544

Note: The hash used by the HMAC algorithm employed during randomness extraction 545
shall be used again in the subsequent key-expansion step to implement the HMAC 546
algorithm that is employed as a PRF by the auxiliary PRF-based KDF. 547

Table 5: MAC(salt, Z, …) = AES-N-CMAC(salt, Z) (For Randomness Extraction) 548

AES Variant
used by

AES-CMAC

Bit Length
of salt for

AES-CMAC

Bit Length of
Extracted KDK

Security
Strength s
supported

(in bits)

AES-128 128
128

112 ≤ s ≤ 128

AES-192 192
AES-256 256

 549
Note: Regardless of which AES variant is used by the AES-CMAC algorithm during 550
randomness-extraction, the 128-bit AES block size determines the bit length of the 551
resulting KDK. To accommodate the use of this 128-bit KDK as a key-derivation key, the 552
CMAC mode of AES-128 shall be the PRF employed by the auxiliary PRF-based KDF in 553
the subsequent key-expansion step. 554

6 Application-Specific Key-Derivation Methods 555

Additional approved application-specific key-derivation methods are enumerated in 556
[SP 800-135]. Unless an explicit exception is made in [SP 800-135], any hash or MAC 557
algorithm employed by the key-derivation methods enumerated in [SP 800-135] shall be 558
approved and shall also meet the selection requirements specified in this Recommendation 559
(i.e., SP 800-56C). 560

7 Selecting Hash Functions and MAC Algorithms 561

The key-derivation methods specified in this Recommendation, as well as those 562
enumerated in [SP 800-135], use hash functions and/or message authentication code 563
(MAC) algorithms as auxiliary functions. In particular: 564

• The one-step key-derivation functions that are specified in Section 4.1 of this 565
Recommendation employ an appropriate choice of hash function (hash), an HMAC 566
algorithm based on an appropriate choice of hash function (HMAC-hash), or one 567

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

21

of two KMAC variants (KMAC128 or KMAC256) to implement the auxiliary 568
function H. 569

• The extraction-then-expansion key-derivation procedure specified in Section 5.1 570
employs either an HMAC algorithm based on an appropriate choice of hash 571
function (HMAC-hash) for both randomness extraction and key expansion, or an 572
appropriate variant of the AES-CMAC algorithm (i.e., AES-N-CMAC for N = 128, 573
192, or 256) for randomness extraction together with AES-128-CMAC for key 574
expansion. 575

Unless explicitly stated to the contrary, (e.g., in [SP 800-135]), the following requirements 576
apply to the hash functions and MAC algorithms employed for key derivation: 577

• Whenever a hash function is employed (including as the primitive used by HMAC), 578
an approved hash function shall be used. [FIPS 180] and [FIPS 202] specify 579
approved hash functions. 580

• Whenever an HMAC algorithm is employed, the HMAC implementation shall 581
conform to the specifications found in [FIPS 198]. 582

• Whenever a KMAC variant (KMAC128 or KMAC256) is employed, the KMAC 583
implementation shall conform to the specifications found in [SP 800-185]. 584

• Whenever an AES-CMAC algorithm is employed, the implementation of AES shall 585
conform to [FIPS 197] and the AES-CMAC implementation shall conform to [SP 586
800-38B]. 587

As specified in [SP 800-56A] and [SP 800-56B], an approved key-establishment scheme 588
can be implemented with parameters of various types and sizes that will impact the 589
estimated maximum security strength that can be supported by the resulting scheme. When 590
a key-establishment scheme employs a choice of parameters that are associated with a 591
targeted security strength of s bits, the selection of a hash function, HMAC, KMAC, or 592
AES-CMAC employed during the implementation of its key-derivation method shall 593
conform to the following restrictions: 594

• An approved hash function shall be employed (whether alone or as the primitive 595
used by HMAC) in the implementation of a one-step or two-step key-derivation 596
method only if its output block length (in bits) is greater than or equal to s. 597

• For the purposes of implementing one-step key derivation only: KMAC128 shall be 598
employed only in instances where s is 128 bits or less; KMAC256 shall be employed 599
only in instances where s is 256 bits or less. (See, however, the note below.) 600

• For the purposes of implementing two-step key derivation only: AES-CMAC shall 601
be employed only in instances where s is 128 bits or less. (See the note following 602
Table 5.) 603

Tables 1 through 5 (in Sections 4.1 and 5.1) can be consulted to determine which hash 604

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

22

functions and/or MAC algorithms are approved for use when a key-derivation method 605
specified in this Recommendation is used by an approved key-establishment scheme to 606
support a targeted security strength of s bits. 607

Note: At the time of publication of this Recommendation, a key-establishment scheme 608
implemented in accordance with either [SP 800-56A] or [SP 800-56B] can have a targeted 609
security strength of at most 256 bits. 610
 611

8 Further Discussion 612

In this section, the following issues are discussed: 613

8.1 Using a Truncated Hash Function 614

SHA-224, SHA-512/224, SHA-512/256 and SHA-384 are among the approved hash 615
functions specified in [FIPS 180]. SHA-224 is a truncated version of SHA-256, while 616
SHA-512/224, SHA-512/256, and SHA-384 are truncated versions of SHA-512. (Each of 617
these truncated versions uses a specific initial value, which is different from the initial 618
value used by untruncated version.) In applications that require a relatively long bit string 619
of derived keying material, implementing the key-derivation methods specified in this 620
Recommendation with a truncated version of a hash function may be less efficient than 621
using the corresponding untruncated version (i.e., SHA-256 or SHA-512). 622

8.2 The Choice of a Salt Value 623

In this Recommendation, the MAC algorithms employed either in a one-step key-624
derivation method or in the randomness-extraction step of a two-step key derivation 625
method use a salt value as a MAC key (see Sections 4 and 5). This Recommendation does 626
not require the use of a randomly selected salt value. In particular, if there is no means to 627
select a salt value and share it with all of the participants during a key-establishment 628
transaction, then this Recommendation specifies that a predetermined default (e.g., all-629
zero) byte string be used as the salt value. The benefits of using “random” salt values, when 630
possible, are discussed (briefly) in Section 3.1 (“To salt or not to salt.”) of [RFC 5869], 631
and in greater detail in [LNCS 6223]. 632

8.3 MAC Algorithms used for Extraction and Expansion 633

Provided that the targeted security strength can be supported (see Tables 4 and 5 in Section 634
5.2), this Recommendation permits either HMAC-hash (i.e., HMAC implemented with an 635
appropriately chosen approved hash function, hash) or AES-CMAC (i.e., the CMAC 636
mode of AES-128, AES-192, or AES-256) to be selected as the MAC algorithm used in 637
the randomness-extraction step of the key-derivation procedure specified in Section 5.1. 638

The PRF-based KDF used in the key-expansion step of the procedure also requires an 639
appropriate MAC (to serve as the PRF). While it may be technically feasible (in some 640
cases) to employ completely different MAC algorithms in the two steps of the specified 641

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

23

key-derivation procedure, this Recommendation does not permit such flexibility. Instead, 642
the following restrictions have been placed on MAC selection (see Sections 5 and 7): 643

• When an HMAC-hash is chosen for use in the randomness-extraction step, the same 644
MAC algorithm (i.e., HMAC-hash with the same approved hash function, hash) 645
shall be employed to implement the PRF-based KDF used in the key-expansion 646
step. 647

• When AES-128-CMAC, AES-192-CMAC, or AES-256-CMAC is chosen for use 648
in the randomness-extraction step, the MAC algorithm employed by the PRF-based 649
KDF used in the key-expansion step shall be AES-128-CMAC, the CMAC mode 650
of AES-128. (AES-128 is the only AES variant that can employ the 128-bit KDK 651
produced by AES-N-CMAC during the randomness-extraction step.) 652

• The MAC algorithm selected for the implementation of a two-step key-derivation 653
method shall be capable of supporting the targeted security strength, as determined 654
by consulting Tables 4 and 5 in Section 5.2. (This limits the use of AES-CMAC to 655
cases where the targeted security strength is no more than 128 bits.) 656

The imposed restrictions are intended to reduce the overall complexity of the resulting 657
implementations, promote interoperability, and simplify the negotiation of the parameters 658
and auxiliary functions affecting the security strength supported by the key-derivation 659
procedure. 660

Note: At this time, KMAC has not been specified for use in the implementation of a two-661
step key derivation procedure. This restriction may be reconsidered once a general-purpose 662
KMAC-based KDF has been approved for use in the key-expansion step. 663

8.4 Destruction of Sensitive Locally Stored Data 664

Good security practice dictates that implementations of key-derivation methods include 665
steps that destroy potentially sensitive locally stored data that is created (and/or copied for 666
use) during the execution of a particular process; there is no need to retain such data after 667
the process has been completed. Examples of potentially sensitive locally stored data 668
include local copies of shared secrets that are employed during the execution of a particular 669
process, intermediate results produced during computations, and locally stored duplicates 670
of values that are ultimately output by the process. The destruction of such locally stored 671
data ideally occurs prior to or during any exit from the process. This is intended to limit 672
opportunities for unauthorized access to sensitive information that might compromise a 673
key-establishment transaction. 674

It is not possible to anticipate the form of all possible implementations of the key-derivation 675
methods specified in this Recommendation, making it impossible to enumerate all 676
potentially sensitive data that might be locally stored by a process employed in a particular 677
implementation. Nevertheless, the destruction of any potentially sensitive locally stored 678
data is an obligation of all implementations. 679

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

24

 680

Appendix A—References 681

[SP 800-38B] NIST SP 800-38B, Recommendation for Block Cipher Modes of 682
Operation – The CMAC Mode for Authentication, May 2005. 683

[SP 800-56A] Draft NIST SP 800-56A Rev. 3, Recommendation for Pair-Wise Key 684
Establishment Schemes Using Discrete Logarithm Cryptography, 685
August 2017. 686

[SP 800-56B] NIST SP 800-56B Rev. 1, Recommendation for Pair-Wise Key 687
Establishment Schemes Using Integer Factorization Cryptography, 688
September 2014. 689

[SP 800-57] NIST SP 800-57 Rev. 4, Recommendation for Key Management 690
Part1: General, January 2016. 691

[SP 800-108] NIST SP 800-108, Recommendation for Key Derivation using 692
Pseudorandom Functions, October 2009. 693

[SP 800-131A] NIST SP 800-131A Rev. 1, Transitions: Recommendation for 694
Transitioning the Use of Cryptographic Algorithms and Key Lengths, 695
November 2015. 696

[SP 800-135] NIST SP 800-135 Rev. 1, Recommendation for Existing Application-697
Specific Key Derivation Functions, December 2011. 698

[SP 800-185] NIST SP 800-185, SHA-3 Derived Functions: cSHAKE, KMAC, 699
TupleHash and ParallelHash, December 2016. 700

[FIPS 180] FIPS 180-4, Secure Hash Standard, August 2015. 701

[FIPS 197] FIPS 197, Advanced Encryption Standard, November 2001. 702

[FIPS 198] FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC), 703
July 2008. 704

[FIPS 202] FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-705
Output Functions, August 2015. 706

[RFC 5869] IETF RFC 5869 HMAC-based Extract-and-Expand Key Derivation 707
Function (HKDF), May 2010. 708

[LNCS 6223] H. Krawczyk. “Cryptographic Extraction and Key Derivation: The 709
HKDF Scheme”, Advances in Cryptology - Crypto’2010, Lecture Notes 710
in Computer Science Vol. 6223, pp. 631-648. Springer. 2010. 711

 712

NIST SP 800-56C REV. 1 (DRAFT) KEY DERIVATION METHODS IN
 KEY ESTABLISHMENT SCHEMES

25

Appendix B—Revisions (Informative) 713

The original SP 800-56C (published in November 2011) focused entirely on the 714
specification of a two-step extraction-then-expansion key-derivation procedure to be used 715
in conjunction with a key-establishment scheme from either SP 800-56A or SP 800-56B; 716
it provided an alternative to the one-step key-derivation functions that were already 717
included in those companion publications. 718

The 2017 revision of SP 800-56C reorganizes the original content (it still includes the 719
specification of an extraction-then-expansion key-derivation procedure) and also includes 720
the specification of a family of one-step key-derivation functions, expanding on material 721
that was previously found only in SP 800-56A and SP 800-56B. This change was made in 722
support of the removal of detailed descriptions of key-derivation methods from SP 800-723
56A and a future revision of SP 800-56B. The consolidation of specifications in SP 800-724
56C revision 1 will promote consistency between the key-derivation options available for 725
use with an approved key-establishment scheme chosen from either of those companion 726
NIST publications. (There will, however, continue be a number of application-specific key-727
derivation methods specified in SP 800-135.) 728

Specifically named FFC, ECC, and IFC key-establishment “parameter sets” (FA – FC for 729
finite-field cryptography; EA – EE for elliptic-curve cryptography; and IA – IB for 730
integer-factorization cryptography) are no longer used as guides for choosing the auxiliary 731
functions employed by a key-derivation method. Instead, SP 800-56C revision 1 indicates 732
the security strengths that can be supported by the various possibilities for the auxiliary 733
functions. Implementers are expected to let the targeted security strength of the key-734
establishment scheme guide their choices. Of course, each of the named parameter sets was 735
associated with a targeted security strength, so this is more a change of perspective than of 736
substance. The change is, however, consistent with the revison of SP 800-56A, which will 737
de-emphasize (in the FFC case) or eliminate (in the ECC case) the use of named 738
parameter (size) sets. 739

There is one substantial change to the specification of key-derivation methods that is worth 740
noting: a KMAC-based option for implementing the auxiliary function H has been added 741
to the specification of one-step key-derivation functions (see Section 4.1). At this time, 742
however, KMAC has not been specified for use as an auxiliary MAC algorithm in the two-743
step extraction-then-expansion key-derivation procedure (see Section 8.3). 744

Given the extent to which SP 800-56C has been revised, it is impractical to list all of the 745
changes that have been made to the original text. It is recommended that SP 800-56C 746
revision 1 be read in its entirety in order to gain familiarity with the details of the current 747
specifications for both one-step and two-step key-derivation methods used in approved 748
key-establishment schemes. 749

	Draft NIST SP 800-56C Rev. 1, Recommendation for Key-Derivation Methods in Key-Establishment Schemes
	1 Introduction
	2 Scope and Purpose
	3 Definitions, Symbols and Abbreviations
	3.1 Definitions
	3.2 Symbols and Abbreviations

	4 One-Step Key Derivation
	4.1 Specification of Key-Derivation Functions
	4.2 The Auxiliary Function H(x) and Related Parameters

	5 Two-Step Key Derivation
	5.1 Specification of Key-Derivation Procedure
	5.2 The Auxiliary MAC Algorithm and Related Parameters

	6 Application-Specific Key-Derivation Methods
	7 Selecting Hash Functions and MAC Algorithms
	8 Further Discussion
	8.1 Using a Truncated Hash Function
	8.2 The Choice of a Salt Value
	8.3 MAC Algorithms used for Extraction and Expansion
	8.4 Destruction of Sensitive Locally Stored Data

	Appendix A— References
	Appendix B— Revisions (Informative)

