
© 2023 SUSE, LLC / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Userspace Standalone CPU Time Jitter RNG
(32-bit with Internal Timer) Entropy Source

 version 3.4.0

SP 800-90B Non-Proprietary Public Use
Document

Document Version 1.1

Document Date: 2023-02-21

Prepared by:
atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

© 2023 SUSE, LLC / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Table of Contents
1 Description 2	
2 Security Boundary 2	
3 Operating Conditions 3	
4 Configuration Settings 4	
5 Physical Security Mechanisms 4	
6 Conceptual Interfaces 4	
7 Min-Entropy Rate 4	
8 Health Tests 5	
9 Maintenance 6	
10 Required Testing 6	

© 2023 SUSE, LLC / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 2 of 7

1 Description
The Userspace Standalone CPU Time Jitter RNG (32-bit with Internal Timer) version 3.4.0 is a
non-physical entropy source. The noise generation of this entropy source is based on the
tiny variations in the execution time of the same piece of code. The execution time of this
piece of code is made unpredictable by the complexity of the different hardware
components that comprise modern CPUs and the different internal states that the operating
system can have at a certain point in time.
This entropy source uses an internal timer provided by the shared library that implements
the entropy source. The shared library supports two choices of timers: the external CPU
timer and an internal timer provided by the library itself.
The entropy source was tested on the operational environments listed in Table 1 using both
possible timers. The noise source was tested under the assumption that its output is non-IID.

Table 1: Operational environment and version.

Manufacturer Model Operational Environment and
Version

Processor

Supermicro Super Server
X11DDW-L

SUSE Linux Enterprise Server 15 SP4

Intel(R) Xeon(R)
Silver 4215R

GIGABYTE R181-Z90-00 SUSE Linux Enterprise Server 15 SP4 AMD EPYC(TM)
7371

GIGABYTE G242-P32-QZ SUSE Linux Enterprise Server 15 SP4 Ampere(R)
Altra(R) Q80-30

IBM z/15 Model T01 SUSE Linux Enterprise Server 15 SP4 IBM z15

IBM IBM 9080-HEX SUSE Linux Enterprise Server 15 SP4 IBM Power10

2 Security Boundary
The entropy source is provided as a standalone shared library. The security boundary for
this non-physical, software-based entropy source is the shared library in which it resides.
Figure 1 depicts the overall design of the entropy source and its core operations.
The noise source is implemented by collecting and accumulating time variances of variable
memory accesses and variances in the execution time of a defined set of instructions, which
includes an implementation of SHA3-256. The time variances, in the form of time deltas, are
accumulated and mapped down to 256-bits by the SHA3-256 vetted conditioning function
which outputs 256 bits of full entropy.
If the Repetition Count Test (RCT) or the Adaptive Proportional Test (APT) health tests fail,
the noise data is discarded, the entropy source halts without outputting any data, and a
failure code is returned to the caller.

© 2023 SUSE, LLC / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 3 of 7

Figure 1: CPU Jitter 3.4.0 Design

3 Operating Conditions
The noise source is non-physical, and thus the operating conditions are inherited from the
operational environment in which the entropy source is installed, as shown in Table 2 below.

Table 2: Operating Conditions for each Operational Environment

Manufacturer /
Model

Temperature Voltage Humidity Clock
Speed

Cache Sizes

Supermicro
Super Server
X11DDW-L

10C° – 35C° +12 V 8% - 90% 3.2 GHz L1: 8x32 KB
L2: 8x1 MB
L3: 11 MB

GIGABYTE
R181-Z90-00

10C° – 35C° 100-240 V 20% - 95% 3.1 GHz L1: 16x64 KB or
16x32 KB
L2: 16x512 KB
L3:64 MB

GIGABYTE
G242-P32-QZ

10C° – 35C° 100-240 V 8% - 80% 3.3 GHz L1: 80x64 KB
L2: 80x1 MB
L3: 80x32 MB

© 2023 SUSE, LLC / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 4 of 7

Manufacturer /
Model

Temperature Voltage Humidity Clock
Speed

Cache Sizes

IBM z/15
Model T01

5C - 40C 200-240 V 8% - 85% 5.2 GHz L1: 128 KB
L2: 4 MB
L3: 256 MB

IBM 9080-HEX 4C – 40C 4.6k VA 8% – 85% 3.5 GHz L1: 48+32 KB
L2: 2 MB
L3: 120 MB

4 Configuration Settings
The Userspace Standalone CPU Time Jitter RNG (32-bit with Internal Timer) version 3.4.0
obtains time jitter noise from the internal timer. The CPU timer takes precedence over the
internal timer during the initialization of the entropy source. Only if the CPU does not
support a high-resolution timer or if the library is explicitly configured to do so
(JENT_FORCE_INTERNAL_TIMER flag), the internal timer is used.
In order to use this entropy source, the following flag must be provided during the
initialization of the entropy source by calling the jent_entropy_init() API.

• JENT_FORCE_INTERNAL_TIMER

5 Physical Security Mechanisms
The noise source is non-physical. The physical security mechanisms only apply to the
hardware component of the operational environment in which the entropy source is
installed, and thus the entropy source inherits those mechanisms.

6 Conceptual Interfaces
The entropy source provides the following interfaces:

• jent_entropy_init(): Initializes the entropy source context, including the configuration
of the CPU timer or the internal timer.

• jent_read_entropy(): Obtains conditioned entropy for the caller. This is the main
function of the entropy source, the one that shall be used to request entropy data.
This interface corresponds to the GetEntropy() conceptual interface from SP800-90B.

• jent_hash_time(): Obtains raw noise data for testing purposes. This interface
corresponds to the GetNoise() conceptual interface from SP800-90B.

• jent_entropy_collector_free(): zeroizes and frees the given entropy collector instance.

7 Min-Entropy Rate
The noise source provides an entropy rate for each time delta of 𝐻!"#$%&&'(= 1/3 bits.

© 2023 SUSE, LLC / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 5 of 7

The entropy source collects 960 time deltas of 64 bits each from the noise source in order to
input to the SHA3-256 vetted conditioning component at least 320 bits of entropy. In other
words, the entropy source uses an oversampling rate of three samples in order to collect
one bit of entropy; the 320 bits of input entropy (hin) considers the expected output entropy
of 256 bits (hout) and a safety factor of 64 bits of additional entropy defined in SP800-90C.
This design ensures that the entropy source can provide full entropy, that is, 256 bits of
entropy in its output.
The oversampling rate (osr) and safety factor are fixed values defined in the implementation
and cannot be altered.

8 Health Tests
The entropy source implements the following continuous health tests:

• Repetition Count Test conforming to SP 800-90B section 4.4.1.
o 𝐻 = 1 bit of entropy per 8-bit sample.
o alpha value of 𝛼 = 2)*+.
o Cutoff value 𝐶 = 31.

• Adaptive Proportion test conforming to SP 800-90B section 4.4.2.
o 𝑊 = 512
o 𝐻 = 1 bit of entropy per 8-bit sample
o alpha value of 𝛼 = 2)*+.
o Cutoff value 𝐶 = 325.

• Stuck (Non-Permanent) Test: The stuck test computes the first, second and third
discrete derivatives of the time value that will be processed by SHA3-256. If any of
these derivatives are zero, then the received time delta is considered stuck. In this
case the input state to SHA3-256 is not updated, and the entropy value is not
counted. The stuck test then triggers the RCT for further processing. The second
derivative is in fact the RCT itself.

• Lag Predictor Test: The goal of this test is to detect a failure mode in which the
outputs may become mostly deterministic. In essence, this test constructs a
scoreboard and tracks the number of times that a subpredictor was correct. The
subpredictor that scored the most correct predictions is used to predict the next
value of a series. The lag predictor test is configured in this entropy source with the
following parameters:

o 𝛼 = 2),,
o Window size: 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 = 131072
o Lag history size: 𝑙𝑎𝑔_ℎ𝑖𝑠𝑡𝑜𝑟𝑦_𝑠𝑖𝑧𝑒	 = 	8
o Global cutoff = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐶𝐷𝐹 = 𝐶𝑅𝐼𝑇𝐵𝐼𝑁𝑂𝑀(𝑛 = 𝑤𝑖𝑛𝑑𝑜𝑤!%-' −

𝑙𝑎𝑔.%!&/(0!"#$; 𝑝 = 2)
%
&!'; 1 − 𝛼)

o Local cutoff = 111
The continuous-health tests are applied to each new sample obtained from the noise source.
Whenever a failure is detected during the health testing specifically for the RCT and APT,
entropy data is not returned to the caller; instead, a failure code is returned to enable the
caller to acknowledge the failure. The entropy source then halts and will refuse new

© 2023 SUSE, LLC / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 6 of 7

requests for entropy. Upon return of the failure code, the caller shall attempt to reset or
reboot the entropy source or return an error to its own operator. The stuck test is considered
non-permanent, as positive stuck tests will be registered but will not immediately halt the
entropy source.
Startup tests conduct the same set and parameters of the continuous health tests on 1024
samples of noise data. The data is discarded after the startup tests have completed
successfully.
On-demand health tests of the noise source may be performed by rebooting the operational
environment, which results in the immediate execution of the start-up tests. Typically, this
entropy source designed for user space cannot be reloaded without restarting the
executable. Similarly, the data used for the on-demand health tests are discarded after
successful completion.
The following error codes are defined for jent_read_entropy():

• -1 entropy_collector is NULL
• -2 RCT failed
• -3 APT test failed
• -4 The timer cannot be initialized
• -5 LAG failure

9 Maintenance
There are no maintenance requirements as this is a software-based entropy source.

10 Required Testing
To test the entropy source, raw data samples must be collected using both timer options
using a test harness that is capable of accessing the jent_hash_time() noise interface from
the entropy source. The test harness and accessory tools must be supplied by the vendor.
Raw noise data samples consisting of at least 1,000,000 bits must be collected from the
operational environment at its normal operating conditions and processed by the SP 800-
90B entropy tool that is provided by NIST. The expected min-entropy rate must approach
the one in Section 7.
Restart data must be collected at normal operating conditions through the jent_hash_time()
interface following the restart procedure specified in SP 800-90B (i.e., 1,000 samples from
1,000 restarts each) and processed by the NIST SP 800-90B entropy tool. The minimum of
the row-wise and column-wise entropy rate must be more than half that of the raw noise
entropy rate.
In order to collect samples output from the vetted SHA3-256 conditioning component, a test
harness that is capable of accessing the jent_read_entropy() interface is required.

