

SP 800-90B Non-Proprietary Public Use Document
Document Version: v1.1
Date: March 15, 2023

Entropy Source: Silvus Clock Jitter Entropy Module

Prepared for:

Silvus Technologies
10990 Wilshire Blvd #1175
Los Angeles, CA 90024

Prepared by:

KeyPair Consulting Inc.
987 Osos Street
San Luis Obispo, CA 93401
United States

Silvus Clock Jitter Entropy Source
SP 800-90B Non-Proprietary Public Use Document

Copyright © 2023 Silvus Technologies Page 2 of 8
This non-proprietary document may be freely reproduced and distributed in its entirety without modification.

Change History
Version Change Description Date Author
0.1 Template. August 3, 2022 KeyPair
0.2 First pass at required detail. August 9, 2022 Silvus
0.3 Updated to move boilerplate text to comments, basic physical security

statement, minor aesthetic details.
August 11, 2022 KeyPair

0.4 Part and version information updates. October 25, 2022 KeyPair
0.5 Incorporated EAR excerpts. October 27, 2022 KeyPair
0.6 Initial Silvus details. November 14, 2022 Silvus
0.7 Merged Silvus details, updated Required Testing. November 15, 2022 KeyPair
1.0 Finalized version January 19, 2023 Silvus, UL
1.1 Page numbers corrected in Table of Contents; unnecessary information

removed from Section 6 and Table 4 as a result of CMVP Comments.
March 14, 2023 Silvus, UL

References
Ref Title Date Author
[90B] NIST SP 800-90B, Recommendation for the Entropy Sources Used for

Random Bit Generation
10-Jan-2018 NIST CT

[140IG] Implementation Guidance for FIPS 140-3 and the Cryptographic Module
Validation Program

21-Sept-2020 CMVP

[ESVMM] Entropy Source Validation, program Management Manual (under
development)

TBD ESV

[JEDSGN] CPU Time Jitter Based Non-Physical True Random Number Generator July 1, 2022 S.Müller
Chronox.de

[Hill 2020] SP 800-90B Refinements: Validation Process, Estimator Confidence
Intervals, and Assessment Stability. ICMC

2020 Joshua E. Hill

[Müller 2022] CPU Time Jitter Based Non-Physical True Random Number Generator July 1, 2022 Stephan Müller

[JEnt-MemOnly] Jitterentropy library with MemOnly updates.
https://github.com/joshuaehill/jitterentropy-library/tree/MemOnly

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf
http://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.pdf

Silvus Clock Jitter Entropy Source
SP 800-90B Non-Proprietary Public Use Document

Copyright © 2023 Silvus Technologies Page 3 of 8
This non-proprietary document may be freely reproduced and distributed in its entirety without modification.

Table of Contents
Change History ... 2
References .. 2
1 Description .. 4
2 Security Boundary ... 5
3 Operating Conditions .. 5
4 Configuration Settings .. 6
5 Physical Security Mechanisms .. 7
6 Conceptual Interfaces ... 7
7 Min-Entropy Rate ... 7
8 Health Tests .. 8
9 Maintenance ... 8
10 Required Testing ... 8

Silvus Clock Jitter Entropy Source
SP 800-90B Non-Proprietary Public Use Document

Copyright © 2023 Silvus Technologies Page 4 of 8
This non-proprietary document may be freely reproduced and distributed in its entirety without modification.

1 Description
Silvus Technologies, Inc. (Silvus) is using the Jitter Entropy Library MemOnly branch, hereafter referred to as “JEnt-
MemOnly”, as a non-physical entropy source to generate entropy input for instantiation and reseed of an SP 800-
90A compliant DRBG in the Silvus Clock Jitter Entropy Module (SCJEM). JEnt-MemOnly is based on the
jitterentropy-library v3.4.1, which is documented in [Müller 2022, Section 3]. The JEnt-MemOnly design is
depicted in Figure 1.

Figure 1: Entropy Source (Adapted from [Müller 2022, Figure 3.1])

The JEnt-MemOnly design includes elements that map to the conceptual components contained within an SP 800-
90B entropy source:

• The Memory Access (MemAccess) primary noise source (memory timing)
• An additional noise source (Overall Timing)
• Health tests (depicted as the “Stuck Test” block in Figure 1)
• A conditioning algorithm (SHA-3)

Table 1: Evaluated Entropy Source Specification

Identifier Details
Entropy Source Name SCJEM SCJEM SCJEM SCJEM
Part Number SC4240EP-235467-BB SC4480E-235467-SBST SL4210-235-SB SM4210-235-SB
Hardware Revision B7 B1 C3 B2
Firmware Version 4.1.0.0 4 4.1.0.0 4.1.0.0 4.1.0.0
Entropy Category Non-physical (NP) Non-physical (NP) Non-physical (NP) Non-physical (NP)

Test Platform(s)

Xilinx FPGA fabric,
dual core CortexA9
CPU running Linux
kernel version 3.17.

Xilinx FPGA fabric,
dual core CortexA9
CPU running Linux
kernel version 3.17.

Xilinx FPGA fabric,
dual core CortexA9
CPU running Linux
kernel version 3.17.

Xilinx FPGA fabric,
dual core CortexA9
CPU running Linux
kernel version 3.17.

Entropy Estimation Track
(per SP 800-90B §3.1.2) Non-IID Non-IID Non-IID Non-IID

Silvus Clock Jitter Entropy Source
SP 800-90B Non-Proprietary Public Use Document

Copyright © 2023 Silvus Technologies Page 5 of 8
This non-proprietary document may be freely reproduced and distributed in its entirety without modification.

2 Security Boundary
The Silvus Clock Jitter Entropy Module entropy source in the context of the FPGA SoC Application Processor Unit
(APU, and ARM Cortex-A9) is depicted in Figure 1.

3 Operating Conditions
The Entropy-relevant operating conditions for all entropy source variants listed in Table 1 are given in Table 2.

Table 2: Entropy-Relevant Operating Conditions

Parameter Value Description
Temperature -40C to 65C Operating temperature range.
Voltage 9 to 20 VDC Operating voltage range.
Clock speed 400 Mhz CPU clock speed.

Silvus Clock Jitter Entropy Source
SP 800-90B Non-Proprietary Public Use Document

Copyright © 2023 Silvus Technologies Page 6 of 8
This non-proprietary document may be freely reproduced and distributed in its entirety without modification.

4 Configuration Settings
Table 3. Entropy-Relevant Parameters

Parameter Meaning Type Value
JENT_CONF_ENABLE_INTERNAL_TIMER Allow the pthread-based timer. Macro Not Defined
JENT_HEALTH_LAG_PREDICTOR Use the Lag-predictor-based health test. Macro Defined

JENT_LAG_WINDOW_SIZE Size of the Lag-predictor-based health test win-
dow. Macro 131072

JENT_LAG_HISTORY_SIZE Size of the Lag-predictor-based history. Macro 8

JENT_DISTRIBUTION_MIN Lower bound for the selected memory sub-distri-
bution. Macro 1392

JENT_DISTRIBUTION_MAX Upper bound for the selected memory sub-distri-
bution. Macro 1647

JENT_MEMORY_SIZE_EXP Exponent of selected memory size (i.e., 222 bytes
will be used). Macro 22

JENT_MEMORY_DEPTH_EXP Exponent of selected memory depth (i.e., there is
no decimation). Macro 0

JENT_APT_WINDOW_SIZE APT Window size. Macro 512

JENT_HASHLOOP_EXP Exponent of number of hash loops (i.e., there is 1
hash loop per output). Macro 0

JENT_MEMACCESSLOOP_EXP Exponent of number of MemAccess loops (i.e.,
there is 1 MemAccess loop per output). Macro 0

JENT_DIST_WINDOW Size of the window for the Distribution Health
Test. Macro 10000

JENT_POWERUP_TESTLOOPCOUNT
A lower bound for the number of values to test on
initialization (JENT_POWERUP_TESTLOOPCOUNT + CLEAR-
CACHE are performed).

Macro 1024

CLEARCACHE An additional number of values to perform to set
branch prediction and caches. Macro 100

ENTROPY_SAFETY_FACTOR
The number of extra bits of min entropy required
to make a “full entropy” claim. Used only in FIPS
mode.

Macro 64

osr Oversample Rate. The code presumes that the
lower bound for the min entropy is 1/osr. Variable 1

fips_enabled Flag that controls error mode reporting and use of
the ENTROPY_SAFETY_FACTOR. Variable 1

enable_notime Use the constructed pthread timer. Variable 0

Optimizer Setting The compiler optimizer setting has a substantial
impact on the resulting distribution.1

Compiler
Flag -O0

1 The impact of the optimizer on this library is extensively discussed on the library’s GitHub repository Issue #21.

https://github.com/smuellerDD/jitterentropy-library/issues/21

Silvus Clock Jitter Entropy Source
SP 800-90B Non-Proprietary Public Use Document

Copyright © 2023 Silvus Technologies Page 7 of 8
This non-proprietary document may be freely reproduced and distributed in its entirety without modification.

5 Physical Security Mechanisms
The Silvus Clock Jitter Entropy Module entropy source operates within the physical protections of the associate
FPGA package, a commercial plastic ball grid array package. The modules that incorporate the SCJEM entropy
source incorporate physical security protections:

● Production‐grade components and production‐grade opaque enclosure.
● Tamper‐evident seals applied during manufacturing.

6 Conceptual Interfaces
The entropy source is depicted in Figure 1. The entire design of this entropy source is documented in [Müller 2022,
Section 3.1] and [JEnt-MemOnly]. The changes present in [JEnt-MemOnly] were summarized in [Hill 2022]. At a
high level, the entropy source is initialized by running the jent_entropy_init function. This function in turn calls
jent_time_entropy_init which is responsible for determining if the counter is sufficiently fine-grained to
support the library, and which performs the required power-on health tests.

After the library has been initialized, new instances can be allocated using the jent_entropy_collector_alloc
function. This function allocates the memory necessary for a JEnt instance, establishes the value of osr for this
instance, and allows the user to request various behaviors by passing in the flags listed in Table 4.

Table 4. Supported JEnt Flags

Flag Description
JENT_DISABLE_INTERNAL_TIMER Forces the use of the hardware counter.
JENT_FORCE_FIPS Forces the fips_enabled flag.

The jitterentropy library source code is compiled in directly into fips_entropy_gcc.so, an OpenSSL seed provider.
It includes the function setup_drbg which every crypto module invokes to switch to FIPS mode.

The JEnt instance can then be used to request entropy using the jent_read_entropy function. This function
repeatedly produces blocks of 256 bits of conditioned data using the jent_random_data function until at least
the amount of requested data has been produced.

The jent_random_data function first makes an initialization call to jent_measure_jitter to establish an initial
value for the time, and then iteratively calls jent_measure_jitter in a loop until (256+
ENTROPY_SAFETY_FACTOR)*osr non-stuck delta values have been input into the conditioner.

7 Min-Entropy Rate
In accordance with the Entropy Assessment Report, this entropy source has full-entropy output; that is, the
analysis supports the claim of 256 bits of min entropy per 256-bit output block. These blocks are the output of a
vetted conditioning function and can be subdivided further (as per SP 800-90B). If these blocks are subdivided,
then every byte from the block can be treated as possessing at least 8 bits of min entropy, and the min entropy
of any truncated sub-portion of the 256-bit output block is linearly scaled with the length of the retained sub-
portion.

This entropy source is used only to seed an SP 800-90A compliant DRBG, providing 512 bits of entropy input, in
excess of the requirement for entropy input and nonce (384 bits).

Silvus Clock Jitter Entropy Source
SP 800-90B Non-Proprietary Public Use Document

Copyright © 2023 Silvus Technologies Page 8 of 8
This non-proprietary document may be freely reproduced and distributed in its entirety without modification.

8 Health Tests
All health tests are essentially continuous health tests, and are tested within the jent_stuck function. This
function performs a modified version of the Repetition Count Test (RCT), an Adaptative Proportion Test (APT), a
Lag Health Test, and a Distribution Health Test.

The Lag Health Test is performed by attempting to predict the current symbol using the prior 8 symbols. If the
most successful lag (delay) becomes too successful in predicting the current output, or if the test is globally more
successful than expected, then the Lag Health Test fails.

The Distribution Health Test operates on data prior to the selection of a sub-distribution or any decimation. If the
proportion of pre-raw data is too low, then the Distribution Health Test fails.

When the fips_mode flag is set, calls to the jent_health_failure function return with the current
health_failure flag state. If fips_mode is not set, then this function always indicates that no failure has occurred.
The health_failure flag indicates a persistent error for the JEnt instance used, and this flag cannot be reset. For
an instance in FIPS mode, it is only possible to continue using the library for entropy production if a new JEnt
instance is created.

The targeted cutoff parameters for the APT, RCT and Lag Predictor Health Test are dependent on the setting of
osr. In the FIPS mode, only data that passes all health tests can be integrated into the conditioner.

The start-up tests run on 1124 consecutive samples using a subset of the continuous health tests, namely the APT,
RCT, and Lag Predictor Health Tests. The samples used by the start-up health test are discarded.

On-demand testing is performed by allocating a new JEnt handle, which triggers the start-up tests. The samples
used by the on-demand health test (effectively the start-up health test) are discarded.

There is no mechanism to clear an error state short of re-instantiating a new entropy source.

9 Maintenance
The Silvus Clock Jitter Entropy Module entropy source does not require maintenance.

10 Required Testing
The JEnt-MemOnly entropy source was tested in accordance with SP 800-90B requirements. The data collection
was performed by Silvus in advance of testing from an instance of the entropy source. Raw and restart data was
collected using the jitterentropy-hashtime utility, compiled consistent with the Table 3 configuration settings.
Restart data was collected following device reboot.

No further testing is required.

	Change History
	References
	1 Description
	2 Security Boundary
	3 Operating Conditions
	4 Configuration Settings
	5 Physical Security Mechanisms
	6 Conceptual Interfaces
	7 Min-Entropy Rate
	8 Health Tests
	9 Maintenance
	10 Required Testing

