SP 800-90B Non-Proprietary Public Use Document

RBG_TS16FFPGLR_S0

Document Version 1.0

Emulex Connectivity Division Broadcom Inc. 3120 Ridder Park Dr. San Jose CA 95131

September 21, 2022

Revision History

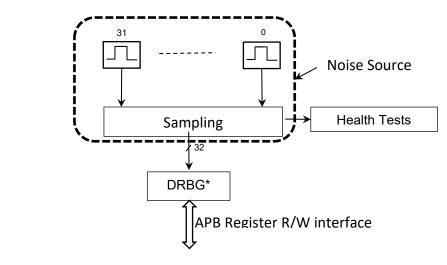
Version	Change	
1.0 First draft for RBG_TS16FFPGLR_S0		

Table of Contents

Security Boundary	Description	. 4
Configuration Settings6Physical Security Mechanisms6Conceptual Interfaces6Min-Entropy Rate6Health Tests7Maintenance7	Security Boundary	. 5
Physical Security Mechanisms6Conceptual Interfaces6Min-Entropy Rate6Health Tests7Maintenance7	Operating Conditions	. 6
Conceptual Interfaces	Configuration Settings	. 6
Min-Entropy Rate	Physical Security Mechanisms	. 6
Health Tests	Conceptual Interfaces	. 6
Maintenance	Min-Entropy Rate	. 6
	Health Tests	. 7
Required Testing	Maintenance	. 7
	Required Testing	. 7

Description

The Broadcom entropy source P/N: RBG_TS16FFPGLR_S0 is a hardware implemented, physical (ENT (P)) entropy source consisting of 32 individual ring oscillators concatenated to produce 32bit raw data output, which is provided with no conditioning. The entropy source was tested by collecting data from multiple process, voltage, and temperature (PVT) operational conditions from a test card.


The test card specifics are:

DUT: Prism Plus Type I Test Card

- PCBA: P012003-91D // Test Card
- ASIC: P012049-01A // Slow process (#50) skew lot proto ASIC
- S/N: NP1201368
- FW: 14.2.135.6004

Security Boundary

The entropy source is depicted in Figure 1, showing a high-level design of the basic layout of the module. Output from sampling the ring osculators is provided to SP 800-90B compliant health tests and an SP 800-90A compliant DRBG.

*SP800-90A compliant DRBG with derivation function

Figure 1. Entropy Source

The security boundary is depicted in Figure 2, showing the data control of the entropy source. Access and control of the entropy source and raw data is restricted to the on-chip support processor running authenticated code. Direct access to the entropy source is not possible from any other interface. The external entropy source data interface shown is used for raw data collection, for use in testing, and is not accessible in non-test units.

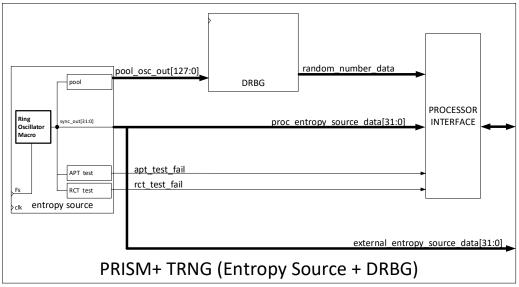


Figure 2. Ring Oscillator Data Flow Diagram

Operating Conditions

The entropy source was tested under several different PVT corners. Table 1 contains the operational conditions in which the entropy source will operate in and maintain entropy production at the assessed value.

Parameter	Value	Description		
Temperature	Min: -40C; Typical: 27C; Max: 125C	Operating Temperature Range		
Voltage	Min: 0.72V; Typical: 0.83V; Max: 0.96V	Operating Voltage Range		
Clock speed	200Khz	Ring Oscillator Sampling		
		Frequency		

Table 1. Entropy-Relevant Parameters

Configuration Settings

The following configuration settings are required for the correct operation of the entropy source:

Parameter	Value	Description
Sampling Frequency (Fs)	200Khz	Ring Oscillator Sampling Frequency (Fs) Derived from clock Input (clk) using divisor input rosc_sampling_rate[15:0]
Min Entropy	4	Set by input min_entropy[15:0]. Sets Cutoff value for Health tests

Table 2. Entropy-Relevant Parameters

Physical Security Mechanisms

The entropy source is embedded in the ASIC that is covered by a heat sink. The entropy source is only accessible by the on-chip support processor running authenticated code. Direct access to the entropy source is not possible from any other interface.

Conceptual Interfaces

In operational mode the entropy source generates 32bit of raw entropy data every sampling clock and provides 128bits of pooled data to the SP 800-90A complaint DRBG.

Min-Entropy Rate

The RBG_TS16FFPGLR_S0 provides 4 bits of entropy per 32-bit sample output. These samples are provided unconditioned to a SP 800-90A complaint DRBG.

Health Tests

The RBG_TS16FFPGLR_S0 performs all required health tests of Section 4.4 of SP 800-90B. This includes startup, continuous, and on-demand health tests.

Health tests are set to flag errors with a false positive probability of 2⁻⁵⁰. Health test failures will be flagged by the source and the module will immediately stop producing entropy data and enter an error state. The device requires reset commands to leave the error state.

Maintenance

There are no specific maintenance requirements for the entropy source.

Required Testing

The RBG_TS16FFPGLR_SO entropy source was tested by collected data from multiple PVT corners in the designated operational range and processed with the SP 800-90B tool. Raw and restart noise data was collected through a debug interface not available outside of test units. Test data was collected following the requirements of Section 3 of SP 800-90B. All tested data was evaluated at a higher entropy than the defined entropy of the assessment, and all restart sanity checks were passed.

No further testing is required.