
 i

Windows 2000®
Operating System

Microsoft Base DSS Cryptographic
Provider

FIPS 140-1 Documentation: Security Policy

12/14/01 9:46 AM

Abstract

This document specifies the security policy for the Microsoft Base DSS Cryptographic Provider
(DSSBASE) as described in FIPS PUB 140-1.

®

 ii

INTRODUCTION...1

SECURITY POLICY...2

SPECIFICATION OF ROLES...3

SPECIFICATION OF SERVICES...4

CRYPTOGRAPHIC KEY MANAGEMENT.......................................9

SELF-TESTS..12

MISCELLANEOUS...13

FOR MORE INFORMATION..14

CONTENTS

 1

Microsoft Base DSS Cryptographic Provider (DSSBASE) is a FIPS 140-1 Level 1
compliant, general-purpose, software-based, cryptographic module. Like other
cryptographic providers that ship with Microsoft Windows 2000, DSSBASE
encapsulates several different cryptographic algorithms in an easy-to-use
cryptographic module accessible via the Microsoft CryptoAPI. It can be dynamically
linked into applications by software developers to permit the use of general-purpose
FIPS 140-1 Level 1 compliant cryptography.

Cryptographic Boundary

The Microsoft Base DSS Cryptographic Provider (DSSBASE) consists of a single
dynamically-linked library (DLL) named DSSBASE.DLL. The cryptographic
boundary for DSSBASE is defined as the enclosure of the computer system on
which the cryptographic module is to be executed. The physical configuration of the
module, as defined in FIPS PUB 140-1, is Multi-Chip Standalone.

INTRODUCTION

 2

DSSBASE operates under several rules that encapsulate its security policy.
• DSSBASE is supported on Windows 2000.
• DSSBASE relies on Microsoft Windows 2000 for the authentication of users.
• DSSBASE enforces a single role, Authenticated User, which is a combination

of the User and Cryptographic Officer roles as defined in FIPS PUB 140-1.
• All users authenticated by Microsoft Windows 2000 employ the Authenticated

User role.
• All services implemented within DSSBASE are available to the Authenticated

User role.
• Keys created within DSSBASE by one user are not accessible to any other

user via DSSBASE.
• DSSBASE stores keys in the file system, but relies on Microsoft Windows 2000

for the covering of the keys prior to storage.
• DSSBASE performs the following self-tests upon power up:

− RC4 encrypt/decrypt
− RC2 ECB encrypt/decrypt
− DES ECB encrypt/decrypt
− DES40 ECB encrypt/decrypt
− RC2 CBC encrypt/decrypt
− DES CBC encrypt/decrypt
− DES40 CBC encrypt/decrypt
− MD5 hash
− SHA-1 hash

• DSSBASE performs a pairwise consistency test upon each invocation of DSA
key generation as defined in FIPS PUB 140-1 and FIPS PUB 186.

SECURITY POLICY

 3

DSSBASE combines the User and Cryptographic Officer roles (as defined in FIPS
PUB 140-1) into a single role hereon called the Authenticated User role. The
Authenticated User may access all services implemented in the cryptographic
module.
An application requests the crypto module to generate keys for a user. Keys are
generated, used and deleted as requested by applications. There are not implicit
keys associated with a user. Each user may have numerous keys, signature and
key exchange, and these keys are separate from other users’ keys.

Maintenance Roles

Maintenance roles are not supported by DSSBASE.

Multiple Concurrent Operators

DSSBASE is intended to run on Windows 2000 in Single User Mode. When run in
this configuration, multiple concurrent operators are not supported.

SPECIFICATION OF
ROLES

 4

The following list contains all services available to an operator. All services are
accessible by all Authenticated Users, the one and only role supported by
DSSBASE.

Key Storage

DSSBASE stores keys in the file system. The task of covering the keys prior to
storage in the file system is delegated to the Data Protection API of Microsoft
Windows 2000, a separate component of the operating system, and outside the
boundaries of the cryptomodule. When a key container is deleted, the file is
zeroized before being deleted.

CryptAcquireContext

The CryptAcquireContext function is used to acquire a handle to a particular key
container via a particular cryptographic service provider (CSP). This returned
handle can then be used to make calls to the selected CSP.

This function performs two operations. It first attempts to find a CSP with the
characteristics described in the dwProvType and pszProvider parameters. If the
CSP is found, the function attempts to find a key container matching the name
specified by the pszContainer parameter.

With the appropriate setting of dwFlags, this function can also create and destroy
key containers.

If dwFlags is set to CRYPT_NEWKEYSET, a new key container is created with the
name specified by pszContainer. If pszContainer is NULL, a key container with the
default name is created.

If dwFlags is set to CRYPT_DELETEKEYSET, The key container specified by
pszContainer is deleted. If pszContainer is NULL, the key container with the default
name is deleted. All key pairs in the key container are also destroyed and memory
is zeroized.

When this flag is set, the value returned in phProv is undefined, and thus, the
CryptReleaseContext function need not be called afterwards.

CryptGetProvParam

The CryptGetProvParam function retrieves data that governs the operations of the
provider. This function may be used to enumerate key containers, enumerate
supported algorithms, and generally determine capabilities of the CSP.

SPECIFICATION OF
SERVICES

 5

CryptSetProvParam

The CryptSetProvParam function customizes various aspects of a provider’s
operations. This function is may be used to set a security descriptor on a key
container.

CryptReleaseContext

The CryptReleaseContext function releases the handle referenced by the hProv
parameter. After a provider handle has been released, it becomes invalid and
cannot be used again. In addition, key and hash handles associated with that
provider handle may not be used after CryptReleaseContext has been called.

Key Generation and Exchange

The following functions provide interfaces to the cryptomodule’s key generation and
exchange functions.

CryptDeriveKey

The CryptDeriveKey function generates cryptographic session keys derived from a
hash value. This function guarantees that when the same CSP and algorithms are
used, the keys generated from the same hash value are identical. The hash value is
typically a cryptographic hash (SHA-1, etc.) of a password or similar secret user
data.

This function is the same as CryptGenKey, except that the generated session keys
are derived from the hash value instead of being random and CryptDeriveKey can
only be used to generate session keys. It cannot generate public/private key pairs.

If keys are being derived from a CALG_SCHANNEL_MASTER_HASH then the
appropriate key derivation process is used to derive the key. In this case the
process used is from either the SSL 2.0, SSL 3.0, PCT or TLS specification of
deriving client and server side encryption and MAC keys. This function will cause
the key block to be derived from the master secret and the requested key is then
derived from the key block. Which process is used is determined by which protocol
is associated with the hash object. For more information see the SSL 2.0, SSL 3.0,
PCT and TLS specifications.

CryptDestroyKey

The CryptDestroyKey function releases the handle referenced by the hKey
parameter. After a key handle has been released, it becomes invalid and cannot be
used again.

 6

If the handle refers to a session key, or to a public key that has been imported into
the CSP through CryptImportKey, this function zeroizes the key in memory and
frees the memory that the key occupied. The underlying public/private key pair is
not destroyed by this function. Only the handle is destroyed.

CryptExportKey

The CryptExportKey function exports cryptographic keys from a cryptographic
service provider (CSP) in a secure manner for key archival purposes.

A handle to a private DSS/DH key to be exported may be passed to the function,
and the function returns a key blob. This private key blob can be sent over a
nonsecure transport or stored in a nonsecure storage location. The private key blob
is useless until the intended recipient uses the CryptImportKey function on it to
import the key into the recipient's CSP. Key blobs are exported either in plaintext or
encrypted with a symmetric key. If a symmetric key is used to encrypt the blob then
a handle to the private DSS/DH key is passed in to the module and the symmetric
key referenced by the handle is used to encrypt the blob. Any of the supported
symmetric cryptographic algorithm’s may be used to encrypt the private key blob
(DES, DES40, RC4 or RC2).

Public DSS/DH keys are also exported using this function. A handle to the DSS/DH
public key is passed to the function and the public key is exported, always in
plaintext as a blob. This blob may then be imported using the CryptImportKey
function.

Symmetric keys may also be exported by wrapping the keys with another symmetric
key. The wrapped key is then exported as a blob and may be imported using the
CryptImportKey function.

CryptGenKey

The CryptGenKey function generates a random cryptographic key. A handle to the
key is returned in phKey. This handle can then be used as needed with any
CryptoAPI function requiring a key handle.

The calling application must specify the algorithm when calling this function.
Because this algorithm type is kept bundled with the key, the application does not
need to specify the algorithm later when the actual cryptographic operations are
performed.

Generation of a DSS key for signatures requires the operator to complete several
steps before a DSS key is generated. CryptGenKey is first called with
CRYPT_PREGEN set in the dwFlags parameter. The operator then sets the P, Q,
and G for the key generation via CryptSetKeyParam, once for each parameter. The
operator calls CryptSetKeyParam with KP_X set as dwParam to complete the key
generation.

 7

CryptGenRandom

The CryptGenRandom function fills a buffer with random bytes. The random
number generation algorithm is the SHS based RNG from FIPS 186.

CryptGetKeyParam

The CryptGetKeyParam function retrieves data that governs the operations of a
key.

CryptGetUserKey

The CryptGetUserKey function retrieves a handle of one of a user's public/private
key pairs.

CryptImportKey

The CryptImportKey function transfers a cryptographic key from a key blob into a
cryptographic service provider (CSP).

Private keys may be imported as blobs and the function will return a handle to the
imported key.

Symmetric keys wrapped with other symmetric keys may also be imported using
this function. The wrapped key blob is passed in along with a handle to a
symmetric key which the module is supposed to use to unwrap the blob. If the
function is successful then a handle to the unwrapped symmetric key is returned.

CryptSetKeyParam

The CryptSetKeyParam function customizes various aspects of a key's operations.
This function is used to set session-specific values for symmetric keys.

CryptDuplicateKey

The CryptDuplicateKey function is used to duplicate, make a copy of, the state of a
key and returns a handle to this new key. The CryptDestroyKey function must be
used on both the handle to the original key and the newly duplicated key.

Data Encryption and Decryption

The following functions provide interfaces to the cryptomodule’s data encryption and
decryption functions.

CryptDecrypt

The CryptDecrypt function decrypts data previously encrypted using CryptEncrypt
function.

 8

CryptEncrypt

The CryptEncrypt function encrypts data. The algorithm used to encrypt the data is
designated by the key held by the CSP module and is referenced by the hKey
parameter.

Hashing and Digital Signatures

The following functions provide interfaces to the cryptomodule’s hashing and digital
signature functions.

CryptCreateHash

The CryptCreateHash function initiates the hashing of a stream of data. It returns to
the calling application a handle to a CSP hash object. This handle is used in
subsequent calls to CryptHashData and CryptHashSessionKey in order to hash
streams of data and session keys. SHA-1 and MD5 are the cryptographic hashing
algorithms supported. In addition, a MAC using a symmetric key is created with this
call and may be used with any of the symmetric block ciphers support by the
module (DES, DES40, RC4 or RC2).

A CALG_SCHANNEL_MASTER_HASH may be created with this call. If this is the
case then a handle to one of the following types of keys must be passed in the hKey
parameter, CALG_SSL2_MASTER, CALG_SSL3_MASTER,
CALG_PCT1_MASTER, or CALG_TLS1_MASTER. This function with
CALG_SCHANNEL_MASTER_HASH in the ALGID parameter will cause the
derivation of the master secret from the pre-master secret associated with the
passed in key handle. This key derivation process is done in the method specified
in the appropriate protocol specification, SSL 2.0, SSL 3.0, PCT 1.0, or TLS. The
master secret is then associated with the resulting hash handle and session keys
and MAC keys may be derived from this hash handle. The master secret may not
be exported or imported from the module. The key data associated with the hash
handle is zeroized when CryptDestroyHash is called.

CryptDestroyHash

The CryptDestroyHash function destroys the hash object referenced by the hHash
parameter. After a hash object has been destroyed, it can no longer be used.

If the hash handle references a CALG_SCHANNEL_MASTER_HASH key then
when CryptDestroyHash is called the associated key material is zeroized.

All hash objects should be destroyed with the CryptDestroyHash function when the
application is finished with them.

 9

CryptGetHashParam

The CryptGetHashParam function retrieves data that governs the operations of a
hash object. The actual hash value can also be retrieved by using this function.

CryptHashData

The CryptHashData function adds data to a specified hash object. This function and
CryptHashSessionKey can be called multiple times to compute the hash on long
data streams or discontinuous data streams. Before calling this function, the
CryptCreateHash function must be called to create a handle of a hash object.

CryptHashSessionKey

The CryptHashSessionKey function computes the cryptographic hash of a key
object. This function can be called multiple times with the same hash handle to
compute the hash of multiple keys. Calls to CryptHashSessionKey can be
interspersed with calls to CryptHashData. Before calling this function, the
CryptCreateHash function must be called to create the handle of a hash object.

CryptSetHashParam

The CryptSetHashParam function customizes the operations of a hash object.

CryptSignHash

The CryptSignHash function signs data. Because all signature algorithms are
asymmetric and thus slow, the CryptoAPI does not allow data be signed directly.
Instead, data is first hashed and CryptSignHash is used to sign the hash. The
crypto module supports signing with DSS.

CryptVerifySignature

The CryptVerifySignature function verifies the signature of a hash object. Before
calling this function, the CryptCreateHash function must be called to create the
handle of a hash object. CryptHashData or CryptHashSessionKey is then used to
add data or session keys to the hash object. The crypto module supports verifying
DSS signatures.

After this function has been completed, only CryptDestroyHash can be called using
the hHash handle.

CryptDuplicateHash

The CryptDuplicateHash function is used to duplicate, make a copy of, the state of a
hash and returns a handle to this new hash. The CryptDestroyHash function must
be used on both the handle to the original hash and the newly duplicated hash.

 10

The DSSBASE cryptomodule manages keys in the following manner.

Key Material

DSSBASE can create and use keys for the following algorithms: DSS, Diffie-
Hellman, RC2, RC4, DES, and DES40.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Structures\Cryptography Structures for more
information about key formats and structures.

Key Generation

Random keys can be generated by calling the CryptGenKey() function. Keys can
also be derived from known values via the CryptDeriveKey() function. DSS keys are
generated and validated following the manner described in FIPS PUB 186-1. DES
key are generated and validated following the manner described in FIPS PUB 46-2
and FIPS PUB 81.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

Key Entry and Output

Keys can be both exported and imported out of and into DSSBASE via
CryptExportKey() and CryptImportKey(). Exported private keys may be encrypted
with a symmetric key passed into the CryptExportKey function. Any of the
symmetric algorithms supported by the crypto module may be used to encrypt
private keys for export (DES, DES40, RC4 or RC2). When private keys are
generated or imported from archival, they are covered with the Microsoft Windows
2000 Data Protection API (DPAPI) and then outputted to the file system in the
covered form.

Symmetric key entry and output is done by exchanging keys using the recipient’s
asymmetric public key. Symmetric key entry and output may also be done by
exporting a symmetric key wrapped with another symmetric key.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

CRYPTOGRAPHIC KEY
MANAGEMENT

 11

Key Storage

DSSBASE offloads the key storage operations to the Microsoft Windows 2000
operating system. Keys are not stored in the cryptographic module, private keys are
encrypted by the Microsoft Data Protection API (DPAPI) service, and then stored in
the Microsoft Windows 2000 file system. Keys are zeroized from memory after use.
Only the key used for power up self-testing is stored in the cryptographic module.

When an Authenticated User requests a keyed cryptographic operation from
DSSBASE his/her keys are retrieved from the file system.

DPAPI uses a two-phase algorithm for shrouding the Secret Key (SK) used to
encrypt data. Phase 2 occurs by default only if there is a Domain Controller
associated with the user. Therefore in the local user case, the SK is protected by a
local LSA secret. SYSKEY should be enabled to prevent access to this key. Refer
to NT4/win2k documentation for info on SYSKEY.

Phase 1: Local Agent

In the first phase, the system shrouds the secret locally, relying on the service run
as Local System to protect secrets. This protection shrouds the data both as it
travels on the wire and also blinds the data from the DC. Thus, the shrouding
ensures that no remote user (even a “phase 2” remote recovery agent) can decrypt
the data independent from the local system.

Recovery setup

1. Agent has data D1 to shroud

2. Agent uses secret key SK encrypt D1

3. Agent stores SK in the user hive ACLed to local agent

4. Agent has shrouded E{D1}

Initiate recovery

1. Agent has E{D1} to unshroud

2. Agent retrieves secret key SK from user hive

3. Agent uses secret key SK to decrypt E{D1}

4. Agent has unshrouded D1

Phase 2: Remote Agent

In the second phase, if the machine is networked, the shrouded secret is sent to the
domain controller (DC) for an identification stamp and second shrouding. This
second shrouding will ensure that a roaming user profile is not self-contained, but
needs an interactive logon to successfully recover the master key.

 12

Recovery setup

5. User sends data D2 to remote agent

6. Agent uses secret monster key K, random R2, HMACs to derive SymKeyM.

7. Use SymKeyM to MAC {userid, D2} -> m{userid, D2}

8. Agent uses secret monster key K, random R3, HMACs to derive SymKeyK.

9. Use SymKeyK to encrypt { m{userid, D2} , R2 }

10. Agent returns recovery field E{ m{userid, D2}, R2 }, R3 to User

11. User stores recovery field E{ m{userid, D2}, R2 }, R3

Initiate recovery

5. User sends recovery field E{ m{userid, D2}, R2 }, R3 to remote agent

6. Agent uses secret monster key K, HMACs with R3 to re-derive SymKeyK.

7. SymKeyK used to decrypt m{userid, D2}, R2

8. Agent uses secret monster key K, HMACs with R2 to re-derive SymKeyM.

9. SymKeyM used to check MAC on {userid, D2}.

10. Agent returns D2 if userid matches current recovery requestor.

These phases can be nested such that D2 = E{D1}, which allows neither of the
agents to recover the data barring collusion.

Key Archival

DSSBASE does not directly archive cryptographic keys. The Authenticated User
may choose to export a cryptographic key labeled as exportable (cf. “Key Input and
Output” above), but management of the secure archival of that key is the
responsibility of the user.

Key Destruction

All keys are destroyed and their memory location zeroized when the Authenticated
User calls CryptDestroyKey on that key handle. Private keys (which are stored by
the operating system in covered format in the protected storage system portion of
the NT4.0 OS) are destroyed when the Authenticated User calls
CryptAcquireContext with the CRYPT_DELETE_KEYSET flag.

 13

Mandatory

Software tests via a DES MAC of library image
• RC4 encrypt/decrypt KAT
• RC2 ECB encrypt/decrypt KAT
• DES ECB encrypt/decrypt KAT
• DES40 ECB encrypt/decrypt KAT
• RC2 CBC encrypt/decrypt KAT
• DES CBC encrypt/decrypt KAT
• DES40 CBC encrypt/decrypt KAT
• MD5 hash KAT
• SHA-1 hash KAT
• DSS pairwise consistency test
• Diffie-Hellman pairwise consistency test

Conditional

The following are initiated at key generation:
• DSS pairwise consistency test
• Diffie-Hellman pairwise consistency test

SELF-TESTS

 14

The following items address requirements not addressed above.

Cryptographic Bypass

Cryptographic bypass is not support in DSSBASE.

Operation Authentication

DSSBASE inherits all authentication from the Microsoft Windows 2000 operating
system upon which it runs. Microsoft Windows 2000 requires authentication from a
trusted control base (TCB) before a user is able to access system services. Once a
user is authenticated from the TCB, a process is created bearing the Authenticated
User’s security token. All subsequent processes and threads created by that
Authenticated User are implicitly assigned the parent’s (thus the Authenticated
User’s) security token. Every user that has been authenticated by Microsoft
Windows 2000 is naturally assigned the Authenticated User role when he/she
accesses DSSBASE.

Identity-based Authentication

While all Authenticated Users are assigned the same role and thus have access to
the same complete set of services, individual Authenticated Users may only access
key containers which they themselves have created. DSSBASE assumes the
authentication of the user and enforces it by running in a thread with the
Authenticated User’s security token.

ModularExpOffload

The ModularExpOffload function offloads modular exponentiation from a CSP to a
hardware accelerator. The CSP will check in the registry for the value
HKLM\Software\Microsoft\Cryptography\ExpoOffload that can be the name of a
DLL. The CSP uses LoadLibrary to load that DLL and calls GetProcAddress to get
the OffloadModExpo entry point in the DLL specified in the registry. The CSP uses
the entry point to perform all modular exponentiations for both public and private
key operations. Two checks are made before a private key is offloaded.

Operating System Security

The DSSBASE cryptomodule is intended to run on Windows 2000 in Single User
Mode.

MISCELLANEOUS

 15

When an operating system process loads the cryptomodule into memory, the
cryptomodule runs a DES MAC on the cryptomodule’s disk image of
DSSBASE.DLL, excluding the DES MAC, checksum, and export signature
resources. This MAC is compared to the value stored in the DES MAC resource.
Initialization will only succeed if the two values are equal.

Each operating system process creates a unique instance of the cryptomodule that
is wholly dedicated to that process. The cryptomodule is not shared between
processes.

 16

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 i

Windows 2000®
Operating System

Microsoft Base DSS Cryptographic
Provider

FIPS 140-1 Documentation: Finite State Machine

Abstract

This document specifies the finite state machine for the DSSBASE as described in FIPS PUB 140-
1.

®

 ii

INTRODUCTION...1

FINITE STATE MACHINE...2

APPENDIX A ...4

APPENDIX B ...5

FOR MORE INFORMATION..6

CONTENTS

 Microsoft Windows 2000 Server White

Paper

1

The Microsoft Base DSS Cryptographic Provider (DSSBASE) is a FIPS 140-1 Level
1 compliant, general-purpose, software-based, cryptographic module. Like other
cryptographic providers that ship with Windows 2000, DSSBASE encapsulates
several different cryptographic algorithms in an easy-to-use cryptographic module
accessible via the Microsoft CryptoAPI. It can be dynamically linked into
applications by software developers to permit the use of general-purpose FIPS 140-
1 Level 1 compliant cryptography.

INTRODUCTION

Microsoft Windows 2000 Server White Paper 2

The DSSBASE cryptomodule can be in exactly one of the following states at any
given moment. Transitions between states can be automatic or result from user
intervention.

States

See Appendix A and B for more information.

Power Up

The Power Up state is entered when a process thread calls the Microsoft CryptoAPI
function CryptAcquireContext() (encapsulated in ADVAPI32.DLL) in the following
manner:

CryptAcquireContext(&hProv, pszContainer, MS_DEF_DSS_DH_PROV,
PROV_DSS, dwFlags)

This ADVAPI32.DLL function locates DSSBASE on the user’s system, verifies its
export compliance signature, and attempts to load DSSBASE via LoadLibrary() and
run its DLLInitialize() function.

Power Down

The Power Down state is entered when DSSBASE library is unloaded either
explicitly (e.g. a process thread calls FreeLibrary()) or implicitly (e.g. the process
exits or is killed.)

Init Error

The Init Error State is entered when DSSBASE’s DLLInitialize() fails as a result of
either configuration errors (i.e. provider could not be found, not enough memory,
etc.) or errors resulting from the power up self-tests.

Un-Initialized

The Un-Initialized state is entered when ADVAPI32.DLL successfully loads
DSSBASE and calls its CPAcquireContext() function. If CryptAcquireContext() was
called with any valid dwFlags other than CRYPT_VERIFY_CONTEXT or
CRYPT_DELETE_CONTEXT, DSSBASE attempts to load the requested key
container.

FINITE STATE MACHINE

 Microsoft Windows 2000 Server White

Paper

3

Initialized

The Initialized state is entered when CPAcquireContext() completes successfully
and a cryptographic provider handle (hProv) is returned to the client through the
original ADVAPI32.DLL CryptAcquireContext() call. While a key container has been
found, no keys have yet been loaded. Keyless cryptographic operations occur from
the Initialized state until such time a keyed cryptographic operation is requested.

Key Entry

The Key Entry state is entered when a keyed cryptographic operation is requested
such as CryptImportKey(), CryptSignHash(),,CryptSetKeyParam (when the private
key is generated with KP_X), or CryptGenKey() (when a DSS or DH private key is
being generated). Keys are uncovered using the Data Protection APIs (DPAPI). If
keys are successfully uncovered, DSSBASE will automatically transition to the Key
Initialized state.

Key Initialized

The Key Initialized state is entered after keys have been loaded. This state is
identical to the Initialized state except both keyless and keyed cryptographic
operations can occur within this state.

Operation Error

The Operation Error state is entered whenever an error occurs as a result of a
cryptographic operation. DSSBASE will automatically transition back to either the
Initialized or Key Initialized depending on whether or not keys have been
successfully loaded.

State Transitions

See Appendix A.

State Diagrams

See Appendix B.

Microsoft Windows 2000 Server White Paper 4

The following table describes the state transitions possible within the DSSBASE
cryptomodule during operation.

 Current State Input Output Next State
1 Power Up

DSSBASE loads
NO_ERROR Un-Initialized

2 Power Up DSSBASE.DLL not found NTE_PROV_DLL_NOT_FOUND Init Error
2 Power Up Bad export compliance

signature
NTE_BAD_SIGNATURE Init Error

2 Power Up DES MAC check on
cryptographic provider fails

NTE_PROVIDER_DLL_FAIL Init Error

2 Power Up One or more power-on
cryptographic self-tests fail

 NTE_PROVIDER_DLL_FAIL Init Error

2 Power Up System error System error message Init Error
3 Init Error Automatic transition No output Power Down
4 Un-Initialized Cannot load key container NTE_BAD_KEYSET Init Error
4 Un-Initialized dwFlags is

CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT
but operation could not be
completed

NTE_BAD_KEYSET or
NTE_FAIL

Init Error

5 Un-Initialized dwFlags is not either
CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT

NO_ERROR and valid provider
handle (hProv)

Initialized

6 Initialized Keyed cryptographic
operation requested (i.e.
CryptImportKey(),
CryptSignHash(),CryptSetK
eyParam (when the private
key is generated with
KP_X), or CryptGenKey()
(when a DSS or DH private
key is being generated)

No output Key Entry

7 Initialized Generic cryptographic
operation failure

Operation specific error
message

Operation Error

8 Operation Error Automatic transition when
keys have not yet been
loaded

No output Initialized

9 Key Entry Keys uncovered with
DPAPI and loaded

No output Key Initialized

10 Key Entry Keys could not be
uncovered with DPAPI

NTE_FAIL Operation Error

11 Key Initialized Generic cryptographic
operation failure

Operation specific error
message

Operation Error

12 Operation Error Automatic transition when
keys have already been
loaded

No output Key Initialized

13 Initialized CryptReleaseContext()
called

NO_ERROR Un-Initialized

14 Key Initialized CryptReleaseContext()
called

NO_ERROR Un-Initialized

15 Un-Initialized Automatic transition when
no other outstanding
provider handles exist

NO_ERROR Power Down

15 Un-Initialized Automatic transition when
dwFlags is
CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT
and operation successfully
completes

NO_ERROR Power Down

APPENDIX A

 Microsoft Windows 2000 Server White

Paper

5

The following diagram illustrates the finite state machine of the DSSBASE
cryptomodule.

APPENDIX B

Power Up

Operation
Error

Un-
Initialized

Initialized

Key Entry

Key
Initialized

Power
Down

1

Init
Error

2 3

4

5

7
6

9

10

11

12

14

15

13

8

Microsoft Windows 2000 Server White Paper 6

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 Microsoft Windows 2000 Server White Paper i

Windows 2000®
Operating System

Microsoft Base DSS Cryptographic
Provider

FIPS 140-1 Documentation: Master Component List

Abstract

The Microsoft Base DSS Cryptographic Provider (DSSBASE) is a FIPS 140-1 Level 1 compliant
general-purpose software-based cryptographic module. Like other cryptographic providers that
ship with Microsoft Windows 2000, DSSBASE encapsulates several different cryptographic
algorithms in an easy-to-use cryptographic module accessible via the Microsoft CryptoAPI. It can
be dynamically linked into applications by software developers to permit the use of general-
purpose FIPS 140-1 Level 1 compliant cryptography.

This document specifies the master component list for the DSSBASE as described in FIPS PUB
140-1.

®

Microsoft Windows 2000 Server White Paper ii

MASTER COMPONENT LIST ...1

APPENDIX A ...2

FOR MORE INFORMATION..3

CONTENTS

 Microsoft Windows 2000 Server White Paper 1

The DSSBASE cryptomodule is a software cryptomodule and is intended to operate
on a PC running Windows 2000. Several components of the base PC are also to be
considered components of the cryptomodule.

Components

The following components are to be considered components of the cryptomodule
(see Appendix A below):

• PC Enclosure
• Central Processing Unit (CPU)
• Physical Storage (Hard Drives and Removable Storage)
• Memory (RAM and CMOS)

MASTER COMPONENT
LIST

Microsoft Windows 2000 Server White Paper2

The following diagram illustrates the master components of the DSSBASE
cryptomodule.

APPENDIX A

PC

Physical Storage

CPU

Hard Disk

Removable
Storage

Memory

CMOS

RAM

 Microsoft Windows 2000 Server White Paper 3

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 i

Windows 2000®
Operating System

Microsoft DSS/Diffie-Hellman
Enhanced Cryptographic Provider

FIPS 140-1 Documentation: Security Policy

12/14/01 9:46 AM

Abstract

This document specifies the security policy for the Microsoft DSS/Diffie-Hellman Enhanced
Cryptographic Provider (DSSENH) as described in FIPS PUB 140-1.

®

 ii

INTRODUCTION...1

SECURITY POLICY...2

SPECIFICATION OF ROLES...3

SPECIFICATION OF SERVICES...4

CRYPTOGRAPHIC KEY MANAGEMENT.......................................9

SELF-TESTS..12

MISCELLANEOUS...13

FOR MORE INFORMATION..14

CONTENTS

 1

Microsoft DSS/Diffie-Hellman Enhanced Cryptographic Provider (DSSENH) is a
FIPS 140-1 Level 1 compliant, general-purpose, software-based, cryptographic
module. Like other cryptographic providers that ship with Microsoft Windows 2000,
DSSENH encapsulates several different cryptographic algorithms in an easy-to-use
cryptographic module accessible via the Microsoft CryptoAPI. It can be dynamically
linked into applications by software developers to permit the use of general-purpose
FIPS 140-1 Level 1 compliant cryptography.

Cryptographic Boundary

The Microsoft DSS/Diffie-Hellman Enhanced Cryptographic Provider (DSSENH)
consists of a single dynamically-linked library (DLL) named DSSENH.DLL. The
cryptographic boundary for DSSENH is defined as the enclosure of the computer
system on which the cryptographic module is to be executed. The physical
configuration of the module, as defined in FIPS PUB 140-1, is Multi-Chip
Standalone.

INTRODUCTION

 2

DSSENH operates under several rules that encapsulate its security policy.
• DSSENH is supported on Windows 2000.
• DSSENH relies on Microsoft Windows 2000 for the authentication of users.
• DSSENH enforces a single role, Authenticated User, which is a combination of

the User and Cryptographic Officer roles as defined in FIPS PUB 140-1.
• All users authenticated by Microsoft Windows 2000 employ the Authenticated

User role.
• All services implemented within DSSENH are available to the Authenticated

User role.
• Keys created within DSSENH by one user are not accessible to any other user

via DSSENH.
• DSSENH stores keys in the file system, but relies on Microsoft Windows 2000

for the covering of the keys prior to storage.
• DSSENH performs the following self-tests upon power up:

− RC4 encrypt/decrypt
− RC2 ECB encrypt/decrypt
− DES ECB encrypt/decrypt
− DES40 ECB encrypt/decrypt
− 3DES 112 ECB encrypt/decrypt
− 3DES ECB encrypt/decrypt
− RC2 CBC encrypt/decrypt
− DES CBC encrypt/decrypt
− DES40 CBC encrypt/decrypt
− 3DES 112 CBC encrypt/decrypt
− 3DES CBC encrypt/decrypt
− MD5 hash
− SHA-1 hash

• DSSENH performs a pairwise consistency test upon each invocation of DSA
key generation as defined in FIPS PUB 140-1 and FIPS PUB 186.

SECURITY POLICY

 3

DSSENH combines the User and Cryptographic Officer roles (as defined in FIPS
PUB 140-1) into a single role hereon called the Authenticated User role. The
Authenticated User may access all services implemented in the cryptographic
module.
An application requests the crypto module to generate keys for a user. Keys are
generated, used and deleted as requested by applications. There are not implicit
keys associated with a user. Each user may have numerous keys, signature and
key exchange, and these keys are separate from other users’ keys.

Maintenance Roles

Maintenance roles are not supported by DSSENH.

Multiple Concurrent Operators

DSSENH is intended to run on Windows 2000 in Single User Mode. When run in
this configuration, multiple concurrent operators are not supported.

SPECIFICATION OF
ROLES

 4

The following list contains all services available to an operator. All services are
accessible by all Authenticated Users, the one and only role supported by
DSSENH.

Key Storage

DSSENH stores keys in the file system. The task of covering the keys prior to
storage in the file system is delegated to the Data Protection API of Microsoft
Windows 2000, a separate component of the operating system, and outside the
boundaries of the cryptomodule. When a key container is deleted, the file is
zeroized before being deleted.

CryptAcquireContext

The CryptAcquireContext function is used to acquire a handle to a particular key
container via a particular cryptographic service provider (CSP). This returned
handle can then be used to make calls to the selected CSP.

This function performs two operations. It first attempts to find a CSP with the
characteristics described in the dwProvType and pszProvider parameters. If the
CSP is found, the function attempts to find a key container matching the name
specified by the pszContainer parameter.

With the appropriate setting of dwFlags, this function can also create and destroy
key containers.

If dwFlags is set to CRYPT_NEWKEYSET, a new key container is created with the
name specified by pszContainer. If pszContainer is NULL, a key container with the
default name is created.

If dwFlags is set to CRYPT_DELETEKEYSET, The key container specified by
pszContainer is deleted. If pszContainer is NULL, the key container with the default
name is deleted. All key pairs in the key container are also destroyed and memory
is zeroized.

When this flag is set, the value returned in phProv is undefined, and thus, the
CryptReleaseContext function need not be called afterwards.

CryptGetProvParam

The CryptGetProvParam function retrieves data that governs the operations of the
provider. This function may be used to enumerate key containers, enumerate
supported algorithms, and generally determine capabilities of the CSP.

SPECIFICATION OF
SERVICES

 5

CryptSetProvParam

The CryptSetProvParam function customizes various aspects of a provider’s
operations. This function is may be used to set a security descriptor on a key
container.

CryptReleaseContext

The CryptReleaseContext function releases the handle referenced by the hProv
parameter. After a provider handle has been released, it becomes invalid and
cannot be used again. In addition, key and hash handles associated with that
provider handle may not be used after CryptReleaseContext has been called.

Key Generation and Exchange

The following functions provide interfaces to the cryptomodule’s key generation and
exchange functions.

CryptDeriveKey

The CryptDeriveKey function generates cryptographic session keys derived from a
hash value. This function guarantees that when the same CSP and algorithms are
used, the keys generated from the same hash value are identical. The hash value is
typically a cryptographic hash (SHA-1, etc.) of a password or similar secret user
data.

This function is the same as CryptGenKey, except that the generated session keys
are derived from the hash value instead of being random and CryptDeriveKey can
only be used to generate session keys. It cannot generate public/private key pairs.

If keys are being derived from a CALG_SCHANNEL_MASTER_HASH then the
appropriate key derivation process is used to derive the key. In this case the
process used is from either the SSL 2.0, SSL 3.0, PCT or TLS specification of
deriving client and server side encryption and MAC keys. This function will cause
the key block to be derived from the master secret and the requested key is then
derived from the key block. Which process is used is determined by which protocol
is associated with the hash object. For more information see the SSL 2.0, SSL 3.0,
PCT and TLS specifications.

CryptDestroyKey

The CryptDestroyKey function releases the handle referenced by the hKey
parameter. After a key handle has been released, it becomes invalid and cannot be
used again.

 6

If the handle refers to a session key, or to a public key that has been imported into
the CSP through CryptImportKey, this function zeroizes the key in memory and
frees the memory that the key occupied. The underlying public/private key pair is
not destroyed by this function. Only the handle is destroyed.

CryptExportKey

The CryptExportKey function exports cryptographic keys from a cryptographic
service provider (CSP) in a secure manner for key archival purposes.

A handle to a private DSS/DH key to be exported may be passed to the function,
and the function returns a key blob. This private key blob can be sent over a
nonsecure transport or stored in a nonsecure storage location. The private key blob
is useless until the intended recipient uses the CryptImportKey function on it to
import the key into the recipient's CSP. Key blobs are exported either in plaintext or
encrypted with a symmetric key. If a symmetric key is used to encrypt the blob then
a handle to the private DSS/DH key is passed in to the module and the symmetric
key referenced by the handle is used to encrypt the blob. Any of the supported
symmetric cryptographic algorithm’s may be used to encrypt the private key blob
(DES, 3DES, DES40, RC4 or RC2).

Public DSS/DH keys are also exported using this function. A handle to the DSS/DH
public key is passed to the function and the public key is exported, always in
plaintext as a blob. This blob may then be imported using the CryptImportKey
function.

Symmetric keys may also be exported by wrapping the keys with another symmetric
key. The wrapped key is then exported as a blob and may be imported using the
CryptImportKey function.

CryptGenKey

The CryptGenKey function generates a random cryptographic key. A handle to the
key is returned in phKey. This handle can then be used as needed with any
CryptoAPI function requiring a key handle.

The calling application must specify the algorithm when calling this function.
Because this algorithm type is kept bundled with the key, the application does not
need to specify the algorithm later when the actual cryptographic operations are
performed.

Generation of a DSS key for signatures requires the operator to complete several
steps before a DSS key is generated. CryptGenKey is first called with
CRYPT_PREGEN set in the dwFlags parameter. The operator then sets the P, Q,
and G for the key generation via CryptSetKeyParam, once for each parameter. The
operator calls CryptSetKeyParam with KP_X set as dwParam to complete the key
generation.

 7

CryptGenRandom

The CryptGenRandom function fills a buffer with random bytes. The random
number generation algorithm is the SHS based RNG from FIPS 186.

CryptGetKeyParam

The CryptGetKeyParam function retrieves data that governs the operations of a
key.

CryptGetUserKey

The CryptGetUserKey function retrieves a handle of one of a user's public/private
key pairs.

CryptImportKey

The CryptImportKey function transfers a cryptographic key from a key blob into a
cryptographic service provider (CSP).

Private keys may be imported as blobs and the function will return a handle to the
imported key.

Symmetric keys wrapped with other symmetric keys may also be imported using
this function. The wrapped key blob is passed in along with a handle to a
symmetric key which the module is supposed to use to unwrap the blob. If the
function is successful then a handle to the unwrapped symmetric key is returned.

CryptSetKeyParam

The CryptSetKeyParam function customizes various aspects of a key's operations.
This function is used to set session-specific values for symmetric keys.

CryptDuplicateKey

The CryptDuplicateKey function is used to duplicate, make a copy of, the state of a
key and returns a handle to this new key. The CryptDestroyKey function must be
used on both the handle to the original key and the newly duplicated key.

Data Encryption and Decryption

The following functions provide interfaces to the cryptomodule’s data encryption and
decryption functions.

CryptDecrypt

The CryptDecrypt function decrypts data previously encrypted using CryptEncrypt
function.

 8

CryptEncrypt

The CryptEncrypt function encrypts data. The algorithm used to encrypt the data is
designated by the key held by the CSP module and is referenced by the hKey
parameter.

Hashing and Digital Signatures

The following functions provide interfaces to the cryptomodule’s hashing and digital
signature functions.

CryptCreateHash

The CryptCreateHash function initiates the hashing of a stream of data. It returns to
the calling application a handle to a CSP hash object. This handle is used in
subsequent calls to CryptHashData and CryptHashSessionKey in order to hash
streams of data and session keys. SHA-1 and MD5 are the cryptographic hashing
algorithms supported. In addition, a MAC using a symmetric key is created with this
call and may be used with any of the symmetric block ciphers support by the
module (DES, 3DES, DES40, RC4 or RC2).

A CALG_SCHANNEL_MASTER_HASH may be created with this call. If this is the
case then a handle to one of the following types of keys must be passed in the hKey
parameter, CALG_SSL2_MASTER, CALG_SSL3_MASTER,
CALG_PCT1_MASTER, or CALG_TLS1_MASTER. This function with
CALG_SCHANNEL_MASTER_HASH in the ALGID parameter will cause the
derivation of the master secret from the pre-master secret associated with the
passed in key handle. This key derivation process is done in the method specified
in the appropriate protocol specification, SSL 2.0, SSL 3.0, PCT 1.0, or TLS. The
master secret is then associated with the resulting hash handle and session keys
and MAC keys may be derived from this hash handle. The master secret may not
be exported or imported from the module. The key data associated with the hash
handle is zeroized when CryptDestroyHash is called.

CryptDestroyHash

The CryptDestroyHash function destroys the hash object referenced by the hHash
parameter. After a hash object has been destroyed, it can no longer be used.

If the hash handle references a CALG_SCHANNEL_MASTER_HASH key then
when CryptDestroyHash is called the associated key material is zeroized.

All hash objects should be destroyed with the CryptDestroyHash function when the
application is finished with them.

 9

CryptGetHashParam

The CryptGetHashParam function retrieves data that governs the operations of a
hash object. The actual hash value can also be retrieved by using this function.

CryptHashData

The CryptHashData function adds data to a specified hash object. This function and
CryptHashSessionKey can be called multiple times to compute the hash on long
data streams or discontinuous data streams. Before calling this function, the
CryptCreateHash function must be called to create a handle of a hash object.

CryptHashSessionKey

The CryptHashSessionKey function computes the cryptographic hash of a key
object. This function can be called multiple times with the same hash handle to
compute the hash of multiple keys. Calls to CryptHashSessionKey can be
interspersed with calls to CryptHashData. Before calling this function, the
CryptCreateHash function must be called to create the handle of a hash object.

CryptSetHashParam

The CryptSetHashParam function customizes the operations of a hash object.

CryptSignHash

The CryptSignHash function signs data. Because all signature algorithms are
asymmetric and thus slow, the CryptoAPI does not allow data be signed directly.
Instead, data is first hashed and CryptSignHash is used to sign the hash. The
crypto module supports signing with DSS.

CryptVerifySignature

The CryptVerifySignature function verifies the signature of a hash object. Before
calling this function, the CryptCreateHash function must be called to create the
handle of a hash object. CryptHashData or CryptHashSessionKey is then used to
add data or session keys to the hash object. The crypto module supports verifying
DSS signatures.

After this function has been completed, only CryptDestroyHash can be called using
the hHash handle.

CryptDuplicateHash

The CryptDuplicateHash function is used to duplicate, make a copy of, the state of a
hash and returns a handle to this new hash. The CryptDestroyHash function must
be used on both the handle to the original hash and the newly duplicated hash.

 10

The DSSENH cryptomodule manages keys in the following manner.

Key Material

DSSENH can create and use keys for the following algorithms: DSS, Diffie-Hellman,
RC2, RC4, DES, DES40, and 3DES.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Structures\Cryptography Structures for more
information about key formats and structures.

Key Generation

Random keys can be generated by calling the CryptGenKey() function. Keys can
also be derived from known values via the CryptDeriveKey() function. DSS keys are
generated and validated following the manner described in FIPS PUB 186-1. DES
key are generated and validated following the manner described in FIPS PUB 46-2
and FIPS PUB 81.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

Key Entry and Output

Keys can be both exported and imported out of and into DSSENH via
CryptExportKey() and CryptImportKey(). Exported private keys may be encrypted
with a symmetric key passed into the CryptExportKey function. Any of the
symmetric algorithms supported by the crypto module may be used to encrypt
private keys for export (DES, 3DES, DES40, RC4 or RC2). When private keys are
generated or imported from archival, they are covered with the Microsoft Windows
2000 Data Protection API (DPAPI) and then outputted to the file system in the
covered form.

Symmetric key entry and output is done by exchanging keys using the recipient’s
asymmetric public key. Symmetric key entry and output may also be done by
exporting a symmetric key wrapped with another symmetric key.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

CRYPTOGRAPHIC KEY
MANAGEMENT

 11

Key Storage

DSSENH offloads the key storage operations to the Microsoft Windows 2000
operating system. Keys are not stored in the cryptographic module, private keys are
encrypted by the Microsoft Data Protection API (DPAPI) service, and then stored in
the Microsoft Windows 2000 file system. Keys are zeroized from memory after use.
Only the key used for power up self-testing is stored in the cryptographic module.

When an Authenticated User requests a keyed cryptographic operation from
DSSENH his/her keys are retrieved from the file system.

DPAPI uses a two-phase algorithm for shrouding the Secret Key (SK) used to
encrypt data. Phase 2 occurs by default only if there is a Domain Controller
associated with the user. Therefore in the local user case, the SK is protected by a
local LSA secret. SYSKEY should be enabled to prevent access to this key. Refer
to NT4/win2k documentation for info on SYSKEY.

Phase 1: Local Agent

In the first phase, the system shrouds the secret locally, relying on the service run
as Local System to protect secrets. This protection shrouds the data both as it
travels on the wire and also blinds the data from the DC. Thus, the shrouding
ensures that no remote user (even a “phase 2” remote recovery agent) can decrypt
the data independent from the local system.

Recovery setup

1. Agent has data D1 to shroud

2. Agent uses secret key SK encrypt D1

3. Agent stores SK in the user hive ACLed to local agent

4. Agent has shrouded E{D1}

Initiate recovery

1. Agent has E{D1} to unshroud

2. Agent retrieves secret key SK from user hive

3. Agent uses secret key SK to decrypt E{D1}

4. Agent has unshrouded D1

Phase 2: Remote Agent

In the second phase, if the machine is networked, the shrouded secret is sent to the
domain controller (DC) for an identification stamp and second shrouding. This
second shrouding will ensure that a roaming user profile is not self-contained, but
needs an interactive logon to successfully recover the master key.

 12

Recovery setup

5. User sends data D2 to remote agent

6. Agent uses secret monster key K, random R2, HMACs to derive SymKeyM.

7. Use SymKeyM to MAC {userid, D2} -> m{userid, D2}

8. Agent uses secret monster key K, random R3, HMACs to derive SymKeyK.

9. Use SymKeyK to encrypt { m{userid, D2} , R2 }

10. Agent returns recovery field E{ m{userid, D2}, R2 }, R3 to User

11. User stores recovery field E{ m{userid, D2}, R2 }, R3

Initiate recovery

5. User sends recovery field E{ m{userid, D2}, R2 }, R3 to remote agent

6. Agent uses secret monster key K, HMACs with R3 to re-derive SymKeyK.

7. SymKeyK used to decrypt m{userid, D2}, R2

8. Agent uses secret monster key K, HMACs with R2 to re-derive SymKeyM.

9. SymKeyM used to check MAC on {userid, D2}.

10. Agent returns D2 if userid matches current recovery requestor.

These phases can be nested such that D2 = E{D1}, which allows neither of the
agents to recover the data barring collusion.

Key Archival

DSSENH does not directly archive cryptographic keys. The Authenticated User may
choose to export a cryptographic key labeled as exportable (cf. “Key Input and
Output” above), but management of the secure archival of that key is the
responsibility of the user.

Key Destruction

All keys are destroyed and their memory location zeroized when the Authenticated
User calls CryptDestroyKey on that key handle. Private keys (which are stored by
the operating system in covered format in the protected storage system portion of
the NT4.0 OS) are destroyed when the Authenticated User calls
CryptAcquireContext with the CRYPT_DELETE_KEYSET flag.

 13

Mandatory

Software tests via a DES MAC of library image
• RC4 encrypt/decrypt KAT
• RC2 ECB encrypt/decrypt KAT
• DES ECB encrypt/decrypt KAT
• DES40 ECB encrypt/decrypt KAT
• 3DES ECB encrypt/decrypt KAT
• 3DES 112 ECB encrypt/decrypt KAT
• RC2 CBC encrypt/decrypt KAT
• DES CBC encrypt/decrypt KAT
• DES40 CBC encrypt/decrypt KAT
• 3DES CBC encrypt/decrypt KAT
• 3DES 112 CBC encrypt/decrypt KAT
• MD5 hash KAT
• SHA-1 hash KAT
• DSS pairwise consistency test
• Diffie-Hellman pairwise consistency test

Conditional

The following are initiated at key generation:
• DSS pairwise consistency test
• Diffie-Hellman pairwise consistency test

SELF-TESTS

 14

The following items address requirements not addressed above.

Cryptographic Bypass

Cryptographic bypass is not support in DSSENH.

Operation Authentication

DSSENH inherits all authentication from the Microsoft Windows 2000 operating
system upon which it runs. Microsoft Windows 2000 requires authentication from a
trusted control base (TCB) before a user is able to access system services. Once a
user is authenticated from the TCB, a process is created bearing the Authenticated
User’s security token. All subsequent processes and threads created by that
Authenticated User are implicitly assigned the parent’s (thus the Authenticated
User’s) security token. Every user that has been authenticated by Microsoft
Windows 2000 is naturally assigned the Authenticated User role when he/she
accesses DSSENH.

Identity-based Authentication

While all Authenticated Users are assigned the same role and thus have access to
the same complete set of services, individual Authenticated Users may only access
key containers which they themselves have created. DSSENH assumes the
authentication of the user and enforces it by running in a thread with the
Authenticated User’s security token.

ModularExpOffload

The ModularExpOffload function offloads modular exponentiation from a CSP to a
hardware accelerator. The CSP will check in the registry for the value
HKLM\Software\Microsoft\Cryptography\ExpoOffload that can be the name of a
DLL. The CSP uses LoadLibrary to load that DLL and calls GetProcAddress to get
the OffloadModExpo entry point in the DLL specified in the registry. The CSP uses
the entry point to perform all modular exponentiations for both public and private
key operations. Two checks are made before a private key is offloaded.

Operating System Security

The DSSENH cryptomodule is intended to run on Windows 2000 in Single User
Mode.

MISCELLANEOUS

 15

When an operating system process loads the cryptomodule into memory, the
cryptomodule runs a DES MAC on the cryptomodule’s disk image of DSSENH.DLL,
excluding the DES MAC, checksum, and export signature resources. This MAC is
compared to the value stored in the DES MAC resource. Initialization will only
succeed if the two values are equal.

Each operating system process creates a unique instance of the cryptomodule that
is wholly dedicated to that process. The cryptomodule is not shared between
processes.

 16

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 i

Windows 2000®
Operating System

Microsoft DSS/Diffie-Hellman
Enhanced Cryptographic Provider

FIPS 140-1 Documentation: Finite State Machine

Abstract

This document specifies the finite state machine for the DSSENH as described in FIPS PUB 140-
1.

®

 ii

INTRODUCTION...1

FINITE STATE MACHINE...2

APPENDIX A ...4

APPENDIX B ...5

FOR MORE INFORMATION..6

CONTENTS

 Microsoft Windows 2000 Server White

Paper

1

The Microsoft DSS/Diffie-Hellman Enhanced Cryptographic Provider (DSSENH) is a
FIPS 140-1 Level 1 compliant, general-purpose, software-based, cryptographic
module. Like other cryptographic providers that ship with Windows 2000, DSSENH
encapsulates several different cryptographic algorithms in an easy-to-use
cryptographic module accessible via the Microsoft CryptoAPI. It can be dynamically
linked into applications by software developers to permit the use of general-purpose
FIPS 140-1 Level 1 compliant cryptography.

INTRODUCTION

Microsoft Windows 2000 Server White Paper 2

The DSSENH cryptomodule can be in exactly one of the following states at any
given moment. Transitions between states can be automatic or result from user
intervention.

States

See Appendix A and B for more information.

Power Up

The Power Up state is entered when a process thread calls the Microsoft CryptoAPI
function CryptAcquireContext() (encapsulated in ADVAPI32.DLL) in the following
manner:

CryptAcquireContext(&hProv, pszContainer, MS_ENH_DSS_DH_PROV,
PROV_DSS_DH, dwFlags)

This ADVAPI32.DLL function locates DSSENH on the user’s system, verifies its
export compliance signature, and attempts to load DSSENH via LoadLibrary() and
run its DLLInitialize() function.

Power Down

The Power Down state is entered when DSSENH library is unloaded either explicitly
(e.g. a process thread calls FreeLibrary()) or implicitly (e.g. the process exits or is
killed.)

Init Error

The Init Error State is entered when DSSENH’s DLLInitialize() fails as a result of
either configuration errors (i.e. provider could not be found, not enough memory,
etc.) or errors resulting from the power up self-tests.

Un-Initialized

The Un-Initialized state is entered when ADVAPI32.DLL successfully loads
DSSENH and calls its CPAcquireContext() function. If CryptAcquireContext() was
called with any valid dwFlags other than CRYPT_VERIFY_CONTEXT or
CRYPT_DELETE_CONTEXT, DSSENH attempts to load the requested key
container.

FINITE STATE MACHINE

 Microsoft Windows 2000 Server White

Paper

3

Initialized

The Initialized state is entered when CPAcquireContext() completes successfully
and a cryptographic provider handle (hProv) is returned to the client through the
original ADVAPI32.DLL CryptAcquireContext() call. While a key container has been
found, no keys have yet been loaded. Keyless cryptographic operations occur from
the Initialized state until such time a keyed cryptographic operation is requested.

Key Entry

The Key Entry state is entered when a keyed cryptographic operation is requested
such as CryptImportKey(), CryptSignHash(),,CryptSetKeyParam (when the private
key is generated with KP_X), or CryptGenKey() (when a DSS or DH private key is
being generated). Keys are uncovered using the Data Protection APIs (DPAPI). If
keys are successfully uncovered, DSSENH will automatically transition to the Key
Initialized state.

Key Initialized

The Key Initialized state is entered after keys have been loaded. This state is
identical to the Initialized state except both keyless and keyed cryptographic
operations can occur within this state.

Operation Error

The Operation Error state is entered whenever an error occurs as a result of a
cryptographic operation. DSSENH will automatically transition back to either the
Initialized or Key Initialized depending on whether or not keys have been
successfully loaded.

State Transitions

See Appendix A.

State Diagrams

See Appendix B.

Microsoft Windows 2000 Server White Paper 4

The following table describes the state transitions possible within the DSSENH
cryptomodule during operation.

 Current State Input Output Next State
1 Power Up

DSSENH loads
NO_ERROR Un-Initialized

2 Power Up DSSENH.DLL not found NTE_PROV_DLL_NOT_FOUND Init Error
2 Power Up Bad export compliance

signature
NTE_BAD_SIGNATURE Init Error

2 Power Up DES MAC check on
cryptographic provider fails

NTE_PROVIDER_DLL_FAIL Init Error

2 Power Up One or more power-on
cryptographic self-tests fail

 NTE_PROVIDER_DLL_FAIL Init Error

2 Power Up System error System error message Init Error
3 Init Error Automatic transition No output Power Down
4 Un-Initialized Cannot load key container NTE_BAD_KEYSET Init Error
4 Un-Initialized dwFlags is

CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT
but operation could not be
completed

NTE_BAD_KEYSET or
NTE_FAIL

Init Error

5 Un-Initialized dwFlags is not either
CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT

NO_ERROR and valid provider
handle (hProv)

Initialized

6 Initialized Keyed cryptographic
operation requested (i.e.
CryptImportKey(),
CryptSignHash(),CryptSetK
eyParam (when the private
key is generated with
KP_X), or CryptGenKey()
(when a DSS or DH private
key is being generated)

No output Key Entry

7 Initialized Generic cryptographic
operation failure

Operation specific error
message

Operation Error

8 Operation Error Automatic transition when
keys have not yet been
loaded

No output Initialized

9 Key Entry Keys uncovered with
DPAPI and loaded

No output Key Initialized

10 Key Entry Keys could not be
uncovered with DPAPI

NTE_FAIL Operation Error

11 Key Initialized Generic cryptographic
operation failure

Operation specific error
message

Operation Error

12 Operation Error Automatic transition when
keys have already been
loaded

No output Key Initialized

13 Initialized CryptReleaseContext()
called

NO_ERROR Un-Initialized

14 Key Initialized CryptReleaseContext()
called

NO_ERROR Un-Initialized

15 Un-Initialized Automatic transition when
no other outstanding
provider handles exist

NO_ERROR Power Down

15 Un-Initialized Automatic transition when
dwFlags is
CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT
and operation successfully
completes

NO_ERROR Power Down

APPENDIX A

 Microsoft Windows 2000 Server White

Paper

5

The following diagram illustrates the finite state machine of the DSSENH
cryptomodule.

APPENDIX B

Power Up

Operation
Error

Un-
Initialized

Initialized

Key Entry

Key
Initialized

Power
Down

1

Init
Error

2 3

4

5

7
6

9

10

11

12

14

15

13

8

Microsoft Windows 2000 Server White Paper 6

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 Microsoft Windows 2000 Server White Paper i

Windows 2000®
Operating System

Microsoft DSS/Diffie-Hellman
Enhanced Cryptographic Provider

FIPS 140-1 Documentation: Master Component List

Abstract

The Microsoft DSS/Diffie-Hellman Enhanced Cryptographic Provider (DSSENH) is a FIPS 140-1
Level 1 compliant general-purpose software-based cryptographic module. Like other cryptographic
providers that ship with Microsoft Windows 2000, DSSENH encapsulates several different
cryptographic algorithms in an easy-to-use cryptographic module accessible via the Microsoft
CryptoAPI. It can be dynamically linked into applications by software developers to permit the use
of general-purpose FIPS 140-1 Level 1 compliant cryptography.

This document specifies the master component list for the DSSENH as described in FIPS PUB
140-1.

®

Microsoft Windows 2000 Server White Paper ii

MASTER COMPONENT LIST ...1

APPENDIX A ...2

FOR MORE INFORMATION..3

CONTENTS

 Microsoft Windows 2000 Server White Paper 1

The DSSENH cryptomodule is a software cryptomodule and is intended to operate
on a PC running Windows 2000. Several components of the base PC are also to be
considered components of the cryptomodule.

Components

The following components are to be considered components of the cryptomodule
(see Appendix A below):

• PC Enclosure
• Central Processing Unit (CPU)
• Physical Storage (Hard Drives and Removable Storage)
• Memory (RAM and CMOS)

MASTER COMPONENT
LIST

Microsoft Windows 2000 Server White Paper2

The following diagram illustrates the master components of the DSSENH
cryptomodule.

APPENDIX A

PC

Physical Storage

CPU

Hard Disk

Removable
Storage

Memory

CMOS

RAM

 Microsoft Windows 2000 Server White Paper 3

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 i

Windows 2000®
Operating System

Microsoft Base Cryptographic
Provider

FIPS 140-1 Documentation: Security Policy

12/14/01 9:46 AM

Abstract

This document specifies the security policy for the Microsoft Base Cryptographic Provider
(RSABASE) as described in FIPS PUB 140-1.

®

 ii

INTRODUCTION...1

SECURITY POLICY...2

SPECIFICATION OF ROLES...3

SPECIFICATION OF SERVICES...4

CRYPTOGRAPHIC KEY MANAGEMENT.......................................9

SELF-TESTS..12

MISCELLANEOUS...13

FOR MORE INFORMATION..14

CONTENTS

 1

Microsoft Base Cryptographic Provider (RSABASE) is a FIPS 140-1 Level 1
compliant, general-purpose, software-based, cryptographic module. Like other
cryptographic providers that ship with Microsoft Windows 2000, RSABASE
encapsulates several different cryptographic algorithms in an easy-to-use
cryptographic module accessible via the Microsoft CryptoAPI. It can be dynamically
linked into applications by software developers to permit the use of general-purpose
FIPS 140-1 Level 1 compliant cryptography.

Cryptographic Boundary

The Microsoft Base Cryptographic Provider (RSABASE) consists of a single
dynamically-linked library (DLL) named RSABASE.DLL. The cryptographic
boundary for RSABASE is defined as the enclosure of the computer system on
which the cryptographic module is to be executed. The physical configuration of the
module, as defined in FIPS PUB 140-1, is Multi-Chip Standalone.

INTRODUCTION

 2

RSABASE operates under several rules that encapsulate its security policy.
• RSABASE is supported on Windows 2000.
• RSABASE relies on Microsoft Windows 2000 for the authentication of users.
• RSABASE enforces a single role, Authenticated User, which is a combination

of the User and Cryptographic Officer roles as defined in FIPS PUB 140-1.
• All users authenticated by Microsoft Windows 2000 employ the Authenticated

User role.
• All services implemented within RSABASE are available to the Authenticated

User role.
• Keys created within RSABASE by one user are not accessible to any other

user via RSABASE.
• RSABASE stores keys in the file system, but relies on Microsoft Windows 2000

for the covering of the keys prior to storage.
• RSABASE performs the following self-tests upon power up:

− RC4 encrypt/decrypt
− RC2 ECB encrypt/decrypt
− DES ECB encrypt/decrypt
− RC2 CBC encrypt/decrypt
− DES CBC encrypt/decrypt
− MD5 hash
− SHA-1 hash

• RSABASE performs a pairwise consistency test upon each invocation of RSA
key generation as defined in FIPS PUB 140-1.

SECURITY POLICY

 3

RSABASE combines the User and Cryptographic Officer roles (as defined in FIPS
PUB 140-1) into a single role hereon called the Authenticated User role. The
Authenticated User may access all services implemented in the cryptographic
module.
An application requests the crypto module to generate keys for a user. Keys are
generated, used and deleted as requested by applications. There are not implicit
keys associated with a user. Each user may have numerous keys, signature and
key exchange, and these keys are separate from other users’ keys.

Maintenance Roles

Maintenance roles are not supported by RSABASE.

Multiple Concurrent Operators

RSABASE is intended to run on Windows 2000 in Single User Mode. When run in
this configuration, multiple concurrent operators are not supported.

SPECIFICATION OF
ROLES

 4

The following list contains all services available to an operator. All services are
accessible by all Authenticated Users, the one and only role supported by
RSABASE.

Key Storage

RSABASE stores keys in the file system. The task of covering the keys prior to
storage in the file system is delegated to the Data Protection API of Microsoft
Windows 2000, a separate component of the operating system, and outside the
boundaries of the cryptomodule. When a key container is deleted, the file is
zeroized before being deleted.

CryptAcquireContext

The CryptAcquireContext function is used to acquire a handle to a particular key
container via a particular cryptographic service provider (CSP). This returned
handle can then be used to make calls to the selected CSP.

This function performs two operations. It first attempts to find a CSP with the
characteristics described in the dwProvType and pszProvider parameters. If the
CSP is found, the function attempts to find a key container matching the name
specified by the pszContainer parameter.

With the appropriate setting of dwFlags, this function can also create and destroy
key containers.

If dwFlags is set to CRYPT_NEWKEYSET, a new key container is created with the
name specified by pszContainer. If pszContainer is NULL, a key container with the
default name is created.

If dwFlags is set to CRYPT_DELETEKEYSET, The key container specified by
pszContainer is deleted. If pszContainer is NULL, the key container with the default
name is deleted. All key pairs in the key container are also destroyed and memory
is zeroized.

When this flag is set, the value returned in phProv is undefined, and thus, the
CryptReleaseContext function need not be called afterwards.

CryptGetProvParam

The CryptGetProvParam function retrieves data that governs the operations of the
provider. This function may be used to enumerate key containers, enumerate
supported algorithms, and generally determine capabilities of the CSP.

SPECIFICATION OF
SERVICES

 5

CryptSetProvParam

The CryptSetProvParam function customizes various aspects of a provider’s
operations. This function is may be used to set a security descriptor on a key
container.

CryptReleaseContext

The CryptReleaseContext function releases the handle referenced by the hProv
parameter. After a provider handle has been released, it becomes invalid and
cannot be used again. In addition, key and hash handles associated with that
provider handle may not be used after CryptReleaseContext has been called.

Key Generation and Exchange

The following functions provide interfaces to the cryptomodule’s key generation and
exchange functions.

CryptDeriveKey

The CryptDeriveKey function generates cryptographic session keys derived from a
hash value. This function guarantees that when the same CSP and algorithms are
used, the keys generated from the same hash value are identical. The hash value is
typically a cryptographic hash (SHA-1, etc.) of a password or similar secret user
data.

This function is the same as CryptGenKey, except that the generated session keys
are derived from the hash value instead of being random and CryptDeriveKey can
only be used to generate session keys. It cannot generate public/private key pairs.

If keys are being derived from a CALG_SCHANNEL_MASTER_HASH then the
appropriate key derivation process is used to derive the key. In this case the
process used is from either the SSL 2.0, SSL 3.0, PCT or TLS specification of
deriving client and server side encryption and MAC keys. This function will cause
the key block to be derived from the master secret and the requested key is then
derived from the key block. Which process is used is determined by which protocol
is associated with the hash object. For more information see the SSL 2.0, SSL 3.0,
PCT and TLS specifications.

CryptDestroyKey

The CryptDestroyKey function releases the handle referenced by the hKey
parameter. After a key handle has been released, it becomes invalid and cannot be
used again.

 6

If the handle refers to a session key, or to a public key that has been imported into
the CSP through CryptImportKey, this function zeroizes the key in memory and
frees the memory that the key occupied. The underlying public/private key pair is
not destroyed by this function. Only the handle is destroyed.

CryptExportKey

The CryptExportKey function exports cryptographic keys from a cryptographic
service provider (CSP) in a secure manner for key archival purposes.

A handle to a private RSA key to be exported may be passed to the function, and
the function returns a key blob. This private key blob can be sent over a nonsecure
transport or stored in a nonsecure storage location. The private key blob is useless
until the intended recipient uses the CryptImportKey function on it to import the key
into the recipient's CSP. Key blobs are exported either in plaintext or encrypted
with a symmetric key. If a symmetric key is used to encrypt the blob then a handle
to the private RSA key is passed in to the module and the symmetric key referenced
by the handle is used to encrypt the blob. Any of the supported symmetric
cryptographic algorithm’s may be used to encrypt the private key blob (DES, RC4 or
RC2).

Public RSA keys are also exported using this function. A handle to the RSA public
key is passed to the function and the public key is exported, always in plaintext as a
blob. This blob may then be imported using the CryptImportKey function.

Symmetric keys may also be exported encrypted with an RSA key using the
CryptExportKey function. A handle to the symmetric key and a handle to the public
RSA key to encrypt with are passed to the function. The function returns a blob
(SIMPLEBLOB) which is the encrypted symmetric key.

Symmetric keys may also be exported by wrapping the keys with another symmetric
key. The wrapped key is then exported as a blob and may be imported using the
CryptImportKey function.

CryptGenKey

The CryptGenKey function generates a random cryptographic key. A handle to the
key is returned in phKey. This handle can then be used as needed with any
CryptoAPI function requiring a key handle.

The calling application must specify the algorithm when calling this function.
Because this algorithm type is kept bundled with the key, the application does not
need to specify the algorithm later when the actual cryptographic operations are
performed.

 7

CryptGenRandom

The CryptGenRandom function fills a buffer with random bytes. The random
number generation algorithm is the SHS based RNG from FIPS 186.

CryptGetKeyParam

The CryptGetKeyParam function retrieves data that governs the operations of a
key.

CryptGetUserKey

The CryptGetUserKey function retrieves a handle of one of a user's public/private
key pairs.

CryptImportKey

The CryptImportKey function transfers a cryptographic key from a key blob into a
cryptographic service provider (CSP).

Private keys may be imported as blobs and the function will return a handle to the
imported key.

A symmetric key encrypted with an RSA public key is imported into the
CryptoImportKey function. The function uses the RSA private key exchange key to
decrypt the blob and returns a handle to the symmetric key.

Symmetric keys wrapped with other symmetric keys may also be imported using
this function. The wrapped key blob is passed in along with a handle to a
symmetric key which the module is supposed to use to unwrap the blob. If the
function is successful then a handle to the unwrapped symmetric key is returned.

CryptSetKeyParam

The CryptSetKeyParam function customizes various aspects of a key's operations.
This function is used to set session-specific values for symmetric keys.

CryptDuplicateKey

The CryptDuplicateKey function is used to duplicate, make a copy of, the state of a
key and returns a handle to this new key. The CryptDestroyKey function must be
used on both the handle to the original key and the newly duplicated key.

Data Encryption and Decryption

The following functions provide interfaces to the cryptomodule’s data encryption and
decryption functions.

 8

CryptDecrypt

The CryptDecrypt function decrypts data previously encrypted using CryptEncrypt
function.

CryptEncrypt

The CryptEncrypt function encrypts data. The algorithm used to encrypt the data is
designated by the key held by the CSP module and is referenced by the hKey
parameter.

Hashing and Digital Signatures

The following functions provide interfaces to the cryptomodule’s hashing and digital
signature functions.

CryptCreateHash

The CryptCreateHash function initiates the hashing of a stream of data. It returns to
the calling application a handle to a CSP hash object. This handle is used in
subsequent calls to CryptHashData and CryptHashSessionKey in order to hash
streams of data and session keys. SHA-1 and MD5 are the cryptographic hashing
algorithms supported. In addition, a MAC using a symmetric key is created with this
call and may be used with any of the symmetric block ciphers support by the
module (DES, RC4 or RC2).

A CALG_SCHANNEL_MASTER_HASH may be created with this call. If this is the
case then a handle to one of the following types of keys must be passed in the hKey
parameter, CALG_SSL2_MASTER, CALG_SSL3_MASTER,
CALG_PCT1_MASTER, or CALG_TLS1_MASTER. This function with
CALG_SCHANNEL_MASTER_HASH in the ALGID parameter will cause the
derivation of the master secret from the pre-master secret associated with the
passed in key handle. This key derivation process is done in the method specified
in the appropriate protocol specification, SSL 2.0, SSL 3.0, PCT 1.0, or TLS. The
master secret is then associated with the resulting hash handle and session keys
and MAC keys may be derived from this hash handle. The master secret may not
be exported or imported from the module. The key data associated with the hash
handle is zeroized when CryptDestroyHash is called.

CryptDestroyHash

The CryptDestroyHash function destroys the hash object referenced by the hHash
parameter. After a hash object has been destroyed, it can no longer be used.

If the hash handle references a CALG_SCHANNEL_MASTER_HASH key then
when CryptDestroyHash is called the associated key material is zeroized.

 9

All hash objects should be destroyed with the CryptDestroyHash function when the
application is finished with them.

CryptGetHashParam

The CryptGetHashParam function retrieves data that governs the operations of a
hash object. The actual hash value can also be retrieved by using this function.

CryptHashData

The CryptHashData function adds data to a specified hash object. This function and
CryptHashSessionKey can be called multiple times to compute the hash on long
data streams or discontinuous data streams. Before calling this function, the
CryptCreateHash function must be called to create a handle of a hash object.

CryptHashSessionKey

The CryptHashSessionKey function computes the cryptographic hash of a key
object. This function can be called multiple times with the same hash handle to
compute the hash of multiple keys. Calls to CryptHashSessionKey can be
interspersed with calls to CryptHashData. Before calling this function, the
CryptCreateHash function must be called to create the handle of a hash object.

CryptSetHashParam

The CryptSetHashParam function customizes the operations of a hash object.

CryptSignHash

The CryptSignHash function signs data. Because all signature algorithms are
asymmetric and thus slow, the CryptoAPI does not allow data be signed directly.
Instead, data is first hashed and CryptSignHash is used to sign the hash. The
crypto module supports signing with RSA. The X9.31 format may be specified by a
flag.

CryptVerifySignature

The CryptVerifySignature function verifies the signature of a hash object. Before
calling this function, the CryptCreateHash function must be called to create the
handle of a hash object. CryptHashData or CryptHashSessionKey is then used to
add data or session keys to the hash object. The crypto module supports verifying
RSA signatures. The X9.31 format may be specified by a flag.

After this function has been completed, only CryptDestroyHash can be called using
the hHash handle.

 10

CryptDuplicateHash

The CryptDuplicateHash function is used to duplicate, make a copy of, the state of a
hash and returns a handle to this new hash. The CryptDestroyHash function must
be used on both the handle to the original hash and the newly duplicated hash.

 11

The RSABASE cryptomodule manages keys in the following manner.

Key Material

RSABASE can create and use keys for the following algorithms: RSA Signature,
RSA Key Exchange, RC2, RC4, and DES.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Structures\Cryptography Structures for more
information about key formats and structures.

Key Generation

Random keys can be generated by calling the CryptGenKey() function. Keys can
also be derived from known values via the CryptDeriveKey() function. DES key are
generated and validated following the manner described in FIPS PUB 46-2 and
FIPS PUB 81.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

Key Entry and Output

Keys can be both exported and imported out of and into RSABASE via
CryptExportKey() and CryptImportKey(). Exported private keys may be encrypted
with a symmetric key passed into the CryptExportKey function. Any of the
symmetric algorithms supported by the crypto module may be used to encrypt
private keys for export (DES, RC4 or RC2). When private keys are generated or
imported from archival, they are covered with the Microsoft Windows 2000 Data
Protection API (DPAPI) and then outputted to the file system in the covered form.

Symmetric key entry and output is done by exchanging keys using the recipient’s
asymmetric public key. Symmetric key entry and output may also be done by
exporting a symmetric key wrapped with another symmetric key.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

CRYPTOGRAPHIC KEY
MANAGEMENT

 12

Key Storage

RSABASE offloads the key storage operations to the Microsoft Windows 2000
operating system. Keys are not stored in the cryptographic module, private keys are
encrypted by the Microsoft Data Protection API (DPAPI) service, and then stored in
the Microsoft Windows 2000 file system. Keys are zeroized from memory after use.
Only the key used for power up self-testing is stored in the cryptographic module.

When an Authenticated User requests a keyed cryptographic operation from
RSABASE his/her keys are retrieved from the file system.

DPAPI uses a two-phase algorithm for shrouding the Secret Key (SK) used to
encrypt data. Phase 2 occurs by default only if there is a Domain Controller
associated with the user. Therefore in the local user case, the SK is protected by a
local LSA secret. SYSKEY should be enabled to prevent access to this key. Refer
to NT4/win2k documentation for info on SYSKEY.

Phase 1: Local Agent

In the first phase, the system shrouds the secret locally, relying on the service run
as Local System to protect secrets. This protection shrouds the data both as it
travels on the wire and also blinds the data from the DC. Thus, the shrouding
ensures that no remote user (even a “phase 2” remote recovery agent) can decrypt
the data independent from the local system.

Recovery setup

1. Agent has data D1 to shroud

2. Agent uses secret key SK encrypt D1

3. Agent stores SK in the user hive ACLed to local agent

4. Agent has shrouded E{D1}

Initiate recovery

1. Agent has E{D1} to unshroud

2. Agent retrieves secret key SK from user hive

3. Agent uses secret key SK to decrypt E{D1}

4. Agent has unshrouded D1

Phase 2: Remote Agent

In the second phase, if the machine is networked, the shrouded secret is sent to the
domain controller (DC) for an identification stamp and second shrouding. This
second shrouding will ensure that a roaming user profile is not self-contained, but
needs an interactive logon to successfully recover the master key.

 13

Recovery setup

5. User sends data D2 to remote agent

6. Agent uses secret monster key K, random R2, HMACs to derive SymKeyM.

7. Use SymKeyM to MAC {userid, D2} -> m{userid, D2}

8. Agent uses secret monster key K, random R3, HMACs to derive SymKeyK.

9. Use SymKeyK to encrypt { m{userid, D2} , R2 }

10. Agent returns recovery field E{ m{userid, D2}, R2 }, R3 to User

11. User stores recovery field E{ m{userid, D2}, R2 }, R3

Initiate recovery

5. User sends recovery field E{ m{userid, D2}, R2 }, R3 to remote agent

6. Agent uses secret monster key K, HMACs with R3 to re-derive SymKeyK.

7. SymKeyK used to decrypt m{userid, D2}, R2

8. Agent uses secret monster key K, HMACs with R2 to re-derive SymKeyM.

9. SymKeyM used to check MAC on {userid, D2}.

10. Agent returns D2 if userid matches current recovery requestor.

These phases can be nested such that D2 = E{D1}, which allows neither of the
agents to recover the data barring collusion.

Key Archival

RSABASE does not directly archive cryptographic keys. The Authenticated User
may choose to export a cryptographic key labeled as exportable (cf. “Key Input and
Output” above), but management of the secure archival of that key is the
responsibility of the user.

Key Destruction

All keys are destroyed and their memory location zeroized when the Authenticated
User calls CryptDestroyKey on that key handle. Private keys (which are stored by
the operating system in covered format in the protected storage system portion of
the NT4.0 OS) are destroyed when the Authenticated User calls
CryptAcquireContext with the CRYPT_DELETE_KEYSET flag.

 14

Mandatory

Software tests via a DES MAC of library image
• RC4 encrypt/decrypt KAT
• RC2 ECB encrypt/decrypt KAT
• DES ECB encrypt/decrypt KAT
• RC2 CBC encrypt/decrypt KAT
• DES CBC encrypt/decrypt KAT
• MD5 hash KAT
• SHA-1 hash KAT
• RSA pairwise consistency test

Conditional

The following are initiated at key generation:
• RSA pairwise consistency test

SELF-TESTS

 15

The following items address requirements not addressed above.

Cryptographic Bypass

Cryptographic bypass is not support in RSABASE.

Operation Authentication

RSABASE inherits all authentication from the Microsoft Windows 2000 operating
system upon which it runs. Microsoft Windows 2000 requires authentication from a
trusted control base (TCB) before a user is able to access system services. Once a
user is authenticated from the TCB, a process is created bearing the Authenticated
User’s security token. All subsequent processes and threads created by that
Authenticated User are implicitly assigned the parent’s (thus the Authenticated
User’s) security token. Every user that has been authenticated by Microsoft
Windows 2000 is naturally assigned the Authenticated User role when he/she
accesses RSABASE.

Identity-based Authentication

While all Authenticated Users are assigned the same role and thus have access to
the same complete set of services, individual Authenticated Users may only access
key containers which they themselves have created. RSABASE assumes the
authentication of the user and enforces it by running in a thread with the
Authenticated User’s security token.

ModularExpOffload

The ModularExpOffload function offloads modular exponentiation from a CSP to a
hardware accelerator. The CSP will check in the registry for the value
HKLM\Software\Microsoft\Cryptography\ExpoOffload that can be the name of a
DLL. The CSP uses LoadLibrary to load that DLL and calls GetProcAddress to get
the OffloadModExpo entry point in the DLL specified in the registry. The CSP uses
the entry point to perform all modular exponentiations for both public and private
key operations. Two checks are made before a private key is offloaded.

Operating System Security

The RSABASE cryptomodule is intended to run on Windows 2000 in Single User
Mode.

MISCELLANEOUS

 16

When an operating system process loads the cryptomodule into memory, the
cryptomodule runs a DES MAC on the cryptomodule’s disk image of
RSABASE.DLL, excluding the DES MAC, checksum, and export signature
resources. This MAC is compared to the value stored in the DES MAC resource.
Initialization will only succeed if the two values are equal.

Each operating system process creates a unique instance of the cryptomodule that
is wholly dedicated to that process. The cryptomodule is not shared between
processes.

 17

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 i

Windows 2000®
Operating System

Microsoft Base Cryptographic
Provider

FIPS 140-1 Documentation: Finite State Machine

Abstract

This document specifies the finite state machine for the RSABASE as described in FIPS PUB 140-
1.

®

 ii

INTRODUCTION...1

FINITE STATE MACHINE...2

APPENDIX A ...4

APPENDIX B ...5

FOR MORE INFORMATION..6

CONTENTS

 Microsoft Windows 2000 Server White

Paper

1

The Microsoft Base Cryptographic Provider (RSABASE) is a FIPS 140-1 Level 1
compliant, general-purpose, software-based, cryptographic module. Like other
cryptographic providers that ship with Windows 2000, RSABASE encapsulates
several different cryptographic algorithms in an easy-to-use cryptographic module
accessible via the Microsoft CryptoAPI. It can be dynamically linked into
applications by software developers to permit the use of general-purpose FIPS 140-
1 Level 1 compliant cryptography.

INTRODUCTION

Microsoft Windows 2000 Server White Paper 2

The RSABASE cryptomodule can be in exactly one of the following states at any
given moment. Transitions between states can be automatic or result from user
intervention.

States

See Appendix A and B for more information.

Power Up

The Power Up state is entered when a process thread calls the Microsoft CryptoAPI
function CryptAcquireContext() (encapsulated in ADVAPI32.DLL) in the following
manner:

CryptAcquireContext(&hProv, pszContainer, MS_DEF_PROV, PROV_RSA_FULL,
dwFlags)

This ADVAPI32.DLL function locates RSABASE on the user’s system, verifies its
export compliance signature, and attempts to load RSABASE via LoadLibrary() and
run its DLLInitialize() function.

Power Down

The Power Down state is entered when RSABASE library is unloaded either
explicitly (e.g. a process thread calls FreeLibrary()) or implicitly (e.g. the process
exits or is killed.)

Init Error

The Init Error State is entered when RSABASE’s DLLInitialize() fails as a result of
either configuration errors (i.e. provider could not be found, not enough memory,
etc.) or errors resulting from the power up self-tests.

Un-Initialized

The Un-Initialized state is entered when ADVAPI32.DLL successfully loads
RSABASE and calls its CPAcquireContext() function. If CryptAcquireContext() was
called with any valid dwFlags other than CRYPT_VERIFY_CONTEXT or
CRYPT_DELETE_CONTEXT, RSABASE attempts to load the requested key
container.

FINITE STATE MACHINE

 Microsoft Windows 2000 Server White

Paper

3

Initialized

The Initialized state is entered when CPAcquireContext() completes successfully
and a cryptographic provider handle (hProv) is returned to the client through the
original ADVAPI32.DLL CryptAcquireContext() call. While a key container has been
found, no keys have yet been loaded. Keyless cryptographic operations occur from
the Initialized state until such time a keyed cryptographic operation is requested.

Key Entry

The Key Entry state is entered when a keyed cryptographic operation is requested
such as CryptImportKey(), CryptSignHash(),, or CryptGenKey() (when a RSA
private key is being generated). Keys are uncovered using the Data Protection APIs
(DPAPI). If keys are successfully uncovered, RSABASE will automatically transition
to the Key Initialized state.

Key Initialized

The Key Initialized state is entered after keys have been loaded. This state is
identical to the Initialized state except both keyless and keyed cryptographic
operations can occur within this state.

Operation Error

The Operation Error state is entered whenever an error occurs as a result of a
cryptographic operation. RSABASE will automatically transition back to either the
Initialized or Key Initialized depending on whether or not keys have been
successfully loaded.

State Transitions

See Appendix A.

State Diagrams

See Appendix B.

Microsoft Windows 2000 Server White Paper 4

The following table describes the state transitions possible within the RSABASE
cryptomodule during operation.

 Current State Input Output Next State
1 Power Up

RSABASE loads
NO_ERROR Un-Initialized

2 Power Up RSABASE.DLL not found NTE_PROV_DLL_NOT_FOUND Init Error
2 Power Up Bad export compliance

signature
NTE_BAD_SIGNATURE Init Error

2 Power Up DES MAC check on
cryptographic provider fails

NTE_PROVIDER_DLL_FAIL Init Error

2 Power Up One or more power-on
cryptographic self-tests fail

 NTE_PROVIDER_DLL_FAIL Init Error

2 Power Up System error System error message Init Error
3 Init Error Automatic transition No output Power Down
4 Un-Initialized Cannot load key container NTE_BAD_KEYSET Init Error
4 Un-Initialized dwFlags is

CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT
but operation could not be
completed

NTE_BAD_KEYSET or
NTE_FAIL

Init Error

5 Un-Initialized dwFlags is not either
CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT

NO_ERROR and valid provider
handle (hProv)

Initialized

6 Initialized Keyed cryptographic
operation requested (i.e.
CryptImportKey(),
CryptSignHash(), or
CryptGenKey() (when a
RSA private key is being
generated)

No output Key Entry

7 Initialized Generic cryptographic
operation failure

Operation specific error
message

Operation Error

8 Operation Error Automatic transition when
keys have not yet been
loaded

No output Initialized

9 Key Entry Keys uncovered with
DPAPI and loaded

No output Key Initialized

10 Key Entry Keys could not be
uncovered with DPAPI

NTE_FAIL Operation Error

11 Key Initialized Generic cryptographic
operation failure

Operation specific error
message

Operation Error

12 Operation Error Automatic transition when
keys have already been
loaded

No output Key Initialized

13 Initialized CryptReleaseContext()
called

NO_ERROR Un-Initialized

14 Key Initialized CryptReleaseContext()
called

NO_ERROR Un-Initialized

15 Un-Initialized Automatic transition when
no other outstanding
provider handles exist

NO_ERROR Power Down

15 Un-Initialized Automatic transition when
dwFlags is
CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT
and operation successfully
completes

NO_ERROR Power Down

APPENDIX A

 Microsoft Windows 2000 Server White

Paper

5

The following diagram illustrates the finite state machine of the RSABASE
cryptomodule.

APPENDIX B

Power Up

Operation
Error

Un-
Initialized

Initialized

Key Entry

Key
Initialized

Power
Down

1

Init
Error

2 3

4

5

7
6

9

10

11

12

14

15

13

8

Microsoft Windows 2000 Server White Paper 6

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 Microsoft Windows 2000 Server White Paper i

Windows 2000®
Operating System

Microsoft Base Cryptographic
Provider

FIPS 140-1 Documentation: Master Component List

Abstract

The Microsoft Base Cryptographic Provider (RSABASE) is a FIPS 140-1 Level 1 compliant
general-purpose software-based cryptographic module. Like other cryptographic providers that
ship with Microsoft Windows 2000, RSABASE encapsulates several different cryptographic
algorithms in an easy-to-use cryptographic module accessible via the Microsoft CryptoAPI. It can
be dynamically linked into applications by software developers to permit the use of general-
purpose FIPS 140-1 Level 1 compliant cryptography.

This document specifies the master component list for the RSABASE as described in FIPS PUB
140-1.

®

Microsoft Windows 2000 Server White Paper ii

MASTER COMPONENT LIST ...1

APPENDIX A ...2

FOR MORE INFORMATION..3

CONTENTS

 Microsoft Windows 2000 Server White Paper 1

The RSABASE cryptomodule is a software cryptomodule and is intended to operate
on a PC running Windows 2000. Several components of the base PC are also to be
considered components of the cryptomodule.

Components

The following components are to be considered components of the cryptomodule
(see Appendix A below):

• PC Enclosure
• Central Processing Unit (CPU)
• Physical Storage (Hard Drives and Removable Storage)
• Memory (RAM and CMOS)

MASTER COMPONENT
LIST

Microsoft Windows 2000 Server White Paper2

The following diagram illustrates the master components of the RSABASE
cryptomodule.

APPENDIX A

PC

Physical Storage

CPU

Hard Disk

Removable
Storage

Memory

CMOS

RAM

 Microsoft Windows 2000 Server White Paper 3

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 i

Windows 2000®
Operating System

Microsoft Enhanced Cryptographic
Provider

FIPS 140-1 Documentation: Security Policy

12/14/01 9:46 AM

Abstract

This document specifies the security policy for the Microsoft Enhanced Cryptographic Provider
(RSAENH) as described in FIPS PUB 140-1.

®

 ii

INTRODUCTION...1

SECURITY POLICY...2

SPECIFICATION OF ROLES...3

SPECIFICATION OF SERVICES...4

CRYPTOGRAPHIC KEY MANAGEMENT.......................................9

SELF-TESTS..12

MISCELLANEOUS...13

FOR MORE INFORMATION..14

CONTENTS

 1

Microsoft Enhanced Cryptographic Provider (RSAENH) is a FIPS 140-1 Level 1
compliant, general-purpose, software-based, cryptographic module. Like other
cryptographic providers that ship with Microsoft Windows 2000, RSAENH
encapsulates several different cryptographic algorithms in an easy-to-use
cryptographic module accessible via the Microsoft CryptoAPI. It can be dynamically
linked into applications by software developers to permit the use of general-purpose
FIPS 140-1 Level 1 compliant cryptography.

Cryptographic Boundary

The Microsoft Enhanced Cryptographic Provider (RSAENH) consists of a single
dynamically-linked library (DLL) named RSAENH.DLL. The cryptographic boundary
for RSAENH is defined as the enclosure of the computer system on which the
cryptographic module is to be executed. The physical configuration of the module,
as defined in FIPS PUB 140-1, is Multi-Chip Standalone.

INTRODUCTION

 2

RSAENH operates under several rules that encapsulate its security policy.
• RSAENH is supported on Windows 2000.
• RSAENH relies on Microsoft Windows 2000 for the authentication of users.
• RSAENH enforces a single role, Authenticated User, which is a combination of

the User and Cryptographic Officer roles as defined in FIPS PUB 140-1.
• All users authenticated by Microsoft Windows 2000 employ the Authenticated

User role.
• All services implemented within RSAENH are available to the Authenticated

User role.
• Keys created within RSAENH by one user are not accessible to any other user

via RSAENH.
• RSAENH stores keys in the file system, but relies on Microsoft Windows 2000

for the covering of the keys prior to storage.
• RSAENH performs the following self-tests upon power up:

− RC4 encrypt/decrypt
− RC2 ECB encrypt/decrypt
− RC2 CBC encrypt/decrypt
− DES ECB encrypt/decrypt
− DES CBC encrypt/decrypt
− DES40 ECB encrypt/decrypt
− 3DES 112 CBC encrypt/decrypt
− 3DES 112 ECB encrypt/decrypt
− 3DES CBC encrypt/decrypt
− 3DES ECB encrypt/decrypt
− MD5 hash
− SHA-1 hash

• RSAENH performs a pairwise consistency test upon each invocation of RSA
key generation as defined in FIPS PUB 140-1.

SECURITY POLICY

 3

RSAENH combines the User and Cryptographic Officer roles (as defined in FIPS
PUB 140-1) into a single role hereon called the Authenticated User role. The
Authenticated User may access all services implemented in the cryptographic
module.
An application requests the crypto module to generate keys for a user. Keys are
generated, used and deleted as requested by applications. There are not implicit
keys associated with a user. Each user may have numerous keys, signature and
key exchange, and these keys are separate from other users’ keys.

Maintenance Roles

Maintenance roles are not supported by RSAENH.

Multiple Concurrent Operators

RSAENH is intended to run on Windows 2000 in Single User Mode. When run in
this configuration, multiple concurrent operators are not supported.

SPECIFICATION OF
ROLES

 4

The following list contains all services available to an operator. All services are
accessible by all Authenticated Users, the one and only role supported by
RSAENH.

Key Storage

RSAENH stores keys in the file system. The task of covering the keys prior to
storage in the file system is delegated to the Data Protection API of Microsoft
Windows 2000, a separate component of the operating system, and outside the
boundaries of the cryptomodule. When a key container is deleted, the file is
zeroized before being deleted.

CryptAcquireContext

The CryptAcquireContext function is used to acquire a handle to a particular key
container via a particular cryptographic service provider (CSP). This returned
handle can then be used to make calls to the selected CSP.

This function performs two operations. It first attempts to find a CSP with the
characteristics described in the dwProvType and pszProvider parameters. If the
CSP is found, the function attempts to find a key container matching the name
specified by the pszContainer parameter.

With the appropriate setting of dwFlags, this function can also create and destroy
key containers.

If dwFlags is set to CRYPT_NEWKEYSET, a new key container is created with the
name specified by pszContainer. If pszContainer is NULL, a key container with the
default name is created.

If dwFlags is set to CRYPT_DELETEKEYSET, The key container specified by
pszContainer is deleted. If pszContainer is NULL, the key container with the default
name is deleted. All key pairs in the key container are also destroyed and memory
is zeroized.

When this flag is set, the value returned in phProv is undefined, and thus, the
CryptReleaseContext function need not be called afterwards.

CryptGetProvParam

The CryptGetProvParam function retrieves data that governs the operations of the
provider. This function may be used to enumerate key containers, enumerate
supported algorithms, and generally determine capabilities of the CSP.

SPECIFICATION OF
SERVICES

 5

CryptSetProvParam

The CryptSetProvParam function customizes various aspects of a provider’s
operations. This function is may be used to set a security descriptor on a key
container.

CryptReleaseContext

The CryptReleaseContext function releases the handle referenced by the hProv
parameter. After a provider handle has been released, it becomes invalid and
cannot be used again. In addition, key and hash handles associated with that
provider handle may not be used after CryptReleaseContext has been called.

Key Generation and Exchange

The following functions provide interfaces to the cryptomodule’s key generation and
exchange functions.

CryptDeriveKey

The CryptDeriveKey function generates cryptographic session keys derived from a
hash value. This function guarantees that when the same CSP and algorithms are
used, the keys generated from the same hash value are identical. The hash value is
typically a cryptographic hash (SHA-1, etc.) of a password or similar secret user
data.

This function is the same as CryptGenKey, except that the generated session keys
are derived from the hash value instead of being random and CryptDeriveKey can
only be used to generate session keys. It cannot generate public/private key pairs.

If keys are being derived from a CALG_SCHANNEL_MASTER_HASH then the
appropriate key derivation process is used to derive the key. In this case the
process used is from either the SSL 2.0, SSL 3.0, PCT or TLS specification of
deriving client and server side encryption and MAC keys. This function will cause
the key block to be derived from the master secret and the requested key is then
derived from the key block. Which process is used is determined by which protocol
is associated with the hash object. For more information see the SSL 2.0, SSL 3.0,
PCT and TLS specifications.

CryptDestroyKey

The CryptDestroyKey function releases the handle referenced by the hKey
parameter. After a key handle has been released, it becomes invalid and cannot be
used again.

 6

If the handle refers to a session key, or to a public key that has been imported into
the CSP through CryptImportKey, this function zeroizes the key in memory and
frees the memory that the key occupied. The underlying public/private key pair is
not destroyed by this function. Only the handle is destroyed.

CryptExportKey

The CryptExportKey function exports cryptographic keys from a cryptographic
service provider (CSP) in a secure manner for key archival purposes.

A handle to a private RSA key to be exported may be passed to the function, and
the function returns a key blob. This private key blob can be sent over a nonsecure
transport or stored in a nonsecure storage location. The private key blob is useless
until the intended recipient uses the CryptImportKey function on it to import the key
into the recipient's CSP. Key blobs are exported either in plaintext or encrypted
with a symmetric key. If a symmetric key is used to encrypt the blob then a handle
to the private RSA key is passed in to the module and the symmetric key referenced
by the handle is used to encrypt the blob. Any of the supported symmetric
cryptographic algorithm’s may be used to encrypt the private key blob (DES, 3DES,
RC4 or RC2).

Public RSA keys are also exported using this function. A handle to the RSA public
key is passed to the function and the public key is exported, always in plaintext as a
blob. This blob may then be imported using the CryptImportKey function.

Symmetric keys may also be exported encrypted with an RSA key using the
CryptExportKey function. A handle to the symmetric key and a handle to the public
RSA key to encrypt with are passed to the function. The function returns a blob
(SIMPLEBLOB) which is the encrypted symmetric key.

Symmetric keys may also be exported by wrapping the keys with another symmetric
key. The wrapped key is then exported as a blob and may be imported using the
CryptImportKey function.

CryptGenKey

The CryptGenKey function generates a random cryptographic key. A handle to the
key is returned in phKey. This handle can then be used as needed with any
CryptoAPI function requiring a key handle.

The calling application must specify the algorithm when calling this function.
Because this algorithm type is kept bundled with the key, the application does not
need to specify the algorithm later when the actual cryptographic operations are
performed.

 7

CryptGenRandom

The CryptGenRandom function fills a buffer with random bytes. The random
number generation algorithm is the SHS based RNG from FIPS 186.

CryptGetKeyParam

The CryptGetKeyParam function retrieves data that governs the operations of a
key.

CryptGetUserKey

The CryptGetUserKey function retrieves a handle of one of a user's public/private
key pairs.

CryptImportKey

The CryptImportKey function transfers a cryptographic key from a key blob into a
cryptographic service provider (CSP).

Private keys may be imported as blobs and the function will return a handle to the
imported key.

A symmetric key encrypted with an RSA public key is imported into the
CryptoImportKey function. The function uses the RSA private key exchange key to
decrypt the blob and returns a handle to the symmetric key.

Symmetric keys wrapped with other symmetric keys may also be imported using
this function. The wrapped key blob is passed in along with a handle to a
symmetric key which the module is supposed to use to unwrap the blob. If the
function is successful then a handle to the unwrapped symmetric key is returned.

CryptSetKeyParam

The CryptSetKeyParam function customizes various aspects of a key's operations.
This function is used to set session-specific values for symmetric keys.

CryptDuplicateKey

The CryptDuplicateKey function is used to duplicate, make a copy of, the state of a
key and returns a handle to this new key. The CryptDestroyKey function must be
used on both the handle to the original key and the newly duplicated key.

Data Encryption and Decryption

The following functions provide interfaces to the cryptomodule’s data encryption and
decryption functions.

 8

CryptDecrypt

The CryptDecrypt function decrypts data previously encrypted using CryptEncrypt
function.

CryptEncrypt

The CryptEncrypt function encrypts data. The algorithm used to encrypt the data is
designated by the key held by the CSP module and is referenced by the hKey
parameter.

Hashing and Digital Signatures

The following functions provide interfaces to the cryptomodule’s hashing and digital
signature functions.

CryptCreateHash

The CryptCreateHash function initiates the hashing of a stream of data. It returns to
the calling application a handle to a CSP hash object. This handle is used in
subsequent calls to CryptHashData and CryptHashSessionKey in order to hash
streams of data and session keys. SHA-1 and MD5 are the cryptographic hashing
algorithms supported. In addition, a MAC using a symmetric key is created with this
call and may be used with any of the symmetric block ciphers support by the
module (DES, 3DES, RC4 or RC2).

A CALG_SCHANNEL_MASTER_HASH may be created with this call. If this is the
case then a handle to one of the following types of keys must be passed in the hKey
parameter, CALG_SSL2_MASTER, CALG_SSL3_MASTER,
CALG_PCT1_MASTER, or CALG_TLS1_MASTER. This function with
CALG_SCHANNEL_MASTER_HASH in the ALGID parameter will cause the
derivation of the master secret from the pre-master secret associated with the
passed in key handle. This key derivation process is done in the method specified
in the appropriate protocol specification, SSL 2.0, SSL 3.0, PCT 1.0, or TLS. The
master secret is then associated with the resulting hash handle and session keys
and MAC keys may be derived from this hash handle. The master secret may not
be exported or imported from the module. The key data associated with the hash
handle is zeroized when CryptDestroyHash is called.

CryptDestroyHash

The CryptDestroyHash function destroys the hash object referenced by the hHash
parameter. After a hash object has been destroyed, it can no longer be used.

If the hash handle references a CALG_SCHANNEL_MASTER_HASH key then
when CryptDestroyHash is called the associated key material is zeroized.

 9

All hash objects should be destroyed with the CryptDestroyHash function when the
application is finished with them.

CryptGetHashParam

The CryptGetHashParam function retrieves data that governs the operations of a
hash object. The actual hash value can also be retrieved by using this function.

CryptHashData

The CryptHashData function adds data to a specified hash object. This function and
CryptHashSessionKey can be called multiple times to compute the hash on long
data streams or discontinuous data streams. Before calling this function, the
CryptCreateHash function must be called to create a handle of a hash object.

CryptHashSessionKey

The CryptHashSessionKey function computes the cryptographic hash of a key
object. This function can be called multiple times with the same hash handle to
compute the hash of multiple keys. Calls to CryptHashSessionKey can be
interspersed with calls to CryptHashData. Before calling this function, the
CryptCreateHash function must be called to create the handle of a hash object.

CryptSetHashParam

The CryptSetHashParam function customizes the operations of a hash object.

CryptSignHash

The CryptSignHash function signs data. Because all signature algorithms are
asymmetric and thus slow, the CryptoAPI does not allow data be signed directly.
Instead, data is first hashed and CryptSignHash is used to sign the hash. The
crypto module supports signing with RSA. The X9.31 format may be specified by a
flag.

CryptVerifySignature

The CryptVerifySignature function verifies the signature of a hash object. Before
calling this function, the CryptCreateHash function must be called to create the
handle of a hash object. CryptHashData or CryptHashSessionKey is then used to
add data or session keys to the hash object. The crypto module supports verifying
RSA signatures. The X9.31 format may be specified by a flag.

After this function has been completed, only CryptDestroyHash can be called using
the hHash handle.

 10

CryptDuplicateHash

The CryptDuplicateHash function is used to duplicate, make a copy of, the state of a
hash and returns a handle to this new hash. The CryptDestroyHash function must
be used on both the handle to the original hash and the newly duplicated hash.

 11

The RSAENH cryptomodule manages keys in the following manner.

Key Material

RSAENH can create and use keys for the following algorithms: RSA Signature,
RSA Key Exchange, RC2, RC4, DES, and 3DES.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Structures\Cryptography Structures for more
information about key formats and structures.

Key Generation

Random keys can be generated by calling the CryptGenKey() function. Keys can
also be derived from known values via the CryptDeriveKey() function. DES key are
generated and validated following the manner described in FIPS PUB 46-2 and
FIPS PUB 81.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

Key Entry and Output

Keys can be both exported and imported out of and into RSAENH via
CryptExportKey() and CryptImportKey(). Exported private keys may be encrypted
with a symmetric key passed into the CryptExportKey function. Any of the
symmetric algorithms supported by the crypto module may be used to encrypt
private keys for export (DES, 3DES, RC4 or RC2). When private keys are
generated or imported from archival, they are covered with the Microsoft Windows
2000 Data Protection API (DPAPI) and then outputted to the file system in the
covered form.

Symmetric key entry and output is done by exchanging keys using the recipient’s
asymmetric public key. Symmetric key entry and output may also be done by
exporting a symmetric key wrapped with another symmetric key.

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

CRYPTOGRAPHIC KEY
MANAGEMENT

 12

Key Storage

RSAENH offloads the key storage operations to the Microsoft Windows 2000
operating system. Keys are not stored in the cryptographic module, private keys are
encrypted by the Microsoft Data Protection API (DPAPI) service, and then stored in
the Microsoft Windows 2000 file system. Keys are zeroized from memory after use.
Only the key used for power up self-testing is stored in the cryptographic module.

When an Authenticated User requests a keyed cryptographic operation from
RSAENH his/her keys are retrieved from the file system.

DPAPI uses a two-phase algorithm for shrouding the Secret Key (SK) used to
encrypt data. Phase 2 occurs by default only if there is a Domain Controller
associated with the user. Therefore in the local user case, the SK is protected by a
local LSA secret. SYSKEY should be enabled to prevent access to this key. Refer
to NT4/win2k documentation for info on SYSKEY.

Phase 1: Local Agent

In the first phase, the system shrouds the secret locally, relying on the service run
as Local System to protect secrets. This protection shrouds the data both as it
travels on the wire and also blinds the data from the DC. Thus, the shrouding
ensures that no remote user (even a “phase 2” remote recovery agent) can decrypt
the data independent from the local system.

Recovery setup

1. Agent has data D1 to shroud

2. Agent uses secret key SK encrypt D1

3. Agent stores SK in the user hive ACLed to local agent

4. Agent has shrouded E{D1}

Initiate recovery

1. Agent has E{D1} to unshroud

2. Agent retrieves secret key SK from user hive

3. Agent uses secret key SK to decrypt E{D1}

4. Agent has unshrouded D1

Phase 2: Remote Agent

In the second phase, if the machine is networked, the shrouded secret is sent to the
domain controller (DC) for an identification stamp and second shrouding. This
second shrouding will ensure that a roaming user profile is not self-contained, but
needs an interactive logon to successfully recover the master key.

 13

Recovery setup

5. User sends data D2 to remote agent

6. Agent uses secret monster key K, random R2, HMACs to derive SymKeyM.

7. Use SymKeyM to MAC {userid, D2} -> m{userid, D2}

8. Agent uses secret monster key K, random R3, HMACs to derive SymKeyK.

9. Use SymKeyK to encrypt { m{userid, D2} , R2 }

10. Agent returns recovery field E{ m{userid, D2}, R2 }, R3 to User

11. User stores recovery field E{ m{userid, D2}, R2 }, R3

Initiate recovery

5. User sends recovery field E{ m{userid, D2}, R2 }, R3 to remote agent

6. Agent uses secret monster key K, HMACs with R3 to re-derive SymKeyK.

7. SymKeyK used to decrypt m{userid, D2}, R2

8. Agent uses secret monster key K, HMACs with R2 to re-derive SymKeyM.

9. SymKeyM used to check MAC on {userid, D2}.

10. Agent returns D2 if userid matches current recovery requestor.

These phases can be nested such that D2 = E{D1}, which allows neither of the
agents to recover the data barring collusion.

Key Archival

RSAENH does not directly archive cryptographic keys. The Authenticated User may
choose to export a cryptographic key labeled as exportable (cf. “Key Input and
Output” above), but management of the secure archival of that key is the
responsibility of the user.

Key Destruction

All keys are destroyed and their memory location zeroized when the Authenticated
User calls CryptDestroyKey on that key handle. Private keys (which are stored by
the operating system in covered format in the protected storage system portion of
the NT4.0 OS) are destroyed when the Authenticated User calls
CryptAcquireContext with the CRYPT_DELETE_KEYSET flag.

 14

Mandatory

Software tests via a DES MAC of library image
• RC4 encrypt/decrypt KAT
• RC2 ECB encrypt/decrypt KAT
• DES ECB encrypt/decrypt KAT
• 3DES ECB encrypt/decrypt KAT
• 3DES 112 ECB encrypt/decrypt KAT
• RC2 CBC encrypt/decrypt KAT
• DES CBC encrypt/decrypt KAT
• 3DES CBC encrypt/decrypt KAT
• 3DES 112 CBC encrypt/decrypt KAT
• MD5 hash KAT
• SHA-1 hash KAT
• RSA pairwise consistency test

Conditional

The following are initiated at key generation:
• RSA pairwise consistency test

SELF-TESTS

 15

The following items address requirements not addressed above.

Cryptographic Bypass

Cryptographic bypass is not support in RSAENH.

Operation Authentication

RSAENH inherits all authentication from the Microsoft Windows 2000 operating
system upon which it runs. Microsoft Windows 2000 requires authentication from a
trusted control base (TCB) before a user is able to access system services. Once a
user is authenticated from the TCB, a process is created bearing the Authenticated
User’s security token. All subsequent processes and threads created by that
Authenticated User are implicitly assigned the parent’s (thus the Authenticated
User’s) security token. Every user that has been authenticated by Microsoft
Windows 2000 is naturally assigned the Authenticated User role when he/she
accesses RSAENH.

Identity-based Authentication

While all Authenticated Users are assigned the same role and thus have access to
the same complete set of services, individual Authenticated Users may only access
key containers which they themselves have created. RSAENH assumes the
authentication of the user and enforces it by running in a thread with the
Authenticated User’s security token.

ModularExpOffload

The ModularExpOffload function offloads modular exponentiation from a CSP to a
hardware accelerator. The CSP will check in the registry for the value
HKLM\Software\Microsoft\Cryptography\ExpoOffload that can be the name of a
DLL. The CSP uses LoadLibrary to load that DLL and calls GetProcAddress to get
the OffloadModExpo entry point in the DLL specified in the registry. The CSP uses
the entry point to perform all modular exponentiations for both public and private
key operations. Two checks are made before a private key is offloaded.

Operating System Security

The RSAENH cryptomodule is intended to run on Windows 2000 in Single User
Mode.

MISCELLANEOUS

 16

When an operating system process loads the cryptomodule into memory, the
cryptomodule runs a DES MAC on the cryptomodule’s disk image of RSAENH.DLL,
excluding the DES MAC, checksum, and export signature resources. This MAC is
compared to the value stored in the DES MAC resource. Initialization will only
succeed if the two values are equal.

Each operating system process creates a unique instance of the cryptomodule that
is wholly dedicated to that process. The cryptomodule is not shared between
processes.

 17

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 i

Windows 2000®
Operating System

Microsoft Enhanced Cryptographic
Provider

FIPS 140-1 Documentation: Finite State Machine

Abstract

This document specifies the finite state machine for the RSAENH as described in FIPS PUB 140-
1.

®

 ii

INTRODUCTION...1

FINITE STATE MACHINE...2

APPENDIX A ...4

APPENDIX B ...5

FOR MORE INFORMATION..6

CONTENTS

 Microsoft Windows 2000 Server White

Paper

1

The Microsoft Enhanced Cryptographic Provider (RSAENH) is a FIPS 140-1 Level 1
compliant, general-purpose, software-based, cryptographic module. Like other
cryptographic providers that ship with Windows 2000, RSAENH encapsulates
several different cryptographic algorithms in an easy-to-use cryptographic module
accessible via the Microsoft CryptoAPI. It can be dynamically linked into
applications by software developers to permit the use of general-purpose FIPS 140-
1 Level 1 compliant cryptography.

INTRODUCTION

Microsoft Windows 2000 Server White Paper 2

The RSAENH cryptomodule can be in exactly one of the following states at any
given moment. Transitions between states can be automatic or result from user
intervention.

States

See Appendix A and B for more information.

Power Up

The Power Up state is entered when a process thread calls the Microsoft CryptoAPI
function CryptAcquireContext() (encapsulated in ADVAPI32.DLL) in the following
manner:

CryptAcquireContext(&hProv, pszContainer, MS_ENHANCED_PROV,
PROV_RSA_FULL, dwFlags)

This ADVAPI32.DLL function locates RSAENH on the user’s system, verifies its
export compliance signature, and attempts to load RSAENH via LoadLibrary() and
run its DLLInitialize() function.

Power Down

The Power Down state is entered when RSAENH library is unloaded either explicitly
(e.g. a process thread calls FreeLibrary()) or implicitly (e.g. the process exits or is
killed.)

Init Error

The Init Error State is entered when RSAENH’s DLLInitialize() fails as a result of
either configuration errors (i.e. provider could not be found, not enough memory,
etc.) or errors resulting from the power up self-tests.

Un-Initialized

The Un-Initialized state is entered when ADVAPI32.DLL successfully loads
RSAENH and calls its CPAcquireContext() function. If CryptAcquireContext() was
called with any valid dwFlags other than CRYPT_VERIFY_CONTEXT or
CRYPT_DELETE_CONTEXT, RSAENH attempts to load the requested key
container.

FINITE STATE MACHINE

 Microsoft Windows 2000 Server White

Paper

3

Initialized

The Initialized state is entered when CPAcquireContext() completes successfully
and a cryptographic provider handle (hProv) is returned to the client through the
original ADVAPI32.DLL CryptAcquireContext() call. While a key container has been
found, no keys have yet been loaded. Keyless cryptographic operations occur from
the Initialized state until such time a keyed cryptographic operation is requested.

Key Entry

The Key Entry state is entered when a keyed cryptographic operation is requested
such as CryptImportKey(), CryptSignHash(),, or CryptGenKey() (when a RSA
private key is being generated). Keys are uncovered using the Data Protection APIs
(DPAPI). If keys are successfully uncovered, RSAENH will automatically transition
to the Key Initialized state.

Key Initialized

The Key Initialized state is entered after keys have been loaded. This state is
identical to the Initialized state except both keyless and keyed cryptographic
operations can occur within this state.

Operation Error

The Operation Error state is entered whenever an error occurs as a result of a
cryptographic operation. RSAENH will automatically transition back to either the
Initialized or Key Initialized depending on whether or not keys have been
successfully loaded.

State Transitions

See Appendix A.

State Diagrams

See Appendix B.

Microsoft Windows 2000 Server White Paper 4

The following table describes the state transitions possible within the RSAENH
cryptomodule during operation.

 Current State Input Output Next State
1 Power Up

RSAENH loads
NO_ERROR Un-Initialized

2 Power Up RSAENH.DLL not found NTE_PROV_DLL_NOT_FOUND Init Error
2 Power Up Bad export compliance

signature
NTE_BAD_SIGNATURE Init Error

2 Power Up DES MAC check on
cryptographic provider fails

NTE_PROVIDER_DLL_FAIL Init Error

2 Power Up One or more power-on
cryptographic self-tests fail

 NTE_PROVIDER_DLL_FAIL Init Error

2 Power Up System error System error message Init Error
3 Init Error Automatic transition No output Power Down
4 Un-Initialized Cannot load key container NTE_BAD_KEYSET Init Error
4 Un-Initialized dwFlags is

CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT
but operation could not be
completed

NTE_BAD_KEYSET or
NTE_FAIL

Init Error

5 Un-Initialized dwFlags is not either
CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT

NO_ERROR and valid provider
handle (hProv)

Initialized

6 Initialized Keyed cryptographic
operation requested (i.e.
CryptImportKey(),
CryptSignHash(), or
CryptGenKey() (when a
RSA private key is being
generated)

No output Key Entry

7 Initialized Generic cryptographic
operation failure

Operation specific error
message

Operation Error

8 Operation Error Automatic transition when
keys have not yet been
loaded

No output Initialized

9 Key Entry Keys uncovered with
DPAPI and loaded

No output Key Initialized

10 Key Entry Keys could not be
uncovered with DPAPI

NTE_FAIL Operation Error

11 Key Initialized Generic cryptographic
operation failure

Operation specific error
message

Operation Error

12 Operation Error Automatic transition when
keys have already been
loaded

No output Key Initialized

13 Initialized CryptReleaseContext()
called

NO_ERROR Un-Initialized

14 Key Initialized CryptReleaseContext()
called

NO_ERROR Un-Initialized

15 Un-Initialized Automatic transition when
no other outstanding
provider handles exist

NO_ERROR Power Down

15 Un-Initialized Automatic transition when
dwFlags is
CRYPT_DELETEKEYSET
or
CRYPT_VERIFYCONTEXT
and operation successfully
completes

NO_ERROR Power Down

APPENDIX A

 Microsoft Windows 2000 Server White

Paper

5

The following diagram illustrates the finite state machine of the RSAENH
cryptomodule.

APPENDIX B

Power Up

Operation
Error

Un-
Initialized

Initialized

Key Entry

Key
Initialized

Power
Down

1

Init
Error

2 3

4

5

7
6

9

10

11

12

14

15

13

8

Microsoft Windows 2000 Server White Paper 6

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

 Microsoft Windows 2000 Server White Paper i

Windows 2000®
Operating System

Microsoft Enhanced Cryptographic
Provider

FIPS 140-1 Documentation: Master Component List

Abstract

The Microsoft Enhanced Cryptographic Provider (RSAENH) is a FIPS 140-1 Level 1 compliant
general-purpose software-based cryptographic module. Like other cryptographic providers that
ship with Microsoft Windows 2000, RSAENH encapsulates several different cryptographic
algorithms in an easy-to-use cryptographic module accessible via the Microsoft CryptoAPI. It can
be dynamically linked into applications by software developers to permit the use of general-
purpose FIPS 140-1 Level 1 compliant cryptography.

This document specifies the master component list for the RSAENH as described in FIPS PUB
140-1.

®

Microsoft Windows 2000 Server White Paper ii

MASTER COMPONENT LIST ...1

APPENDIX A ...2

FOR MORE INFORMATION..3

CONTENTS

 Microsoft Windows 2000 Server White Paper 1

The RSAENH cryptomodule is a software cryptomodule and is intended to operate
on a PC running Windows 2000. Several components of the base PC are also to be
considered components of the cryptomodule.

Components

The following components are to be considered components of the cryptomodule
(see Appendix A below):

• PC Enclosure
• Central Processing Unit (CPU)
• Physical Storage (Hard Drives and Removable Storage)
• Memory (RAM and CMOS)

MASTER COMPONENT
LIST

Microsoft Windows 2000 Server White Paper2

The following diagram illustrates the master components of the RSAENH
cryptomodule.

APPENDIX A

PC

Physical Storage

CPU

Hard Disk

Removable
Storage

Memory

CMOS

RAM

 Microsoft Windows 2000 Server White Paper 3

For the latest information on Windows 2000 Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver or the Windows 2000 Server Forum on the
MSN™ network of Internet services (GO WORD: MSNTS).

FOR MORE
INFORMATION

