

RTA-AE57C1-BOS2.1-P0001

AE57C1

Security Policy

Renesas 32-Bit Smart Card Microcomputer AE-5 Series

WD65257C1 (AE57C1)

Renesas Technology

www.renesas.com

Rev. 2.04 Revision Date: Dec. 18, 2009

CHANGE RECORD

Revision	Date	Author	Description of Change
1.0	Aug. 14, 2008	M. Vedula	Initial release
1.02	Apr. 3, 2009	M. Vedula, A. Natraj, C. Weidong	update
1.03	Apr 6, 2009	M. Vedula	Added figure 1
1.04	Apr 6, 2009	M. Vedula, A. Natraj, C. Weidong	Added figure 4 (I/O-2 function diagram)
1.05	Jun 2, 2009	M. Vedula	Final pre-submission edits; added seed, seed key to CSP list.
1.06	Jun 5, 2009	M. Vedula	Responses to all comments, Figure updates
2.01	Aug 28, 2009	A.Natraj	Modified with changes related to BOS 2.1
2.02	Oct 1, 2009	A.Natraj	Update based on review comments
2.03	Oct 8, 2009	A.Natraj	Updated KAS and RSA certificate numbers
2.04	Dec. 18, 2009	A. Natraj	Updated based on review comments

Contents

1 Mo	odule Overview	5
2 Se	curity Level	8
3 Mo	odes of Operation	9
3.1	FIPS Approved mode of operation	9
3.2	Non-FIPS mode of operation	9
3.3	Approved and Allowed Algorithms	9
3.4	Non-Approved, Allowed Algorithm	
3.5	Non-Approved Non-Allowed Algorithms (Non-Callable - for use in Future Modules)	
4 Po	rts and Interfaces	
5 Ide	entification and Authentication Policy	
5.1	Assumption of roles	
6 Ac	cess Control Policy	
6.2	Critical Security Parameters (CSPs) and Public Keys	
6.3	CSP Modes of Access	
7 Op	perational Environment	
8 Se	curity Rules	
9 Ph	ysical Security Policy	
9.1	Physical Security Mechanisms	
10 Mi	itigation of Other Attacks Policy	
11 Re	ferences	21
12 De	finitions and Acronyms	21
13 An	nex – Non-callable API Services for Future Use	

Tables

Table 1- Module Security Level Specification	8
Table 2 - FIPS Approved and Validated Algorithms Used in Current Module	9
Table 3 - FIPS Approved and Validated Algorithms (Non-Callable - For Use in Future Modules)	10
Table 4 - AE57C1 Pins and FIPS 140-2 Ports and Interface	11
Table 5 - Roles and Required Identification and Authentication	13
Table 6 – Strengths of Authentication Mechanisms	13
Table 7 - Unauthenticated Services	14
Table 8 – Authenticated Services	14
Table 9 - Specification of Service Inputs & Outputs	15
Table 10 - Private CSPs	16
Table 11- Public Keys	16
Table 12- CSP Access Rights within Roles & Services	17
Table 13 - Inspection/Testing of Physical Security Mechanisms	19
Table 14 - Mitigation of Other Attacks	20

Figures

Figure 1 – Image of the Cryptographic Module	5
Figure 2 - AE57C1 Block Diagram	6
Figure 3 - Logical Block Diagram	7

1 Module Overview

The Renesas Technology America, Inc. (Renesas) AE57C1 (hereafter referred to as the module) is a single-chip module that contains a CPU, ROM, EEPROM, and RAM. The module contains firmware (BoardID OS or "BOS") that resides in ROM, with key storage and future applet storage functionality in the EEPROM. The customer using the module will be able to load or update an applet to the EEPROM post-validation. The scope of the current module does not contain any Renesas applets or Renesas' customer applets. The module's validation to FIPS 140-2 is no longer valid once a non-validated applet is loaded.

The boundary of the single-chip module is the edges and surfaces of the integrated circuit die. The die is fabricated with a metal layer obscuring the chip components. No components are excluded from the cryptographic boundary. Figure 1 depicts the cryptographic module with bond pads; the cryptographic boundary is shown in red.

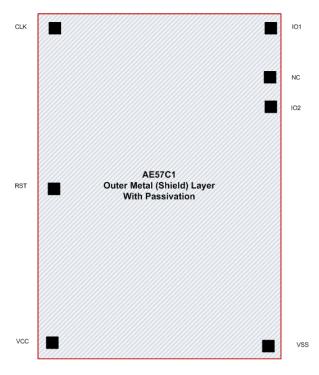


Figure 1 – Image of the Cryptographic Module

The configuration of hardware and firmware for this validation are:

Hardware Version: P/N WD65257C1F41TDB0, Version 01

Firmware Version: P/N BOS_AE57C1_v_2_1012

Figure 2 depicts a block diagram of the AE57C1 hardware components, with the cryptographic boundary shown in red. The major blocks of the AE57C1 hardware are:

- Clock generator
- Memory: ROM, RAM and EEPROM
- CPU
- Hardware implementations of cryptographic functions: RNG, AES coprocessor, DES coprocessor, modular multiplication. Note the X9.31 RNG function is implemented in firmware.
- Specialized system control logic, Watch Dog Timer (WDT) and Firewall Management Unit (FMU)
- Serial I/O ports and UART used for communications and configuration
- Interval timer
- Direct Memory Access Controller (DMAC)
- This module incorporates security-error detection functions and current-control functions. The security-error detection functions detect abnormalities, such as access to the access-prohibited area, excessive operating frequencies, and operating temperature or power voltages beyond specified range. The current control functions randomly insert dummy cycles on the internal bus, and generate noise on the power-supply line.

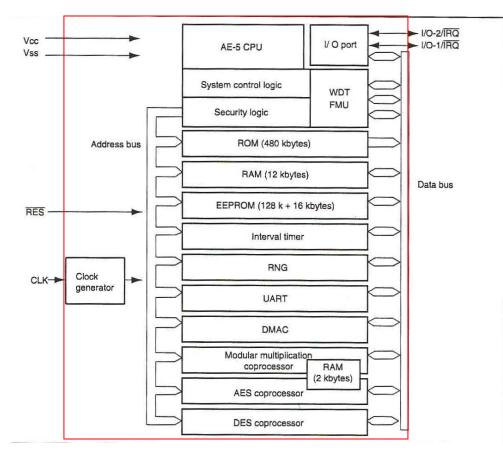


Figure 2 - AE57C1 Block Diagram

Figure 3 depicts the logical block diagram for the AE57C1, with the cryptographic boundary shown in red. No User Application is included in the current module – the User Application block is for a future evaluation and is shown only to depict its relationship to the standard BOS firmware.

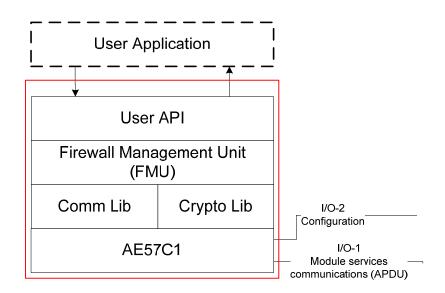


Figure 3 - Logical Block Diagram

BOS provides FMU protected access to a cryptographic API, ISO7816 communication interface and other hardware resources through the user API layer for a single user application. In this version of the module, BOS provides only the services listed in Table 7 and Table 8. Of these services, only the Secure Download performs cryptography, using the callable Approved algorithms listed in Table 2.

BOS includes code to implement a more extensive cryptographic functional API, including RSA key generation, signature generation and verification, random number generation, Triple DES and AES symmetric algorithm encryption and decryption and message digest functions such as SHA-1, SHA-256, HMAC-SHA-1, and HMAC-SHA-256. The algorithm implementations listed in Table 3 have attained validation to reduce evaluation effort in future module versions, but are non-callable in this version of the module.

Module services are described in Section 6 below.

2 Security Level

The cryptographic module meets the overall requirements applicable to Level 3 security of FIPS 140-2.

Security Requirements Section	Claim
Cryptographic Module Specification	3
Module Ports and Interfaces	3
Roles, Services and Authentication	3
Finite State Model	3
Physical Security	3
Operational Environment	N/A
Cryptographic Key Management	3
EMI/EMC	3
Self-Tests	3
Design Assurance	3
Mitigation of Other Attacks	3

Table 1- Module Security Level Specification

3 Modes of Operation

3.1 FIPS Approved mode of operation

The module only provides a FIPS approved mode of operation, comprising all services described in Section 6 below. The module does not implement bypass or maintenance modes.

The module will enter FIPS Approved mode following on a successful response to the initial authentication sequence handshake command. Successful transition to the FIPS Approved mode is indicated by a FIPS ATR and a Success response to the initial authentication sequence handshake command. FIPS mode can be confirmed by examination of the FIPS field and firmware and hardware version numbers in the FIPS ATR. FIPS ATR byte description is as follows:

3B	5A	11	02	52	54	41	42	4F	53	76	1012	21
----	----	----	----	----	----	----	----	----	----	----	------	----

- 3B Uses direct convention of byte transmission
- 5A Indicates the ATR has TA1, TC1 and 10 historical bytes field
- 11 Clock rate conversion factor Fi is set to "372" and baud rate adjustment factor is set to "1"
- 02 Extra guard time over the eight bits is set to "2"
- 52 Historical byte ASCII equivalent of character "R"
- 54 Historical byte ASCII equivalent of character "T"
- 41 Historical byte ASCII equivalent of character "A"
- 42 Historical byte ASCII equivalent of character "B"
- 4F Historical byte ASCII equivalent of character "0"
- 53 Historical byte ASCII equivalent of character "S"
- 76 Historical byte ASCII equivalent of character "v"
- 1012 This is the firmware version number
- 21 Stands for device AE57C1

3.2 Non-FIPS mode of operation

Not applicable - the module does not have a non-FIPS mode of operation.

3.3 Approved and Allowed Algorithms

The cryptographic module in this evaluation supports the following FIPS approved algorithms.

Table 2 - FIPS Approved and Validated Algorithms Used in Current Module

FIPS Approved Algorithm	CAVP Cert. #
Triple-DES TECB/TCBC modes (encrypt/decrypt) KO1/KO2	786
DSA Key Pair Gen/Sig Gen/Sig Ver 1024	347
KAS FFC - based on DSA Diffie-Hellman	4
SHA-256	982
HMAC-SHA-256	577
RNG ANSI X9.31 w/ 3-Key Triple-DES	585

The module implements the following FIPS Approved algorithms for use in future modules. These algorithms have been validated, and the code exists in the module, but with no service entry point (non-callable) until a user application is added in future modules.

Table 3 - FIPS Approved and Validated Algorithms (Non-Callable - For Use in Future Modules)

FIPS Approved Algorithm	CAVP Cert. #
RSA KeyGen, PKCS/PSS Sig Gen/Sig Ver 1024/2048 w/ SHA-1	572
3-Key Triple-DES, CMAC mode	789
AES ECB/CBC modes (encrypt/decrypt) 128/192/256	1029
HMAC-SHA-1	577
SHA-1	982

3.4 Non-Approved, Allowed Algorithm

The module implements a hardware RNG (NDRNG), used to provide seed material to the FIPS Approved RNG.

3.5 Non-Approved Non-Allowed Algorithms (Non-Callable - for use in Future Modules)

The cryptographic module implements the following Non-Approved algorithms. In this version of the module, these algorithms are non-callable, with no service entry point until a user application is added in future modules.

No security claim is made in the current module for any of the following non-approved algorithms:

- RSA (1024, 2048) bulk data encrypt/decrypt
- RIPE MD-160
- MD5
- DES

4 Ports and Interfaces

The AE57C1 is a single IC with ports and interfaces as shown below.

Pin	FIPS 140-2 Designation	Name and Description
V _{CC}	Power input	+3V power
V _{SS}	Ground	
CLK	Control input	Clock
RES	Control input	Reset – low on this pin resets the chip
I/O-1/IRQ	Data input, control input, data output, status output	ISO 7816 command port (UART)
I/O-2/IRQ	Control input	Module configuration and role selection control
NC	N/A	No connect (not connected to anything within the module)

Table 4 - AE57C1 Pins and FIPS 140-2 Ports and Interface

I/O-2 is used to control loading of the native firmware or the user application on power up. If no pattern is present on I/O-2 on power-up, the modules will check for the presence of a User Application. If no user application is loaded the module begins User role authentication.

If "Reload pattern" (800 kHz - 2 MHz square wave) is present on I/O-2 at power-up, the module begins Crypto Officer Authentication.

If "Post Assembly Test pattern" (5 kHz – 25 kHz square wave) is present on I/O-2 at power-up, if a User Test application is loaded, it is launched. If no User Test application is present, the module enters a sleep (unresponsive) state.

User Application and User Test Application are described herein for completeness only. The scope of this Security Policy and validation does not include either a User Application or a User Test Application. The module's validation to FIPS 104-2 is no longer valid once a non-validated User Application or Test Application is installed.

Errors resulting in the Soft Error state place the CPU in sleep mode, as described in the hardware manual. When the CPU is in sleep mode, the function of the I/O-1 and I/O-2 ports changes to the IRQ mode. An interrupt signal from the IRQ is handled by the BOS dummy interrupt handler and returns the CPU to the sleep mode. The module is unresponsive in this mode until Reset or a power cycle occurs. If the cause of the error persists following reset or power cycle, the module will re-enter the Soft Error (sleep mode) state.

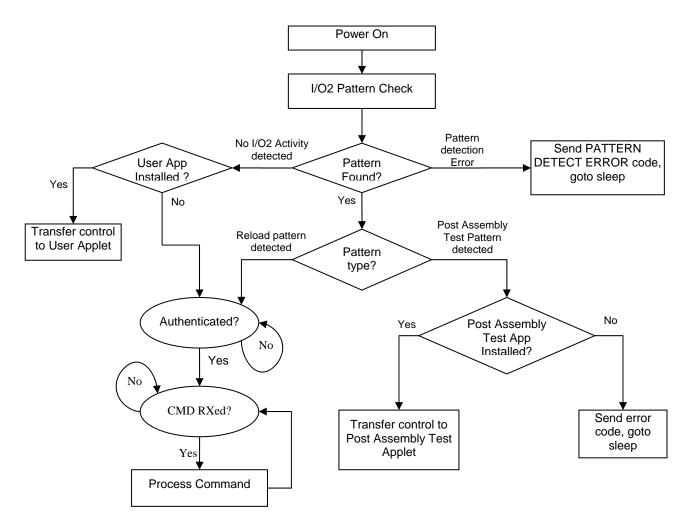


Figure 4. BOS 2.0 I/O-2 Function

5 Identification and Authentication Policy

5.1 Assumption of roles

The module supports two distinct operator roles only (User and Cryptographic-Officer). The cryptographic module enforces the separation of roles using identity-based operator authentication. One authentication is allowed per module reset –an operator must re-authenticate after a power down or reset. Re-authentication is enforced when changing roles.

Authentication is based on a Diffie-Hellman authentication exchange with certificate verification, depicted below. The corresponding authentication certificates are loaded in the factory and cannot be modified.

Role	Description	Authentication Type	Authentication Data	
СО	This role has access to all services offered by the module.	Identity-based operator authentication	DSA Public key in Crypto Officer certificate	
User	This role has access to all services offered by the module.	Identity-based operator authentication	DSA Public key in User certificate	

Table 5 - Roles and Required Identification and Authentication

Table 6 – Strengths	of Authentication	Mechanisms

Authentication Mechanism	Strength of Mechanism
DSA DH	The probability that a random attempt will succeed or a false acceptance will occur is $1/(2^{112-1})$ which is less than $1/1,000,000$.
	The module authentication sequence requires 6 seconds (10 attempts per minute). The probability of a successful random attempt or false acceptance one minute is $10/(2^{112-1})$ which is less than $1/100,000$.

6 Access Control Policy

6.1 Services

Tables 7, 8 and 9 list unauthenticated Services, Authenticated Services and the inputs and outputs for all services, respectively. The cryptographic module supports the following unauthenticated services:

Table 7 - Unauthenticated Services

Service	Description
Self-test / Show status	This service provides the current status of the cryptographic module. An ATR is sent to the host on power up or reset, followed by the ISO 7816 Status word in response to the initial authentication sequence handshake command.
Set clock modes	This service sets the CPU internal clock and the MMC internal clock multiplication factors with respect to the external clock

The cryptographic module supports the following authenticated services:

Service	Description			
	Protects the specified EEPROM address range in page units (128 bytes)			
EEPROM Protect	from further writes. The action is irreversible.			
	Disable the firewall management unit so the user applet can access regions			
FMU disable	such as device serial number. Does not permit user applet access to CSPs.			
	Enables the firewall management unit and disables access to regions such			
FMU enable	as device serial number.			
	Prevents future user applet downloads to the module. This action is			
Seal chip	irreversible.			
	Authenticate, establish secure channel and download new application			
	firmware (user application or user test application) in S-record format with			
Secure download	HMAC integrity checking.			
	Sets the start address of the user applet. The start address is used to transfer			
User Applet Address	control to the user applet on module reset (see Figure 4). Prerequisite:			
Install	successfully downloaded user applet.			
	Sets the start address of the test applet. The start address is used to transfer			
	control to the user applet on module reset (see Figure 4). Test applets are			
	typically used for traceability (e.g. chip serial number tracking, or key			
User Test applet	serial number tracking). Prerequisite: successfully downloaded user test			
address install	applet.			
	Actively overwrites all CSPs and RNG seed key, disabling the module.			
Zeroize	This action is irreversible.			
User API EEPROM	Sets the EEPROM address range from which EEPROM write* API's can			
Address set	be called.			
API key zero address	Sets the EEPROM address range from which call to Key zeroization* API			
set	can be called.			

Table 8 – Authenticated Services

	Sets the address ranges of the EEPROM region on which the adler-32	
Patch Table update	checksum is computed.	
Patch Table read	Reads the address ranges stored in the patch table.	

* - EEPROM write and Key zeroization API's are used by future user applet which is outside the scope of this module.

Service	Control Input	Data input	Data Output	Status Output
		Start address and number		
EEPROM Protect	Command APDU	of pages	N/A	Success/fail
FMU disable	Command APDU	N/A	N/A	Success/fail
FMU enable	Command APDU	N/A	N/A	Success/fail
Seal chip	Command APDU	N/A	N/A	Success/fail
Secure download	Command APDU	Encrypted new firmware packets plus HMAC trailer	N/A	Success/fail
Set clock modes	Command APDU	Clock mode input	None	Success/fail
Self-test / Show status	Power cycle or low pulse on Reset pin	N/A	N/A	ATR, Success/fail
User Applet Address Install	Command APDU	Jump address for user application	N/A	Success/fail
User Test applet address install	Command APDU	Jump address for user test application	N/A	Success/fail
Zeroize	Command APDU	N/A	N/A	Success/fail
User API EEPROM Address set	Command APDU	The start and the end address from which calls to EEPROM write API's can be made	N/A	Success/fail
API key zero address set	Command APDU	The start and the end address from which calls to Key zero API can be made	N/A	Success/fail
Datah Tahla undata	Command ADDU	Start, end address and the checksum of the data within the specified		Success/fail
Patch Table update	Command APDU	address range	N/A Entries of the patch	Success/fail
Patch Table read	Command APDU	N/A	table	Success/fail

Table 9 - Specification of Service Inputs & Outputs

6.2 Critical Security Parameters (CSPs) and Public Keys

Table 10 lists the CSPs (Private and Secret Keys and other critical security parameters). Table 11 lists the module's Public Keys. Table 12 describes the modes of access for all CSPs.

The module does not support key entry. With the exception of DHSK and the RNG seed, all CSPs are loaded at factory. No initialization of the module is required prior to usage; however, a Renesas authorized development system (with appropriate certificates) is required for use with the Secure download service.

The module contains the following private CSPs:

Table 10 - Private CSPs

Туре	Key	Description	
Private	DSADH-User-Private	DSA DH Private key for user role	
Private	DSADH-CO-Private	DSA DH Private key for crypto officer	
Secret	DHSK	Diffie Hellman Session Key, 3 Key Triple-DES CBC	
		RNG seed, seed key, and RNG derived nonce used to derive	
Secret	DRNG-State	DHSK	

The module contains the following public keys:

Table 11- Public Keys

Туре	Key Description	
Public	DSADH-User-Public	DH public key, User
Public	DSADH-CO-Public	DH public key, crypto officer
Public	DSADH-Root-Public	DSA Root public key used to verify root certificate signature
Public	DSADH-Host-Public	DSA public key used to verify host
Public	DSADH-CA-Public	DSA public key used to verify host CA signature
Public	DSADH-User-CA-Public	Public key used to verify users CA certificate signature
Public	DSADH-CO-CA-Public	Public key used to verify crypto officer's CA certificate signature

6.3 CSP Modes of Access

Table 12 defines the relationship between access to CSPs and the different module services. The modes of access shown in the table are defined as:

- $\underline{\mathbf{G}} = \underline{\mathbf{G}} \underline{\mathbf{G}}$
- $\underline{\mathbf{R}} = \underline{\text{Read}}$: The module reads the CSP. The read access is typically performed before the module uses the CSP.
- $\underline{\mathbf{W} = \text{Write}}$: The module writes the CSP. The write access is typically performed after a CSP is imported into the module, or the module generates a CSP, or the module overwrites an existing CSP.
- $\underline{\mathbf{Z}} = \underline{\text{Zeroize}}$: The module zeroizes the CSP.

Role	Authorized Service	Mode	CSP
User, CO	EEPROM Protect	N/A	N/A
User, CO	FMU disable	N/A	N/A
User, CO	FMU enable	N/A	N/A
User, CO	Seal chip	N/A	N/A
User, CO	Secure download - Establish DH secure tunnel	G R W W Z	DHSK All DSADH keys are read DRNG-State All DSADH keys received from host, written to RAM DRNG-State DSADH public keys received from host
User, CO	Secure download – Traffic encryption / decryption	R	DHSK
User, CO	Self-tests / Show status	N/A	N/A (Self test key material are not CSP's)
User, CO	Set clock modes	N/A	N/A
User, CO	Show status	N/A	N/A
User, CO	User Applet Address Install	N/A	N/A
User, CO	User Test applet address install	N/A	N/A
User, CO	Zeroize	Z Z Z Z	DHSK All DSADH keys DRNG-State RNG Seed key
User, CO	User API EEP address set	N/A	N/A
User, CO	API Key zero address set	N/A	N/A
User, CO	Patch table update	N/A	N/A
User, CO	Patch table read	N/A	N/A

Table 12- CSP Access Rights within Roles & Services

7 Operational Environment

The AE57C1 implements a limited operational environment. FIPS 140-2 Area 6 Operational Environment requirements do not apply to the module in this validation.

8 Security Rules

The AE57C1 design corresponds to the AE57C1 security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 3 module.

- 1. The cryptographic module provides two distinct operator roles: User role, and the Cryptographic-Officer role.
- 2. The cryptographic module provides identity-based authentication.
- 3. The cryptographic module clears previous authentications on power cycle
- 4. When the module has not been placed in a valid role, the operator does not have access to any cryptographic services.
- 5. When the Power up Self-Tests fail the module would be in non operative state.
- 6. The cryptographic module performs the following tests
 - 1. Power up Self-Tests
 - 1. Cryptographic algorithm tests
 - 1. Triple-DES Encrypt and Decrypt Known Answer Tests
 - 2. DSA sign/verify pairwise test
 - 3. SHA-256 Known Answer Test
 - 4. HMAC SHA-1 Known Answer Test
 - 5. RNG Known Answer Test
 - 6. RSA sign/verify
 - 7. RSA sign CRT
 - 8. SHA-1 Known Answer Test
 - 9. Triple-DES CMAC
 - 10. AES Encrypt and Decrypt Known Answer Test
 - 11. Diffie-Hellman tests as per SP800-56A
 - 2. Firmware Integrity Test (Adler 32 bit checksum on all firmware in EEPROM). The firmware masked into ROM is not integrity checked.
 - 2. Critical Functions Tests
 - 1. I/O-2 Pattern test test of pattern on I/O-2 line for valid condition
 - 3. Conditional Self-Tests
 - 1. Continuous Random Number Generator (RNG) test performed on NDRNG and RNG, 64 bits
 - 2. Firmware loaded into the module using the Secure Download service is authenticated using HMAC SHA-256

- 7. The operator commands the module to perform the power-up self-test by cycling power or resetting the module (pulse the /RST pin low).
- 8. Power-up self test is automatically triggered by the first authentication APDU command.
- 9. Data output is inhibited during key generation, self-tests, zeroization, and error states.
- 10. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 11. The module ensures that the seed and seed key inputs to the approved RNG are not equal
- 12. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 13. The module does not support concurrent operators.
- 14. The module does not support a maintenance interface or role.
- 15. The module does not support manual key entry.
- 16. The module does not have any external input/output devices used for entry/output of data.
- 17. The module does not enter or output plaintext CSPs.
- 18. The module does not output intermediate key values.

This section documents the security rules imposed by the vendor.

- 1. The module will support a maximum of 1 individual user(s) per reset.
- 2. Users of this module are to follow the instructions given in the *M2 Quick Start Guide* and the *AE-5 Series User Guidance Manual* to maintain security while distributing and delivering the module.

9 Physical Security Policy

9.1 Physical Security Mechanisms

Passive and active shield layers are implemented on the outer layers of the module. The shields provide opacity by hiding the underlying circuitry, as well as tamper evidence. Active shielding is realized by aluminum lines that are designed to cause a reset if they are cut or short out.

Physical Security	Recommended Frequency of	Inspection/Test Guidance
Mechanisms	Inspection/Test	Details
Die visual inspection	Lot sample or on "stuck reset" failure diagnostics	Visual examination of the die for evidence of passivation and metal 4 removal

Table 13 -	Inspection	/Testing	of Physical	Security	Mechanisms
I upic It	mspection	resting	of I mysical	Decurry	10100mailionio

10 Mitigation of Other Attacks Policy

The module has been designed to mitigate Simple Power Analysis (SPA) and Differential Power Analysis (DPA) for RSA private key operation, which is outside of the scope of FIPS 140-2.

Other Attacks	Mitigation Mechanism	Specific Limitations
SPA/DPA	The module has a random current generation function which will disturb the current consumption of the device while in operation. Also, the module has a random bus cycle function which inserts arbitrary dummy bus cycles as counter measures to mitigate current consumption analysis.	N/A

Table 14 - Mitigation of Other Attacks

11 References

[FIPS 140-2] FIPS Publication 140-2 Security Requirements for Cryptographic Modules

[FIPS 140-2IG] Implementation guidance for FIPS PUB 140-2 and the cryptographic module validation program.

12 Definitions and Acronyms

ATR – Answer to Retest

BOS - BoardID Operating System

DMAC - Direct Memory Access Controller

FMU - Firewall Management Unit

Non-callable functionality – Describes code or functionality in the module which is not currently accessible, but may be used in future modules.

WTD – Watch Dog Timer

13 Annex – Non-callable API Services for Future Use

The AE57C1 module contains user APIs not used in this version, but available for use in future implementations. The code for these algorithms is validated as described in Table 3 above.

- RSA sign/verify/key generation
- DSA sign/key generation
- Triple-DES/AES encryption/decryption
- SHA-1/HMAC-SHA-1/CMAC-Triple-DES message digest algorithms
- MD5/RIPEMD-160 message digest algorithms

In future implementations being submitted for validation, if public and private keypairs are generated, the following security rules apply to conditional self-test.

- 1. If the keys are used to perform an approved key transport method, the public key shall encrypt a plaintext value and the private shall decrypt the resulting ciphertext.
- 2. If the keys are used to perform digital signatures, the consistency of the keys shall be tested by the calculation and verification of a digital signature(Ref: VE09.31.01 VE09.33.01)
- 3. Conditional self tests
 - 1. DSA pairwise consistency test
 - 2. RSA pairwise consistency test

