Mocana Cryptographic Loadable Kernel Module

Software Version 5.1f

Security Policy Document Version 1.14

Mocana Corporation

June 16, 2011

Copyright Mocana Corporation 2011. May be reproduced only in its original entirety [without revision].

TABLE OF CONTENTS

1. MODULE OVERVIEW
2. SECURITY LEVEL
3. MODES OF OPERATION
APPROVED MODE OF OPERATION
4. PORTS AND INTERFACES
5. IDENTIFICATION AND AUTHENTICATION POLICY
ASSUMPTION OF ROLES
6. ACCESS CONTROL POLICY
Roles and Services
7. OPERATIONAL ENVIRONMENT9
8. SECURITY RULES
10. MITIGATION OF OTHER ATTACKS POLICY
11. CRYPTOGRAPHIC OFFICER GUIDANCE
KEY DESTRUCTION SERVICE
12. DEFINITIONS AND ACRONYMS11

1. Module Overview

The Mocana Cryptographic Loadable Kernel Module (Software Version 5.1f) is a software only, multi-chip standalone cryptographic module that runs on a general purpose computer. The purpose of this module is to provide FIPS Approved cryptographic routines to consuming applications via an Application Programming Interface. The physical boundary of the module is the case of the general purpose computer. The logical boundary of the cryptographic module is the single loadable kernel module (LKM) for Linux.

The cryptographic module runs on the following operating environments:

- Debian 4.0 with Linux 2.6 (single-user mode)
- OpenSuse 10.3 with Linux 2.6 (single-user mode)
- Intel/WindRiver Linux v3 (single-user mode)

The cryptographic module is also supported on the following operating environments for which operational testing was not performed:

- Linux 2.6.20 using Wind River v1.4

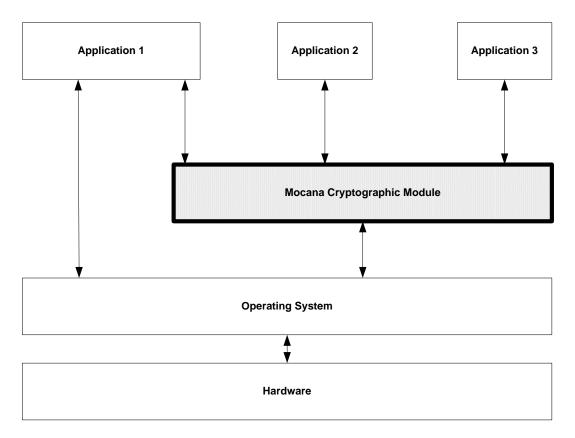


Figure 1 – Cryptographic Module Interface Diagram

Figure 2 – Logical Cryptographic Boundary

2. Security Level

The cryptographic module meets the overall requirements applicable to Security Level 1 of FIPS 140-2.

Security Requirements Section	Level
Cryptographic Module Specification	1
Module Ports and Interfaces	1
Roles, Services and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

 Table 1 - Module Security Level Specification

3. Modes of Operation

Approved mode of operation

The module supports a FIPS Approved mode of operation. The following FIPS Approved algorithms are supported:

- AES (ECB, CBC, CTR and GCM modes; E/D; 128, 192 and 256)
- AES (CCM, CMAC; hash; 128, 192 and 256)
- Triple-DES (3-key and 2-key; TCBC mode; E/D)
- HMAC-SHA-1
- HMAC-SHA-224
- HMAC-SHA-256
- HMAC-SHA-384
- HMAC-SHA-512
- SHA-1
- SHA-224
- SHA-256
- SHA-384
- SHA-512
- FIPS 186-2 RNG

Non-FIPS Approved mode of operation

The module supports the following algorithms for use in the non-Approved mode of operation only:

- DES, Blowfish, ARC2, ARC4, MD2, MD4, MD5, HMAC-MD5, AES EAX, AES XCBC

4. Ports and Interfaces

The physical ports of the module are provided by the general purpose computer on which the module is installed. The logical interfaces are defined as the API of the cryptographic module. The module's API supports the following logical interfaces: data input, data output, control input, and status output.

5. Identification and Authentication Policy

Assumption of roles

The Mocana Cryptographic Loadable Kernel Module shall support two distinct roles (User and Cryptographic Officer). The cryptographic module does not provide any identification or authentication methods of its own. The Cryptographic Officer and the User roles are implicitly assumed based on the service requested.

Role	Type of Authentication	Authentication Data
User	N/A	N/A
Cryptographic Officer	N/A	N/A

Table 2 - Roles and Required Identification and Authentication

6. Access Control Policy

Roles and Services

Role	Authorized Services
User	Self-testsShow Status
Cryptographic-Officer	 AES Encryption AES Decryption AES Message Authentication Code TDES Encryption TDES Decryption SHA-1 SHA-224/256 SHA-384/512 HMAC-SHA-1 Message Authentication Code HMAC-SHA-224/256 Message Authentication Code HMAC-SHA-384/512 Message Authentication Code HMAC-SHA-384/512 Message Authentication Code FIPS 186-2 Random Number Generation Key Destruction

Table 3 – Services Authorized for Roles

Other Services

The cryptographic module supports the following service that does not require an operator to assume an authorized role:

• Self-tests: This service executes the suite of self-tests required by FIPS 140-2. It is invoked by reloading the library into executable memory.

Definition of Critical Security Parameters (CSPs)

The following are CSPs that may be contained in the module:

Кеу	Description/Usage	Generation	Storage	Entry / Output	Destruction
TDES Key	Used during TDES encryption and decryption	Externally.	Temporarily in volatile RAM	Entry: Plaintext Output: N/A	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.
AES Keys	Used during AES encryption, decryption, and CMAC operations	Externally.	Temporarily in volatile RAM	Entry: Plaintext Output: N/A	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.
HMAC Keys	Used during HMAC- SHA-1, 224, 256, 384, 512 operations	Externally.	Temporarily in volatile RAM	Entry: Plaintext Output: N/A	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.

Table 4 - CSP Information

Definition of Public Keys:

The module does not contain any public keys.

Definition of CSPs Modes of Access

Table 5 defines the relationship between access to CSPs and the different module services.

Role		Service	Cryptographic Keys and CSPs Access Operation
C.O.	User	_	
Х		AES Encryption	Use AES Key
Х		AES Decryption	Use AES Key
Х		AES Message Authentication Code	Use AES Key
Х		TDES Encryption	Use TDES Key
Х		TDES Decryption	Use TDES Key
Х		SHA-1	Generate SHA-1 Output; no CSP access
Х		SHA-224/256	Generate SHA-224/256 Output; no CSP access
Х		SHA-384/512	Generate SHA-384/512 Output; no CSP access
Х		HMAC-SHA-1 Message Authentication Code	Use HMAC-SHA-1 Key Generate HMAC-SHA-1 Output
Х		HMAC-SHA- 224/256 Message Authentication Code	Use HMAC-SHA-224/256 Key Generate HMAC-SHA-224/256 Output
Х		HMAC-SHA- 384/512 Message Authentication Code	Use HMAC-SHA-384/512 Key Generate HMAC-SHA-384/512 Output
Х		FIPS 186-2 Random Number Generation	N/A
Х		Key Destruction	Destroy All CSPs
	Х	Show Status	N/A
	Х	Self-Tests	N/A

 Table 5 – CSP Access Rights within Roles & Services

7. Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are applicable because the Mocana Cryptographic Loadable Kernel Module operates in a modifiable operational environment.

The module was operational tested on the following platforms:

- Debian 4.0 with Linux 2.6
- OpenSuse 10.3 with Linux 2.6
- Intel/WindRiver Linux v3

8. Security Rules

The Mocana Cryptographic Loadable Kernel Module design corresponds to the following security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 1 module.

- 1. The cryptographic module shall provide two distinct roles. These are the User role and the Cryptographic Officer role.
- 2. The cryptographic module does not provide any operator authentication.
- 3. The cryptographic module shall encrypt/decrypt message traffic using the Triple-DES or AES algorithms.
- 4. The cryptographic module shall perform the following self-tests:

Power-up Self-Tests:

- Cryptographic Algorithm Tests:
 - AES-ECB, CBC, CCM, CMAC, CTR, GCM Known Answer Test
 - Triple-DES Known Answer Test
 - HMAC-SHA-1 Known Answer Test
 - HMAC-SHA-224 1 Known Answer Test
 - HMAC-SHA-256 Known Answer Test
 - HMAC-SHA-384 Known Answer Test
 - HMAC-SHA-512 Known Answer Test
 - SHA-1 Known Answer Test
 - SHA-224 Known Answer Test
 - SHA-256 Known Answer Test
 - SHA-384 Known Answer Test
 - SHA-512 Known Answer Test
 - FIPS 186-2 RNG Known Answer Test
- Software Integrity Test: HMAC-SHA-1

Critical Functions Tests: N/A

Conditional Tests:

- FIPS 186-2 RNG Continuous Test
- 5. At any time, the operator shall be capable of commanding the module to perform the powerup self-tests by reloading the cryptographic module into memory.
- 6. The cryptographic module is available to perform services only after successfully completing the power-up self-tests.
- 7. Data output shall be inhibited during self-tests, zeroization, and error states.
- 8. Status information shall not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 9. The module shall not support concurrent operators.
- 10. The module does not support key generation.
- 11. The following algorithms shall not be used in the FIPS Approved mode of operation: DES, Blowfish, ARC2, ARC4, MD2, MD4, MD5, HMAC-MD5, AES EAX, and AES XCBC.

9. Physical Security

The FIPS 140-2 Area 5 Physical Security requirements are not applicable because the Mocana Cryptographic Loadable Kernel Module is software only.

10. Mitigation of Other Attacks Policy

The module has not been designed to mitigate any specific attacks outside the scope of FIPS 140-2 requirements.

11. Cryptographic Officer Guidance

The operating systems running the Mocana Cryptographic Loadable Kernel Module must be configured in a single-user mode of operation.

Key Destruction Service

There is a context structure associated with every cryptographic algorithm available in this module. Context structures hold sensitive information such as cryptographic keys. These context structures must be destroyed via respective API calls when the application software no longer needs to use a specific algorithm any more. This API call will zeroize all sensitive information including cryptographic keys before freeing the dynamically allocated memory. See the *Mocana Cryptographic API Reference* for additional information.

12. Definitions and Acronyms

AES	Advanced Encryption Standard
API	Application Program Interface
CO	Cryptographic Officer
CSP	Critical Security Parameter
DES	Data Encryption Standard
DLL	Dynamic Link Library
RNG	Random Number Generator
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
FIPS	Federal Information Processing Standard
HMAC	Keyed-Hash Message Authentication Code
LKM	Loadable Kernel Module
RAM	Random Access Memory
RNG	Random Number Generator
TDES	Triple-DES
SHA	Secure Hash Algorithm
SO	Shared Object