

Non-Proprietary Security Policy
for the FIPS 140-2 Level 2 Validated
Fortress Secure Bridge

Hardware:
ES210: Tactical Mesh Point
ES300: Inline Network Encryptor
ES440: Infrastructure Mesh Point
ES520: Deployable Mesh Point
ES820: Vehicle Mesh Point

Firmware: V5.1, V5.1.1, V5.2.1, V5.2.1.1162, 5.2.2, 5.2.2.1011 and V5.3.0

May, 2012
This security policy of Fortress Technologies, Inc., for the FIPS 140-2 validated Fortress Secure Network units (FSN), defines general rules, regulations, and practices under which the FSN was designed and developed and for its correct operation. These rules and regulations have been and must be followed in all phases of security projects, including the design, development, manufacture service, delivery and distribution, and operation of products.

REVISION HISTORY

$\frac{\text { Rev }}{1.0}$	$\frac{\text { Date }}{\text { Sept, 2009 }}$	$\underline{\text { Author }}$ Bill McIntosh	$\frac{\text { Description }}{\text { Initial Release }}$
2.0	Oct, 2009	Bill McIntosh	Incorporated lab comments
3.0	Nov, 2009	Bill McIntosh	Incorporated lab comments
4.0	Mar, 2010	Tony Margalis	Incorporated NIST comments
5.0	April, 2010	Tony Margalis	Incorporated V5.3.0
6.0	July, 2010	Tony Margalis	Incorporated V5.2.1.1162
7.0	Nov, 2010	Tony Margalis	Incorporated ES440 \& ES820
8.0	Aug, 2011	Michael Chapman	Merged two documents and updated correctly.
9.0	May, 2012	Michael Chapman	Updated for new patch release.
9.1	May, 2012	Michael Chapman	Updated based on lab comments.

Contents CONTENTS 3
LIST OF FIGURES AND TABLES 5
1.0 INTRODUCTION 6
1.1 The Purpose of this Document 6
1.2 Products 6
1.3 Changes from 5.2.1.1162 to 5.2.2 Software Release 6
1.4 Changes from 5.2.2 to 5.2.2.1011 Software Release 7
1.5 Related Documents 7
1.6 Glossary of TERMS 8
1.7 FUnCTIONAL DESCRIPTION 10
1.8 OVERALL AND INDIVIDUAL FIPS 140-2 LEVELS 12
1.9 Mobile Security Protocol (MSP) 12
1.10 Robust Security Network (RSN) (ES210, ES440, ES520, ES820) 13
1.11 Secure Sockets Layer (SSL) 13
1.12 Secure Shell 13
1.13 SECURE CONFIGURATION PROPAGATION (SCP) - V5.1.1 ONLY 13
1.14 Management 13
1.15 Algorithms. 14
1.16 GUI VIEWS 15
2.0 IDENTIFICATION AND AUTHENTICATION POLICY 16
2.1 Roles. 16
2.2 SERVICES 16
2.3 AUTHENTICATION AND AUTHENTICATION DATA 17
2.3.1 Authentication Methods 17
2.3.2 Authentication Server Methods. 18
2.3.3 Authentication Strength 18
2.3.4 Administrative Accounts 19
3.0 CRYPTOGRAPHIC KEYS AND CSP 20
3.1 FOR MSP 20
3.2 For RSN (Available in the ES210, ES440, ES520, ES820) 21
3.3 FOR SSL AND SSH 23
3.4 CRITICAL SECURITY PARAMETERS 24
4.0 ACCESS CONTROL POLICY 26
4.1 Roles each Service is authorized to Perform 26
4.2 Roles, Services and Access to Keys or CSPs 26
4.3 Zeroization 27
4.4 UPGRADES 28
4.4.1 Introduction 28
4.4.2 Selecting the Firmware Image 28
5.0 PHYSICAL SECURITY POLICY 29
5.1 Hardware 29
5.2 DISTRIBUTION AND DELIVERY. 29
5.3 Tamper Evidence Application 29
5.4 TAMPER Evidence Inspections 29
6.0 FIRMWARE SECURITY 33
7.0 OPERATING SYSTEM SECURITY 33
8.0 SELF TESTS 34
9.0 SECURITY POLICY FOR MITIGATION OF OTHER ATTACKS POLICY 35
10.0 EMI/EMC. 35
11.0 CUSTOMER SECURITY POLICY ISSUES 35
12.0 FIPS MODE 35
12.1 FIPS Mode Requirements 36
12.2 Alternating BYPASS Mode 36
13.0 MAINTENANCE ISSUES 37
List of Figures and Tables
Figure 1: Example Configurations of an FSN Network 10
Figure 2: ES210 with Tamper Evidence Tape 30
Figure 3: ES300 with Blue Blocker 31
Figure 4: ES440 Tamper Evidence 31
Figure 5: ES520V1 with Blue Blocker 32
Figure 6: ES520V2 with Blue Blocker 32
Figure 7: ES820 Tamper Evidence 33
Table 1: Firmware to Hardware hierarchy 6
Table 2: Physical Port Difference Listing 11
Table 3: Individual FIPS Level 12
Table 4: Protocols and Features Usage 13
Table 5: FIPS Approved Algorithms 14
Table 6: Non-FIPS Approved Algorithms 15
Table 7: Authentication Data 17
Table 8: Probability of guessing the authentication data 18
Table 9: MSP Keys 20
Table 10: RSN Keys (ES210, ES440, ES520V1 and V2, ES820) 21
Table 11: SSL and SSH Crypto Keys 23
Table 12: Other Keys and Critical Security Parameters 24
Table 13: Roles each Service is authorized to Perform 26
Table 14: Roles who have Access to Keys or CSPs 26
Table 15: Defaults and Zeroization 28
Table 16: Recommended Physical Security Activities 30
Table 17: Self Tests 34

1.0 Introduction

1.1 The Purpose of this Document

This security policy defines all FIPS 140-2 level 2 security rules under which the Fortress Secure Network units (FSN) complies with and enforces. The FSN is a multi-chip standalone module.

1.2 Products

The current FSN products this Security Policy is relevant to are identified as:

Hardware FSN Modules:

ES210: Tactical Mesh Point
ES300: Inline Network Encryptor
ES440: Infrastructure Mesh Point
ES520(V1 \& V2): Deployable Mesh Point
ES820: Vehicle Mesh Point
Firmware Version: 5.1, 5.1.1, 5.2.1, 5.2.1.1162, 5.2.2, 5.2.2.1011 and 5.3.0
Table 1 shows the FSN Firmware to Hardware hierarchy.

Table 1: Firmware to Hardware hierarchy

Hardwar e Module	Firmware V5.1	Firmware V5.1.1	Firmware V5.2.1	Firmware V5.2.1.1162	Firmware V5.2.2	Firmware V5.2.2.101 $\mathbf{1}$	Firmware V5.3.0
ES210			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ES300	\checkmark	\checkmark					
ES440							\checkmark
ES520V1	\checkmark						
ES520V2	\checkmark						
ES820							\checkmark

1.3 Changes from 5.2.1.1162 to 5.2.2 Software Release

- Modify DA autoconfig to set 802.11b band for ES520 Radio 1.
- Atheros Legacy driver - Always send Probe Response regardless of received rate set in Probe Requests.
- Restrict 802.11b band setting to Infrastructure mode only (no WDS-enabled BSS over 802.11b).
- Fix GUI bug in Add BSS page where bad multicast rate was set on 802.11a band.
- Expose new 802.11 b radio band setting in CLI and GUI for 2.4 GHz radios.
- Defects 403659 and 354219 legacy driver panic, Radio Manager "vicious cycle" when all available channels are exhausted and one or more radios are disabled, and avoid same SSID across multiple BSSs during BSS edit).
- Correct SSLCipherSuite in httpd.conf. These would only happen if someone had a badly configured browser.

1.4 Changes from 5.2.2 to 5.2.2.1011 Software Release

- GTK settings defaults - Add a new comprehensive DBP converter (167) to ensure that on upgrade from earlier 5.2.x releases, BSS GTK strict rekey is disabled, GTK rekeying is disabled, and GMK rekeying is set to 30 minutes. Modify schema file to ensure any new BSSs have these defaults whether created by DA auto-configuration, or CLI/GUI BSS controls.
- Reset BSS rate defaults during band change to prevent artificially low TX rates (11 Mbps vs. 54 Mbps) after changing radio band from $802.11 \mathrm{~b} \rightarrow 802.11 \mathrm{~g}$.
- Modifications to ensure ni reference is properly decremented on RX/TX errors for AES/CCMP frames.
- hostapd fix for adding timestamps to debug messages logged to /var/log/svc.log.
- Log rotate fix for Services Manager log file (/var/log/svc. log).

1.5 Related Documents

\# Document Name
Date
1 IEEE Standard for
12 June 2007
Information technology-
Telecommunications and information
exchange between systems-
Local and metropolitan area networks-
Specific requirements
Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications

1.6 Glossary of Terms

- AES (Advanced Encryption Standard): also known as Rijndael, is a block cipher adopted as an encryption standard by the U.S. government.
- ANSI (American National Standards Institute): a private non-profit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States
- CBC (cipher-block chaining): A mode of operation where each block of plaintext is XORed with the previous ciphertext block before being encrypted. This way, each ciphertext block is dependent on all plaintext blocks processed up to that point. Also, to make each message unique, an initialization vector must be used in the first block.
- Crypto Officer (Crypto Officer): an operator or process (subject), acting on behalf of the operator, performing cryptographic initialization or management functions.
- Diffie-Hellman: is a cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure communications channel. This key can then be used to encrypt subsequent communications using a symmetric key cipher.
- ECB (Electronic codebook): This is the simplest of the encryption modes. The message is divided into blocks and each block is encrypted separately. The disadvantage of this method is that identical plaintext blocks are encrypted into identical ciphertext blocks; thus, it does not hide data patterns well. In some senses, it doesn't provide serious message confidentiality, and it is not recommended for use in cryptographic protocols at all.
- EAP (Extensible Authentication Protocol): is a universal authentication framework frequently used in wireless networks and Point-to-Point connections.
- EAP-TLS: is an IETF open standard that is the original standard wireless LAN EAP authentication protocol, and is well-supported among wireless vendors.
- Hard Key: A key that is generated using information that is static.
- HMAC (Hash Message Authentication Code): a keyed Hash Message Authentication Code is a type of message authentication code (MAC) calculated using a specific algorithm involving a cryptographic hash function in combination with a secret key.
- HTTPS: Hypertext Transfer Protocol over Secure Socket Layer
- IEEE 802.11: is a set of standards for wireless local area network (WLAN) computer communication, developed by the IEEE LAN/MAN Standards Committee (IEEE 802) in the 5 GHz and 2.4 GHz public spectrum bands.
- IEEE 802.11i: Is an amendment to the IEEE 802.11 standard specifying security mechanisms for wireless networks.
- MAC (Message Authentication Code): a short piece of information used to authenticate a message.
- MIC (Message Integrity code): is a short piece of information used to check the integrity of a message. This is the same as a MAC. Normally in communications this would be called a MAC (Message Authentication Code) however since the term MAC is used in IEEE 802 products to mean the physical address of a Network Interface Card the term MIC was created.
- Mode: In cryptography, a block cipher operates on blocks of fixed length, often 64 or 128 bits. Because messages may be of any length, and because encrypting the same plaintext under the same key always produces the same
output (as described in the ECB), several modes of operation have been invented which allow block ciphers to provide confidentiality for messages of arbitrary length.
- Multi-factor Authentication ${ }^{\text {TM }}$: The FSN guards the network against illicit access by checking three levels of access credentials before allowing a connection.
o Network authentication mandates that connecting devices use the correct shared identifier for the network. The Fortress Security System requires all members of a secure network to authenticate with the correct Access ID.
o Device authentication mandates that a connecting device is individually recognized on the network through its unique device identifier. The Fortress Security System requires each device to authenticate on the secure network with the unique Device ID generated for that device.
o User authentication requires the user of a connecting device to enter a recognized user name and valid credentials, a password, for example, or a digital certificate. The Fortress Security System can authenticate users locally
- Nonce: stands for number used once. It is often a random or pseudo-random number issued in an authentication protocol to ensure that old communications cannot be reused in replay attacks.
- PMK (Pairwise Master Key): an EAP exchange will provide the shared secret key called a PMK (Pairwise Master Key) in IEEE 802.11 security. This key is designed to last the entire session and should be exposed as little as possible.
- PRNG (pseudorandom number generator): is an algorithm for generating a sequence of numbers that approximates the properties of random numbers. The sequence is not truly random in that it is completely determined by a relatively small set of initial values, called the PRNG's state.
- RNG (Random Number Generator): is a computational or physical device designed to generate a sequence of numbers or symbols that lack any pattern, i.e. appear random.
- PSK (Pre Shared Key): is a shared secret which was previously shared between the two parties using some secure channel before it needs to be used.
- PTK (Pairwise Transient Key): A Key generated by concatenating the following attributes in IEEE 802.11 security: PMK, AP nonce (ANonce), STA nonce (SNonce), AP MAC address and STA MAC address.. The product is then put through a cryptographic hash function.
- SHA (Secure Hash Algorithm): these are a set of cryptographic hash functions designed by the National Security Agency (NSA) and published by the NIST as a U.S. Federal Information Processing Standard.
- TRNG (True Random Number Generator): This is the Fortress implementation of a non-deterministic Random Number Generator. The design of the TRNG contains two free-running oscillators, a fast and slow one. Neither is intentionally related in any way, and indeed the relationship changes with physical affects. The basic principle of operation is that the slow oscillator samples the fast one, and it is the thermal jitter effects present on the slow oscillator which are "measured" as the sources of random entropy. The TRNG is used to generate real cryptographically strong random numbers to use as seeds into the PRNG. The PRNG are started from this arbitrary starting state, using the TRNG 'random' seed state.
- TLS (Transport Layer Security): Along with its predecessor the Secure Sockets Layer (SSL) are cryptographic protocols that provide secure communications on the Internet for such things as web browsing, e-mail, Internet faxing, instant messaging and other data transfers. TLS in this module is implemented by using SSL 3.1.
- WPA2 (Wireless Protected Access 2): The advanced protocol, certified through Wi-Fi Alliance's WPA2 program, implements the mandatory elements of 802.11i. In particular, it introduces a new AES-based algorithm, CCMP, which is considered fully secure.
- ANSI X9.31 PRNG: This is a cryptographically secure pseudo-random number generator with properties that make it suitable for use in cryptography.

Figure 1: Example Configurations of an FSN Network

1.7 Functional Description

The Fortress Secure Network units (FSN) is an all-in-one network access device that implements the strongest security commercially available today. The different models can have different number types of interfaces and enclosures however the security functionality is exactly the same. The FSN can serve as a wireless bridge (ES210, ES440, ES520, ES820), a WLAN access point (ES210, ES440, ES520, ES820), an eight-port LAN switch (ES520), a two port LAN bridge (ES300) while it encrypts traffic and provides Multi-factor Authentication ${ }^{\text {TM }}$ for devices on the network it secures.

The ES520 V1 (i.e. legacy unit) has one 48V power input and the newer ES520 V2 has
one 48 V power input along with a variable 12/24 power input connector. The ES210, ES300, ES440 and ES820 allow for variable 7/30V power. The ES520 V1 has 2 unused USB ports and the ES440, ES520V2 and ES820 have 1 unused USB port. USB ports are for future development and are not functional at this time.

The hardware enclosures are all rugged, compact chassis as shown in the network drawings above. The FSN can be used indoors or outdoors. The FSN can be quickly and transparently integrated into an existing network to provide enhanced FIPS 140-2 security.

The LED's indicate the FSN is booting or operating normally and when clear text is in the encrypted zone. For the ES210 and ES520 V1\&V2 there is are LEDs to indicate when radio(s) are on/off or passing traffic or when a firmware error occurs. For the ES210 only there is an LED indicating the battery condition.
Any of the interfaces can be used within a Clear Text Zone ${ }^{1}$ or Encrypted Zones ${ }^{2}$. The unit can be powered with standard AC current (using a AC/DC Converter), as an Ethernet powered device (PD) through its WAN port which supports power over Ethernet (PoE) or with a battery (ES210). The FSN can accept secure or unsecured connections from a device (i.e. laptops or handheld) by means of an Ethernet interface (all models) or by its low powered WAN interface (ES210, ES440, ES520, ES820). The FSN can be wirelessly networked together by using its high power Ethernet interface or it WAN Ethernet interface (ES440, ES520, ES820).

The FSN in v5.3.0 can create its own wireless mesh network. This allows the coverage area to be extended with each additional node that is meshed together. This also allows the network to be more robust with each additional node added to the network.

The FSN uses two methods to protect and secure End Users data. They are the Fortress' proprietary Mobile Security Protocol (MSP) available on all models or IEEE 802.11 security recommendations referred to as Robust Security Network (RSN) available on the ES210, ES440, ES520 and ES820. Both of these methods can protect IEEE802.11 wireless network communication while MSP can also protect Ethernet communication. It also uses the SSL protocol to protect HTTPS connections into the GUI or SSH connections (SSH use the same cryptographic algorithms as SSL) into the CLI.

Table 2: Physical Port Difference Listing

Port/Product	ES210	ES300	ES440	ES520	ES520	ES820

[^0]| | | | | $V 1$ | V2 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ethernet Port | 1 | 1 | 1 | 8 | 8 | 1 |
| Wan Port | 1 | 1 | 1 | 1 | 1 | 1 |
| WLAN IEEE 802.11a/b/g Port | 1 | None | 4 | 1 | 1 | 2 |
| GPS Antenna Port | 1 | None | None | None | None | None |
| USB Ports (Not Used) | None | 1 | 1 | 2 | 1 | 1 |
| Console Port | 1-3 pin | 1-RJ48 | 1-RJ48 | 1-RJ48 | 1-RJ48 | 1 |
| Serial Port | None | 1-RJ48 | None | None | 1-RJ48 | None |
| LED | 4 | 4 | 8 | 8 | 8 | 6 |
| Pushbuttons | 3 | 3 | 1 | 3 | 3 | 1 |
| Static DC Power Port | None | None | None | 48 V DC | 48 V DC | None |
| Selectable DC Power Port | None | None | None | None | $\begin{gathered} 12 \mathrm{v} / 24 \mathrm{v} / 4 \\ 8 \mathrm{v} \end{gathered}$ | None |
| Variable DC Power Port Input | 7-30 Volt | 7-30 Volt | 7-30 Volt | None | None | 7-30 Volt |
| Internal Battery | 1 | None | None | None | None | None |

1.8 Overall and Individual FIPS 140-2 Levels

This product has an overall FIPS 140-2 certification of level 2.
Table 3: Individual FIPS Level

RIPS Section	Level
Cryptographic Module Specification	$\mathbf{2}$
Cryptographic Module Ports and Interfaces	$\mathbf{2}$
Roles, Services, and Authentication	$\mathbf{3}$
Finite State Model	$\mathbf{2}$
Physical Security	$\mathbf{2}$
Operational Environment	$\mathbf{2}$
Cryptographic Key Management	$\mathbf{2}$
EMI/EMC	$\mathbf{2}$
Self-Tests	$\mathbf{2}$
Design Assurance	$\mathbf{2}$
Mitigation of Other Attacks	$\mathbf{2}$

1.9 Mobile Security Protocol (MSP)

MSP is used by all FSNs to secure connections between an End User and the FSN. MSP uses the Diffie-Hellman (D-H) or Elliptic Curve Cryptography Diffie-Hellman (ECDH) for key generation and agreement, AES-CBC for strong encryption and Multifactor Authentication for added protection for clients. It protects both users Peer-to-Peer packets and Multicast/Broadcast packets.

FSN supports the National Security Agency Suite B recommendations using the 384 bit prime-modulus curve.

Once it's installed and configured, operation is automatic, requiring no or little administrator intervention as it protects data transmitted on WLANs and between WLAN devices and the wired LAN.

1.10 Robust Security Network (RSN) (ES210, ES440, ES520, ES820)

RSN is used to secure connections between an End User and the FSN. RSN is a component of WPA2 that implements only the FIPS capable portions of the IEEE 802.11 security recommendations. It uses the AES-CCM (CCMP) IEEE 802.11 security recommendations which utilize two methods to acquire a master key: one method uses a pre-shared Master Key that is configured by the Crypto Officer (Crypto Officer) and the other gets the Master Key from an EAP-TLS session. If the latter is used a Pair-wise Master Key is generated between the Client and Authentication Server (AS). The AS sends this to the FSN. A Pairwise Transient Key will be generated between the client and the FSN. A four way handshake is used to guarantee that both the Client and the FSN will have the appropriate information and will generate the same Pairwise Transient Key.

1.11 Secure Sockets Layer (SSL)

The SSL protocol is used by all FSNs to secure HTTPS connections into the FSN GUI that a Crypto Officer can use for administration. The FSN uses the SSL version 3.1 as a library. SSL provides confidentiality, integrity, and message digest services. OpenSSL toolkit version 1.1.1 with patch was used in the creation of the SSL library.

1.12 Secure Shell

The SSH protocol is used by all FSNs to secure remote terminal connections into the FSN that a Crypto Officer can use for administration. The SSH protocol uses the same cryptographic algorithms as SSL.

1.13 Secure Configuration Propagation (SCP) - V5.1.1 only

In a mesh network of FSNs, a user can designate one of them as the network's Secure Configuration Propagation (SCP) master Bridge and then use the SCP master to automatically propagate configuration changes to the rest of the network Bridges.

1.14 Management

The FSN can be managed by the following:

- Internet browser through the Graphical User Interface (GUI);
- A directly connected terminal plugged into the Console Port through the Command Line Interface (CLI);
- A remote workstation using SSH through the CLI;
- using SNMP Version 3 Network Station or Utility.

Table 4: Protocols and Features Usage

Port/Product	ES300	ES210, ES440, ES520 V1, ES520V2, ES820
Mobile Secure Protocol	\checkmark	$\sqrt{ }$

| Robust Secure Network | No | \checkmark |
| :--- | :---: | :---: | :---: |
| Secure Socket Layer | \checkmark | \checkmark |
| Secure SHell | \checkmark | \checkmark |
| Secure Configuration Propagation | \checkmark | \checkmark |
| Graphic User Interface | \checkmark | \checkmark |
| Command Line Interface | \checkmark | \checkmark |
| SNMP | \checkmark | \checkmark |

1.15 Algorithms

This firmware contains four different security methods MSP, SSL and SSH for all FSN and the RSN for the FSN. All hardware versions use all algorithms listed below. MSP and RSN will secure End User data while SSL and SSH will secure Crypto Officer connections to the FSN. They all use the algorithms as detailed in Table 5. The nonFIPS algorithms are detailed in Table 6.
The AMD Alchemy will execute the code containing the algorithms that are mainly written in the C or C++ programming language. The FPGA will have loaded a binary package that will set up the chip for the algorithm processing. This will define the makeup of the FPGA and was designed using a binary language called VHDL.

Table 5: FIPS Approved Algorithms

Algorithm	Cert \#	Implementation	Operational Environment
AES	698	Fortress SWAB FW Algorithms	AMD Alchemy MIPS Processor
AES	694	Fortress SWAB FPGA Algorithms	Xilinx Spartan FPGA

| Algorithm | Cert \# | Implementation | Operational Environment |
| :--- | :--- | :--- | :--- | :--- |
| HMAC | 367 | Fortress SWAB 5.0 SSL | AMD Alchemy MIPS
 Processor |
| ANSI X9.31
 PRNG | 409 | Fortress SWAB FW Algorithms | AMD Alchemy MIPS
 Processor |
| ANSI X9.31
 PRNG | 406 | Fortress SWAB FPGA Algorithms | Xilinx Spartan FPGA |
| ANSI X9.31
 PRNG | 402 | Fortress SWAB 5.0 SSL | AMD Alchemy MIPS
 Processor |

Table 6: Non-FIPS Approved Algorithms

Algorithm	Notes
Diffie-Hellman	Diffie-Hellman (key agreement; key establishment methodology provides 80 or 112 bits of encryption strength; non-compliant less than 80-bits of encryption strength); EC Diffie-Hellman (key agreement; key establishment methodology provides 192 bits of encryption strength)
MD5	Used within SSL to create the "Key Block", The key block is the repository for information that will be used for encryption key generation part of TLS Key Derivation Function.
Hardware RNG	True Random Number Generator used to generate seeds for the ANSI X9.31 PRNG

1.16 GUI Views

This firmware contains three GUI Views: Advanced View, Simple View or Legacy View.
When firmware is installed on a ES210, ES300, ES440, ES520V2 or an ES820 platform it will be able to use either the Advanced View and Simple View. If the firmware is installed on an ES520V1 platform it will automatically use the Legacy View.

The Advanced View or Simple View can be toggled through the GUI. The Advance View contains configuring, monitoring and maintaining parameters. The Simple View only contains a subset of these parameters.
The Legacy View contains configuring, monitoring and maintaining parameters that closely resemble Fortress' legacy products.
The code is exactly the same and all security functions are the same in all versions.

2.0 Identification and Authentication Policy

2.1 Roles

There are five Crypto Officer Roles.

- Crypto Officer Roles
o Advanced and Simple Views:
- Log Viewer: account users can view only high-level system health indicators and only those log messages unrelated to configuration changes.
- Maintenance ${ }^{4}$: account users can view complete system and configuration information and perform a few administrative functions but cannot make configuration changes.
- Administrator: the main manager/administrator of the FSN.
o Legacy View (ES520 v1 only)
- Operator: account users can view complete system and configuration information and perform a few administrative functions but cannot make configuration changes.
- csscaisi: the main manager/administrator of the FSN.
- User Roles
- MSP End User: This role will utilize either a MSP secure client loaded on a workstation or a MSP secure controller like the FSN to establish a secure connection over an untrusted network.
- RSN End User: (ES210, ES440, ES520, ES820) This role will utilize either a RSN (802.11i) secure client loaded on a workstation or a RSN (802.11i) secure controller like a VPN to establish a secure connection over an untrusted network.

2.2 Services

The following list summarizes the services that are provided by the FSN both in FIPS mode and Non-FIPS mode:

- Encryption: use the encryption services of the FSN;
- Show Status: observe status parameters of the FSN;
- View Log: view log messages;
- Write Configuration: change parameters in the FSN including changing the FIPS Mode, Bypass Setting, Zeroization and setting passwords;
- Read Configuration: read parameters in the FSN;
- Diagnostic: execute some network diagnostic and self tests services of the FSN;
- Upgrade: Upgrade the unit with a new release of firmware.

[^1]
2.3 Authentication and Authentication Data

All roles must be authenticated before they can use module services. The module uses identity based authentication. This can be processed either internally by the module or externally using an EAP authentication server.

2.3.1 Authentication Methods

All roles must be authenticated if they use FSN services. For Crypto Officer authentication, a User Name and Password must be presented. The module forces the Crypto-Officer to change the default password at first login. The FSN will not accept new passwords that do not meet specified requirements. A Crypto Officer can utilize four secure communication methods to access the FSN, They are:

- Secure SSL connection;
- Directly connected terminal;
- Secure SSH connection;
- SNMP.

SNMP is authenticated since it's enabled and configured within an already authenticated Secure SSL, Direct Connect or Secure SSH connection.

A Crypto Officer can apply up to nine rules for administrative passwords that allow stronger passwords. This can be reviewed in the User Guide. Both modules having the same Access ID authenticate the MSP user. The RSN End User will use either a Shared Secret or will be authenticated by the use of an external EAP Server (i.e. Radius). The Authentication Data for each of these roles are shown in Table 7.

Table 7: Authentication Data

Operator	Connect Authentication Using	Authentication Data	
Log Viewer	Password	Secure SSL	The possible character space is 91 characters and the password length is between 8 and 32 characters with the default being 15 characters.
Maintenance	Password	Secure SSL	The possible character space is 91 characters and the password length is between 8 and 32 characters with the default being 15 characters.
Administrator	Password	Secure SSL	The possible character space is 91 characters and the password length is between 8 and 32 characters with the default being 15 characters.
operator	Direct	Connect	Secure SSH

| Operator | Type of
 Authentication | Using | Authentication Data |
| :---: | :---: | :---: | :--- | :--- |
| MSP End User | Access ID | MSP | characters and the password length is
 between 8 and 32 characters with the
 default being 15 characters. |
| RSN End User | Master Key or
 Secret | RSN | 16-byte Access ID. (FIPS Mode) |

2.3.2 Authentication Server Methods

The Crypto Officer can also be authenticated by using an Authentication Server. The Authentication Server can be the one built into the FSN, one on another FSN or it can be an external Authentication Server.

The service(s) available are determined by the FSN's configuration for authentication services as determined by the settings in Authentication Servers and/or Local Authentication.

To use an external server (RADIUS) for administrator authentication, it must be configured to use Fortress's Vendor-Specific Attributes (see User Guide for more information).

2.3.3 Authentication Strength

The probability of guessing the authentication data is shown in Table 8.
Table 8: Probability of guessing the authentication data

Role	Probability of guessing the authentication data	Probability of guessing the authentication data with multiple attempts
Log Viewer	Between $1 /(1+91)^{\wedge} 8$ and $1 /(1+91)^{\wedge} 32$.	The FSN requires that all variants of the Crypto Officer manually enter the password. Manual entry limits the number of attempts to eight per minute, therefore, the probability would be between one in $\left(2^{\wedge} 3\right) /\left(2^{\wedge} 62\right)^{\wedge} 8$ and one in $\left(2^{\wedge} 3\right) /\left(2^{\wedge} 92\right)^{\wedge} 32$ which is less than 1 in $10^{\wedge} 5$. The maximum number of login attempts can be set between 1 and 9 and lockout duration between 0 and 60 minutes.
Maintenance		
Administrator		
operator		
cssCAISI		
MSP End User	Either $1 /(1+1)^{\wedge} 64$ or $1 /(1+1)^{\wedge} 128$ for a 8 or 16 - byte Access ID respectively.	User authentication attempts are limited by FLASH read/write speed to less than $16.7 \mathrm{MB} / \mathrm{sec}$. For a 16 Byte Access ID this represents $120 \times 10^{\wedge} 6$ password attempts per minute.
	16-byte used in FIPS Mode	The $2^{\wedge} 64 / 120 \times 10^{\wedge} 6 ~ \sim=2^{\wedge} 64 / 2^{\wedge} 7 \times 2^{\wedge} 20$ or a probability one in $2^{\wedge} 37$ which is better than 1 in $10^{\wedge} 5$.
RSN End User	$1 /(1+1)^{\wedge} 128$.	Shared Secret: User authentication attempts are limited by FLASH read/write speed to less than $16.7 \mathrm{MB} / \mathrm{sec}$. For a 16 Byte Shared Secret this represents $120 \times 10^{\wedge} 6$ attempts per minute.
		The $2^{\wedge} 64 / 120 \times 10^{\wedge} 6 \sim=2^{\wedge} 64 / 2^{\wedge} 7 \times 2^{\wedge} 20$ or a probability one in $2^{\wedge} 37$ which is less than 1 in $10^{\wedge} 5$.

2.3.4 Administrative Accounts

The FSN uses identity based authentication. The identities are configured by adding administrative accounts to a Role. These are configured through the GUI. For instance the product can have multiple administrative accounts each having a unique Username and Password and each being assigned to a particular role (i.e., Log Viewer, Maintenance or Administrator). When a user is logged into the FSN he will have all the rights of the Role he has been assigned.

3.0 Cryptographic Keys and CSP

3.1 For MSP

The FSN contains a number of cryptographic keys and Critical Security Parameters (CSP) for MSP as shown in Table 9. All keys are generated using FIPS approved algorithms and methods as defined in SP800-56. All the keys are kept in RAM and never stored to disk

Table 9: MSP Keys

Key	Key Type	Generation	Use
Module Secret Key (Hardkey)	AES - 128, 192, or 256 bit.	Uses Manually entered AccessID as material. Not a valid FIPS key.	Used to mask static Diffie-Hellman public key requests and responses over the wire.
Static Private Key	Diffie-Hellman: 1024 or 2048 bits ECDH: 384 bits	Automatically Generated using the ANSI X9.31 PRNG.	Along with received Diffie-Hellman Static Public Key from partner is used to generate the Static Secret Encryption Key
Static Public Key	Diffie-Hellman:1024 or 2048 bits ECDH: 384 bits	Automatically Generated using Diffie Hellman or ECDH.	Sent to communicating Module in a packet masked with the MSK (Hardkey)
Static Secret Encryption Key	AES - 128,192, or 256 bit.	Automatically Generated using Diffie Hellman or ECDH.	Used to encrypt dynamic public key requests and responses over the wire.
Dynamic Private Key	Diffie-Hellman: 1024 or 2048 bits ECDH: 384 bits	Automatically Generated using Diffie Hellman or ECDH.	Along with received Dynamic Public Key from partner is used to generate the Dynamic Secret Encryption Key
Dynamic Public Key	Diffie-Hellman: 1024 or 2048 bits ECDH: 384 bits	Automatically Generated using Diffie Hellman or ECDH.	Sent to communicating Module in a packet encrypted with the Static Secret Encryption Key
Dynamic Secret Encryption Key	AES - 128, 192, or 256 bit.	Automatically Generated using Diffie Hellman or ECDH.	Used to encrypt all packets between two communicating Modules over the wire
Static Group Key (SGK) Uses Manually entered AccessID as a seed.	AES - 128, 192, or 256 bit.	Generated using the AccessID and a SALT constant to seed the Approved RNG.	Used to mask user-data frames until a DGK becomes active or the unicast DKey is computed.

3.2 For RSN (Available in the ES210, ES440, ES520, ES820)

An RSN or 802.11i wireless secure LAN can use either a PreShared Secret Key (PSK) or a EAP generated master key. If a PSK is used each peer must configure the correct hex value. This PSK becomes the Master Key. If the EAP method is used the Master Key is generate through the EAP process and it's correctly given to both the Client and FSN.

RSN are FIPS capable portions of the the IEEE 802.11 Specification for wireless LAN networks. The keys for RSN are shown in Table 10.
All keys are keep in RAM and never stored on disk.
Table 10: RSN Keys (ES210, ES440, ES520V1 and V2, ES820)

Key	Key Type	Generation	Use
Pairwise Master Key (PMK)	256 bit key.	Using the key generation procedure as defined in the IEEE 802.11 specification. Pre-shared key: a) Electronically entered as plaintext over a direct connection to the console port b) Electronically entered encrypted over a network connection via SSH or SSL EAP Method: PMK is created using key material generated during authentication, which is then transferred to FSN using RADIUS protocol.	Used to derive pairwise transient key (PTK).
Pairwise Transient Key (PTK)	For AES-CCMP, 384 bit key comprised of three 128 bit keys: Data Encryption/Integrity key, EAPOL-Key Encryption key, and EAPOL-Key Integrity key.	Using the key generation procedure as defined in the IEEE 802.11^{5} specification.	Used to protect link between end user station and FSN.
Group Master Key (GMK)	256 bit key.	Using the key generation procedure as defined in the IEEE 802.11 specification.	Used to derive group transient key (GTK).
Group Transient Key (GTK)	For RSN/TKIP and WPA, 256 bit key comprised of two 128 bit keys: Group Encryption key and Group Integrity key. For AES-CCMP, 128 bit key comprised of Group Encryption/Integrity key.	Using the key generation procedure as defined in the IEEE 802.11 specification.	Used to protect multicast and broadcast (group) messages sent from FSN to associated end user station.
PRF	HMAC 80-bit	ANSI X9.31 RNG	IEEE802.11i HMAC SHA-1

[^2]
3.3 For SSL and SSH

The SSL protocol is used to establish a FIPS secured connection from a management workstation running a standard Internet Browser to either the FSN GUI or the CLI. The SSH protocol uses the cryptographic algorithms of the SSL protocol. The cryptographic keys for SSL and SSH are shown in Table 11. All keys are kept in RAM and never stored on disk.

Table 11: SSL and SSH Crypto Keys

Key	Key Type	Generation	Use
RSA Private Key SSL	RSA Key 2048 bit	Automatically Generated	Used to encrypted data. Used to decrypt data for signature purposes.
RSA Public Key SSL	RSA Key 2048 bits	Automatically Generated	Used to decrypt data Used to encrypt data for signature purposes
DH Private Key SSL \& SSH	Diffie-Hellman Key 1024 bits	Seed is automatically pulled from ANSI X9.31 PRNG.	Used along to calculate the PreMaster Secret from DH
DH Public Key SSL \& SSH	Diffie-Hellman Key	The DH Private Key is fed to the Diffie-Hellman function to automatically generate this key	Used along to calculate the PreMaster Secret from DH
Key Block SSL \& SSH	Generic Key Information	Automatically Generated by SSL Protocol	The Key Block is the keying material that is generated for the AES encryption key or the RSA public/private key pair will taken from.
Secret Encryption Key (SSH and SSL Session Key)	$\begin{gathered} \text { AES Key } 128,192, \\ 256 \text { bit } \end{gathered}$	Automatically taken from the Key Block depending on Key Size	Encrypt Data Packets

3.4 Critical Security Parameters

There are other critical security parameters that present in the FSN as shown in Table 12. The Pre-Master Secret from RSA and DH and the Master Secret for DH are kept in RAM everything is in Non-Volatile Storage.

Table 12: Other Keys and Critical Security Parameters

CSP	Type	Generation	Use
Access ID 32 Hex Digits	Seed	Generated by the Approved RNG when in FIPS Mode.	MSK, SGK \& privD-H Group key component and used for authentication
Pre-Master Secret (S) from RSA	Secret	A 48 byte secret is generated by the client.	The client will send this data encrypted with the RSA Public Key to the FSN and it will be used to generate the Master Secret,
Pre-Master Secret (S) from DH	Diffie-Hellman Key	Diffie-Hellman: Both Client and Server	Used to develop the Master Secret
Master Secret	Secret	By TLS Protocol	This is the key that is used to encrypt the Data
Log Viewer Password	Password	8 to 16 Characters, entered by the Crypto Officer	To authenticate the Log View
Maintenance or operator Password	Password	8 to 16 Characters, entered by the Crypto Officer	To authenticate the operator
Administrator or csscaisi Password	Password	8 to 16 Characters, entered by the Crypto Officer	To authenticate the Maintenance
SNMPV3 Authentication Pass phrase	Pass phrase	8 to 64 Characters	To authenticate the use of SNMPV3
D-H Prime Number	Intermediate Crypto Value	Hard Code Value	The D-H Algorithm
Upgrade Key	RSA Public Key	The upgrade key is the public RSA key used to decrypt the SHA hash value that is attached to the firmware image that has been loaded from an external workstation via the GUI.	Used to decrypt the Hash value that is attached to the upgrade package
Load Key	RSA Public Key	The load key is the public RSA key used to decrypt the SHA hash value that is attached to the executable firmware image that has been loaded from the internal flash drive	Used to decrypt the Hash value that is attached to the load package
PRNG ANSI X9.31 Seed	Random Seeding information received from the TRNG	Automatically Generated per seeding A loop is started where the ANSI X9.31 PRNG is seeded with 64 bits from the TRNG each time through the loop.	Seed the ANSI X9.31
PRNG ANSI X9.31 Key K1, K2	Internal 3DES Key	Automatically Generated per seeding	This is an internal key used for ANSI X9.31

CSP	Type	Generation	Use
	192 bits	Internal Key generate from the seed and seed key	PRNG.
HMAC Key	SSL	Generated within the SSL package	SSL module integrity SSL code integrity SSL message integrity
Configuration Data Base Key (Not a CSP)	AES	Hardcoded	Used to obfuscate the Data Base however not a CSP.
Pre-Shared Key	Component	Manual Entry	Used to create the PTK and the PMK

4.0 Access Control Policy

The same Crypto Officer may not be simultaneously logged in. However, the module supports concurrent login of different crypto-officer variants. An administrator and maintenance or other combination of crypto-officers may be logged in at the same time.

4.1 Roles each Service is authorized to Perform

In general a Crypto Officer is allowed to login and manage the FSN and end users can use cryptographic services as shown in Table 13.

Table 13: Roles each Service is authorized to Perform

Role/Services	을 를 핑․		$\begin{aligned} & \text { 익 } \\ & 3 \\ & 3 \\ & 3 \end{aligned}$				$\begin{aligned} & \frac{0}{0} \\ & \frac{\pi}{0} \\ & \frac{0}{2} \end{aligned}$
Administrator		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Maintenance		\checkmark	\checkmark		\checkmark	\checkmark	
Log Viewer			\checkmark				
csscaisi		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
operator		\checkmark	\checkmark		\checkmark	\checkmark	
MSP End User	\checkmark						
RSN End User	\checkmark						

4.2 Roles, Services and Access to Keys or CSPs

The FSN doesn't allow the access of encryption keys and most critical security parameters. These are protected within the operating environment. The FSN does allow the configuration of some important parameters and passwords as detailed in Table 14.

Table 14: Roles who have Access to Keys or CSPs

Service	Role	Access to Cryptographic Keys and CSPs	R	W	E
Encryption	MSP	Access ID			
	RSN	All Keys			
		None			
Show Status	Administrator				
	Maintenance Logviewer csscaisi operator				

Service	Role	Access to Cryptographic Keys and CSPs	R	W	E
View Log	Administrator Maintenance Logviewer csscaisi operator	None	\checkmark		
Write Configuration	Administrator	Change own, Maintenance, and Logveiwer password		$\sqrt{ }$	
	csscaisi	Change own and operator password		\checkmark	
	Administrator csscaisi	Set Access ID Set Bypass Set FIPS Mode zeroization Set SNMP Passphase Set IEEE 802.11 Preshared Key		\checkmark	
Read Configuration	Administrator Maintenance Csscaisi operator	None	$\sqrt{ }$		
Diagnostic (including self tests)	Administrator Maintenance csscaisi operator	None			$\sqrt{ }$
Upgrade	Administrator csscaisi	Upgrade Key			$\sqrt{ }$

$\mathrm{W}=$ Write access, $\mathrm{R}=$ Read access, $\mathrm{E}=$ Execute access

4.3 Zeroization

Only the CSP's listed in Table 15 are stored in a database, which are zeroed when restoring the defaults. Other configuration values are returned to their factory default. All other keys and keying material are stored in RAM and are zeroized when the unit is either rebooted or powered off. Please refer to the appropriate User Guide to determine the actual zeroization process.

Table 15: Defaults and Zeroization

CSP	Reset value
AccessID	All Zeros
Administrator Password	Default Password
Log Viewer Password	Default Password
Maintenance Password	Default Password
CAISI Password	Default Password
operator Password	Default Password
SNMPV3 Authentication Pass phrase Preshared Key	FSGSnmpAdminPwd.
	All Zeros

4.4 Upgrades

4.4.1 Introduction

The FSN firmware can be upgraded in FIPS mode and in Non-FIPS mode. Any firmware version that can be loaded on the FSN has been FIPS validated. The upgrade image is downloaded from a workstation via using the GUI. The upgrade image is integrity checked and stored on the internal flash and booted. The previous image is kept stored on flash and can be selected as the boot image in case of problems with the upgrade image.

4.4.2 Selecting the Firmware Image

The FSN stores two, user-selectable copies (or images) of the FSN software on separate partitions of the internal flash memory. Please refer to the User Guide to determine how to select the image for execution.

5.0 Physical Security Policy

5.1 Hardware

The FCB executes the following hardware platforms:

- ES210
- ES300
- ES440
- ES520 Version 1
- ES520 Version 2
- ES820

Refer to the figures below.

5.2 Distribution and Delivery

The purchaser will receive an invoice that indicates which product(s) were purchased along with the serial number(s) of the product being shipped.
The FSN is then packed and sealed and also has a packing slip placed on the outside of the box so the customer can verify the contents. The packing slip indicates the product in the package along with the serial number of the TOE.
FSN's are shipped via UPS directly from Fortress Technologies to the customer site.

5.3 Tamper Evidence Application

ES210, ES440, ES820

The hardware uses $3 / 8 \times 3 / 4$ inch tamper evidence destructible vinyl tape as shown in the following figures The tape is applied during manufacturing. If the tape is removed or becomes damaged it's recommended that the unit be returned to Fortress to reapply.

ES300, ES440, ES520V1 and ES520V2

These hardware platforms use Loctite 425 blue adhesive to cover screws for tamper evidences as shown in the following figures. The adhesive is applied during manufacturing. If the glue is removed or becomes damaged it's recommended that the unit be returned to Fortress to reapply.

5.4 Tamper Evidence Inspections

The FSN Firmware is installed by Fortress Technologies on a production-quality, FCC certified hardware device, which also define the FSN's physical boundary. All hardware platforms are or will be manufactured to meet FIPS 140-2, L2 requirements. If using vinyl tape, the tape is applied to the edge of the panel. If using epoxy potting material then some screws on the front and back panel are covered with the material for tamper evidence, see the following figures.
Table 16 details the recommended physical security activities that should be carried out by the Crypto Officer.

The host hardware platform server must be located in a controlled access area. Tamper evidence is provided by the use of epoxy potting material covering the chassis access screws or by vinyl tape.

If using vinyl tape, the tape is applied to the edge of the panel. If using epoxy potting material then some screws on the front and back panel are covered with the material for tamper evidence, see the following figures.

Table 16: Recommended Physical Security Activities

Physical Security Object	Recommended Frequency of Inspection	
Appropriate chassis screws covered		
with epoxy coating.	Daily	Inspection Guidance
Tape appropriately Applied	Daily	Inspect screw heads for chipped epoxy material. If found, remove FSN from service.
Overall physical condition of the FSN	Daily	Inspect the tape to make sure it securely in place.
		Inspect all cable connections and the FSN's overall condition. If any discrepancy found, correct and test the

Figure 2: ES210 with Tamper Evidence Tape

Figure 3: ES300 with Blue Blocker

Figure 4: ES440 Tamper Evidence

Figure 5: ES520V1 with Blue Blocker

Figure 6: ES520V2 with Blue Blocker

Figure 7: ES820 Tamper Evidence

6.0 Firmware Security

Self-tests validate the operational status of each product, including critical functions and files. If the firmware is compromised, the FSN enters an error state in which no cryptographic processing occurs, preventing a security breach through a malfunctioning device.

7.0 Operating System Security

The FSN operates automatically after power-up. The FSN operates on Fortress Technologies proprietary version of hardened Linux operating system that is installed along with the FSN's software, with user access to standard OS functions eliminated. The FSN provides no means whereby an operator could load and execute software or firmware that was not included as part of the FSN's validation. Updates to the firmware are supported, but can only be made using the Vendor provided services.

8.0 Self Tests

The following tables will summaries the FSN self tests. A self-test status indication is provided in the event log (passed or failed) for both the CLI and GUI interfaces, including the firmware load test.

Table 17: Self Tests

Test	Description	MSP Alchemy MIPS Processor	MSP Xilinx Spartan FPGA	SSL Alchemy MIPS Processor	RSN Alchemy MIPS Processor	RSN Xilinx Spartan FPGA
Power Up Test						
AES Known Answer Test (KAT) Note: For all lengths, CBC and ECB modes	A known answer test is performed	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		
RSA KAT	A known answer test is performed			$\sqrt{ }$		
RNG (All Implementations)	A known answer test is performed.	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
SHA (1, 384). KAT	A known answer test is performed	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
SHA (256, 512). KAT	A known answer test is performed	$\sqrt{ }$		$\sqrt{ }$		
HMAC (SHA 1,384)	A known answer test is performed	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
HMAC (SHA 256, 512)	A known answer test is performed	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		
Software/ Firmware Integrity Check	Uses a RSA Signature Algorithm for integrity checking of the image. This algorithm uses a Public/Private Key Pair.	$\sqrt{ }$				
Elliptic Curve Test	A known answer test is performed	$\sqrt{ }$				
Conditional Tests						
Software/ Firmware Load Check This is used when upgrading the BRIDGE.	The upgrade package for the Bridge uses a RSA Signature Algorithm for integrity checking of the image.	$\sqrt{ }$				
RNG Test (All Implementations)	This test will compare the current random number and a previous random number output to ensure that they are not the same. If they are the same the test failed.	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		
Bypass Test	Bypass test run happens when a MAC lookup table entry changes or when an interface is added/changed/deleted.	$\sqrt{ }$				
Bypass Mechanism Test	This will do an integrity check on the parameters that are used to turn on and off allowing clear text traffic to bypass cryptographic processing. This guarantees these parameters were not compromised.	$\sqrt{ }$		$\sqrt{ }$		

9.0 Security Policy for Mitigation of Other Attacks Policy

No special mechanisms are built in the FSN; however, the cryptographic module is designed to mitigate several specific attacks above the FIPS defined functions. Additional features that mitigate attacks are listed here:

1. The MSP Dynamic Secret Encryption Key is changed at least once every 24 hours, with 4 hours being the factory default duration: Mitigates key discovery.
2. In the MSP, the second Diffie-Hellman key exchange produces a dynamic common secret key in each of the modules by combining the other module's dynamic public key with the module's own dynamic private key: Mitigates "man-in-the-middle" attacks.
3. In MSP and RSN key exchanges after the first Diffie-Hellman exchange are encrypted: Mitigates encryption key sniffing by hackers.
4. In MSP compression and encryption of header information inside of the frame, making it impossible to guess. MSP, RSN or SSL uses strong encryption further protects the information. Any bit flipping would be useless in this frame to try to change the IP address of the frame: Mitigates active attacks from both ends.
5. In both MSP and RSN encryption happens at the datalink layer so that all network layer information is hidden: Mitigates hacker's access to the communication.
6. In MSP Multi-factor Authentication: The FSN guards the network against illicit access with "multi-factor authentication", checking three levels of access credentials before allowing a connection. These are:
a) Network authentication requires a connecting device to use the correct shared identifier for the network
b) Device authentication requires a connecting device to be individually recognized on the network, through its unique device identifier.
c) User authentication requires the user of a connecting device to enter a recognized user name and password.

10.0 EMI/EMC

All models of the FSN hardware are FCC compliant and certified (Part 15, Subpart J, Class A) devices.

11.0 Customer Security Policy Issues

Fortress Technologies, Inc. expects that after the FSN's installation, any potential customer (government organization or commercial entity or division) employs its own internal security policy covering all the rules under which the FSN(s) and the customer's network(s) must operate. In addition, the customer systems are expected to be upgraded as needed to contain appropriate security tools to enforce the internal security policy.

12.0 FIPS Mode

12.1 FIPS Mode Requirements

The following are the requirements for FIPS mode:
a. At module start-up the module shall be set to FIPS Mode.
b. A valid FIPS network shall use an Approved RNG generated AccessID from one FSN. All other FSN in the network will need to be setup using this generated AccessID.
c. The Pre-Shared Key shall be entered using 64-hex values. The passphrase method shall not be used in the FIPS mode of operation.
d. Enable the SSH protocol for remote CLI management.

The FSN comes up in the FIPS operating mode during module initialization. FIPS can be disabled or enabled through the GUI or through the Command Line Interface (CLI) by the Administrator. When FIPS is disabled FIPS tests are not executed.

- On the GUI the Mode Indicator (Left Top of the GUI Screen) will show whether the unit is in Normal or FIPS module. To change operating mode on the GUI:
o Log on to the Bridge GUI through an Administrator-level account and select Configuration -> Security from the menu on the left. On the Security screen click EDIT.
o In the Edit Security screen's Security Settings frame change the Operating Mode to Normal or FIPS.
- To change operating mode on the CLI
o The operating mode can be determined by whether the command prompt displays FIPS; Normal operating mode displays only the hostname and single-character command prompt (> or \#).
o FIPS operating mode is the default Bridge mode of FSN: Bridge CLI operation. The FSN Normal operating mode does not comply with FIPS.
o Change between operating modes with the set fips command. To turn FIPS operating mode on:
- \# set fips on
- To place the Bridge in Normal operating mode, turn FIPS operating mode off:
o FIPS\# set fips off
- You must be logged on to an administrator-level account to change the operation mode.

12.2 Alternating BYPASS Mode

The FSN may be configured to allow cleartext traffic in the encrypted zone in FIPS mode. The FSN will support alternating Bypass since it allows both clear text and encrypted data on the same interface. Cleartext Traffic is enabled by configuring a Trusted Device rule or when using IEEE802.1x.

A Trusted Device is activated by configuring the Trusted Device/AP Settings then clicking APPLY to apply the setting.

The IEEE-802.1x authentication is enabled by setting the parameter in the Ethernet Setting to On then clicking APPLY to apply the setting.

The module performs alternating Bypass by allowing cleartext traffic and encrypted traffic together. If Cleartext Traffic is Enabled the hardware's front-panel Cleartext LED on the ES300, ES520V1 and V2, the Crypto LED on the ES210 or the Status LED on the ES440 and ES820 flashes a signal whenever the Bridge passes unencrypted traffic in an encrypted zone.

13.0 Maintenance Issues

The FSN have no operator maintainable components. Unserviceable FSN must be returned to the factory for repair.

[^0]: ${ }^{1}$ Clear Text Zone refers to the portions of the network that are trusted and that the FSN will normally only send and receive packets that have not been FIPS encrypted. These could be packets that have come from a encrypted zone that have been decrypted or packet that have originated from the FSN like from the GUI, CLI or SNMP.
 ${ }^{2}$ Encrypted Zone refers to the portions of the network that are untrusted and that the FSN will normally only send or receive encrypted packets.
 ${ }^{3}$ The ES820 has a 37 pin I/O port that the Power, Ethernet, Console, USB, LED and Switch connections. These connections are design to be interfaced to a breakout box that will the responsibility of the customer.

[^1]: ${ }^{4}$ The Maintenance User is a CO and is not the same as a maintenance user as defined in FIPS 140-2.

[^2]: ${ }^{5}$ Using the Pseudo Random Function defined in IEEE 802.11 i (8.5.1.1), HMAC-SHA1

