
 

Windows Server 2008 R2 Enhanced 
DSS and Diffie-Hellman 
Cryptographic Provider (DSSENH) 
Document Version 1.9 (Windows Server 2008 R2)  
 
 

 

 
June 8, 2011 
 
 
 
Abstract 

This document specifies the security policy for the Windows Server 2008 R2 Enhanced DSS  and 
Diffie-Hellman Cryptographic Provider (DSSENH) as described in FIPS PUB 140-2.

FIPS 140-2 Documentation: Security Policy 



 

INTRODUCTION ......................................................................... 1 

SECURITY POLICY ..................................................................... 2 

SPECIFICATION OF ROLES ........................................................ 4 

SPECIFICATION OF SERVICES .................................................. 5 

CRYPTOGRAPHIC KEY MANAGEMENT ................................... 13 

SELF-TESTS ............................................................................. 16 

MISCELLANEOUS ..................................................................... 17 

MORE INFORMATION ............................................................... 19 
 

 CONTENTS 



 

 iii

 
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).  The 
information contained in this document represents the current view of Microsoft Corporation on the issues discussed 
as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be 
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any 
information presented after the date of publication. 
This document  is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR 
IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT. 
Complying with all applicable copyright laws is the responsibility of the user. This work is licensed under the Creative 
Commons Attribution-NoDerivs-NonCommercial License (which allows redistribution of the work). To view a copy of 
this license, visit http://creativecommons.org/licenses/by-nd-nc/1.0/ or send a letter to Creative Commons, 559 
Nathan Abbott Way, Stanford, California 94305, USA. 
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights 
covering subject matter in this document. Except as expressly provided in any written license agreement from 
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or 
other intellectual property. 
The example companies, organizations, products, people and events depicted herein are fictitious. No association 
with any real company, organization, product, person or event is intended or should be inferred.  
© 2006 Microsoft Corporation. All rights reserved. 
Microsoft, Active Directory, Visual Basic, Visual Studio, Windows, the Windows logo, Windows NT, Windows Server, 
Windows Vista, and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the 
United States and/or other countries. 
The names of actual companies and products mentioned herein may be the trademarks of their respective owners. 





 

 Windows Server 2008 R2 DSSENH Security Policy                                                             1 

Microsoft Corporation’s Windows Server 2008 R2 Enhanced DSS and Diffie-
Hellman Cryptographic Provider (DSSENH) is a FIPS 140-2 Level 1 compliant, 
general-purpose, software-based, cryptographic module.  Like other 
cryptographic providers that ship with Microsoft Windows Server 2008 R2, 
DSSENH encapsulates several different cryptographic algorithms in an easy-to-
use cryptographic module accessible via the Microsoft CryptoAPI.  Software 
developers can dynamically link the Microsoft DSSENH module into their 
applications to provide FIPS 140-2 compliant cryptographic support. 
 
Windows Server 2008 R2 does not ship the previously FIPS-140-1 validated 
Microsoft Base DSS and Diffie-Hellman Cryptographic Provider 
(DSSBASE.DLL) anymore.  There is no lost of functionality as the DSSENH 
functionality has always been a superset of the DSSBASE functionality. 

Cryptographic Boundary 
Windows Server 2008 R2 Enhanced DSS and Diffie-Hellman Cryptographic 
Provider (DSSENH) (Software version 6.1.7600.16385) consists of a single 
dynamically-linked library (DLL) named DSSENH.DLL, which comprises the 
modules logical boundary.  The cryptographic boundary for DSSENH is defined 
as the enclosure of the computer system on which the cryptographic module is 
to be executed.  The physical configuration of the module, as defined in FIPS 
PUB 140-2, is Multi-Chip Standalone.   It should be noted that the Data 
Protection API of Microsoft Windows Server 2008 R2 is not part of the module 
and should be considered to be outside the boundary. 

Introduction 



 

Windows Server 2008 R2 Security Policy  2 

DSSENH operates under several rules that encapsulate its security policy. 
• DSSENH is supported on Windows Server 2008 R2 and Windows Server 

2008 R2 SP1 (in a single-user environment).  
• DSSENH operates in FIPS mode of operation only when used with 

Windows Server 2008 R2 Code Integrity (ci.dll) validated to FIPS 140-2 
under Cert. #1334 operating in FIPS mode and Microsoft Windows Server 
2008 R2 Kernel Mode Cryptographic Primitives Library (cng.sys) validated 
to FIPS 140-2 under Cert. #1335 operating in FIPS mode. 

• DSSENH provides no user authentication.  Roles are assumed implicitly.   
The authentication provided by the Windows Server 2008 R2 operating 
system is not in the scope of the validation. 

• DSSENH is only in its Approved mode of operation when FIPS approved 
security functions are used and Windows is booted normally, meaning 
Debug mode is disabled and Driver Signing enforcement is enabled. 

• DSSENH operates in its FIPS mode of operation only when one of the 
following DWORD registry values is set to 1: 
• HKLM\SYSTEM\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\E

nabled 
• HKLM\SYSTEM\CurrentControlSet\Policies\Microsoft\Cryptography\Co

nfiguration\SelfTestAlgorithms 
• All services provided by the DSSENH.DLL are available to the User and 

Crypto-officer roles. 
• Keys created within DSSENH by one user are not accessible to any other 

user via DSSENH. 
• When operating this module under Window 7 the following algorithms are 

Approved Security functions and can be used in FIPS mode: 
• DSA (Cert. #390), RNG (Cert. #649), SHA-1 (Cert. #1081), Triple-DES 

(Cert. #846), and Triple-DES MAC (Cert. #846, vendor affirmed). 
• DSSENH supports the following FIPS allowed algorithms: Diffie-Hellman   
• DSSENH supports the following non-FIPS approved algorithms1: DES, 

DES MAC, RC4, RC2, RC2 MAC, MD5, DES40, and DES40 MAC. 
 
DSSENH was tested using the following machine configurations: 
 

x64 Windows Server 2008 R2– HP Compaq dc7600 
IA64 Windows Server 2008 R2– HP zx2000 
x64 Windows Server 2008 R2 SP1 – HP Compaq dc7600 
IA64 Windows Server 2008 R2 SP1 – HP zx2000 

 
The following diagrams illustrate the master components of the module and 
how it relates to the rest of the Windows CryptoAPI system: 

                                            
1 Applications may not use any of these non-FIPS algorithms if they 
need to be FIPS compliant.  To operate the module in a FIPS compliant 
manner, applications must only use FIPS-approved algorithms. 

SECURITY POLICY 



 

 Windows Server 2008 R2 DSSENH Security Policy                                                             3 

 

 
Figure 1 Master components of DSSENH module 
 

 
 

Application 

CryptoAPI router 
(cryptsp.dll) 

DSSENH RSAENH Other provider(s) 

CryptoAPI 

CryptoSPI 

Figure 2 Relationship to other components in Windows 
CryptoAPI system – cryptographic module shown in gold 



 

Windows Server 2008 R2 Security Policy  4 

DSSENH module supports both the User and Cryptographic Officer roles (as 
defined in FIPS PUB 140-2).  Both roles may access all services implemented 
in the cryptographic module. 

 
When an application requests the crypto module to generate keys for a user, 
the keys are generated, used, and deleted as requested by applications.  There 
are no implicit keys associated with a user, and each user may have numerous 
keys, both signature and key exchange, and these keys are separate from 
other users’ keys. 

Maintenance Roles 

Maintenance roles are not supported by DSSENH. 

Multiple Concurrent Operators 

DSSENH is intended to run on Windows Server 2008 R2 in Single User Mode. 
When run in this configuration, multiple concurrent operators are not supported. 

 
Because the module is a DLL, each process requesting access is provided its 
own instance of the module.  As such, each process has full access to all 
information and keys within the module.  Note that no keys or other information 
are maintained upon detachment from the DLL, thus an instantiation of the 
module will only contain keys or information that the process has placed in the 
module. 

Data Access 

Because an operator is provided a separate instance of the module (a separate 
instantiation of the DLL), the operator has complete access to all of the security 
data items within the module. 

SPECIFICATION OF 
ROLES 



 

 Windows Server 2008 R2 DSSENH Security Policy                                                             5 

The following list contains all services available to an operator.  All services are 
accessible by the User and Crypto-officer roles. 
 

Key Storage Services 
The following functions provide interfaces to the cryptomodule’s key container 
functions.  Please see the Key Storage description under the Cryptographic 
Key Management section for more information. 
 
CryptAcquireContext 

The CryptAcquireContext function is used to acquire a programmatic context 
handle to a particular key container via a particular cryptographic service 
provider module (CSPM).  This returned handle can then be used to make calls 
to the selected CSPM.   Any subsequent calls to a cryptographic function need 
to reference the acquired context handle. 

This function performs two operations.  It first attempts to find a CSPM with the 
characteristics described in the dwProvType and pszProvider parameters.  If 
the CSPM is found, the function attempts to find a key container matching the 
name specified by the pszContainer parameter. 

With the appropriate setting of dwFlags, this function can also create and 
destroy key containers. 

If dwFlags is set to CRYPT_NEWKEYSET, a new key container is created with 
the name specified by pszContainer.  If pszContainer is NULL, a key container 
with the default name is created. 

If dwFlags is set to CRYPT_DELETEKEYSET, The key container specified by 
pszContainer is deleted.  If pszContainer is NULL, the key container with the 
default name is deleted.  All key pairs in the key container are also destroyed 
and memory is zeroized. 

When this flag is set, the value returned in phProv is undefined, and thus, the 
CryptReleaseContext function need not be called afterwards. 

 

CryptGetProvParam 

The CryptGetProvParam function retrieves data that governs the operations of 
the provider.  This function may be used to enumerate key containers, 
enumerate supported algorithms, and generally determine capabilities of the 
CSPM. 

 

Specification of 
Services 



 

Windows Server 2008 R2 Security Policy  6 

CryptSetProvParam 

The CryptSetProvParam function customizes various aspects of a provider’s 
operations.  This function is may be used to set a security descriptor on a key 
container.  

 

CryptReleaseContext 

The CryptReleaseContext function releases the handle referenced by the hProv 
parameter.  After a provider handle has been released, it becomes invalid and 
cannot be used again.  In addition, key and hash handles associated with that 
provider handle may not be used after CryptReleaseContext has been called. 
 

Key Generation and Exchange Services 
Approved Random Number Generators are used for all Key Generation.  The 
following functions provide interfaces to the cryptomodule’s key generation and 
exchange functions. 
 
CryptDeriveKey 

The CryptDeriveKey function creates cryptographic session keys derived from a 
hash value.  This function guarantees that when the same CSPM and 
algorithms are used, the keys created from the same hash value are identical.  
The hash value is typically a cryptographic hash (SHA-1 must be used when 
operating in FIPS-mode) of a password or similar secret user data. 

This function is the same as CryptGenKey, except that the generated session 
keys are created from the hash value instead of being random and 
CryptDeriveKey can only be used to create session keys.  This function cannot 
be used to create public/private key pairs.  A calling application can make use 
of this function as the pseudo-random function (PRF) of TLS v1.0; however, the 
use of this function to derive keys is not allowed in FIPS mode. 
 
If keys are being derived from a CALG_SCHANNEL_MASTER_HASH, then the 
appropriate key derivation process is used to derive the key. In this case the 
process used is from either the SSL 2.0, SSL 3.0 or TLS specification of 
deriving client and server side encryption and MAC keys.  This function will 
cause the key block to be derived from the master secret and the requested key 
is then derived from the key block.  Which process is used is determined by 
which protocol is associated with the hash object.  For more information see the 
SSL 2.0, SSL 3.0 and TLS specifications. 
 



 

 Windows Server 2008 R2 DSSENH Security Policy                                                             7 

CryptDestroyKey 

The CryptDestroyKey function releases the handle referenced by the hKey 
parameter.  After a key handle has been released, it becomes invalid and 
cannot be used again. 

If the handle refers to a session key, or to a public key that has been imported 
into the CSPM through CryptImportKey, this function zeroizes the key in 
memory and frees the memory that the key occupied.  The underlying 
public/private key pair (which resides outside the crypto module) is not 
destroyed by this function.  Only the handle is destroyed. 
 
CryptExportKey 

The CryptExportKey function exports cryptographic keys from a cryptographic 
service provider module (CSPM) in a secure manner for key archival purposes. 

A handle to a private DSS/DH key to be exported may be passed to the 
function, and the function returns a key blob.  This private key blob can be sent 
over a nonsecure transport or stored in a nonsecure storage location.  The 
private key blob is useless until the intended recipient uses the CryptImportKey 
function on it to import the key into the recipient's CSPM.  Key blobs are 
exported either in plaintext or encrypted with a symmetric key.  If a symmetric 
key is used to encrypt the blob then a handle to the private DSS/DH key is 
passed in to the module and the symmetric key referenced by the handle is 
used to encrypt the blob.  Only Triple-DES may be used to encrypt private keys 
for export. 

Public DSS/DH keys are also exported using this function.  A handle to the 
DSS/DH public key is passed to the function and the public key is exported, 
always in plaintext as a blob.  This blob may then be imported using the 
CryptImportKey function. 

Symmetric keys may also be exported by encrypting the keys with another 
symmetric key.  The encrypted key is then exported as a blob and may be 
imported using the CryptImportKey function. 
 

CryptGenKey 

The CryptGenKey function generates a random cryptographic key.  A handle to 
the key is returned in phKey.  This handle can then be used as needed with any 
CryptoAPI function requiring a key handle. 

The calling application must specify the algorithm when calling this function.  
Because this algorithm type is kept bundled with the key, the application does 
not need to specify the algorithm later when the actual cryptographic operations 
are performed. 



 

Windows Server 2008 R2 Security Policy  8 

Generation of a DSS key for signatures requires the operator to complete 
several steps before a DSS key is generated. CryptGenKey is first called with 
CRYPT_PREGEN set in the dwFlags parameter.  The operator then sets the P, 
Q, and G for the key generation via CryptSetKeyParam, once for each 
parameter.  The operator calls CryptSetKeyParam with KP_X set as dwParam 
to complete the key generation. 

Operators have two options while generating Diffie-Hellman keys for key 
exchange purposes — having CryptoAPI generate all new values for G, P, and 
X or by using existing values for G and P, and generating a new value for X.  
Generating completely new keys requires the operator to call CryptGenKey 
passing either CALG_DH_SF or CALG_DH_EPHEM in the Algid parameter. 
The key will be generated, using new, random values for G and P, a newly 
calculated value for X, and its handle will be returned in the phKey parameter.  
The process for generating keys using pre-defined G & P values is more 
involved.  Refer to http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/diffie_hellman_keys.asp for detailed directions on key 
generation and the key establishment process. 
DSS keys and parameters are generated using the SHA-1 based RNG from 
FIPS 186-2 DSA random generator.   

CryptGenRandom 

The CryptGenRandom function fills a buffer with random bytes.  The random 
number generation algorithm is the SP800-90 AES-256 based counter mode 
random number generation algorithm. During the function initialization, a seed 
is read from an in-kernel RBG, which exists outside the cryptographic 
boundary. CryptGenRandom accepts caller supplied data through its in/out 
pbBuffer parameter. This data is mixed with the seed. 
 
CryptGetKeyParam 

The CryptGetKeyParam function retrieves data that governs the operations of a 
key. 
 
CryptGetUserKey 

The CryptGetUserKey function retrieves a handle of one of a user's 
public/private key pairs. 
 
CryptImportKey 

The CryptImportKey function transfers a cryptographic key from a key blob into 
a cryptographic service provider module (CSPM).   

Private keys may be imported as blobs and the function will return a handle to 
the imported key. 



 

 Windows Server 2008 R2 DSSENH Security Policy                                                             9 

Symmetric keys encrypted with other symmetric keys may also be imported 
using this function.  The encrypted key blob is passed in along with a handle to 
a symmetric key, which the module is supposed to use to decrypt the blob.  If 
the function is successful then a handle to the decrypted symmetric key is 
returned. 

To import a Diffie-Hellman (DH) key into the CSPM, call CryptImportKey, 
passing a pointer to the public key BLOB in the pbData parameter, the length of 
the BLOB in the dwDataLen parameter, and the handle to a DIFFIE-HELLMAN 
key in the hImpKey parameter.  This call to CryptImportKey causes the 
calculation, (Y^X) mod P, to be performed thus creating the shared, secret key 
and completing the key exchange.  This function call returns a handle to the 
new, secret, bulk-encryption key in the hKey parameter.  

CryptSetKeyParam 

The CryptSetKeyParam function customizes various aspects of a key's 
operations.  This function is used to set session-specific values for symmetric 
keys.  

CryptDuplicateKey 

The CryptDuplicateKey function is used to duplicate, make a copy of, the state 
of a key and returns a handle to this new key.  The CryptDestroyKey function 
must be used on both the handle to the original key and the newly duplicated 
key.  
 

Data Encryption and Decryption Services 
The following functions provide interfaces to the cryptomodule’s data encryption 
and decryption functions. 
 
CryptDecrypt 

The CryptDecrypt function decrypts data previously encrypted using 
CryptEncrypt function.  
 
CryptEncrypt 

The CryptEncrypt function encrypts data. The algorithm used to encrypt the 
data is designated by the key held by the CSPM module and is referenced by 
the hKey parameter. 
 

Hashing and Digital Signatures Services 
The following functions provide interfaces to the cryptomodule’s hashing and 
digital signature functions. 
 



 

Windows Server 2008 R2 Security Policy  10 

CryptCreateHash 

The CryptCreateHash function initiates the hashing of a stream of data.  It 
returns to the calling application a handle to a CSPM hash object. This handle 
is used in subsequent calls to CryptHashData and CryptHashSessionKey in 
order to hash streams of data and session keys.  SHA-1 is the cryptographic 
hashing algorithm supported.  In addition, a MAC using a symmetric key is 
created with this call and may be used with any of the symmetric block ciphers 
support by the module (DES, Triple-DES, DES40, and RC2)2. 

A CALG_SCHANNEL_MASTER_HASH may be created with this call.  If this is 
the case then a handle to one of the following types of keys must be passed in 
the hKey parameter, CALG_SSL2_MASTER, CALG_SSL3_MASTER, or 
CALG_TLS1_MASTER.  This function with 
CALG_SCHANNEL_MASTER_HASH in the ALGID parameter will cause the 
derivation of the master secret from the pre-master secret associated with the 
passed in key handle.  This key derivation process is done in the method 
specified in the appropriate protocol specification, SSL 2.0, SSL 3.0, or TLS.  
The master secret is then associated with the resulting hash handle and 
session keys and MAC keys may be derived from this hash handle.  The 
master secret may not be exported or imported from the module.  The key data 
associated with the hash handle is zeroized when CryptDestroyHash is called. 
 
CryptDestroyHash 

The CryptDestroyHash function destroys the hash object referenced by the 
hHash parameter.  After a hash object has been destroyed, it can no longer be 
used.  When a hash object is destroyed, the crypto module zeroizes the 
memory within the module where the hash object was held.  The memory is 
then freed. 
 
If the hash handle references a CALG_SCHANNEL_MASTER_HASH key then 
when CryptDestroyHash is called the associated key material is zeroized also. 

All hash objects should be destroyed with the CryptDestroyHash function when 
the application is finished with them. 
 
CryptGetHashParam 

The CryptGetHashParam function retrieves data that governs the operations of 
a hash object.  The actual hash value can also be retrieved by using this 
function. 
 

                                            
2 Only Triple-DES MAC can be used in the FIPS mode of operation 



 

 Windows Server 2008 R2 DSSENH Security Policy                                                             11 

CryptHashData 

The CryptHashData function adds data to a specified hash object.  This 
function and CryptHashSessionKey can be called multiple times to compute the 
hash on long data streams or discontinuous data streams.  Before calling this 
function, the CryptCreateHash function must be called to create a handle of a 
hash object. 
 
CryptHashSessionKey 

The CryptHashSessionKey function computes the cryptographic hash of a key 
object.  This function can be called multiple times with the same hash handle to 
compute the hash of multiple keys.  Calls to CryptHashSessionKey can be 
interspersed with calls to CryptHashData.  Before calling this function, the 
CryptCreateHash function must be called to create the handle of a hash object. 
 
CryptSetHashParam 

The CryptSetHashParam function customizes the operations of a hash object.  
 
CryptSignHash 

The CryptSignHash function signs data. The CryptoAPI does not allow data be 
signed directly. Instead, data is first hashed and CryptSignHash is used to sign 
the hash.  The crypto module supports signing with DSS.   
 
CryptVerifySignature 

The CryptVerifySignature function verifies the signature of a hash object.  
Before calling this function, the CryptCreateHash function must be called to 
create the handle of a hash object.  CryptHashData or CryptHashSessionKey is 
then used to add data or session keys to the hash object.  The crypto module 
supports verifying DSS signatures.   

After this function has been completed, only CryptDestroyHash can be called 
using the hHash handle.   

CryptDuplicateHash 

The CryptDuplicateHash function is used to duplicate, make a copy of, the state 
of a hash and returns a handle to this new hash.  The CryptDestroyHash 
function must be used on both the handle to the original hash and the newly 
duplicated hash.  

 

Data Input and Output Interfaces 
The Data Input Interface for DSSENH.DLL consists of the DSSENH export 
functions. Data and options are passed to the interface as input parameters to 
the DSSENH export functions. Data Input is kept separate from Control Input 



 

Windows Server 2008 R2 Security Policy  12 

by passing Data Input in separate parameters from Control Input. 
 
The Data Output Interface for DSSENH.DLL also consists of the DSSENH 
export functions. 

Control Input Interface 
The Control Input Interface for DSSENH.DLL also consists of the DSSENH 
export functions. Options for control operations are passed as input parameters 
to the DSSENH export functions. 

Status Ouput Interface 
The Status Output Interface for DSSENH.DLL also consists of the DSSENH 
export functions.  For each function, the status information is returned to the 
caller as the return value from the function. 

 



 

 Windows Server 2008 R2 DSSENH Security Policy                                                             13 

The DSSENH cryptomodule manages keys in the following manner. 

Cryptographic Keys, CSPs, and SRDIs 
The DSSENH crypto module contains the following security relevant data items: 

 

Security Relevant 
Data Item 

SRDI Description 

Symmetric 
encryption/decryption 
keys 

Keys used for AES or TDEA encryption/decryption. 

DSA Public Keys Keys used for the verification of DSA digital 
signatures. 

DSA Private Keys Keys used for the calculation of DSA digital 
signatures. 

DH Public and Private 
exponents 

Public and private values used for Diffie-Hellman key 
establishment. 

Triple-DES MAC keys Keys used for Triple-DES MAC. 

Access Control Policy 
The DSSENH crypto module allows controlled access to the SRDIs contained 
within it.  The following table defines the access that a service has to each.  The 
permissions are categorized as a set of four separate permissions: read (r), 
write (w), execute (x), delete (d).  If no permission is listed, the service has no 
access to the SRDI.  

 

DSSENH crypto 
module  

SRDI/Service Access 
Policy 

S
ym

m
et

ric
 e

nc
ry

pt
io

n 
an

d 
de

cr
yp

tio
n 

ke
ys

 

D
S

A
 P

ub
lic

 K
ey

s 

D
S

A
 P

riv
at

e 
K

ey
s 

D
H

 P
ub

lic
 a

nd
 P

riv
at

e 
ex

po
ne

nt
s 

Tr
ip

le
-D

E
S

 M
AC

 k
ey

s 

Key Storage Services r/x r/x r/x r/x r/x 

Key Generation and 
Exchange Services 

r/w/d r/w/d r/w/d r/w/d r/w/d 

Data Encryption and 
Decryption Services 

x     

Hashing and Digital 
Signature Services 

 x x   

Cryptographic Key 
Management 



 

Windows Server 2008 R2 Security Policy  14 

 

Key Material 
DSSENH can create and use keys for the following algorithms: DSS, Diffie-
Hellman, RC2, RC4, DES, DES40, and Triple-DES.  Each time an application 
links with DSSENH, the DLL is instantiated and no keys exist within.  The user 
application is responsible for importing keys into DSSENH or using DSSENH’s 
functions to generate keys. 

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI 
2.0\CryptoAPI Reference\CryptoAPI Structures\Cryptography Structures for 
more information about key formats and structures. 
(MSDN Home >  MSDN Library >  Win32 and COM Development >  Security >  

Cryptography >  Cryptography Reference > General Cryptography Structures) 
 

Key Generation 
Random keys can be generated by calling the CryptGenKey() function. DSA 
keys are generated following the techniques given in FIPS PUB 186-2, 
Appendix 3, Random Number Generation. 

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI 
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography 
Functions\Key Generation and Exchange Functions for more information. 
(MSDN Home >  MSDN Library >  Win32 and COM Development >  Security >  

Cryptography >  Cryptography Reference > Cryptography Functions > Key 

Generation and Exchange Functions) 
 

Key Entry and Output 
Keys can be both exported and imported out of and into DSSENH via 
CryptExportKey() and CryptImportKey(). Exported private keys may be 
encrypted with a symmetric key passed into the CryptExportKey function or the 
values may be exported in plaintext.  Only Triple-DES may be used to encrypt 
private keys for export.   When private keys are generated or imported from 
archival, they are covered/protected with the Microsoft Windows Server 2008 
R2 Data Protection API (DPAPI) and then output to the file system in the 
covered/protected form. 

Symmetric key entry and output is done by exchanging keys using the 
recipient’s asymmetric public key.   Symmetric key entry and output may also 
be done by exporting a symmetric key wrapped with another symmetric key. 

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI 
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography 
Functions\Key Generation and Exchange Functions for more information. 
(MSDN Home >  MSDN Library >  Win32 and COM Development >  Security >  



 

 Windows Server 2008 R2 DSSENH Security Policy                                                             15 

Cryptography >  Cryptography Reference > Key Generation and Exchange Functions) 
 

Key Storage 
DSSENH does not provide persistent storage of keys.  While, it is possible to 
store keys in the file system, this functionality is outside the scope of this 
validation.  The task of protecting (or encrypting) the keys prior to storage in the 
file system is delegated to the Data Protection API (DPAPI) of Microsoft 
Windows Server 2008 R2.  The DPAPI is a separate component of the 
operating system that is outside the boundaries of the crypto module but relies 
upon DSSENH for all cryptographic functionality.  This section describes this 
functionality for information purposes only. 

When a key container is deleted, the file is zeroized before being deleted.  
DSSENH offloads the key storage operations to the Microsoft Windows Server 
2008 R2 operating system, which is outside the cryptographic boundary.  
Because keys are not persistently stored inside the cryptographic module, 
private keys are instead encrypted by the Microsoft Data Protection API 
(DPAPI) service and stored in the Microsoft Windows Server 2008 R2 file 
system.  Keys are zeroized from memory after use.   As an exception, the key 
used for power up self-testing is stored in the cryptographic module. 

When an operator requests a keyed cryptographic operation from DSSENH, 
his/her keys are retrieved from the file system by DSSENH with the support of 
DPAPI. 

The readers may refer to the technical paper “Windows Data Protection” 
(http://msdn.microsoft.com/library/en-us/dnsecure/html/windataprotection-
dpapi.asp) for further detail of DPAPI. 
 

Key Archival 
DSSENH does not directly archive cryptographic keys.  The operator may 
choose to export a cryptographic key labeled as exportable (cf. “Key Input and 
Output” above), but management of the secure archival of that key is the 
responsibility of the user. 
 

Key Destruction 
All keys are destroyed and their memory location zeroized when the operator 
calls CryptDestroyKey on that key handle.  Private keys that reside outside the 
cryptographic boundary (ones stored by the operating system in encrypted 
format in the Windows Server 2008 R2 DPAPI system portion of the OS) are 
destroyed when the operator calls CryptAcquireContext with the 
CRYPT_DELETE_KEYSET flag. 
 



 

Windows Server 2008 R2 Security Policy  16 

Power up 
The following algorithm tests are initiated upon power-up without operator 
intervention: 
• Triple-DES encrypt/decrypt KAT 
• DSA sign/verify test 
• FIPS 186-2 x-Change Notice Regular RNG KAT 
 

Conditional 
The following are initiated at key generation: 
• DSSENH performs a pair-wise consistency test upon each invocation of 

DSA key generation. 
• Continuous random number generator test 

Self­Tests 



 

 Windows Server 2008 R2 DSSENH Security Policy                                                             17 

 

The following items address requirements not addressed above. 

Cryptographic Bypass 
Cryptographic bypass is not support in DSSENH. 

Operator Authentication 
DSSENH provides no authentication of operators.  However, the Microsoft 
Windows7operating system upon which it runs does provide authentication, but 
this is outside the scope of DSSENH’s FIPS validation.  The information about 
the authentication provided by Microsoft Windows Server 2008 R2 is for 
informational purposes only.  Microsoft Windows Server 2008 R2 requires 
authentication from a trusted computer base (TCB3) before a user is able to 
access system services. Once a user is authenticated from the TCB, a process 
is created bearing the operator’s security token. All subsequent processes and 
threads created by that operator are implicitly assigned the parent’s (thus the 
operator’s) security token. Every user that has been authenticated by Microsoft 
Windows Server 2008 R2 is naturally assigned the operator role when he/she 
accesses DSSENH. 
 
ModularExpOffload 

The ModularExpOffload function offloads modular exponentiation from a CSPM 
to a hardware accelerator.  The CSPM will check in the registry for the value 
HKLM\Software\Microsoft\Cryptography\ExpoOffload that can be the name of a 
DLL. The CSPM uses LoadLibrary to load that DLL and calls GetProcAddress 
to get the OffloadModExpo entry point in the DLL specified in the registry. The 
CSPM uses the entry point to perform all modular exponentiations for both 
public and private key operations.  Two checks are made before a private key is 
offloaded.  Note that to use DSSENH in a FIPS compliant manner, this function 
should only be used if the hardware accelerator is FIPS validated. 

Operating System Security 
The DSSENH crypto module is intended to run on Windows Server 2008 R2 in 
Single User Mode, where there is only one interactive user during a logon 
session. 

                                            
3 The TCB is the part of the operating system that is designed to meet 
the security functional requirements of the Controlled Access Protection 
Profile, which can be found at 
<http://www.radium.ncsc.mil/tpep/library/protection_profiles/index.html
>.  At this time, Windows Server 2008 R2 has not been evaluated.  

Miscellaneous 



 

Windows Server 2008 R2 Security Policy  18 

Each operating system process creates a unique instance of the crypto module 
that is wholly dedicated to that process. The crypto module is not shared 
between processes. 

 
Each process requesting access is provided its own instance of the module.  As 
such, each process has full access to all information and keys within the 
module.  Note that no keys or other information are maintained upon 
detachment from the DLL, thus an instantiation of the module will only contain 
keys or information that the process has placed in the module. 

 
 



 

 Windows Server 2008 R2 DSSENH Security Policy                                                             19 

For the latest information on Windows Server 2008 R2, check out our World 
Wide Web site at http://www.microsoft.com/windows. 

More Information 

Docume
nt 
Version 
1.2 
(Windo

 


