
Copyright © 2002-2021 Progress Software Corporation. All rights reserved. This document is provided for
information purposes only and the contents hereof are subject to change without notice. This document is
not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally
or implied in law, including implied warranties and conditions of merchantability or fitness for a particular

purpose. Progress specifically disclaims any liability with respect to this document and no contractual
obligations are formed either directly or indirectly by this document. This document may be reproduced only

in its entirety (without revision).

MOVEit Crypto
FIPS 140-2

Non-proprietary
Security Policy

Module versions: 1.2.0.0, 1.3.0.0

Document Revision Date: 2022-02-09

Authors

 Mark Riordan, Progress Software Corporation

David LeBlanc, Progress Software Corporation

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 2 of 26

Progress Software, Inc.
14 Oak Park Drive
Bedford, MA 01730
https://www.progress.com/moveit

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 3 of 26

Table of Contents

INTRODUCTION .. 5

CRYPTOGRAPHIC MODULE AND CRYPTOGRAPHIC BOUNDARY ... 5

SINGLE OPERATOR ONLY ... 6
BOUNDARY DIAGRAM .. 6

ROLES .. 7

USER .. 7
CRYPTOGRAPHIC OFFICER .. 7

SERVICES .. 8

PORTS AND INTERFACES ... 8
OVERVIEW OF FUNCTIONS AND MODES OF OPERATION ... 8

FIPS-140-2 Approved Mode of Operation .. 8
FIPS-140-2 Non-Approved Mode of Operation .. 9
Function Descriptions ... 9

DATA TYPES ... 9
MC_CONTEXT ... 9
MC_ERROR ...11
MC_ALG ..11
MC_CIPHER_MODE ..12
MC_PADDING ..12
MC_STATE ..13

INITIALIZATION FUNCTIONS ..13
MCSetLicenseKey ..13

ENCRYPTION / DECRYPTION FUNCTIONS ...13
MCEncryptInit ...13
MCEncrypt ...14
MCEncryptFinal ..14
MCDecryptInit ...14
MCDecrypt ...15
MCDecryptFinal ..15

HASHING FUNCTIONS ..15
MCHashInit ...15
MCHashUpdate ...16
MCHashFinal ..16
MCKeyedHashInit..16
MCKeyedHashUpdate ...16
MCKeyedHashFinal ..17

NON-APPROVED PSEUDO-RANDOM NUMBER GENERATION FUNCTIONS ...17
MCRNGInit ..17
MCRNGSetKey ..17
MCRNGSetSeed ...18
MCRNGUpdate ..18
MCRNGGenerate ...18
MCRNGFinal ...19

MISCELLANEOUS FUNCTIONS ..19
MCGetState ..19
MCZeroizeContext ...19
MCGetVersion ...19
MCSelfTest ...19

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 4 of 26

C++ WRAPPER CLASS ...20

KEY MANAGEMENT ...20

KEY GENERATION ...21
KEY MATERIAL AND KEY STORAGE ..21
KEY ZEROIZATION...21

SELF-TESTS ...21

POWER-UP SELF-TESTS ...21
CONDITIONAL SELF-TESTS ..22

USER GUIDANCE ..22

CHOICE OF ALGORITHMS AND KEY LENGTHS ...22
NON-APPROVED PSEUDO-RANDOM NUMBER GENERATOR SEEDS ..22
PROTECTING KEYS AND DATA ..23
MOVEIT CRYPTO CONTEXT ...23

CRYPTO OFFICER GUIDANCE ...23

GUIDANCE FOR WINDOWS ...23
GUIDANCE FOR LINUX ...24

Install / Uninstall ...24
Preventing core Files ...24
Other Linux Security Measures ..24

MISCELLANEOUS ..24

MITIGATION OF SPECIFIC ATTACKS ...24

TABULAR SUMMARIES ..24

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 5 of 26

Introduction
This document describes the security policy for MOVEit Crypto, to meet the FIPS 140-2
requirements. This document is non-proprietary and may be distributed freely.

MOVEit Crypto is a compact and fast encryption library that provides an API featuring the latest
NIST-approved encryption, hashing, and pseudo-random number generation algorithms. The
easy-to-use programming interface allows applications to be written without special code for
block size and padding mode.

MOVEit Crypto is a member of the MOVEit security and file transfer product family. For more
information, see http://www.ipswitch.com/.

Cryptographic Module and Cryptographic Boundary
MOVEit Crypto is a dynamically linked library that provides encryption services to applications.
Separate versions exist for Microsoft Windows operating systems, and the Linux operating
system. MOVEit Crypto is supported on Windows 2003 / 2003R2 / Vista / 2008 / 7 / 2008R2 / 8 /
8.1 / 2012 / 2012R2 / 10 / 2016 / 2019, and Linux, and is supplied in both 32-bit and 64-bit
versions. It was tested on the following platforms, in single-user mode:

MOVEit Crypto 1.2.0.0:

 Windows Server 2008 (x86) running on a Dell OptiPlex GX270 with an Intel Pentium 4
 Windows Server 2008 (x64) running on an HP Compaq dc7700p Ultra-slim Desktop with

an Intel Core 2 Duo E6300
 Red Hat Enterprise Linux 5 (x86) running on a Dell OptiPlex GX270 with an Intel

Pentium 4
 Red Hat Enterprise Linux 5 (x64) running on an HP Compaq dc7700p Ultra-slim

Desktop with an Intel Core 2 Duo E6300

MOVEit Crypto 1.3.0.0:
 Windows Server 2016 (x64) running on a Dell XPS 8700 with an Intel Core i7-4790
 Windows Server 2019 on VMware ESXi 6.7 Update 2 running on a Dell PowerEdge

R630 with an Intel Xeon E5-2660 v3

For all tested platforms, the hardware conforms to the EMI/EMC requirements specified by 47
Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class
A (i.e., for business use)

Progress makes no representation as to the correct operation of the module or the security
strengths of the generated keys when MOVEit Crypto is run in an operational environment which
is not listed on the validation certificate.

MOVEit Crypto is purely a software product. In FIPS 140-2 terms, MOVEit Crypto is a multi-
chip standalone module, consisting of the file MOVEitCrypto.dll (on Windows) or
libmoveitcrypto.so.1.2 (on Linux). It is intended to meet FIPS 140-2 security level 1. MOVEit
Crypto’s operational environment is considered a modifiable operational environment.

The following table summarizes the FIPS security levels met by MOVEit Crypto. The
requirements are those listed in Section 4, Security Requirements, of FIPS PUB 140-2:

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 6 of 26

Requirement Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

Electromagnetic Interference/Compatibility 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

 Table 1: MOVEit Crypto FIPS Security Levels

The cryptographic boundary for MOVEit Crypto is defined as the enclosure of the computer on
which the cryptographic module is installed. As a software product, MOVEit Crypto provides no
physical security by itself. The computer itself must be appropriately physically secured.

Single Operator Only

MOVEit Crypto runs in Single User Mode. Multiple concurrent operators are not supported.

Boundary Diagram

This diagram represents the module’s cryptographic and logical boundaries:

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 7 of 26

Roles
MOVEit Crypto implements the Cryptographic Officer and User roles. There is no Maintenance
role.

The module does not provide any identification or authentication of its own, and does not by
itself provide a way to restrict a user to one role or the other.

User

The User is any entity that can access services provided by the module. All services are available
to a User. See the Services section of this document. The User role is implicitly selected when a
process calls any API function in the module.

Cryptographic Officer

The cryptographic officer is any entity that can install the module onto the computer system,
configure the operating system, or access services provided by the module. The cryptographic
officer may access all services, the same as a user.

The cryptographic officer has no special access to any keys or data.

The cryptographic officer role is implicitly selected when installing the module or configuring the
operating system.

Installation is accomplished by running an installation program. The cryptographic officer must
have permission to write the file constituting the module into the installation directory; typically,

Figure 1: Cryptographic and Logical Boundaries

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 8 of 26

this requires administrator access within the operating system. On Windows, the installation
directory is the Windows System directory and the cryptographic officer typically should be a
member of the Administrators group. On Linux, the installation directory is /usr/lib and the
cryptographic officer should have root access.

The cryptographic officer should ensure that the operating system runs in single user mode. For
Windows, this can be done by disabling the Server and RunAsService services using the Control
Panel. The paging file must be configured to be on a local drive, not a network drive.

For Linux, a running system can be placed into single-user mode via the command
/sbin/shutdown now. Alternatively, Linux can be configured to always boot into single-user
mode. This is done by editing the file /etc/inittab. Change the line that looks like
id:x:initdefault (where x is a number, usually 3, 4, or 5) to id:1:initdefault. When the
system is rebooted, it will run in single-user mode.

Services
MOVEit Crypto's services consist entirely of an Application Programming Interface (API), which
is a collection of functions that can be called from an operating system process. All services
provided by the module are described in this section, and both the User and Crypto-officer roles
have access to all of these services.

Ports and Interfaces

The physical ports of MOVEit Crypto are the same as the computer system on which it is
executing. The logical interface is a C-language application program interface (API).

Logical Interface Type Description
Control input API entry point and corresponding stack parameters
Data input API entry point data input stack parameters
Status output API entry point return values and status stack

parameters
Data output API entry point data output stack parameters

Table 2: MOVEit Crypto logical interfaces

As a software module, control of the physical ports is outside the module scope. However, when
the module is performing self-tests, or is in an error state, all output on the logical data output
interface is inhibited,

Overview of Functions and Modes of Operation

FIPS-140-2 Approved Mode of Operation

MOVEit Crypto provides the following FIPS 140-2 approved algorithms:

Encryption: AES, as described in FIPS PUB 197, with 128-, 192-, and 256-bit keys.
MOVEit Crypto’s AES certificate numbers are 1226 (for version 1.2.0.0) and 5081,
A2127 (for version 1.3.0.0).

Hashing: SHA-1, SHA-256, SHA-384, and SHA-512, as described in FIPS PUB 180-4.
MOVEit Crypto’s SHA (Secure Hash Standard, or SHS) certificate numbers are 1126
(for version 1.2.0.0) and 4135, A2127 (for version 1.3.0.0).

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 9 of 26

Keyed hashing: HMAC-SHA-1, SHA-256, SHA-384, and SHA-512, as described in FIPS
PUB 198-1. MOVEit Crypto’s HMAC certificate numbers are 716 (for version 1.2.0.0)
and 3389, A2127 (for version 1.3.0.0).

MOVEit Crypto is operating in a FIPS-approved mode when its implementation of one of the
above algorithms is being used.

Note: HMAC-SHA-1 with key lengths less than 112 bits is disallowed for usage in HMAC
Generation, and is considered "Legacy-use" for HMAC Verification. This means that HMAC-
SHA-1 with a key length less than 112 bits can be used in a FIPS approved mode only if being
used to verify an old HMAC-SHA-1 signature.

FIPS-140-2 Non-Approved Mode of Operation

MOVEit Crypto provides the following algorithms that are not approved by FIPS 140-2 and not
allowed for usage in the module’s Approved mode:

Hashing: RSA Data Security, Inc. MD5 Message-Digest Algorithm, as described in Internet
RFC 1321

Keyed hashing: HMAC-MD5, as described in Internet RFC 2104

Pseudo-random number generation: RNG using the algorithm described in FIPS PUB
186-2, Change Notice 1.

MOVEit Crypto is not operating in a FIPS-approved mode when its implementation of one of
these algorithms is being used.

Thus, the indication of when the module is operating in a non-FIPS-approved mode is when:

 The algorithm MC_ALG_MD5 is being used via MCHashInit() or MCKeyedHashInit(),
or

 Any of the MCRNGxxx functions are being used.

The module is in FIPS-approved mode at all other times.

Function Descriptions

All functions have names starting with the string MC. The functions are implemented using a C
language interface, in order to make them available to the greatest number of programming
languages. Although the documentation below is provided in C language terms, the functions can
be called from any language that can access a dynamically-linked library.

In the function descriptions below, a C-style function prototype is followed by a description of
the parameters and return value. Input parameters are marked with [in], output parameters are
marked with [out], and parameters used for both input and output are marked with [in, out].

Data Types

The following data types are used throughout the API. The definitions of these types and their
values are provided in a separate source code header file, MOVEitCrypto.h.

MC_CONTEXT

MC_CONTEXT is a data type passed to nearly all functions in the API. It stores information on
pending cryptographic operations. The individual fields in this data type are not exposed to the
user. MC_CONTEXT stores all key information and any partial plaintext or ciphertext blocks.
Only the user-provided MC_CONTEXT buffer is used to store this information; the module does

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 10 of 26

not maintain its own copy. The user must pass the same MC_CONTEXT buffer for all
operations on a given message.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 11 of 26

MC_ERROR

MC_ERROR is an enumerated type used as the return type by most functions. It specifies the
error returned by a function. The possible values are:

Value Meaning
MC_ERROR_NONE Success. This value is guaranteed to be zero for all

future versions of the module, so an application can
test against 0 to determine whether a function
succeeded.

MC_ERROR_DISABLED MOVEit Crypto has been disabled due to failing a
self-test.

MC_ERROR_UNLICENSED MOVEit Crypto has been disabled because a valid
license key has not been supplied.

MC_ERROR_BAD_CONTEXT The context is invalid.
MC_ERROR_BAD_ALGID The algorithm identifier is invalid.
MC_ERROR_BAD_MODE The cipher mode parameter is invalid.
MC_ERROR_BAD_COUNT A count parameter is invalid; for instance, a count is

negative.
MC_ERROR_BAD_DATA The data being encrypted or decrypted is invalid. For

example, the last block of a padded message being
decrypted contains invalid padding.

MC_ERROR_MISC A miscellaneous error has occurred.

Table 3: MC_ERROR Values

MC_ALG

MC_ALG is an enumerated type that specifies an algorithm.

Value Meaning
MC_ALG_AES_128 AES cipher with 128-bit keys and 16-byte blocks.
MC_ALG_AES_192 AES cipher with 192-bit keys and 16-byte blocks.
MC_ALG_AES_256 AES cipher with 256-bit keys and 16-byte blocks.
MC_ALG_SHA1 SHA-1 hash function.
MC_ALG_MD5 MD5 (non-Approved & disallowed) hash function.
MC_ALG_SHA256 SHA-256 hash function.
MC_ALG_SHA384 SHA-384 hash function.
MC_ALG_SHA512 SHA-512 hash function.

Table 4: MC_ALG Values

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 12 of 26

MC_CIPHER_MODE

MC_CIPHER_MODE is an enumerated type that specifies a cipher mode.

Value Meaning
MC_CIPHER_MODE_ECB Electronic Code Book mode, in which each block is

enciphered individually.
MC_CIPHER_MODE_CBC Cipher Block Chaining mode, in which each block of

plaintext is XORed with the previous ciphertext block
(or with an initialization vector) prior to encryption.

Table 5: MC_CIPHER Values

MC_PADDING

MC_PADDING is an enumerated type that specifies the padding mode of a block cipher.

Value Meaning
MC_PADDING_NONE No padding is done to the last cipher block. The input

must be a multiple of the block size.
MC_PADDING_RFC2040 The last block of a message is padded to fill a

complete block. If the message is a multiple of the
block size, an entire block of padding is added to the
ciphertext. Each byte of padding is the number of
unused bytes at the end of the block.

Table 6: MC_PADDING Values

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 13 of 26

MC_STATE

MC_STATE is an enumerated type that describes the state of MOVEit Crypto for the current
process.

Value Meaning
MC_STATE_DISABLED The module is disabled. The process has not attached

to the DLL.
MC_STATE_SELF_TEST The module is undergoing power-up self-test and is

not available for cryptographic operations. (Note: this
state is strictly internal; MOVEit Crypto will never
return this state to the user because it is not possible to
be attached to the module in this state.)

MC_STATE_UNLICENSED The module has passed self-test, but no valid license
key has been entered.

MC_STATE_OPERATE The module is available for all services.
MC_STATE_ERROR An error has occurred during operation.

Cryptographic services are not available.

Table 7: MC_STATE Values

Initialization Functions

MCSetLicenseKey

Checks the caller-supplied license key, and enables the module if it's valid. This function must be
called with a valid license key before any cryptographic services can be used.

MC_ERROR MCSetLicenseKey(const char *szLicenseKey)

szLicenseKey [in] is a vendor-supplied zero-terminated ASCII license key to activate the
product.

Returns an MC_ERROR code (0 for success). If the module is in an error state, the
function returns an error without checking the key. Otherwise, it enables or
disables the module depending whether the key is valid.

Encryption / Decryption Functions

MCEncryptInit

Initializes a context for encryption.

MC_ERROR MCEncryptInit(MC_CONTEXT *context, MC_ALG AlgID, MC_CIPHER_MODE
cipherMode, MC_PADDING padding, void *key, void *IV)

context [out] points to a context to initialize.

AlgID [in] is the encryption algorithm ID (MC_ALG_xxx value).

cipherMode [in] specifies ECB vs. CBC (MC_CIPHER_MODE_xxx value).

padding [in] is the padding type (MC_PADDING_xxx value).

key [in] is the key. The size is implied by AlgID.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 14 of 26

IV [in] is the initialization vector. A NULL pointer implies a vector of all zeros.
The size is always the blocksize of the cipher. The IV is ignored if the mode
is ECB.

Returns an MC_ERROR code (0 for success). If success, context has been initialized,
else it's been zeroed.

MCEncrypt

Encrypts a buffer of bytes. This function can be called repeatedly with buffers of any size.

MC_ERROR MCEncrypt(MC_CONTEXT *context, void *inbuf, int nBytesIn, void *outbuf, int
*pnBytesOut)

context [in, out] points to a context that's been initialized.

inbuf [in] is a buffer of plaintext.

nBytesIn [in] is the number of plaintext bytes. This can be any number >= 0. If
necessary, MOVEit Crypto will store a partial block in the context.

outbuf [out] may contain some output bytes.

pnBytesOut [out] points to the number of output bytes. This may be more or less than
nBytesIn, due to internal buffering of blocks. It will not be more than 16
greater than nBytesIn.

Returns an MC_ERROR code (0 for success). If failure, context has been zeroed.

MCEncryptFinal

Finishes the encryption of a message.

MC_ERROR MCEncryptFinal(MC_CONTEXT *context, void *outbuf, int *pnBytesOut)

context [in, out] points to a context that's been initialized.

outbuf [out] may contain some output bytes, depending on the padding mode and
whether MOVEit Crypto has had to buffer any bytes internally during
previous MCEncrypt calls.

pnBytesOut [out] points to the number of output bytes. It will not be more than 16, and
may be as small as 0 if no internal buffering was done by previous calls.

Returns an MC_ERROR code (0 for success). If failure, context has been zeroed.

MCDecryptInit

Initializes a context for decryption.

MC_ERROR MCDecryptInit(MC_CONTEXT *context, MC_ALG AlgID, MC_CIPHER_MODE
cipherMode, MC_PADDING padding, void *key, void *IV)

context [out] points to a context to initialize.

AlgID [in] is the encryption algorithm ID (MC_ALG_xxx value).

cipherMode [in] specifies ECB vs. CBC (MC_CIPHER_MODE_xxx value).

padding [in] is the padding type (MC_PADDING_xxx value).

key [in] is the key. The size is implied by AlgID.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 15 of 26

IV [in] is the initialization vector. A NULL pointer implies a vector of all zeros.
The size is always the blocksize of the cipher. This is ignored if the mode is
ECB.

Returns an MC_ERROR code (0 for success). If success, context has been initialized,
else it's been zeroed.

MCDecrypt

Decrypts a buffer of bytes. This function can be called repeatedly with any size input. If padding
is in effect, the function does not decrypt the last block's worth of bytes, because it might be the
last block, which would contain padding that needs to be handled differently.

MC_ERROR MCDecrypt(MC_CONTEXT *context, void *inbuf, int nBytesIn, void *outbuf, int
*pnBytesOut)

context [in, out] points to a context that has been initialized for decryption.

inbuf [in] is a buffer of encrypted bytes.

nBytesIn [in] is the number of input bytes. It can be 0, and does not need to be a
multiple of the blocksize.

outbuf [out] may contain some decrypted plaintext.

pnBytesOut [out] points to the number of decrypted bytes that have been placed in
outbuf. One block's worth of plaintext may be buffered in the context, so
you may get up to 15 more or fewer output bytes than input bytes.

Returns an MC_ERROR code (0 for success). If failure, context has been zeroed.

MCDecryptFinal

Finishes the decryption process by decrypting the last buffered block of bytes and zeroing the
context.

MC_ERROR MCDecryptFinal(MC_CONTEXT *context, void *outbuf, int *pnBytesOut)

context [in, out] points to a context that has been initialized for decryption.

outbuf [out] may contain decrypted bytes.

pnBytesOut [out] points to the number of decrypted bytes, which will be from 0 to 16.

Returns an MC_ERROR code (0 for success). context has been zeroed.

Hashing Functions

MCHashInit

Initializes a context for hashing.

MC_ERROR MCHashInit(MC_CONTEXT *context, MC_ALG AlgID)

context [out] points to the context to initialize.

AlgID [in] is the hash algorithm to use (MC_ALG_xxx value)

Returns an MC_ERROR code (0 for success). If success, context has been
initialized, else the hash portions have been zeroed.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 16 of 26

MCHashUpdate

Hashes some data into an initialized context.

MC_ERROR MCHashUpdate(MC_CONTEXT *context, void *inbuf, int nBytesIn)

context [in, out] points to the context.

inbuf [in] points to the bytes to hash.

nBytesIn [in] is the number of bytes to hash.

Returns an MC_ERROR code (0 for success). If success, context has been updated
with the bytes, else the hash portions of the context have been zeroed.

MCHashFinal

Completes the hash process, producing the final hash.

MC_ERROR MCHashFinal(MC_CONTEXT *context, void *outbuf, int *pnBytesOut)

context [in, out] points to the context into which data has been hashed.

outbuf [out] contains the hash. On input, this buffer must be big enough to hold the
hash. Currently, the largest hash size implemented is 64 bytes, which is
larger than the 20-byte limit for MOVEit Crypto 1.1.0.0 and earlier versions.

pnBytesOut [out] points to an integer which has been set to the hash size in bytes. This is
provided so you don't have to know the exact hash size of the algorithm you
chose.

Returns an MC_ERROR code (0 for success). In all cases, the hash portion of
context has been zeroed.

MCKeyedHashInit

Initializes a context for a keyed hash.

MC_ERROR MCKeyedHashInit(MC_CONTEXT *context, MC_ALG AlgID, void *key, int
nKeyBytes)

context [in, out] points to a context to initialize.

AlgID [in] is the hash algorithm on which to base the keyed hash.

key [in] points to the key.

nKeyBytes [in] is the number of bytes in the key.

Returns an MC_ERROR code (0 for success). If success, context has been
initialized, else it has been zeroed.

MCKeyedHashUpdate

Hashes data into a context. The algorithm is the one described in Internet RFC 2202.

MC_ERROR MCKeyedHashUpdate(MC_CONTEXT *context, void *inbuf, int nBytesIn)

context [in, out] is a context that has been initialized by MCKeyedHashInit.

inbuf [in] points to bytes which will be hashed.

nBytesIn [in] is the number of bytes to hash.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 17 of 26

Returns an MC_ERROR code (0 for success). If success, context reflects the input
bytes, else it has been zeroed.

MCKeyedHashFinal

Completes the keyed hashing process, producing the final hash.

MC_ERROR MCKeyedHashFinal(MC_CONTEXT *context, void *outbuf, int *pnBytesOut)

context [in, out] is the context into which bytes have been hashed by
MCKeyedHashUpdate.

outbuf [out] contains the hash. On input, the buffer must be big enough to hold the
hash.

pnBytesOut [out] points to an integer which has been set to the hash size in bytes. This is
provided so you don't have to know the exact hash size of the algorithm you
chose.

Returns an MC_ERROR code (0 for success). context has been zeroed.

Non-approved Pseudo-Random Number Generation Functions

Note that the module is not operating in a FIPS-approved mode when any of the pseudo-random
number generation functions are used. When security is a concern, use a more modern random
number generator from a different module, as is done by MOVEit products.

MCRNGInit

Initializes a context for random number generation. This function sets the FIPS 186-2 random
number generator’s key and seed each to 20 bytes of 0. The key and seed can be subsequently
changed; see MCRNGSetKey and MCRNGSetSeed.

MC_ERROR MCRNGInit(MC_CONTEXT *context)

context [in, out] points to a context to initialize.

Returns an MC_ERROR code (0 for success). If failure, the context has been zeroed.

MCRNGSetKey

Set the random number generator’s key. The seed data is not changed, but users should note that
that the size of the seed must always the same as the size of the key, so the current seed will be
truncated or zero-padded if the key size is changed by this function. The algorithm’s definition
requires the key size to be between 20 and 64 bytes, inclusive.

MC_ERROR MCRNGSetKey(MC_CONTEXT *context, void *keyBytes, int nBytesIn)

context [in, out] points to a context that has been initialized.

keyBytes [in] is a buffer of 0 to 64 bytes, to be used as the new key. For instance, you
might use the time-of-day, the thread id, the amount of free disk space, etc.

nBytesIn [in] is the number of bytes in keyBytes. If it is less than 20, zeros will be
appended to the key, and the key size will be set to 20. Otherwise, nBytesIn
will be the new key size. If nBytesIn is greater than 64, an error will be
returned, and the key will be unchanged.

Returns an MC_ERROR code (0 for success).

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 18 of 26

MCRNGSetSeed

Set the random number generator’s seed. Note that the algorithm’s definition requires the seed
size to be the same as the key size. This function changes the contents of the seed, but not the
length of the seed. Use MCRNGSetKey if you need to change the size of the key and seed.
Calling MCRNGSetSeed is optional; if it is not called, the seed will be an array of zero bytes the
same size as the key.

MC_ERROR MCRNGSetSeed(MC_CONTEXT *context, void *seedBytes, int nBytesIn)

context [in, out] points to a context that has been initialized.

seedBytes [in] is a buffer of 0 to 64 bytes, to be used as the new seed. For instance, you
might use the time-of-day, the thread id, the amount of free disk space, etc.

nBytesIn [in] is the number of bytes in seedBytes. If it is greater than the current key
(and seed) size, an error will be returned, and the seed will be unchanged. If
it is less than the current key size, zeros will be appended to the supplied
seed to make it the same size as the key. Otherwise, the seed will be set to
seedBytes without modification.

Returns an MC_ERROR code (0 for success).

MCRNGUpdate

Updates the random number generator with external values. This is a routine can be called
repeatedly, at any time after initialization, to supply the generator with additional input. The
input is hashed into the existing key, and the seed is unchanged.

This is a convenience function that is not necessary for the correct operation of the RNG. It is
provided because often the caller will have a large amount of low-entropy data, rather than a
small amount of high-entropy data as would normally be desired for a key. This function allows
a large amount of data to be added into the key. The alternative to calling MCRNGUpdate is for
the user to distill the large amount of data into a small block of data--possibly by calling a hash
function--and then call MCRNGSetKey with the distilled data.

MC_ERROR MCRNGUpdate(MC_CONTEXT *context, void *userBytes, int nBytesIn)

context [in, out] points to a context that has been initialized.

userBytes [in] is a buffer with information to be incorporated into the key. For
instance, you might use the time-of-day, the thread id, the amount of free
disk space, etc.

nBytesIn [in] is the number of bytes in userBytes.

Returns an MC_ERROR code (0 for success). If failure, the context has been zeroed.
Otherwise, the key information has been merged into the appropriate portion
of the context.

MCRNGGenerate

Generates a user-specified number of pseudo-random bytes. If no calls are made to
MCRNGSetKey, MCRNGSetSeed, or MCRNGUpdate prior to MCRNGGenerate, the numbers
generated by MCRNGGenerate will be a specific, predictable sequence.

MC_ERROR MCRNGGenerate(MC_CONTEXT *context, int nBytesDesired, void *bufout)

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 19 of 26

context [in, out] points to a context that has been initialized and, preferably, also
updated via MCRNGSetKey, MCRNGSetSeed, and/or MCRNGUpdate.

nBytesDesired [in] is the number of random bytes desired.

bufout [out] holds the generated bytes.

Returns an MC_ERROR code (0 for success). If failure, the context has been zeroed.

MCRNGFinal

Finalizes the random number generation process. This simply zeros the context.

MC_ERROR MCRNGFinal(MC_CONTEXT *context)

context [out] is a context to zeroize.

Returns MC_ERROR_NONE.

Miscellaneous Functions

MCGetState

Returns the current state. This is the "Show Status Service."

MC_STATE MCGetState()

Returns the current state, as a MC_STATE_xxx value. Note that not all states can be
returned, because in some states, the module cannot be attached and therefore
the function cannot be called. This function works even if the module is in
an error or unlicensed state.

MCZeroizeContext

Zeroizes the context.

MC_ERROR MCZeroizeContext(MC_CONTEXT *context)

context [out] has been zeroed.

Returns an MC_ERROR code (0 for success).

MCGetVersion

Returns the version number of the module.

char * MCGetVersion()

Returns a pointer to a zero-terminated ASCII string in the form a.b.c.d, where a, b, c,
and d are integers from 0 to 65535. This function returns the version even if
the module is unlicensed or in an error state, in order to assist the user in
problem resolution.

MCSelfTest

Performs a self-test of the module--the same self-test as performed at power-up. This is the "Self-
Test Service."

MC_ERROR MCSelfTest()

Returns an MC_ERROR code (0 for success). If the test fails, the module has entered
the error state.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 20 of 26

C++ Wrapper Class

For the convenience of C++ developers, the authors of MOVEit Crypto have provided a simple
C++ class that acts as a very thin wrapper to the C-based API. This class, CMOVEitCrypto,
contains methods with the same names and parameters as the MCxxx functions described above,
except that there is no context parameter, and the letters "MC" are stripped from the names of the
functions. The context is maintained in a member variable, which is automatically zeroed in the
destructor.

CMOVEitCrypto is defined entirely within MOVEitCrypto.h, and is therefore not part of the
cryptographic module. Thus, the CMOVEitCrypto class is not validatable.

The methods of this wrapper class are:

 CMOVEitCrypto(); // Constructor
 ~CMOVEitCrypto(); // Destructor

 MC_ERROR EncryptInit(MC_ALG EncAlgID,
 MC_CIPHER_MODE cipherMode, MC_PADDING padding, void *key, void *IV);
 MC_ERROR Encrypt(void *inbuf, int nBytesIn, void *outbuf, int *pnBytesOut);
 MC_ERROR EncryptFinal(void *outbuf, int *pnBytesOut);
 MC_ERROR DecryptInit(MC_ALG EncAlgID,
 MC_CIPHER_MODE cipherMode, MC_PADDING padding, void *key, void *IV);
 MC_ERROR Decrypt(void *inbuf, int nBytesIn, void *outbuf, int *pnBytesOut);
 MC_ERROR DecryptFinal(void *outbuf, int *pnBytesOut);

 MC_ERROR HashInit(MC_ALG HashAlgID);
 MC_ERROR HashUpdate(const void *inbuf, int nBytesIn);
 MC_ERROR HashFinal(void *outbuf, int *pnBytesOut);

 MC_ERROR KeyedHashInit(MC_ALG HashAlgID, const void *key, int nKeyBytes);
 MC_ERROR KeyedHashUpdate(const void *inbuf, int nBytesIn);
 MC_ERROR KeyedHashFinal(void *outbuf, int *pnBytesOut);

 MC_ERROR RNGInit();
 MC_ERROR RNGSetKey(void *keyBytes, int nBytesIn);
 MC_ERROR RNGSetSeed(void *seedBytes, int nBytesIn);
 MC_ERROR RNGUpdate(void *userBytes, int nBytesIn);
 MC_ERROR RNGGenerate(int nBytesDesired, void *bufout);
 MC_ERROR RNGFinal();

 MC_ERROR ZeroizeContext();
 MC_STATE GetState();
 char *GetVersion();
 MC_ERROR SetLicenseKey(const char *szLicenseKey);
 MC_ERROR SelfTest();

Key Management
MOVEit Crypto performs limited key management, as described below.

Because the module is a dynamically-linked library, each process requesting access is provided
its own instance of the module. Each process has full access to all the keys and data within the
module.

The module contains only keys or data placed into the module via the services described in this
document. No keys or data are automatically maintained by the module, or maintained after a
process detaches from the module.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 21 of 26

Key Generation

The module does not provide key generation. All keys must be entered by the user.

Key Material and Key Storage

The module does not provide any persistent storage of key material. Keys are entered by the user
only via API calls. This entry falls under FIPS 140-2 IG 7.7 scenario “CM Software to/from
App Software via GPC INT Path”. Key material is stored in the context, which is maintained in a
user-supplied data structure passed in each API call. No key material is maintained inside the
module between API calls. All key material is passed into and out of the module in plaintext
form.

The only key material used by the module outside of the user-supplied context is that stored
temporarily in local variables on the stack. Any local variables containing sensitive information
are zeroed by the module before a function call returns to the user's code.

The module relies upon operating system memory protection to prevent processes from accessing
each other's key material. To ensure that other processes cannot access keys and data, the caller
must not use shared memory. Also, the operating system page file must not be configured to
reside on a network drive.

Key Zeroization

Each MOVEit Crypto API call zeros the context before returning to the user, if the context is no
longer needed (as in the Final calls), or if an error occurs. Additionally, the user may call
MCZeroizeContext at any time to zero a context. Ordinarily, this is not necessary, since the user
will normally call one of the Final functions at the end of processing.

Self-Tests
As required by FIPS 140-2, MOVEit Crypto automatically performs both power-up self-tests, and
for certain algorithms, continuous self-tests during operation.

Power-up Self-Tests

For this module, "power-up" is when a process attempts to attach to the module. At this time,
MOVEit Crypto performs these types of tests:

Software integrity test. MOVEit Crypto computes a keyed hash of the module and compares
it to an embedded keyed hash that was placed into the module when it was produced. If the
computed keyed hash differs from the keyed hash hard-coded into the module, the test fails. The
HMAC-SHA-1 algorithm described in FIPS PUB 198-1 is used.

Known Answer Test. MOVEit Crypto performs known answer tests for the approved
algorithms AES, SHA-1, SHA-256, SHA-384, SHA-512, HMAC-SHA-1, HMAC-SHA-256,
HMAC-SHA-384, and HMAC-SHA-512. Known answer tests are also done for the unapproved
algorithms MD5, HMAC-MD5, and FIPS PUB 186-2 Change Notice 1 random number
generation. If the computed result differs from the expected result hard-coded into the module,
the test fails. The random number generation test is performed by entering a fixed seed and
comparing the resulting pseudo-random numbers to a known result. MOVEit Crypto also
performs an encrypt/decrypt test in which a buffer is encrypted and decrypted in chunks. The
decrypted result is compared to the original plaintext. If the decrypted result is different than the
original plaintext, the test fails.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 22 of 26

If any of these tests fails, MOVEit Crypto returns to the disabled state, and in the case of the
Windows version, refuses to allow the process to attach to the module. Thus, the cryptographic
services are not available. To correct the problem, the cryptographic officer should reinstall the
module.

Conditional Self-Tests

During operation, MOVEit Crypto performs one type of ongoing test. Whenever a block of
pseudo-random bytes is generated as a result of a call to MCRNGGenerate, the block is compared
to the previous block. If the two match, the module enters the error state, and will no longer
perform any cryptographic services. (Certain non-cryptographic utility functions remain
available, namely MCGetState and MCGetVersion.) Once the module is in the error state, it
remains in the error state until the process detaches from the module. To correct the problem, a
process should detach from and reattach to the module. Usage of the RNG is non-Approved and
disallowed in the Approved mode of operation.

User Guidance

Choice of Algorithms and Key Lengths

The recommended values for AES encryption parameters are:

Key size 256 bits. There is only a small performance penalty
associated with longer AES key sizes. Encryption with 256-
bit keys is about 25% slower than with 128-bit keys.

Cipher mode CBC. CBC is much more secure than ECB, as it hides
plaintext patterns from attackers. The extra performance
overhead of CBC is negligible.

Padding Application dependent; RFC 2040 padding is more
convenient for most applications, because it does not force
you to restrict your messages to multiples of the block size.
The extra performance overhead of RFC 2040 padding is
minor.

 Table 8: Recommended AES Parameters

For example:

MC_ERROR mcerror = MCEncryptInit(&context, MC_ALG_AES_256, MC_CIPHER_MODE_CBC,
MC_PADDING_RFC2040, key, IV);

Non-approved Pseudo-Random Number Generator Seeds

A calling application can request the module's pseudo-random number generator (RNG)
whenever it requires random data. The RNG is not allowed to be used in the module’s Approved
mode of operation for key generation or any other cryptographic operations. Usage of the RNG
in general, regardless of how it has been seeded, does not provide any assurance to the strength of
the generated, non-approved keys. If the RNG is used for key generation or other cryptographic
operations, it is important that the generator be seeded with unpredictable values. There are many
sources of pseudo-random data on a computer, including the time-of-day, the number of
milliseconds since boot, the amount of time it takes to create a thread, the contents and attributes

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 23 of 26

of files, the values of performance counters, and even the hardware RNG on some Intel Celeron
and Pentium III chipsets. For cryptographic applications, it is important to use as much pseudo-
random data as reasonably possible when seeding a RNG.

Protecting Keys and Data

Although MOVEit Crypto is careful to zeroize its own copies of sensitive information, it has no
control over keys and data managed by the calling application. For maximum security, be sure to
zeroize all copies of key material and plaintext data when they are no longer needed by the
application. This applies to memory, disk, and other forms of storage. Be aware that simply
deleting files or returning allocated memory buffers to the system will not destroy the data.

MOVEit Crypto Context

The layout of MC_CONTEXT may change from one release of the module to another. For this
reason, and for security reasons, the context must not be saved between invocations of a program.

Crypto Officer Guidance
With respect to the MOVEit Crypto module, the responsibilities that apply to a cryptographic
officer that do not apply to a user are:

- Installing or uninstalling the module.

- Configuring the operating system.

Since MOVEit Crypto does not, by itself, persistently store any keys or sensitive information on
the system, no special action need be taken to administratively protect such information.
However, be aware that applications using the module may store sensitive information on their
own.

Guidance for Windows

MOVEit Crypto is installed only as part of installation programs for certain other products. You
must be logged in as an Administrative user to install the module, and you must have write access
to the Windows system directory, as well as other directories selectable during the install.

To uninstall the module, use the Control Panel Add/Remove Programs applet and uninstall the
product with which MOVEit Crypto was installed. If multiple products containing MOVEit
Crypto have been installed, you must uninstall them all to remove MOVEit Crypto.

It is recommended that the cryptographic officer configure the operating system to minimize the
likelihood that an attacker could obtain sensitive information from system paging or dump files.
This can be done by setting certain registry values:

- Set HKEY_LOCAL_MACHINE \ SYSTEM \ CurrentControlSet \ Control \
CrashControl \ CrashDumpEnabled to 0. This is a REG_DWORD value.

- Set HKEY_LOCAL_MACHINE \ SYSTEM \ CurrentControlSet \ Control \
Session Manager \ Memory Management \ ClearPageFileAtShutdown to 1. This is a
REG_DWORD value.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 24 of 26

Guidance for Linux

Install / Uninstall

MOVEit Crypto is installed only as part of installation programs for certain other products. You
must be logged in as a root user to install the module.

To uninstall the module, follow the instructions for uninstalling the product with which MOVEit
Crypto was distributed.

Preventing core Files

It is recommended that the cryptographic officer ensure that users are not configured to produce
"core dump" files when their application faults, unless this capability is necessary during
development and testing. The resulting core dump files can contain sensitive information,
including keys and data.

Many systems are configured to not create core files by default, but the cryptographic operator
may want to modify the user's configuration to ensure this. The method of preventing "core" files
from being produced depends on which shell is being used by the user in question.

For users running the bash shell, which is the default under Red Hat Linux, the cryptographic
officer can add the line

ulimit -c 0

to the end of the .bashrc file for the user in question to prevent creation of core dump files.

For users running csh or tsch, the cryptographic officer can add the line

limit coredumpsize 0

to the end of the .cshrc file for the user in question to prevent creation of core dump files.

Other Linux Security Measures

The cryptographic officer should ensure that the file /etc/ld.so.preload does not exist (by default it
does not exist). This will help prevent other libraries from usurping the functions used by
MOVEit Crypto.

Miscellaneous

Mitigation of Specific Attacks

MOVEit Crypto is not designed to mitigate specific attacks.

Tabular Summaries
As required by FIPS 140-2 Derived Test Requirements, here are tables summarizing certain
aspects of the security policy:

Role Type of Authentication Authentication Data

User None N/A

Crypto Officer None N/A

 Table 9: Roles and Required Identification and Authentication

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 25 of 26

Authentication Mechanism Strength of Mechanism

User None

Crypto Officer None

 Table 10: Strengths of Authentication Mechanisms

Role Authorized Services

User All

Crypto Officer All

 Table 11: Services Authorized for Roles

Service Cryptographic Keys and
Critical Security
Parameters

Type(s) of Access (e.g.,
Read, Write, Execute)

MCEncryptInit,
MCDecryptInit

Encryption keys W

MCEncrypt, MCDecrypt Encryption keys E

MCEncryptFinal,
MCDecryptFinal

Encryption keys WE (W to zeroize only)

MCKeyedHashInit HMAC keys W

MCKeyedHashUpdate HMAC keys E

MCKeyedHashFinal HMAC keys WE (W to zeroize only)

MCZeroizeContext Encryption keys and
HMAC keys

W (to zeroize only)

MCSelfTest Built-in HMAC key for
software/firmware test1

E

All other None N/A

Table 12: Access Rights within Services

1 This built-in HMAC key is hard-coded into the module and can’t be zeroized, which is acceptable per
FIPS 140-2 IG 7.4 as it’s only used in the power-up self-tests.

Progress Software MOVEit Crypto Non-proprietary Security Policy Page 26 of 26

Physical Security
Mechanisms

Recommended
Frequency of Inspection
/ Test

Inspection / Test
Guidance Details

None N/A N/A

Table 13: Inspection/Testing of Physical Security Mechanisms

Other Attacks Mitigation Mechanism Specific Limitations

None N/A N/A

Table 14: Mitigation of Other Attacks

