
December 14, 2000

Manual Rev 99a28 6 June 00
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the
U.S. or Canada.

U.S. Patent Nos. 4,555,775; 5,157,663; 5,349,642; 5,455,932; 5,553,139; 5,553,143; 5,594,863; 5,608,903;
5,633,931; 5,652,854; 5,671,414; 5,677,851; 5,692,129; 5,758,069; 5,758,344; 5,761,499; 5,781,724; 5,781,733;
5,784,560; 5,787,439; 5,818,936; 5,828,882; 5,832,275; 5,832,483; 5,832,487; 5,859,978; 5,870,739; 5,873,079;
5,878,415; 5,884,304; 5,893,118; 5,903,650; 5,905,860; 5,913,025; 5,915,253; 5,925,108; 5,933,503; 5,933,826;
5,946,467; 5,956,718; 5,974,474. U.S. and Foreign Patents Pending.

Novell, Inc.
1800 South Novell Place
Provo, Utah 84606
U.S.A.

www.novell.com
NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
Novell Trademarks

For a list of Novell trademarks, see the final appendix of this book.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.
NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Contents

Manual Rev 99a28 6 June 00
Foreword 7

1 Introduction 9
1.1 Overview of FIPS 140-1 Categories . 10

2 Cryptographic Channels 11
2.1 Data Input/Output Channel. 11
2.2 Command/Status Channel . 11

3 Security Requirements 13
3.1 Cryptographic Modules. 13
3.2 Module Interfaces . 13
3.3 Roles and Services. 14

3.3.1 User Role . 14
3.3.2 Crypto Officer Role . 14

3.4 Cryptographic Key Management . 14
3.4.1 FIPS Approved Key Generation . 15
3.4.2 Key Distribution . 15
3.4.3 Key Entry and Output. 17
3.4.4 Key Storage . 18
3.4.5 Key Destruction. 19

3.5 Self-Test . 20
3.5.1 Startup Self-Tests . 20
3.5.2 Conditional Self Tests . 21

4 Operating Modes 23
4.1 FIPS-Approved Algorithms . 23

A Appendix A -- CCS API Definitions 25
Contents 5

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
6 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
Foreword

This document describes the functionality of Novell® International
Cryptographic Infrastructure (NICI) in compliance with requirements of the
Federal Information Processing Standard (FIPS) 140-1 standard for
cryptography.

The cryptographic standards implemented within NICI will help ensure that
cryptographic products developed according to FIPS standards will be
interoperable industry-wide.
Foreword 7

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
8 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
1 Introduction

Novell® International Cryptographic Infrastructure (NICI) consists of a set of
modular components that have been implemented on a number of different
platforms. Server-oriented versions have been implemented on Novell
NetWare®, Microsoft* Windows* NT* 4.0, and Sun* Solaris* 2.6, with other
hardware platforms and operating systems in process. Client-oriented versions
have been implemented on Windows 95/98 and Windows NT to date.

The present version of the NICI code supports:

� DES (FIPS 46-3 and 81)

� Triple-DES

� SHA-1 (FIPS 180-1)

� RSA (X9.31)

Non-FIPS approved algorithms that also are supported include:

� Diffie-Helman (PKCS#3)

� RSA* encryption/decryption (PKCS#1)

� MD2

� MD4

� MD5

� HMAC-MD5

� HMAC-SHA-1

� RC2

� RC4

� RC5
Introduction 9

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
� CAST128

� PKCS#12 Password Based Encryption (PBE)

� UNIX* Crypt

� LMdigest (CIFS)

� TLS-KeyExchange-RSASign

� NetWarePassword

1.1 Overview of FIPS 140-1 Categories

The Novell NICI 2.0 Client Security Policy for Windows 95/98 conforms to
FIPS 140-1 Level 1, as shown in the following table, with category levels
tested for the NICI 2.0 Windows 95/98 Client.

Table 1 FIPS 140-1 Test Category Levels

FIPS140-1 Test Category Level

Cryptographic Modules 1

Module Interfaces 1

Roles and Services 1

Finite State Machine Model 1

Physical Security 1

Software Security 1

Operating System Security 1

Key Management 1

Cryptographic Algorithms 1

EMI/EMC 1

Self Tests 1
10 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
2 Cryptographic Channels

FIPS 140-1 defines a cryptographic boundary, and as well as channels though
which information is allowed to enter and leave the cryptographic boundary.
Defining such channels is normally straightforward for developers of
hardware modules, but developers of software modules are faced with the task
of choosing an appropriate set of channel definitions.

2.1 Data Input/Output Channel

FIPS 140-1 requires the definition of Data Input/Output (I/O) and Command/
Status channel interfaces. NICI defines these interfaces through the Controlled
Cryptographic Services API. The API provides the means to input and output
data and to determine the status of the module. The Data Input/Output and the
Status interface are active only during the User and Crypto Officer States.

2.2 Command/Status Channel

The FIPS 140-1 Control interface is used to initiate the NICI Module. It is
activated by the operating system when an application program asks the
operating system to attach NICI and causes it to commence operation. It may
also be activated when the operating system commands NICI to shut down.
Otherwise, it is active only during the User and Crypto Officer States, if and
when commands are issued via the API in the form of procedure calls. A
selected API call initiates a specific action, which constitutes “control.”

It should be noted that, under this definition of what constitutes a “channel,”
such I/O ports that might be considered channels in other contexts are not
FIPS 140-1 channels.
Cryptographic Channels 11

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
In particular, this applies to the internal I/O channel or bus, to any networking
or other cards or boards with external interfaces, and to any internal
cryptographic processors or accelerators that do not have their own
independent I/O (external) ports. This would also apply to the case of a
removable Smart Card or removable PCMCIA bus card, which would be
considered inside of the cryptographic module boundary when it is in use.
12 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
3 Security Requirements

3.1 Cryptographic Modules

NICI consists of a set of software modules designed to run on a wide variety
of modern operating systems and hardware platforms. This particular Security
Policy document pertains to the NICI configuration, running on a Windows*
95/98 platform, which is a VXD primer. In FIPS 140-1 terms, NICI consists
of a set of hardware, software, and firmware that make up a “multi-chip
standalone module.”

The cryptographic boundary is effectively the outer cabinet that contains the
computer, including the CPU processor(s), any and all storage media (hard
disks, diskettes, etc.), any embedded cryptographic accelerators or smart
cards, and any network ports or other forms of interfaces. Since NICI must be
able to store at least one permanent key, the Key Storage Keys, in order to be
able to securely wrap and unwrap other keys, that key is stored in an
obfuscated form, along with a backup version.

3.2 Module Interfaces

NICI meets the FIPS 140-1 Level 1 requirements for Roles and Services,
including provision of one or more User roles and a Crypto-Operator role.

In the case of a User, all functions are exercised through a common
Application Programming Interface (API). The packaging of these systems
may vary, depending on the operating systems’ platform characteristics.
Access to the NICI functionality is provided by API calls from both
C-language and Java* programs.
SecurityRequirements 13

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
In the case of a Crypto Operator, some functions are exercised through the
same API, but other functions—such as installing the system, installing the
license materials, and zeroizing the permanent Key Storage Keys—are carried
out by separate programs that only the Crypto Operator can exercise.

3.3 Roles and Services

Novell NICI 2.0 is FIPS 140-1 Level 1 compliant for Roles and Services. The
available services are documented in Appendix A, “Appendix A -- CCS
API Definitions,” on page 25.

3.3.1 User Role

A single User role is supported in NICI. A “User” is an application program,
running as a single process (but perhaps multi-threaded), that has been linked
with the Novell NICI interface library. After authentication to the User state,
the User program is able to perform crypto operations via the API set defined
in the Controlled Cryptography Services Software Development Specification
(CCS) document.

3.3.2 Crypto Officer Role

A single Crypto Officer role, the NICI Administrator, is supported in NICI.
The purpose of the NICI Administrator is to set up, configure, and reconfigure
the NICI software. In addition, the Crypto Officer can migrate or clone a given
NICI server (or client) from one platform to another, even across operating
systems and hardware platforms, and after the process has completed, zeroize
the obfuscated Key Storage Keys of the original NICI instance if required.

3.4 Cryptographic Key Management

NICI provides extensive cryptographic key management services and
facilities, and is unique in addressing these requirements from a cross-
platform, general-purpose networking perspective. Compatible key
management is provided for all cryptographic modules, including client and
server implementations, on all supported platforms and for all algorithms,
including secret key (symmetric) and public key (asymmetric) algorithms.
Secret keys and private key are protected from unauthorized disclosure,
modification, and substitution. Public keys are protected against unauthorized
modification and substitution.
14 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
The Cryptography Manager (XMGR) function within NICI is exclusively
responsible for implementing all key management functions, enforcing key
use policies, and providing algorithm management services to the XLIB and
other XMGR layer.

3.4.1 FIPS Approved Key Generation

The G function in the pseudo-random generator described in FIPS 186-2 is
constructed using the SHA-1 hash function with b=512. See (http://
csrc.nist.gov/fips/fips186-2.pdf). The “mod q” operation was eliminated by
choosing q > 2512.

The distributed seed material and installation time entropy is thoroughly
mixed together using the FIPS-approved PRNG algorithm to create a
cryptographic master seed, from which several unique working key
generation seeds for each class of cryptographic keys are generated by NICI.
Once the different working key generation seeds have been generated,
individual keys and random numbers are themselves derived
cryptographically using the same FIPS-approved key generation algorithm.

3.4.2 Key Distribution

3.4.2.1 NICI Wrapped Keys

Wrapping of keys is the mechanism that NICI provides for applications to
obtain the value of secret or private keys for storage outside of NICI or for
distribution among different instances of NICI. Various keys are provided by
NICI for wrapping other keys. The same key (or corresponding private key of
the same key pair) must subsequently be used to unwrap a wrapped key in
order for it to be reloaded into NICI.

The key-management keys discussed below are all generated using algorithms
from among the installed XENG modules, and with attributes conforming to
the key usage policies that are in effect for key management. Those that are
described below as being persistent are stored securely by NICI as an integral
part of its infrastructure to persist across system shutdowns and restarts.
SecurityRequirements 15

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
No means is provided for unauthorized applications to obtain any of the secret
or private key-management keys (persistent or transient, wrapped or
unwrapped) for storage or distribution outside of NICI. For purposes of
distributing NICI’s internal key-management keys as a part of system
initialization, interfaces, known as XINIT modules, for wrapping and
unwrapping them are provided for use only by other portions of the operating
system that are trusted to participate in the initialization of NICI and its
environment.

Key-wrapping keys may also be generated at the request of applications,
which are then responsible for their secure storage (for example, by wrapping
with any of the keys described in this section).

3.4.2.2 NICI Session Keys Session Keys

A unique session key is shared between a NICI client workstation and each
NICI server instance. Session keys are intended only for wrapping of keys for
distribution between clients and servers or between two servers. Each session
key generated by the server is a transient symmetric key.

3.4.2.3 Key Wrapping Attributes

When a key is wrapped for storage or transmission outside of NICI, sensitive
attributes such as secret or private key values are encrypted, and an integrity
check value is used to protect the integrity of all attributes. Nonsensitive
attributes can be stored in the clear outside NICI. (NICI public-key key-
wrapping keys are stored or transmitted outside of NICI in X.509-compliant
certificates for which NICI itself is the certification authority. These keys may
not be used as server or end-user keys.)

An integrity check value, which is calculated cryptographically based on a
symmetric wrapping key, ensures both the integrity of the key (that the key’s
attributes have not been accidentally or intentionally modified) and the
authenticity of the key (that it originated in NICI and was not crafted outside
of NICI).
16 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
However, keys that are wrapped using a public key cannot have their
authenticity guaranteed without some additional mechanism that makes use of
either a secret or private key whose value is not exposed outside of NICI. For
example, a digital signature would serve this purpose. Such signatures are not
required as part of the wrapping mechanism because that would excessively
limit the flexibility and use of the key distribution mechanism in NICI, as well
as the possible performance impact.

Therefore, at the discretion of the application requesting the wrapping, the
integrity check value on a wrapped key’s attributes may optionally be
calculated using one of NICI’s internal secret key-management or private CA
keys described above, independent of the wrapping key that the application
uses to protect sensitive key attributes. If the private CA key is used, a digital
signature is then used as the integrity check value in the wrapped key. If a
secret key is used, the integrity check value is a form of message
authentication code (MAC) and the secret key here is called a sealing key. In
either case, any instance of NICI that possesses the same key-management key
or corresponding CA public key can then depend on the integrity of the
associated attributes when reloading the wrapped key. Otherwise, these
attributes must be considered only advisory in nature.

To maintain the integrity of NICI’s own protection mechanisms, keys whose
authenticity is not assured by one of the mechanisms described here cannot be
used to wrap other keys or to generate or verify NICI public-key certificates.

3.4.3 Key Entry and Output

NICI does not possess a manual key entry method; all keys are entered
electronically. Aside from the Crypto Operator’s role in distributing
configuration data (used under the control of the Crypto Operator at
installation time), all keys are entered under the User’s control via the API
interface.

There should seldom, if ever, be a requirement for a User to directly enter into
or output from NICI a raw, plaintext private or secret key.

There are two exceptions to this general rule. The first is for compatibility with
other systems, where the human user has a personal cryptographic key and no
way to securely store it except for a password-based encryption mechanism.

The second is not really a key injection or extraction per se, but rather a
protocol-dependent key distribution mechanism which NICI itself does not
yet support directly, via a Cryptographic Library (XLIB). The integrity and the
confidentiality of such are provided by the protocol.
SecurityRequirements 17

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
3.4.3.1 Password-Based Encryption (PBE) Wrapped Keys

Password-Based Encryption (PBE) is frequently required when interfacing
with other, non-NICI systems such as browsers, S/MIME e-mail clients, and
certain authentication methods. Since many of these applications are
software-based, and since most of them run on non trusted platforms such as
Windows 95/98, the only economically feasible way of protecting those keys
is to use a Password-Based Encryption mechanism.

NICI implements the PKCS #12 recommendation for password-based
encryption and decryption. With this scheme, the key to be protected is
encrypted in a randomly generated intermediate key of suitable strength
(depending on export requirements and algorithm availability). The
intermediate key is created by hashing an arbitrarily long password or
passphrase entered by the user, and then truncating the key as required to meet
the key management policy constraints. PKCS #12 builds into this scheme a
deliberate slow-down mechanism that requires hashing and rehashing the
password many, many times before decrypting the intermediate key. This is to
provide some level of protection against an off-line password guessing attack.
The time taken is small by human standards (a second or less) but the amount
of computer time required to do an exhaustive search would be very large.

3.4.3.2 Key Injection and Extraction

The NICI CCS API defines key injection and extraction functions, but their
use is not recommended.

3.4.3.3 Protocol Support

At the present time, protocol support for unwrapping keys that have been
wrapped in a User’s private key has been provided for SSL, IPSEC, and IKE.

3.4.4 Key Storage

When keys have been unwrapped within NICI (that is, within the confines of
the NICI cryptographic module boundaries), they are kept in the clear (in
plaintext form) in order to minimize the latency and overhead when using
them.
18 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
3.4.4.1 Key Storage Keys

As mentioned previously, the server’s Key Storage Keys are written to the
operating system, which is protected against unauthorized access. However,
because of the importance of this key, it is also thoroughly obfuscated, in a
manner intended to require very considerable reverse engineering to break.

Whenever a Key Storage Key is used to wrap another key for storage, the Key
ID of that Key Storage Key is included in the wrapped key. In this manner, any
previously generated, wrapped, and stored keys will be accessible, even if a
new Key Storage Key is generated later. The KeyID contained in the wrapped
key format also includes a unique ID to that particular machine and process,
in order to help ensure that the correct Key Storage Key is being used to
unwrap a particular key. At a minimum, this protects against the possibility
that the wrapped key has been moved, migrated, or merged onto a new server,
perhaps along with the data it protects, but somehow the correct Key Storage
Key has been left behind. The integrity check in wrapped keys will catch this.

If some form of compromise of the Key Storage Key file should occur, all
previously generated and wrapped keys on that server would potentially be
compromised as well. This is unavoidable in a software-based key
management system. However, because of the entropy added at NICI
installation time, the attacker would not gain access to the new keys, except
by reattacking the Key Storage Key file.

3.4.5 Key Destruction

When the particular NICI context associated with the usage of a set of keys is
closed, all keys associated with that context within NICI are zeroized in
memory. When NICI itself is closed within a given process, assuming it is
closed gracefully and not by a system crash or power outage, all keys in all
contexts are zeroized.

The destruction of the current and all previous Key Storage Keys in the Key
Storage Keys file should be an extremely rare event, since it would effectively
make it impossible to recover any previously wrapped keys. The only time this
would be likely to occur would be if a particular machine were to be
decommissioned and taken out of service, presumably after all of the
information had been migrated to another machine.
SecurityRequirements 19

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
Since the ability to zeroize all keys might make possible a very serious Denial
of Service attack, NICI does not provide a specific tool or function to cause
this to occur. Instead, in this event it is the Crypto Operator’s responsibility to
perform a complete low-level hardware formatting and reinitialization of the
hard disk, thoroughly scrubbing the disk to make certain there is no readable
residue. Various commercially available file scrubbing utilities can be used to
perform this task.

3.5 Self-Test

NICI conforms to the FIPS 140-1 Level 1 requirements for self-test.

The required startup self-tests are performed every time the NICI is started by
the operating system, prior to transitioning to the User state. If the self-tests do
not run correctly, NICI will not start, and an error indication will be returned
via the API if NICI is called.

3.5.1 Startup Self-Tests

NICI satisfies the requirements for FIPS 140-1 Level 1 for Power-Up Self-
Tests

3.5.1.1 Cryptographic Algorithms Test

The SHA1 test runs the known answer tests described in Appendices A and B
of FIPS Publication 180-1, Secure Hash Standard. See (http://
www.itl.nist.gov/fipspubs/fip180-1.htm) or (http://csrc.nist.gov/fips/fips180-
1.pdf).

DES and triple DES run the known answer tests described in NIST Special
Publication 800-20, Table A.4, rounds 0 through 18. Both DES and Triple
DES are operating in CBC mode with only an eight-byte IV. In the case of
triple DES, the key in Table A.4 is repeated three times so as to test Encrypt-
Decrypt-Encrypt with the same key in each stage. Similar procedures are in
effect for RSA (X9.31).

3.5.1.2 Critical Functions Test

The nature and design of NICI precludes successful completion of the
cryptographic algorithm tests and the Software/Firmware tests without all
critical functions operating properly. Successful completion of these tests is
sufficient to indicate that all critical functions are operating properly.
20 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
3.5.2 Conditional Self Tests

The following tests are performed as specified for each test.

3.5.2.1 Pair-Wise Consistency Tests for Public/Private Key Pairs

When a public/private key pair is generated, the key pair is tested for pair-wise
consistency. The public key is used to encrypt a plaintext value and checked
to ensure that an identity mapping did not occur, and then the private key is
used to decrypt that value and the value compared to the original. If the values
are not identical, the test fails. If the keys are to be used only for the calculation
of a signature, then the consistency is tested by the calculation and verification
of a signature. These tests are applied to RSA keys.

3.5.2.2 Software/Firmware Load Tests

At present, the NICI module is a self-contained unit (a device driver, VXD),
and no other modules are loaded by NICI. Therefore, these tests are not
applicable to NICI.

3.5.2.3 Continuous Random Number Test

The continuous random number generator tests specified in FIPS PUB 140-1.
Security Requirements for Cryptographic Modules, Section 4.11.2 (see (http:/
/www.itl.nist.gov/fipspubs/fip140-1.htm) or (http://csrc.nist.gov/fips/fip140-
1.pdf)) will be applied to the operating specific random entropy generator
routines prior to their being used to generate a cryptographic key, seed, or
cryptographic random number. They will be applied independently, both
before and after any cryptographic processing to add entropy or whitening.
This will test both the entropy generator and the results of the key generation
function.
SecurityRequirements 21

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
22 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
4 Operating Modes

4.1 FIPS-Approved Algorithms

It is the application programmer’s responsibility to only use FIPS approved
algorithms if FIPS 140-1 Mode is required. See (http://www.itl.nist.gov/
fipspubs/fip140-1.htm). The CMVP supports a Web site that lists the current
approved FIPS algorithms (http://csrc.nist.gov/cryptval).
Operating Modes 23

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
24 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
A Appendix A -- CCS API Definitions

For complete descriptions, please refer to the Controlled Cryptography
Services Software Development Specifications document available from
Novell.

API Description

CCS_Init Initializes the CCS library

CCS_Shutdown Closes the CCS library

CCS_GetInfo Return information about the CCS
interface

CCS_GetPolicyInfo Determines the policy constraints on
key attributes for a given key type and
usage

CCS_GetKMStrength Returns the key management strength
level

CCS_GetRandom Returns a random number

CCS_GetAlgorithmInfo Obtain information about a specific
algorithm.

CCS_GetAlgorithmList Obtain information about the
algorithms available in the system.

CCS_GetMoreAlgorithmInfo Obtain variable-length information
about an algorithm.

CCS_CreateContext Create a cryptography context.

CCS_DestroyContext Destroy a cryptography context.
Appendix A -- CCS API Definitions 25

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
CCS_DestroyObject Destroy a CCS object.

CCS_FindObjectsInit Initialize a search for objects that match
a template.

CCS_FindObjects Continue a search for objects that
match a template.

CCS_GetAttributeValue Obtain the value of one or more object
attributes.

CCS_SetAttributeValue Modify the values of one or more object
attributes.

CCS_DataEncryptInit Initialize a data encryption operation.

CCS_Encrypt Encrypt single-part data.

CCS_EncryptUpdate Continue a multi-part encryption
operation.

CCS_EncryptFinal Finish a multi-part encryption
operation.

CCS_EncryptRestart Reinitialize an encryption operation.

CCS_DataDecryptInit Initialize a data decryption operation.

CCS_Decrypt Decrypt encrypted data in a single part.

CCS_DecryptUpdate Continue a multi-part decryption
operation.

CCS_DecryptFinal Finish a multi-part decryption
operation.

CCS_DecryptRestart Reinitialize a decryption operation.

CCS_Obfuscate Obfuscates an input string.

CCS_DeObfuscate De-obfuscates an input string.

CCS_pbeEncrypt Encrypt data in a single part using a
password and password-based
algorithm as described in PKCS#5 or
PKCS#12.

API Description
26 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
CCS_pbeDecrypt Decrypt data in a single part using a
password and password-based
algorithm as described in PKCS#5 or
PKCS#12.

CCS_pbeSign Generate signature for input data in a
single part using a password and
password-based algorithm as
described in PKCS#12.

CCS_pbeVerify Verify input data and its signature in a
single part using a password and
password-based algorithm as
described in PKCS#12.

CCS_pbeShroudPrivateKey Encrypt a PKCS#8 private key using a
password and password-based
algorithm as described in PKCS#5 or
PKCS#12.

CCS_pbeUnshroudPrivateKey Decrypt and load an encrypted
PKCS#8 private key using the
password and the password-based
algorithm as described in PKCS#5 or
PKCS#12.

CCS_LoadPFXPrivateKeyWithPassword Loads zero or more private keys
encrypted in a password from a
PKCS#12 PFX structure. See
PKCS#12 document for details. Only
PKCS#8 private keys are supported.

CCS_LoadPFXCertificateWithPassword Loads zero or more X.509 certificates
and public keys in those certificates
from a PKCS#12 PFX structure. The
certificates either can be encrypted in a
safe bag or can be in plain form. See
PKCS#12 and RFC 2459 documents
for details.

CCS_DigestInit Initialize a message-digesting
operation.

CCS_Digest Digest data in a single part.

API Description
Appendix A -- CCS API Definitions 27

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
CCS_DigestUpdate Continue a multi-part message-
digesting operation.

CCS_DigestFinal Finish a multi-part message-digesting
operation.

CCS_DigestRestart Reinitialize a message-digesting
operation.

CCS_SignInit Initialize a signature operation.

CCS_Sign Sign data in a single part.

CCS_SignUpdate Continue a multi-part signature
operation.

CCS_SignFinal Finish a multi-part signature operation.

CCS_SignRestart Reinitialize a signature operation.

CCS_SignRecoverInit Initialize a signature operation with
data recovery.

CCS_SignRecover Sign data in a single part, with data
recovery.

CCS_SignRecoverRestart Reinitialize a signature operation with
data recovery.

CCS_VerifyInit Initialize a verification operation.

CCS_Verify Verify data in a single part.

CCS_VerifyUpdate Continue a multi-part verification
operation.

CCS_VerifyFinal Finish a multi-part verification
operation.

CCS_VerifyRestart Reinitialize a verification operation.

CCS_VerifyRecoverInit Initialize a signature verification
operation with data recovery.

CCS_VerifyRecover Verify a signature on data in a single
part, with data recovery.

API Description
28 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
CCS_VerifyRecoverRestart Reinitialize a verification operation with
data recovery.

IKE_Sign Sign using an IKE Authentication
Phase 1 authentication algorithm. The
algorithms and mechanisms are
described in RFC 2409: The Internet
Key Exchange.

IKE_Verify Verify using an IKE Authentication
Phase 1 authentication algorithm. The
algorithms and mechanisms are
described in RFC 2409: The Internet
Key Exchange.

CCS_GenerateKey Generate a secret key.

CCS_GenerateKeyPair Generate a public-key/private-key pair.

CCS_WrapKey Wrap (i.e. encrypt) a key for storage or
distribution external to CCS.

CCS_UnwrapKey Unwrap (i.e. decrypt) a key.

CCS_InjectKey This is the raw (i.e., plaintext) key
injection function that is used for legacy
applications with raw key access, and
required to use NICI with their existing
raw keys.

CCS_ExtractKey Extract attributes of a key, including its
value (NICI_A_KEY_VALUE) attribute.

CCS_LoadCertificate Load a public-key certificate, verify its
signature and load the resulting public
key.

CCS_LoadSelfSignedCertificate Load a self-signed public-key
certificate, verify its signature and load
the resulting public key.

CCS_LoadUnverifiedCertificate Load a public-key certificate and the
resulting public key without verifying
the certificate signature.

API Description
Appendix A -- CCS API Definitions 29

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

Manual Rev 99a28 6 June 00
CCS_GenerateCertificate Create and sign a public-key
certificate.

CCS_GenerateCertificateFromRequest Create and sign a public-key certificate
whose public key is provided by a
PKCS #10 Certification Request.

CCS_GetLocalCertificate Return a public-key certificate or local
portion of the certification path for one
of the NICI-predefined public keys.

CCS_GetCertificate Return a public-key certificate or
complete certification path for one of
the NICI-predefined public keys.

CCS_GenerateKeyExchangeParameters This is the parameter generation stage
of a key agreement algorithm.

CCS_KeyExchangePhase1 This is the phase 1 of a key exchange
algorithm.

CCS_KeyExchangePhase2 This is the phase 2 of a key exchange
algorithm.

API Description
30 NICI 2.0 Client Security Policy for Windows 95/98

NICI 2.0 Client Security Policy for Windows 95/98
Place Part Number Here

December 14, 2000

	Foreword
	1 Introduction
	1.1 Overview of FIPS 140-1 Categories

	2 Cryptographic Channels
	2.1 Data Input/Output Channel
	2.2 Command/Status Channel

	3 Security Requirements
	3.1 Cryptographic Modules
	3.2 Module Interfaces
	3.3 Roles and Services
	3.3.1 User Role
	3.3.2 Crypto Officer Role

	3.4 Cryptographic Key Management
	3.4.1 FIPS Approved Key Generation
	3.4.2 Key Distribution
	3.4.3 Key Entry and Output
	3.4.4 Key Storage
	3.4.5 Key Destruction

	3.5 Self-Test
	3.5.1 Startup Self-Tests
	3.5.2 Conditional Self Tests

	4 Operating Modes
	4.1 FIPS-Approved Algorithms

	A Appendix A -- CCS API Definitions

