
SUSE Linux Enterprise Server 12 - NSS Module v1.0

FIPS 140-2 Non-Proprietary Security Policy

Version 1.7

Last Update: 2018-07-05

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

http://www.atsec.com/

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Table of Contents
1 Cryptographic Module Specification..3
1.1 Description of the Module...3
1.2 Description of Approved Modes..3
1.3 Cryptographic Boundary..6
1.3.1 Hardware Block Diagram...6
1.3.2 Software Block Diagram...7
2 Cryptographic Module Ports and Interfaces...9
2.1 Inhibition of Data Output...9
2.2 Disconnecting the Output Data Path from the Key Processes...9
3 Roles, Services, and Authentication..10
3.1 Roles...10
3.2 Role Assumption..10
3.3 Strength of Authentication Mechanism..10
3.4 Multiple Concurrent operators...11
3.5 Services..11
3.5.1 Calling Convention of API Functions...11
3.5.2 API Functions..11
4 Physical Security...17
5 Operational Environment..18
5.1 Policy...18
6 Cryptographic Key Management..19
6.1 Random Number Generation...19
6.2 Key/CSP Storage..19
6.3 Key/CSP Zeroization..20
7 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)...21
8 Self Tests...22
8.1 Power-Up Tests..22
8.2 Conditional Tests..22
9 Guidance...24
9.1 Crypto Officer Guidance..24
9.1.1 Access to Audit Data...24
9.2 User Guidance..25
9.2.1 AES GCM Guidance...26
9.2.2 RSA and DSA Keys..26
10 Mitigation of Other Attacks..27
11 Glossary and Abbreviations..28
12 References...29

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

2 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 1 Cryptographic Module Specification
This document is the non-proprietary security policy for the SUSE Linux Enterprise Server 12 - NSS Module, and
was prepared as part of the requirements for conformance to Federal Information Processing Standard (FIPS)
140-2, Security Level 2.

 1.1 Description of the Module

The SUSE Linux Enterprise Server 12 - NSS Module (hereafter referred to as the “Module”) is a software library
supporting FIPS 140-2 Approved cryptographic algorithms. The current version of the Module is 1.0. The Module
is an open-source, general-purpose cryptographic library, with an API based on the industry standard PKCS #11
version 2.20. For the purposes of FIPS 140-2 validation, the Module is classified as a software-only module. Its
embodiment type is defined as multi-chip standalone.

The Module is FIPS140-2 validated at overall Security Level 2 with levels for individual sections shown in the
table below:

Security Component FIPS 140-2 Security Level

Cryptographic Module Specification 2

Cryptographic Module Ports and Interfaces 2

Roles, Services, and Authentication 2

Finite State Model 2

Physical Security N/A

Operational Environment 2

Cryptographic Key Management 2

EMI/EMC 2

Self Tests 2

Design Assurance 2

Mitigation of Other Attacks 2

Table 1 : Security Level of the Module

The Module has been tested on the following platform:

Manufacturer Model O/S & Ver.

HP ProLiant DL320e Gen8 SUSE Linux Enterprise Server 12

Table 2 : Tested Platform

The Module has been tested in the following configuration:

• 64-bit x86_64 without AES-NI

Note: The test platform supports AES-NI instruction set, but it is disabled in the Module. So the Module always
uses C implementation of AES.

 1.2 Description of Approved Modes

The Module supports two modes of operation: FIPS Approved mode and non-Approved mode. When the Module
is powered on, the power-up self-tests are executed automatically without any operator intervention.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

3 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

If the power-up self-tests complete successfully, the Module will be in FIPS Approved mode. Table 3 lists the
services using Approved algorithms in FIPS Approved mode.

Service Algorithm Keys/CSPs CAVS
Certificate

Encryption and
decryption

C implementation of AES
• ECB
• CBC
• CTR
• GCM

AES 128, 192 and 256 bits keys Cert. #3452

Triple-DES
• ECB
• CBC
• CTR

Triple-DES 168 bits keys Cert. #1943

Signature generation
and verification

DSA domain parameter generation,
key pair generation and signature
generation

DSA 2048 and 3072 bits keys Cert. #971

DSA domain parameter verification
and signature verification

DSA 1024, 2048 and 3072 bits
keys

ECDSA key pair generation, public
key verification, signature generation
and signature verification

ECDSA keys with P-256, P-384
and P-521

Cert. #699

RSA key pair generation and
PKCS#1 v1.5 signature generation

RSA 2048 and 3072 bits keys Cert. #1767

RSA
PKCS#1 v1.5 signature verification

RSA 1024, 2048 and 3072 bits
keys

Message digest SHA-1, SHA-224, SHA-256, SHA-
384 and SHA-512

N/A Cert. #2848

HMAC
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512

At least 112 bits HMAC keys Cert. #2198

Random number
generation

SP800-90A Hash_based DRBG
• SHA-256

Entropy input string, seed, V
and C

Cert. #846

Table 1 : Services using Approved Algorithms in FIPS Approved mode

Table 4 lists the services using non-Approved but allowed algorithms in FIPS Approved mode.

Service Algorithm Note Keys/CSPs

Hashing MD5 Message digest used in TLS only N/A

Key
management

RSA key wrapping
(encrypt, decrypt)

The CAVP testing is not available RSA keys with size equal to or
larger than 2048 bits

Diffie-Hellman key
agreement

Not validated by CAVP Diffie-Hellman with keys
between 2048 and 15360 bits

EC Diffie-Hellman key
agreement

Not validated by CAVP EC Diffie-Hellman private and
public components with curves
P-256, P-384 and P-521

NDRNG Used for seeding NIST SP 800-90A N/A

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

4 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Service Algorithm Note Keys/CSPs

Hashing MD5 Message digest used in TLS only N/A

DRBG

Table 2 : Services using non-Approved but Allowed Algorithms in FIPS Approved mode

Notes:

1. RSA (key wrapping; key establishment methodology provides at least 112 bits of encryption strength;
non-compliant less than 112 bits of encryption strength)

2. Diffie-Hellman (key agreement; key establishment methodology provides between 112 and 256 bits of
encryption strength; non-compliant less than 112 bits of encryption strength)

3. EC Diffie-Hellman (key agreement; key establishment methodology provides between 128 and 256 bits
of encryption strength)

Caveat:

The module generates cryptographic keys whose strengths are modified by available entropy.

Table 5 lists the services using non-Approved algorithms, which invocation will result the Module operating in a
non-Approved mode implicitly.

Service Algorithm

Encryption and decryption Camellia

DES

RC2

RC4

RC5

SEED

AES CTS block chaining mode

Signature generation and
verification

DSA domain parameter generation, key pair generation and signature
generation with key size not equal to 2048 or 3072 bits

DSA domain parameter verification and signature verification with key size
not equal to 1024, 2048 or 3072 bits

RSA key generation and PKCS#1 v1.5 signature generation with key size
not equal to 2048 or 3072 bits

RSA PKCS#1 v1.5 signature verification with key size not equal to 1024,
2048 or 3072 bits

RSA PSS signature generation and verification

Message digest MD2

MD5

Key management RSA key wrapping (encrypt, decrypt) with key size smaller than 2048 bits

AES/Triple-DES Key Wrapping using a non-SP 800-38F block chaining
mode

Diffie-Hellman key agreement with keys smaller than 2048 bits

JPAKE key agreement

Table 1 : Services using non-Approved Algorithms in non-Approved mode

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

5 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 1.3 Cryptographic Boundary

The Module's physical boundary is the surface of the case of the platform (depicted in the hardware block
diagram).

The Module's logical boundary consists of the shared library files and their integrity check signature files, which
are delivered with the RPM packages as listed below:

• The libsoftokn3-3.19.2_CKBI_1.98-21.1.x86_64.rpm, which contains the following shared libraries:

/usr/lib64/libnssdbm3.so

/usr/lib64/libsoftokn3.so

• The libsoftokn3-hmac-3.19.2_CKBI_1.98-21.1.x86_64.rpm, which contains the following integrity check
signature files:

/usr/lib64/libnssdbm3.chk

/usr/lib64/libsoftokn3.chk

• The libfreebl3-3.19.2_CKBI_1.98-21.1.x86_64.rpm, which contains the following shared library:

/lib64/libfreebl3.so

• The libfreebl3-hmac-3.19.2_CKBI_1.98-21.1.x86_64.rpm, which contains the following integrity check
signature file:

/lib64/libfreebl3.chk

The Module shall be installed and instantiated by the dracut-fips package with the RPM file version 037-37.2.
The dracut-fips RPM package is only used for the configuration of the Module in every boot. This code is not
active when the Module is operational and does not provide any services to users interacting with the Module.
Therefore, the dracut-fips package is outside the Module's logical boundary.

 1.3.1 Hardware Block Diagram

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

6 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Figure 1. Hardware Block Diagram

 1.3.2 Software Block Diagram
The Module implements the PKCS #11 (Cryptoki) API. The API itself defines the logical cryptographic boundary,
thus all implementation is inside the boundary. The diagram below shows the relationship of the layers.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

7 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Figure 2. Software Block Diagram

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

8 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 2 Cryptographic Module Ports and Interfaces
The physical ports of the Module are the same as the computer system on which it is executing. The logical
interface is a C-language Application Program Interface (API) following the PKCS #11 specification.

The Data Input interface consists of the input parameters of the API functions. The Data Output interface
consists of the output parameters of the API functions. The Control Input interface consists of the actual API
functions. The Status Output interface includes the return values of the API functions. The ports and interfaces
are shown in the following table.

FIPS Interface Physical Port Module Interface

Data Input N/A API input parameters

Data Output N/A API output parameters

Control Input N/A API function calls, configuration file /proc/sys/crypto/fips_enabled

Status Output N/A API return codes and status parameters

Power Input PC Power Supply Port N/A

Table 1 : Ports and Interfaces

The Module uses different function arguments for input and output to distinguish among data input, control input,
data output, and status output; to disconnect the logical paths followed by data/control entering the module and
data/status exiting the module. The Module doesn't use the same buffer for input and output. After the Module is
done with an input buffer that holds security-related information, it always zeroizes the buffer so that if the
memory is reused later as an output buffer, no sensitive information can be inadvertently leaked.

 2.1 Inhibition of Data Output

All data output via the data output interface is inhibited when the Module is performing power-up self-tests or in
error states.

• During power-up self-tests: The Module performs power-up self-tests automatically without any operator
intervention. All data output via the data output interface is inhibited while self-tests are executed.

• In error states: If the power-up self-tests fail, the module will be aborted and no service can be invoked.
If the conditional self-tests fail during operation, the module will enter operational error state and only the
API functions that shut down and restart the Module, reinitialize the Module, or output status information
can be invoked. These functions are FC_GetFunctionList, FC_Initialize, FC_Finalize,
FC_GetInfo, FC_GetSlotList, FC_GetSlotInfo, FC_GetTokenInfo, FC_InitToken,
FC_CloseSession, FC_CloseAllSessions, and FC_WaitForSlotEvent.

 2.2 Disconnecting the Output Data Path from the Key Processes

During key generation and key zeroization, the Module may perform audit logging, but the audit records do not
contain any sensitive information. The Module does not return any function output arguments until key
generation or key zeroization is finished. Therefore, the logical paths used by data output are logically
disconnected from the processes/threads performing key generation and key zeroization.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

9 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 3 Roles, Services, and Authentication
This section defines the roles, services and authentication mechanisms, and methods with respect to the
applicable FIPS 140-2 requirements.

 3.1 Roles

The Module implements two roles: User role and Crypto Officer (CO) role, their allowed services are listed in the
following table.

Role Descriptions

User Perform general security services which use the secret or private keys of the Module. It is also
responsible for the retrieval, updating, and deletion of keys from the private key database.

CO Perform module installation, configuration and initialization. The CO role can access other general-
purpose services (such as message digest and random number generation services) and status
services of the Module. The CO does not have access to any service that utilizes the secret or
private keys of the Module. The CO must control the access to the Module before and after
installation, including management of physical access to the computer, execution of the Module, as
well as management of the security facilities provided by the operating system.

Table 1 : Roles

 3.2 Role Assumption

The CO role is implicitly assumed by an operator while installing the Module by following the instruction in
Section 9.1 and while performing other services as listed in Table 7.

The Module also implements a password-based authentication for the User role. To perform any security
services under the User role, an operator must log into the Module and complete an authentication procedure
using the password information unique to the User role operator. The password is passed to the Module via the
API function as one of its input arguments and won't be displayed. The return value of the function is the only
feedback mechanism, which does not provide any information that could be used to guess or determine the
password. The password is initialized by the CO role as part of module initialization and can be changed by the
User role operator.

If a User-role service is called before the operator is authenticated, it returns the
CKR_USER_NOT_LOGGED_IN error code. The operator must call the FC_Login function to perform the
required authentication.

Once a password has been established for the Module, the user is allowed to use the security services if and
only if the user is successfully authenticated to the Module. Password establishment and authentication are
required for the operation of the Module.

 3.3 Strength of Authentication Mechanism

In the FIPS Approved mode of operation, the Module imposes the following requirements on the password.
These requirements are enforced by the Module on password initialization or change.

• The password must be at least seven characters long.

• The password must consist of characters from three or more character classes. We define five character
classes: digits (0-9), ASCII lowercase letters (a-z), ASCII uppercase letters (A-Z), ASCII non-
alphanumeric characters (space and other ASCII special characters such as '$', '!'), and non-ASCII
characters (Latin characters such as 'é', 'ß'; Greek characters such as 'Ω', 'θ'; other non-ASCII special
characters such as '¿'). If an ASCII uppercase letter is the first character of the password, the uppercase
letter is not counted toward its character class. Similarly, if a digit is the last character of the password,
the digit is not counted toward its character class.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

10 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

To estimate the maximum probability of a successful random guess of the password, we assume that:

• The characters of the password are independent with each other.

• The password contains the smallest combination of the character classes, which is five digits, one ASCII
lowercase letter and one ASCII uppercase letter, and the probability to guess every character
successfully is (1/10)^5 * (1/26) * (1/26) = 1/67,600,000.

Since the password can contain seven characters from any three or more of the aforementioned five character
classes, the probability that a random guess of the password will succeed is less than or equals to 1/67,600,000,
which is smaller than the required threshold 1/1,000,000.

After each failed authentication attempt in the FIPS Approved mode, the Module inserts a one-second delay
before returning to the caller, allowing at most 60 authentication attempts during a one-minute period. Therefore,
the probability of a successful random guess of the password during a one-minute period is less than or equals
to 60 * (1/67,600,000) = 0.089 * (1/100,000), which is smaller than the required threshold 1/100,000.

 3.4 Multiple Concurrent operators

The Module doesn't allow concurrent operators.

• On a multi-user operating system, this is enforced by making the NSS certificate and private key
databases readable and writable by the owner of the files only.

Note: FIPS 140-2 Implementation Guidance Section 6.1 clarifies the use of a cryptographic module on a server.

When a cryptographic module is implemented in a server environment, the server application is the user of the
cryptographic module. The server application makes the calls to the cryptographic module. Therefore, the server
application is the single user of the cryptographic module, even when the server application is serving multiple
clients.

 3.5 Services

 3.5.1 Calling Convention of API Functions
The Module has a set of API functions denoted by FC_xxx. All the API functions for the FIPS Approved mode of
operation are listed in Table 8 of Section 3.5.2.

Among the Module's API functions, only FC_GetFunctionList is exported and therefore callable by its name. All
the other API functions must be called via the function pointers returned by FC_GetFunctionList. It returns a
CK_FUNCTION_LIST structure containing function pointers named C_xxx such as C_Initialize and C_Finalize.
The C_xxx function pointers in the CK_FUNCTION_LIST structure returned by FC_GetFunctionList point to the
FC_xxx functions.

The following convention is used to describe API function calls. Here FC_Initialize is used as an example:

• When “call FC_Initialize” is mentioned, the technical equivalent of “call the FC_Initialize function via the
C_Initialize function pointer in the CK_FUNCTION_LIST structure returned by FC_GetFunctionList” is
implied.

 3.5.2 API Functions
The Module supports Crypto-Officer services which require no operator authentication, and User services which
require operator authentication. Crypto-Officer services do not require access to the secret and private keys and
other CSPs associated with the user. The message digesting services are available to Crypto-Officer only when
CSPs are not accessed. User services which access CSPs (e.g., FC_GenerateKey, FC_GenerateKeyPair)
require operator authentication.

Table 8 lists all the services available in FIPS Approved mode. Access types R, W and Z stand for Read, Write
and Zeroize, respectively. Role types U and CO correspond to User role and Crypto Officer role, respectively.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

11 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Please refer to Table 3 and Table 4 for the Approved or allowed key size of each cryptographic algorithm
supported by the Module.

Note: The message digesting API functions (except FC_DigestKey) that do not use any keys of the Module are
accessed to the Crypto-Officer role and do not require User role authentication to the Module. The
FC_DigestKey API function computes the message digest (hash) of the value of a secret key, so it is available
only to the User role.

Service Role API Function Description CSPs Access

Get the
function list

CO FC_GetFunctionList Return a pointer to the list of
function pointers for the
operational mode

none -

Module
initialization

CO FC_InitToken Initialize or re-initialize a token User password
and all keys

Z

CO FC_InitPIN Initialize the user's password,
i.e., set the user's initial
password

User password W

General
purpose

CO FC_Initialize Initialize the module library none -

CO FC_Finalize Finalize (shut down) the
module library

All keys Z

CO FC_GetInfo Obtain general information
about the module library

none -

Slot and
token
management

CO FC_GetSlotList Obtain a list of slots in the
system

none -

CO FC_GetSlotInfo Obtain information about a
particular slot

none -

CO FC_GetTokenInfo Obtain information about the
token. This function provides
the Show Status service.

none -

CO FC_GetMechanismList Obtain a list of mechanisms
(cryptographic algorithms)
supported by a token

none -

CO FC_GetMechanismInfo Obtain information about a
particular mechanism

none -

U FC_SetPIN Change the user's password User password RW

Session
management

CO FC_OpenSession Open a connection ("session")
between an application and a
particular token

none -

CO FC_CloseSession Close a session All keys for the
session

Z

CO FC_CloseAllSessions Close all sessions with a token All keys Z

CO FC_GetSessionInfo Obtain information about the
session. This function provides
the Show Status service.

none -

CO FC_GetOperationState Save the state of the
cryptographic operation in a
session. This function is only
implemented for message
digest operations.

none -

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

12 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Service Role API Function Description CSPs Access

CO FC_SetOperationState Restore the state of the
cryptographic operation in a
session. This function is only
implemented for message
digest operations.

none -

U FC_Login Log into a token User password R

U FC_Logout Log out from a token none -

Object
management

U FC_CreateObject Create a new object key W

U FC_CopyObject Create a copy of an object Original key R

New key W

U FC_DestroyObject Destroy an object key Z

U FC_GetObjectSize Obtain the size of an object in
bytes

key R

U FC_GetAttributeValue Obtain an attribute value of an
object

key R

U FC_SetAttributeValue Modify an attribute value of an
object

key W

U FC_FindObjectsInit Initialize an object search
operation

none -

U FC_FindObjects Continue an object search
operation

Keys matching
the search criteria

R

U FC_FindObjectsFinal Finish an object search
operation

none -

Encryption
and
decryption

U FC_EncryptInit Initialize an encryption
operation

AES/Triple-DES
secret key

R

U FC_Encrypt Encrypt single-part data AES/Triple-DES
secret key

R

U FC_EncryptUpdate Continue a multiple-part
encryption operation

AES/Triple-DES
secret key

R

U FC_EncryptFinal Finish a multiple-part
encryption operation

AES/Triple-DES
secret key

R

U FC_DecryptInit Initialize a decryption operation AES/Triple-DES
secret key

R

U FC_Decrypt Decrypt single-part encrypted
data

AES/Triple-DES
secret key

R

U FC_DecryptUpdate Continue a multiple-part
decryption operation

AES/Triple-DES
secret key

R

U FC_DecryptFinal Finish a multiple-part
decryption operation

AES/Triple-DES
secret key

R

Message
digest

CO FC_DigestInit Initialize a message-digesting
operation

none -

CO FC_Digest Digest single-part data none -

CO FC_DigestUpdate Continue a multiple-part
digesting operation

none -

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

13 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Service Role API Function Description CSPs Access

U FC_DigestKey Continue a multi-part
message-digesting operation
by digesting the value of a
secret key as part of the data
already digested

HMAC key R

CO FC_DigestFinal Finish a multiple-part digesting
operation

none -

Signature
generation
and
verification

U FC_SignInit Initialize a signature operation DSA/ECDSA/
RSA private key,
HMAC key

R

U FC_Sign Sign single-part data DSA/ECDSA/
RSA private key,
HMAC key

R

U FC_SignUpdate Continue a multiple-part
signature operation

DSA/ECDSA/
RSA private key,
HMAC key

R

U FC_SignFinal Finish a multiple-part signature
operation

DSA/ECDSA/
RSA private key,
HMAC key

R

U FC_SignRecoverInit Initialize a signature operation,
where the data can be
recovered from the signature

DSA/ECDSA/
RSA private key

R

U FC_SignRecover Sign single-part data, where
the data can be recovered
from the signature

DSA/ECDSA/
RSA private key

R

U FC_VerifyInit Initialize a
verification operation

DSA/ECDSA/
RSA public key,
HMAC key

R

U FC_Verify Verify a signature on single-
part data

DSA/ECDSA/
RSA public key,
HMAC key

R

U FC_VerifyUpdate Continue a multiple-part
verification operation

DSA/ECDSA/
RSA public key,
HMAC key

R

U FC_VerifyFinal Finish a multiple-part
verification operation

DSA/ECDSA/
RSA public key,
HMAC key

R

U FC_VerifyRecoverInit Initialize a verification
operation where the data is
recovered from the signature

DSA/ECDSA/
RSA public key

R

U FC_VerifyRecover Verify a signature on single-
part data, where the data is
recovered from the signature

DSA/ECDSA/
RSA public key

R

Dual-function
cryptographic
operations

U FC_DigestEncryptUpdate Continue a multiple-part
digesting and encryption
operation

AES/Triple-DES
secret key

R

U FC_DecryptDigestUpdate Continue a multiple-part
decryption and digesting

AES/Triple-DES
secret key

R

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

14 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Service Role API Function Description CSPs Access

operation

U FC_SignEncryptUpdate Continue a multiple-part
signing and encryption
operation

DSA/ECDSA/
RSA private key,
HMAC key

R

AES/Triple-DES
secret key

R

U FC_DecryptVerifyUpdate Continue a multiple-part
decryption and verify operation

DSA/ECDSA/
RSA public key,
HMAC key

R

AES/Triple-DES
secret key

R

Key
management

U FC_GenerateKey Generate a secret key AES/Triple-DES
secret key

W

U FC_GenerateKeyPair Generate a public/private key
pair. This function performs the
pair-wise consistency tests.

DSA/ECDSA/
RSA key pair,
Diffie-Hellman/EC
Diffie-Hellman
public and private
components

W

U FC_WrapKey Wrap (encrypt) a key using
one of the following
mechanisms allowed in FIPS
mode per IG D.9:
(1) RSA encryption

Wrapping key R

Key to be
wrapped

R

U FC_UnwrapKey Unwrap (decrypt) a key using
one of the following
mechanisms allowed in FIPS
mode per IG D.9:
(1) RSA decryption (with
modulus larger than 2048 bits)
(2) AES decryption (using any
Approved mode)
(3) Triple-DES decryption
(using any Approved mode)

Unwrapping key R

Unwrapped key W

U FC_DeriveKey Derive a key from a base key Base key R

Derived key W

Random
number
generation

CO FC_SeedRandom Mix in additional seed material
to the random number
generator

Entropy string,
seed, DRBG V
and C values

RW

CO FC_GenerateRandom Generate random data. This
function performs the
continuous random number
generator test

Random data,
DRBG V and C
values

RW

Parallel
function
management

CO FC_GetFunctionStatus A legacy function, which simply
returns the value 0x00000051
(function not parallel)

none -

CO FC_CancelFunction A legacy function, which simply
returns the value 0x00000051

none -

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

15 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Service Role API Function Description CSPs Access

(function not parallel)

Self tests CO N/A The self tests are performed
automatically when loading the
module

DSA 2048-bit
public key

R

Zeroization U FC_DestroyObject All CSPs are automatically
zeroized when freeing the
cipher handle

All secret or
private keys and
password

Z

CO FC_InitToken
FC_Finalize
FC_CloseSession
FC_CloseAllSessions

Table 1 : Service Details

NOTE:

1. 'Original key' and 'New key' are the secret keys or public private key pairs.

2. 'Wrapping key' corresponds to the secret key or public key used to wrap another key

3. 'Key to be wrapped' is the key that is wrapped by the 'wrapping key'

4. 'Unwrapping key' corresponds to the secret key or private key used to unwrap another key

5. 'Unwrapped key' is the plaintext key that has not been wrapped by a 'wrapping key'

6. 'Derived key' is the key obtained by a key derivation function which takes the 'base key' as input

Please refer to Table 5 for the non-Approved services, and invocation of any of these services will put the
module in non-Approved mode implicitly.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

16 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 4 Physical Security
The Module is comprised of software only and thus does not claim any physical security.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

17 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 5 Operational Environment

This Module operates in a modifiable operational environment per the FIPS 140-2 definition.

The underlying operating system, SUSE Linux Enterprise Server 12, is evaluated according to
Common Criteria at EAL4 – certification ID of BSI-DSZ-CC-0962-2016 claiming compliance to
the OSPP.

 5.1 Policy

The operating system is restricted to a single operator mode of operation (i.e., concurrent operators are explicitly
excluded).

The application that makes calls to the Module is the single user of the Module, even when the application is
serving multiple clients.

In FIPS Approved mode, the ptrace system call, the debugger gdb, and strace shall not be used. In addition,
other tracing mechanisms offered by the Linux environment, such as ftrace or systemtap, shall not be used.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

18 of 29

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Betriebssysteme/0962.html;jsessionid=D4830E2FEF0BE63BA8C7BD48CAC6545B.2_cid359

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 6 Cryptographic Key Management
The management of all keys/CSPs used by the Module is summarized in the table below.

Key/CSP Generation Storage Entry/Output Zeroization

AES or Triple-
DES key

SP 800-90A
DRBG

Application memory
or key database

Encrypted through key
wrapping using
FC_WrapKey

Automatically zeroized
when freeing the
cipher handle

DSA, ECDSA or
RSA private key

SP 800-90A
DRBG

Application memory
or key database

Encrypted through key
wrapping using
FC_WrapKey

Automatically zeroized
when freeing the
cipher handle

HMAC keys SP 800-90A
DRBG

Application memory
or key database

Encrypted through key
wrapping using
FC_WrapKey

Automatically zeroized
when freeing the
cipher handle

Diffie-Hellman or
EC Diffie-
Hellman private
components

SP 800-90A
DRBG

Application memory
or key database

Encrypted through key
wrapping using
FC_WrapKey

Automatically zeroized
when freeing the
cipher handle

SP 800-90A
DRBG seed and
entropy string

Obtained from
/dev/urandom

Application memory N/A Automatically zeroized
when seeding
operation completes

SP 800-90A
DRBG V and C
values

Derived from the
entropy string as
defined in SP
800-90A

Application memory N/A Automatically zeroized
when freeing DRBG
handle

User password Supplied by the
calling application

Key database in
salted form

N/A (input through API
parameter)

Automatically zeroized
when the module is re-
initialized or
overwritten when the
user changes its
password

Table 1 : Key Management Details

 6.1 Random Number Generation

The Module employs a SP 800-90A Hash_based DRBG using SHA-256 as random number generator. The
Linux kernel provides /dev/urandom as a source of random numbers for DRBG seeds. Reseeding is performed
by pulling more data from /dev/urandom. A product using the Module should periodically reseed the Module's
random number generator with unpredictable noise by calling FC_SeedRandom. After 2 calls to the random ⁴⁸
number generator the Module reseeds automatically.

The Module performs Continuous Random Number Generation Test (CRNGT) on the output of the SP800-90A
DRBG to ensure that consecutive random numbers do not repeat.

In addition, the module also performs DRBG health testing as defined in section 11.3 of SP 800-90A DRBG.

 6.2 Key/CSP Storage

This section identifies the cryptographic keys and CSPs that the user has access to while performing a service,
and the type of access the user has.

The Module employs the following cryptographic keys and CSPs in the FIPS Approved mode of operation. Note
that the private key database (key3.db/key4.db) mentioned below is within the Module's physical boundary but

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

19 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

outside of its logical boundary.

• DSA integrity test public key: The module stores a public key for performing the power-up integrity test in
the libfreebl3.chk, libnssdbm3.chk and libsoftokn3.chk files for the verification of libfreebl3.so,
libnssdbm3.so and libsoftokn3.so, respectively.

• AES secret keys: The keys may be stored in memory or in the private key database (key3.db/key4.db).

• Hash_based DRBG secret values: The entropy is stored in plaintext in volatile memory. Hash_based
DRBG V value (internal Hash_based DRBG state value) is stored in plaintext in volatile memory.
Hash_based DRBG C value (internal Hash_based DRBG state value) is stored in plaintext in volatile
memory.

• Triple-DES secret keys: The keys may be stored in memory or in the private key database
(key3.db/key4.db).

• HMAC secret keys: HMAC key size must be greater than or equal to half the size of the hash function
output and greater than 112 bits. The keys may be stored in memory or in the private key database
(key3.db/key4.db).

• DSA/ECDSA public keys and private keys: The keys may be stored in memory or in the private key
database (key3.db/key4.db).

• RSA public keys and private keys (used for digital signatures and key transport): The keys may be
stored in memory or in the private key database (key3.db/key4.db).

• Diffie-Hellman/EC Diffie-Hellman public keys and private keys: The keys may be stored in memory or in
the private key database.

• Authentication data (NSS User role password): Stored in salted form in the private key database
(key3.db/key4.db).

Public and private keys are provided to the Module by the calling process, and are destroyed when released by
the appropriate API function calls.

 6.3 Key/CSP Zeroization

The Module performs explicit zeroization steps to clear the memory region previously occupied by a plaintext
secret key, private key, or password. When the cipher handle is freed, the memset() function is used to zeroize
memory and free() function is used to free memory allocated from the heap. A plaintext secret or private key gets
zeroized when it is deleted (with a FC_DestroyObject call). All plaintext secret and private keys are zeroized
when the Module is shut down (with a FC_Finalize call), or when the Module is reinitialized (with a FC_InitToken
call), or when the session is closed (with a FC_CloseSession or FC_CloseAllSessions call). All zeroization is to
be performed by storing the value “zeros” into every byte of the memory that is occupied by a plaintext secret
key, private key or password.

Zeroization can be performed in a time that is not sufficient to compromise plaintext secret or private keys and
password.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

20 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 7 Electromagnetic Interference/Electromagnetic Compatibility
(EMI/EMC)
The test platform that runs the Module meets the requirements of 47 CFR FCC PART 15, Subpart B, Class A
(Business use).

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

21 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 8 Self Tests
FIPS 140-2 requires that the Module performs self-tests to ensure the integrity of the Module and the
correctness of the cryptographic functionality at start up. In addition, some functions require continuous
verification, such as the random number generator. All of these tests are listed and described in this section.

 8.1 Power-Up Tests

All the power-up self-tests are performed automatically without requiring any operator intervention. During the
power-up self-tests no other services are available and all output is inhibited. Once the power-up self-tests are
completed successfully, the Module enters operational mode and cryptographic operations are available. If any
of the power-up self-tests fail, the Module enters power-up self-test error state. In error state, all output is
inhibited and no cryptographic operations are allowed. The module is aborted to indicate the error. It needs to be
reloaded in order to recover from the error state.

The Module implements the following Known Answer Test (KAT) and Integrity Test during the power-up:

Algorithm Test

AES KAT: encryption and decryption are tested separately

Triple-DES KAT: encryption and decryption are tested separately

DSA KAT: signature generation and signature verification are tested
separately

RSA KAT: encryption and decryption are tested separately
KAT: signature generation and signature verification are tested
separately

ECDSA KAT: signature generation and signature verification are tested
separately

SP800-90A Hash-based DRBG KAT

SHA-1, SHA-224, SHA-256, SHA-384 and
SHA-512

KAT

HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-
256, HMAC-SHA-384 and HMAC-SHA-512

KAT

Module integrity DSA signature verification with 2048-bit key and SHA-256

Table 10: Module Self Tests

The power-up self tests can be performed on demand by reloading the Module.

 8.2 Conditional Tests

The Module implements the following Pair-wise Consistency Test (PCT) for public-private key pairs generation
and Continuous Random Number Generator Test (CRNGT). If any of the conditional tests fail, the Module enters
operational error state. It returns the error code CKR_DEVICE_ERROR to the calling application to indicate the
error. The Module needs to be reinitialized to resume normal operation. Reinitialization is accomplished by
calling FC_Finalize followed by FC_Initialize.

Algorithm Test

DSA PCT: signature generation and verification are tested
separately

RSA PCT: encryption and decryption are tested separately
PCT: signature generation and verification are tested
separately

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

22 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

Algorithm Test

ECDSA PCT: signature generation and verification are tested
separately

SP 800-90A DRBG CRNGT

Table 11: Module Conditional Tests

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

23 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 9 Guidance

 9.1 Crypto Officer Guidance

The version of the RPMs containing the FIPS validated Module is listed in section 1.3. The integrity of the RPM
is automatically verified during the installation and the Crypto Officer shall not install the RPM file if the RPM tool
indicates an integrity error. The RPM package of the Module can be installed by standard tools recommended for
the installation of RPM packages on a SUSE Linux system (for example, rpm, yast and yast online_update).

In addition, to support the Module, the NSPR library must be installed that is offered by the underlying operating
system.

Only the cipher types listed in Section 1.2 are allowed to be used.

To bring the Module into FIPS approved mode, perform the following:

1. Install the dracut-fips package:

 # zypper install dracut-fips

2. Recreate the INITRAMFS image:

 # dracut -f

After regenerating the initrd, the Crypto Officer has to append the following parameter in the /etc/default/grub
configuration file in the GRUB_CMDLINE_LINUX_DEFAULT line:

 fips=1

After editing the configuration file, please run the following command to change the setting in the boot loader:

 grub2-mkconfig -o /boot/grub2/grub.cfg

If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<partition of /boot or /boot/efi>
must be supplied. The partition can be identified with the command "df /boot" or "df /boot/efi" respectively. For
example:

$ df /boot
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string needs to be
appended to the kernel command line:

 "boot=/dev/sda1"

Reboot to apply these settings.

If an application that uses the Module for its cryptography is put into a chroot environment, the Crypto Officer
must ensure one of the above methods is available to the Module within the chroot environment to ensure entry
into FIPS approved mode. Failure to do so will not allow the application to properly enter FIPS approved mode.

Because FIPS 140-2 has certain restrictions on the use of cryptography which are not always wanted, the
Module needs to be put into FIPS approved mode explicitly. If the file /proc/sys/crypto/fips_enabled exists and
contains a numeric value other than 0, the Module is put into FIPS approved mode at initialization time. This is
the mechanism recommended for ordinary use, activated by using the fips=1 option in the boot loader, as
described above.

 9.1.1 Access to Audit Data
The Module may use the Unix syslog function and the audit mechanism provided by the operating system to
audit events. Auditing is turned off by default. Auditing capability must be turned on as part of the initialization
procedures by setting the environment variable NSS_ENABLE_AUDIT to 1. The Crypto Officer must also
configure the operating system's audit mechanism.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

24 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

The Module uses the syslog function to audit events, so the audit data are stored in the system log. Only the root
user can modify the system log. On some platforms, only the root user can read the system log; on other
platforms, all users can read the system log. The system log is usually under the /var/log directory. The exact
location of the system log is specified in the /etc/syslog.conf file. The Module uses the default user facility and
the info, warning, and err severity levels for its log messages.

The Module can also be configured to use the audit mechanism provided by the operating system to audit
events. The audit data would then be stored in the system audit log. Only the root user can read or modify the
system audit log. To turn on this capability it is necessary to create a symbolic link from the library file
/usr/lib64/libaudit.so.1 to /usr/lib64/libaudit.so.1.0.0.

 9.2 User Guidance

The Module must be operated in FIPS approved mode to ensure that FIPS 140-2 validated cryptographic
algorithms and security functions are used.

The following module initialization steps must be followed by the Crypto-Officer before starting to use the NSS
module:

• Set the environment variable NSS_ENABLE_AUDIT to 1 before using the NSS module with an
application.

• Use the application to get the function pointer list using the NSS API “FC_GetFunctionList”.

• Use the API FC_Initialize to initialize the Module. Using the FC_GetFunctionList above ensured that we
selected FIPS mode, and the subsequent FC_Initialize call then initializes the module in FIPS-mode.
Ensure that this returns CKR_OK. A return code other than CKR_OK means that the FIPS-mode was
not enabled, and in that case, the Module must be reset and initialized again.

• For the first login, provide a NULL password and login using the function pointer C_Login, which will in-
turn call FC_Login API of the Module. This is required to set the initial NSS User password.

• Now, set the initial NSS User role password using the function pointer C_InitPIN. This will call the
Module's API FC_InitPIN API. Then, logout using the function pointer C_Logout, which will call the
Module's API FC_Logout.

• The NSS User role can now be assumed on the Module by logging in using the User password. And the
Crypto Officer role can be implicitly assumed by performing the Crypto-Officer services as listed in
Section 3.1.

The Module can be configured to use different private key database formats: key3.db or key4.db. “key3.db”
format is based on the Berkeley DataBase engine and should not be used by more than one process
concurrently. “key4.db” format is based on SQL DataBase engine and can be used concurrently by multiple
processes. Both databases are considered outside the cryptographic boundary and all data stored in these
databases are considered stored in plaintext. The interface code of the NSS cryptographic module that accesses
data stored in the database is considered part of the cryptographic boundary.

Secret and private keys, plaintext passwords, and other security-relevant data items are maintained under the
control of the cryptographic module. Secret and private keys must be passed to the calling application only in
encrypted (wrapped) form with FC_WrapKey and entered from calling application only in decrypted (unwrapped)
form with FC_UnwrapKey. The cryptographic algorithms allowed for this purpose in FIPS-mode are RSA for
encryption, and AES, Triple-DES and RSA for decryption, using the corresponding Approved modes and key
sizes. Note: If the secret and private keys passed to higher-level callers are encrypted using a symmetric key
algorithm, the encryption key may be derived from a password. In such a case, they should be considered to be
in plaintext form in the FIPS Approved mode.

Automated key transport methods must use FC_WrapKey and FC_UnwrapKey to input or output secret and
private keys to or from the Module.

All cryptographic keys used in the FIPS Approved mode of operation must be generated in the FIPS Approved
mode or imported while running in the FIPS Approved mode.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

25 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 9.2.1 AES GCM Guidance
The AEC GCM IV generation is compliant with RFC 5288. The GCM block chaining mode shall only be used
together with TLS protocol version 1.2 or higher. In case of power loss from the Module, the AES GCM key will
be re-negotiated. No IV is stored in memory.

 9.2.2 RSA and DSA Keys
The Module allows the use of 1024 bit RSA and DSA keys for legacy purposes, including signature generation.

As per SP800-131A, RSA and DSA must be used with either 2048 bit keys or 3072 bit keys. To comply with the
requirements of FIPS 140-2, a user must therefore only use keys with 2048 bits or 3072 bits.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

26 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 10 Mitigation of Other Attacks
The Module is designed to mitigate the following attacks.

Attack Mitigation Mechanism Specific Limit

Timing attacks on RSA RSA blinding
Timing attack on RSA was first
demonstrated by Paul Kocher in 1996
[15], who contributed the mitigation
code to our module. Most recently
Boneh and Brumley [16] showed that
RSA blinding is an effective defense
against timing attacks on RSA.

None

Cache-timing attacks on the
modular exponentiation
operation used in RSA and
DSA

Cache invariant modular
exponentiation
This is a variant of a modular
exponentiation implementation that
Colin Percival [17] showed to defend
against cache-timing attacks.

This mechanism requires intimate
knowledge of the cache line sizes of
the processor. The mechanism may be
ineffective when the module is running
on a processor whose cache line sizes
are unknown.

Arithmetic errors in RSA
signatures

Double-checking RSA signatures
Arithmetic errors in RSA signatures
might leak the private key. Ferguson
and Schneier [18] recommend that
every RSA signature generation should
verify the signature just generated.

None

Table 1

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

27 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 11 Glossary and Abbreviations
AES Advanced Encryption Specification

AES-NI Intel® Advanced Encryption Standard New Instructions
CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining

CMVP Cryptographic Module Validation Program

CSP Critical Security Parameter

CTR Counter Block Chaining

DES Data Encryption Standard

DRBG Deterministic Random Bit Generator

DSA Digital Signature Algorithm

ECB Electronic Code Book

ECDSA Elliptic Curve Digital Signature Algorithm

FIPS Federal Information Processing Standard

GCM Galois/Counter Mode

HMAC Hash Message Authentication Code

MAC Message Authentication Code

NIST National Institute of Science and Technology

O/S Operating System

PKCS Public-Key Cryptography Standards

RNG Random Number Generator

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

TLS Transport Layer Security

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

28 of 29

SUSE Linux Enterprise Server 12 - NSS Module v1.0 FIPS 140-2 Non-Proprietary Security Policy

 12 References
[1] FIPS 140-2 Standard, http://csrc.nist.gov/groups/STM/cmvp/standards.html

[2] FIPS 140-2 Implementation Guidance, http://csrc.nist.gov/groups/STM/cmvp/standards.html

[3] FIPS 140-2 Derived Test Requirements,http://csrc.nist.gov/groups/STM/cmvp/standards.html

[4] FIPS 197 Advanced Encryption Standard, http://csrc.nist.gov/publications/PubsFIPS.html

[5] FIPS 180-4 Secure Hash Standard, http://csrc.nist.gov/publications/PubsFIPS.html

[6] FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC),
http://csrc.nist.gov/publications/PubsFIPS.html

[7] FIPS 186-4 Digital Signature Standard (DSS), http://csrc.nist.gov/publications/PubsFIPS.html

[8] NIST SP 800-67 Revision 1, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher,
http://csrc.nist.gov/publications/PubsFIPS.html

[9] NIST SP 800-38A, Recommendation for Block Cipher Modes of Operation: Methods and Techniques,
http://csrc.nist.gov/publications/PubsFIPS.html

[10] NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM)
and GMAC, http://csrc.nist.gov/publications/PubsFIPS.html

[11] NIST SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for key Wrapping,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[12] NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes using Discrete Logarithm
Cryptography (Revised), http://csrc.nist.gov/publications/PubsFIPS.html

[13] NIST SP 800-90A, Recommendation for Random Number Generation Using Deterministic Random Bit
Generators, http://csrc.nist.gov/publications/PubsFIPS.html

[14] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard”, 2004.

http://www.cryptsoft.com/pkcs11doc/STANDARD/pkcs-11v2-20.pdf

[15] P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems," CRYPTO
'96, Lecture Notes In Computer Science, Vol. 1109, pp. 104-113, Springer-Verlag, 1996.
http://www.cryptography.com/timingattack/

[16] D. Boneh and D. Brumley, "Remote Timing Attacks are Practical,"
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html

[17] C. Percival, "Cache Missing for Fun and Profit," http://www.daemonology.net/papers/htt.pdf

[18] N. Ferguson and B. Schneier, Practical Cryptography, Sec. 16.1.4 "Checking RSA Signatures", p. 286, Wiley
Publishing, Inc., 2003.

© 2018 SUSE LLC / atsec information security corporation
This document can be reproduced and distributed only whole and intact, including this copyright notice.

29 of 29

http://www.daemonology.net/papers/htt.pdf
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
http://www.cryptography.com/timingattack/
http://www.cryptsoft.com/pkcs11doc/STANDARD/pkcs-11v2-20.pdf
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/groups/STM/cmvp/standards.html
http://csrc.nist.gov/groups/STM/cmvp/standards.html
http://csrc.nist.gov/groups/STM/cmvp/standards.html

	Table of Contents
	1 Cryptographic Module Specification
	1.1 Description of the Module
	1.2 Description of Approved Modes
	1.3 Cryptographic Boundary
	1.3.1 Hardware Block Diagram
	1.3.2 Software Block Diagram

	2 Cryptographic Module Ports and Interfaces
	2.1 Inhibition of Data Output
	2.2 Disconnecting the Output Data Path from the Key Processes

	3 Roles, Services, and Authentication
	3.1 Roles
	3.2 Role Assumption
	3.3 Strength of Authentication Mechanism
	3.4 Multiple Concurrent operators
	3.5 Services
	3.5.1 Calling Convention of API Functions
	3.5.2 API Functions

	4 Physical Security
	5 Operational Environment
	5.1 Policy

	6 Cryptographic Key Management
	6.1 Random Number Generation
	6.2 Key/CSP Storage
	6.3 Key/CSP Zeroization

	7 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
	8 Self Tests
	8.1 Power-Up Tests
	8.2 Conditional Tests

	9 Guidance
	9.1 Crypto Officer Guidance
	9.1.1 Access to Audit Data

	9.2 User Guidance
	9.2.1 AES GCM Guidance
	9.2.2 RSA and DSA Keys

	10 Mitigation of Other Attacks
	11 Glossary and Abbreviations
	12 References

