

CryptoMod[®]

THE KEY TO AUTOMATION SECURITY.

End Point Protection for Remote Field Devices, Optimized for SCADA, Designed for IIoT.

FIPS 140-2 Non Proprietary Security Policy Level 2 Document Version 1.1.5

1.	Int	troduction							
	1.1	Pur	pose	4					
	1.2	Document Organization							
	1.3	Not	tices	4					
2.	AU	тоѕ	OL CryptoMod	5					
	2.1	Cry	ptographic Module Specification	6					
	2.2	1.1	Cryptographic Boundary	7					
	2.2	1.2	Modes Of Operation	8					
	2.2	Cry	ptographic Module Ports and Interfaces	9					
	2.3	Rol	es, Services, and Authentication						
	2.3	3.1	Authorized Roles						
	2.3	3.2	Authentication Mechanisms						
	2.3	3.3	Services						
	2.4	Phy	vsical Security	19					
	2.5	Оре	erational Environment	21					
	2.6	Cry	ptographic Key Management	22					
	2.6	5.1	Key Generation						
	2.6	5.2	Key Entry/Output						
	2.6	6.3	Zeroization Procedures						
	2.7	Ele	ctromagnetic Interference / Electromagnetic Compatibility (EMI/EMC)	27					
	2.8	Self	f-Tests	28					
	2.8	8.1	Power-On Self-Tests	28					
	2.8	8.2	Conditional Self-Tests	29					
	2.8	8.3	Self-Tests Error Handling	29					
	2.9	Mit	igation Of Other Attacks						
3.	Sec	cure	Operation						
	3.2	Set	up and Initialization						
Ар	penc	A xit	: Acronyms	33					

1.	Security Level For Each FIPS 140-2 Section	5
2.	Supported Approved Algorithms	8
3.	Non-Approved Algorithms	9
4.	Module Interface Mapping	9
5.	Front Panel LED Description	11
6.	Top Side	12
7.	Bottom Side	13
8.	Authentication Mechanism Details	15
9.	Services	16
10.	Details of Cryptographic Keys and CSPs	21
11.	Power-On Self-Tests	28
12.	Conditional Self-Tests	29
13.	Acronyms	33

List of Figures

1.	The CryptoMod	6
2.	CryptoMod Block Diagram	7
3.	Front Panel LED	. 10
4.	Top Side	. 12
5.	Bottom Side	. 13
6.	Tamper Evident Labels - A and B	. 19
7.	Front - Tamper Evident Label - A	. 20
8.	Top - Tamper Evident Label - B	. 20

This is a non-proprietary FIPS 140-2 Security Policy for the AUTOSOL CryptoMod, which for the duration of this document will be referred to as CryptoMod only. Below are the details of the product certified:

Hardware Version #: CM5705-D9 Firmware Version #: 1.0.51.FIPS FIPS 140-2 Security Level: 2

1.1 Purpose

This document was prepared as Federal Information Processing Standard (FIPS) 140-2 validation process. The document describes how the CryptoMod meets the security requirements of FIPS 140-2. It also provides instructions to individuals and organizations on how to deploy the product in a secure FIPS-approved mode of operation. Target audience of this document is anyone who wishes to use or integrate this product into a solution that is meant to comply with FIPS 140-2 requirements.

1.2 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Machine
- Other supporting documentation as additional references

1.3 Notices

This document may be freely reproduced and distributed in its entirety without modification.

The CryptoMod (the module) is a multi-chip standalone module validated at FIPS 140-2 Security Level 2. Specifically, the module meets that following security levels for individual sections in FIPS 140-2 standard:

Table 1 -	Security	Level	For	Each	FIPS	140-2	Section

#	Section Title	Security Level
1	Cryptographic Module Specification	2
2	Cryptographic Module Ports and Interfaces	2
3	Roles, Services, and Authentication	2
4	Finite State Model	2
5	Physical Security	2
6	Operational Environment	N/A
7	Cryptographic Key Management	2
8	EMI/EMC	2
9	Self-Tests	2
10	Design Assurances	2
11	Mitigation Of Other Attacks	N/A
12	Overall Level	2

2.1 Cryptographic Module Specification

AUTOSOL's CryptoMod is an end-point security device designed to protect data exchanged between remote industrial field devices and a centralized SCADA host. Installed directly in front of the remote assets you want to protect, the CryptoMod encrypts network traffic for the entire length of an industrial network. The CryptoMod is device and protocol neutral, acting as an invisible secure pass through for network traffic. The CryptoMod provides authentication for controlling network access, integrity for data when it's in motion, and confidentiality for network traffic. The CryptoMod also offers physical intrusion detection to its enclosure. The CryptoMod carries a CSA Class 1 Div. 2 Hazardous Area Classification and functions as a terminal server, allowing it to fit any existing industrial network configuration without the need to re-configure the network. Since reliability is the foundation of safety, the CryptoMod has a hardware watchdog timer as well as the capabilities provide auditable files for detailed network monitoring. The CryptoMod provides network security as close to an industrial network's edges as possible in order to maintain data availability and, ultimately, process safety.

Figure 1 - The CryptoMod

2.1.1 Cryptographic Boundary

The cryptographic boundary is defined as being the physical enclosure of the CryptoMod. All of the functionality described in this publication is provided by components within this cryptographic boundary.

2.1.2 Modes Of Operation

After the Crypto-Officer has performed the initial configuration and setup described in Section 3 of this document, the module will be in its Approved mode of operation.

CAVP Cert. #	Cryptographic Algorithm	Usage
1255	DRBG (NIST SP 800- 90Arev1)	Functions: Hash DRBG Random Number Generation; Key generation. Size: 1, 256 and 384 bit.
2257	RSA (FIPS 186- 4	Functions: Digital Signature Generation/Verification and Asymmetric Key Generation. Size: 2048 and 3072 bit
4140	AES (NIST SP 800-38A)	Functions: Encryption/Decryption, Key Generation. Mode: CBC mode. Size: 128 and 256 bit
3410	SHA (FIPS 180- 4)	Functions: Hashing. SHA Sizes: 1, 256 and 384 bit
2713	HMAC (FIPS 198-1)	Functions: Message Authentication. SHA Sizes: 1, 256 and 384 bit
946	CVL (NIST SP 800-135)	Functions: Key Derivation Function. TLS 1.2
Vendor Affirmed	PBKDF2 (NIST SP 800-132)	Functions: Password Based Key Derivation Function. The vendor affirms compliance with SP 800-132, using option 1(a) in Section 5.4

Table 2 - Supported Approved Algorithms

The Cryptographic Module also provides the following non FIPS-approved but allowed algorithms:

- Diffie-Hellman (key agreement; key establishment methodology provides 112 bits of encryption strength.)
- EC Diffie-Hellman (key agreement; key establishment methodology provides 128 bits of encryption strength.)
- RSA (key wrapping; key establishment methodology provides 112 bits of encryption strength.)
- NDRNG (for seeding the Approved DRBG)

The cryptographic module supports the following non-Approved function:

Table 3 – Non-Approved Algorithms

Algorithm	Usage
PBKDF2 (non-compliant)	No claims are made to the security of non-compliant PBKDF2. Any keys derived from this function and used for protecting other keys are considered the equivalent to obfuscation or
	plaintext.

If the service associated with the non-Approved PBKDF2 is invoked, it is implicitly assumed the module will transition to a non-Approved mode of operation.

2.2 Cryptographic Module Ports and Interfaces

The CryptoMod provides two Ethernet and two serial interfaces. The only interface available to users is the Web Config which is accessed through the Ethernet ports. The Serial Connector (COM 1) is used only for device to device connections.

The following table indicates the mapping of the module's physical ports and logical interfaces to the FIPS 140-2 interfaces.

FIPS Interface	Physical Interface
Data Input	Ethernet interfaces (LAN 1, LAN 2), Serial connector
	(COM 1), Digital I/O
Data Output	Ethernet interfaces (LAN 1, LAN 2), Serial connector
	(COM 1), Digital I/O
Control Input	Ethernet interfaces (LAN 1, LAN 2), Reset Button,
	Switch 1 and 2
Status Output	Ethernet interfaces (LAN 1, LAN 2), Front LED Panel
	(Figure 3), Ethernet port lights

Table 4 - Module Interface Mapping

Figures 3, 4 and 5 as well as Tables 5, 6 and 7, show the mapping of the physical interfaces of the CryptoMod and their descriptions.

Figure 3 - Front Panel LED

Table 5 - Front Panel LED Description

Item	LED Name	Color	State	Description			
1	POWER	Green	On	The system is powered and	booting the operating system.		
		Red	On	1. Initial power on state			
				2. Filesystem corrupted, OR	Modified		
				3. Restore Client Settings - If	Reset Button is pressed and		
				held one second then releas	ed after LED changes to On		
				solid.			
		Red	Flashing	Reset Button is pressed.			
2	SYSTEM	Green	On	The system is powered and	booting the operating system.		
		Red	On	1. Initial power on state			
				2. FILESYSTEM CORRUPT, MODIFIED, OR HACKED			
				3. Mounted peer on 5 (failow	ver partition)		
3	СОММ	1 Green On The syster		The system is powered and	tem is powered and booting the operating system.		
		Red (On	1. Initial power on state			
				2. FILESYSTEM CORRUPT, MODIFIED, OR HACKED			
4	CRYPTO	Green	On	Secured Mode			
		Red	On	1. Initial power on state			
				2. Failed Startup Test			
		None	Off	Unsecured Mode - Cryptographic Keys Zeroed			
5	LAN LINK 1	Green	On	Active Ethernet Link			
6	LAN LINK 2	Green	On	Active Ethernet Link			
7	ТХ	Red	On	Active Transmit Serial Data	Serial Port 1 (COM 1)		
8	RX	Red	On	Active Receive Serial Data			
9	RS485	Green	On	RS485 Mode			
		Green	Off	RS232 Mode			
10	RS485	Green	On	RS485 Mode	Serial Port 2 (COM 2-		
		Green	Off	RS232 Mode	Disabled)		
11	ТХ	Red	On	Active Transmit Serial Data			
12	RX	Red	On	Active Receive Serial Data			

Figure 4 – Top Side

Table 6 - Top Side

Item	Name	Description
13	Power Plug	+10 -26 VDC
14		• GND 220mA
15	COM 2	Serial Communication Port 2
		(disabled)
16	COM 1	Serial Communication Port 1
17	RESET BUTTON	Restore Client Settings

Table 7 - Bottom Side

Item	Name	Number	State	Description
18	D I/O	1	1 or 0	Digital I/O #1 - type: Dry Contact, 1mA source, 3.3Vdc
19		2	1 or 0	Digital I/O #1 - type: Dry Contact, 1mA source, 3.3Vdc
20		3	1 or 0	Digital I/O #1 - type: Dry Contact, 1mA source, 3.3Vdc
21		4	0	Earth Ground Connection Point
22	SWITCH	1	On	Disable Hardware Watchdog
			Off	Enable Hardware Watchdog - Default
23		2	On	Enable On-board Lithium battery - Default
				(Required for FIPS)
			Off	Disable On-board Lithium battery
24	LAN 1	LED Yellow	On	Ethernet Speed 100Mb
			Off	Ethernet Speed 10Mb
		LED Green	On	Active Ethernet Link
25	LAN 2	AN 2 LED Yellow	On	Ethernet Speed 100Mb
			Off	Ethernet Speed 10Mb
		LED Green	On	Active Ethernet Link
26	DIN RAIL MOUNT			DIN Rail Mount, Spring Loaded Locking Tab

2.3 Roles, Services, and Authentication

The following sections provide details about roles supported by the module, how these roles are authenticated and the services the roles are authorized to access.

2.3.1 Authorized Roles

The CryptoMod supports role-based authentication. There are two security roles in the CryptoMod that operators may use: Crypto Officer and Crypto User.

- Crypto Officer (CO) The Crypto Officer role performs administrative services on the module, such as initialization, configuration, and monitoring of the module. The module offers the Web Config as a management interface.
- Crypto User (CU) The Crypto User role has the ability to perform basic configuration and monitoring operations using the Web Config provided by the CryptoMod.

The CryptoMod supports concurrent operators. Each user session requires an RSA certificate which is used to authenticate.

2.3.2 Authentication Mechanisms

The CryptoMod requires certificate based authentication for all users connecting via TLS or VPN. A username and password is also required for users to authenticate to the device via the Web Config.

Table 8 describes the authentication methods used.

Role	Type Of Authentication	Authentication Strength
Crypto Officer and Crypto User	Username and Password	Passwords are a minimum of 8 characters, including at least one uppercase, one lowercase, one special character and at least one number. The password requirements are enforced by the Security Policy as well as Software. The probability of a random correct password guess is less than 1/94 ⁸ (one (1) in 6,095,689,385,410,816). After a failed authentication attempt, the CryptoMod would allow another attempt within a second, thus the possibility of a random correct guess during a one-minute period is less than 60 * (1/6,095,689,385,410,816) which is less than 1/1,000,000 required by FIPS 140-2. In order to successfully guess the sequence in one minute would require the ability to make over 101,594,823,040,180 guesses per second, which far exceeds the operational capabilities of the module.
	Certificate based authentication	CryptoMod supports public key authentication by using 2048 bit RSA keys. A 2048-bit RSA key has 112 bits, so the associated probability of a successful random attempt is 1 in 2^{112} , which is less than 1 in 1,000,000 as required by FIPS 140-2. Assuming the module can support 60 authentications attempts in one minute, the probability of a success with multiple consecutive attempts in one-minute period is $60/2^{112}$ which is less than 1/100,000

The CryptoMod provides a wide range of services and functions that allow the users to monitor and provide security for SCADA end devices. The table below displays the services provided by the CryptoMod and the access level required to perform them. All services are accessible through the Web Config.

The access types are abbreviated as follows

R = Read: The module reads the CSP(s).

W = Write: The module writes the CSP(s). This write access is performed after a CSP is either imported into the module, generated by the module, or if the module overwrites an existing CSP.

Z = Zeroize. The module zeroizes the CSP(s).

Service	Description	Role		Key/CSP and Type of	Access
		СО	CU	Access (Mapped from Table 10)	
Change CO Password	Apply a different password to the Crypto Officer	٠		1,2,3,11,12,13,14,15,16, 17,18,19	RW
Change CU Password	Apply a different password to the Crypto User	•	•	1,2,3,11,12,13,14,15,16, 17,18,19	RW
Change Date and Time	Apply a new date and time based on the current user's client side date and time.	•		1,2,3, 11,12,13,14,15,16, 17	RW
View/Modify Network Settings	Apply different settings to IP addresses for Ethernet ports, gateways, DNS and subnets.	•	•	1,2,3,11,12,13,14,15,16, 17	RW
View/Modify Serial Port Settings	Enable and disable serial port as well as the different configuration settings for it.	•	•	1,2,3,11,12,13,14,15,16, 17	RW
View/Modify SSL Tunnels Settings	Create a new stunnel with a source and destination IP address, as well as source and destination port.	•	•	1,2,3,11,12,13,14,15,16, 17	RW

Table 9 - Services

View/Modify VPN Servers Settings	Apply different settings to the listening port, protocol, routed networks/IP's, routed subnets as well as compression levels.	•	•	1,2,3,11,12,13,14,15,16, 17	RW
Create and Install Backups*	Generation and Installation of a backup created from the CryptoMod's current settings.	•		1,2,3,4,5,6,7,8,9,11,12, 13,14,15,16,17,18,19	RW
Create and Install PKI	Generation and Installation of CA, Server and Client keyset, as well as a certificate revocation list.	٠		1,2,3,4,5,6,7,8,9,11,12, 13,14,15,16,17,18,19	RWZ
Enable/Disable Services	Enable and disable services (Failover and ModBus).	•		1,2,3,11,12,13,14,15,16, 17	RW
View and Export Log files	Access log files from the CryptoMod. Download and view most recent log files as well as stored log archives.	•	٠	1,2,3,11,12,13,14,15,16, 17	RW
Access the CryptoMod through OpenVPN	Obtain access to the Web Config through OpenVPN on a configuration computer and the VPN running on the CryptoMod	•	•	1,2,3,4,5,6,7,8,9,11,12, 13,14,15,16,17	RWZ
Access the CryptoMod through Stunnel	Obtain access to the Web Config through Stunnel on a configuration computer and Stunnel running on the CryptoMod	•	•	1,2,3,4,5,6,7,8,9,11,1 <mark>2</mark> , 13,14,15,16,17	RWZ
Apply Update	Apply an update through the Web Config on the Package Manager page.	•		1,2,3,10,11,12,13,14,15, 16,17	RW
Import/Export Backup	Import/Export backup created within the CryptoMod or imported from other CryptoMods.	•		1,2,3,4,5,6,7,8,9,11,12, 13,14,15,16,17,18,19, 20,21	RW

Deleting	Deleting backup stored on	•		1,2,3,4,5,6,7,8,9,11,12,	RWZ
Backup	the CryptoMod			13,14,15,16,17	
Restoring	Restoring latest	•		1,2,3,4,5,6,7,8,9,11,12,	RW
Backup	imported/created Backup			13,14,15,16,17	
	stored on the CryptoMod				
On-Demand	Reboot the module in	•	٠	N/A	
Self-Tests	order to perform self-				
	tests				
Display Status	View module status	•	٠	1,2,3,11,12,13,14,15,16,	RW
Information	through the Web Config.			17	
Zeroization	Invoke the zeroization	•		1,2,3,11,12,13,14,15,16,	RWZ
	command in order to			17	
	zeroize persistent keys				
	stored in the CryptoMod				

* This service utilizes a non-Approved PBKDF2. As stated in Section 2.1.2 of this document, a non-Approved mode of operation is implicitly assumed if this service is invoked. Keys derived and used by this non-Approved service are not associated or used by any other functions.

2.4 Physical Security

The CryptoMod's chassis is opaque within the visible spectrum. The enclosure of the module has been designed to satisfy Level 2 physical security requirements. Figures 6, 7, and 8 show the FIPS 140-2 level-2 tamper evident labels A and B (AUTOSOL P/N 729) applied to a CryptoMod. The two tamper evident labels are applied to the CryptoMod at the factory prior shipping.

Figure 7 – Front -Tamper Evident Labels (A)

Figure 8 – Top -Tamper Evident Labels (B)

2.5

The FIPS 140-2 Operational Environment requirements are not applicable because the CryptoMod does not contain a modifiable operational environment.

2.6 Cryptographic Key Management

The CryptoMod uses public/private RSA keypairs for SSL and VPN operation as well as any HTTPS communication. The keypairs are shared between the applications that use them, there is not a separate keyset for each.

ID	Key/CSP	Туре	Generation/Input	Output	Storage	Zeroization	Usage
1	SSL/VPN Server Private Key	RSA 2048-bits	Generated on a CryptoMod, Installed through Web Config	Exported encrypted via Web Config	NVRAM plaintext	zeroize command	Used for SSL and VPN Server
2	SSL/VPN Server Public Key	RSA 2048-bits	Generated on a CryptoMod, Installed through Web Config	Exported encrypted via Web Config	NVRAM plaintext	zeroize command	Used for SSL and VPN Server
3	Certificate Authority Public Key	RSA 2048-bits	Generated on a CryptoMod, Installed through Web Config	Exported encrypted via Web Config	NVRAM plaintext	zeroize command	Used for SSL and VPN Server
4	Generated Server Private Key	RSA 2048-bits	Generated on a CryptoMod, Installed through Web Config	Exported encrypted via Web Config	NVRAM encrypted	zeroize command	Used for SSL and VPN Server
5	Generated Server Public Key	RSA 2048-bits	Generated Internally, or Input using Web Config	Exported encrypted via Web Config	NVRAM plaintext	zeroize command	Used for SSL and VPN Server
6	Generated Client Private Key	Private RSA 2048-bits	Generated Internally, or Input using Web Config	Exported encrypted via Web Config	NVRAM Encrypted	zeroize command	Used for SSL and VPN Server

Table 10 - Details of Cryptographic Keys and CSPs

ID	Key/CSP	Туре	Generation/Input	Output	Storage	Zeroization	Usage
7	Generated Client	RSA 2048-bits	Generated Internally,	Exported encrypted via	NVRAM plaintext	zeroize	Used for SSL and VPN Server
	Public Key		Config	Web Config	plaintext	communia	
8	Generated	RSA 2048-bits	Generated Internally,	Exported	NVRAM	zeroize	Used for SSL
	Key		Config	Web Config	Encrypted	command	and VPN Server
9	Generated CA Public Key	RSA 2048-bits	Generated Internally, or Input using Web Config	Exported encrypted via Web Config	NVRAM Encrypted	zeroize command	Used for SSL and VPN ServeStored internally
10	Update Validation Public Key	RSA 2048-bits	Installed with build image unchangeable.	Does not exit the module	NVRAM plaintext	Fixed	Public Key for RSA SHA-256 validation of update packages
11	TLS Key Establish ment Private Key	EC Diffie Hellman (256- bits), Diffie- Hellman (224-bit private exponent)	Generated internally	Does not exit the module	RAM plaintext	Reboot. Or automatically when TLS session is terminated	Used to negotiate TLS handshake and authentication
12	TLS Key Establish ment Public Key	EC Diffie Hellman (256- bits), Diffie- Hellman (2048- bit public exponent)	Generated internally	Exits electronically in plaintext	RAM plaintext	Reboot. Or automatically when TLS session is terminated	Used to negotiate TLS handshake and authentication

ID	Key/CSP	Туре	Generation/Input	Output	Storage	Zeroization	Usage
13	Web	Secret	CO/User provided	Does not exit	NVRAM	zeroize	User
	Config			the module	plaintext	command	Authentication
	Passwords						
14	TLS pre-	Shared Secret	Generated internally	Exits	RAM plaintext	Reboot. Or	New TLS
	master		or enters	electronically		automatically	session keys
	secret		electronically	encrypted		when TLS	can be created
			encrypted			session is	from this.
						terminated	
15	TLS	48-byte value	Generated internally	Does not exit	RAM plaintext	Reboot. Or	New TLS
	master			the module		automatically	session keys
	secret					when TLS	can be created
						session is	from this.
						terminated	
16	TLS	AES (256-bits)	Generated internally	Does not exit	RAM plaintext	Reboot. Or	Key used to
	session			the module		automatically	encrypt TLS
	encryption					when TLS	session data
	key					session is	
	-			.		terminated	
17	TLS .		Generated internally	Does not exit	RAM plaintext	Reboot. Or	Used for TLS
	session	(SHA1/256/384)		the module		automatically	data integrity
	integrity					when ILS	protection
	кеу					session is	
10		Internal state	Internally generated	Doos not ovit	PAM plaintaxt	Report or	Internal value
10		walue	internally generated	the module	RAIVI plaintext		
		value		the module			Approved DBDC
	3P 800-					on	Approved DRBG
	DRBG						

ID	Key/CSP	Туре	Generation/Input	Output	Storage	Zeroization	Usage
19	C Value	Internal state	Internally generated	Does not exit	RAM plaintext	Reboot, or	Internal value
	for NIST	value		the module		upon DRBG	used by the
	SP 800-					uninstantiation	Approved DRBG
	90A Hash						
	DRBG						
20	Data	AES (256-bits)	Derived internally via	Does not exit	RAM plaintext	Reboot, Upon	Key used for
	Protection		PBKDF2 function	the module		completion of	storage
	Кеу					PBKDF2	applications
						function	
21	Certificate	Secret	CO/User provided	Does not exit	N/A	Reboot, Upon	Password input
	Chain			the module		completion of	to PBKDF2
	Protection					PBKDF2	function
	Password					function	

2.6.1 Key Generation

Keys in the CryptoMod are generated using the Approved NIST SP 800-90A DRBG which is seeded by an internal entropy source. The minimum number of bytes of entropy generated directly by the CryptoMod for use in key generation is 32 bytes (256 bits).

The module performs PBKDF2 as defined in IETF25 RFC26 #2898. The vendor affirms compliance with SP 800-132, using option 1(a) in Section 5.4 to derive the Data Protection Key (DPK). The PBKDF2 is used for storage applications only.

- Passwords used in key derivation are minimum 8 characters, including at least one uppercase, one lowercase, one special character and at least one number. The password requirements are enforced by the Security Policy as well as Software.
- The probability of a random correct password guess is less than 1/94⁸ (one (1) in 6,095,689,385,410,816).
- In order to successfully guess the sequence in one minute would require the ability to make over 101,594,823,040,180 guesses per second, which far exceeds the operational capabilities of the module.

2.6.2 Key Entry/Output

To operate the CryptoMod a keyset will need to be installed by the Crypto Officer. In order to install the keyset, the Crypto Officer shall first authenticate to the Web Config and then navigate to the PKI page. The keyset consists of three files: Certificate Authority (Table 10 #8,#9), Server Certificate (Table 10 #4,#5) and Certificate Revocation List (CRL). The files can be downloaded from the CryptoMod that generated them.

The installation of keys into the CryptoMod requires entry of the Certificate Chain Protection Password (Table 10 #21) used when the keyset was originally created.

All keys, authentication and sessions in the CryptoMod are encrypted over TLS 1.2.

2.6.3 Zeroization Procedures

Key zeroization is achieved by overwriting the key storage partition with binary zeros. As described in Table 10 - Details of Cryptographic Keys and CSPs, zeroization for persistent keys takes place by triggering the zeroize command. The zeroize command can be found in the PKI page in the Web Config, under Install PKI. This function will also force a reboot of the CryptoMod, which would terminate any ongoing sessions.

In other cases, ephemeral keys are zeroized upon terminating the established session or a reboot of the device.

2.7 Electromagnetic Interference / Electromagnetic Compatibility (EMI/EMC)

The module is declared to conform with EMI/EMC requirements for a Class B (business use) device as specified by Part 15, Subpart B, of the FCC rules.

2.8 Self-Tests

Self-tests are health checks performed automatically by CryptoMod which ensure that the cryptographic algorithms within the module are operating correctly.

The self-tests identified in FIPS 140-2 broadly fall within two categories

- 1. Power-On Self-Tests
- 2. Conditional Self-Tests

2.8.1 Power-On Self-Tests

All Power-On Self-Tests automatically run upon boot up of the CryptoMod. Upon success of the Power-On Self-Tests, the SYSTEM light in the front LED panel (Figure 3) will become green. An operator can initiate the power-up self-tests on demand by shutting down and restarting the CryptoMod with the Reboot CryptoMod function in the Web Config page under Administration > System Settings.

Table 11 shows the Power-On Self-Tests the CryptoMod runs on startup.

Algorithm	Туре	Description
Firmware	Integrity	SHA-256 integrity test performed at start-up on the operational
Integrity	test	firmware
Cryptographic	Integrity	HMAC-SHA1 integrity test performed on the cryptographic
Library	test	library
Integrity Test		
AES	KAT	Encrypt/Decrypt CBC mode: 256 key length
RSA	KAT	Sign and verify using 2048 bit key and SHA-256
DRBG	KAT	HASH_DRBG
HMAC	KAT	One KAT per SHA-1, SHA-256 and SHA-384
SHA	KAT	SHA-1, SHA-256 and SHA-384 on known data. Resulting hash
		compared to a known good value

Table 11 - Power-On Self-Tests

Table 12 - Conditional Self-Tests

Algorithm	Test
DRBG	Health Checks required by Section 11 of NIST SP 800-90Arev1
RSA	Pairwise consistency test on each generation of a key pair
CRNGT	Continuous RNG test run on outputs of DRBG and the NDRNG used to
	seed the Approved DRBG. The continuous test is performed every time
	a random seed is generated. It is tested against the previous generated
	seed to assure it is unique.
Firmware Load Test	Firmware load test using an RSA 2048-bit Signature Verification
	operation

2.8.3 Self-Tests Error Handling

Upon failure of a self-test, the SYSTEM light in the front LED panel (Figure 3) will become red and the CryptoMod will attempt at fixing itself by rebooting. This could continue indefinitely if the attempts fail. The Web Config and any cryptographic operation will be inhibited until the self-tests successfully pass.

2.9 Mitigation Of Other Attacks

The CryptoMod does not claim to mitigate any attacks in a FIPS-approved mode of operation.

3. Secure Operation

When in FIPS-approved mode the CryptoMod has only one image installed at any given time and utilizes only supported algorithms (Table 2 in section Modes of Operation) to operate.

3.1 Setup and Initialization

In order to operate in a FIPS-approved mode of operation the Crypto Officer (CO) must initialize and operate the CryptoMod using the steps below.

- 1. Boot the CryptoMod.
 - For better security, it is recommended that the CryptoMod's Ethernet Interface (LAN 1 or LAN 2 port be connected directly to the Crypto Officer's configuration computer's ethernet port).
 - For more information, visit the *"Establishing a Connection to the CryptoMod"* section of the User Manual shipped with the CryptoMod.
- 2. As the CO, access the CryptoMod's Web Config page through https:// IP of the CryptoMod
 - If connected to LAN 2 port of the CryptoMod go to: https://172.16.63.3
 - Default IP of the CryptoMod's LAN 1 port is 172.16.63.2
- 3. The CO shall change the default CO and CU passwords via the Web Config.
 - Visit the Passwords page under the Administration menu.
 - After each password change the Web Config will terminate the session and force the CO to reauthenticate using the new password.
 - Reauthentication will occur three times: after changing the default CO password, after changing the default CU password, and reauthenticate the third time to continue with these steps.
- 4. As the CO, create a Keyset (consisting of the Generated Certificate Authority (CA) Key Pair (Table 10 #8,9), Generated Server Key Pair (Table 10 #4,#5) and Certificate Revocation List file) via the Web Config.
 - Select create PKI in the PKI page under the Administration menu.
 - For more information, please consult *Creating a PKI* in the User Manual.
- 5. The CO must then export the created Keyset to the CO's configuration computer using the PKI page.
 - The keyset will be available for download in the PKI page after creation in step 4.
 - Export the CA (ca.crt) and CRL(currentlist.crl.pem)
 - Export the Server Certificate (file name contains 'SVR')
 - Export the Client Certificates (file name ends in BROWSER.key.crt.pfx and other file ends in stunnel.ovpn.crt)
- 6. The CO shall now install the downloaded Keyset via the Web Config.
 - Select Install PKI in the PKI page under the Administration menu.
 - Upload the CA file(ca.crt), the Server Certificate file (file name contains 'SVR'), and the CRL file(currentlist.crl.pem).

- For more information, please consult *How to use a PKI* in the User Manual.
- 7. Click *Start Change PKI Process* in the PKI page.
- 8. Click *Reboot CryptoMod* in the PKI page.
- 9. While the reboot is taking place, install the client certificate (Table 10 #6,#7 file name ends in BROWSER.key.crt.pfx) and the CA (ca.crt) that were downloaded in step 6 in the browser of the configuration comptuer.
 - For more information, please consult *Installing certificates in browser* in the User Manual.
- 10. Enter the Web Config of the CryptoMod after installing the browser certificates and ensure it displays "Mode of Operation: FIPS-Approved" mode in the side Unit Statistics table.
- 11. Ensure the crypto LED goes green on the Front Panel of the CryptoMod.
 - Figure 3 specifies the LED, which when green indicates the module is in the approved mode of operation.
 - After the approved mode of operation is verified, the CO can generate a keyset for the CU.

Appendix A: Acronyms

This section describes the acronyms used throughout the document. Table 13 - Acronyms

Acronym	Definition
AES	Advanced Encryption Standard
CA	Certificate Authority
CRL	Certificate Revocation List
СМУР	Cryptographic Module Validation Program
СО	Crypto Officer
CU	Crypto User
CSP	Critical Security Parameter
DRBG	Deterministic random bit generator
FIPS	Federal Information Processing Standard
НТТР	Hyper Text Transfer Protocol
КАТ	Known Answer Test
LED	Light Emitting Diode
MAC	Message Authentication Code
NIST	National Institute of Standards and Technology
NVRAM	Non-Volatile Random-Access Memory
PBKDF2	Password-Based Key Derivation Function 2
PKI	Public Key Infrastructure
RAM	Random Access Memory
RSA	Rivest Shamir and Adleman method for asymmetric encryption
SHA	Secure Hash Algorithm
SSL	Secure Sockets Layer
SVR	Server
TLS	Transport Layer Security
VPN	Virtual Private Network