LunaCA3 Security Policies

DOCUMENT CLASS: Overview
CODE NAME: n/a
SECURITY LEVEL: Unrestricted
ORIGINATOR: Wayne A. Reed
DEPARTMENT: Engineering
DATE ORIGINATED: 24 August 1998
DOCUMENT NUMBER: 802509
VERSION: 1.20
PROJECT NO: 5500-100
PRINTED BY: Wayne Reed
PRINTED ON: 09/24/98 at 7:44 AM
APPROVALS
Manager, Firmware
Roger Hebb Development Date
Chief Technical
Bruno Couillard Officer Date
V.P., Engineering
Wayne Reed Date

(c) Copyright 1997-98 Chrysalis-ITS, Inc.

Alt rights reserved. Canadian Security Establishment (CSE) and Nationa! Institute of Standards and Technology (NIST) are

granted the right to copy and distribute this document provided such reproduction is in its entirety.

~ Revision History
Revision Date Description

1.00 21 August 1998 | Created document from Luna2 Security Policies; addressed comments
from DOMUS.

1.10 24 August 1998 Revised TPV key single function bit; added a statement on physical
security; added key cloning domain identifier and M of N shares as
required parameters for the SCP in level 3 mode.

1.20 21 September 1998 | Modified copyright and security classification.

(anviow — 1 iinal A3 Soourity Polisioo Document #802509 V1.20

Table of Contents

1o INFOAUCTION .ot ses s see e esmess e e s e e e 1
10 PUIPOSE. ..ttt s ettt et e e s et eeeeeeseesseees 1
1.2, SCOPE...ccterteuriiit ettt bttt e s sttt e s et ee et eee e seenese 1
1.3, INENARA AUIBNCEouvveveeseetee et ees e eeesse e ee e e e e e e eeee 1

2. LUNACA® OVEIVIBW c.vuurrrreennesssesessassssssssseeessssseesssessssmsesssssesseeseseemeeeeemsssesssssenseees 1

3. SECUIItY POHICY TOOIScomemrecmrrrnrererssesnemsnsarssssessssemsessesesnssssssssmsmsssnseseseee s 2
3.1, FiXed PONCY VECIOr (FPV).......coueeeiirnrieeseresiee st teeseee e ses s eesess s s eess e ees s sesseees 3

3.1.1. Number of SO Login Fails AOWE..........cc.eeeureurrcreiereeneeeresesseesessee e eeeee e 3
3120 SECIBE KEY PONICY....ouvucteieeecctirneeecnsese ettt sees et et eeesees e 3
313, PrIVAe KeY PONCYc.couivecereeenicreene et oo s ees s s s e e eee e e 3
3.1.4. TOKEN SECUMLY PONCY ...vu.ouevviecerrereenisscanstnstse st eassseeeesese e seseses s e e e 4
3.2. Cryptographic AlGOrithm VECIOr (CAV)ucuueueereeeriseeseesesesseeeeessesssesssesesessseseeeseeeeeeeeeesseesenes 5
3.3, ToKen POICY VECIOr (TPV) ..ottt teesesetseeeseesesessssssses s es st e e e 6
3.3.1. Number of User Login Fails AlIOWEMc.euverereeeeeeeeeeerseeeeseseesess e eeeeeeeseessns 6
3.3.2. Minimum/Maximum Authentication COA LENGN.........veeeeeeereeeeeeeeeeeeeeeeeeeeeoeeoeoeeoeeeeoeeeen 6
B.3.3. LOCAI PONCIES.....e.ceccurerieieececerireerensaes et ees s seseaseeeeeees e s s sttt ee s eseeee s 6

4. Identification and Authentication (I1&A) bessesseseesssesssssessnsnnrEeaennreassannnnnn 7

5. Discretionary ACCess CONrol (DAC)cceverreeremrersnercesessersnsssssersessmssesssssssemsssesn 7

6. Mof N Activation......ccccceereerrrerirrnscnsncnne vemeriairanns SR T 8

7. ODJECE REUSE ...t nsssn e menssr s sssssesas s s sssssassesssnsnsassssssassesssosanans 8

- R =T (- 4T TR 8

L T | o - T . S 8

Unrestricted [:hrusﬂlis-nﬁ [

Overview— LunaCA3 Securit)/ Policies Document #802509 V1.20

C

Unrestricted Bhrusﬂhs_nﬁ i

Ovarviow . | unalCA2 Caourity Dalisise Document #802509 V'1.20

1. Introduction

1.1. Purpose

This document describes the security policies implemented by the LunaCA® PC Card (LunaCA® foken) and
how the design of its firmware enforces these policies.

1.2. Scope
This document addresses the LunaCA3 token’s security policies.

1.3. Intended Audience

The intended audience for this document is: the LunaCA?3 Engineering and Product Management Team,
external agencies for validation or endorsement of the LunaCA® token: selected industry partners;
prospective customers; and potential users of LunaCA® that want to understand the security policies of the
product for FIPS operations.

The reader of this document should be familiar with the PKCS#11 standard [PKCS#11] defined by RSA
Laboratories.

2. LunaCA3 Overview

The LunaCA® token securely stores data and keying material inside its cryptographic boundary. The
LunaCA? token also performs cryptographic operations on data provided by external applications using the
keying material stored in the token. These abilities are defined as key management, object management,
and cryptographic capability.

Before a LunaCA® token can be used to perform any cryptographic or key/object management functions,
the token must receive a valid operator identity (also known as a user number), as well as valid
authentication code. These two inputs are processed by the token during a "LOGIN" command. When this
command has completed successfully, the token allows the user to perform operations based on the policy
settings defined for that token.

The token has the ability to distinguish two categories of users: super-users and normal users. The super-
user category is referred to as the Security Officer (SO) and the normal user category is referred to as the
user. A token can have only one SO. The SO is allowed to perform all of the cryptographic, key and object
management functions provided by the token, as well as a set of functions called the SO functions. These
SO functions are available only to the SO, and they allow the SO to manage the token policy.

For a LunaCA® token, there is no limit on the number of users that can be created by the SO. All users are
subjected to the same policy settings as those established by the SO. However, each user has its own
authentication code initially assigned under control of the SO, which is used internally to protect the data
the user owns.

The LunaCA? token protects critical security parameters as defined by [FIPS 140-1]. For the purposes of a
LunaCA? token, critical security parameters are the SO’s and users’ authentication codes. These critical
security parameters can only be exchanged with a LunaCA?® token through a separate data port. Attached
to this separate data port via the PC Card reader is a PIN Entry Device or PED. With the PED, a user can
store a pseudo randomly-generated authentication code on a Datakey® serial memory key (Datakey
device). To access the cryptographic material on a LunaCA? token, a user needs the token, a PED, a card
reader capable of supporting communication between the token and the PED, AND the Datakey devices
containing the SO and/or user authentication codes.

Unrestricted ﬂhfgﬁﬂliﬁ-"ﬂ !

Overview— LunaCA3 Security Policies Document #802509 V'1.20

As per FIPS requirements, the LunaCA® token also enforces the use of a separate data port for input and
output of plaintext cryptographic key components and plaintext authentication data. The key cloning
domain identifier and M of N shares are plaintext cryptographic key components and, hence, are protected
through the use of the separate data port.

The LunaCA? token meets and is validated against FIPS 140-1 level 3 physical security requirements. For
example, one aspect of physical security is through tamper evidence provided by the case: an attacker
cannot get into the LunaCA%token and access plaintext keys in an operational state. Contact Chrysalis-ITS
for more details of the physical security used to protect the LunaCA’token.

3. Security Policy Tools

The LunaCA® token provides two levels of security policy enforcement. A vector that is loaded on the token
during manufacturing dictates the first level of security. This vector, called the Fixed Policy Vector (FPV),
establishes an envelope of security that cannot be modified after manufacturing.

The second level of security is provided by policy vector that can be modified by the token's SO. This
vector is called the Token Policy Vector (TPV), and consists of a series of policy settings that can be
established and modified by the token’s legitimate SO.

C

Unrestricted [:hr uﬁﬂhS'"s 2

Ouarviow . L UnalA2 Soourity Bolisioe Document #802509 V1.20

3.1. Fixed Policy Vector (FPV)

The FPV contains the settings necessary to enforce policy rules that apply across a wide range of token
users, regardless of their organizational policies. For example, one bit in the FPV defines whether the token
can be exported. In an exportable version, the token provides a reduced set of algorithms and imposes
limitations on maximum key lengths as required by export regulations.

The FPV cannot be modified by the SO or any of the users. The FPV is put on the token when it is
manufactured and remains in place until the token is destroyed or the firmware is erased. The integrity of
the FPV is maintained through the same mechanism used to protect the executable code from being
modified. This mechanism is a 32-bit CRC computation.

The format of the FPV is a 32-bit vector that is divided into four fields of eight bits. These fields and their
contents are defined in the following sections.

3.1.1. Number of SO Login Fails Aliowed

This field defines the number of consecutive failed login attempts that can be made by the SO before the
token erases the flash memory to prevent illegal access to its contents.

This security measure prevents an impostor from cracking the SO’s authentication code on the token.

3.1.2. Secret Key Policy

The following table defines the flags that identify the security policies that are followed for secret key
objects.

Name Description

FPV_KEY_POLICY_SENSITIVE This bit determines whether a secret key object must always be mad
ensitive or if it can be determined by the high-level application using th
oken. When this bit is set, all secret keys stored on the token are sensitive|
he keys are encrypted when in the flash memory and they can b
xtracted only outside of the token in encrypted form using th

ESC_WRAP_KEY function.
his bit must be set for FIPS-compliant tokens.

FPV_KEY_POLICY_NO_CREATE his bit determines whether a secret key object can be created by an|
xternal application using the token, instead of being generated by thel
oken. When this bit is set, an external application cannot create a secref
ey on the token; it is not possible to enter a secret key in plain text form on
he token.
his bit must be set for FIPS-compliant tokens.

3.1.3. Private Key Policy

The following table defines the flags that identify the security policies that are followed for private key
objects.

Unrestricted . Ehrusalis-ﬂﬁ 3

Overview — LunaCA3 Security Policies Document #802509 V1.20

Name Description

FPV_KEY_POLICY_SENSITIVE This bit determines whether a private key object must always be mad
ensitive or if it can be determined by the high-level application using th
oken through PKCS#11. When this bit is set, all private keys stored on th
oken must be flagged as sensitive whether or not the high-level applicatio
equested this flag when the keys were created. When this bit is set, al
rivate keys are encrypted while stored in flash memory.
ote: After a private key is sensitive, it cannot be extracted from the token
ven in encrypted format.
his bit must be set for FIPS-compliant tokens.

FPV_KEY_POLICY_NO_CREATE his bit determines whether a private key object can be created by an

xternal application using the GESC_CREATE_OBJ call, instead of being

enerated by the token. When this bit is set, an external application cannot
reate a private key on the token; it is not possible to enter a private key in
lain text form on the token.

his bit must be set for FIPS-compliant tokens.

3.1.4. Token Security Policy

The following table defines the flags that identify the security policies that dictate the behavior of the token
in general.

Name Description

FPV_SECURITY_POLICY_DOMESTIC [This bit determines whether the token can be exported. When this bit is set,
he token is configured for the domestic market and cannot be exported|
his bit is verified mternally every time a cryptographlc function implying an
ncryption or a decryptaon is performed. If the bit is set, no restrictions exnsq
n key sizes. If the bit is not set, a limitation of 56 bits is applied to any
ymmetric keys used for encryption or decryption, and a 512-bit Iimitatlon
n asymmetric keys used for wrapping and unwrapping operations,
ignature and verification operations are not restricted in terms of key
engths.
FPV_SECURITY_POLICY_SERVER This bit indicates that the token is intended for use in a server environment.
When this bit is set, server operations are enabled. For a LunaCA® token,
this bit is not set.
FPV_SECURITY_POLICY_USE_CAV [This bit is used by the firmware to determine whether the token was loaded
with Cryptographic Algorithm Vector (CAV). When this bit is set, CAV is|
present. This setting is intended for tokens that were manufactured before
ICAV was created and that are being updated with new firmware.
FPV_SECURITY_POLICY_WRAPPING_TOKEN [This bit determines whether RSA private keys can be wrapped. When thi
bit is set, an RSA private key can be wrapped.
FPV_SECURITY_POLICY_USE_M_OF_N This bit defines whether the token can perform M of N activation. When th
bit is set, the token can be confuga ured to perform M of N activation. M of
“ls a principal feature of a LunaCA" token.
FPV_SECURITY_POLICY_USE_RAW_RSA his bit determines whether RAW RSA operations can be performed on th
oken. When this bit is set, RAW RSA operations are allowed. RAW RS
rovides access to RSA to perform encrypt and decrypt operations on dat
ithout any padding.
FPV_SECURITY_POLICY_SPECIAL_CLONING hls bit determines whether the token can participate in key clomng Whe
his bit is set, key cloning can be performed. Key cloning is a prmmp
eature of a LunaCA® token.
FPV_ENABLE_CCM his bit determines whether a custom command module can be load
nto the token. When this bit is set, a custom command module can
loaded onto the token.

his bit must be cleared (i.e., zero) for FIPS-compliant tokens.

FPV_PIN_MUST_USE_SP hls bit determines if the serial communication port must be used to en’(
n authentication code. When this bit is set, an authentication code ca
nly be entered through the serial communication port. When this bit i

Unrestricted Ehl‘“ﬁﬂhﬁ'"ﬁ 4

Ovanviow L unalCA2 Soourity Policioe

Document #802509 V'1.20

Name

Description

cleared, authentication codes are entered via the host computer. Use o
the serial communication port is a principal feature of a LunaCA® token.

This bit must be set for FIPS 140-1 level 3-compliant tokens.

FPV_MOFN_MUST_USE_SP

he M of N secret. When this bit is set, the M of N secret can only b
ntered through the serial communication port. When this bit is cleared,
he M of N secret is entered via the host computer. Use of the seria
communication port is a principal feature of a LunaCA? token.

This bit must be set for FIPS 140-1 level 3-compliant tokens.

E‘his bit determines if the serial communication port must be used to ente

FPV_KCV_MUST_USE_SP

This bit determines if the serial communication port must be used to enter
the key cloning domain identifier. When this bit is set, the key cloning
domain identifier can only be entered through the serial communication
port. When this bit is cleared, the key cloning domain identifier is entered
via the host computer. Use of the serial communication port is a principal
feature of a LunaCA® token.

This bit must be set for FIPS 140-1 level 3-compliant tokens..

3.2. Cryptographic Algorithm Vector (CAV)

CAV contains a series of flags that identify which cryptographic algorithms are active on a token. One bit is
defined for each algorithm that the token firmware can perform.

Name

Description

CA_CAV_DES_ENCRYPT

When set, the token can perform a DES encryption operation.

CA_CAV_DES_DECRYPT

When set, the token can periorm a DES decryption operation.

CA_CAV_3DES_ENCRYPT

When set, the token can perform a triple-DES encryption operation.

CA_CAV_3DES_DECRYPT

When set, the token can perform a DES decryption operation.

CA_CAV_RC2_ENCRYPT

When set, the token can periorm an RC2 encryption operation.

CA_CAV_RC2_DECRYPT

When set, the token can perform an RC2 decryption operation.

CA_CAV_RC4 ENCRYPT

When set, the token can perform an RC4 encryption operation.

CA_CAV_RC4 DECRYPT

When set, the token can perform an RC4 decryption operation.

CA_CAV_RC5_ENCRYPT

When set, the token can perform an RC5 encryption operation.

CA_CAV_RC5_DECRYPT

When set, the token can perform an RC5 decryption operation.

CA_CAV_CAST_ENCRYPT

When set, the token can perform a CAST encryption operation.

CA_CAV_CAST_DECRYPT

When set, the token can perform a CAST decryption operation.

CA_CAV_CAST3_ENCRYPT

When set, the token can perform a CAST3 encryption operation.

CA_CAV_CAST3_DECRYPT

When set, the token can perform a CAST3 decryption operation.

CA_CAV_CAST5_ENCRYPT

When set, the token can perform a CAST5 encryption operation.

CA_CAV_CAST5_DECRYPT

When set, the token can perform a CAST5 decryption operation.

CA_CAV_MD2 When set, the token can perform an MD2 operation.
CA_CAV_MD5 When set, the token can perform an MD5 operation.
CA_CAV _SHA 1 When set, the token can perform an SHA-1 operation.
CA_CAV_RSA When set, the token can perform an RSA operation.
CA_CAV_DSA When set, the token can perform a DSA operation.
CA_CAV_DH When set, the token can perform a Diffie Hellman operation.

There are two fields in CAV that each consist of four bits. These fields represent the major and minor

version of CAV.

Name

Description

CA_CAV_VERSION_MAJOR

These four bits represent the major version number of the CAV vector.

Unrestricted

Chrysalis-TS 5

Overview— LunaCA3 Securit)/ Policies Document #802509 V1.20

Name Description

CA_CAV_VERSION_MINOR These four bits represent the minor version of the CAV vector.

3.3. Token Policy Vector (TPV)

The TPV contains the settings necessary to enforce policy rules locally in an organization. For example,
one bit in the TPV defines whether the token can perform a signature operation using a signing key
generated by an outside process or if it must use an internally-generated key for this function. The TPV can
be modified by the token’s SO. The TPV contents are used by the internal code to validate the operations
performed by the token’s USER.

The format of the TPV is a 32-bit vector that is divided into four fields of eight bits. These fields and their
contents are defined in the following sections.

3.3.1. Number of User Login Fails Allowed

This field defines the number of consecutive failed login attempts that can be made by a USER before the
USER gets locked out or the USER’s data is erase. This security feature prevents illegal access to the
USER's data and keys: it prevents an impostor from cracking the USER’s authentication code on the token.
Whether the user is locked out or the data is erased depends upon the "USER zeroize" bit. If the USER
zeroize bit is disabled, too many failed login attempts results in the USER getting locked out. In this case, a
USER must make a request to the SO to regain access to the token. Under control of the SO, the USER
receives a new authentication code (e.g., a new Datakey device).

3.3.2. Minimum/Maximum Authentication Code Length
These two fields define the minimum and maximum length restrictions for a USER's authentication code.

3.3.3. Local Policies

The following table defines the flags that identify the security policies that dictate the behavior of the users
on the token.

Name Description

TPV_USER_ZEROIZE This bit determines whether the token can be zeroized by a normal user or if only
the SO can zeroize the token.

This bit indicates whether the token is centrally controlled.

'When this bit is set, it indicates that a valid token user can zeroize the token. This bit
Esables using the token in an environment where the SO is not commonly used.

hen this bit is set, the SO cannot change a user password, and a user is zeroized
fter too many unsuccessful login attempts.
[TPV_USER_FW_UPDATE his bit determines whether the firmware can be updated by a normal user or if only
he token’s SO can update the firmware. When this bit is set, a normal user can
erform the firmware update.
TPV_M_OF_N_ACTIVATION his bit determines whether M of N activation is required for a user to gain access to
he token. When this bit and the FPV_SECURITY_POLICY_USE_M_OF_N bit in
he FPV is set, the token is not activated until the required number of parts to a split
ecret have been entered.
[TPV_KEY_ATTRIB_LOCK his bit determines whether the flag attributes of a key can be modified once the key,
is a valid object on the token. When this bit is set, it indicates that the flag attributes
f a key cannot be modified after they have been established. For example, if this bit
is set and a DES key is created for encryption and decryption, these attributes

Unrestricted Chrysalis-IT3 °

Ovorviow L unalCA2 Soourity Dalisias Document #802509 V'1.20

Name Description

cannot be changed to wrap and unwrap once the key exists on the token.
TPV_KEY_SINGLE_FUNCTION This bit determines whether a key can be used to perform multiple types of
Eperaﬁons (i.e., use a key for encrypting, signing, and wrapping). When this bit is

et, it indicates that keys can be used only to perform single functions. For

ymmetric keys, a single function is considered to be a pair of related functions such
S encryption/decrgption, wrapping/unwrapping, or sign/verify. . With the validated
release of LunaCA®, multiple use of a key is allowed regardless of the value of
TPV_KEY_SINGLE_FUNCTION.

TPV_SIGNING_KEY_LOCAL When performing a signing operation, the private key used may have been
generated locally or provided by an external source. In most environments, it is
preferable to have the signing/verifying key pair generated by the token and never
Extracted from it. However, in certain cases the signing keys are generated

xternally and loaded on the token for subsequent signature operations. When this
itis set, it indicates that externally generated keys cannot be used for signing
perations performed by the token.

4. Identification and Authentication (I&A)

The LunaCA? token enforces an identity-based user authentication policy. For normal users, the user
number and a valid authentication code (e.g., the data stored on a Datakey device) must be provided to the
token before access to private data and token services can be granted. For the SO, only a valid
authentication code is required.

Note: Normal users also have a text-based name associated with them. The name corresponding to a
particular user number can be queried from the token.

The authentication codes for the SO and users can be changed at any time by their respective owners. The
SO can also re-instate users with lost authentication codes. Re-instating users does not affect the
cryptographic material and data owned by the user and protected under the old authentication code.

The LunaCA® token implements policy that limits the number of login attempts. This feature prevents an
exhaustive search approach for finding the authentication code of the SO or user. The implementation of
this feature differs from that of an SO authentication code search and that of a user authentication code
search.

For a user authentication code search:

. If “n” consecutive user logon attempts fail, the token flags the event in the user's
authorization vector (UAV). This locks out the user until the SO logs back on to the token
and unlocks the user. (The value of "n" is defined by the SO in the TPV.)

For an SO authentication code search:

. If “n” consecutive SO logon attempts fail, the token is zeroized and its operational state
goes to ZEROIZED. (The value of "n" is defined in the FPV, which is defined when a
LunaCA? token is manufactured and cannot be modified without invalidating the CRC
value of the software load.)

5. Discretionary Access Control (DAC)

Every data object on the token can be public or private. Private data objects are labeled with a number that
corresponds to the owner and can be accessed only by the legitimate owner. A user cannot create a key or
certificate object as a public object. Only data objects can be public or private.

The token does not allow for any granularity of ownership other than that of individual or public (i.e., a data
object cannot be owned by two users and restricted from other users). Also, the ownership of an object
implies read/write/modify/execute access to the object, which means full access rights to the object.

Unrestricted [:hl' uSHIiS'HS !

Overview— LunaCA3 Security Policies Document #802509 V1.20

6. M of N Activation

LunaCA?® supports a token activation feature called M of N. The concept of the M of N activation capability
provides protection of a secret by "splitting” it into "N" pieces, where any "M" of these pieces must be
reassembled to reconstruct the original secret. The LunaCA? feature is based on Shamir's threshold
scheme. This scheme allows a secret value to be shared by "n" external recipients without risking any
compromise to the secret.

M of N activation must be performed when there are no permanent sensitive objects stored on the token.
Otherwise, there is a risk of corrupting objects stored in flash prior to generating the M of N set or after
“deactivating” the feature. Management of M of N activation is an operational issue for the SO.

Note that for M of N activation to be effective, the values of M and N should be two or greater. Consider,
for example, a 1 of 1 share to be of little value in securing activation of a token.

7. Object Reuse

The token enforces an object reuse policy in that every object is allocated a portion of memory (flash or
SRAM). The policy also ensures that no other objects are placed in the same memory location uniess all
previous memory content are initialized and purged. When cryptographic functions are performed, a
cryptographic context is created to hold data required by the function (e.g., a DES key schedule for a DES
function or an MDS5 chaining vector). The cryptographic context only exists in SRAM memory and is not
assigned to any functions except those defined by its owner. The memory assigned to a cryptographic
context is always purged of its content before being handed over to a function.

8. References

[FIPS 140-1] FIPS PUB 140-1: Security Requirements for Cryptographic Modules, Federal Information
of Processing Standards Publication, U.S. Department of Commerce and National Institute
of Standards and Technology, 1994 January 11.

[PKCS#11] PKCS #11: Cryptographic Token Interface Standard, RSA Laboratories, Draft 1, version
2.01, September 12,1997,

9. Notes

Datakey is a registered trademark of Datakey, Inc.

Unrestricted ﬂhf“ﬁﬂ"ﬁ'"ﬁ ®

