

© 2017 SUSE, LLC /atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Module

version 3.0

FIPS 140-2 Non-Proprietary Security Policy
Doc version 1.1

Last update: 2017-10-02	

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 2 of 37

Contents
1 Cryptographic Module Specification ... 3	
1.1 Description of the Module .. 3	
1.2 Modes of Operation ... 5	
2 Cryptographic Module Ports and Interfaces ... 6	
3 Roles, Services, and Authentication ... 7	
3.1 Roles ... 7	
3.2 Services ... 7	
3.3 Operator Authentication .. 9	
3.4 Algorithms ... 9	
3.4.1 Running on Intel Xeon Processor ... 9	
3.4.2 Running on z13 Processor ... 13	
3.4.3 Non-Approved Algorithms .. 16	
4 Physical Security .. 18	
5 Operational Environment .. 19	
5.1 Applicability ... 19	
5.2 Policy ... 19	
6 Cryptographic Key Management .. 20	
6.1 Random Number Generation .. 20	
6.2 Key Generation ... 21	
6.3 Key Agreement / Key Transport / Key Derivation .. 21	
6.4 Key Entry / Output ... 22	
6.5 Key / CSP Storage .. 22	
6.6 Key / CSP Zeroization ... 22	
7 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) .. 23	
8 Self Tests ... 24	
8.1 Power-Up Tests ... 24	
8.1.1 Integrity Tests ... 24	
8.1.2 Cryptographic Algorithm Tests ... 24	
8.2 Conditional Tests ... 25	
8.3 On-Demand Self-Tests .. 26	
9 Guidance .. 27	
9.1 Crypto Officer Guidance .. 27	
9.2 User Guidance .. 28	
9.2.1 TLS and Diffie-Hellman .. 28	
9.2.2 AES XTS .. 29	
9.2.3 Random Number Generator ... 29	
9.2.4 AES GCM IV .. 29	
9.2.5 RSA and DSA Keys .. 29	
9.3 Handling Self Test Errors .. 30	
10 Mitigation of Other Attacks ... 31	
10.1 Blinding Against RSA Timing Attacks .. 31	
10.2 Weak Triple-DES Key Detection ... 31	
11 TLS Cipher Suites .. 33	
12 Glossary and Abbreviations ... 36	
13 References ... 37	

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 3 of 37

1 Cryptographic Module Specification
This document is the non-proprietary security policy for the SUSE Linux Enterprise Server OpenSSL
Module, and was prepared as part of the requirements for conformance to Federal Information
Processing Standard (FIPS) 140-2, Level 1.

1.1 Description of the Module
The SUSE Linux Enterprise Server OpenSSL Module (hereafter referred to as the “Module”) is a
software library implementing the Transport Layer Security (TLS) protocol v1.0, v1.1, and v1.2, and
the Datagram Transport Layer Security (DTLS) protocol v1.0 and v1.2, as well as supporting FIPS 140-
2 Approved cryptographic algorithms. The current version of the Module is 3.0. An earlier version of
this Module has gone through FIPS 140-2 validation under certificate #2435.

This Module provides cryptographic services to applications running in the user space of the underlying
operating system through a C language application program interface (API). The Module may utilize
processor instructions to optimize and increase performance. The Module can act as a TLS server or
TLS client and interacts with other entities via TLS/DTLS network protocols.

For FIPS 140-2 purposes, the Module is classified as a multi-chip standalone module validated at
security level 1. The following table shows the claimed security level for each of the eleven sections
comprising the FIPS 140-2 standard.

Security Component Security Level

Cryptographic Module Specification 1
Cryptographic Module Ports and Interfaces 1
Roles, Services, and Authentication 1
Finite State Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
EMI/EMC 1
Self Tests 1
Design Assurance 1
Mitigation of Other Attacks 1

Table 1: Security Level of the Module

The Module's logical cryptographic boundary is the shared library files and their integrity check HMAC
files that are delivered with the following RPM packages:

• 64-bit libssl and libcrypto shared libraries (libssl.so.1.0.0 and libcrypto.so.1.0.0) delivered in

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 4 of 37

libopenssl1_0_0-1.0.2j-60.11.2.x86_64.rpm and libopenssl1_0_0-1.0.2j-60.11.2.s390x.rpm –
note that the RPM also delivers other shared libraries implementing the OpenSSL engines which
are not part of the Module.

• HMAC integrity verification files for the 64-bit shared libraries (.libssl.so.1.0.0.hmac
and .libcrypto.so.1.0.0.hmac) delivered in libopenssl1_0_0-hmac-1.0.2j-60.11.2.x86_64.rpm and
libopenssl1_0_0-hmac-1.0.2j-60.11.2.s390x.rpm.

As shown in the following figure, the Module’s logical boundary is the rectangle containing the
libcrypto shared libary, libssl shared library, and the associated HMAC files.

Figure 1: Software Block Diagram

The Module has been tested on the following multi-chip standalone platforms:

Platform Processor Test Configuration

FUJITSU Server PRIMERGY CX2570
M2 inside a CX400 M1 enclosure

Intel Xeon E5 family SUSE Linux Enterprise Server 12 SP2 with
and without AES-NI (PAA)

IBM z13 z13 SUSE Linux Enterprise Server 12 SP2 with
and without CPACF (PAI)

Table 2: Tested Platforms

Note: Per FIPS 140-2 IG G.5, the Cryptographic Module Validation Program (CMVP) makes no
statement as to the correct operation of the module or the security strengths of the generated keys when
this module is ported and executed in an operational environment not listed on the validation certificate.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 5 of 37

The module is aimed to run on a general-purpose computer (GPC). The Module's physical boundary is
the tested platforms (depicted in Figure 2).

 Figure 2: Hardware Block Diagram

1.2 Modes of Operation
The module supports two modes of operation:

• FIPS mode (the Approved mode of operation): only approved or allowed security functions with
sufficient security strength can be used.

• Non-FIPS mode (the non-Approved mode of operation): only non-approved security functions
can be used.

The module enters FIPS mode after power-up tests succeed. Once the module is operational, the mode
of operation is implicitly assumed depending on the security function invoked and the security strength
of the cryptographic keys.

Critical security parameters used or stored in FIPS mode are not used in non-FIPS mode, and vice
versa.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 6 of 37

2 Cryptographic Module Ports and Interfaces
As a software-only module, the module does not have physical ports. For the purpose of the FIPS 140-2
validation, the physical ports are interpreted to be the physical ports of the hardware platform on which
it runs.

The logical interfaces are the API through which applications request services, the TLS protocol
internal state and messages sent and received from the TCP/IP protocol. The ports and interfaces are
shown in the following table.

FIPS Interface Physical Port Logical Interface
Data Input Ethernet ports API input parameters, kernel I/O – network or files

on filesystem, TLS protocol input messages.
Data Output Ethernet ports API output parameters, kernel I/O – network or

files on filesystem, TLS protocol output messages.
Control Input Keyboard, Serial port, Ethernet

port
API function calls, API input parameters for
control, TLS protocol internal state.

Status Output Serial port, Ethernet port API return codes, TLS protocol internal state.

Power Input PC Power Supply Port N/A

Table 3: Ports and Interfaces

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 7 of 37

3 Roles, Services, and Authentication
This section defines the roles, services and authentication mechanisms, and methods with respect to the
applicable FIPS 140-2 requirements.

3.1 Roles
The Module assumes two roles: User role and Crypto Officer role, which are identified along with their
allowed services in Table 4 (the services are further detailed in Table 5 and Table 6).

Role Descriptions

User Perform general security services, including Approved and non-Approved
security functions. (Please see Table 5 and Table 6 for more details)

Crypto Officer Perform Module installation and initialization.

Table 4: Roles

The User and Crypto Officer roles are implicitly assumed by the entity accessing services implemented
by the Module.

3.2 Services
The Module supports services that are available to users in the various roles. All of the services are
described in detail in the Manual Pages. The introduction page is crypto(3) for the crypto operations and
ssl(3) for the SSL/TLS protocol API.

The following table lists the Approved or non-Approved but allowed services available in FIPS
Approved mode. Please refer to Table 7, Table 8 and Table 9 for the Approved or Allowed key size of
each algorithm used in the services.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 8 of 37

Service Role Algorithm Keys/CSPs Access
Cryptographic Library Services

Symmetric
encryption/decryption

User AES or Triple-DES AES or Triple-DES key read

RSA key generation User RSA, DRBG RSA public-private key create
RSA signature
generation/verification

User RSA RSA public-private key read

DSA key generation User DSA, DRBG DSA public-private key create
DSA signature
generation/verification

User DSA DSA public-private key read

ECDSA key generation User ECDSA, DRBG ECDSA public-private key create
ECDSA signature
generation/verification

User ECDSA ECDSA public-private key read

ECDSA public key
validation

User ECDSA ECDSA public key read

Random number
generation

User DRBG Seed, entropy input string
and internal state

read,
update

Message digest User SHA-1, SHA224, SHA256,
SHA-384, SHA-512

N/A N/A

Message authentication
code (MAC)

User HMAC HMAC key read
User CMAC with AES AES key read
User CMAC with Triple-DES Triple-DES key read

Key wrapping User AES AES key read
User RSA RSA private key read

Diffie-Hellman Key
Agreement

User KAS FFC Diffie-Hellman domain
parameters

create,
read

EC Diffie-Hellman Key
Agreement

User KAS ECC, ECC CDH
primitive

EC Diffie-Hellman public-
private keys

create,
read

Network Protocol Services
Transport Layer
Security (TLS) network
protocol v1.0, v1.1 and
v1.2

User See Appendix A for a
complete list of supported
cipher suites

AES or Triple-DES key,
RSA, DSA or ECDSA private
key, HMAC key, Pre-Master
Secret, Master Secret, Diffie-
Hellman domain parameters
or EC Diffie-Hellman public-
private keys

read

TLS extensions User N/A RSA, DSA or ECDSA public-
private key

read

Certificate Management User N/A RSA, DSA or ECDSA public-
private key

read

Other FIPS Related Services
Show status User N/A None N/A
Module installation Crypto

Officer
N/A None N/A

Module initialization Crypto
Officer

N/A None N/A

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 9 of 37

Self-tests User AES, Triple-DES, SHS,
HMAC, DSA, ECDSA, RSA,
DRBG, Diffie-Hellman, EC
DIffie-Hellman

HMAC-SHA-256 key for
integrity test

read

Zeroize User N/A All aforementioned CSPs Zeroize

Table 5: Approved Service Details

The following table lists the non-Approved services available in non-FIPS mode. Please refer to Table
10 for the non-Approved key size or algorithm.

Service Role
Diffie-Hellman key agreement using non-Approved key size User
RSA key encapsulation using non-Approved RSA key size User
Asymmetric key generation using non-Approved RSA or DSA key size User
Digital signature generation/verification using non-Approved RSA or DSA key size User
Random number generation using ANSI X9.31 RNG User
Message digest (MD2, MD4, MD5, MDC-2, HMAC-MD5, RIPEMD160) User
Symmetric encryption/decryption (Blowfish, Camellia, CAST, DES, IDEA, RC2, RC4, RC5,
SEED)

User

Key agreement by using JPAKE User
TLS-SRP key exchange User
Whirlpool hash function User

Table 6: Non-Approved Service Details

3.3 Operator Authentication
At security level 1, authentication is neither required nor employed. The role is implicitly assumed
based on the service requested.

3.4 Algorithms
The Module provides multiple implementations of algorithms. Different implementations can be
invoked by setting the environment variable. Please note that only one implementation will be available
at runtime. For TLS protocol, only the key derivation function (KDF) has been tested by the CAVP.

3.4.1 Running on Intel Xeon Processor

On the platform that runs Intel Xeon processor, the module supports the use of AES-NI (by default),
SSSE3 and generic assembler for AES implementation, the use of AVX2, AVX, SSSE3 and generic
assembler for SHA implementation, and the use of CLMUL instruction set and generic assembler for
GHASH that is used for GCM mode. Each implementation is determined by the environment variable
OPENSSL_ia32cap.

The following table shows the CAVS certificates and their associated information of the cryptographic
implementation in FIPS mode.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 10 of 37

Algorithm CAVS Cert Standard Mode / Method Key Lengths,
Curves or

Moduli (in bits)

Use

AES #4588 (using AES assembler
for AES, and CLMUL for
GHASH)

#4594 (using SSSE3
assembler for AES, and
CLMUL for GHASH)

#4595 (using AES-NI for AES,
and CLMUL for GHASH)

FIPS197,
SP800-38A

ECB, CBC,
CFB1, CFB8,
CFB128, OFB,
CTR

128, 192, 256 Data Encryption
and Decryption

SP800-38B CMAC 128, 192, 256 MAC Generation
and Verification

SP800-38C CCM 128, 192, 256 Data Encryption
and Decryption

SP800-38D GCM 128, 192, 256 Data Encryption
and Decryption

SP800-38E XTS 128, 256 Data Encryption
and Decryption for
Data Storage

SP800-38F KW 128, 192, 256 Key Wrapping and
Unwrapping

#4645 (using AES-NI for AES,
and assembler for GHASH)

#4646 (using AES assembler
for AES, and assembler for
GHASH)

#4647 (using SSSE3
assembler for AES, and
assembler for GHASH)

SP800-38D GCM 128, 192, 256 Data Encryption
and Decryption

Diffie-
Hellman

CVL #1263 SP800-56A
(All except
KDF)

FCC

dhEphem
scheme

p=2048, q=224;
p=2048, q=256

Diffie-Hellman Key
Agreement

EC Diffie-
Hellman

CVL #1263 SP800-56A
(All except
KDF)

ECC

Ephemeral
Unified scheme

P-224, P-256,
P-384, P-521

EC Diffie-Hellman
Key Agreement

ECC CDH
Primitive

CVL #1263

SP800-56A
Section
5.7.1.2

N/A P-224, P-256,
P-384, P-521

EC Diffie-Hellman
Key Agreement

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 11 of 37

Algorithm CAVS Cert Standard Mode / Method Key Lengths,
Curves or

Moduli (in bits)

Use

TLS KDF CVL #1264

SP800-135 TLS v1.0, v1.1
and v1.2

N/A Key Derivation

DRBG

#1536 (using AVX2 for SHA)

#1537 (using AVX for SHA)

#1538 (using SSSE3 for SHA1)

#1539 (using SHA assembler)

 SP800-90A Hash_DRBG:

HMAC_DRBG:

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

N/A Deterministic
Random Bit
Generation

#1531 (using AES assembler
for AES)

#1535 (using SSSE3 for AES)

#1540 (using AES-NI for AES)

CTR_DRBG:

AES-128,
AES-192,
AES-256

DSA #1220

FIPS186-4 SHA-12,
SHA-224,
SHA-256,
SHA-384,
SHA-512

L=1024, N=1603;
L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Key Pair
Generation,
Domain Parameter
Generation and
Verification, Digital
Signature
Generation and
Verification

ECDSA #1127

FIPS186-4 SHA-14,
SHA-224,
SHA-256,
SHA-384,
SHA-512

P-1925, P-224,
P-256, P-384,
P-521

Key Pair
Generation, Public
Key Validation,
Digital Signature
Generation and
Verification

1 The module only supports SHA-1, SHA-224 and SHA-256 when using SSSE3 implementation for SHA.
2 SHA-1 is only allowed and CAVS tested in DSA Domain Parameter Verification and DSA Signature Verification
for legacy use.
3 1024-bit key is only allowed and CAVS tested in DSA Domain Parameter Verification and DSA Signature
Verification for legacy use.
4 SHA-1 is only allowed and CAVS tested in ECDSA Public Key Validation and ECDSA Signature Verification for
legacy use.
5 P-192 curve is only allowed and CAVS tested in ECDSA Public Key Validation and ECDSA Signature
Verification for legacy use.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 12 of 37

Algorithm CAVS Cert Standard Mode / Method Key Lengths,
Curves or

Moduli (in bits)

Use

HMAC #3042 (using AVX2 for SHA)

#3043 (using AVX for SHA)

#3044 (using SSSE3 for SHA1)

#3045 (using SHA assembler)

FIPS198-1 SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

112 or greater Message
authentication
code

RSA #2505

FIPS186-4 X9.31

SHA-16,
SHA-256,
SHA-384,
SHA-512

PKCS#1v1.5
SHA-16,
SHA-224,
SHA-256,
SHA-384,
SHA-512

PSS

SHA-16,
SHA-224,
SHA-256,
SHA-384,
SHA-512

10247, 2048,
3072, 40968

Key Pair
Generation, Digital
Signature
Generation and
Verification

SHS #3768 (using AVX2 for SHA)

#3769 (using AVX for SHA)

#3770 (using SSSE3 for SHA1)

#3771 (using SHA assembler)

FIPS180-4 SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

N/A Message Digest

Triple-DES

#2439

SP800-67,
SP800-38A

ECB, CBC,
CFB1, CFB8,
CFB64, OFB,
CTR

192 Data Encryption
and Decryption

6 SHA-1 is only allowed and CAVS tested in RSA Signature Verification for legacy use.
7 1024-bit key is only allowed and CAVS tested in RSA Signature Verification for legacy use.
8 4096-bit key is only CAVS tested for RSA Signature Generation.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 13 of 37

Algorithm CAVS Cert Standard Mode / Method Key Lengths,
Curves or

Moduli (in bits)

Use

SP800-67,
SP800-38B

CMAC 192 MAC Generation
and Verification

Table 7 Cryptographic Algorithms for Intel Xeon Processor

3.4.2 Running on z13 Processor

On the platform that runs z system, the module supports the use of CPACF (by default) or generic
assembler for AES, SHA and GHASH implementations. Each implementation is determined by the
environment variable OPENSSL_s390xcap.

The following table shows the CAVS certificates and their associated information of the cryptographic
implementation in FIPS mode.

Algorithm CAVS Cert Standard Mode / Method Key Lengths,
Curves or

Moduli (in bits)

Use

AES #4622 (using AES assembler)

#4623 (using AES and GHASH
from CPACF)

FIPS197,
SP800-38A

ECB, CBC,
CFB1, CFB8,
CFB128, OFB,
CTR

128, 192, 256 Data Encryption
and Decryption

SP800-38B CMAC 128, 192, 256 MAC Generation
and Verification

SP800-38C CCM 128, 192, 256 Data Encryption
and Decryption

SP800-38D GCM 128, 192, 256 Data Encryption
and Decryption

SP800-38E XTS 128, 256 Data Encryption
and Decryption for
Data Storage

SP800-38F KW 128, 192, 256 Key Wrapping and
Unwrapping

Diffie-
Hellman

CVL #1276

SP800-56A
(All except
KDF)

FCC

dhEphem
scheme

p=2048, q=224;
p=2048, q=256

Diffie-Hellman Key
Agreement

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 14 of 37

Algorithm CAVS Cert Standard Mode / Method Key Lengths,
Curves or

Moduli (in bits)

Use

EC Diffie-
Hellman

CVL #1276 SP800-56A
(All except
KDF)

ECC

Ephemeral
Unified scheme

P-224, P-256,
P-384, P-521

EC Diffie-Hellman
Key Agreement

ECC CDH
Primitive

CVL #1276

SP800-56A
Section
5.7.1.2

N/A P-224, P-256,
P-384, P-521

EC Diffie-Hellman
Key Agreement

TLS KDF CVL #1359

SP800-135 TLS v1.0, v1.1
and v1.2

N/A Key Derivation

DRBG #1552 (using SHA and AES
assembler)

#1553 (using SHA and AES
from CPACF)

SP800-90A Hash_DRBG:

HMAC_DRBG:

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

CTR_DRBG:

AES-128,
AES-192,
AES-256

N/A Deterministic
Random Bit
Generation

DSA #1221

FIPS186-4 SHA-12,
SHA-224,
SHA-256,
SHA-384,
SHA-512

L=1024, N=1603;
L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Key Pair
Generation,
Domain Parameter
Generation and
Verification, Digital
Signature
Generation and
Verification

ECDSA

#1131

FIPS186-4 SHA-14,

SHA-224,
SHA-256,
SHA-384,
SHA-512

P-1925, P-224,
P-256, P-384,
P-521

Key Pair
Generation, Public
Key Validation,
Digital Signature
Generation and
Verification

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 15 of 37

Algorithm CAVS Cert Standard Mode / Method Key Lengths,
Curves or

Moduli (in bits)

Use

HMAC #3059 (using SHA assembler)

#3060 (using SHA from
CPACF)

FIPS198-1 SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

112 or greater Message
authentication
code

RSA #2519

FIPS186-4 X9.31
SHA-16,
SHA-256,
SHA-384,
SHA-512

PKCS#1v1.5
SHA-16,
SHA-224,
SHA-256,
SHA-384,
SHA-512

PSS
SHA-16,
SHA-224,
SHA-256,
SHA-384,
SHA-512

10247, 2048,
3072, 40968

Key Pair
Generation, Digital
Signature
Generation and
Verification

SHS #3788 (using SHA assembler)

#3789 (using SHA from
CPACF)

FIPS180-4 SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

N/A Message Digest

Triple-DES #2455

SP800-67,
SP800-38A

ECB, CBC,
CFB1, CFB8,
CFB64, OFB,
CTR

192 Data Encryption
and Decryption

SP800-67,
SP800-38B

CMAC 192 MAC Generation
and Verification

Table 8: Cryptographic Algorithms for z Systems z13 Processor

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 16 of 37

3.4.3 Non-Approved Algorithms

The Module supports the following FIPS 140-2 non-Approved algorithms which are allowed for use in
FIPS Approved mode:

Algorithm Usage
RSA Key Encapsulation with Encryption
and Decryption Primitives and key
size >= 2048-bit

Key Establishment; allowed in [FIPS140-2_IG] D.9

Diffie-Hellman with key size >= 2048-bit
(CVL certs #1263, #1276)

Key Agreement; allowed in [FIPS140-2_IG] D.8

EC Diffie-Hellman with P-224, P-256,
P-384, P-521 curves (CVL certs #1263,
#1276)

Key Agreement; allowed in [FIPS140-2_IG] D.8

RSA Key Generation and Digital
Signature Verification with key size >
3072 bits, and Digital Signature
Generation with key size > 4096-bit

Digital Signature; allowed in [SP800-131A]

DSA Key Generation, Domain Parameter
Generation and Verification, Digital
Signature Generation and Verification
with key size > 3072-bit

Digital Signature; allowed in [SP800-131A]

MD59 Pseudo-random function (PRF) in TLS v1.0 and v1.1; allowed in
[SP800-52]

SHA-1 used in the Digital Signature
Generation10

Digital Signature Generation in TLS; allowed in [SP800-52]

NDRNG The module obtains the entropy data from NDRNG to seed the
DRBG.

Table 9: Non-Approved but Allowed Algorithms

The Module supports the following FIPS 140-2 non-Approved algorithms:

Algorithm Usage
Diffie-Hellman with key size < 2048-bit Key Agreement with non-Approved key size
RSA with key size < 2048-bit Key Pair Generation, Digital Signature Generation, Key

Encapsulation with non-Approved key size
RSA with key size < 1024-bit Digital Signature Verification with non-Approved key size
DSA with key size < 2048-bit Key Pair Generation, Domain Parameters Generation, Digital

Signature Generation with non-Approved key size
DSA with key size < 1024-bit Digital Signature Verification with non-Approved key size
ANSI X9.31 RNG non-Approved Random Number Generation
MD2, MD4, MD5, MDC-2, HMAC-MD5, non-Approved Message Digest

9 According [SP800-52], MD5 is allowed to be used in TLS versions 1.0 and 1.1 as the hash function used in the
PRF, as defined in [RFC2246] and [RFC4346].
10 According [SP800-52], SHA-1 is disallowed for Key Pair Generation and Digital Signature Generation, with the
exception of digital signatures on ephemeral parameters in TLS.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 17 of 37

RIPEMD160
Blowfish, Camellia, CAST, DES, IDEA,
RC2, RC4, RC5, SEED

non-Approved Data Encryption / Decryption

JPAKE non-Approved Key Agreement
TLS-SRP non-Approved Key Exchange
Whirlpool non-Approved Hash

Table 10: Non-Approved Algorithms

The non-Approved algorithms shall not be used in the FIPS Approved mode. Any use of these non-
Approved algorithm functions will cause the Module to operate in the non-Approved mode implicitly.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 18 of 37

4 Physical Security
The Module is comprised of software only and therefore this security policy does not make any claims
on physical security.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 19 of 37

5 Operational Environment

5.1 Applicability
This Module operates in a modifiable operational environment per the FIPS 140-2 level 1
specifications. The Module runs on a commercially available general-purpose operating system
executing on the platforms specified in Table 2.

5.2 Policy
The operating system is restricted to a single operator mode of operation (i.e., concurrent operators are
explicitly excluded).

The application that makes calls to the cryptographic Module is the single user of the cryptographic
Module, even when the application is serving multiple clients.

The ptrace(2) system call, the debugger (gdb(1)), and strace(1) shall not be used.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 20 of 37

6 Cryptographic Key Management
The application that uses the Module is responsible for appropriate destruction and zeroization of the
key material. The library provides functions for key allocation and destruction, which overwrites the
memory that is occupied by the key information with “zeros” before it is reallocated.

The management of all keys/CSPs used by the Module is summarized in the table below.

Key/CSP Generation Entry/Output Zeroization
AES keys N/A. The key is passed into

the module via API input
parameters in plaintext.

EVP_CIPHER_CTX_cleanup
()

Triple-DES keys EVP_CIPHER_CTX_cleanup
()

HMAC key HMAC_CTX_cleanup()
RSA public-private
keys

The public-private keys are
generated using FIPS 86-4
Key Generation method,
and the random value used
in the key generation is
generated using SP800-
90A DRBG.

The key is passed into
the module via API input
parameters in plaintext.
The key is passed out of
the module via API output
parameters in plaintext.

RSA_free()

DSA public-private
keys

DSA_free()

ECDSA public-
private keys

EC_KEY_free()

Diffie-Hellman
domain
parameters

The domain parameters
used in Diffie-Hellman and
the components to generate
the public-private keys used
in EC Diffie-Hellman are
generated using SP800-
90A DRBG.

The key is passed into
the module via API input
parameters in plaintext.
The key is passed out of
the module via API output
parameters in plaintext.

DH_free()

EC Diffie-Hellman
public-private keys

EC_KEY_free()

TLS Pre-Master
Secret and Master
Secret

Generated during the TLS
handshake.

None SSL_free() and SSL_clear()

Entropy input
string

Obtained from NDRNG. None FIPS_drbg_free()

DRBG internal
state (V, C, Key)

During DRBG initialization. None FIPS_drbg_free()

Table 11: Key Management Details

6.1 Random Number Generation
The Module employs a SP 800-90A DRBG as random number generator for creation of asymmetric and
symmetric keys, server and client random numbers for the TLS protocol, and internal CSPs. In
addition, the module provides a Random Number Generation service to calling applications.

The DRBG supports the Hash_DRBG, HMAC_DRBG and CTR_DRBG mechanisms. The DRBG is
initialized during module initialization; the module loads by default the DRBG using the CTR_DRBG
mechanism with AES-256 and derivation function without prediction resistance. A different DRBG

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 21 of 37

mechanism can be chosen through an API function call.

The module uses a Non-Deterministic Random Number Generator (NDRNG), getrandom() system call,
as the entropy source for seeding the DRBG. The NDRNG is provided by the operational environment
(i.e., Linux RNG), which is within the module’s physical boundary but outside of the module’s logical
boundary. The NDRNG provides at least 128 bits of entropy to the DRBG during initialization (seed)
and reseeding (reseed).

The module performs conditional self-tests on the output of NDRNG to ensure that consecutive random
numbers do not repeat, and performs DRBG health tests as defined in section 11.3 of [SP800-90A].

Caveat: The module generates cryptographic keys whose strengths are modified by available entropy.

6.2 Key Generation
For generating HMAC keys and symmetric keys, the module does not provide any dedicated key
generation service. However, the Random Number Generation service can be called by the user to
obtain random numbers which can be used as key material for symmetric algorithms or HMAC. The
key material of HMAC keys and symmetric keys may also be generated during the Diffie-Hellman or
EC Diffie-Hellman key agreement.

The Key Generation methods implemented in the module for Approved services in FIPS mode is
compliant with [SP800-133].

For generating RSA, DSA and ECDSA keys the module implements asymmetric key generation
services compliant with [FIPS186-4]. A seed (i.e. the random value) used in asymmetric key generation
is directly obtained from the [SP800-90A] DRBG.

The public and private key pairs used in the Diffie-Hellman and EC Diffie-Hellman KAS are generated
internally by the module using the same DSA and ECDSA key generation compliant with [FIPS186-4]
which is compliant with [SP800-56A].

6.3 Key Agreement / Key Transport / Key Derivation
The module provides Diffie-Hellman and EC Diffie-Hellman key agreement schemes. These key
agreement schemes are also used as part of the TLS protocol key exchange.

The module also provides key wrapping using the AES with KW mode and RSA key encapsulation
using private key encryption and public key decryption primitives. RSA key encapsulation is also used
as part of the TLS protocol key exchange.

According to Table 2: Comparable strengths in SP 800-57, the key sizes of AES, RSA, Diffie-Hellman
and EC Diffie-Hellman provides the following security strength in FIPS mode of operation:

• AES key wrapping provides between 128 and 256 bits of encryption strength.

• RSA key encapsulation provides between 112 and 256 bits of encryption strength.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 22 of 37

• Diffie-Hellman key agreement provides between 112 and 256 bits of encryption strength.

• EC Diffie-Hellman key agreement provides between 112 and 256 bits of encryption strength.

The module supports key derivation for the TLS protocol. The module implements the pseudo-random
functions (PRF) for TLSv1.0/1.1 and TLSv1.2.

6.4 Key Entry / Output
The module does not support manual key entry or intermediate key generation key output. The keys are
provided to the module via API input parameters in plaintext form and output via API output
parameters in plaintext form. This is allowed by FIPS140-2_IG IG 7.7, according to the “CM Software
to/from App Software via GPC INT Path” entry on the Key Establishment Table.

6.5 Key / CSP Storage
Symmetric keys, HMAC keys, public and private keys are provided to the module by the calling
application via API input parameters, and are destroyed by the module when invoking the appropriate
API function calls.

The module does not perform persistent storage of keys. The keys and CSPs are stored as plaintext in
the RAM. The only exception is the HMAC key used for the Integrity Test, which is stored in the
module and relies on the operating system for protection.

6.6 Key / CSP Zeroization
The memory occupied by keys is allocated by regular memory allocation operating system calls. The
application is responsible for calling the appropriate zeroization functions from the OpenSSL Module
API. The zeroization functions then overwrite the memory occupied by keys with “zeros” and
deallocates the memory. In case of abnormal termination, or swap in/out of a physical memory page of
a process, the keys in physical memory are overwritten by the Linux kernel before the physical memory
is allocated to another process.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 23 of 37

7 Electromagnetic Interference/Electromagnetic Compatibility
(EMI/EMC)
The test platforms have been tested and found to conform to the EMI/EMC requirements specified by
47 Code of Federal Regulations, FCC PART 15, Subpart B, Unintentional Radiators, Digital Devices,
Class A (i.e., Business use). These devices are designed to provide reasonable protection against
harmful interference when the devices are operated in a commercial environment. They shall be
installed and used in accordance with the instruction manual.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 24 of 37

8 Self Tests
FIPS 140-2 requires that the module perform power-up tests to ensure the integrity of the module and
the correctness of the cryptographic functionality at start up. In addition, some functions require
continuous testing of the cryptographic functionality, such as the asymmetric key generation. If any
self-test fails, the module returns an error code and enters the error state. No data output or
cryptographic operations are allowed in the error state.

No operator intervention is required during the running of the self-tests.

See section 9.3 for descriptions of possible self-test errors and recovery procedures.

8.1 Power-Up Tests
The module performs power-up tests when the module is loaded into memory, without operator
intervention. Power-up tests ensure that the module is not corrupted and that the cryptographic
algorithms work as expected.

While the module is executing the power-up tests, services are not available, and input and output are
inhibited. The module is not available for use by the calling application until the power-up tests are
completed successfully.

If any power-up test fails, the module returns the error code listed in section 9.3 and displays the
specific error message associated with the returned error code, and then enters the error state. The
subsequent calls to the module will also fail - thus no further cryptographic operations are possible. If
the power-up tests complete successfully, the module will return 1 in the return code and will accept
cryptographic operation service requests.

8.1.1 Integrity Tests

The integrity of the module is verified by comparing an HMAC-SHA-256 value calculated at run time
with the HMAC value stored in the .hmac file that was computed at build time for each software
component of the module. If the HMAC values do not match, the test fails and the module enters the
error state.

8.1.2 Cryptographic Algorithm Tests

The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in the
Approved mode of operation, using the Known Answer Tests (KAT) and Pair-wise Consistency Tests
(PCT) shown in the following table:

Algorithm Test

AES KAT, encryption and decryption are tested separately

Triple-DES KAT, encryption and decryption are tested separately

DSA PCT, signature generation and signature verification are

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 25 of 37

Algorithm Test

tested separately

RSA KAT, signature generation and signature verification are
tested separately

ECDSA PCT, signature generation and signature verification are
tested separately

Diffie-Hellman Primitive "Z" Computation KAT

EC Diffie-Hellman Primitive "Z" Computation KAT

CTR_DRBG KAT

Hash_DRBG KAT

HMAC_DRBG KAT

SHA-1 KAT

SHA-224 Tested as part of SHA-256 KAT

SHA-256 KAT

SHA-384 Tested as part of SHA-512 KAT

SHA-512 KAT

HMAC-SHA-1 KAT

HMAC-SHA-224 KAT

HMAC-SHA-256 KAT

HMAC-SHA-384 KAT

HMAC-SHA-512 KAT

Table 12: Module Self Tests

For the KAT, the module calculates the result and compares it with the known value. If the answer does
not match the known answer, the KAT is failed and the module enters the Error state.

For the PCT, if the signature generation or verification fails, the module enters the Error state. As
described in section 3.4, only one AES or SHA implementation is available at run-time.

The KATs cover the different cryptographic implementations available in the operating environment.

8.2 Conditional Tests
The module performs conditional tests on the cryptographic algorithms, using the Pair-wise
Consistency Tests (PCT) and Continuous Random Number Generator Test (CRNGT), shown in the
following table:

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 26 of 37

Algorithm Test

DSA PCT for Key Pair Generation

RSA PCT for Key Pair Generation

ECDSA PCT for Key Pair Generation

SP 800-90A DRBG CRNGT

Table 13: Module Conditional Tests

8.3 On-Demand Self-Tests
On-Demand self-tests can be invoked by powering-off and reloading the module which cause the
module to run the power-up tests again. During the execution of the on-demand self-tests, services are
not available and no data output or input is possible.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 27 of 37

9 Guidance
Password-based encryption and password-based key generation do not provide sufficient strength to
satisfy FIPS 140-2 requirements. As a result, data processed with password-based encryption methods
are considered to be unprotected.

9.1 Crypto Officer Guidance
The Module is delivered as a binary object file packaged in an RPM. The integrity of the RPM is
automatically verified during the installation and the Crypto officer shall not install the RPM file if the
RPM tool indicates an integrity error. The versions of the RPMs containing the validated Module are
listed in Section 1.1.

The RPM package of the Module can be installed by standard tools recommended for the installation of
RPM packages on a SUSE Linux system.

For proper operation of the in-Module integrity verification, the prelink has to be disabled. This can be
done by setting PRELINKING=no in the /etc/sysconfig/prelink configuration file. If the libraries were
already prelinked, the prelink should be undone on all the system files using the 'prelink -u -a'
command.

ENGINE_register_* and ENGINE_set_default_* function calls are prohibited. Furthermore,
FIPS_mode_set() with a parameter of zero (0) is prohibited.

The library can be configured to support FIPS in either of the following ways:

Option 1: Boot the system with the kernel command line opetion “fips=1”.

Option 2: Set the environment variable OPENSSL_FORCE_FIPS_MODE to “1”.

Option 1 effects the whole system, including other libraries, and all instances of the OpenSSL module
that may be initialized.

Option 2 only effects the OpenSSL module in an environment where the variable is set. Note that some
implementations clear the execution environment for child processes, or daemons spawned by other
users.

For Option 1, the following steps shall be performed with root privilege:

1. Install the dracut-fips package:
 # zypper install dracut-fips

2. Recreate the INITRAMFS image:

 # dracut -f

After regenerating the initrd, the crypto officer has to append the following parameter in the
/etc/default/grub configuration file in the GRUB_CMDLINE_LINUX_DEFAULT line:
 fips=1

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 28 of 37

After editing the configuration file, please run the following command to change the setting in the boot
loader:
 grub2-mkconfig -o /boot/grub2/grub.cfg

If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<partition of /boot or /boot/efi>
must be supplied. The partition can be identified with the command "df /boot" or "df /boot/efi" respectively. For
example:

 $ df /boot
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string needs to be
appended to the kernel command line:

 "boot=/dev/sda1"

Reboot to apply these settings.

Now, the operating environment is configured to support FIPS operation. The Crypto Officer should
check the existence of the file /proc/sys/crypto/fips_enabled, and verified that it contains a numeric
value “1”. If the file does not exist or does not contain “1”, the operating environment is not configured
to support FIPS and the module will not operate as a FIPS validated module properly.

If an application that uses the Module for its cryptography is put into a chroot environment, the Crypto
Officer must ensure one of the above methods is available to the Module from within the chroot
environment to ensure FIPS operation is enabled.

9.2 User Guidance
The Module must be operated in FIPS Approved mode to ensure that FIPS 140-2 validated
cryptographic algorithms and security functions are used.

The application can query whether the FIPS operation is active by calling FIPS_mode() and it can query
whether an integrity check or KAT self test failed by calling FIPS_selftest_failed().

The Module performs the self tests described in section 8.1. See section 9.3 for descriptions of possible
self test errors and recovery procedures.

9.2.1 TLS and Diffie-Hellman

The TLS protocol implementation provides both the server and the client side. As required by SP800-
131A, Diffie-Helllman with keys smaller than 2048 bits must not be used.

The TLS protocol lacks the support to negotiate the used Diffie-Hellman key sizes. To ensure full
support for all TLS protocol versions, the TLS client implementation of the cryptographic Module
accepts Diffie-Hellman key sizes smaller than 2048 bits offered by the TLS server.

The TLS server implementation of the cryptographic Module allows the application to set the Diffie-
Hellman key size. The server side must always set the DH parameters with the API call of

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 29 of 37

 SSL_CTX_set_tmp_dh(ctx, dh)

For complying with the requirement to not allow Diffie-Hellman key sizes smaller than 2048 bits, the
Crypto Officer must ensure that:

• when the Module is used as a TLS server, the Diffie-Hellman parameters (dh argument) of the
aforementioned API call must be 2048 bits or larger;

• when the Module is used as a TLS client, the TLS server must be configured to only offer
Diffie-Hellman keys of 2048 bits or larger.

9.2.2 AES XTS

The AES algorithm in XTS mode can be only used for the cryptographic protection of data on storage
devices, as specified in SP800-38E. The length of a single data unit encrypted with the XTS-AES shall
not exceed 220 AES blocks that is 16MB of data. To meet the requirement in FIPS140-2_IG A.9, the
module implements a check to ensure that the two AES keys used in XTS-AES algorithm are not
identical.

9.2.3 Random Number Generator

The OpenSSL API call of RAND_cleanup() must not be used. This call will cleanup the internal DRBG
state. This call also replaces the DRBG instance with the non-Approved deterministic random number
generator when using the RAND_* API calls.

9.2.4 AES GCM IV

AES_GCM is used in version 1.2 or higher of the TLS protocol. The module is compliant with SP 800-
52 and the mechanism for IV generation is compliant with RFC 5288. The operations of one of the two
parties involved in the TLS key establishment scheme are performed entirely within the cryptographic
boundary of the Module.

In case of power loss from the Module, the AES GCM key will be re-negotiated. No IV is stored in
memory.

Whenever the nonce_explicit part of the IV has been exhausted, the module will abort the TLS session
and re-perform a handshake to establish new keying material.”

9.2.5 RSA and DSA Keys

The Module allows the use of 1024 bit RSA and DSA keys for legacy purposes, including signature
generation.

As per SP800-131A, RSA and DSA must be used with keys greater than or equal to 2048 bits. To
comply with the requirements of FIPS 140-2, a user must therefore only use keys with 2048 bits or
more.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 30 of 37

9.2.6 Triple-DES Keys

According to IG A.13, the same Triple-DES key shall not be used to encrypt more than 228 64-bit
blocks of data.

9.3 Handling Self Test Errors
When the module fails any self-test, the module will return an error code to indicate the error and enters
error state that any further cryptographic operation is inhibited. Errors occurred during the self-tests and
conditional tests transition the module into an error state. Here is the list of error codes when the
module fails any self-test:

FIPS_R_FINGERPRINT_DOES_NOT_MATCH - the integrity verification check failed
FIPS_R_FIPS_SELFTEST_FAILED - a KAT failed for DSA, RSA, ECDSA, Diffie-Hellman or EC
Diffie-Hellman
FIPS_R_SELFTEST_FAILED - a KAT failed for AES, Triple-DES, DRBG, SHA, HMAC or CMAC
FIPS_R_TEST_FAILURE – a PCT failed during public key signature test for DSA, ECDSA or RSA
FIPS_R_PAIRWISE_TEST_FAILED – a PCT failed during key generation for DSA, ECDSA or
RSA
FIPS_R_DRBG_STUCK – a CRNGT failed for SP 800-90A DRBG

These errors are reported through the regular ERR interface of the shared libraries and can be queried
by functions such as ERR_get_error(). See the OpenSSL Module manual page for the function
description.

When the module is in the error state and the application calls a crypto function of the module that
cannot return an error in normal circumstances (void return functions), the error message: “OpenSSL
internal error, assertion failed: FATAL FIPS SELFTEST FAILURE” is printed to stderr and the
application is terminated with the abort() call. The only way to recover from this error is to restart the
application. If the failure persists, the module must be reinstalled.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 31 of 37

10 Mitigation of Other Attacks

10.1 Blinding Against RSA Timing Attacks
RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA decryption
or signature operations, blinding must be used to protect the RSA operation from that attack.

The module provides the API functions RSA_blinding_on() and RSA_blinding_off() to turn the
blinding on and off for RSA. When the blinding is on, the module generates a random value to form a
blinding factor in the RSA key before the RSA key is used in the RSA cryptographic operations.

10.2 Weak Triple-DES Key Detection
The module implements the DES_set_key_checked() for checking the weak Triple-DES key and the
correctness of the parity bits when the Triple-DES key is going to be used in Triple-DES operations.
The checking of the weak Triple-DES key is implemented in the API function DES_is_weak_key() and
the checking of the parity bits is implemented in the API function DES_check_key_parity(). If the
Triple-DES key does not pass the check, the module will return -1 to indicate the parity check error and
-2 if the Triple-DES key matches to any value listed below:

/* Weak and semi week keys as taken from
 * %A D.W. Davies
 * %A W.L. Price
 * %T Security for Computer Networks
 * %I John Wiley & Sons
 * %D 1984
 * Many thanks to smb@ulysses.att.com (Steven Bellovin) for the reference
 * (and actual cblock values).
 */
#define NUM_WEAK_KEY 16
static const DES_cblock weak_keys[NUM_WEAK_KEY]={
 /* weak keys */
 {0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01},
 {0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE},
 {0x1F,0x1F,0x1F,0x1F,0x0E,0x0E,0x0E,0x0E},
 {0xE0,0xE0,0xE0,0xE0,0xF1,0xF1,0xF1,0xF1},
 /* semi-weak keys */
 {0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE},
 {0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01},
 {0x1F,0xE0,0x1F,0xE0,0x0E,0xF1,0x0E,0xF1},
 {0xE0,0x1F,0xE0,0x1F,0xF1,0x0E,0xF1,0x0E},
 {0x01,0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1},
 {0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1,0x01},
 {0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E,0xFE},
 {0xFE,0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E},
 {0x01,0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E},
 {0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E,0x01},

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 32 of 37

 {0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1,0xFE},
 {0xFE,0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1}};

Please note that there is no weak key detection by default. The caller can explicitly set the
DES_check_key to 1 or call DES_check_key_parity() and/or DES_is_weak_key() functions on its own.

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 33 of 37

11 TLS Cipher Suites
The module supports the following cipher suites for the TLS protocol. Each cipher suite defines the key
exchange algorithm, the bulk encryption algorithm (including the symmetric key size) and the MAC
algorithm.

Cipher Suite Reference

TLS_RSA_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_RSA_WITH_AES_128_CBC_SHA RFC3268

TLS_DH_DSS_WITH_AES_128_CBC_SHA RFC3268

TLS_DH_RSA_WITH_AES_128_CBC_SHA RFC3268

TLS_DHE_DSS_WITH_AES_128_CBC_SHA RFC3268

TLS_DHE_RSA_WITH_AES_128_CBC_SHA RFC3268

TLS_DH_anon_WITH_AES_128_CBC_SHA RFC3268

TLS_RSA_WITH_AES_256_CBC_SHA RFC3268

TLS_DH_DSS_WITH_AES_256_CBC_SHA RFC3268

TLS_DH_RSA_WITH_AES_256_CBC_SHA RFC3268

TLS_DHE_DSS_WITH_AES_256_CBC_SHA RFC3268

TLS_DHE_RSA_WITH_AES_256_CBC_SHA RFC3268

TLS_DH_anon_WITH_AES_256_CBC_SHA RFC3268

TLS_RSA_WITH_AES_128_CBC_SHA256 RFC5246

TLS_RSA_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DH_DSS_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DH_RSA_WITH_AES_256_CBC_SHA256 RFC5246

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 34 of 37

Cipher Suite Reference

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DH_anon_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DH_anon_WITH_AES_256_CBC_SHA256 RFC5246

TLS_PSK_WITH_3DES_EDE_CBC_SHA RFC4279

TLS_PSK_WITH_AES_128_CBC_SHA RFC4279

TLS_PSK_WITH_AES_256_CBC_SHA RFC4279

TLS_RSA_WITH_AES_128_GCM_SHA256 RFC5288

TLS_RSA_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DH_RSA_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DH_RSA_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DH_DSS_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DH_DSS_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DH_anon_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DH_anon_WITH_AES_256_GCM_SHA384 RFC5288

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA RFC4492

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 35 of 37

Cipher Suite Reference

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDH_anon_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDH_anon_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 RFC5289

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 RFC5289

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 RFC5289

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 RFC5289

TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 RFC5289

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 RFC5289

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 RFC5289

Table 14: TLS Cipher Suites

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 36 of 37

12 Glossary and Abbreviations
AES Advanced Encryption Specification

CAVP Cryptographic Algorithm Validation Program

CBC Cypher Block Chaining

CCM Counter with Cipher Block Chaining-Message
Authentication Code

CFB Cypher Feedback

CLMUL Carry-less Multiplication

CMAC Cipher-based Message Authentication Code

CPACF CP Assist for Cryptographic Function

CSP Critical Security Parameter

CVL Component Verification List

DES Data Encryption Standard

DSA Digital Signature Algorithm

ECB Electronic Code Book

FSM Finite State Model

HMAC Hash Message Authentication Code

MAC Message Authentication Code

NIST National Institute of Science and Technology

OFB Output Feedback

PAA Processor Algorithm Acceleration

PAI Processor Algorithm Implementation

PRNG Pseudo Random Number Generator

RNG Random Number Generator

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

TDES Triple DES

TLS Transport Layer Security

XTS XEX-based Tweaked-codebook mode with ciphertext
Stealing

SUSE Linux Enterprise Server OpenSSL Module FIPS 140-2 Non-Proprietary Security Policy

© 2017 SUSE, LLC/atsec information security. This document can be reproduced and distributed only whole and intact,
including this copyright notice.

Page 37 of 37

13 References
[1] FIPS 140-2 Standard,

[2] FIPS 140-2 Implementation Guidance, http://csrc.nist.gov/groups/STM/cmvp/standards.html

[3] FIPS 140-2 Derived Test Requirements, http://csrc.nist.gov/groups/STM/cmvp/standards.html

[4] FIPS 197 Advanced Encryption Standard, http://csrc.nist.gov/publications/PubsFIPS.html

[5] FIPS 180-4 Secure Hash Standard, http://csrc.nist.gov/publications/PubsFIPS.html

[6] FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC),
http://csrc.nist.gov/publications/PubsFIPS.html

[7] FIPS 186-4 Digital Signature Standard (DSS), http://csrc.nist.gov/publications/PubsFIPS.html

[8] NIST SP 800-67 Revision 1, Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block Cipher, http://csrc.nist.gov/publications/PubsFIPS.html

[9] NIST SP 800-38B, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication, http://csrc.nist.gov/publications/PubsFIPS.html

[10] NIST SP 800-38C, Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality, http://csrc.nist.gov/publications/PubsFIPS.html

[11] NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, http://csrc.nist.gov/publications/PubsFIPS.html

[12] NIST SP 800-38E, Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode
for Confidentiality on Storage Devices, http://csrc.nist.gov/publications/PubsFIPS.html

[13] NIST SP 800-52, Guidelines for the Selection, Configuration, and Use of Transport Layer Security
(TLS) Implementations,

[14] NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes using Discrete
Logarithm Cryptography (Revised), http://csrc.nist.gov/publications/PubsFIPS.html

[15] NIST SP 800-90A, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators, http://csrc.nist.gov/publications/PubsFIPS.html

[16] RFC 5288, AES Galois Counter mode (GCM) Cipher Suite for TLS,
https://tools.ietf.org/html/rfc5288

