
Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 1 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Microsoft Windows

FIPS 140 Validation
Microsoft Windows 10 (Fall Creators Update, April 2018

Update)

Microsoft Windows 10 Mobile (Fall Creators Update)

Microsoft Windows Server (version 1709 and 1803)

Non-Proprietary

Security Policy Document

Version Number 1.4
Updated On April 4, 2019

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 2 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

© 2019 Microsoft Corporation. All rights reserved.

Microsoft, Windows, the Windows logo, Windows
Server, and BitLocker are either registered
trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 3 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Version History

Version Date Summary of Changes

1.0 October 3, 2017 Draft sent to NIST CMVP

1.1 November 18, 2017 Updates for Windows 10 version 1709

1.2 May 1, 2018 Editing updates

1.3 October 22, 2018 Updates for Windows 10 version 1803

1.4 April 4, 2019 Updates for additional validated platforms

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 4 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

TABLE OF CONTENTS

SECURITY POLICY DOCUMENT ...1

VERSION HISTORY ..3

1 INTRODUCTION ...7

1.1 LIST OF CRYPTOGRAPHIC MODULE BINARY EXECUTABLES ..7

1.2 VALIDATED PLATFORMS ..7

2 CRYPTOGRAPHIC MODULE SPECIFICATION ...9

2.1 CRYPTOGRAPHIC BOUNDARY .. 11

2.2 FIPS 140-2 APPROVED ALGORITHMS .. 11

2.3 NON-APPROVED ALGORITHMS ... 11

2.4 FIPS 140-2 APPROVED ALGORITHMS FROM BOUNDED MODULES .. 12

2.5 CRYPTOGRAPHIC BYPASS ... 12

2.6 HARDWARE COMPONENTS OF THE CRYPTOGRAPHIC MODULE .. 12

3 CRYPTOGRAPHIC MODULE PORTS AND INTERFACES .. 13

3.1 CODE INTEGRITY EXPORT FUNCTIONS ... 13

3.1.1 CIINITIALIZE .. 13

3.1.2 CIGETPEINFORMATION .. 14

3.1.3 CIVERIFYHASHINCATALOG .. 14

3.1.4 CICHECKSIGNEDFILE .. 14

3.1.5 CIFINDPAGEHASHESINCATALOG .. 14

3.1.6 CIFINDPAGEHASHESINSIGNEDFILE ... 14

3.1.7 CIFREEPOLICYINFO .. 15

3.1.8 CISETTRUSTEDORIGINCLAIMID .. 15

3.1.9 CIVALIDATEFILEOBJECT .. 15

3.2 CODE INTEGRITY CALLBACK FUNCTIONS .. 15

3.2.1 CIVALIDATEIMAGEHEADER ... 15

3.2.2 CIVALIDATEIMAGEDATA ... 16

3.2.3 CIQUERYINFORMATION .. 16

3.2.4 CISETFILECACHE.. 16

3.2.5 CIGETFILECACHE ... 16

3.2.6 CIHASHMEMORY() .. 16

3.2.7 KAPPXISPACKAGEFILE .. 17

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 5 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.8 CICOMPARESIGNINGLEVELS .. 17

3.2.9 CIVALIDATEFILEASIMAGETYPE ... 17

3.2.10 CIREGISTERSIGNINGINFORMATION ... 17

3.2.11 CIUNREGISTERSIGNINGINFORMATION .. 17

3.2.12 CIINITIALIZEPOLICY .. 17

3.2.13 CIPQUERYPOLICYINFORMATION .. 17

3.2.14 CIVALIDATEDYNAMICCODEPAGES .. 17

3.2.15 SIPOLICYQUERYSECURITYPOLICY ... 17

3.2.16 CIREVALIDATEIMAGE ... 17

3.2.17 CISETUNLOCKINFORMATION ... 17

3.2.18 CIGETBUILDEXPIRYTIME ... 17

3.2.19 CIGETSTRONGIMAGEREFERENCE ... 17

3.2.20 CIRELEASECONTEXT ... 18

3.2.21 CIHVCISETIMAGEBASEADDRESS .. 18

3.3 CONTROL INPUT INTERFACE ... 18

3.4 STATUS OUTPUT INTERFACE ... 18

3.5 DATA INPUT INTERFACE .. 18

3.6 DATA OUTPUT INTERFACE ... 18

4 ROLES, SERVICES AND AUTHENTICATION ... 18

4.1 ROLES ... 18

4.2 SERVICES ... 18

4.3 AUTHENTICATION .. 20

5 FINITE STATE MODEL ... 20

5.1 SPECIFICATION .. 20

6 OPERATIONAL ENVIRONMENT... 21

6.1 SINGLE OPERATOR ... 21

6.2 CRYPTOGRAPHIC ISOLATION ... 21

6.3 INTEGRITY CHAIN OF TRUST ... 22

7 CRYPTOGRAPHIC KEY MANAGEMENT .. 24

8 SELF-TESTS .. 24

9 DESIGN ASSURANCE .. 24

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 6 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

10 MITIGATION OF OTHER ATTACKS ... 26

11 SECURITY LEVELS ... 26

12 ADDITIONAL DETAILS .. 27

13 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES 28

13.1 HOW TO VERIFY WINDOWS VERSIONS ... 28

13.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES ... 28

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 7 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1 Introduction
Code Integrity (CI) verifies the integrity of Windows executable files as they are loaded into memory

from storage. Code Integrity is implemented in a Dynamic Link Library (DLL) file, CI.DLL.

The Secure Kernel Code Integrity cryptographic module is closely related to Code Integrity, and,

depending on the hardware and Windows configuration, will also validate system and application

binaries.

Two Windows configuration options dictate whether Code Integrity or Secure Kernel Code Integrity are

used to verify a binary image:

 Virtual Secure Mode (VSM), also known as Core Isolation: Windows can use the Hypervisor to

start an execution environment, called the Secure Kernel, that can enforce additional security

rules. When VSM is configured, Secure Kernel Code Integrity verifies the integrity of critical user-

mode modules such as BCRYPTPRIMITIVES.DLL instead of the Code Integrity module.

 Hypervisor Code Integrity (HVCI), also known as Memory Integrity: This feature depends on

VSM. When enabled, all drivers loaded into the Windows kernel are integrity verified by Secure

Kernel Code Integrity.

Code Integrity is not a general-purpose cryptographic module. It is validated under FIPS 140-2 because it

implements cryptographic algorithms and provides the integrity checks for the Windows general-

purpose cryptographic modules.

This Security Policy Document assumes that the following prerequisites are available:

 UEFI Secure Boot is available and enabled

1.1 List of Cryptographic Module Binary Executables
Code Integrity cryptographic module contains the following binaries:

 CI.DLL

The Windows builds covered by this validation are:

 Windows 10 version 1709 and Windows Server version 1709 build 10.0.16299

 Windows 10 Mobile version 1709 build 10.0.15254

 Microsoft Surface Hub build 10.0.15063.674

 Windows 10 version 1803 and Windows Server version 1803 build 10.0.17134

1.2 Validated Platforms
The Windows editions covered by this validation are:

 Microsoft Windows 10 Home Edition (32-bit version)

 Microsoft Windows 10 Pro Edition (64-bit version)

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 8 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 Microsoft Windows 10 Enterprise Edition (64-bit version)

 Microsoft Windows 10 Education Edition (64-bit version)

 Microsoft Windows 10 S Edition (64-bit version)

 Microsoft Windows 10 Mobile

 Microsoft Surface Hub

 Windows Server Standard Core

 Windows Server Datacenter Core

Code Integrity was validated using the combination of computers and Windows operating system

editions specified in the table below.

All the computers for Windows 10 and Windows Server listed in the table below are all 64-bit Intel

architecture and implement the AES-NI instruction set but not the SHA Extensions. The exceptions are:

 Dell Inspiron 660s - Intel Core i3 without AES-NI and SHA Extensions

 HP Slimline Desktop - Intel Pentium with AES-NI and SHA Extensions

Windows 10 Mobile runs on the ARM architecture, which does not implement AES-Ni instructions or

SHA extensions:

 Microsoft Lumia 950 - Qualcomm Snapdragon 808 (A57, A53)

 Microsoft Lumia 950 XL - Qualcomm Snapdragon 810 (A57, A53)

 Microsoft Lumia 650 - Qualcomm Snapdragon 212 (A7)

 HP Elite x3 - Qualcomm Snapdragon 820 (Kryo)

Table 1 Validated Platforms for Windows 10 Creators Update, Fall Creators Update and Windows Server

Computer W
in

d
o

w
s 1

0

H
o

m
e

W
in

d
o

w
s 1

0
 P

ro

W
in

d
o

w
s 1

0

En
te

rp
rise

W
in

d
o

w
s 1

0

Ed
u

catio
n

Su
rface

 H
u

b

W
in

d
o

w
s 1

0
 S

W
in

d
o

w
s 1

0

M
o

b
ile

 W

in
d

o
w

s Server
Stan

d
ard

W
in

d
o

w
s Server

D
atace

n
te

r

Microsoft Surface
Book 2

 √

Microsoft Surface
Laptop

 √ √ √

Microsoft Surface
Pro

 √ √ √

Microsoft Surface
Book

 √

Microsoft Surface
Pro 4

 √

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 9 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Microsoft Surface
Pro 3

 √

Microsoft Surface
3 with LTE

 √

Microsoft Surface
Studio

 √

Microsoft Surface
Hub

 √

Windows Server
Standard Core
Hyper-V1

 √ √

Windows Server
2016 Hyper-V2

 √

Microsoft Lumia
950

 √

Microsoft Lumia
950 XL

 √

Microsoft Lumia
650

 √

Dell Latitude 5285 √

Dell Latitude 5290 √

Dell Inspiron 660s √

Dell Precision
Tower 5810MT

 √ √ √

Dell PowerEdge
R630

 √ √ √

Dell PowerEdge
R740

 √ √

HP Elite X3 √

HP Compaq Pro
6305

 √

HP Pro x2 612 G2
Detachable PC
with LTE

 √

HP Slimline
Desktop

 √

Panasonic
Toughbook

 √

Table 2 Validated Platforms for Windows 10 and Windows Server version 1803

1 Hardware platform: Dell 5810MT
2 Hardware platform: Surface Pro 4

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 10 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Computer Windows
10 Home

Windows
10 Pro

Windows
10
Enterprise

Windows
10
Education

Windows
Server
Standard

Windows
Server
Datacenter

Microsoft
Surface Go

√

Microsoft
Surface Book 2

 √ √

Microsoft
Surface Pro LTE

 √ √

Microsoft
Surface Laptop

 √ √ √

Microsoft
Surface Studio

 √

Windows
Server Standard
Core Hyper-V3

 √ √

Windows
Server 2016
Hyper-V4

 √

Dell Latitude
5290

 √

Dell Latitude 12
Rugged Tablet

 √

Dell Inspiron
660s

√

Dell PowerEdge
R740

 √ √

HP Pro x2 612
G2 Detachable
PC with LTE

 √

HP Slimline
Desktop

 √

Microsoft
Surface Pro 6

 √

Microsoft
Surface Laptop
2

 √

Microsoft
Surface Studio 2

 √

3 Hardware platform: Dell Precision Tower 5810MT
4 Hardware platform: Dell PowerEdge R740

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 11 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2 Cryptographic Module Specification
Code Integrity is a multi-chip standalone module that operates in FIPS-approved mode during normal

operation of the computer and Windows operating system.

The following configurations and modes of operation will cause Code Integrity to operate in a non-

approved mode of operation:

 Boot Windows in Debug mode

 Boot Windows with Driver Signing disabled

 Windows enters the ACPI S4 power state (for Windows 10 version 1803 only)

2.1 Cryptographic Boundary
The software binary that comprises the cryptographic boundary for Code Integrity is CI.DLL.

2.2 FIPS 140-2 Approved Algorithms
Code Integrity implements the following FIPS 140-2 Approved algorithms: 5

Algorithm Windows
10 and
Windows
Server
version
1709

Windows
10
Mobile
version
1709

Microsoft
Surface
Hub
(15063.674)

Windows
10 and
Windows
Server
version
1803

FIPS 186-4 RSA PKCS#1 (v1.5) digital signature
verification with 1024, 2048, and 3072 moduli;
supporting SHA-1, SHA-256, SHA-384, and
SHA-512

#2668 #2669 #2672 # 3080

FIPS 180-4 SHS SHA-1, SHA-256, SHA-384, and
SHA-512 #4009 #4010 #4011 # 4633

2.3 Non-Approved Algorithms
Code Integrity only implements approved algorithms.

5 This module may not use some of the capabilities described in each CAVP certificate.

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 12 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2.4 FIPS 140-2 Approved Algorithms from Bounded Modules
A bounded module is a FIPS 140 module which provides cryptographic functionality that is relied on by a

downstream module. As described in the Integrity Chain of Trust section, Code Integrity depends on the

following modules and algorithms:

The Windows OS Loader for Windows 10 version 1709 (module certificate # 3194) provides

 CAVP certificates #2674 (Windows 10 and Windows Server), #2673 (Windows 10 Mobile), #2675

(Surface Hub) for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048 moduli;

supporting SHA-256

 CAVP certificates #4009 (Windows 10 and Windows Server), #4010 (Windows 10 Mobile), #4011

(Surface Hub) for FIPS 180-4 SHS SHA-256

The Windows OS Loader for Windows 10 version 1803 (module certificate #3480) provides

 CAVP certificates # 3081 (Windows 10 and Windows Server) for FIPS 186-4 RSA PKCS#1 (v1.5)

digital signature verification with 2048 moduli; supporting SHA-256

 CAVP certificates # 4633 (Windows 10 and Windows Server) for FIPS 180-4 SHS SHA-256

The Windows Resume for Windows 10 version 1709 (module certificate #3091) decrypts and restores

the encrypted memory state during a boot from hibernation, which acts to preserve the module’s

integrity (established by the Windows OS Loader) across hibernations:

 CAVP certificates #4897 (Windows 10 and Windows Server) for FIPS 197 AES CBC 128 and 256,

SP 800-38E AES XTS 128 and 256

Note that the validated platforms listed in section 1.2 include processors that support AES-NI. This

module does not implement AES, but the bounded modules may implement AES and, therefore, use

AES-NI.

2.5 Cryptographic Bypass
Cryptographic bypass is not supported by Code Integrity.

2.6 Hardware Components of the Cryptographic Module
The physical boundary of the module is the physical boundary of the computer that contains the

module. The following diagram illustrates the hardware components used by the Code Integrity module:

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 13 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3 Cryptographic Module Ports and Interfaces

3.1 Code Integrity Export Functions
All the functions exported by Code Integrity to kernel-mode callers are listed below. Code Integrity is not

callable outside the kernel. The exported functions are explained further in the subsequent subsections.

 CiInitialize

 CiGetPEInformation

 CiVerifyHashInCatalog

 CiCheckSignedFile

 CiFindPageHashesInCatalog

 CiFindPageHashesInSignedFile

 CiFreePolicyInfo

 CiSetTrustedOriginClaimId

 CiValidateFileObject

3.1.1 CiInitialize

CiInitialize is the function exported by Code Integrity for initializing the image file integrity validation

capability of Code Integrity.

See Self-Tests for information regarding cryptographic self-tests.

If the self-tests succeed, CiInitialize() returns a callback structure consisting of the following binary

executable file integrity validation functions.

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 14 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 CiValidateImageHeader

 CiValidateImageData

 CiQueryInformation

 CiSetFileCache

 CiGetFileCache

 CiHashMemory

 KappxIsPackageFile

 CiCompareSigningLevels

 CiValidateFileAsImageType

 CiRegisterSigningInformation

 CiUnregisterSigningInformation

 CiInitializePolicy

 CipQueryPolicyInformation

 CiValidateDynamicCodePages

 SIPolicyQuerySecurityPolicy

 CiRevalidateImage

 CiSetUnlockInformation

 CiGetBuildExpiryTime

And if HVCI is enabled, also:

 CiGetStrongImageReference

 CiReleaseContext

 CiHvciSetImageBaseAddress

3.1.2 CiGetPEInformation

This function returns system configuration data which is related to the protected media subsystem.

3.1.3 CiVerifyHashInCatalog

For an input Authenticode file digest, validates that the digest is contained within a verified system

catalog. It optionally returns information about the catalog.

3.1.4 CiCheckSignedFile

For an input Authenticode file digest and an Authenticode signature, verifies that the digest is in the

signature and that the signature validates. It optionally returns information about the signature.

3.1.5 CiFindPageHashesInCatalog

For an input Authenticode digest of the first page of a PE image, validates that the digest is contained

within a verified system catalog. It optionally returns information about the catalog.

3.1.6 CiFindPageHashesInSignedFile

For an input Authenticode digest of the first page of a PE image and an Authenticode signature, verifies

that the digest is in the signature and that the signature validates. It optionally returns information

about the signature.

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 15 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.1.7 CiFreePolicyInfo

Frees memory allocated by the CiVerifyHashInCatalog, CiCheckSignedFile, CiFindPageHashesInCatalog,

and CiFindPageHashesInSignedFile functions.

3.1.8 CiSetTrustedOriginClaimId

 This function is invoked by Appid.sys when an AppLocker policy is being processed.

3.1.9 CiValidateFileObject

Verifies the signature of a file object and returns the policy info along with the timestamp and signing

time.

3.2 Code Integrity Callback Functions

The following functions are not exported, but are accessed via a callback structure provided by the
CiInitialize function. These functions are also explained in subsequent subsections.

 CiValidateImageHeader

 CiValidateImageData

 CiQueryInformation

 CiSetFileCache

 CiGetFileCache

 CiHashMemory

 KappxIsPackageFile

 CiCompareSigningLevels

 CiValidateFileAsImageType

 CiRegisterSigningInformation

 CiUnregisterSigningInformation

 CiInitializePolicy

 CipQueryPolicyInformation

 CiValidateDynamicCodePages

 SIPolicyQuerySecurityPolicy

 CiRevalidateImage

 CiSetUnlockInformation

 CiGetBuildExpiryTime

And if HVCI is enabled, also:

 CiGetStrongImageReference

 CiReleaseContext

 CiHvciSetImageBaseAddress

3.2.1 CiValidateImageHeader

When a caller, such as the Memory Manager, wants to obtain the set of trusted per-page hashes of an

image file, it calls CiValidateImageHeader(). Trusted per-page hashes can use the following algorithms:

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 16 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 SHS (SHA-1)

 SHS (SHA-256)

 SHS (SHA-384)

 SHS (SHA-512)

 If CiValidateImageHeader() does not find the set of trusted per-page hashes for the cryptographic

module, then CiValidateImageHeader() verifies the full cryptographic module image by verifying a

trusted file hash. The trusted file hash may be:

 SHS (SHA-1)

 SHS (SHA-256)

 SHS (SHA-384)

 SHS (SHA-512)

If this validation process fails, the module is not valid and the module is not loaded.

Both the trusted file image hash and trusted page hashes are signed using the RSA signature algorithm

with PKCS#1 v1.5 padding.

3.2.2 CiValidateImageData

After calling CiValidateImageHeader to obtain the set of trusted per-page hashes of an image file,

CiValidateImageData() is used to check the integrity of each page by computing the hash value of the

page.

If the computed hash matches the identified trusted hash, then CiValidateImageData confirms the

integrity of the page. Otherwise, CiValidateImageData returns STATUS_INVALID_IMAGE_HASH.

3.2.3 CiQueryInformation

Returns state data about the enforcement of Code Integrity. Whether CI is being enforced and whether

test signing is enabled.

3.2.4 CiSetFileCache

For a verified file, saves the signature level and thumbprint of the signing certificate. If the file was not

previously verified, it will verify the file against either its embedded signature or a system catalog.

3.2.5 CiGetFileCache

For an input file, returns the previously validated signature level and the thumbprint of the signing

certificate. This check was done during a previous validation, and this function is just returning a cached

result.

3.2.6 CiHashMemory()

Passes supplied data to MinCrypK_HashMemory and returns the hash of that data.

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 17 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.7 KappxIsPackageFile

This routine takes an input file object and parses out the full package name associated with the

corresponding package. Package association is established based on the normalized path corresponding

to the file object.

3.2.8 CiCompareSigningLevels

This routine determines if the source signing level is applicable for the target. For example, a source of

Microsoft is not valid for a target of Windows, but vice-versa is valid.

3.2.9 CiValidateFileAsImageType

This routine determines if a PE file is signed appropriately for the specified image type. The file must be

mapped as a view to a data section or be a copy of that view.

3.2.10 CiRegisterSigningInformation

This routine sets a signer, in addition to those already configured, for a specified signing level. Only

those levels that are enabled for runtime configuration will accept signers supplied to this routine.

3.2.11 CiUnregisterSigningInformation

This routine removes a previous registered runtime signing information. Once a registration handle has

been unregistered, it must be discarded.

3.2.12 CiInitializePolicy

This routine is called to get the configuration of CI for this boot and return the list of address ranges to

be protected by Patch Guard.

3.2.13 CipQueryPolicyInformation

This routine returns information about Code Integrity policy state.

3.2.14 CiValidateDynamicCodePages

This routine validates the contents of code pages generated dynamically.

3.2.15 SIPolicyQuerySecurityPolicy

This routine queries the secure setting for specific provider's <Key,Value> pair.

3.2.16 CiRevalidateImage

This routine determines if previously validated images must be validated again.

3.2.17 CiSetUnlockInformation

This function sets unlock information for Code Integrity.

3.2.18 CiGetBuildExpiryTime

This routine determines the expiry time of the build. Zero time means the build never expires, which is
true for production and test builds. Flight builds expire when the certificate that signs CI expires.

3.2.19 CiGetStrongImageReference

This routine returns the handle to a secure image.

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 18 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.20 CiReleaseContext

This routine closes a validation context.

3.2.21 CiHvciSetImageBaseAddress

This routine changes the base address of an image that is using secure relocations.

3.3 Control Input Interface
The SecureRequired parameter in CiValidateImageHeader() is the only control option provided by Code

Integrity in the Control Input Interface.

3.4 Status Output Interface
The Status Output Interface for Code Integrity consists of the exported and callable functions listed in

Code Integrity export functions. For each function, the status information is returned to the caller as the

return value (e.g. STATUS_SUCCESS, STATUS_UNSUCCESSFUL, STATUS_INVALID_IMAGE_HASH) from the

function.

3.5 Data Input Interface
The Data Input Interface for Code Integrity is the exported and callable functions listed in Code Integrity

export functions with the exception of the initialization and status functions. Data and options are

passed to the interface as input parameters to the CI export functions.

3.6 Data Output Interface
The Data Output Interface for Code Integrity also consists of most of the exported and callable functions

listed in Code Integrity export functions with the exception of the initialization and status functions.

Data is returned to the function’s caller via output parameters.

4 Roles, Services and Authentication

4.1 Roles
Code Integrity is a library used solely by the Windows kernel and does not interact with the user through

any service. The module’s functions are fully automatic and not configurable. FIPS 140 validations define

formal “User” and “Cryptographic Officer” roles. Both roles can use any Code Integrity service.

4.2 Services
Code Integrity’s services are:

1. Verify the integrity of binary executable code – This service is called by the Windows kernel to

verify the integrity of digitally signed drivers and other binary components of the operating system.
2. Show Status – The module does not provide an explicit status interface. Operational status is

indicated by successfully initializing the module using CiInitialize and success status messages using

the binary integrity verification functions.

3. Self-Tests - The module provides a power-up self-tests service that is automatically executed when

the module is loaded into memory.

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 19 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The following table maps the services to their corresponding algorithms and critical security parameters

(CSPs) as described in Cryptographic Key Management.

Service / Function Algorithms CSPs Invocation

Verify the integrity
of binary executable
code

FIPS 186-4 RSA PKCS#1
(v1.5) verify with public
key

FIPS 180-4 SHS:
SHA-1 hash
SHA-256 hash
SHA-384 hash
SHA-512 hash

RSA public key This service is fully automatic.
This service is executed
whenever a binary executable
is loaded.

Show Status None None This service is fully automatic.
This service is executed upon
completion of an integrity
check function.

Self-Tests FIPS 186-4 RSA PKCS#1
(v1.5) verify with public
key and known signature
FIPS 180-4 SHS:
SHA-1 KAT
SHA-256 KAT
SHA-512 KAT

None This service is fully automatic.

The following table maps services to the export functions listed in Code Integrity export functions and

Code Integrity Callback Functions.

Service Export Functions

Verify the integrity of binary executable code CiGetPEInformation()
CiVerifyHashInCatalog()
CiCheckSignedFile()
CiFindPageHashesInCatalog()
CiFindPageHashesInSignedFile()
CiFreePolicyInfo()
CiSetTrustedOriginClaimId()
CiValidateFileObject()
CiValidateImageHeader()
CiValidateImageData()
CiSetFileCache()
CiGetFileCache()
CiHashMemory()
KappxIsPackageFile()
CiCompareSigningLevels()
CiValidateFileAsImageType()
CiRegisterSigningInformation()

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 20 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Service Export Functions

CiUnregisterSigningInformation()
CiValidateDynamicCodePages()
SIPolicyQuerySecurityPolicy()
CiSetUnlockInformation()
CiGetBuildExpiryTime()
CiGetStrongImageReference()
CiReleaseContext()
CiHvciSetImageBaseAddress()

Show Status CiQueryInformation()
CiInitialize()
CiInitializePolicy()
CipQueryPolicyInformation()
CiRevalidateImage()
All exported functions

Self-Tests CiInitialize()

4.3 Authentication
The module does not provide authentication. Roles are implicitly assumed based on the services that are

executed.

5 Finite State Model

5.1 Specification
The following diagram shows the finite state model for Code Integrity:

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 21 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

6 Operational Environment
The operational environment for Code Integrity is the Windows 10 operating system running on a

supported hardware platform.

6.1 Single Operator
Code Integrity is invoked by the Windows kernel as a fully automatic service with no user interaction.

6.2 Cryptographic Isolation
In the Windows operating system, all kernel-mode modules, including CI.DLL, are loaded into the

Windows Kernel (ntoskrnl.exe) which executes as a single process. The Windows operating system

environment enforces process isolation from user-mode processes including memory and processor

scheduling between the kernel and user-mode processes.

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 22 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

6.3 Integrity Chain of Trust
Windows uses several mechanisms to provide integrity verification depending on the stage in the OS

boot sequence and also on the hardware and OS configuration. The following diagram describes the

Integrity Chain of trust for each supported configuration for the following versions:

 Windows 10 Mobile version 1709 build 10.0.15254

 Microsoft Surface Hub build 10.0.15063.674

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 23 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The following diagram describes the Integrity Chain of trust for each supported configuration for the

following versions:

 Windows 10 and Windows Server version 1709 and 1803

BCryptPrimitives.dll
BitLocker Dump

Filter
(DumpFVE.sys)

Virtual TPM
(TPMEng.dll)

Code Integrity
(CI.dll)

Secure Kernel Code
Integrity (SKCI.dll)

CNG.sys

Windows Resume (WinResume.efi)Windows OS Loader (WinLoad.efi)

Boot Manager (BootMgr.efi)

UEFI

When Secure Boot is enabled, UEFI validates

Not enabled

Enabled

Memory Integrity

Core Isolation not enabledCore Isolation enabled

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 24 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Refer back to the introduction for information on the relationship between Code Integrity and Secure

Kernel Code Integrity and the effect of configuration on module validation.

7 Cryptographic Key Management
Code Integrity does not generate or store any persistent cryptographic keys; and uses RSA public keys

for validating file integrity.

8 Self-Tests
The Code Integrity module implements Known Answer Test (KAT) functions each time the module is

loaded by the Windows kernel and CiInitialize is called.

The module performs the following power-on (startup) self-tests:

 SHS (SHA-1) Known Answer Test

 SHS (SHA-256) Known Answer Test

 SHS (SHA-512) Known Answer Test

 RSA verify using a verify test with a Known Signature of the PKCS#1 v1.5 format with both 1024-

bit keys with SHA1 digest and 2048-bit keys with SHA-256 digest.

If any self-test fails, the module will not load and a failure status, STATUS_INVALID_IMAGE_HASH, is

returned and the computer will fail to boot. Otherwise STATUS_SUCCESS is returned and the boot

process completes.

9 Design Assurance
The secure installation, generation, and startup procedures of this cryptographic module are part of the

overall operating system secure installation, configuration, and startup procedures for Windows 10

operating system.

The Windows 10 operating system must be pre-installed on a computer by an OEM, installed by the

end-user, by an organization’s IT administrator, or updated from a previous Windows 10 version

downloaded from Windows Update.

An inspection of authenticity of the physical medium can be made by following the guidance at this

Microsoft web site: https://www.microsoft.com/en-us/howtotell/default.aspx

The installed version of Windows must be verified to match the version that was validated. See

Appendix A for details on how to do this.

For Windows Updates, the client only accepts binaries signed by Microsoft certificates. The Windows

Update client only accepts content whose SHA-2 hash matches the SHA-2 hash specified in the

https://www.microsoft.com/en-us/howtotell/default.aspx

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 25 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL

ensures that the client is communicating with the real server and so prevents a spoof server from

sending the client harmful requests. The version and digital signature of new cryptographic module

releases must be verified to match the version that was validated. See Appendix A for details on how to

do this.

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 26 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

10 Mitigation of Other Attacks
The following table lists the mitigations of other attacks for this cryptographic module:

Algorithm Protected Against Mitigation

SHA1

Timing Analysis Attack Constant time implementation

Cache Attack Memory access pattern is independent of any
confidential data

SHA2

Timing Analysis Attack Constant time implementation

Cache Attack Memory access pattern is independent of any
confidential data

11 Security Levels
The security level for each FIPS 140-2 security requirement is given in the following table.

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security NA

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 2

Mitigation of Other Attacks 1

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 27 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

12 Additional Details
For the latest information on Microsoft Windows, check out the Microsoft web site at:

https://www.microsoft.com/en-us/windows

For more information about FIPS 140 validations of Microsoft products, please see:

https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation

https://www.microsoft.com/en-us/windows

Code Integrity Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 28 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

13 Appendix A – How to Verify Windows Versions and Digital Signatures

13.1 How to Verify Windows Versions
The installed version of Windows must be verified to match the version that was validated using the

following method:

1. In the Search box type "cmd" and open the Command Prompt desktop app.
2. The command window will open.
3. At the prompt, enter "ver”.
4. The version information will be displayed in a format like this:

Microsoft Windows [Version 10.0.xxxxx]

If the version number reported by the utility matches the expected output, then the installed version
has been validated to be correct.

13.2 How to Verify Windows Digital Signatures
After performing a Windows Update that includes changes to a cryptographic module, the digital

signature and file version of the binary executable file must be verified. This is done like so:

1. Open a new window in Windows Explorer.
2. Type “C:\Windows\” in the file path field at the top of the window.
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the

search field at the top right of the window, then press the Enter key.
4. The file will appear in the window.
5. Right click on the file’s icon.
6. Select Properties from the menu and the Properties window opens.
7. Select the Details tab.
8. Note the File version Property and its value, which has a number in this format: xx.x.xxxxx.xxxx.
9. If the file version number matches one of the version numbers that appear at the start of this

security policy document, then the version number has been verified.
10. Select the Digital Signatures tab.
11. In the Signature list, select the Microsoft Windows signer.
12. Click the Details button.
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that

condition is true, then the digital signature has been verified.

