FIPS 140-2 Level 2 Security Policy

For

Thunder Series TH3030S, TH4440S, TH5840S, TH6630S, and TH7440S

Document Version 1.6

This security policy describes the FIPS 140-2 compliance of the module This document may be freely distributed in its entirety without modification

Table of Contents

1 Module Description	3
2 Cryptographic Boundary	4
3 Ports and Interfaces	6
4 Roles, Services and Authentication	7
5 Security Functions	8
6 Key Management	13
7 Self Tests	14
8 Physical Security	15
9 Secure Operation	15
9.1 Approved Mode of Operation	15
10 References	16

1 Module Description

A10 Networks, Inc.'s Thunder Series is a traffic manager designed to help enterprises and ISPs with application availability. These Thunder Series appliances are integrated 64-bit models.

Commonly, clients and servers use Hypertext Transfer Protocol Secure (HTTPS) to secure traffic. Hardware acceleration is used for TLS encryption of data. For example, a client that is using a shopping application on a server will encrypt data before sending it to the server. The server will decrypt the client's data, and then send an encrypted reply to the client. The client will decrypt the server reply, and so on.

TLS works using certificates and keys. Typically, a client will begin a secure session by sending an HTTPS request to a virtual endpoint. The request begins an HTTPS handshake. The module will respond with a digital certificate. From the client's perspective, this certificate comes from the server. Once the HTTPS handshake is complete, the client begins an encrypted client-server session with the module.

Server farms can easily be grown in response to changing traffic flow, while protecting the servers behind a common virtual endpoint. From the perspective of a client who accesses services, requests go to and arrive from a single endpoint. The client is unaware that the server is in fact multiple servers managed by the module. There is no need to wait for DNS entries to propagate for new servers. A new server can be added to the configuration for the virtual server, and the new real server should then become accessible immediately.

The module supports SSH, HTTPS, and console management interfaces.

For the purposes of FIPS 140-2 the Thunder Series is classified as multi-chip standalone module.

FIPS 140-2 conformance testing of the module was performed at Security Level 2. The following configurations were tested:

Module Name and Version	Firmware versions
Thunder Series TH3030S	4.1.1-P3
Thunder Series TH4440S	4.1.1-P3
Thunder Series TH5840S	4.1.1-P3
Thunder Series TH6630S	4.1.1-P3
Thunder Series TH7440S	4.1.1-P3

FIPS Security Area	Security Level
Cryptographic Module Specification	2
Module Ports and Interfaces	2
Roles, Services and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-tests	2
Design Assurance	2
Mitigation of Other Attacks	N/A

2 Cryptographic Boundary

The hardware and firmware components of the module are enclosed in a metal enclosure which is the cryptographic boundary of the module. The removable panels of the enclosure are protected by tamper-evident labels. The enclosure is opaque within the visible spectrum.

An image of the module is provided below:

Figure 12. Thunder Series TH3030S

Figure 13. Thunder Series TH4440S

Figure 14. Thunder Series TH5840S

Figure 15. Thunder Series TH6630S

Figure 16. Thunder Series TH7440S

3 Ports and Interfaces

The module includes the following physical ports and logical interfaces.

Port Name	Count	Interface(s)
Ethernet Port	TH3030S:14	Data Input, Data
	1 GE Copper: 8	Output, Control Input,
	1 GE Fiber (SFP): 2	Status Output
	1/10 GE Fiber (SFP+): 4	
	TH4440S/TH5840S:30	
	1 GE Copper: 2	
	1/10 GE Fiber (SFP+): 24	
	40 GE Fiber (QSFP+): 4	
	TH6630S:18	
	1 GE Copper: 2	
	1/10 GE Fiber (SFP+): 12	
	100 GE Fiber (CXP): 4	
	TH7440S:54	
	1 GE Copper: 2	
	1/10 GE Fiber (SFP+): 48	
	40 GE Fiber (QSFP+): 4	
Serial Console Port	1	Control Input, Status
		output, Data Output
USB Ports	1 Disabled	
Power Switch	1 Control Input	
Power Port	TH3030S:2	Power Input
	TH4440S/TH5840:2	
	TH6630S:4	
	TH7440S:2	
LEDs ¹	3	Status Output

¹ Also each Ethernet port uses 2 LEDs

4 Roles, Services and Authentication

The module provides the following roles: a User role and Crypto Officer role. The Crypto Officers initialize and manage the module. Users employ the cryptographic services provided by the module.

The table below provides information on authentication mechanisms employed by each role.

Role	Authentication Mechanism
User	Client Certificates are used for user authentication. The module uses client certificates with at least 2048 bit RSA key, which corresponds to 112 bits of security, therefore the probability is less than one in 1,000,000 that a random attempt will succeed or a false acceptance will occur.
	For multiple attempts to use the authentication mechanism during a one-minute period, the probability is less than one in 100,000 that a random attempt will succeed or a false acceptance will occur due to the authentication process performance limitation.
Crypto Officer	Passwords are used for connections via Console, SSH, and Web User Interface. RSA keys can be used for connections via SSH. The module uses passwords of at least 8 characters, or at least 2048 bit RSA key, therefore the probability is less than one in 1,000,000 that a random attempt will succeed or a false acceptance will occur.
	For multiple attempts to use the authentication mechanism during a one-minute period, the probability is less than one in 100,000 that a random attempt will succeed or a false acceptance will occur due to the authentication process performance limitation.

The module provides the following services to the operators:

Service	Role	Access to Cryptographic Keys
		and CSPS R- read: W – write or
		generate; E-execute
Installation of the Module	Crypto Officer	Password: W
		TLS server certificate: W
		SSH keys: E
		DRBG seed: E

Service	Role	Access to Cryptographic Keys and CSPs
		generate: E-execute
Login	Crypto Officer	Password: E
		SSH Keys: E
		TLS Keys: E
		DRBG seed: E
Device Management	Crypto Officer	Password: E
		SSH Keys: E
		TLS Keys: E
		DRBG seed: E
SSH	Crypto Officer	Password: E
		SSH Keys: E
		DRBG seed: E
HTTPS	Crypto Officer	Password: E
		TLS Keys: E
		DRBG seed: E
Run self-test	Crypto Officer	N/A
Show status	Crypto Officer	N/A
Dahaat		
Reboot	Crypto Officer	N/A
Update firmware	Crypto Officer	Firmware load verification
-		HMAC SHA-1 firmware load
		verification key: E
Zeroize	Crypto Officer	All keys: W
	_	
Establishment of secure	User	TLS keys: E
TLS network connection		TLS Certificate: E
		DRBG seed: E

5 Security Functions

The table below lists approved cryptographic algorithms employed by the module.

CAVP Cert	Library	Algorithm	Standard	Model/ Method	Key Lengths	Use
cert				Witthou	Curves or Moduli	
4462	A10 Networks SSL FIPS Library	AES	FIPS 197, SP 800- 38D	ECB, CBC, CTR, CFB1, CFB128, CFB8, OFB,	128, 192, 256	Data Encryption/ Decryption KTS
4752	A10 Networks Data Plane FIPS Software Library			GCM ¹		(key establishment methodology provides between 128 and 256 bits
2329	A10 Networks Data Plane FIPS					of encryption strength)
5052	Library					
5053						
1447	A10 Networks SSL FIPS Library	DRBG	SP 800- 90A	HASH_Based DRBG HMAC_Based DRBG CTR_DRBG		Deterministic Random Bit Generation ²
1633	A10 Networks Data Plane FIPS Software Library					
1610	A10 Networks Data Plane FIPS	CVL Partial EC-DH	SP 800- 56A	ECC	P-256 P-384 P-521	Shared Secret Computation
1611	Library					

CAVP Cert	Library	Algorithm	Standard	Model/ Method	Key Lengths, Curves or Moduli	Use
1444	A10 Networks Data Plane FIPS	HMAC	FIPS 198-1	HMAC-SHA- 1, HMAC-SHA- 256.	160, 256, 384, 512	Message Authentication KTS
1654	Library			HMAC-SHA- 384, HMAC-SHA- 512		
2961	A10 Networks SSL FIPS Library			512		
1463	A10 Networks Data Plane FIPS Library	Triple-DES	SP 800- 67	TECB, TCBC	168	Data Encryption/ Decryption ³ KTS (key establishment methodology
2396	A10 Networks SSL FIPS Library					provides 112 bits of encryption strength)
2013	A10 Networks Data Plane FIPS	SHS	FIPS 180-4	SHA-1, SHA-224, SHA-256, SHA-384		Message Digest
2236	Library			SHA-512		
3674	A10 Networks SSL FIPS Library					

CAVP	Library	Algorithm	Standard	Model/	Key	Use
Cert				Method	Curves or	
2438	A10 Networks SSL FIPS Library	RSA	FIPS 186-4, FIPS186- 2	SHA-1, SHA- 224, SHA-256, SHA-384, SHA-512 ANSIX9,31;	Moduli 1024 (verification only), 1536 (verification only), 2048,	Digital Signature Generation and Verification
2738	A10 Networks Data Plane			PKCS1 v1.5	3072, 4096	
2739	FIPS Library					
1087	A10 Networks SSL FIPS Library	ECDSA	FIPS 186-4		P-256, P- 384, P-521	Digital Signature Generation and Verification
1187	A10 Networks Data Plane FIPS Software Library					
143	A10 Networks Data Plane TLS KDF	CVL SNMP, TLS 1.0, 1.1 and 1.2,	SP 800- 135			Key Derivation
144	FIPS Library	SSH				
1170	A10 Networks SSL FIPS Library					

CAVP Cert	Library	Algorithm	Standard	Model/ Method	Key Lengths, Curves or Moduli	Use
CKG	A10	Cryptographic	SP 800-			Key
(vendor	Networks	Key	133			generation ²
affirmed)	SSL FIPS	Generation				
	Library					
	A10					
	Networks					
	Data Plane					
	FIPS					
	Software					
	Library					

¹The module's AES-GCM implementation complies with IG A.5 scenario 1, RFC 5288 and SP 800-52. AES-GCM is only used in TLS version 1.2. New AES-GCM keys are generated by the module if the module loses power. The module uses a monotonically increasing counter to ensure uniqueness of the IV. The implementation of the module ensures by comparing the value of the counter to the maximum value that when the counter exhausts all possible values, a new key is established.

²The module directly uses the output of the DRBG

³ Operators are responsible for ensuring that the same Triple-DES key is not used to encrypt more than 2^16 64-bit data blocks

Note: not all CAVS tested modes of the algorithms are used in this module

The module implements the following non-Approved cryptographic algorithms that are allowed in the Approved mode for protection of sensitive data:

Algorithm	Caveat	Use
RSA Key Wrapping using	Provides between	Used for key establishment
key ≥ 2048 bits key	112 and 256 bits of encryption strength.	in TLS handshake
DH using ≥ 2048 bits key	Provides between	Used for key establishment
	112 and 256 bits of	in SSH and TLS handshakes.
	encryption strength.	
EC DH	Provides between	Used for key establishment
	128 and 256 bits of	in TLS handshake.
	encryption strength	
NDRNG		Used to seed SP 800-90A
		DRBG.

The module also implements other cryptographic algorithms:

Algorithm	Usage
MD5	Used by RADIUS

6 Key Management

The following cryptographic keys and CSPs are supported by the module.

Name and type	Usage	Storage
TLS master secret	Used to derive TLS data	Plaintext in RAM
	encryption key and TLS	
	HMAC key	
TLS Triple-DES or AES	Used to encrypt data in TLS	Plaintext in RAM
encryption key	protocol	
TLS HMAC key	Used to protect integrity of	Plaintext in RAM
	data in TLS protocol	
TLS server RSA or ECDSA	Used to encrypt the TLS	Plaintext in RAM
certificate and private key	master secret during the	Plaintext in flash
	TLS handshake	
TLS Diffie-Hellman keys	Used for key establishment	Plaintext in RAM
	during the handshake	
TLS EC Diffie-Hellman	Used for key establishment	Plaintext in RAM
keys	during the handshake	
SSH Diffie-Hellman keys	Used for key establishment	Plaintext in RAM
	during the handshake	
Certification Authority RSA	Used to verify client	Plaintext in RAM
Certificate	certificate during the TLS	Plaintext in flash
	handshake	
SSH RSA keys	Used for authentication	Plaintext in RAM
	during the SSH handshake	Plaintext in flash
SSH master secret	Used to derive SSH	Plaintext in RAM
	encryption key and SSH	
	HMAC key	
SSH Triple-DES or AES	Used to encrypt SSH data	Plaintext in RAM
encryption keys		
SSH HMAC keys	Used to protect integrity of	Plaintext in RAM
	SSH data	

Name and type	Usage	Storage
CTR_DRBG CSPs: entropy	Used during generation of	Plaintext in RAM
input, V and Key	random numbers	
Hash_DRBG CSPs: entropy		
input, V and C		
HMAC_DRBG CSPs:		
entropy input, V and Key		
Firmware load verification	Used to verify firmware	Plaintext in RAM
HMAC SHA-1 Key	components	Plaintext in flash
Passwords	Used to authenticate users	Plaintext in RAM
		Plaintext in flash
SNMP Secret	Used to authenticate Crypto	Plaintext in RAM
	Officers accessing SNMP	Plaintext in flash
	management interface	

7 Self Tests

The module runs a set of self-tests on power-up. If one of the self-tests fails, the module transitions into an error state where all data output and cryptographic operations are disabled.

The module runs power-up self-tests for the following algorithms:

Algorithm	Test
AES	Known Answer Test using ECB and CBC
	modes (encrypt/decrypt)
TDES	Known Answer Test using ECB mode
	(encrypt/decrypt)
SHS	Known Answer Test as a part of the
	HMAC KAT. Also SHA1 and SHA256 are
	tested separately.
HMAC	Known Answer Test using SHA1,
	SHA224, SHA256, SHA384 and
	SHA512 to also cover SHA POST
SP800-90A DRBG	Known Answer Test:
	CTR_DRBG: AES
	HASH_DRBG: SHA256
	HMAC_DRBG: SHA256

Algorithm	Test
RSA	Known Answer Test using 2048 bit key,
	SHA-256
ECDSA	Pairwise Consistency Test (sign/verify)
	using P-224, K-233 and SHA512
ECC CDH	Shared secret computation
Firmware integrity	HMAC-SHA-1 of the firmware image

During the module operation the following conditional self-tests are performed:

Condition	Test
Random Number Generation /DRBG	Continuous RNG Test
Random Number Generation /NDRNG	Continuous RNG Test
Firmware Load	Firmware Load Test using HMAC SHA1

8 Physical Security

The module consists of production-grade components enclosed in a metal enclosure. The enclosure is opaque within the visible spectrum.

The module is protected by tamper evident labels in accordance with FIPS 140-2 Level 2 Physical Security requirements. The tamper evident labels are applied at the factory to provide evidence of tampering if a panel is removed.

The Crypto Officer must note the locations of the tamper evidence labels upon receipt of the module. The Crypto Officer must check the integrity of the tamper evident labels periodically thereafter. Upon discovery of tampering the Crypto Officer must immediately disable the module and return the module to the manufacturer.

9 Secure Operation

9.1 Approved Mode of Operation

The module is intended to always operate in the Approved Mode of Operation. Module documentation provides detailed setup procedures and guidance for the users and administrators.

Crypto Officer must change its password during the installation.

Module users and administrators shall keep all authentication data confidential and shall not allow unauthorized access to the module.

10 References

Reference	Specification
[ANS X9.31]	Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)
[FIPS 140-2]	Security Requirements for Cryptographic modules, May 25, 2001
[FIPS 180-4]	Secure Hash Standard (SHS)
[FIPS 186-2/4]	Digital Signature Standard
[FIPS 197]	Advanced Encryption Standard
[FIPS 198-1]	The Keyed-Hash Message Authentication Code (HMAC)
[FIPS 202]	SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions
[PKCS#1 v2.1]	RSA Cryptography Standard
[PKCS#5]	Password-Based Cryptography Standard
[PKCS#12]	Personal Information Exchange Syntax Standard
[SP 800-38A]	Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext Stealing for CBC Mode
[SP 800-38B]	Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication
[SP 800-38C]	Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality
[SP 800-38D]	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
[SP 800-38F]	Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping
[SP 800-56A]	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography
[SP 800-56B]	Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography
[SP 800-56C]	Recommendation for Key Derivation through Extraction-then-Expansion
[SP 800-67R1]	Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher

Reference	Specification
[SP 800-89]	Recommendation for Obtaining Assurances for Digital Signature
	Applications
[SP 800-90A]	Recommendation for Random Number Generation Using Deterministic
	Random Bit Generators
[SP 800-108]	Recommendation for Key Derivation Using Pseudorandom Functions
[SP 800-132]	Recommendation for Password-Based Key Derivation
[SP 800-135]	Recommendation for Existing Application –Specific Key Derivation
	Functions