VMware's VPN Crypto Module
Software Version: 1.0

FIPS 140-2 Non-Proprietary Security Policy
FIPS Security Level: 1
Document Version: 0.6
TABLE OF CONTENTS

1 Introduction ... 4
 1.1 Purpose.. 4
 1.2 Reference ... 4
 1.3 Document Organization ... 4

2 VMware’s VPN Crypto Module ... 5
 2.1 Introduction ... 5
 2.2 Cryptographic Module Specification .. 5
 2.2.1 Physical Cryptographic Boundary .. 7
 2.2.2 Logical Cryptographic Boundary ... 8
 2.2.3 Modes of Operation .. 9
 2.3 Module Interfaces ... 10
 2.4 Roles, Services and Authentication .. 10
 2.4.1 Roles .. 10
 2.4.2 Services ... 10
 2.4.3 Authentication ... 11
 2.5 Physical Security ... 11
 2.6 Operational Environment ... 11
 2.7 Cryptographic Key Management .. 13
 2.7.1 Key Generation .. 14
 2.7.2 Key Entry/Output .. 14
 2.7.3 Zeroization ... 14
 2.8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) .. 14
 2.9 Self-Tests ... 14
 2.9.1 Power-On Self-Tests ... 14
 2.9.2 Conditional Self-Tests ... 15
 2.10 Mitigation of Other Attacks .. 15

3 Secure Operation .. 16
 3.1 Crypto Officer Guidance ... 16
 3.1.1 VMware’s VPN Crypto Module Secure Operation .. 16
 3.2 User Guidance .. 16

4 Acronyms .. 17
LIST OF FIGURES

Figure 1 – Hardware Block Diagram .. 7
Figure 2 – Module’s Logical Cryptographic Boundary .. 8

LIST OF TABLES

Table 1 – Security Level Per FIPS 140-2 Section .. 5
Table 2 – Tested Configurations .. 6
Table 3 – FIPS-Approved Algorithms (Bound OpenSSL Module) .. 9
Table 4 – FIPS-Approved Algorithms (librte_cryptodev) ... 9
Table 5 – FIPS 140-2 Logical Interface Mapping .. 10
Table 6 – Crypto Officer and Users Services ... 11
Table 7 – List of Cryptographic Keys, Key Components, and CSPs ... 13
Table 8 – Acronyms .. 17
1 INTRODUCTION

1.1 Purpose

This is a non-proprietary Cryptographic Module Security Policy for the VMware's VPN Crypto Module from VMware, Inc. This Security Policy describes how the VMware's VPN Crypto Module meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Canadian Centre for Cyber Security (CCCS) Cryptographic Module Validation Program (CMVP) website at https://csrc.nist.gov/projects/cryptographic-module-validation-program.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module. The VMware's VPN Crypto Module is also referred to in this document as “the module”.

1.2 Reference

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The VMware website (http://www.vmware.com) contains information on the full line of products from VMware.
- The CMVP website (https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program/Validated-Modules/Search) contains options to get contact information for individuals to answer technical or sales-related questions for the module.

1.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model document
- Other supporting documentation as additional references

With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to VMware and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact VMware, Inc.
2 VMware’s VPN Crypto Module

2.1 Introduction

VMware, Inc., a global leader in virtualization, cloud infrastructure, and business mobility, delivers customer-proven solutions that accelerate Information Technology (IT) by reducing complexity and enabling more flexible, agile service delivery. With VMware solutions, organizations are creating exceptional experiences by mobilizing everything, responding faster to opportunities with modern data and apps hosted across hybrid clouds, and safeguarding customer trust with a defense-in-depth approach to cybersecurity. VMware enables enterprises to adopt an IT model that addresses their unique business challenges. VMware’s approach accelerates the transition to solutional-computing while preserving existing investments and improving security and control.

2.2 Cryptographic Module Specification

VMware’s VPN Crypto Module is a software cryptographic module whose purpose is to provide FIPS 140-2 validated cryptographic functions to various VMware applications utilizing VPN capabilities.

The Module is defined as a multi-chip standalone cryptographic module and has been validated at the FIPS 140-2 overall Security Level 1. Table 1 below describes the level achieved by the module in each of the eleven sections of the FIPS 140-2 requirements.

<table>
<thead>
<tr>
<th>Section</th>
<th>Section Title</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cryptographic Module Specification</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Cryptographic Module Ports and Interfaces</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Roles, Services, and Authentication</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Finite State Model</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Physical Security</td>
<td>N/A¹</td>
</tr>
<tr>
<td>6</td>
<td>Operational Environment</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Cryptographic Key Management</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EMI/EMC²</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Self-tests</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Design Assurance</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹ N/A – Not Applicable
² EMI/EMC – Electromagnetic Interference/Electromagnetic Compatibility
The FIPS 140-2 operational testing was performed on the configurations presented in Table 2.

Table 2 – Tested Configurations

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Processor</th>
<th>Processor Optimization</th>
<th>Hardware Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubuntu 16.04 on VMware ESXi 6.7</td>
<td>Intel Xeon 6126</td>
<td>AES-NI<sup>3</sup></td>
<td>Dell PowerEdge R740</td>
</tr>
<tr>
<td>Ubuntu 16.04 on VMware ESXi 6.7</td>
<td>Intel Xeon 6126</td>
<td>None</td>
<td>Dell PowerEdge R740</td>
</tr>
</tbody>
</table>

In addition to its full AES software implementations, the VMware’s VPN Crypto Module is capable of leveraging the AES-NI instruction set of the supported Intel processors in order to accelerate AES calculations.

Because the VMware’s VPN Crypto Module is defined as a software cryptographic module, it possesses both a physical cryptographic boundary and a logical cryptographic boundary.

³ AES-NI – Advanced Encryption Standard-New Instructions
2.2.1 Physical Cryptographic Boundary

As a software module, the module must rely on the physical characteristics of the host system. The physical boundary of the cryptographic module is defined by the hard enclosure around the host system on which it runs. The host system consists of integrated circuits of the system board, processor, RAM, hard disk, device case, power supply, and fans. See Figure 1 below for a block diagram of the host system.

![Figure 1 – Hardware Block Diagram](image)
2.2.2 Logical Cryptographic Boundary

The logical cryptographic boundary for the VMware's VPN Crypto Module is depicted in Figure 2. The VMware's VPN Crypto Module boundary consists of three object files, librte_cryptodev.so, librte_pmd_mux.so and libIPSec_MB.so, and cryptoLoader (integrity.py). The cryptoLoader is responsible for performing the integrity testing and loading of all components. The librte_cryptodev.so provides cryptographic services to the application components once the integrity tests and power-on self-tests have passed successfully.

The colored arrows, in Figure 2, indicate the logical information flows into and out of the module.

![Diagram of Module's Logical Cryptographic Boundary](image)
2.2.3 Modes of Operation

The VMware’s VPN Crypto Module only supports a FIPS-Approved mode of operation. The module must be configured as described in section 3.

Table 3 includes the FIPS-Approved algorithms for the Bound OpenSSL module and Table 4 includes the FIPS-Approved algorithms implemented in librte_cryptodev.

Table 3 – FIPS-Approved Algorithms (Bound OpenSSL Module)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Implementation/Mode</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHS</td>
<td>SHA-512</td>
<td>#3407</td>
</tr>
<tr>
<td>HMAC</td>
<td>SHA-512</td>
<td>#2710</td>
</tr>
<tr>
<td>AES (128, 192, 256-bit keys)</td>
<td>CBC, CTR (ext), GCM/GMAC</td>
<td>#4137</td>
</tr>
<tr>
<td>AES (128, 192, 256-bit keys)</td>
<td>CCM/CMAC</td>
<td>#4137</td>
</tr>
<tr>
<td>DRBG</td>
<td>AES-CTR</td>
<td>#1254</td>
</tr>
</tbody>
</table>

There are algorithms, modes, and keys from the Bound OpenSSL Module that have been CAVs tested but are not used in this module. Only the algorithms, modes/methods and key lengths/curves/moduli shown in table 3 are supported by the module in the FIPS validated configuration.

Table 4 – FIPS-Approved Algorithms (librte_cryptodev)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Modes</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES (128, 192, and 256-bit keys)</td>
<td>CBC, CTR (ext), GCM/GMAC</td>
<td>#C 465</td>
</tr>
<tr>
<td>AES (128-bit key)</td>
<td>CCM/CMAC</td>
<td>#C 465</td>
</tr>
<tr>
<td>Triple-DES (3-Key)</td>
<td>CBC</td>
<td>#C 465</td>
</tr>
<tr>
<td>SHS</td>
<td>SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512</td>
<td>#C 465</td>
</tr>
<tr>
<td>HMAC</td>
<td>SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512</td>
<td>#C 465</td>
</tr>
</tbody>
</table>
2.3 Module Interfaces

The module’s logical interfaces exist at a low level in the software as an API. Both the API and physical interfaces can be categorized into the following interfaces defined by FIPS 140-2:

- Data input
- Data output
- Control input
- Status output
- Power input

As a software module, the module’s manual controls, physical indicators, and physical and electrical characteristics are those of the host platform. A mapping of the FIPS 140-2 defined interfaces and the logical interfaces of the module can be found in Table 5 below.

<table>
<thead>
<tr>
<th>FIPS Interface</th>
<th>Logical Interface</th>
<th>Physical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Input</td>
<td>The function calls that accept input data for processing through their arguments.</td>
<td>Network port, serial port, USB port</td>
</tr>
<tr>
<td>Data Output</td>
<td>The function calls that return by means of their return codes or argument generated or processed data back to the caller.</td>
<td>Network port, serial port, USB port</td>
</tr>
<tr>
<td>Control Input</td>
<td>The function calls that are used to initialize and control the operation of the module.</td>
<td>Network port, serial port, USB port, Power button</td>
</tr>
<tr>
<td>Status Output</td>
<td>Return values for function calls; Module generated error messages.</td>
<td>Network port, serial port, USB port, Graphics controller</td>
</tr>
<tr>
<td>Power Input</td>
<td>Not applicable.</td>
<td>AC power socket</td>
</tr>
</tbody>
</table>

2.4 Roles, Services and Authentication

2.4.1 Roles

There are two roles in the module (as required by FIPS 140-2) that operators may assume: A Crypto-Officer (CO) role and a User role. Each role and their corresponding services are detailed in the sections below. The User and Crypto-Officer roles are implicitly assumed by the entity accessing the module services. Please note that the keys and Critical Security Parameters (CSPs) listed in Table 6 below indicates the types of access required using the following notation:

- R – Read: The CSP is read.
- W – Write: The CSP is established, generated, modified, or zeroized.
- X – Execute: The CSP is used within an FIPS-Approved or Allowed security function or authentication mechanism.

2.4.2 Services

Table 6 below describes the CO and User services.
Table 6 – Crypto Officer and Users Services

<table>
<thead>
<tr>
<th>Role</th>
<th>Service</th>
<th>Description</th>
<th>CSP and Type of Access</th>
</tr>
</thead>
</table>
| CO, User | Encryption | Encrypt plaintext using supplied key and algorithm specification | AES Key – RX
AES GCM IV – RX
TDES Key – RX |
| CO, User | Decryption | Decrypt ciphertext using supplied key and algorithm specification | AES Key – RX
AES GCM IV – RX
TDES Key – RX |
| CO, User | Hashing | Compute and return a message digest using SHA algorithm | None |
| CO, User | Message Authentication| Compute and return a hashed message authentication code | HMAC Key – RX |
| CO, User | Show Status | Show current operational mode of the module | None |
| CO, User | Run On-Demand Self-Tests | Execute required self-tests | AES Key – RX
AES GCM IV – RX
TDES Key – RX
HMAC Key – RX |
| CO, User | Key Zeroization | Zeroize all Keys and CSP | AES Key – W
AES GCM IV – W
TDES Key – W
HMAC Key – W |

2.4.3 Authentication

The module is a Level 1 software-only cryptographic module and does not implement authentication. Roles are assumed implicitly through the execution of either a CO or a User service.

2.5 Physical Security

The VMware's VPN Crypto Module is a software module, which FIPS 140-2 defines as a multi-chip standalone cryptographic module. As such, it does not include physical security mechanisms. Thus, the FIPS 140-2 requirements for physical security are not applicable.

2.6 Operational Environment

The module was tested and found to be compliant with FIPS 140-2 requirements on a Dell PowerEdge R740 Server with an Intel Xeon 6126 processor running Ubuntu 16.04 on VMware vSphere Hypervisor (ESXi) 6.7. The module only allows access to CSPs through its well-defined API.

Further, VMware, Inc. affirms that the VMware's VPN Crypto Module runs in its configured, Approved mode of operation on the following binary compatible platforms executing ESXi 6.7 or KVM:
- Dell PowerEdge T320 with Intel Xeon Processor
- Dell PowerEdge R530 with Intel Xeon Processor
- Dell PowerEdge R730 with Intel Xeon Processor
- Dell PowerEdge R830 with Intel Xeon Processor
- Dell PowerEdge T/R/Mx40 series with Intel Xeon Processor
- HPE ProLiant DL380 Gen9 with Intel Xeon Processor
- HPE ProLiant DL38P Gen8 with AMD Opteron Processor
- Cisco UCS – B22 M Series Blade Servers with Intel Processor
- Cisco UCS – C24 M3 Series Rackmount with Intel Xeon Processor
- A general-purpose computer (GPC) platform with an Intel Core i, Intel Xeon, or AMD Opteron Processor executing VMware ESXi and any OS (including OpenWrt) with single user mode.
- A cloud computing environment composed of a general-purpose computing platform executing VMware ESXi or KVM, or a VMware cloud solution that is executing VMware ESXi.

No claim can be made as to the correct operation of the module and the security strength of keys when the module is ported to an operational environment that is not listed on the CMVP validation certificate.

In addition to its full AES software implementations, the VMware’s VPN Crypto Module is capable of leveraging the AES-NI instruction set of supported Intel and AMD processors in order to accelerate AES calculations.

All cryptographic keys and CSPs are under the control of the OS, which protects its CSPs against unauthorized disclosure, modification, and substitution. The module only allows access to CSPs through its well-defined API.

The tested operating system segregates user processes into separate process spaces. Each process space is logically separated from all other processes by the operating system software and hardware. The Module functions entirely within the process space of the calling application, and implicitly satisfies the FIPS 140-2 requirement for a single user mode of operation.
2.7 Cryptographic Key Management

The module supports the CSPs listed below in Table 7.

Table 7 – List of Cryptographic Keys, Key Components, and CSPs

<table>
<thead>
<tr>
<th>Key/CSP</th>
<th>Key/CSP Description</th>
<th>Generation/Input</th>
<th>Output</th>
<th>Storage</th>
<th>Zeroization</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES Key</td>
<td>128, 192, 256-bit key</td>
<td>Input via API in plaintext</td>
<td>Output in plaintext via Tested Platform’s INT Path</td>
<td>In RAM</td>
<td>Reboot OS; Cycle host power</td>
<td>Encryption, Decryption</td>
</tr>
<tr>
<td>AES GCM Key</td>
<td>128, 192, 256-bit key</td>
<td>Input via API in plaintext</td>
<td>Output in plaintext via Tested Platform’s INT Path</td>
<td>In RAM</td>
<td>Reboot OS; Cycle host power</td>
<td>Encryption, Decryption</td>
</tr>
<tr>
<td>AES GCM IV</td>
<td>96-bit</td>
<td>Input via API in plaintext</td>
<td>None</td>
<td>In RAM</td>
<td>Reboot OS; Cycle host power</td>
<td>Encryption, Decryption</td>
</tr>
<tr>
<td>AES CCM Key</td>
<td>128, 192-, 256-bit key</td>
<td>Input via API in plaintext</td>
<td>Output in plaintext via Tested Platform’s INT Path</td>
<td>In RAM</td>
<td>Reboot OS; Cycle host power</td>
<td>Encryption, Decryption</td>
</tr>
<tr>
<td>TDES Key</td>
<td>168-bit key</td>
<td>Input via API in plaintext</td>
<td>Output in plaintext via Tested Platform’s INT Path</td>
<td>In RAM</td>
<td>Reboot OS; Cycle host power</td>
<td>Encryption, Decryption</td>
</tr>
<tr>
<td>HMAC Key</td>
<td>112-bit key</td>
<td>Input via API in plaintext</td>
<td>Output in plaintext via Tested Platform’s INT Path</td>
<td>In RAM</td>
<td>Reboot OS; Cycle host power</td>
<td>Message Authentication</td>
</tr>
</tbody>
</table>
2.7.1 Key Generation

The Module does not implement any random number generator for the generation of random bits or keys. The cryptographic module is passed keys and CSPs as API parameters, associated by memory location. The application calling the cryptographic module passes keys and CSPs in plaintext within the physical boundary.

2.7.2 Key Entry/Output

Symmetric keys are provided to the module by the calling process, and are destroyed when released by the appropriate API function calls. The module does not perform persistent storage of keys.

2.7.3 Zeroization

Keys and CSPs can be zeroized by rebooting the host hardware platform.

2.8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)

The Dell PowerEdge R740 has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

2.9 Self-Tests

Cryptographic self-tests are performed by the module after initialization of the module, and on demand by power cycling the module. The module does not implement any algorithms that require conditional self-tests. The following sections list the self-tests performed by the module, their expected error status, and any error resolutions.

Self-tests are health checks that ensure the cryptographic algorithms implemented within the module are operating correctly. The self-tests identified in FIPS 140-2 broadly fall within two categories:

1. Power-On Self-Tests
2. Conditional Self-Tests

2.9.1 Power-On Self-Tests

The module performs the required set of power-on self-tests. These self-tests are performed automatically by the module when the module is powered-up. The list of power-on self-tests that follows may also be run on-demand when the CO reboots the Operating System. The module will perform the listed power-on self-tests to successful completion. During the execution of self-tests, data output from the module is inhibited.

If any of the self-tests fail, the module will return an error code to the application that tried to load and initialize the module. The module will enter an error state and none of the module’s services are available in the error state. In order to resolve a cryptographic self-test error, the module must be restarted by rebooting the OS. If the error persists, the module must be reinstalled.
The VMware’s VPN Crypto Module performs the following Power-On Self-Tests:

- Software integrity check (performed by bound OpenSSL module)
 - HMAC SHA-512

- Known Answer Tests (KATs)
 - AES CBC Encryption KAT (128, 192, and 256-bit)
 - AES CBC Decryption KAT (128, 192, and 256-bit)
 - AES CTR Encryption KAT (128 and 192-bit)
 - AES CTR Decryption KAT (128 and 192-bit)
 - AES GCM Encryption KAT (128, 192, and 256-bit)
 - AES GCM Decryption KAT (128, 192, and 256-bit)
 - AES CCM Encryption KAT (128-bit)
 - AES CCM Decryption KAT (128-bit)
 - Triple-DES CBC Encryption KAT
 - Triple-DES CBC Decryption KAT
 - CMAC-AES Encryption KAT (128-bit)
 - CMAC-AES Decryption KAT (128-bit)
 - HMAC SHA-1, HMAC-SHA-224, HMAC SHA-256, HMAC-SHA-384 and HMAC SHA-512

2.9.2 Conditional Self-Tests

The module does not implement any algorithm that requires the module to perform any conditional self-tests.

2.10 Mitigation of Other Attacks

This section is not applicable. The module was not designed to mitigate any attacks beyond the FIPS 140-2 Level 1 requirements for this validation.
3 Secure Operation

The VMware’s VPN Crypto Module meets Level 1 requirements for FIPS 140-2. The sections below describe how to place and keep the module in FIPS-Approved mode of operation.

3.1 Crypto Officer Guidance

3.1.1 VMware’s VPN Crypto Module Secure Operation

There are no additional steps beyond installing the VMware NSX 2.5 that must be performed to use the module correctly.

3.2 User Guidance

The User or API functions calls should be designed to deal with the identified error cases of the VMware's VPN Crypto Module.

The user is responsible for ensuring the module’s compliance with IG A.13 regarding the maximum number of encryptions permitted with the same Triple-DES key.

Per IG A.5 the module only accepts 96 bit IVs generated within the module’s physical boundary and in the event Module power is lost and restored the calling application must ensure that any AES-GCM keys used for encryption or decryption are re-distributed.

There are no additional user guidance instructions for correct operation of the module.
4 Acronyms

Table 8 provides definitions for the acronyms used in this document.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>AES-NI</td>
<td>Advanced Encryption Standard – New Instructions</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>CBC</td>
<td>Cipher Block Chaining</td>
</tr>
<tr>
<td>CCCS</td>
<td>Canadian Centre for Cyber Security</td>
</tr>
<tr>
<td>CCM</td>
<td>CBC Counter Mode</td>
</tr>
<tr>
<td>CMAC</td>
<td>Cipher-based Message Authentication Code</td>
</tr>
<tr>
<td>CMVP</td>
<td>Cryptographic Module Validation Program</td>
</tr>
<tr>
<td>CO</td>
<td>Crypto Officer</td>
</tr>
<tr>
<td>CSP</td>
<td>Critical Security Parameter</td>
</tr>
<tr>
<td>CTR</td>
<td>Counter</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standard</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>GCM</td>
<td>Galois/Counter Mode</td>
</tr>
<tr>
<td>GMAC</td>
<td>GCM Message Authentication Code</td>
</tr>
<tr>
<td>HMAC</td>
<td>(Keyed) Hash Message Authenticating Code</td>
</tr>
<tr>
<td>INT</td>
<td>A validated Cryptographic Module which lies internal or inside of the boundary in regard to the reference diagram CM software physical boundary</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>KAT</td>
<td>Known Answer Test</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>SHS</td>
<td>Secure Hash Standard</td>
</tr>
<tr>
<td>SP</td>
<td>Special Publication</td>
</tr>
<tr>
<td>TDES</td>
<td>Triple Digital Encryption Standard</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
</tbody>
</table>