
Security Policy

16.06.20
RSA BSAFE® Crypto-C Micro Edition 4.1.4
Security Policy Level 1

This document is a non-proprietary Security Policy for the RSA BSAFE Crypto-C
Micro Edition 4.1.4 (Crypto-C ME) cryptographic module from RSA Security LLC
(RSA), a Dell Technologies company.

This document may be freely reproduced and distributed whole and intact including
the Copyright Notice.

Contents:
Preface .. 2

References .. 2

Document Organization ... 2

Terminology ... 2

1 Crypto-C ME Cryptographic Toolkit ... 3

1.1 Cryptographic Module ... 4

1.2 Crypto-C ME Interfaces .. 16

1.3 Roles, Services and Authentication .. 18

1.4 Cryptographic Key Management ... 19

1.5 Cryptographic Algorithms ... 23

1.6 Self Tests .. 29

2 Secure Operation of Crypto-C ME .. 32

2.1 Crypto User Guidance .. 32

2.2 Roles ... 42

2.3 Modes of Operation ... 43

2.4 Operating Crypto-C ME .. 44

2.5 Startup Self-tests ... 44

2.6 Deterministic Random Number Generator 45

3 Services .. 47

4 Acronyms and Definitions ... 54
July 2019 Copyright © 2019 Dell Inc. or its subsidiaries. All rights reserved. 1

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
Preface

This security policy describes how Crypto-C ME meets the relevant Level 1 and Level 3
security requirements of FIPS 140-2, and how to securely operate Crypto-C ME in a
FIPS 140-2-compliant manner.

Federal Information Processing Standards Publication 140-2 - Security Requirements
for Cryptographic Modules (FIPS 140-2) details the United States Government
requirements for cryptographic modules. For more information about the FIPS 140-2
standard and validation program, see the FIPS 140-2 page on the NIST Web site.

References

This document deals only with operations and capabilities of the Crypto-C ME
cryptographic module in the technical terms of a FIPS 140-2 cryptographic module
security policy. More information about Crypto-C ME and the entire RSA product line
is available at:

• RSA Security Solutions, for Information on the full line of RSA products and
services

• RSA Link > RSA BSAFE for product overviews, technical information, and
answers to sales-related questions.

Document Organization

This Security Policy explains the cryptographic module features and functionality
relevant to FIPS 140-2, and comprises the following sections:

• This section, provides an overview and introduction to the Security Policy.

• Crypto-C ME Cryptographic Toolkit describes Crypto-C ME and how it meets
FIPS 140-2 requirements.

• Secure Operation of Crypto-C ME specifically addresses the required
configuration for the FIPS 140-2 mode of operation.

• Services lists the functions of Crypto-C ME.

• Acronyms and Definitions lists the acronyms and definitions used in this
document.

Terminology

In this document, the term cryptographic module, refers to the Crypto-C ME FIPS
140-2 Security Level 1 validated cryptographic module.
2 Preface

http://csrc.nist.gov/groups/STM/cmvp/standards.html
https://www.rsa.com/en-us
https://community.rsa.com/community/products/bsafe

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1 Crypto-C ME Cryptographic Toolkit

Crypto-C ME is designed for different processors, and includes various optimizations.
Assembly-level optimizations on key processors mean Crypto-C ME algorithms can
be used at increased speeds on many platforms.

The Crypto-C ME software development toolkit is designed to enable developers to
incorporate cryptographic technologies into applications. It helps to protect sensitive
data as it is stored, using strong encryption techniques to ease integration with existing
data models. Using Crypto-C ME in applications helps provide a persistent level of
protection for data, lessening the risk of internal, as well as external, compromise.

Crypto-C ME offers a full set of cryptographic algorithms including asymmetric key
algorithms, symmetric key block and stream algorithms, message digests, message
authentication, and Pseudo Random Number Generator (PRNG) support. Developers
can implement the full suite of algorithms through a single Application Programming
Interface (API) or select a specific set of algorithms to reduce code size or meet
performance requirements.

Note: When operating in a FIPS 140-2-approved manner, the set of available
algorithms cannot be changed.

This section provides an overview of the cryptographic module and contains the
following topics:

• Cryptographic Module

• Crypto-C ME Interfaces

• Roles, Services and Authentication

• Cryptographic Key Management

• Cryptographic Algorithms

• Self Tests.
Crypto-C ME Cryptographic Toolkit 3

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.1 Cryptographic Module

Crypto-C ME is classified as a multi-chip standalone cryptographic module for the
purposes of FIPS 140-2. As such, Crypto-C ME must be tested on a specific operating
system and computer platform. The cryptographic boundary includes Crypto-C ME
running on selected platforms running selected operating systems while configured in
“single user” mode. Crypto-C ME is validated as meeting all FIPS 140-2 Security
Level 1 security requirements.

Crypto-C ME is packaged as a set of dynamically loaded shared libraries containing
the module's entire executable code. The Crypto-C ME toolkit relies on the physical
security provided by the hosting general purpose computer (GPC) in which it runs.

The following table lists the certification levels sought for Crypto-C ME for each
section of the FIPS 140-2 specification.

Table 1 Certification Levels

Section of the FIPS 140-2 Specification Level

Cryptographic Module Specification 3

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks 1

Overall 1
4 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.1.1 Laboratory Validated Operating Environments

For FIPS 140-2 validation, Crypto-C ME is tested by an accredited FIPS 140-2 testing
laboratory on the following operating environments:

• Apple®:

– iOS® 11.0 running on an iPad Pro® 9.7 with an Apple A9X, built with
Xcode® 9 (64-bit)

– iOS 10.0 running on an iPhone® 5C with Apple A6, built with Xcode 9
(32-bit)

– macOS® 10.13 running on VMware ESXi™ 6.0.0 on a Mac Pro® with an
Intel® Xeon® Processor E5-1650 v2, built with Xcode 7.3 (64-bit)

– macOS 10.12 running on VMware ESXi 6.0.0 on a Mac Pro with an Intel
Xeon Processor E5-1650 v2, built with Xcode 7.3 (32-bit).

• Canonical®

– Ubuntu® 16.04 Long Term Support (LTS) running on a BeagleBoard.org®
BeagleBone® Black with ARM® Cortex™-A8, built with gcc 4.8 (hard float)
(32-bit).

• FreeBSD®Foundation FreeBSD 11.2 running on VMware ESXi 6.0.0 on a Cisco
UCS® C220 M3 with Intel Xeon Processor E5-2650, built with Clang 4.0 (64-bit).

• Google®:

– Android® 8.0 running on a Google Pixel™ with Qualcomm® Snapdragon™
821, built with Android NDK r10e and gcc 4.9 (64-bit)

– Android 6.0 running on a Google Nexus™ 5X with Qualcomm Snapdragon
808, built with Android NDK r10e and gcc 4.9 (32-bit).

• HPE

– HP-UX 11.31 running on an:

• HP Integrity rx2620 Server with Intel Itanium® 2, built with cc B3910B
A.06.12 (64-bit)

• HP Integrity rx2620 Server with Intel Itanium 2, built with cc B3910B
A.06.12 (32-bit)

• HP 9000 rp3410 Server with HP PA-8800, built with HP ANSI-C
11.11.12 (64-bit)

• HP 9000 rp3410 Server with HP PA-8800, built with HP ANSI-C
11.11.12 (32-bit).
Crypto-C ME Cryptographic Toolkit 5

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
• IBM®:

– AIX® 7.2 running on:

• PowerVM® Virtual I/O Server 2.2.6.21 on an IBM Power® 8231-E2B
with a Power 7+ processor module, built with XL C/C++ for AIX (XLC)
v11.1 (64-bit)

• PowerVM Virtual I/O Server 2.2.6.21 on an IBM Power 8231-E2B with a
Power 7+ processor module, built with XLC v11.1 (32-bit).

– AIX 6.1 running on:

• PowerVM Virtual I/O Server 2.2.6.21 on an IBM Power 8284-22A with a
Power 8 processor module, built with XLC v9.0 (64-bit)

• PowerVM Virtual I/O Server 2.2.6.21 on an IBM Power 8284-22A with a
Power 8 processor module, built with XLC v9.0 (32-bit).

• Microsoft®:

– Windows® 10 Enterprise running on:

• VMware ESXi 6.0.0 on a Dell™ PowerEdge™ R630 with Intel Xeon
E5-2620, built with Visual Studio 2013 (/MT) (64-bit)

• VMware ESXi 6.0.0 on a Dell PowerEdge R630 with Intel Xeon
E5-2620, built with Visual Studio 2017 (/MD or /MT) (32-bit)

• VMware ESXi 6.0.0 on a Dell PowerEdge R630 with Intel Xeon
E5-2620, built with Visual Studio 2013 (/MD) (32-bit).

– Windows 8.1 Enterprise running on VMware ESXi 6.0.0 on a Cisco UCS C220
M3 with Intel Xeon E5-2650, built with Visual Studio 2013 (/MT) (32-bit).

– Windows 7 Enterprise SP1 running on:

• VMware ESXi 6.0.0 on a Cisco UCS C220 M3 with Intel Xeon E5-2650,
built with Visual Studio 2005 (/MT) (64-bit)

• VMware ESXi 6.0.0 on a Cisco UCS C220 M3 with Intel Xeon E5-2650,
built with Visual Studio 2010 (/MD or /MT) (32-bit)

• VMware ESXi 6.0.0 on a Cisco UCS C220 M3 with Intel Xeon E5-2650,
built with Visual Studio 2005 (/MD or /MT) (32-bit).

– Windows Server® 2016 running on VMware ESXi 6.0.0 on a Cisco UCS
C220 M3 with Intel Xeon E5-2650, built with Visual Studio 2017 (/MD)
(64-bit).

– Windows Server 2012 R2 Standard running on:

• VMware ESXi 6.0.0 on a Cisco UCS C220 M3 with Intel Xeon E5-2650,
built with Visual Studio 2017 (/MT) (64-bit)

• VMware ESXi 6.0.0 on a Cisco UCS C220 M3 with Intel Xeon E5-2650,
built with Visual Studio 2013 (/MD) (64-bit)

• VMware ESXi 6.0.0 on a Cisco UCS C220 M3 with Intel Xeon E5-2650,
built with Visual Studio 2010 (/MD) (64-bit).
6 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
– Windows Server 2008 Enterprise R2 SP1 running on:

• VMware ESXi 6.0.0 on a Cisco UCS C220 M3 with Intel Xeon E5-2650,
built with Visual Studio 2010 (/MT) (64-bit)

• VMware ESXi 6.0.0 on a Cisco UCS C220 M3 with Intel Xeon E5-2650,
built with Visual Studio 2005 (/MD) (64-bit).

– Windows Server 2008 Enterprise SP2 running on an HP Integrity rx2620
Server with Intel Itanium 2, built with Visual Studio 2010 (/MT) (64-bit).

• Oracle®:

– Solaris® 11.4 running on a:

• Solaris 11 LDOM with SPARC® T4-2, built with Sun C 5.13 (64-bit v9)

• Solaris 11 LDOM with SPARC T4-2, built with Sun C 5.13 (32-bit v8+)

• Solaris 11 LDOM with SPARC T4-2, built with Sun C 5.8 (32-bit v8)

• VMware ESXi 6.0.0 on a Cisco UCS C220 M3 with Intel Xeon E5-2650,
built with Sun C 5.13 (64-bit).

– Solaris 10 Update 11 running on VMware ESXi 6.0.0 on a Cisco UCS C220
M3 with Intel Xeon E5-2650, built with Sun C 5.13 (32-bit).

• Red Hat®:

– Enterprise Linux 5.8 running on:

• z/VM 6.0 running on an IBM zEnterprise® 196 with IBM s390®x, built
with LSB 3.0 and gcc 4.3 (64-bit)

• z/VM 6.0 on an IBM zEnterprise 196 with IBM s390x, built with LSB 3.0
and gcc 4.3 (31-bit).

• SUSE Software Solutions®:

– SUSE® Linux Enterprise Server 15 running on VMware ESXi 6.0.0 on a Dell
PowerEdge R630 with Intel Xeon E5-2620 (64-bit).

– SUSE Linux Enterprise Server 12 SP3 running on:

• PowerVM Virtual I/O Server 2.2.6.21 on an IBM Power 8284-22Awith a
Power 8 processor module, built with gcc 4.8 (64-bit)

• a SoftIron® Overdrive 1000 with ARM Cortex-A57, built with gcc 4.8
(64-bit)

• VMware ESXi 6.0.0 running on a Dell PowerEdge R630 with Intel Xeon
E5-2620, built with LSB 4.0 and gcc 4.4 (64-bit)

• VMware ESXi 6.0.0 on a Dell PowerEdge R630 with Intel Xeon
E5-2620, built with LSB 4.0 and gcc 4.4 (32-bit).

– SUSE Linux Enterprise Server 11 SP4 running on:

• PowerVM Virtual I/O Server 2.2.6.21 on an IBM Power 8231-E2Bwith a
Power 7+ processor module, built with gcc 3.4 (64-bit)

• PowerVM Virtual I/O Server 2.2.6.21 on an IBM Power 8231-E2Bwith a
Power 7+ processor module, built with gcc 3.4 (32-bit)
Crypto-C ME Cryptographic Toolkit 7

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
• an HP Integrity rx2600 Server with Intel Itanium 2, built with LSB 4.0
and gcc 3.4 (64-bit).

Note: All Intel x86 (32-bit) and x86-64 (64-bit) environments were tested
with and without the Intel AES-NI Processor Algorithm Accelerator (PAA).

1.1.2 Affirmation of Compliance for other Operating
Environments

Affirmation of compliance is defined in Section G.5, “Maintaining validation
compliance of software or firmware cryptographic modules,” in Implementation
Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program.
Compliance is maintained in all operational environments for which the binary
executable remains unchanged.

The Cryptographic Module Validation Program (CMVP) makes no statement as to the
correct operation of the module or the security strengths of the generated keys if the
specific operational environment is not listed on the validation certificate.

Important: RSA affirms compliance of all patch and Service Pack levels with
the same capabilities as the listed operating environments, unless noted
otherwise.

For Crypto-C ME 4.1.4, RSA affirms compliance for the following operating
environments:

• Apple:

– iOS 13 on:

• ARMv8 (64-bit), built with Xcode 9

– iOS 12 on:

• ARMv8 (64-bit), built with Xcode 9

– iOS 10 on:

• ARMv8 (64-bit), built with Xcode 9

– macOS 10.15 on:

• x86_64 (64-bit), built with Xcode 7.3.

– macOS 10.14 on:

• x86_64 (64-bit), built with Xcode 7.3

• x86 (32-bit), built with Xcode 7.3.

– macOS 10.12 on x86_64 (64-bit), built with Xcode 7.3.

– OS X 10.15 on:

• x86_64 (64-bit), built with Xcode 7.3

• x86 (32-bit), built with Xcode 7.3.
8 Crypto-C ME Cryptographic Toolkit

https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
– OS X 10.14 on:

• x86_64 (64-bit), built with Xcode 7.3

• x86 (32-bit), built with Xcode 7.3.

– OS X 10.11 on:

• x86_64 (64-bit), built with Xcode 7.3

• x86 (32-bit), built with Xcode 7.3.

– OS X 10.10 on:

• x86_64 (64-bit), built with Xcode 7.3

• x86 (32-bit), built with Xcode 7.3.

– OS X 10.9 on:

• x86_64 (64-bit), built with Xcode 7.3

• x86 (32-bit), built with Xcode 7.3.

– OS X 10.8 on:

• x86_64 (64-bit), built with Xcode 7.3

• x86 (32-bit), built with Xcode 7.3.

• Canonical:

– Ubuntu 18.04 LTS on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4.

– Ubuntu 16.04 LTS on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4.

– Ubuntu 14.04 LTS on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4.

• CentOS™ Project:

– CentOS 8.0 on:

• x86_64 (64-bit), built with Linux® Standard Base (LSB) 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4.

– CentOS 7.7 on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4
Crypto-C ME Cryptographic Toolkit 9

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
– CentOS 7.6 on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4

– CentOS 6.10 on:

• x86 (32-bit), built with LSB 4.0 and gcc 4.4

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4.

• FreeBSD® Foundation

– FreeBSD 12.1 on x86_64 (64-bit), built with Clang 4.0

– FreeBSD 11.3 on x86_64 (64-bit), built with Clang 4.0

– FreeBSD 11.1 on x86_64 (64-bit), built with Clang 4.0.

• Google:

– Android 9.0 on ARM v8 (64-bit), built with Android NDK r10e and gcc 4.9

– Android 7.1.1 on ARM v8 (64-bit), built with Android NDK r10e and gcc 4.9

– Android 6.0 on ARMv8 (64-bit), built with Android NDK r10e and gcc 4.9

– Android 5.1 on:

• ARMv8 (64-bit), built with Android NDK r10e and gcc 4.9

• ARMv7 (32-bit), built with Android NDK r10e and gcc 4.9.

– Android 4.4.4 on ARMv7 (32-bit), built with Android NDK r10e and gcc 4.9.

• IBM:

– AIX v7.1 on:

• PowerPC 64-bit, built with XLC v11.1

• PowerPC 32-bit, built with XLC v11.1.

• Microsoft:

– Windows 10 Enterprise on:

• x86_64 (64-bit), built with Visual Studio 2017 (/MD or /MT)

• x86_64 (64-bit), built with Visual Studio 2013 (/MD)

• x86 (32-bit), built with Visual Studio 2017 (/MD)

• x86 (32-bit), built with Visual Studio 2013 (/MT).

– Windows 10 IoT Enterprise LTSC on:

• x86_64 (64-bit), built with Visual Studio 2017 (/MD or /MT)

• x86 (32-bit), built with Visual Studio 2017 (/MD or /MT).
10 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
– Windows 8.1 Enterprise on:

• x86_64 (64-bit), built with Visual Studio 2017 (/MD or /MT)

• x86_64 (64-bit), built with Visual Studio 2013 (/MD or /MT)

• x86_64 (64-bit), built with Visual Studio 2010 (/MD or /MT)

• x86 (32-bit), built with Visual Studio 2017 (/MD or /MT)

• x86 (32-bit), built with Visual Studio2013 (/MD)

• x86 (32-bit), built with Visual Studio 2010 (/MD or /MT)

– Windows 7 Enterprise SP1 on:

• x86_64 (64-bit), built with Visual Studio 2017 (/MD or /MT)

• x86_64 (64-bit), built with Visual Studio 2010 (/MD or /MT)

• x86_64 (64-bit), built with Visual Studio 2005 (/MD)

• x86 (32-bit), built with Visual Studio 2017 (/MD or /MT)

• x86 (32-bit), built with Visual Studio 2010 (/MD)

• x86 (32-bit), built with Visual Studio 2005 (/MT).

– Windows Server 2016 on:

• x86_64 (64-bit), built with Visual Studio 2017 (/MT).

– Windows Server 2012 R2 Standard on:

• x86_64 (64-bit), built with Visual Studio 2017 (/MD)

• x86_64 (64-bit), built with Visual Studio 2013 (/MT

• x86_64 (64-bit), built with Visual Studio 2010 (/MT).

– Windows Server 2012 Standard on:

• x86_64 (64-bit), built with Visual Studio 2017 (/MD or /MT)

• x86_64 (64-bit), built with Visual Studio2013 (/MD or /MT)

• x86_64 (64-bit), built with Visual Studio 2010 (/MD or /MT).

– Windows Server 2008 Enterprise R2, SP1 on:

• x86_64 (64-bit), built with Visual Studio 2005 (/MT).

– Windows Server 2008 Enterprise SP2 on:

• x86_64 (64-bit), built with Visual Studio 2010 (/MD or /MT)

• x86_64 (64-bit), built with Visual Studio 2005 (/MD or /MT)

• x86 (32-bit), built with Visual Studio 2005 (/MD or /MT)

• Itanium 64-bit, built with Visual Studio 2010 (/MD).

– Windows Server 2008 SP2 on:

• x86_64 (64-bit), built with Visual Studio 2017 (/MD or /MT).
Crypto-C ME Cryptographic Toolkit 11

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
– Windows Server 2008 R2 SP1 on:

• x86_64 (64-bit), built with Visual Studio 2017 (/MD or /MT).

– Windows XP SP3 on:

• x86-64 (64-bit), built with Visual Studio 2005 (/MD or /MT).

• x86 (32-bit), built with Visual Studio 2005 (/MD or /MT).

– Windows 2003 SP2:

• x86-64 (64-bit), built with Visual Studio 2005 (/MD or /MT)

• x86 (32-bit), built with Visual Studio 2005 (/MD or /MT).

– Windows Vista Enterprise SP1 on:

• 86-64 (64-bit), built with Visual Studio 2017 (/MD or /MT)

• 86 (32-bit), built with Visual Studio 2017 (/MD or /MT).

• Oracle:

– Solaris 11.4 on SPARC v9-T2 (64-bit), built with Sun C 5.13

– Solaris 10 Update 11 on:

• SPARC v9-T4 (64-bit), built with Sun C 5.13

• SPARC v9-T2 (64-bit), built with Sun C 5.13

• SPARC v8+ (32-bit), built with Sun C 5.13

• SPARC v8 (32-bit), built with Sun C 5.8

• x86_64 (64-bit) built with Sun C 5.13.

• Red Hat:

– Enterprise Linux 8.1 on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4

• PowerPC 64-bit, built with and gcc 4.4

• PowerPC 32-bit, built with and gcc 4.4

– Enterprise Linux 8.0 on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4

• PowerPC 64-bit, built with and gcc 4.4

• PowerPC 32-bit, built with and gcc 4.4
12 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
– Enterprise Linux 7.7 on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4

• PowerPC 64-bit, built with and gcc 4.4

• PowerPC 32-bit, built with and gcc 4.4

– Enterprise Linux 7.6 on:

• PowerPC 64-bit, built with and gcc 4.4

• PowerPC 32-bit, built with and gcc 4.4

– Enterprise Linux 7.4 on ARMv8 (64-bit), built with gcc 4.8.

– Enterprise Linux 6.10 on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4

• SUSE Software Solutions®:

– SUSE® Linux Enterprise Server 15 SP1 on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4.

• x86 (32-bit), built with LSB 4.0 and gcc 4.4.

• PowerPC (64-bit), built with gcc 4.8.

– SUSE Linux Enterprise Server 15 on:

• x86 (32-bit), built with LSB 4.0 and gcc 4.4

• PowerPC 64-bit, built with and gcc 4.8.

– SUSE Linux Enterprise Server 12 SP5, SP4, SP2 and SP1 on:

• ARMv8 (64-bit) built with gcc 4.8

• PowerPC (64-bit), built with gcc 4.8

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4.

– SUSE Linux Enterprise Server 11 SP4 on:

• x86_64 (64-bit), built with LSB 4.0 and gcc 4.4

• x86 (32-bit), built with LSB 4.0 and gcc 4.4.
Crypto-C ME Cryptographic Toolkit 13

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.1.3 Single Operator Mode

An Operator is an individual accessing the cryptographic module or a process
operating the cryptographic module on behalf of the individual.

The operating system must enforce a single operator mode of operation, that is,
concurrent operators are explicitly excluded.

Single-user Operating Systems

The following supported operating systems are single-user operating systems, so no
steps are required to configure a single operator mode of operation:

• Apple iOS

• Google Android.

Multi-user Operating Systems

For the following supported multi-user operating systems, the operating system and
hardware enforce a single operator mode of operation by enforcing process isolation
and CPU scheduling:

• Apple OS X and macOS

• Canonical Ubuntu

• CentOS Project CentOS

• FreeBSD Foundation FreeBSD

• HPE HP-UX

• IBM AIX

• Micro Focus SUSE

• Microsoft Windows

• Oracle Solaris

• Red Hat Enterprise Linux.

On these operating systems, running on a general purpose computer, dynamically
loaded shared libraries, including the cryptographic module, are loaded into the
address space of a process. Each instance of the cryptographic module functions
entirely within the process space of the process containing the module.

The single operator for a given instance of the cryptographic module is the identity
associated with the process containing the module. The operating system and
hardware enforce process isolation including memory, where keys and intermediate
key data are stored, and CPU scheduling. The writable memory areas of the
cryptographic module, data and stack segments, are accessible only to the process
containing the module.
14 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
The operating system is responsible for multitasking operations so that other processes
cannot access the address space of the process containing the cryptographic module.
Consequently, with the exception of privileged user accounts, no additional steps are
required to restrict the operating system to a single operator mode of operation. That
is, concurrent operators are explicitly excluded.

Privileged user accounts

Multi-user operating systems provide tracing and debugging utilities through which
one process can control another, enabling the controller process to inspect and
manipulate the internal state of its target process.

With the exception of privileged user accounts, root user/administrator user, the
controller process must be running as the same user id as the target process for these
utilities to work. This usage does not contravene the single operator mode of operation
as both the controller and target processes are operating on behalf of a single operator.

Privileged user accounts are able to use tracing and debugging utilities to target a
process with a different user id to the controlling process. An operator using this
privilege to inspect or manipulate a process operating on behalf of another operator
contravenes the single operator mode of operation.

To maintain the single operator mode of operation a privileged user must not use any
of the system tracing and debugging utilities provided by the operating system.

• In Unix-type operating systems the ptrace system call, the debugger gdb,
strace, ftrace and systemtrap must not be used.

• On Windows equivalent system tracing and debugging utilities must not be used.

If necessary, the operating system can be configured to provide only a single operator.
That is, login credentials for all user accounts, including privileged user accounts, can
be provided to a single individual only.

Server environments

When the module is deployed in a server environment, the server application is the
user of the module. The server application makes the calls to the module. Therefore,
the server application is the single user of the module, even when the server
application is serving multiple clients.
Crypto-C ME Cryptographic Toolkit 15

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.2 Crypto-C ME Interfaces

Crypto-C ME is validated as a multi-chip standalone cryptographic module. The
physical cryptographic boundary of the module is the case of the general-purpose
computer or mobile device, which encloses the hardware running the module. The
physical interfaces for Crypto-C ME consist of the keyboard, mouse, monitor,
CD-ROM drive, floppy drive, serial ports, USB ports, COM ports, and network
adapter(s).

The logical boundary of the cryptographic module is the set of master and resource
shared library files comprising the module:

• Master shared library:

– cryptocme.dll on systems running a Windows operating system

– libcryptocme.so on systems running a Solaris, Linux, AIX, FreeBSD, or
Android, or VxWorks operating system

– libcryptocme.sl on systems running an HP-UX operating system

– libcryptocme.dylib on systems running an Apple operating system.

• Resource shared libraries:

– ccme_base.dll, ccme_base_non_fips.dll, ccme_asym.dll,
ccme_aux_entropy.dll, ccme_ecc.dll, ccme_ecc_non_fips.dll,
ccme_ecc_accel_fips.dll, ccme_ecc_accel_non_fips.dll, and
ccme_error_info.dll on systems running a Windows operating system.

– libccme_base.so, libccme_base_non_fips.so, libccme_asym.so,
libccme_aux_entropy.so, libccme_ecc.so,
libccme_ecc_non_fips.so, libccme_ecc_accel_fips.so,
libccme_ecc_accel_non_fips.so, and libccme_error_info.so on
systems running a Solaris, Linux, AIX, FreeBSD, or Android operating system.

– libccme_base.sl, libccme_base_non_fips.sl,
libccme_asym.sl, libccme_aux_entropy.sl, libccme_ecc.sl,
libccme_ecc_non_fips.sl, libccme_ecc_accel_fips.sl,
libccme_ecc_accel_non_fips.sl, and libccme_error_info.sl
on systems running an HP-UX operating system.

– libccme_base.dylib, libccme_base_non_fips.dylib,
libccme_asym.dylib, libccme_aux_entropy.dylib,
libccme_ecc.dylib, libccme_ecc_non_fips.dylib,
libccme_ecc_accel_fips.dylib,
libccme_ecc_accel_non_fips.dylib, and
libccme_error_info.dylib on systems running an Apple operating
system.
16 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
The underlying logical interface to Crypto-C ME is the API, documented in the
RSA BSAFE Crypto-C Micro Edition Developers Guide. Crypto-C ME provides for
Control Input through the API calls. Data Input and Output are provided in the variables
passed with the API calls, and Status Output is provided through the returns and error
codes documented for each call. This is illustrated in the following diagram.

Figure 1 Crypto-C ME Logical Interfaces

Note: For systems running an Apple or Windows operating system, the logical
boundary of the shared libraries includes only the library code and data
sections, and does not include other shared library file content, such as any
code signatures.
Crypto-C ME Cryptographic Toolkit 17

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.3 Roles, Services and Authentication

Crypto-C ME meets all FIPS 140-2 Level 1 requirements for roles services and
authentication, implementing both a Crypto User role and Crypto Officer role. As
allowed by FIPS 140-2, Crypto-C ME does not support user identification or
authentication for these roles. Only one role can be active at a time and Crypto-C ME
does not allow concurrent operators. After loading, the cryptographic module is
implicitly in the Crypto User role.

1.3.1 Crypto Officer Role

The Crypto Officer is responsible for installing and loading the cryptographic module.
After the module is installed and operational, an operator can assume the Crypto
Officer role by calling R_PROV_FIPS140_assume_role() with
R_FIPS140_ROLE_OFFICER.

An operator assuming the Crypto Officer role can:

• Perform the full set of self tests.

• Call any Crypto-C ME function. For a complete list of functions available to the
Crypto Officer, see Services.

1.3.2 Crypto User Role

A Crypto Officer can assume the Crypto User role by calling
R_PROV_FIPS140_assume_role() with R_FIPS140_ROLE_USER.

An operator assuming the Crypto User role can use the entire Crypto-C ME API
except for R_PROV_FIPS140_self_tests_full(), which is reserved for the
Crypto Officer. For a complete list of Crypto-C ME functions, see Services.
18 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.4 Cryptographic Key Management

Cryptographic key management is concerned with generating keys, key assurance,
storing keys, managing access to keys, protecting keys during use, and zeroizing keys
when they are no longer required.

1.4.1 Key Generation

Crypto-C ME supports the generation of DSA, RSA, Diffie-Hellman (DH) and
Elliptic Curve Cryptography (ECC) public and private keys. Crypto-C ME uses the
CTR Deterministic Random Bit Generator (CTR DRBG) as the default
pseudo-random number generator (PRNG) for asymmetric and symmetric keys.

When operating in a FIPS 140-2-approved manner, RSA keys can only be generated
using the approved FIPS 186-4 RSA key generation method.

1.4.2 Key Assurance

Crypto-C ME supports validity assurance of asymmetric keys. Functions are
available to test the validity of:

• ECC keys, and DSA keys and domain parameters, against FIPS 186-4

• ECC keys, and DH keys and domain parameters, against SP 800-56A

• RSA keys against FIPS 186-4 or SP 800-56B.

1.4.3 Key Storage

Crypto-C ME does not provide long-term cryptographic key storage. If a user chooses
to store keys, the user is responsible for storing keys exported from the module.

The following table lists all keys and Critical Security Parameters (CSPs) in the
module and where they are stored.

Table 2 Key Storage

Key or CSP Generation/Input/Output Storage

Hardcoded DSA public
key

• Generated when the module is created
• Cannot be output from the module.

Persistent storage
embedded in the
module binary

AES keys • Entered in plaintext through the API or
generated by an explicit API call

• Output in plaintext through the API.

Volatile memory only
(plaintext)

Triple-DES keys • Entered in plaintext through the API or
generated by an explicit API call

• Output in plaintext through the API.

Volatile memory only
(plaintext)

HMAC keys • Entered in plaintext through the API or
generated by an explicit API call

• Output in plaintext through the API.

Volatile memory only
(plaintext)
Crypto-C ME Cryptographic Toolkit 19

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
CSP Usage:

• The hardcoded DSA public key is used to confirm the integrity of the module
binaries during the module integrity POST.

• The DRBG CSPs (V value, key, init_seed and entropy) are all required for the
correct operation of DRBG instances, as per SP 800-90A. The V value and the
key represent the internal state of the DRBG. The init_seed is entropic data that is
used to initialize the internal state of the DRBG.

• All other CSPs are loaded or generated by application calls to the module and are
used in cryptographic operations performed by the application.

DH public/private keys • Entered in plaintext through the API or
generated by an explicit API call

• Output in plaintext through the API.

Volatile memory only
(plaintext)

ECC public/private keys • Entered in plaintext through the API or
generated by an explicit API call

• Output in plaintext through the API.

Volatile memory only
(plaintext)

RSA public/private keys • Entered in plaintext through the API or
generated by an explicit API call

• Output in plaintext through the API.

Volatile memory only
(plaintext)

DSA public/private keys • Entered in plaintext through the API or
generated by an explicit API call

• Output in plaintext through the API.

Volatile memory only
(plaintext)

CTR DRBG entropy • Generated internally
• Cannot be output from the module.

Volatile memory only
(plaintext)

CTR DRBG V value • Generated internally
• Cannot be output from the module.

Volatile memory only
(plaintext)

CTR DRBG key • Generated internally
• Cannot be output from the module.

Volatile memory only
(plaintext)

CTR DRBG init_seed • Generated internally
• Cannot be output from the module.

Volatile memory only
(plaintext)

HMAC DRBG entropy • Generated internally
• Cannot be output from the module.

Volatile memory only
(plaintext)

HMAC DRBG V value • Generated internally
• Cannot be output from the module.

Volatile memory only
(plaintext)

HMAC DRBG key • Generated internally
• Cannot be output from the module.

Volatile memory only
(plaintext)

HMAC DRBG init_seed • Generated internally
• Cannot be output from the module.

Volatile memory only
(plaintext)

Table 2 Key Storage (continued)

Key or CSP Generation/Input/Output Storage
20 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.4.4 Key Access

An authorized operator of the module has access to all key data created during
Crypto-C ME operation.

Note: The Crypto User and Crypto Officer roles have equal and complete
access to all keys.

The following table lists the keys or CSPs with the different services provided by the
toolkit, and the type of access to those keys or CSPs.

Table 3 Key and CSP Access

Key or CSP Service Type Type of Access

Asymmetric keys (RSA) Asymmetric encryption
and decryption

Read/Execute

Symmetric keys (AES, Triple-DES) Symmetric encryption
and decryption

Read/Execute

Asymmetric keys (DSA, ECC, and RSA) Digital signature and
verification

Read/Execute

None Message digest N/A

HMAC keys MAC Read/Execute

CTR DRBG entropy, IV, key, and init_seed
HMAC DRBG entropy, IV, key, and init_seed

Random number
generation

Read/Write/
Execute

Symmetric keys (AES, Triple-DES)
MAC Keys (HMAC)

Key derivation Write

Symmetric keys (AES, Triple-DES)
Asymmetric keys (DSA, RSA, DH, and ECC)
MAC keys (HMAC)

Key generation Write

Asymmetric keys (DSA, RSA, DH and ECC) Key assurance Read

Asymmetric keys (RSA, DH, ECC) Key establishment
primitives

Read/Execute

Hardcoded DSA public key Self-test Read/Execute

None Show status N/A

All Zeroization Read/Write
Crypto-C ME Cryptographic Toolkit 21

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.4.5 Key Protection/Zeroization

All key data resides in internally allocated data structures and can be output only using
the Crypto-C ME API. The operating system protects memory and process space from
unauthorized access. The operator should follow the steps outlined in the RSA BSAFE
Crypto-C Micro Edition Developers Guide to ensure sensitive data is protected by
zeroizing the data from memory when it is no longer needed.

1.4.6 Key Wrapping

Crypto-C ME supports wrapping of raw key data, symmetric keys, and asymmetric
keys with:

• Symmetric keys - AES KW and AES KWP algorithms.

• Asymmetric keys - RSA-OAEP and RSA-KEM-KWS algorithms.
22 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.5 Cryptographic Algorithms

To achieve compliance with the FIPS 140-2 standard, only FIPS 140-2-approved or
allowed algorithms can be used in an approved mode of operation.

Note: Crypto User Guidance on Algorithms provides algorithm-specific
guidance on the use of the algorithms listed in this section.

1.5.1 FIPS 140-2-approved Algorithms

The following table lists the Crypto-C ME FIPS 140-2-approved algorithms, with
appropriate standards and CAVP validation certificate numbers.

Table 4 Crypto-C ME FIPS 140-2-approved Algorithms

Algorithm Type
Algorithm and approved
parameter/modulus/key sizes

Standard
Validation
Certificate

Asymmetric
Cipher

RSADP (RSA decryption primitive) component
Modulus sizes: 2048 and 30721 bits

SP 800-56B C584

RSAEP (RSA encryption primitive) component

Modulus sizes: 2048 and 3072 bits
SP 800-56B VA2

Asymmetric
Key

ECC

• Public Key Validation Curves:
B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571,
P-224, P-256, P-384, P-521

• Key Pair Generation Curves:
B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571,
P-224, P-256, P-384, P-521

FIPS 186-4

FIPS 186-4

C584

FFC

• Domain Parameter Generation
L = 2048, N = 224; L = 2048, N = 256; L = 3072, N = 256

• Domain Parameter Validation
L = 1024, N = 160

• Domain Parameter Validation
L = 1024, N = 160; L = 2048, N = 224; L = 2048, N = 256;
L = 3072, N = 256

• Key Pair Generation
L = 2048, N = 224; L = 2048, N = 256; L = 3072, N = 256

• Key Pair Validation
L = 2048, N = 224; L = 2048, N = 256; L = 3072, N = 256

FIPS 186-4

FIPS 186-2

FIPS 186-4

FIPS 186-4

SP 800-56A3

C584

C584

C584

C584

VA

RSA

• Key Generation, Modulus sizes: 2048, 3072 bits

• Key Validation, Modulus sizes: 2048, 3072 bits

FIPS 186-4

SP 800-56B

C584

VA
Crypto-C ME Cryptographic Toolkit 23

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
Digital
Signature

DSA
• Signature Generation

L = 2048, N = 224; L = 2048, N = 256; L = 3072, N = 256
• Signature Verification

L = 1024, N = 160; L = 2048, N = 224; L = 2048, N = 256;
L = 3072, N = 256

FIPS 186-4

FIPS 186-4

C584

ECDSA
• Signature and Signature Component Generation Curves:

B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571,
P-224, P-256, P-384, P-521

• Signature Verification Curves:
B-163, B-233, B-283, B-409, B-571, K-163, K-233, K-283,
K-409, K-571, P-192, P-224, P-256, P-384, P-521

FIPS 186-4

FIPS 186-4

C584

RSA
• Signature Generation Algorithms: X9.31, PKCS #1 V1.5,

RSASSA-PSS
Key (modulus) sizes: 2048, 3072 bits.

• Signature Generation Algorithms: X9.31, PKCS #1 V1.5,
RSASSA-PSS
Key (modulus) sizes: 4096 bits.

• Signature Verification Algorithms: X9.31, PKCS #1 V1.5,
RSASSA-PSS
Key (modulus) sizes: 1024, 2048, 3072 bits.

• Signature Verification Algorithms: X9.31, PKCS #1 V1.5,
RSASSA-PSS
Key (modulus) sizes: 1024, 1536, 2048, 3072, 4096 bits.

• RSASP1 (RSA signature primitive 1) component
Key (modulus) sizes: 2048, 3072 1 bits.

FIPS 186-4

FIPS 186-2

FIPS 186-4

FIPS 186-2

FIPS 186-4

C584

Key Agreement
Primitives

ECC
• Primitive: CDH

• Curves: B-233, B-283, B-409, B-571, K-233, K-283,
K-409, K-571, P-224, P-256, P-384, P-521

SP 800-56A3 C584

FFC

• Primitive: DH

• Domain parameter-size sets: L=2048, N=224;
L=2048, N=256

SP 800-56A3 VA

Table 4 Crypto-C ME FIPS 140-2-approved Algorithms (continued)

Algorithm Type
Algorithm and approved
parameter/modulus/key sizes

Standard
Validation
Certificate
24 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
Key Agreement
Schemes4

ECC

• Schemes: Full Unified Model, Ephemeral Unified Model,
One-Pass Unified Model, One-Pass Diffie-Hellman Model
and Static Unified Model

• Curves: P-224, P-256, P-384, P-521

SP 800-56A3 C584

FFC

• Schemes: dhHybrid1, dhEphem, dhHybridOneFlow,
dhOneFlow and dhStatic

• Domain parameter-size sets: L=2048, N=224;
L=2048, N=256

SP 800-56A3 C584

Key Derivation
Functions
(KDFs)

HMAC-based Extract-and-Expand KDF (HKDF):

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512,
SHA3-224, SHA3-256, SHA3-384, SHA3-512

SP 800-56C VA

KBKDF, using pseudo-random functions:

HMAC-based Feedback Mode5, with:

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

SP 800-108 C584

Password-based Key Derivation Function 2 (PBKDF2) 6 SP 800-132 VA7

TLS Pseudo-random Function (TLS PRF) - Component Test
Protocol:

TLS 1.0/1.18

TLS 1.2; SHA: SHA-256, SHA-384, SHA-5128

SP 800-135
Rev. 1

C584

X9.63 KDF - Component Test:

SHA: SHA-224, SHA-256, SHA-384, SHA-512

ANSI X9.63,
SP 800-135
Rev. 1

C584

Key Generation Cryptographic Key Generation (CKG) SP 800-133 VA

Key Transport
Schemes

KTS-OAEP, KTS-OAEP-Party_V-confirmation,
KTS-KEM-KWS, KTS-KEM-KWS-Party_V-confirmation.

Modulus sizes: 2048 and 3072-bit

SP 800-56B VA

Key Wrap AES in KW and KWP modes with 128, 192, and 256-bit key
sizes

SP 800-38F C584

RSA-OAEP and RSA-KEM-KWS

Modulus sizes: 2048 and 3072-bit.

SP 800-56B VA as part
of Key
Transport
Schemes7

Table 4 Crypto-C ME FIPS 140-2-approved Algorithms (continued)

Algorithm Type
Algorithm and approved
parameter/modulus/key sizes

Standard
Validation
Certificate
Crypto-C ME Cryptographic Toolkit 25

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
MAC GMAC:

AES-128, AES-192, AES-256

SP 800-38D C584

HMAC SHA:

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, SHA-512/256

FIPS 198-1 C584

HMAC SHA-3:

SHA3-224, SHA3-256, SHA3-384, SHA3-512

FIPS 198-1 C584

Message Digest SHA:

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, SHA-512/256

FIPS 180-4 C584

SHA-3:

SHA3-224, SHA3-256, SHA3-384, SHA3-512

FIPS 202 C584

Random Bit
Generator

CTR DRBG

AES-CTR mode with 128, 192, and 256-bit key sizes.

SP 800-90A
Rev. 1

C584

HMAC DRBG Modes

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, SHA-512/256

SHA3-224, SHA3-256, SHA3-384, SHA3-512

SP 800-90A
Rev. 1

FIPS 202

C584

Symmetric
Cipher

AES

CBC, CFB 128-bit, ECB, OFB 128-bit, and CTR modes with
128, 192, and 256-bit key sizes

CCM modes with 128, 192, and 256-bit key sizes

GCM mode with automatic internally generated IV with 128,
192, and 256-bit key sizes

XTS mode with 128 and 256-bit key sizes.

SP 800-38A

SP 800-38C

SP 800-38D

SP 800-38E

C584

Triple-DES (three key)

ECB, CBC, CFB 64-bit, and OFB 64-bit modes

SP 800-67,
SP 800-38A

C584

1A 3072-bit modulus is not tested by the CAVP but is approved for use in the FIPS 140-2 approved mode of operation. RSA affirms correct
implementation of RSADP and RSASP1 with a 3072-bit modulus.
2Vendor Affirmed.
3CMVP KAS certificates show compliance with the original version of SP 800-56A. RSA affirms compliance with SP 800-56A Rev. 2 as
detailed in IG D.1-rev2.
4All schemes were tested with single step concatenation KDF and key confirmation.
5 As defined by the HKDF expand step,
6As defined in SP 800-132, PBKDF2 can be used in FIPS 140-2 approved mode of operation when used with FIPS 140-2-approved
symmetric key and message digest algorithms. For more information, see Crypto User Guidance.

7Not yet tested by the CAVP, but is approved for use in FIPS 140-2 approved mode of operation. RSA affirms correct implementation of the
algorithm.

Table 4 Crypto-C ME FIPS 140-2-approved Algorithms (continued)

Algorithm Type
Algorithm and approved
parameter/modulus/key sizes

Standard
Validation
Certificate
26 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.5.2 FIPS 140-2-allowed Algorithms

The following table lists the Crypto-C ME FIPS 140-2-allowed algorithms, with
appropriate standards.

8The TLS 1.0 and 1.1 KDF, documented in SP 800-135, are only allowed when the conditions detailed in the Crypto User Guidance are
satisfied.

Table 5 Crypto-C ME FIPS 140-2-allowed Algorithms

Algorithm Type Algorithm Standard

Asymmetric Key DH 1

• Key Pair Generation Domain Parameter Size sets:
2048 bits <= L <= 8192 bits and N >= 224 bits

1Not compliant with SP 800-56A. Allowed in an FIPS 140-2 approved mode of operation during the SP 800-131A
transition as amended by the NIST CMVP notice dated [Oct-31-2017] 'Transition Plans for Key Establishment
Schemes using Public Key Cryptography'.

IEEE P-1363

Key Agreement
Primitives

ECC

• Primitive: EC Diffie-Hellman1

• Curves: B-233, B-283, B-409, B-571, K-233, K-283,
K-409, K-571, P-224, P-256, P-384, P-521

IG D.8
SECG SEC 1

FFC

• Primitive: Diffie-Hellman1

• Domain Parameter Size sets:
2048 bits <= L <= 8192 bits and N >= 224 bits

IG D.8
IEEE P-1363

Key
Encapsulation

RSA PKCS #1 v1.5 key decryption
Modulus sizes: 2048 to 15360 in increments of 256 bits

IG D.9
RFC 2313

Message Digest MD52

• As part of an approved key transport scheme, for
example, TLS 1.0, where no security is provided by
the MD5 algorithm.

2MD5 is allowed in the FIPS140-2 approved mode of operation for a purpose that is not security relevant or is
redundant to an approved cryptographic algorithm. See section 4.2.1 of SP 800-135 Rev. 1 and IG 1.23

SP 800-135 Rev. 1
RFC 2246
RFC 4346

Random Number Non-deterministic Random Number Generator (NDRNG)
Entropy source to seed the random number generator.

IG G.13
Crypto-C ME Cryptographic Toolkit 27

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.5.3 Non-FIPS 140-2-approved Algorithms

The following table lists the algorithms that are not FIPS 140-2-approved.

For more information about using Crypto-C ME in a FIPS 140-2-compliant manner,
see Secure Operation of Crypto-C ME.

Table 6 Crypto-C ME non-FIPS 140-2-approved Algorithms

Algorithm Type Algorithm

Asymmetric Key ECAES, ECIES

Key Derivation Function SCrypt
PBKDF1
Shamir's Secret Share

Message Digest MD2, MD4

Message Authentication Code HMAC-MD5

Random Number Non-approved RNG (FIPS 186-2)
Non-approved RNG (OTP).

Symmetric Cipher AES in CFB 64-bit, CTS, and BPS1

ARIA

DES, Triple-DES (two-key), DESX, DES40,
DES in BPS mode

Camellia

GOST

RC2, RC4, RC5

SEED
1For format-preserving encryption (FPE).
28 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.6 Self Tests

Crypto-C ME performs a number of power-up and conditional self-tests to ensure
proper operation.

If a power-up self-test fails for one of the resource libraries, all cryptographic services
for the library are disabled. Services for a disabled library can only be re-enabled by
reloading the FIPS 140-2 module. If a conditional self-test fails, the operation fails but
no services are disabled.

For self-test failures (power-up or conditional) the library notifies the user through the
returns and error codes for the API.

1.6.1 Power-up Self-test

Crypto-C ME implements the following power-up self-tests:

• AES in CCM, GCM, GMAC, and XTS mode Known Answer Tests (KATs)
(encrypt/decrypt)

• Triple-DES KATs (encrypt/decrypt)

• SHA-1,
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256,
SHA3-224, SHA3-256, SHA3-384, and SHA3-512 KATs

• HMAC SHA-1,
HMAC SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256,
HMAC SHA3-224, SHA3-256, SHA3-384, and SHA3-512 KATs

• ANSI X9.63 KDF |
HKDF
Single-step KDF
TLS 1.0/1.1 PRF, TLS 1.2 PRF KATs

• RSA sign/verify KATs

• RSA pair-wise consistency test

• DSA pair-wise consistency test

• ECDSA pair-wise consistency test

• DH, ECDH and ECDHC conditional tests

• PRNG (CTR DRBG and HMAC DRBG) KATs

• Software integrity test using DSA signature verification.

Power-up self-tests are executed automatically when the module loads into memory.
Crypto-C ME Cryptographic Toolkit 29

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
1.6.2 Conditional Self-tests

Crypto-C ME performs two conditional self-tests:

• A pair-wise consistency test each time Crypto-C ME generates a DH, DSA, RSA,
or ECC public/private key pair.

• A Continuous Random Number Generation (CRNG) test each time the toolkit
produces random data, as per the FIPS 140-2 standard. The CRNG test is
performed on all approved and non-approved PRNGs (CTR DRBG,
HMAC DRBG, NDRNG (Entropy), non-approved RNG (FIPS 186-2) and
non-approved RNG (OTP)).

• DRBG tests are run during instantiation, random generation, and re-seeding by the
toolkit.

1.6.3 Mitigation of Other Attacks

The following table describes the mechanisms employed to mitigate against attacks
which might prevent proper operation of the module.

Blinding:

RSA key operations implement blinding, a reversible way of modifying the input data,
so as to make the RSA operation immune to timing attacks. Blinding has no effect on
the algorithm other than to mitigate attacks on the algorithm. Blinding is implemented
through blinding modes, and the following options are available:

• Blinding mode off.

• Blinding mode with no update, where the blinding value is constant for each
operation.

• Blinding mode with full update, where a new blinding value is used for each
operation.

RSA signing operations implement a verification step after private key operations.
This verification step, which has no effect on the signature algorithm, is in place to
prevent potential faults in optimized Chinese Remainder Theorem (CRT)
implementations. For more information, see Modulus Fault Attacks Against
RSA-CRT Signatures.

Table 7 Mitigation of Other Attacks

Attack Mitigation Mechanism

Timing Attack on RSA Blinding

Padding Oracle Attack on PKCS #1 Constant time padding operation
30 Crypto-C ME Cryptographic Toolkit

https://eprint.iacr.org/2011/388
https://eprint.iacr.org/2011/388

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
Constant time padding operation:

RSA PKCS#1 v1.5 encryption padding operations are implemented in constant time
in order to make the operation immune to timing attacks. For more information, see
Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard
PKCS #1.
Crypto-C ME Cryptographic Toolkit 31

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf
http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
2 Secure Operation of Crypto-C ME

This section provides an overview of how to securely operate Crypto-C ME in
compliance with the FIPS 140-2 standards.

Note: The module operates as a Validated Cryptographic Module only when
the rules for secure operation are followed.

2.1 Crypto User Guidance

This section provides guidance to the module user to ensure that the module is used in
a FIPS 140-2 compliant way.

Section 2.1.1 provides algorithm-specific guidance. The requirements listed in this
section are not enforced by the module and must be ensured by the module user.

Section 2.1.2 provides guidance on obtaining assurances for Digital Signature
Applications.

Section 2.1.3 provides guidance on obtaining assurances for Key Agreement
Applications.

Section 2.1.4 provides guidance on obtaining assurances for Key Transport
Applications.

Section 2.1.5 provides information about the minimum length of passwords.

Section 2.1.6 provides general crypto user guidance.

2.1.1 Crypto User Guidance on Algorithms

The following guidance is provided for Crypto Users operating in the FIPS 140-2
approved mode.

The Crypto User must use only those algorithms approved or allowed for use in a
FIPS 140-2 approved mode of operation. These algorithms are listed in:

• Table 4, Crypto-C ME FIPS 140-2-approved Algorithms

• Table 5, Crypto-C ME FIPS 140-2-allowed Algorithms.

For:

• Key Agreement:

– For ECC based DH key agreement schemes:

• Curves with:

• at least 112 bits of security strength are allowed.

• less than 112 bits of security strength are not allowed.
32 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
• The key establishment methodology provides:

• between 112 bits and 256 bits of encryption strength when using
approved domain parameter size sets, as listed in Table 4.

• between 112 and 256 bits of encryption strength when curves that are
allowed.

• less than 112 bits of encryption strength when using curves that are
not allowed.

– For FFC based DH key agreement schemes:

• When generating DH FFC domain parameters, generation shall comply
with FIPS 186-4 by specifying the algorithm identifier
R_CR_ID_DH_PARAMETER_GENERATION when creating the R_CR
object.

• Domain parameter size sets with:

• L >= 2048 bits and N >= 224 bits are allowed

• L < 2048 bits or N < 224 bits are not allowed

Where:

L is the bit length of the prime field size

N is the bit length of the sub-prime field size.

– The key establishment methodology provides:

• 112 bits or 128 bits of encryption strength, when using approved
domain parameter size sets, as listed in Table 4.

• between 112 and 256 bits of encryption strength, when using allowed
domain parameter size sets.

• less than 112 bits of encryption strength when using domain
parameter size sets that are not allowed.

• Key Transport/Wrapping:

– For key wrapping using AES:

• The key establishment methodology provides between 128 and 256 bits
of encryption strength.

– For RSA Key Transport/Wrapping schemes:

• Modulus sizes

• greater than or equal to 2048-bits are allowed.

• less than 2048-bits are not allowed.

• The key establishment methodology provides:
Secure Operation of Crypto-C ME 33

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
• 112 or 128 bits of encryption strength when using approved modulus
sizes, as listed in Table 4.

• between 112 and 256 bits of encryption strength when using allowed
modulus sizes.

• less than 112 bits 256 bits of encryption strength when using modulus
sizes that are not allowed.

• Digital Signatures.

– An approved DRBG must be used for digital signature generation.

– Keys used for digital signature generation and verification shall not be used
for any other purpose.

– SHA1 is disallowed for the generation of digital signatures.

– For DSA:

• When generating domain parameters, generation shall comply with
FIPS 186-4 by specifying the algorithm identifier
R_CR_ID_DSA_PARAMETER_GENERATION when creating the R_CR
object.

• There are no non-approved but allowed domain parameter set sizes. See
Table 4 for approved domain parameter set sizes.

– For ECDSA:

• In addition to the approved named curves listed in Table 4, curves with
the domain parameters generated in compliance with the rules specified in
Section 6.1.1 of FIPS 186-4 are approved for signature verification.

The domain parameters can be specified by name, or can be explicitly
defined

The use of these curves is also approved for signature generation if the
key size is at least 224 bits.

• There are no non-approved but allowed curves.

– For RSA based schemes:

• The length of an RSA key pair for digital signature generation must be
greater than or equal to 2048 bits. For digital signature verification, the
length must be greater than or equal to 2048 bits, however 1024 bits is
allowed for legacy-use only. RSA keys shall have a public exponent of an
odd number, equal to or greater than 65537.

– For RSASSA-PSS:

• If the length of the RSA modulus in bits is 1024 bits, and the output
length of the approved hash function output block is 512 bits, then the
length of the salt (sLen) shall be 0<=sLen<=hLen - 2

where hLen is the length of the hash function output block, in bytes or
octets

• Otherwise, the length of the salt shall be 0 <=sLen<=hLen.
34 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
• KDFs:

– For HKDF:

• A FIPS 140-2 approved HMAC must be used.

• A particular key-derivation key must only be used for a single
key-expansion step. For more information see SP 800-56C Rev. 1

• The derived key must be used only as a secret key.

• The derived key shall not be used as a key stream for a stream cipher.

• When selecting an HMAC hash, the output block size must be equal to or
greater than the desired security strength of the derived key.

– For PBKDF2:

• Passwords must be generated using a cryptographically secure random
password generator that employs an approved DRBG.

• The minimum password length depends on the character set chosen.

For examples, see Information on Minimum Password Length.

• The length of the randomly-generated portion of the salt shall be at least
16 bytes. For more information see SP 800-132.

• The iteration count shall be selected as large as possible, a minimum of
10,000 iterations is recommended.

See section 5.1.1.2, Memorized Secret Verifiers, of SP 800-63B.

• The maximum key length is (232 -1)*b, where b is the digest size of
the hash function.

• The key derived using PBKDF2 can be used as referred to in SP 800-132,
Section 5.4, option 1 and 2.

• Keys generated using PBKDF2 shall only be used in data storage
applications.

– For Single-step KDF:

• A FIPS 140-2 approved HMAC must be used.

– For TLS 1.0, 1.1 and 1.2 Key Derivation:

• The TLS 1.0 and 1.1 KDF is allowed only when the following conditions
are satisfied:

• The KDF is performed in the context of the TLS protocol

• SHA-1 and HMAC are as specified in FIPS 180-4 and FIPS 198-1,
respectively.

• The TLS 1.2 KDF, is allowed only when the following conditions are
satisfied:
Secure Operation of Crypto-C ME 35

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
• The KDF is performed in the context of the TLS protocol

• HMAC is as specified in FIPS 198-1

• P_HASH uses either SHA-256, SHA-384 or SHA-512.

For more information, see SP 800-135 Rev. 1.

The TLS protocols have not been tested by the CAVP and CMVP.

• MAC:

– The key length for an HMAC generation or verification must be equal to or
greater than 112 bits.

– For HMAC verification, a key length greater than or equal to 80 and less than
112 is allowed for legacy-use.

• Random Bit Generator:

– Only FIPS 140-2 Approved DRBGs may be used for generation of keys,
asymmetric and symmetric.

– When using an approved DRBG, the number of bits of entropy input must be
equivalent to or greater than the security strength of the keys the caller wishes
to generate. For example, a 256-bit or higher entropy input when generating
256-bit AES keys.

– When using an Approved DRBG to generate keys or FFC domain parameters,
the requested security strength of the DRBG must be at least as great as the
security strength of the key or domain parameters being generated. That
means that an Approved DRBG with an appropriate strength must be used.

For more information about requesting the DRBG security strength, see the
API Reference Information > Pseudo-random Number Generation
section in the RSA BSAFE Crypto-C Micro Edition Developers Guide.

For further information, see Table 3: Hash functions that can be used to
provide the targeted security strengths in SP 800-57 Part 1 Rev. 4.

– As the module does not modify the output of an Approved DRBG, any
generated symmetric keys or seed values are created directly from the output
of the Approved DRBG.

• Symmetric Cipher:

– When using GCM feedback mode for symmetric encryption, the
authentication tag length and authenticated data length may be specified as
input parameters, but the IV must not be specified. It must be generated
internally. IV generation operates in one of two ways:

• In regular use, the generated IV is fully random, generated by an
approved PRNG, with a default length of 96 bits. No special
considerations are required provided the system has sufficient entropy.

• When used for TLS 1.2 protocol GCM cipher suites, as in RFC 5288, the
four-byte salt derived from the TLS handshake process must be input
using the identifier R_CR_INFO_ID_CIPHER_PARTIAL_IV during
cipher initialization. This is used as the first four bytes of IV. The
remaining eight bytes of IV, referred to as nonce_explicit in
36 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
RFC 5288, are generated deterministically by the module using an 64-bit
global counter within the module. The module uses the current system
time to initialize the counter when it is first used. The module user must
ensure the system time is valid to prevent repetition of IVs.

– In case the power to the module is lost and then restored, a new key must be
used for AES GCM encryption/decryption.

– AES in XTS mode is approved only for hardware storage applications.

The two keys concatenated to create the single double-length key must be
checked to ensure they are different. This is the default for the module.

If the check is turned off by calling R_CR_set_info() with
R_CR_INFO_ID_CIPHER_XTS_KEY_CHECK, AES in XTS mode is not
FIPS 140-2-approved.

– The following restrictions apply to the use of Triple-DES. For:

• Two-key Triple-DES:

• The use of two-key Triple-DES for encryption is disallowed.

• Decryption using two-key Triple-DES is allowed for legacy-use

The user should determine the risk of accepting the decrypted
information when processing more than 220 blocks of data encrypted
using two-key Triple-DES.

For more information about the use of two-key Triple-DES, see
SP 800-131A Rev 1.

– Three-key Triple-DES:

• The use of three-key Triple-DES is approved.

• The user is responsible for ensuring the same Triple-DES key has a limit
of:

• 220 64-bit data block encryptions when keys are generated as part of
one of the recognized IETF protocols.

• 216 64-bit data block encryptions otherwise.

– For more information about the use of three-key Triple-DES, see
SP 800-67 Rev. 2.
Secure Operation of Crypto-C ME 37

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
2.1.2 Crypto User Guidance on Obtaining Assurances for
Digital Signature Applications

The module provides support for the FIPS 186-4 standard for digital signatures. The
following gives an overview of the assurances required by FIPS 186-4. SP 800-89
provides the methods to obtain these assurances.

The tables below describe the FIPS 186-4 requirements for signatories and verifiers
and the corresponding module capabilities and recommendations.

Table 8 Signatory Requirements

FIPS 186-4 Requirement Module Capabilities and Recommendations

Obtain appropriate DSA and
ECDSA parameters when
using DSA or ECDSA.

The generation of DSA parameters is in accordance with the
FIPS 186-4 standard for the generation of probable primes.
For ECDSA, use the NIST recommended curves as defined
in section 2.1.1.

Obtain assurance of the
validity of those parameters.

The module provides the API R_CR_validate_key() to
validate DSA parameters for probable primes as described
in FIPS 186-4.
For ECDSA, use the NIST recommended curves as defined
in section 2.1.1.

Obtain a digital signature key
pair that is generated as
specified for the appropriate
digital signature algorithm.

The module generates the digital signature key pair
according to the required standards.
Choose a FIPS-Approved DRBG like HMAC DRBG to
generate the key pair.

Obtain assurance of the
validity of the public key.

The module provides the API R_CR_validate_key() to
explicitly validate the public key according to SP 800-89.

Obtain assurance that the
signatory actually possesses
the associated private key.

The module verifies the signature created using the private
key, but all other assurances are outside the scope of the
module.

Table 9 Verifier Requirements

FIPS 186-4 Requirement Module Capabilities and Recommendations

Obtain assurance of the
signatory’s claimed identity.

The module verifies the signature created using the private
key, but all other assurances are outside the scope of the
module.

Obtain assurance of the
validity of the domain
parameters for DSA and
ECDSA.

The module provides the API R_CR_validate_key()to
validate DSA parameters for probable primes as described in
FIPS 186-4.
For ECDSA, use the NIST recommended curves as defined
in section 2.1.1.

Obtain assurance of the
validity of the public key.

The module provides the API R_CR_validate_key() to
explicitly validate the public key according to SP 800-89.
38 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
2.1.3 Crypto User Guidance on Obtaining Assurances for
Key Agreement Applications

The module provides support for the recommendations for key agreement in
SP 800-56A. SP 800-56A provides the methods to obtain these assurances.

The table below describes the SP 800-56A recommendations for key establishment
and the corresponding module capabilities and recommendations.

Obtain assurance that the
claimed signatory actually
possessed the private key that
was used to generate the
digital signature at the time
that the signature was
generated.

Outside the scope of the module.

Table 10 Key Establishment Recommendations

NIST SP 800-56A
Recommendations

Module Capabilities and Recommendations

Obtain appropriate FFC and
ECC domain parameters.

The generation of FFC parameters is in accordance with the
FIPS 186-4 standard for the generation of probable primes.
For ECC, use the NIST recommended curves as defined in
section 2.1.1.

Obtain assurance of the
validity of those domain
parameters.

The module provides the API R_CR_validate_key() to
validate FFC parameters for probable primes as described in
FIPS 186-4.
For ECC, use the NIST recommended curves as defined in
section 2.1.1.

Obtain a key establishment
key pair that is generated as
specified for the appropriate
algorithm.

The module generates the key establishment key pair
according to the required standards.
Choose a FIPS-Approved DRBG like HMAC DRBG to
generate the key pair.

Owner assurance of the
validity of the public key.

The module provides the API R_CR_validate_key() to
explicitly validate the public key according to SP 800-56A.

Owner assurance of the
validity of the private key.

The module provides the API R_CR_validate_key() to
explicitly validate the private key according to SP 800-56A.

Owner assurance of pairwise
consistency

The module provides the API R_CR_validate_key() to
explicitly validate the keypair according to the pairwise
consistency requirements in SP 800-56A.

Table 9 Verifier Requirements (continued)

FIPS 186-4 Requirement Module Capabilities and Recommendations
Secure Operation of Crypto-C ME 39

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
2.1.4 Crypto User Guidance on Obtaining Assurances for
Key Transport Applications

The module provides support for the recommendations for key transport in
SP 800-56B, which provides the methods to obtain these assurances. The table below
describes the SP 800-56B recommendations for key transport.

2.1.5 Information on Minimum Password Length

Key Derivation Threat Model:

If an adversary has access to 1 million Graphics Processing Units (GPUs), each of

which can process 1,000 million hashes per second, they can perform 6 x 1016 hashes
per minute.

For PBKDF2, with an iteration count of 10,000, where each iteration involves a
HMAC that requires at least 2 hashes, the adversary has a 1 in 100,000 chance of brute

forcing a password in one minute if the password search space has 3 x 1017 entries.

For the roles database the adversary must not have more than a 1 in 1,000,000 chance
of guessing the PIN in a single attempt. This can be prevented by having at least 20
random bits in the PIN.

To comply with both roles database requirements the PIN must have a minimum of 73
random bits.

Minimum Password Length:

The minimum length (L) of a password generated using a cryptographically secure
random password generator to provide a search space of S entries depends on the size
(N) of the character set:

Table 11 Key Transport Recommendations

NIST SP800-56B
Recommendations

Module Capabilities and Recommendations

Assurance of Key-Pair
Validity

The module provides the API R_CR_validate_key() to
explicitly validate an RSA Key Pair according to
SP 800-56B.
This API performs both a pairwise consistency test and a key
pair validation according to “basic-crt” and “crt_pkv”
methods.

Assurance of Public Key
Validity

The module provides the API R_CR_validate_key() to
explicitly validate the RSA public key according to
SP 800-56B and SP 800-89.

Assurance of Possession of
Private Key

Outside the scope of the module.
40 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
L= log2S/log2N

The following table provides examples for a password used by PBKDF2:

S = 4.32 x 1020

2.1.6 General Crypto User Guidance

Crypto-C ME users should take care to zeroize CSPs when they are no longer needed.
For more information on clearing sensitive data, see section 1.4.5 and the relevant API
documentation in the RSA BSAFE Crypto-C Micro Edition Developer Guide.

Character Set N L

Case sensitive (a-z, A-Z) 52 13

Case sensitive alpha numeric 62 12

All ASCII printable characters except space 94 11
Secure Operation of Crypto-C ME 41

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
2.2 Roles

If a user of Crypto-C ME needs to operate the toolkit in different roles, then the user
must ensure all instantiated cryptographic objects are destroyed before changing from
the Crypto User role to the Crypto Officer role, or unexpected results could occur. The
following table lists the roles in which a user can operate:

The complete list of the functionality available is outlined in Services.

Table 12 Services Authorized for Roles

Role Authorized Services

Crypto Officer
R_FIPS140_ROLE_OFFICER

All services.

Crypto User
R_FIPS140_ROLE_USER

All services except
R_PROV_FIPS140_self_tests_full().
42 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
2.3 Modes of Operation

The following table lists the available mode filters to determine the mode
Crypto-C ME operates in and the algorithms allowed.

In each mode of operation, the complete set of services, which are listed in this
Security Policy, are available to both the Crypto Officer and Crypto User roles (with
the exception of R_PROV_FIPS140_self_tests_full(), which is always
reserved for the Crypto Officer).

Note: Cryptographic keys must not be shared between modes. For example, a
key generated FIPS 140-2 mode must not be shared with an application
running in a non-FIPS 140-2 mode.

Table 13 Crypto-C ME Mode Filters

Mode Description

R_MODE_FILTER_FIPS140

FIPS 140-2-approved.

Implements FIPS 140-2 mode and provides the cryptographic algorithms listed in
Table 4. The default pseudo-random number generator (PRNG) is CTR DRBG.

R_MODE_FILTER_FIPS140_SSL

FIPS 140-2-approved if used with TLS protocol implementations.

Implements FIPS 140-2 SSL mode and provides the same algorithms as
R_LIB_CTX_MODE_FIPS140, plus the MD5 message digest algorithm.

This mode can be used in the context of the key establishment phase in the TLS 1.0
and TLS 1.1 protocol. For more information, see Section D.2, “Acceptable Key
Establishment Protocols,” in Implementation Guidance for FIPS PUB 140-2 and the
Cryptographic Module Validation Program.

The implementation guidance disallows the use of the SSLv2 and SSLv3 versions.
Cipher suites including non-FIPS 140-2- approved algorithms are unavailable.

This mode allows implementations of the TLS protocol to operate Crypto-C ME in
a FIPS 140-2-compliant manner with CTR DRBG as the default PRNG.

R_MODE_FILTER_JCMVP

Not FIPS 140-2-approved.

Implements Japan Cryptographic Module Validation Program (JCMVP) mode and
provides the cryptographic algorithms approved by the JCMVP.

R_MODE_FILTER_JCMVP_SSL

Not FIPS 140-2-approved.

Implements JCMVP SSL mode and provides the cryptographic algorithms
approved by the JCMVP, plus the MD5 message digest algorithm.
Secure Operation of Crypto-C ME 43

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
2.4 Operating Crypto-C ME

Crypto-C ME operates in an unrestricted mode on startup, providing access to all
cryptographic algorithms available from the FIPS 140-2 provider set against the
library context. To restrict the module to a specific set of algorithms, call
R_LIB_CTX_set_mode() with one of the mode filters listed in listed in Table 13.

After setting Crypto-C ME into a FIPS 140-2-approved mode, only the algorithms
listed in Table 4 are available to operators.

To disable FIPS 140-2 mode, call R_LIB_CTX_set_mode() with NULL to put
Crypto-C ME back into an unrestricted mode.

To retrieve the current Crypto-C ME FIPS 140-2 mode, call
R_LIB_CTX_get_mode().

To run self-tests on the FIPS 140-2 module the application must ensure that there are
no cryptographic operations using the module.

R_PROV_FIPS140_self_tests_full() is restricted to operation by the Crypto
Officer.

The user of Crypto-C ME links with the ccme_core and ccme_fipsprov static
libraries for their platform. At run time, ccme_fipsprov loads the cryptocme
master shared library, which then loads all of the resource shared libraries. For more
information, see Get Stated with Crypto-C ME > About Your Binary Installation
> Installed Library Files in the RSA BSAFE Crypto-C Micro Edition Developers
Guide.

The current Crypto-C ME role is determined by calling R_LIB_CTX_get_info()
with R_LIB_CTX_INFO_ID_ROLE. The role is changed by calling
R_PROV_FIPS140_assume_role() with one of the information identifiers listed
in Table 12.

2.5 Startup Self-tests

To operate in a FIPS 140-2-compliant manner, Crypto-C ME executes self-tests when
the module is first loaded.
44 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
2.6 Deterministic Random Number Generator

In all modes of operation, Crypto-C ME provides the CTR DRBG as the default
deterministic random number generator (DRNG).

Users can choose to use an approved DRNG other than the default, including the
HMAC DRBG implementations, when creating a cryptographic object and setting this
object against the operation requiring random number generation (for example, key
generation).

Crypto-C ME also includes a non-approved NDRNG (Entropy) used to generate seed
material for the DRNGs.

2.6.1 DRNG Seeding

In the FIPS 140-2 validated library, Crypto-C ME implements DRNGs that can be
called to generate random data. The quality of the random data output from these
DRNGs depends on the quality of the supplied seeding (entropy).

The DRNG is seeded with an amount of entropy that depends upon the security
strength of the DRNG mode, up to a maximum of 256 bits of security strength.

DRBG Mode Entropy Obtained (bits)

CTR DRBG

CTR -AES-256 256

HMAC DRBG

HMAC-SHA1 128

HMAC-SHA224 192

HMAC-SHA256 256

HMAC-SHA384 256

HMAC-SHA512 256

HMAC-SHA512-224 192

HMAC-SHA512-256 256

HMAC-SHA3-224 192

HMAC-SHA3-256 256

HMAC-SHA3-384 256

HMAC-SHA3-512 256
Secure Operation of Crypto-C ME 45

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
Crypto-C ME provides internal entropy collection, for example, from high precision
timers, where possible. On platforms with limited internal sources of entropy, it is
strongly recommended to collect entropy from external sources.

Additional entropy sources can be added to an application either by:

• Replacing internal entropy by calling R_CR_set_info() with
R_CR_INFO_ID_RAND_ENT_CB and the parameters for an application-defined
entropy collection callback function.

• Adding to internal entropy by calling R_CR_entropy_resource_init() to
initialize an entropy resource structure and then adding this to the library context
by calling R_LIB_CTX_add_resource().

For more information about these functions, see the RSA BSAFE Crypto-C Micro
Edition Developers Guide.

Note: If entropy from external sources is added to an application using
R_CR_set_info() with R_CR_INFO_ID_RAND_ENT_CB or
R_CR_entropy_resource_init(), no assurances are made about the
minimum strength of generated keys.

For more information about seeding DRNGs, see “Randomness Requirements for
Security” in RFC 4086 and SP 800-90A Rev. 1.
46 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
3 Services

The following is the list of services provided by Crypto-C ME.

An operator assuming the Crypto User role can use the entire Crypto-C ME API
except for R_PROV_FIPS140_self_tests_full(), which is reserved for the
Crypto Officer.

For more information about individual functions, see the RSA BSAFE Crypto-C Micro
Edition Developers Guide.

R_ALG_PARAMS_asym_from_binary()
R_ALG_PARAMS_cipher_from_binary()
R_ALG_PARAMS_ctrl()
R_ALG_PARAMS_digest_from_binary()
R_ALG_PARAMS_free()
R_ALG_PARAMS_from_binary()
R_ALG_PARAMS_get_binary()
R_ALG_PARAMS_get_info()
R_ALG_PARAMS_kdf_from_binary()
R_ALG_PARAMS_keywrap_from_binary()
R_ALG_PARAMS_new()
R_ALG_PARAMS_new_from_R_CR()
R_ALG_PARAMS_peek_error()
R_ALG_PARAMS_peek_error_string()
R_ALG_PARAMS_pop_error()
R_ALG_PARAMS_pop_error_string()
R_ALG_PARAMS_ref_inc()
R_ALG_PARAMS_set_info()
R_ALG_PARAMS_signature_from_binary()
R_ALG_PARAMS_signature_get_info()
R_ALG_PARAMS_to_binary()
R_ALG_signature_info()
R_BASE64_decode()
R_BASE64_decode_checked()
R_BASE64_decode_checked_ef()
R_BASE64_decode_ef()
R_BASE64_encode()
R_BASE64_encode_checked()
R_BASE64_encode_checked_ef()
R_BASE64_encode_ef()
R_BIO_append_filename()
R_BIO_cb_cmd_to_string()
R_BIO_cb_post()
R_BIO_cb_pre()
R_BIO_CB_return()
R_BIO_clear_flags()
R_BIO_clear_retry_flags()
R_BIO_copy_next_retry()
R_BIO_ctrl()
R_BIO_debug_cb()
R_BIO_dump()
R_BIO_dump_format()
R_BIO_dup_chain()

R_BIO_dup_chain_ef()
R_BIO_eof()
R_BIO_f_buffer()
R_BIO_f_null()
R_BIO_f_prefix()
R_BIO_find_type(
R_BIO_flags_to_string()
R_BIO_flush()
R_BIO_free()
R_BIO_free_all()
R_BIO_get_app_data()
R_BIO_get_buffer_num_lines()
R_BIO_get_cb()
R_BIO_get_cb_arg()
R_BIO_get_close()
R_BIO_get_flags()
R_BIO_get_fp()
R_BIO_get_info_cb()
R_BIO_get_mem_data()
R_BIO_get_retry_BIO()
R_BIO_get_retry_flags()
R_BIO_get_retry_reason()
R_BIO_gets()
R_BIO_method_name()
R_BIO_method_type()
R_BIO_new()
R_BIO_new_ef()
R_BIO_new_file()
R_BIO_new_file_ef()
R_BIO_new_file_w()
R_BIO_new_file_w_ef()
R_BIO_new_fp()
R_BIO_new_fp_ef()
R_BIO_new_init()
R_BIO_new_init_ef()
R_BIO_new_mem()
R_BIO_new_mem_ef()
R_BIO_open_file()
R_BIO_open_file_w()
R_BIO_pending()
R_BIO_pop()
R_BIO_print_hex()
R_BIO_printf()
Services 47

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
R_BIO_push()
R_BIO_puts()
R_BIO_read()
R_BIO_read_filename()
R_BIO_reference_inc()
R_BIO_reset()
R_BIO_retry_type()
R_BIO_rw_filename()
R_BIO_s_file()
R_BIO_s_mem()
R_BIO_s_null()
R_BIO_seek()
R_BIO_set()
R_BIO_set_app_data()
R_BIO_set_bio_cb()
R_BIO_set_buffer_read_data()
R_BIO_set_buffer_size()
R_BIO_set_cb()
R_BIO_set_cb_arg()
R_BIO_set_cb_recursive()
R_BIO_set_close()
R_BIO_set_flags()
R_BIO_set_fp()
R_BIO_set_info_cb()
R_BIO_set_mem_eof_return()
R_BIO_set_read_buffer_size()
R_BIO_set_retry_read()
R_BIO_set_retry_small_buffer()
R_BIO_set_retry_special()
R_BIO_set_retry_write()
R_BIO_set_write_buffer_size()
R_BIO_should_io_special()
R_BIO_should_read()
R_BIO_should_retry()
R_BIO_should_small_buffer()
R_BIO_should_write()
R_BIO_tell()
R_BIO_wpending()
R_BIO_write()
R_BIO_write_filename()
R_BUF_append()
R_BUF_assign()
R_BUF_cmp()
R_BUF_cmp_raw()
R_BUF_consume()
R_BUF_cut()
R_BUF_dup()
R_BUF_free()
R_BUF_get_data()
R_BUF_grow()
R_BUF_insert()
R_BUF_join()
R_BUF_length()
R_BUF_max_length()
R_BUF_new()
R_BUF_prealloc()

R_BUF_reset()
R_BUF_resize()
R_BUF_strdup()
CRYPTOC_ME_library_info()
CRYPTOC_ME_library_version()
R_CR_add_filter()
R_CR_asym_decrypt()
R_CR_asym_decrypt_init()
R_CR_asym_encrypt()
R_CR_asym_encrypt_init()
R_CR_CTX_add_filter()
R_CR_CTX_alg_supported()
R_CR_CTX_free()
R_CR_CTX_get_info()
R_CR_CTX_get_memory()
R_CR_CTX_ids_from_sig_id()
R_CR_CTX_ids_to_sig_id()
R_CR_CTX_new()
R_CR_CTX_new_ef()
R_CR_CTX_reference_inc()
R_CR_CTX_set_info()
R_CR_decrypt()
R_CR_decrypt_final()
R_CR_decrypt_init()
R_CR_decrypt_update()
R_CR_derive_key()
R_CR_derive_key_data()
R_CR_digest()
R_CR_digest_final()
R_CR_digest_init()
R_CR_digest_update()
R_CR_dup()
R_CR_dup_ef()
R_CR_encrypt()
R_CR_encrypt_final()
R_CR_encrypt_init()
R_CR_encrypt_update()
R_CR_entropy_bytes()
R_CR_entropy_gather()
R_CR_entropy_resource_init()
R_CR_export_params()
R_CR_free()
R_CR_generate_key()
R_CR_generate_key_init()
R_CR_generate_parameter()
R_CR_generate_parameter_init()
R_CR_get_detail()
R_CR_get_detail_string()
R_CR_get_error()
R_CR_get_error_string()
R_CR_get_file()
R_CR_get_function()
R_CR_get_function_string()
R_CR_get_info()
R_CR_get_line()
R_CR_get_memory()
48 Services

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
R_CR_get_reason()
R_CR_get_reason_string()
R_CR_ID_from_string()
R_CR_ID_sign_to_string()
R_CR_ID_to_string()
R_CR_import_params()
R_CR_kdf_extract()
R_CR_key_exchange_init()
R_CR_key_exchange_phase_1()
R_CR_key_exchange_phase_2()
R_CR_keywrap_init()
R_CR_keywrap_unwrap()
R_CR_keywrap_unwrap_init()
R_CR_keywrap_unwrap_init_PKEY()
R_CR_keywrap_unwrap_init_SKEY()
R_CR_keywrap_unwrap_PKEY()
R_CR_keywrap_unwrap_SKEY()
R_CR_keywrap_wrap()
R_CR_keywrap_wrap_init()
R_CR_keywrap_wrap_init_PKEY()
R_CR_keywrap_wrap_init_SKEY()
R_CR_keywrap_wrap_PKEY()
R_CR_keywrap_wrap_SKEY()
R_CR_mac()
R_CR_mac_final()
R_CR_mac_init()
R_CR_mac_update()
R_CR_new()
R_CR_new_ef()
R_CR_next_error()
R_CR_new_from_R_ALG_PARAMS()
R_CR_random_bytes()
R_CR_random_init()
R_CR_random_reference_inc()
R_CR_random_seed()
R_CR_secret_join_final()
R_CR_secret_join_init()
R_CR_secret_join_update()
R_CR_secret_split()
R_CR_secret_split_init()
R_CR_set_info()
R_CR_sign()
R_CR_sign_final()
R_CR_sign_init()
R_CR_sign_update()
R_CR_SUB_from_string()
R_CR_SUB_to_string()
R_CR_TYPE_from_string()
R_CR_TYPE_to_string()
R_CR_validate_get_desc_string()
R_CR_validate_get_string()
R_CR_validate_init_PKEY()
R_CR_validate_key()
R_CR_validate_parameters()
R_CR_verify()
R_CR_verify_final()

R_CR_verify_init()
R_CR_verify_mac()
R_CR_verify_mac_final()
R_CR_verify_mac_init()
R_CR_verify_mac_update()
R_CR_verify_update()
R_ERR_STATE_free()
R_ERR_STATE_get_error()
R_ERR_STATE_get_error_line()
R_ERR_STATE_get_error_line_data()
R_ERR_STATE_new()
R_ERR_STATE_set_error_data()
R_ERROR_EXIT_CODE()
R_FILTER_sort()
R_FORMAT_from_string()
R_FORMAT_to_string()
R_GBL_ERR_STATE_add_error_data()
R_GBL_ERR_STATE_clear_error()
R_GBL_ERR_STATE_error_string()
R_GBL_ERR_STATE_func_error_string()
R_GBL_ERR_STATE_get_error()
R_GBL_ERR_STATE_get_error_line()
R_GBL_ERR_STATE_get_error_line_data()
R_GBL_ERR_STATE_get_next_error_li-
brary()
R_GBL_ERR_STATE_get_state()
R_GBL_ERR_STATE_lib_error_string()
R_GBL_ERR_STATE_load_ERR_strings()
R_GBL_ERR_STATE_load_strings()
R_GBL_ERR_STATE_peek_error()
R_GBL_ERR_STATE_peek_error_line()
R_GBL_ERR_STATE_peek_error_line_data()
R_GBL_ERR_STATE_peek_last_error()
R_GBL_ERR_STATE_peek_last_error_line()
R_GBL_ERR_STATE_peek_last_error_line_-
data()
R_GBL_ERR_STATE_print_errors()
R_GBL_ERR_STATE_print_errors_fp()
R_GBL_ERR_STATE_put_error()
R_GBL_ERR_STATE_reason_error_string()
R_GBL_ERR_STATE_remove_state()
R_GBL_ERR_STATE_set_error_data()
R_ITEM_cmp()
R_ITEM_destroy()
R_ITEM_dup()
R_LIB_CTX_add_filter()
R_LIB_CTX_add_provider()
R_LIB_CTX_add_resource()
R_LIB_CTX_add_resources()
R_LIB_CTX_dup()
R_LIB_CTX_dup_ef()
R_LIB_CTX_free()
R_LIB_CTX_get_detail_string()
R_LIB_CTX_get_error_string()
R_LIB_CTX_get_function_string()
R_LIB_CTX_get_info()
Services 49

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
R_LIB_CTX_get_memory()
R_LIB_CTX_get_reason_string()
R_LIB_CTX_new()
R_LIB_CTX_new_ef()
R_LIB_CTX_reference_inc()
R_LIB_CTX_set_info()
R_LIB_CTX_set_mode()
R_LOCK_add()
R_LOCK_exec()
R_LOCK_free()
R_LOCK_lock()
R_LOCK_new()
R_LOCK_unlock()
R_MEM_clone()
R_MEM_compare()
R_MEM_delete()
R_MEM_free()
R_MEM_get_global()
R_MEM_malloc()
R_MEM_new_callback()
R_MEM_new_default()
R_MEM_realloc()
R_MEM_strdup()
R_MEM_zfree()
R_MEM_zmalloc()
R_MEM_zrealloc()
R_os_clear_sys_error()
R_os_get_last_sys_error()
PRODUCT_DEFAULT_RESOURCE_LIST()
PRODUCT_FIPS_140_ECC_MODE_RESOURCE_
LIST()
PRODUCT_FIPS_140_MODE_RESOURCE_LIST()
PRODUCT_FIPS_140_SSL_ECC_MODE_RESOURCE_
LIST()
PRODUCT_FIPS_140_SSL_MODE_RESOURCE_
LIST()
PRODUCT_LIBRARY_FREE()
PRODUCT_LIBRARY_INFO()
PRODUCT_LIBRARY_INFO_TYPE_FROM_
STRING()
PRODUCT_LIBRARY_INFO_TYPE_TO_STRING()
PRODUCT_LIBRARY_NEW()
PRODUCT_LIBRARY_VERSION()
PRODUCT_NON_FIPS_140_MODE_RESOURCE_
LIST()
R_PAIRS_add()
R_PAIRS_clear()
R_PAIRS_free()
R_PAIRS_generate()
R_PAIRS_get_info()
R_PAIRS_init()
R_PAIRS_init_ef()
R_PAIRS_new()
R_PAIRS_new_ef()
R_PAIRS_next()
R_PAIRS_parse()

R_PAIRS_parse_allow_sep()
R_PAIRS_reset()
R_PAIRS_set_info()
R_PASSWD_CTX_free()
R_PASSWD_CTX_get_info()
R_PASSWD_CTX_get_passwd()
R_PASSWD_CTX_get_prompt()
R_PASSWD_CTX_get_verify_prompt()
R_PASSWD_CTX_new()
R_PASSWD_CTX_reference_inc()
R_PASSWD_CTX_set_callback()
R_PASSWD_CTX_set_info()
R_PASSWD_CTX_set_old_callback()
R_PASSWD_CTX_set_pem_callback()
R_PASSWD_CTX_set_prompt()
R_PASSWD_CTX_set_verify_prompt()
R_PASSWD_CTX_set_wrapped_callback()
R_passwd_get_cb()
R_passwd_get_passwd()
R_passwd_set_cb()
R_passwd_stdin_cb()
R_PEM_get_LIB_CTX()
R_PEM_get_PASSWD_CTX()
R_PEM_set_PASSWD_CTX()
R_PKEY_cmp()
R_PKEY_copy()
R_PKEY_CTX_add_filter()
R_PKEY_CTX_free()
R_PKEY_CTX_get_info()
R_PKEY_CTX_get_LIB_CTX()
R_PKEY_CTX_get_memory()
R_PKEY_CTX_new()
R_PKEY_CTX_new_ef()
R_PKEY_CTX_reference_inc()
R_PKEY_CTX_set_info()
R_PKEY_decode_pkcs8()
R_PKEY_delete()
R_PKEY_dup()
R_PKEY_dup_ef()
R_PKEY_EC_NAMED_CURVE_from_string()
R_PKEY_EC_NAMED_CURVE_to_string()
R_PKEY_encode_pkcs8()
R_PKEY_FORMAT_from_string()
R_PKEY_FORMAT_to_string()
R_PKEY_free()
R_PKEY_from_binary()
R_PKEY_from_binary_ef()
R_PKEY_from_bio()
R_PKEY_from_bio_ef()
R_PKEY_from_file()
R_PKEY_from_file_ef()
R_PKEY_from_public_key_binary()
R_PKEY_from_public_key_binary_ef()
R_PKEY_generate_simple()
R_PKEY_get_info()
R_PKEY_get_num_bits()
50 Services

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
R_PKEY_get_num_primes()
R_PKEY_get_PEM_header()
R_PKEY_get_PKEY_CTX()
R_PKEY_get_type()
R_PKEY_identify()
R_PKEY_is_matching_public_key()
R_PKEY_iterate_fields()
R_PKEY_load()
R_PKEY_new()
R_PKEY_new_ef()
R_PKEY_PASSWORD_TYPE_from_string()
R_PKEY_PASSWORD_TYPE_to_string()
R_PKEY_print()
R_PKEY_public_cmp()
R_PKEY_public_from_bio()
R_PKEY_public_from_bio_ef()
R_PKEY_public_from_file()
R_PKEY_public_from_file_ef()
R_PKEY_public_get_PEM_header()
R_PKEY_public_to_bio()
R_PKEY_public_to_file()
R_PKEY_reference_inc()
R_PKEY_SEARCH_add_filter()
R_PKEY_SEARCH_free()
R_PKEY_SEARCH_init()
R_PKEY_SEARCH_new()
R_PKEY_SEARCH_next()
R_PKEY_set_info()
R_PKEY_store()
R_PKEY_to_binary()
R_PKEY_to_bio()
R_PKEY_to_file()
R_PKEY_to_public_key_binary()
R_PKEY_TYPE_from_string()
R_PKEY_TYPE_public_to_PEM_header()
R_PKEY_TYPE_to_PEM_header()
R_PKEY_TYPE_to_string()
R_PROV_ctrl()
R_PROV_FIPS140_assume_role()
R_PROV_FIPS140_free()
R_PROV_FIPS140_get_default_resource_
list()
R_PROV_FIPS140_get_info()
R_PROV_FIPS140_get_reason()
R_PROV_FIPS140_init_roles()
R_PROV_FIPS140_load()
R_PROV_FIPS140_load_ef()
R_PROV_FIPS140_load_env()
R_PROV_FIPS140_new()
R_PROV_FIPS140_reason_string()
R_PROV_FIPS140_ROLE_from_string()
R_PROV_FIPS140_ROLE_to_string()
R_PROV_FIPS140_self_tests_full()
R_PROV_FIPS140_self_tests_short()
R_PROV_FIPS140_set_info()
R_PROV_FIPS140_set_path()

R_PROV_FIPS140_set_path_w()
R_PROV_FIPS140_STATUS_to_string()
R_PROV_free()
R_PROV_get_default_resource_list()
R_PROV_get_info()
R_PROV_PKCS11_clear_quirks()
R_PROV_PKCS11_close_token_sessions()
R_PROV_PKCS11_get_cryptoki_version()
R_PROV_PKCS11_get_description()
R_PROV_PKCS11_get_driver_name()
R_PROV_PKCS11_get_driver_path()
R_PROV_PKCS11_get_driver_path_w()
R_PROV_PKCS11_get_driver_version()
R_PROV_PKCS11_get_flags()
R_PROV_PKCS11_get_info()
R_PROV_PKCS11_get_manufacturer_id()
R_PROV_PKCS11_get_quirks()
R_PROV_PKCS11_get_slot_count()
R_PROV_PKCS11_get_slot_description()
R_PROV_PKCS11_get_slot_firmware_
version()
R_PROV_PKCS11_get_slot_flags()
R_PROV_PKCS11_get_slot_hardware_
version()
R_PROV_PKCS11_get_slot_ids()
R_PROV_PKCS11_get_slot_info()
R_PROV_PKCS11_get_slot_manufacturer_id()
R_PROV_PKCS11_get_token_default_pin()
R_PROV_PKCS11_get_token_flags()
R_PROV_PKCS11_get_token_info()
R_PROV_PKCS11_get_token_label()
R_PROV_PKCS11_get_token_manufacturer_
id()
R_PROV_PKCS11_get_token_model()
R_PROV_PKCS11_get_token_serial_number()
R_PROV_PKCS11_init_token()
R_PROV_PKCS11_init_user_pin()
R_PROV_PKCS11_load()
R_PROV_PKCS11_new()
R_PROV_PKCS11_set_driver_name()
R_PROV_PKCS11_set_driver_path()
R_PROV_PKCS11_set_driver_path_w()
R_PROV_PKCS11_set_info()
R_PROV_PKCS11_set_login_cb()
R_PROV_PKCS11_set_quirks()
R_PROV_PKCS11_set_slot_info()
R_PROV_PKCS11_set_token_login_pin()
R_PROV_PKCS11_set_user_pin()
R_PROV_PKCS11_unload()
R_PROV_PKCS11_update_full()
R_PROV_PKCS11_update_only()
R_PROV_reference_inc()
R_PROV_set_info()
R_PROV_setup_features()
R_PROV_SOFTWARE_add_resources()
R_PROV_SOFTWARE_get_default_fast_
Services 51

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
resource_list()
R_PROV_SOFTWARE_get_default_small_
resource_list()
R_PROV_SOFTWARE_new()
R_PROV_SOFTWARE_new_default()
R_RW_LOCK_free()
R_RW_LOCK_new()
R_RW_LOCK_read()
R_RW_LOCK_read_exec()
R_RW_LOCK_unlock()
R_RW_LOCK_write()
R_RW_LOCK_write_exec()
R_SELECT_ctrl()
R_SELECT_dup()
R_SELECT_free()
R_SELECT_get_info()
R_SELECT_new()
R_SELECT_set_info()
R_SKEY_delete()
R_SKEY_dup()
R_SKEY_dup_ef()
R_SKEY_free()
R_SKEY_generate()
R_SKEY_get_info()
R_SKEY_load()
R_SKEY_new()
R_SKEY_new_ef()
R_SKEY_SEARCH_add_filter()
R_SKEY_SEARCH_free()
R_SKEY_SEARCH_init()
R_SKEY_SEARCH_new()
R_SKEY_SEARCH_next()
R_SKEY_set_info()
R_SKEY_store()
R_STACK_cat()
R_STACK_clear()
R_STACK_clear_arg()
R_STACK_data()
R_STACK_delete()
R_STACK_delete_all()
R_STACK_delete_all_arg()
R_STACK_delete_ptr()
R_STACK_dup()
R_STACK_dup_ef()
R_STACK_find()
R_STACK_for_each()
R_STACK_free()
R_STACK_insert()
R_STACK_lfind()
R_STACK_move()
R_STACK_new()
R_STACK_new_ef()
R_STACK_num()
R_STACK_pop()
R_STACK_pop_free()
R_STACK_pop_free_arg()

R_STACK_push()
R_STACK_set()
R_STACK_set_cmp_func()
R_STACK_shift()
R_STACK_unshift()
R_STACK_value()
R_STACK_zero()
R_STATE_cleanup()
R_STATE_disable_cpu_features()
R_STATE_init()
R_STATE_init_defaults()
R_STATE_init_defaults_mt()
R_SYNC_get_method()
R_SYNC_METH_default()
R_SYNC_METH_pthread()
R_SYNC_METH_solaris()
R_SYNC_METH_vxworks()
R_SYNC_METH_windows()
R_SYNC_set_method()
R_THREAD_create()
R_THREAD_id()
R_THREAD_init()
R_THREAD_self()
R_THREAD_wait()
R_THREAD_yield()
R_time()
R_TIME_cmp()
R_time_cmp()
R_TIME_CTX_free()
R_TIME_CTX_new()
R_TIME_CTX_new_ef()
R_TIME_dup()
R_TIME_dup_ef()
R_time_export()
R_TIME_export()
R_TIME_export_timestamp()
R_TIME_free()
R_time_free()
R_time_from_int()
R_time_get_cmp_func()
R_time_get_export_func()
R_time_get_func()
R_time_get_import_func()
R_time_get_offset_func()
R_time_import()
R_TIME_import()
R_TIME_import_timestamp()
R_TIME_new()
R_time_new()
R_time_new_ef()
R_TIME_new_ef()
R_TIME_offset()
R_time_offset()
R_time_set_cmp_func()
R_time_set_export_func()
R_time_set_func()
52 Services

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
R_time_set_import_func()
R_time_set_offset_func()
R_time_size()
R_TIME_time()
R_time_to_int()
Services 53

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
4 Acronyms and Definitions

The following table lists and describes the acronyms and definitions used throughout
this document.

Table 14 Acronyms and Definitions

Term Definition

AES Advanced Encryption Standard. A fast symmetric key algorithm with a
128-bit block, and keys of lengths 128, 192, and 256 bits. Replaces DES as
the US symmetric encryption standard.

API Application Programming Interface.

BPS Brier, Peyrin and Stern. An encryption mode of operation used with the
AES and Triple-DES symmetric key algorithms for format-preserving
encryption (FPE).

Attack Either a successful or unsuccessful attempt at breaking part or all of a
cryptosystem. Various attack types include an algebraic attack, birthday
attack, brute force attack, chosen ciphertext attack, chosen plaintext attack,
differential cryptanalysis, known plaintext attack, linear cryptanalysis,
middle person attack and timing attack.

Camellia A symmetric key algorithm with a 128-bit block, and keys of lengths 128,
192, and 256 bits. Developed jointly by Mitsubishi and NTT.

CAVP Cryptographic Algorithm Validation Program (CAVP) provides validation
testing of FIPS-approved and NIST-recommended cryptographic
algorithms and their individual components.

CBC Cipher Block Chaining. A mode of encryption in which each ciphertext
depends upon all previous ciphertexts. Changing the Initialization Vector
(IV) alters the ciphertext produced by successive encryptions of an
identical plaintext.

CDH The cofactor ECC Diffie-Hellman key-agreement primitive defined in
SP800-56A.

CFB Cipher Feedback. A mode of encryption producing a stream of ciphertext
bits rather than a succession of blocks. In other respects, it has similar
properties to the CBC mode of operation.

CMVP Cryptographic Module Validation Program

CRNG Continuous Random Number Generation.

CSP A Critical Security Parameters is security related information, such as keys
or passwords, whose disclosure or modification can compromise security.

CTR Counter mode of encryption, which turns a block cipher into a stream
cipher. It generates the next keystream block by encrypting successive
values of a counter.
54 Acronyms and Definitions

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
CTR DRBG Counter mode Deterministic Random Bit Generator.

CTS Cipher text stealing mode of encryption, which enables block ciphers to be
used to process data not evenly divisible into blocks, without the length of
the ciphertext increasing.

DES Data Encryption Standard. A symmetric encryption algorithm with a 56-bit
key with eight parity bits. See also Triple-DES.

DESX A variant of the DES symmetric key algorithm intended to increase the
complexity of a brute force attack.

Diffie-Hellman The Diffie-Hellman (DH) asymmetric key exchange algorithm. There are
many variants, but typically two entities exchange some public information
(for example, public keys or random values) and combines them with their
own private keys to generate a shared session key. As private keys are not
transmitted, eavesdroppers are not privy to all of the information
comprising the session key.

DSA Digital Signature Algorithm. An asymmetric algorithm for creating digital
signatures.

DRBG Deterministic Random Bit Generator.

EC Elliptic Curve.

ECAES Elliptic Curve Asymmetric Encryption Scheme.

ECB Electronic Codebook. A mode of encryption, which divides a message into
blocks and encrypts each block separately.

ECC Elliptic Curve Cryptography (ECC): the public-key cryptographic methods
using operations in an elliptic curve group. ECC keys are used in several
algorithms including ECDSA, ECDH and ECDHC. An individual ECC
key must not be used for multiple purpose, for example, signing and key
agreement.

ECDH Elliptic Curve Diffie-Hellman key agreement algorithm. This algorithm
uses a key-agreement primitive that does not employ the elliptic curve’s
cofactor.

ECDHC Elliptic Curve Diffie-Hellman with Cofactor key agreement algorithm.
This algorithm employs the CDH primitive.

ECDSA Elliptic Curve Digital Signature Algorithm.

ECIES Elliptic Curve Integrated Encryption Scheme.

Encryption The transformation of plaintext into an apparently less readable form
(called ciphertext) through a mathematical process. The ciphertext can be
read by anyone who has the key and decrypts (undoes the encryption) the
ciphertext.

Table 14 Acronyms and Definitions (continued)

Term Definition
Acronyms and Definitions 55

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
FFC Finite Field Cryptography (FFC): the public-key cryptographic methods
using operations in a multiplicative group of a finite field. FFC keys are
use in algorithms including DSA and Diffie-Hellman.

FIPS Federal Information Processing Standards.

FIPS 180-4 Federal Information Processing Standards Publication: Secure Hash
Standard (SHS).

FIPS 186-2 Federal Information Processing Standards Publication:

FIPS 186-4 Federal Information Processing Standards Publication: Digital Signature
Standard (DSS).

FIPS 198-1 Federal Information Processing Standards Publication: The Keyed-Hash
Message Authentication Code (HMAC).

FIPS 202 Federal Information Processing Standards Publication: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions.

FPE Format-preserving encryption. Encryption where the ciphertext output is in
the same format as the plaintext input. For example, encrypting a 16-digit
credit card number produces another 16-digit number.

GCM Galois/Counter Mode. A mode of encryption combining the Counter mode
of encryption with Galois field multiplication for authentication.

GMAC Galois Message Authentication Code. An authentication only variant of
GCM.

GOST GOST symmetric key encryption algorithm developed by the USSR
government. There is also the GOST message digest algorithm.

HKDF HMAC-based Extract-and Expand KDF. HKDF is a two-step key
derivation function, where the first step, extraction, transforms a shared
secret into a key-derivation key. The second step, expansion, uses the
key-derivation key to derive an output key

HMAC Keyed-Hashing for Message Authentication Code.

HMAC DRBG HMAC Deterministic Random Bit Generator.

IG Implementation Guidance for FIPS 140-2 and the Cryptographic Module
Validation Program.

IV Initialization Vector. Used as a seed value for an encryption or MAC
operation.

JCMVP Japan Cryptographic Module Validation Program.

KAT Known Answer Test.

Table 14 Acronyms and Definitions (continued)

Term Definition
56 Acronyms and Definitions

https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://www.ipa.go.jp/security/english/jcmvp.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.198-1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
Key A string of bits used by cryptographic algorithms. There are a variety of
cryptographic key types. These keys might be used for operations such as
encryption or decryption, cryptographic signing or verification, or key
agreement. Some types of keys are intended to be kept secret, and other
keys are intended to be public.

Key wrapping A method of encrypting key data for protection on untrusted storage
devices or during transmission over an insecure channel.

L The bit length of the prime field size.

MAC Message Authentication Code.

MD2 A message digest algorithm, which hashes an arbitrary-length input into a
16-byte digest.

MD4 A message digest algorithm, which hashes an arbitrary-length input into a
16-byte digest.

MD5 A message digest algorithm, which hashes an arbitrary-length input into a
16-byte digest. Designed as a replacement for MD4.

N The bit length of the subprime field size.

NDRNG Non-deterministic random number generator.

NIST National Institute of Standards and Technology. A division of the US
Department of Commerce (formerly known as the NBS) which produces
security and cryptography-related standards.

OFB Output Feedback. A mode of encryption in which the cipher is decoupled
from its ciphertext.

OS Operating System.

P_HASH A function that uses the HMAC-HASH as the core function in its
construction. Specified in RFC 2246 and RFC 5246.

PBKDF1 Password-based Key Derivation Function 1. A method of password-based
key derivation defined in RFC 2988, which applies a message digest,
MD2, MD5, or SHA-1, to derive the key. PBKDF1 is not recommended
for new applications because the message digest algorithms used have
known vulnerabilities, and the derived keys are limited in length.

PBKDF2 Password-based Key Derivation Function 2. A method of password-based
key derivation, originally defined in RFC 2988, which applies a Message
Authentication Code (MAC) algorithm to derive the key. In RFC 2988 the
PRF used by PBKDF2 is specified as SHA-1. SP 800-132 approves
PBKDF2 where the PRF may be any FIPS approved hash function. In this
document PBKDF2 represents the expanded specification provided in SP
800-132.

PC Personal Computer.

Table 14 Acronyms and Definitions (continued)

Term Definition
Acronyms and Definitions 57

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
PRF PseudoRandom Function

Private Key The secret key in public key cryptography. Primarily used for decryption
but also used for encryption with digital signatures.

PRNG Pseudo-random Number Generator.

Public Key TBA

RC2 Block cipher developed by Ron Rivest as an alternative to the DES. It has a
block size of 64 bits and a variable key size. It is a legacy cipher and RC5
should be used in preference.

RC4 Symmetric algorithm designed by Ron Rivest using variable length keys
(usually 40-bit or 128-bit).

RC5 Block cipher designed by Ron Rivest. It is parameterizable in its word size,
key length, and number of rounds. Typical use involves a block size of 64
bits, a key size of 128 bits, and either 16 or 20 iterations of its round
function.

RFC 2246 The TLS Protocol.

RFC 2313 PKCS #1: RSA Encryption.

RFC 2998 PKCS #5: Password-Based Cryptography Specification.

RFC 4086 Randomness Requirements for Security.

RFC 4346 The Transport Layer Security (TLS) Protocol.

RFC 5246 The Transport Layer Security (TLS) Protocol.

RFC 5488 AES Galois Counter Mode (GCM) Cipher Suites for TLS.

RNG Random Number Generator.

RSA Public key (asymmetric) algorithm providing the ability to encrypt data
and create and verify digital signatures. RSA stands for Rivest, Shamir,
and Adleman, the developers of the RSA public key cryptosystem.

SEED SEED symmetric key encryption algorithm developed by the Korean
Information Security Agency.

SHA Secure Hash Algorithm. An algorithm, which creates a unique hash value
for each possible input. SHA takes an arbitrary input, which is hashed into
a 160-bit digest.

SHA-1 A revision to SHA to correct a weakness. It produces 160-bit digests.
SHA-1 takes an arbitrary input, which is hashed into a 20-byte digest.

Table 14 Acronyms and Definitions (continued)

Term Definition
58 Acronyms and Definitions

https://tools.ietf.org/html/rfc2313
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc2898
https://tools.ietf.org/html/rfc4346
https://www.ietf.org/rfc/rfc4086.txt
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5288

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
SHA-2 The NIST-mandated successor to SHA-1, to complement the Advanced
Encryption Standard. It is a family of hash algorithms (SHA-224,
SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256), which
produce digests of 224, 256, 384, 512, 224, and 256 bits respectively.

SHA-3 SHA-3 is a family of hash algorithms which include SHA-3-224,
SHA-3-256, SHA-3-384 and SHA-3-512 bits. It is an alternative to SHA-2,
as no significant attacks on SHA-2 are currently known.

SEED A symmetric key algorithm developed by the Korean Information Security
Agency.

SP 800-38A NIST Special Publication 800-38A: Recommendation for Block 2001
Edition Cipher Modes of Operation Methods and Techniques.

SP 800-38C NIST Special Publication 800-38C: Recommendation for Block Cipher
Modes of Operation: The CCM Mode for Authentication and
Confidentiality.

SP 800-38D NIST Special Publication 800-38D: Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC.

SP 800-38E NIST Special Publication 800-38E: Recommendation for Block Cipher
Modes of Operation: The XTS-AES Mode for Confidentiality on Storage
Devices.

SP 800-38F NIST Special Publication 800-38F: Recommendation for Block Cipher
Modes of Operation: Methods for Key Wrapping.

SP 800-56A NIST Special Publication 800-56A Revision 2: Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography.

SP 800-56B NIST Special Publication 800-56B Revision 2: Recommendation for
Pair-Wise Key Establishment Using Integer Factorization Cryptography.

SP 800-56C NIST Special Publication 800-56C Revision 1: Recommendation for
Key-Derivation Methods in Key-Establishment Schemes.

SP 800-57 Part
1 Rev. 4

 NIST Special Publication 800-57 Part 1 Revision 4: Recommendation for
Key Management.

SP 800-67
Rev. 2

NIST Special Publication 800-67 revision 2: Recommendations for The
Triple Data Encryption Block Cipher.

SP 800-89 NIST Special Publication 800-89: Recommendation for Obtaining
Assurances for Digital Signature Applications.

SP 800-90A
Rev. 1

 NIST Special Publication 800-90A Revision 1: Recommendation for
Random Number Generation Using Deterministic Random Bit Generators.

SP 800-108 NIST Special Publication 800-108: Recommendation for Key Derivation
Using Pseudorandom Functions (Revised).

Table 14 Acronyms and Definitions (continued)

Term Definition
Acronyms and Definitions 59

https://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf
https://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-56b/rev-2/draft/documents/sp800-56Br2-draft.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-38f.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-38f.pdf

RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
SP 800-131A NIST Special Publication 800-131A Revision 1 Transitions:
Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths

SP 800-132 NIST Special Publication 800-132: Recommendation for Password-Based
Key Derivation

SP 800-133 NIST Special Publication 800-133: Recommendation for Cryptographic
Key Generation.

SP 800-135
Rev. 1

NIST Special Publication 800-135 Revision 1: Recommendation for
Existing Application-Specific Key Derivation Functions.

Triple-DES A variant of DES. A symmetric encryption algorithm which uses three
56-bit keys with eight parity bits each.

XTS XEX-based Tweaked Codebook mode with ciphertext stealing. A mode of
encryption used with AES.

Table 14 Acronyms and Definitions (continued)

Term Definition
60 Acronyms and Definitions

https://csrc.nist.gov/publications/detail/sp/800-132/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131ar1.pdf

	RSA BSAFE Crypto-C Micro Edition 4.1.4 Security Policy Level 1
	Preface
	References
	Document Organization
	Terminology

	1 Crypto-C ME Cryptographic Toolkit
	1.1 Cryptographic Module
	1.1.1 Laboratory Validated Operating Environments
	1.1.2 Affirmation of Compliance for other Operating Environments
	1.1.3 Single Operator Mode

	1.2 Crypto-C ME Interfaces
	1.3 Roles, Services and Authentication
	1.3.1 Crypto Officer Role
	1.3.2 Crypto User Role

	1.4 Cryptographic Key Management
	1.4.1 Key Generation
	1.4.2 Key Assurance
	1.4.3 Key Storage
	1.4.4 Key Access
	1.4.5 Key Protection/Zeroization
	1.4.6 Key Wrapping

	1.5 Cryptographic Algorithms
	1.5.1 FIPS 140-2-approved Algorithms
	1.5.2 FIPS 140-2-allowed Algorithms
	1.5.3 Non-FIPS 140-2-approved Algorithms

	1.6 Self Tests
	1.6.1 Power-up Self-test
	1.6.2 Conditional Self-tests
	1.6.3 Mitigation of Other Attacks

	2 Secure Operation of Crypto-C ME
	2.1 Crypto User Guidance
	2.1.1 Crypto User Guidance on Algorithms
	2.1.2 Crypto User Guidance on Obtaining Assurances for Digital Signature Applications
	2.1.3 Crypto User Guidance on Obtaining Assurances for Key Agreement Applications
	2.1.4 Crypto User Guidance on Obtaining Assurances for Key Transport Applications
	2.1.5 Information on Minimum Password Length
	2.1.6 General Crypto User Guidance

	2.2 Roles
	2.3 Modes of Operation
	2.4 Operating Crypto-C ME
	2.5 Startup Self-tests
	2.6 Deterministic Random Number Generator
	2.6.1 DRNG Seeding

	3 Services
	4 Acronyms and Definitions

