

Non-Proprietary Security Policy for the FIPS 140-2 Level 2 Validated

Fortress Mesh Points

March 5, 2021 Version 1.10

This security policy of General Dynamics Mission Systems, for the FIPS 140-2 validated Fortress Mesh Points (FMP), defines general rules, regulations, and practices under which the FMP was designed and developed and for its correct operation. These rules and regulations have been and must be followed in all phases of security projects, including the design, development, manufacture service, delivery and distribution, and operation of products.

Hardware: ES2440: High Capacity Mesh Point ES520 (V1 & V2): Deployable Mesh Point ES820: Vehicle Mesh Point

Firmware: 5.4.6

Security Policy for the Fortress Mesh Point

REVISION HISTORY

Rev	Date	Description
1.0	May, 2016	Initial Draft
1.1	May, 2016	Various updates and edits
1.2	May, 2016	Various updates and edits
1.3	May, 2016	Formatting changes
1.4	May, 2016	Minor updates and edits
1.5	Sept, 2016	Several updates in response to lab review.
1.6	Feb, 2017	Updates to:
		Section 3.0 Identification and Authentication Policy
		Section 4.0 Cryptographic Keys and CSP.
		Section 6.0 Physical Security Policy
		Section 7.0 FIPS Mode.
		Various TLS and RSA updates.
1.7	April, 2017	Minor updates

1.8	June 15, 2020	Updates for 5.4.6

- 1.9 Jan 20, 2021 Additional updates for 5.4.6
- 1.10 March 5, 2021 Additional updates for 5.4.6

Con	tents		
1.0	INTR	RODUCTION	5
2.0	IDEN	TIFICATION AND AUTHENTICATION POLICY	6
2.1	RO	LE-BASED AUTHENTICATION	6
2.2	Sef	RVICES	6
2.3	AU	THENTICATION AND AUTHENTICATION DATA	7
2	.3.1	Authentication Methods	7
2	.3.2	Authentication Server Methods	8
2	.3.3	Authentication Strength	9
2	.3.4	Administrative Accounts	10
3.0	CRY	PTOGRAPHIC KEYS AND CSP	11
3.1	For	R MSP	11
3.2	For	R RSN	12
3.3	For	R IPSEC	13
3.4	For	R SSH AND TLS	14
3.5	AD	DITIONAL CRITICAL SECURITY PARAMETERS	15
3.6	KN	OWN ANSWER AND CONDITIONAL TESTS	17
3	.6.1	Known Answer Tests	17
3	.6.2	Conditional Tests	19
3.7	AL	GORITHM CERTIFICATIONS	20
3.8	No	N-APPROVED ALGORITHMS	23
4.0	ACC	ESS CONTROL POLICY	24
4.1	Ro	LES AND ACCESS TO SERVICE	24
4.2	Ro	LES AND ACCESS TO KEYS OR CSPS	25
4.3	Zef	ROIZATION	26
4.4	UP	GRADES	26
4	.4.1	Introduction	26
4	.4.2	Selecting Software Image	26
5.0	PHY	SICAL SECURITY POLICY	27
5.1	HA	RDWARE	27
5.2	PHY	YSICAL BOUNDARY	27
5.3	TA	MPER EVIDENCE APPLICATION	28
5.4	TA	MPER EVIDENCE INSPECTIONS	28
6.0	SECU	URITY POLICY FOR MITIGATION OF OTHER ATTACKS POLICY	34
7.0	FIPS	MODE	35
8.0	CUST	FOMER SECURITY POLICY ISSUES	
9.0	ACR	ONYMS	

LIST OF FIGURES AND TABLES	
Figure 1 Physical Boundary vs Cryptographic Boundary	
Figure 2: ES2440 Tamper Evidence (2 screws)	29
Figure 3: ES820 Tamper Evidence (3 screws)	
Figure 4: ES520 Version 1 (Front) Tamper Evidence (4 screws)	
Figure 5 ES520 Version 1 (Rear) Tamper Evidence (4 screws)	
Figure 6 ES520 Version 2 (Front) Tamper Evidence (3 screws)	
Figure 7 ES520 Version 2 (Rear) Tamper Evidence (4 screws)	
Table 1: Security Level of Security Requirements	5
Table 2: Authentication Data	7
Table 3: Probability of guessing the authentication data	9
Table 4: MSP Keys	11
Table 5: RSN Keys	12
Table 6: IPsec Keys	13
Table 7: SSH & TLS Crypto Keys	14
Table 8: Other Keys and Critical Security Parameters	15
Table 9: Known Answer Tests	17
Table 10 Conditional Tests	19
Table 11 Certifications	20
Table 12: Roles each Service is authorized to perform	24
Table 13: Roles who have Access to Keys or CSPs	25
Table 14: Defaults and Zeroization	
Table 15: Recommended Physical Security Activities	
Table 16: Acronyms	

1.0 Introduction

Security policy for General Dynamics Mission Systems' Fortress Mesh Point (FMP) product line. Throughout this Security Policy document, the security module will be referred to as 'FMP'.

The individual FIPS 140-2 security levels for the FMP are as follows:

Security Requirement Security	Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	2

Table 1: Security Level of Security Requirements

2.0 Identification and Authentication Policy

The FMP supports up to 10 total users that can be defined. Each user is assigned a role as defined below.

2.1 Role-based Authentication

There are three Crypto Officer Roles. Please note that the configuration model supports assigning the roles below to users defined below. In this case, the role is a property of a defined user.

When creating a Crypto Officer, one of the roles described below must be selected along with a unique username and password. Although each operator has a unique username and password, since selecting a role is also required, therefore this system should be considered as having role-based authentication.

- Crypto Officer Roles
 - Log Viewer: account users can view only high-level system health indicators and only those log messages unrelated to configuration changes.
 - Maintenance¹: account users can view complete system and configuration information and perform a few administrative functions but cannot make configuration changes.
 - Administrator: the main manager/administrator of the FMP.
- User Roles

There are three User Roles.

- MSP End User: This role will utilize another MSP secure controller to establish a secure connection over an untrusted network.
- RSN End User: This role will utilize either a RSN (802.11i) secure client loaded on a workstation or a RSN (802.11i) secure controller like a VPN to establish a secure connection over an untrusted network.
- IPsec/L2TP End User: This role will utilize either an IPsec/L2TP client loaded on a workstation or an IPsec/L2TP controller like a VPN to establish a secure connection.

2.2 Services

The following list summarizes the services that are provided by the FMP, refer to the User Guide for additional details.

- Encrypt/Decrypt (MSP | RSN | IPsec | SSH | TLS) PDU Services: use the encryption services of the FMP for passing of data.
- Show Status: observe status parameters of the FMP.
- View Log: view log messages.
- Write Configuration: change parameters in the FMP including changing the FIPS Mode, Bypass Setting, Zeroization and setting passwords;
- Read Configuration: read parameters in the FMP.
- Diagnostic: execute network diagnostic and self-tests services of the FMP.
- Upgrade: Upgrade the FMP with a new release of firmware.

¹ The Maintenance User is a CO and is not the same as a maintenance user as defined in FIPS 140-2.

2.3 Authentication and Authentication Data

All roles must be authenticated before they can use FMP services. This can be processed either internally by the FMP or externally using an EAP authentication server.

2.3.1 Authentication Methods

All roles must be authenticated if they use FMP services.

For Crypto-Officer authentication, a User Name and Password must be presented.

The FMP forces the Crypto-Officer to change the default password at first login.

The FMP will not accept new passwords that do not meet specified requirements.

A Crypto Officer can utilize three secure communication methods to access the FMP:

- Directly connected terminal
- Secure SSH (SSH-2.0-OpenSSH_5.8) connection
- Secure TLS connection (HTTPS)

A Crypto Officer can apply up to nine rules for administrative passwords that allow stronger passwords. These can be reviewed in the User Guide. FMPs having the same Access ID authenticate the MSP user. The RSN End User will use either a Shared Secret or will be authenticated by the use of an external EAP Server (i.e. RADIUS). The Authentication Data for each of these roles are shown in following table.

Operator	Type of Authentication	Connect Using	Authentication Data
Log Viewer	Password	Direct Connect	The possible character space is 91(²) characters and the password length is between 8 and 32 characters.
		HTTPS	(The default Log Viewer settings require a minimum of 15 characters).
Maintenance	Password	Direct Connect Secure SSH	The possible character space is $91(^2)$ characters and the password length is between 8 and 32 characters.
		HTTPS	(The default Maintenance settings require a minimum of 15 characters).
Administrator	Password	Direct Connect Secure SSH	The possible character space is $91(^2)$ characters and the password length is between 8 and 32 characters.
		HTTPS	(The default Administrator settings require a minimum of 15 characters).
MSP End User	Access ID	MSP	16-byte Access ID when in FIPS Mode. (In non-FIPS mode, users may select 8- bytes.
RSN End User	Secret	RSN	FIPS mode requires a 64-byte hexadecimal string (256 bits).
	ECDSA	RSN	Certificate base authentication supports ECDSA P-256 and ECDSA P-384.
IPsec/L2TP	Secret	IPsec/L2TP	FIPS mode requires a 32-256 byte hexadecimal string (128-1024 bits).
End User	ECDSA	IPsec/L2TP	Certificate base authentication supports ECDSA P-256 and ECDSA P-384.

Table 2: Authentication Data

²UI restricts the permitted characters to the all printable ASCII characters excluding double quote, single quote, and the apostrophe.

2.3.2 Authentication Server Methods

The Crypto Officer can also be authenticated by using an Authentication Server.

The Authentication Server can be:

- 1. The one built into the FMP.
- 2. On another FMP.
- 3. An external Authentication Server.

The service(s) available are determined by the FMP's configuration for authentication services as determined by the settings in Authentication Servers and/or Local Authentication.

To use an external server (RADIUS) for administrator authentication, it must be configured to use General Dynamic's Fortress Vendor-Specific Attributes (see User Guide for more information).

2.3.3 Authentication Strength

The probability of guessing the authentication data is shown in following table.

Mechanism	Role	Strength of Mechanism
Username &	Administrator	The FMP requires that all variants of the Crypto Officer enter a valid username and password.
Password	Maintenance	There are 91 distinct characters allowed in the password, and the password may be between 8 and 32 characters.
	Log Viewer	Assuming the low end of that range (8 chars), the probability of a successful random guess is 1 in 91^8 attempts. (or 1 in 4.70E+15)
		The FMP authentication channels support at most 400 authentications attempt per sec. The probability of a successful random guess within one minute is: (4.70E+15/ (400*60)) or 1 in 1.96E+11.
		Note: The maximum number of login attempts can be set between 1 and 9 and lockout duration between 0 and 60 minutes.
MSP Shared Secret	MSP End User	The MSP shared secret is a 16 byte (128 bit) value. The probability of a random match is 1 in 2 ¹²⁸ , or 3.40E+38.
		The FMP authentication channels support at most 400 authentications attempt per sec. The probability of a successful random guess within one minute is: (3.40E+38/ (400*60)) or 1 in 1.42E+34.
RSN Shared RSN End User FIPS mode re		FIPS mode requires the RSN shared secret be entered as a 64-byte hexadecimal string (256 bits).
		The probability of a random match is 1 in 2 ²⁵⁶ , or 1.16E+77.
		The FMP authentication channels support at most 400 authentications attempt per sec. The probability of a successful random guess within one minute is: (1.16E+77/(400*60)) or 1 in 4.82E+72.
IPsec Shared	IPsec/L2TP End	FIPS mode requires the IPsec shared secret be entered as (32-256) byte hexadecimal string.
Selec		Assuming the shortest length (32 hexadecimal string) that converts to 128-bits. The probability of a successful random guess is 1 in 2 ¹²⁸ , or 3.40E+38.
		The FMP authentication channels support at most 400 authentications attempt per sec. The probability of a successful random guess within one minute is: (3.40E+38/ (400*60)) or 1 in 1.42E+34.
Certificate	RSN End User	Certificate base authentication supports ECDSA P-256 and ECDSA P-384.
Dased	IPsec/L2TP End User	For ECDSA P-256 the security bit strength is 128 bits, which means the probability of a random attempt succeeding is 1 in 2^128, or 3.40E+38.
		The FMP authentication channels support at most 400 authentications attempt per sec. The probability of a successful random guess within one minute is: (3.40E+38/ (400*60)) or 1 in 1.42E+34.

Table 3: Probability of guessing the authentication data

2.3.4 Administrative Accounts

The users are configured by adding administrative accounts to a Role. These are configured through the UI. For instance, the product can have multiple administrative accounts each having a unique Username and Password and each being assigned to a particular role (i.e., Log Viewer, Maintenance or Administrator). When a user is logged into the FMP he will have all the rights of the Role he has been assigned.

3.0 Cryptographic Keys and CSP

Keys and CSPs generated in non-FIPS mode cannot be used in FIPS mode, or vice versa. The FMP will require the admin to reboot the box after FIPS mode is enabled or disabled.

3.1 For MSP

The FMP contains a number of MSP cryptographic keys and CSPs, as shown in the following table. All keys are generated using FIPS approved algorithms and methods as defined in SP800-56A.

All keys are kept in RAM in plaintext, zeroized when the FMP reboots, and are never stored to disk.

Table 4:	MSP	Keys
----------	-----	------

Кеу	Кеу Туре	Generation	Use	Implementation(s)
MSP Secret Key (MSK)	AES-CBC: 128, 192, or 256 bit.	Generated using the Access ID ³ as input into the SP 800-90A HMAC DRBG.	Used to encrypt static Diffie-Hellman public key requests and responses over the wire.	Fortress Cryptographic Implementation (Cryptlib)
				Fortress Cryptographic Implementation (FPGA)
Static Private Key	Diffie-Hellman: 256 bits ECDH: 384 bits	Automatically generated using the SP 800-90A HMAC DRBG.	Along with received Diffie-Hellman Static Public Key from partner is used to generate the Static Secret Encryption Key	Fortress Cryptographic Implementation (Cryptlib)
Static Public Key	Diffie-Hellman: 2048 bits	Automatically generated using Diffie-Hellman or ECDH.	Sent to communicating FMP in a packet is encrypted with MSK.	Fortress Cryptographic Implementation (Cryptlib)
	ECDH: 384 DITS			
Static Secret Encryption Key	AES-CBC: 128, 192, or 256 bit.	Automatically generated using Diffie Hellman or ECDH.	Used to encrypt dynamic public key requests and responses over the wire.	Fortress Cryptographic Implementation (Cryptlib)
				Fortress Cryptographic Implementation (FPGA)
Dynamic Private Key	Diffie-Hellman: 256 bits ECDH: 384 bits	Automatically generated using the SP 800-90A HMAC DRBG.	Along with received Dynamic Public Key from partner is used to generate the Dynamic Secret Encryption Key	Fortress Cryptographic Implementation (Cryptlib)
Dynamic Public Key	Diffie-Hellman: 2048 bits	Automatically generated using Diffie-Hellman or ECDH.	Sent to communicating module in a packet encrypted with the Static Secret Encryption	Fortress Cryptographic Implementation
	ECDH: 384 bits		Key	(Cryptiib)
Dynamic Secret Encryption Key (DKey)	AES-CBC: 128, 192, or 256 bit.	Automatically generated using Diffie Hellman or ECDH.	Used to encrypt all packets between two communicating FMPs	Fortress Cryptographic Implementation (Cryptlib)
				Fortress Cryptographic Implementation (FPGA)
Static Group Key (SGK)	AES-CBC: 128, 192, or 256 bit.	Generated using the SP 800-90A HMAC DRBG. ⁴	Used to encrypt user-data frames until the unicast Dynamic Secret Encryption Key is computed.	Fortress Cryptographic Implementation (Cryptlib)
				Fortress Cryptographic Implementation (FPGA)

³ The Access ID is manually distributed by the Admin, refer to Section 3.5 'Additional Critical Security Parameters'.

⁴ The static group key (SGK) is generated by using the Access ID (128 bits) merged with a MSP constant to seed an instance of an SP800-90A DRBG. Since the Access ID is 128 bits, this means that there is at most 128 bits of entropy in the static group key.

3.2 For RSN

An RSN or 802.11i wireless secure LAN can use either a PSK or an EAP generated master key.

If a PSK is used, each peer must configure the correct hex value. This PSK becomes the Master Key. If the EAP method is used, the Master Key is generated through the EAP process and it's correctly given to both the Client and FMP.

RSN are FIPS capable portions of the IEEE 802.11 specification for wireless LAN networks. The keys for RSN are shown in the following table.

AES-CCMP uses AES-CCM (allowed) in the 802.11i protocols (allowed). IEEE802.11i protocols are allowed in FIPS mode. Please see IG 7.2.

All keys are kept in RAM in plaintext, zeroized when the FMP reboots, and are never stored to disk.

Key	Кеу Туре	Generation	Use	Implementation(s
Pairwise Master Key (PMK)	HMAC-SHA256	Using the key generation procedure as defined in the IEEE 802.11 specification. Input Material: WPA2-Personal mode: PSK ⁵ WPA2-Enterprise mode: uses key material generated during EAP authentication.	Authentication and to derive (PTK)	Fortress Cryptographic Implementation (Cryptlib)
Pairwise Transient Key (PTK)	For AES-CCM, 384 bit key comprised of three 128 bit keys: Data Encryption/Integrity key, EAPOL-Key Encryption key, and EAPOL-Key Integrity key.	PRF(PMK AP nonce STA nonce AP MAC STA MAC) PRF = RSN KDF CAVP #112	Provides a set of keys used to protect link between end user station and FMP.	Fortress Cryptographic Implementation (Cryptlib) Fortress Cryptographic Implementation (FPGA)
Group Master Key (GMK)	SP 800-90A DRBG Generated 256 bit key.	Using the key generation procedure as defined in the IEEE 802.11 specification. Random number generated on the AP via SP 800-90A DRBG.	Used to derive (GTK).	Fortress Cryptographic Implementation (Cryptlib)
Group Transient Key (GTK)	For RSN, AES 256- bit key comprised of two 128 bit keys: Group Encryption key and Group Integrity key. For AES-CCM, 128 bit key comprised of Group Encryption/Integrity key.	PRF(GMK APMac GNonce) PRF = RSN KDF CAVP #112	Used to protect multicast and broadcast (group) messages sent from FMP to associated end user station. The AP sends the new GTK to each STA in the network using the PTK.	Fortress Cryptographic Implementation (Cryptlib) Fortress Cryptographic Implementation (FPGA)

Table 5: RSN Keys

⁵ WPA2-PSK: Plaintext (64 hexadecimal characters) or a (8-63) ASCII passphrase, compliant with manual distribution guidelines defined in FIPS 140-2 IG section 7.7.

3.3 For IPsec

An IPsec tunnel is created over an established AES encrypted RSN/802.11i wireless secure link. If the connection is over the external Ethernet port, then the IPsec tunnel is established over the current networking environment.

Please note, no parts of the IPsec protocol, other than the KDF, have been tested by the CAVP and CMVP.

The AES-GCM IV implementation follows the guidelines defined in RFC 4106 (sections 3.1, 4, & 8.1). The 96-bit IV consists of two parts, the leftmost 32-bits are randomly assigned per session key, and the rightmost value is a 64-bit TX counter. Each session key has a KB limit, which triggers a rekey, this prevents the counter from rolling over. This IV method is compliant with IG A.5 (Scenario #1) & Section 8.2.1 of the SP800-38D.

The modules uses RFC 7296 complaint with IKEv2 to establish the shared secret (SKEYSEED) from which the AES-GCM encryption keys are derived.

Only IPsec ECC keys are FIPS compliant, RSA keys are not permitted in FIPS mode. Refer to section '7.0 FIPS Mode' regarding FIPS required IPsec settings.

All keys are kept in RAM in plaintext, zeroized when the FMP reboots, and are never stored to disk. Table 6: IPsec Keys

Кеу	Кеу Туре	Generation	Use	Implementation(s
DH Private Key	ECDH: 256/384 bits	Seed is automatically pulled from SP 800-90A DRBG	Used to calculate the DH Key	Fortress Cryptographic SSL
DH Public Key	ECDH: 256/384 bits	The DH Private Key is fed to the Diffie-Hellman function to automatically generate this key	Used for digital signature to authenticate the peer	Fortress Cryptographic SSL
ECDSA Private Key	ECDSA: 256/384 bits	Seed is automatically pulled from SP 800-90A DRBG	Used to calculate the ECDSA certificate Key	Fortress Cryptographic SSL
ECDSA Public Key	ECDSA: 256/384 bits	The ECDSA Private Key is fed to the ECDSA function to automatically generate this key	Used for digital signature to authenticate the peer	Fortress Cryptographic SSL
IKE-SKEYSEED	HMAC-SHA256 or HMAC-SHA384 Sz=(7*hash)	IKE-KDF (CAVP #937) As defined in SP800-135r1 Section 4.1 Internet Key Exchange	Generate IPsec SAs for ESP traffic	Fortress Cryptographic Implementation (Cryptlib) for hmac Fortress KAS Implementation for KDF Fortress Cryptographic Implementation (FPGA)
PSK	128bit – 1024bit	Manually distributed. ⁶	Used for peer authentication, alternative to certificate authentication.	Fortress Cryptographic Implementation (Cryptlib)
Session Key	AES-GCM: 256 bits	Diffie-Hellman generated shared secret.	Used to encrypt/decrypt packets.	Fortress Cryptographic SSL

⁶ IPsec PSK: Plaintext (32-256) hexadecimal characters or a (16-128) ASCII passphrase, compliant with manual distribution guidelines defined in FIPS 140-2 IG section 7.7.

3.4 For SSH and TLS

The SSH (SSH-2.0-OpenSSH_5.8) protocol uses the cryptographic algorithms of the OpenSSH protocol.

The TLS protocol is used to establish a secure connection from a management workstation running a standard internet browser (HTTPS). The GUI must only use ECC server keys to be FIPS complaint. Refer to section '7.0 FIPS Mode'.

The TLS 1.2 AES-GCM IV implementation is compliant with RFC 5288, IG A.5 (scenario 1) and SP800-38D (section 8.2.1). The 96-bit IV consists of two parts, the leftmost 32-bits are randomly assigned per session key, and the rightmost value is a 64-bit TX counter (per session key) increment per packet. The 64-bit counter would require several years⁽⁷⁾ of packets before producing a duplicate IV per session key. The implementation including the counter portion are entirely within the cryptographic boundary.

The TLS 1.2 module only supports the following cipher suites (SP800-52 Rev 1, Section 3.3.1):

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

All keys are kept in RAM in plaintext, zeroized when the FMP reboots, and are never stored to disk.

Please note, no parts of the SSH or TLS protocol, other than the KDF, have been tested by the CAVP and CMVP.

Кеу	Кеу Туре	Generation	Use	Implementation(s
ECDSA Private Key SSH & TLS	ECDSA KEY 256 & 384 bits	Generated via openssl upon the 1 st boot after a factory reset.	The private key is used to generate signatures.	Fortress Cryptographic -SSL
ECDSA Public Key SSH & TLS	ECDSA KEY 256 & 384 bits	Generated via openssl upon the 1 st boot after a factory reset.	The public key is used to verify signatures.	Fortress Cryptographic -SSL
SSH Key Block	SSH KDF key block (SHA1, SHA256)	SSH-KDF (CAVP #938) as defined in SP800-135r1 Section 5.2 (SSH Key Derivation Function)	The Key Block is the keying material that is generated for the AES encryption key. Encrypt Data Packets	Fortress Cryptographic- SSL(for hash) Fortress KAS Implementation for KDF.
TLS Key Block	TLS KDF Key block (SHA256,SHA384)	TLS-KDF (CAVP #938) as defined in SP 800-135r1 section 4.2.1	The Key Block is the keying material that is generated for the AES encryption key. Encrypt Data Packets	Fortress Cryptographic- SSL (for hash) Fortress KAS Implementation for KDF
TLS Pre Master Secret	Diffie-Hellman 256 & 384 bits	Generated via Openssl. The pre master secret is a shared secret generated by the negotiated key agreement scheme.	Input into the TLS KDF.	Fortress Cryptographic- SSL

Table 7: SSH & TLS Crypto Keys

⁷ Generating 2million frames per sec over a 1gig network interface requires 292,471 years to max out the 64-bit frame counter.

3.5 Additional Critical Security Parameters

There are other critical security parameters present in the FMP as shown in the following table.

The non-volatile CSPs are stored encrypted and are zeroized when the FMP is restored to factory default; the volatile CSPs are stored in plaintext and are zeroized when the FMP is rebooted.

CSP Non- Volatile Type Generation Use Implementation(s) Access ID Y Seed Manually distributed 32 hexadecimal plaintext digits (128 bits). * MSK, SGK & privD-H Group Fortrass Cryptographic Implementation (Cryptib) Log Viewer Y Password St 0.3 2 Characters, entered by the Crypto Officer To authenticate the Log View Fortrass Cryptographic Implementation (Cryptib) Maintenance Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the Log View Fortrass Cryptographic Implementation (Cryptib) Maintenance Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortrass Cryptographic Implementation (Cryptib) Maintenance Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortrass Cryptographic Implementation (Cryptib) Firmware Vigrade Key Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortrass Cryptographic Implementation (Cryptib) Firmware Lingtack Key Y RSA Public Key SHA256 St 0.4256 Verify the signature thatis by used to validate the sign	000	Man	-				
Storage Storage Access ID Y Seed Manually distributed 32 hexadecimal plaintext use an approved DRBG MSK, SGK & privD-H Group key component and used for authentication Fortress Cryptographic Implementation (Cryptib) Log Viewer Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the Log View Fortress Cryptographic Implementation (Cryptib) Maintenance Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the Log View Fortress Cryptographic Implementation (Cryptib) Administrator Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptib) Firmware Upgrade Key Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the daministrator Fortress Cryptographic Implementation (Cryptib) Firmware Load Wergrade Image that has been loaded from an external workstation. Yetly the signature of the firmware inge that has been loaded from an external workstation. Verify the signature of the firmware inge that has been loaded from an external workstation. Fortress Cryptographic SSL HMAC DRBG N Seeed Automatically Generated by DRBG </th <th>CSP</th> <th>Non- Volatile</th> <th>Гуре</th> <th>Generation</th> <th>Use</th> <th>Implementation(s)</th>	CSP	Non- Volatile	Гуре	Generation	Use	Implementation(s)	
Access ID Y Seed Manually distributed 32 hexadecimal plaintext digits (128 bits). ¹¹ MSK, SGK & privD-H Group authentication Fortress Cryptographic Implementation (Cryptilb) Log Viewer Password Y Password SHA256 & to 32 Characters, entered by the Crypto Officer To authenticate the Log View Fortress Cryptographic Implementation (Cryptilb) Maintenance Password Y Password SHA256 & to 32 Characters, entered by the Crypto Officer To authenticate the Log View Fortress Cryptographic Implementation (Cryptilb) Maintenance Password Y Password SHA256 & to 32 Characters, entered by the Crypto Officer To authenticate the entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptilb) Mainistrator Password Y Password SHA256 & to 32 Characters, entered by the Crypto Officer To authenticate the Administrator Fortress Cryptographic Implementation (Cryptilb) Firmware Upgrade Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware inage that has been loaded from an external workstation. Verify the signature that is tatched to the upgrade package Fortress Cryptographic SSL Firmware Load Key Y RSA Public Key SHA256 Public RSA key (20		Storage					
Access ID Y Seed Manually distributed 2/ hexadecimal plaintext digits (128 bits), * MSA, SGR & pmOH Hopper authentication Fortress Cryptographic implementation (Cryptilib) Log Viewer Password Y Password SHA256 S to 32 Characters, entered by the Crypto Officer To authenticate the Log View Fortress Cryptographic implementation (Cryptilib) Maintenance Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic implementation (Cryptilib) Administrator Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic implementation (Cryptilib) Administrator Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptilib) Firmware Upgrade Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware used the firmware upgrade image that has been loaded from the internal flash drive at bot times that has been loaded from the internal flash drive at bot times that has been loaded from the internal flash drive at bot times that has been loaded from the internal flash drive at bot times that has been loaded from the internal flash drive at bot times. Fortress Cryptographic Implementation (Cryptilib)		otorage					
Image: Provide state is a sproved DR8G when in FPS Mode. Auto generation uses an instance of SP900-90A DR8G. Fortress Cryptographic Implementation (Cryptib) Log Viewer Password Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the Log View Fortress Cryptographic Implementation (Cryptib) Maintenance Password Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptib) Administrator Password Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptib) Administrator Password Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the fortress Cryptographic Implementation (Cryptib) Firmware Vuggrade Key Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the fortress Cryptographic SSL Firmware Load Y RSA Public Key SHA256 Public RSA key (2048-bi) used to validate the signature of the firmware inage that has been loaded from an external workstation. Verify the signature that is attached to the the firmware inage that has been loaded from the internal fish drive at boot time. Fortress Cryptographic SSL HMAC DRBG N Seed Automatically Generated by NRG. Size=2*Configured Size=2*Configured Size=2*Configured Size=2*Configured Size=2*Configured Size=2*Con	Access ID	Ŷ	Seed	Manually distributed 32 hexadecimal plaintext digits (128 bits). ⁸	MSK, SGK & privD-H Group key component and used for authentication	Cryptlib)	
Auto generation uses an instance of SP900-90A DRBG. Auto generation uses an instance of SP900-90A DRBG. Log Viewer Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the Log View Fortress Cryptographic Implementation (Cryptilib) Maintenance Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptilib) Administrator Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptilib) Firmware Upgrade Key Y RSA Public Key SHA256 Public RSA key (2048-bit) used to validate the signature of the firmware upgrade image that has been loaded from an external workstation. Verify the signature that is attached to the firmware image that has been loaded from the internal main flash drive at boot time. Fortress Cryptographic SSL HMAC DRBG entropy N Seed Automatically Generated by NDRNG. Entropy used as input to SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptilb) HMAC DRBG V-Value N Counter Automatically generated by DRBG Internal V value used as part of SP 80-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptilb)				The administrator must use an approved DRBG when in FIPS Mode.			
Log Viewer Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the Log View Fortress Cryptographic Implementation (Cryptib) Maintenance Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptib) Administrator Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptib) Firmware Upgrade Key Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the authenticate the signature of the firmware ingrade image that has been loaded from an external workstation. Fortress Cryptographic SSL Firmware Load Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware image that has been loaded from the isignature of the firmware image that has been loaded from the signature of the firmware image that has been loaded from the signature of the firmware image that has been loaded from the signature of the signature of the firmware image that has been loaded from the signature of the firmware image that has been loaded from the signature of the signature o				Auto generation uses an instance of SP800-90A DRBG.			
Password SHA256 entered by the Crypto Officer View (Cryptilb) Maintenance Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptilb) Administrator Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptilb) Firmware Upgrade Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the entored by the firmware upgrade image that has been loaded from an external workstation. Verify the signature that is attached to the upgrade package Fortress Cryptographic SSL Firmware Load Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the internal flash drive at boot time. Verify the signature that is attached to the firmware load package Fortress Cryptographic SSL HMAC DRBG entropy N Seed Automatically Generated by NRNG. Entropy used as input to SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptilb) HMAC DRBG entropy N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptilb)	Log Viewer	Y	Password	8 to 32 Characters,	To authenticate the Log	Fortress Cryptographic Implementation	
Maintenance Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptlib) Administrator Password Y Password SHA256 8 to 32 Characters, entered by the Crypto Officer To authenticate the maintenance user Fortress Cryptographic Implementation (Cryptlib) Firmware Upgrade Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware upgrade image that has been loaded from an external workstation. Verify the signature that is attached to the upgrade package Fortress Cryptographic SSL Firmware Load Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware image that has been loaded from the internal flash drive at boot time. Verify the signature that is attached to the firmware load package Fortress Cryptographic SSL HMAC DRBG entropy N Seed Automatically Generated by NDRNG. Entropy used as input to SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib) HMAC DRBG entropy N Counter Automatically generated by DRBG Internal V value used as part of SP 200-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib)	Password		SHA256	entered by the Crypto Officer	View	(Cryptlib)	
Password SHA256 entered by the Crypto Officer maintenance user (Cryptlib) Administrator Password Y Password 8 to 32 Characters, entered by the Crypto Officer To authenticate the Administrator Fortress Cryptographic Implementation (Cryptlib) Firmware Upgrade Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware upgrade image that has been loaded from an external workstation. Verify the signature that is attached to the upgrade package Fortress Cryptographic SSL Firmware Load Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware upgrade image that has been loaded from the internal flash drive at boot time. Verify the signature that is attached to the firmware load package Fortress Cryptographic SSL HMAC DRBG entropy N Seed Automatically Generated by NDRNG. Entropy used as input to SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib) HMAC DRBG V-Value N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib)	Maintenance	Y	Password	8 to 32 Characters,	To authenticate the	Fortress Cryptographic Implementation	
Administrator PasswordYPassword SHA2568 to 32 Characters, entered by the Crypto OfficerTo authenticate the AdministratorFortress Cryptographic Implementation (Cryptlib)Firmware Upgrade KeyYRSA Public Key SHA256Public RSA key (2048- bit) used to validate the signature of the firmware upgrade image that has been loaded from an external workstation.Verify the signature that is attached to the upgrade packageFortress Cryptographic SSLFirmware Load KeyYRSA Public Key SHA256Public RSA key (2048- bit) used to validate the signature of the firmware upgrade image that has been loaded from an external workstation.Verify the signature that is attached to the upgrade packageFortress Cryptographic SSLFirmware Load KeyYRSA Public Key SHA256Public RSA key (2048- bit) used to validate the signature of the firmware image that has been loaded from the internal flash drive at boot time.Verify the signature that is attached to the firmware load packageFortress Cryptographic SSLHMAC DRBG V-ValueNSeedAutomatically Generated by NDRNG. Size=2*Configured Security StrengthEntropy used as input to SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)HMAC DRBG V-ValueNCounterAutomatically generated by DRBGInternal V value used as part of SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)	Password		SHA256	entered by the Crypto Officer	maintenance user	(Cryptlib)	
Password SHA256 entered by the Crypto Officer Administrator (Cryptilib) Firmware Upgrade Key Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware upgrade image that has been loaded from an external workstation. Verify the signature that is attached to the upgrade package Fortress Cryptographic SSL Firmware Load Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware image that has been loaded from an external workstation. Verify the signature that is attached to the firmware load package Fortress Cryptographic SSL Firmware Load Y RSA Public Key SHA256 Public RSA key (2048- bit) used to validate the signature of the firmware image that has been loaded from the internal flash drive at boot time. Verify the signature that is attached to the firmware load package Fortress Cryptographic SSL HMAC DRBG entropy N Seed Automatically Generated by NDRNG. Entropy used as input to SP 800-90A HIMAC DRBG Fortress Cryptographic Implementation (Cryptilib) HMAC DRBG V-Value N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HIMAC DRBG Fortress Cryptographic Implementation (Cryptilib)	Administrator	Y	Password	8 to 32 Characters,	To authenticate the	Fortress Cryptographic Implementation	
Firmware Upgrade KeyYRSA Public Key SHA256Public RSA key (2048- bit) used to validate the signature of the firmware upgrade image that has been loaded from an external workstation.Verify the signature that is attached to the upgrade packageFortress Cryptographic SSLFirmware Load KeyYRSA Public Key SHA256Public RSA key (2048- bit) used to validate the signature of the firmware ingrature of the firmware image that has been loaded from the internal flash drive at boot time.Verify the signature that is attached to the upgrade packageFortress Cryptographic SSLFirmware Load KeyYRSA Public Key SHA256Public RSA key (2048- bit) used to validate the signature of the firmware image that has been loaded from the internal flash drive at boot time.Verify the signature that is attached to the firmware load packageFortress Cryptographic SSLHMAC DRBG entropyNSeedAutomatically Generated by NDRNG. Size=2*Configured Security StrengthEntropy used as input to SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptib)HMAC DRBG V-ValueNCounterAutomatically generated by DRBGInternal V value used as part of SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptib)	Password		SHA256	Officer	Administrator	(Стурив)	
Upgrade Key SHA256 bit) Used to Validate the signature of the firmware upgrade image that has been loaded from an external workstation. attached to the upgrade package Firmware Load Y RSA Public Key Public RSA key (2048-bit) used to validate the signature of the firmware image that has been loaded from the signature of the firmware image that has been loaded from the internal flash drive at boot time. Verify the signature that is attached to the firmware load package Fortress Cryptographic SSL HMAC DRBG entropy N Seed Automatically Generated by NDRNG. Entropy used as input to SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptib) HMAC DRBG V-Value N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptib)	Firmware	Y	RSA Public Key	Public RSA key (2048- bit) used to validate the signature of the firmware	Verify the signature that is attached to the upgrade package	Fortress Cryptographic SSL	
Firmware Load Y RSA Public Key Public RSA key (2048-bit) used to validate the signature of the firmware image that has been loaded from the internal flash drive at boot time. Verify the signature that is attached to the firmware load package Fortress Cryptographic SSL HMAC DRBG entropy N Seed Automatically Generated by NDRNG. Size=2*Configured Security Strength Entropy used as input to SP security Strength Fortress Cryptographic Implementation (Cryptlib) HMAC DRBG V-Value N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HMAC DRBG DRBG Fortress Cryptographic Implementation (Cryptlib)	Upgrade Key		SHA256				
Firmware Load KeyYRSA Public Key SHA256Public RSA key (2048- bit) used to validate the signature of the firmware indep that has been loaded from the internal flash drive at boot time.Verify the signature that is attached to the firmware load packageFortress Cryptographic SSLHMAC DRBG entropyNSeedAutomatically Generated by NDRNG. Size=2*Configured Security StrengthEntropy used as input to SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)HMAC DRBG v-ValueNCounterAutomatically generated by DRBGInternal V value used as part of SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)				upgrade image that has			
Firmware Load Y RSA Public Key Public RSA key (2048-bit) used to validate the signature of the firmware image that has been loaded from the internal flash drive at boot time. Verify the signature that is attached to the firmware load package Fortress Cryptographic SSL HMAC DRBG entropy N Seed Automatically Generated by NDRNG. Entropy used as input to SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib) HMAC DRBG V-Value N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib)				external workstation.			
KeySHA256bit) used to validate the signature of the firmware image that has been loaded from the internal flash drive at boot time.attached to the firmware load packageHMAC DRBG entropyNSeedAutomatically Generated by NDRNG. Size=2*Configured Security StrengthEntropy used as input to SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)HMAC DRBG entropyNCounterAutomatically generated by NDRGEntropy used as input to SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)HMAC DRBG v-ValueNCounterAutomatically generated by DRBGInternal V value used as part of SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)	Firmware Load	Y	RSA Public Key	Public RSA key (2048-	Verify the signature that is	Fortress Cryptographic SSL	
HMAC DRBG entropyNSeedAutomatically Generated by NDRNG.Entropy used as input to SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)HMAC DRBG entropyNSeedAutomatically Generated by NDRNG.Entropy used as input to SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)HMAC DRBG v-ValueNCounterAutomatically generated by DRBGInternal V value used as part of SP 800-90A HMAC DRBGFortress Cryptographic Implementation (Cryptlib)	Key		SHA256	bit) used to validate the	attached to the firmware		
been loaded from the internal flash drive at boot time. https://www.sec.understatestatestatestatestatestatestatesta			51 // (200	firmware image that has	юао раскаде		
HMAC DRBG entropy N Seed Automatically Generated by NDRNG. Entropy used as input to SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib) HMAC DRBG v-Value N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib)				been loaded from the			
HMAC DRBG entropy N Seed Automatically Generated by NDRNG. Entropy used as input to SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib) HMAC DRBG V-Value N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HMAC DRBG Fortress Cryptographic Implementation (Cryptlib)				boot time.			
HMAC DRBG N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HMAC Fortress Cryptographic Implementation (Cryptlib) V-Value DRBG DRBG DRBG Fortress Cryptographic Implementation (Cryptlib)	HMAC DRBG entropy	Ν	Seed	Automatically Generated by NDRNG.	Entropy used as input to SP 800-90A HMAC DRBG	Fortress Cryptographic Implementation (Cryptlib)	
HMAC DRBG N Counter Automatically generated by DRBG Internal V value used as part of SP 800-90A HMAC Fortress Cryptographic Implementation (Cryptlib)				Size=2*Configured Security Strength			
	HMAC DRBG V-Value	N	Counter	Automatically generated by DRBG	Internal V value used as part of SP 800-90A HMAC DRBG	Fortress Cryptographic Implementation (Cryptlib)	

Table 8:	Other	Kevs	and	Critical	Security	Parameters
1 4010 01	other			Critere	Security	1 an annever 5

⁸Access ID: Compliant with manual distribution guidelines defined in FIPS 140-2 IG section 7.7.

			Security Policy for the F	ortress Mesh Point		
HMAC DRBG Key	N	Seed	Automatically generated by DRBG	Key value used for the HMAC of the SP 800-90A	Fortress Cryptographic Implementation (Cryptlib)	
			Size=2*Configured Security Strength	HMAC DRBG		
HMAC DRBG init_seed	Ν	Seed	Automatically generated by NDRNG	Initial seed value used in SP 800-90A HMAC DRBG	Fortress Cryptographic Implementation (Cryptlib)	
			Size=2*Configured Security Strength			
HMAC DRBG entropy	N	Seed	Automatically Generated by NDRNG	Entropy used as input to SP 800-90A HMAC DRBG	Fortress Cryptographic SSL	
			Size=2*Configured Security Strength			
HMAC DRBG V-Value	N	Counter	Automatically generated by DRBG	Internal V value used as part of SP 800-90A HMAC DRBG	Fortress Cryptographic SSL	
HMAC DRBG Key	N	Seed	Automatically generated by DRBG	Key value used for the HMAC of the SP 800-90A	Fortress Cryptographic SSL	
			Size=2*Configured Security Strength	HMAC DRBG		
HMAC DRBG init_seed	Ν	Seed	Automatically generated by NDRNG	Initial seed value used in SP 800-90A HMAC DRBG	Fortress Cryptographic SSL	
			Size=2*Configured Security Strength			

3.6 Known Answer and Conditional Tests

3.6.1 Known Answer Tests

This section describes the known answer tests run on the FMP.

The tests are organized by section against which they are run.

Table 9: Known Answer Tests

Known Ans	Known Answer Tests for CRYPTLIB					
Algorithm	Modes/States/Key sizes/					
AES	ECB(e/d; 128,192,256); CBC(e/d; 128,192,256)					
SHS	SHA-1 (BYTE-only) SHA-256 (BYTE-only) SHA-384 (BYTE-only) SHA-512 (BYTE-only)					
HMAC	HMAC-SHA1 (Key Sizes Ranges Tested: KS=BS) SHS HMAC-SHA256 (Key Size Ranges Tested: KS=BS) SHS HMAC-SHA384 (Key Size Ranges Tested: KS=BS) SHS HMAC-SHA512 (Key Size Ranges Tested: KS=BS) SHS					
DRBG 800-90A	Hash Based DRBG [HMAC_DRBG: SHA256, SHA512]					

Known Answer Tests for KAS				
DH	DH (Key sizes tested: 2048)			
ECDH	ECDH-secp (Key Size Range: 384 bits)			
KBKDF	KDF SP800-108			
	HMAC-SHA256, 16bit counter, After Fixed Data.			

Known Answer Tests for FPGA The FPGA algorithms are tested indirectly with packet KAT tests. (Encrypt;Decrypt) for each (MSP-Legacy, MSP-Suite B, ESP-Suite B, CCMP)					
Algorithm	Modes/States/Key sizes/				
AES	CBC (e/d: 256) GCM (e/d: 256) CCM (e/d: 128)				
HMAC	HMAC-SHA1 (Key Sizes Ranges Tested: KS <bs)="" shs<br="">HMAC-SHA384 (Key Size Ranges Tested: KS<bs)="" shs<="" th=""></bs></bs>				
Known Ans	wer Tests for OPENSSL				

Page 17 of 38

Copyright © 2013-2021 General Dynamics Mission Systems, 150 Rustcraft Road, Dedham, MA 02026 This document can be reproduced and distributed only whole and intact, including this copyright notice.

Algorithm	Modes/States/Key sizes/
AES	ECB(e/d: 128) GCM(e/d: 256)
SHS	SHA-1(BYTE-only)SHA-256(BYTE-only)SHA-384(BYTE-only)SHA-512(BYTE-only)
HMAC	HMAC-SHA1 (Key Sizes : 160) SHS HMAC-SHA256 (Key Sizes : 160) SHS HMAC-SHA384 (Key Sizes : 160) SHS HMAC-SHA512 (Key Sizes : 160) SHS
RSA	ALG[RSASSA-PKCS1_V1_5]; SIG(gen); SIG(ver); 2048 , SHS: SHA-256
ECDSA	Sig(gen);Sig(ver);secp256r1 (P-256) Sig(gen);Sig(ver);secp384r1 (P-384)
DSA	Sig(gen);Sig(ver) (SHA384 Key:2048)
DRBG 800-90A	Hash Based DRBG: [SHA-1 , SHA-256 , SHA-384, SHA-512]

3.6.2 Conditional Tests

This section describes the conditional tests run on the FMP.

Table 10 Conditional Tests

Tests	Condition
'Known Answer Tests' (Table 8)	Power on self-test; FIPS mode change; Any security policy change
Firmware Integrity Upgrade Test	Firmware upgrade.
RSA SIG(ver); 2048 , SHS: SHA-256	
Firmware Integrity Load Test	Firmware image loaded at boot time.
RSA SIG(ver); 2048 , SHS: SHA-256	
Pairwise Consistency Tests: RSA(ALG[RSASSA-PKCS1_V1_5] SIG(gen); SIG(ver); 2048 , SHS: SHA-1 DH(2048) ECDH(secp384) ECDSA([gen,ver], [secp256,secp384], [sha1])	Power on self-test; FIPS mode change; Any security policy change
MSP Bypass Test	Power on self-test; FIPS mode change; Change to the bypass mode Initialization of MSP peer
CCMP Bypass Test	Power on self-test; FIPS mode change; Change to the bypass mode Wireless interface initialization
ESP Bypass Test	Power on self-test; FIPS mode change; Change to the bypass mode
Random Number Generation: NDRNG DRBG (Performs the HMAC_DRBG Health tests (Instantiate, Generate, and Reseed) as described in SP800-90A Section 11.3 Health Testing).	Power on self-test; Every generation of a random number

3.7 Algorithm Certifications

This section describes the current list of certified algorithms and their certification numbers.

ALGO	Cert #	Crypto Implementation	Standard	Use	Operational Environment	Modes (⁹)
AES	1519	Fortress Cryptographic Implementation V2.0	FIPS 197 SP 800-38A	Encrypt/Decrypt IPsec, WPA2, MSP	RMI Alchemy MIPS Processor Broadcom XLS Processor	ECB (e/d: 128, 192, 256) CBC (e/d: 128, 192 , 256)
	1520	Fortress Cryptographic Implementation FPGA V2.0	FIPS 197 SP 800-38A SP 800-38D	Encrypt/Decrypt IPsec, WPA2,MSP	Xilinx Spartan FPGA	CBC (e/d: 128, 192, 256) GCM (e/d: KS: 128 ,256) CCM (KS: 128)
	3506	Fortress Cryptographic Implementation SSL V2.1	FIPS 197 SP 800-38A	Encrypt/Decrypt IPsec (IKE) WPA2 (establishment) SSH	RMI Alchemy MIPS Processor Broadcom XLS Processor	ECB (e/d: 128, 192 , 256) CBC (e/d: 128, 192, 256) CFB8 (e/d: 128, 192, 256) CFB128 (e/d: 128, 192, 256) OFB (e/d: 128, 192, 256)
	C1626	Fortress Cryptographic Implementation SSL V2.1	SP 800-38D	Encrypt/Decrypt TLS	RMI Alchemy MIPS Processor Broadcom XLS Processor	GCM (e/d:KS: 128, 192, 256)
СКС	Vendor Affirmed	Fortress Cryptographic Implementation SSL V2.1 Fortress Cryptographic Implementation V2.0 Fortress KAS Implementation V2.0	SP 800-133	Key Generation	RMI Alchemy MIPS Processor Broadcom XLS Processor	In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation as per SP800- 133 using unmodified SP800- 90A DRBG output. (¹⁰)

Table 11 Certifications

⁹ There are modes/keys that have been CAVS tested but not used by the module. Only the modes/methods and key lengths/curves/moduli shown in this table are used by the module.

¹⁰ The module directly uses the output from an approved DRBG to generate symmetric keys as well as the seeds to be used in FIPS 186-4 compliant asymmetric key generation.

· · · · · · · · · · · · · · · · · · ·			· · · · · ·	,	Ī	
DRBG 800- 90A	66	Fortress Cryptographic Implementation V2.0	SP 800-90A	Deterministic Rnd Bit Generation IPsec, MSP	RMI Alchemy MIPS Processor Broadcom XLS Processor	HMAC_Based DBRG: SHA-256, SHA-512
DRBG 800- 90A	874	Fortress Cryptographic Implementation SSL V2.1	SP 800-90A	Deterministic Rnd Bit Generation SSH WPA2 (establishment) IPsec (IKE)	RMI Alchemy MIPS Processor Broadcom XLS Processor	HMAC_Based DBRG: SHA-1, SHA-256, SHA-384, SHA- 512
DSA	1053	Fortress Cryptographic Implementation SSL V2.1	FIPS186-4	IPsec (IKE)	RMI Alchemy MIPS Processor Broadcom XLS Processor	FIPS186-4 KeyPairGen: (2048, 224), (2048, 256), (3072, 256) SigGen/SigVer: (2048,224), (2048,256), (3072,256) (¹¹)
ECDSA	716	Fortress Cryptographic Implementation SSL V2.1	FIPS186-4	Signature Verify IPsec WPA2 (establishment) SSH	RMI Alchemy MIPS Processor Broadcom XLS Processor	SigVer: P-256: (SHA-1, 256) P-384: (SHA-1, 384)
ECDSA	833	Fortress Cryptographic Implementation SSL V2.1	FIPS186-4	Key Agreement IPsec WPA2 (establishment) SSH	RMI Alchemy MIPS Processor Broadcom XLS Processor	FIPS186-4: PKG: CURVES(P-256 P-384 ExtraRandomBits) PKV: CURVES(P-256 P-384)
ECDSA	CVL 573	Fortress Cryptographic Implementation SSL V2.1	FIPS186-4	Signature Generation IPsec (IKE) WPA2 (establishment)	RMI Alchemy MIPS Processor Broadcom XLS Processor	ECDSA SigGen Component: P-256, P-384
HMAC	889	Fortress Cryptographic Implementation V2.0	FIPS198-1	Msg Authentication IPsec, WPA2, MSP	RMI Alchemy MIPS Processor Broadcom XLS Processor	HMAC-SHA1 HMAC-SHA256 HMAC-SHA384 HMAC-SHA512
HMAC	890	Fortress Cryptographic Implementation FPGA V2.0	FIPS198-1	Msg Authentication IPsec, WPA2, MSP	Xilinx Spartan FPGA	HMAC-SHA1 HMAC-SHA384

¹¹ DSA: SigGen/SigVer only used in the self-tests.

HMAC	2238 CVL 937	Fortress Cryptographic Implementation SSL V2.1 Fortress KAS Implementation V2.0	FIPS198-1 SP800-135	Msg Authentication SSH WPA2 (establishment) IPsec (IKE) Deriving Keys IPsec (IKE)	RMI Alchemy MIPS Processor Broadcom XLS Processor RMI Alchemy MIPS Processor Broadcom XLS Processor	HMAC-SHA1 HMAC-SHA256 HMAC-SHA384 HMAC-SHA512 IKEv1: AUTH(DSA , PSK)) 256 (SHA 1 , 256 , 384 , 512) 384 (SHA 1 , 256 , 384 , 512) 2048 (SHA 1 , 256 , 384 , 512) IKEv2: 256 (SHA 1 , 256 , 384 , 512) 384 (SHA 1 , 256 , 384 , 512) 2048 (SHA 1 , 256 , 384 , 512)
KAS	95	Fortress KAS Implementation V2.0	SP800-56A	Key Agreement IPsec (IKE) MSP (ECDH and DH)	RMI Alchemy MIPS Processor Broadcom XLS Processor	FFC: SHA-256 ECC: P-256 SHA-256 HMAC ED: P-384 SHA-384 HMAC
RSA	1800	Fortress Cryptographic Implementation SSL V2.1	FIPS186-2	Signature Verify SSH	RMI Alchemy MIPS Processor Broadcom XLS Processor	ALG[RSASSA-PKCS1_V1_5] SIG(ver): 2048, SHS: SHA-1
RSA	1967	Fortress Cryptographic Implementation SSL V2.1	FIPS186-4	Signature Generation SSH	RMI Alchemy MIPS Processor Broadcom XLS Processor	ALG[ANSIX9.31] Sig(Gen): (2048 SHA(256 , 384)) ALG[RSASSA-PKCS1_V1_5] SIG(gen) (2048 SHA(256 , 384))
RSN- KDF	KBKDF 112	Fortress KAS Implementation V2.0	SP800-108	Deriving Keys WPA2	RMI Alchemy MIPS Processor Broadcom XLS Processor	CTR_Mode: Length(Min32, Max2048) MACSupported([HMACSHA1] [HMACSHA256]) LocationCounter([AfterFixedData,BeforeFixedData]) rlength([8,16]))
SHS	1357	Fortress Cryptographic Implementation V2.0	FIPS 180-4	Message Digest IPsec, WPA2, MSP	RMI Alchemy MIPS Processor Broadcom XLS Processor	SHA-1 (BYTE-only) SHA-256 (BYTE-only) SHA-384 (BYTE-only) SHA-512 (BYTE-only)
SHS	1358	Fortress Cryptographic Implementation FPGA V2.0	FIPS 180-4	Message Digest IPsec, WPA2, MSP	Xilinx Spartan FPGA	SHA-1 (BYTE-only) SHA-384 (BYTE-only)

SHS	2891	Fortress Cryptographic Implementation SSL V2.1	FIPS 180-4	Message Digest IPsec, WPA2, MSP	RMI Alchemy MIPS Processor Broadcom XLS Processor	SHA-1 (BYTE-only) SHA-256 (BYTE-only) SHA-384 (BYTE- only)SHA-512 (BYTE-only)
SSH- KDF	CVL 938	Fortress KAS Implementation V2.0	SP800-135	Deriving Keys SSH	RMI Alchemy MIPS Processor Broadcom XLS Processor	SSH(SHA1,SHA-256)
TLS- KDF	CVL 938	Fortress KAS Implementation V2.0	SP800-135	Deriving Keys TLS	RMI Alchemy MIPS Processor Broadcom XLS Processor	SSH(SHA256,SHA-384)

3.8 Non-approved Algorithms

Algorithm	Service	Allowed in FIPs mode
DSA KeyGen	SSH	No. Disabled while in FIPS mode.
MD5	NTP,RADIUS,	Yes, this is allowed in the approved mode of operation when used as part of a key
	TLS	transport scheme where no security is proved by the algorithm.
NDRNG	All	Yes. Used to gather entropy from hardware via two free-running oscillators.
(FPGA-TRNG)		
		Min-entropy of 0.80 per bit or 6.4 for an 8-bit byte.
RNG X9.31	MSP	No, provides backwards protocol compatibility when legacy mode is enabled and
		FIPS is disabled.
RSA KeyGen	IPsec, TLS,	No. Admin is not permitted to generate key pairs of type RSA.
(FIPS 186-2)	WPA2	Refer to Section 7.0.
SNMP KDF	SNMP	No. Admin is not permitted to enable SNMP while in FIPS mode.
		SNMP provides read-only access to configuration and status information.
		Refer to Section 7.0

The protocol SNMP shall not be used when operating in FIPS mode. In particular, none of the keys derived using the SNMP KDFs can be used in the Approved mode.

4.0 Access Control Policy

The same Crypto Officer may not be simultaneously logged in. However, the FMP supports concurrent login of different crypto-officer variants. An administrator and maintenance or other combination of crypto-officers may be logged in at the same time.

4.1 Roles and access to service

In general, a Crypto Officer is allowed to login and manage the FMP and end users can use cryptographic services. The following table shows a list of services and the roles which have access to them as shown in the following table.

Role/Services	Encrypt/Decrypt [MSP RSN IPsec SSH TLS] PDU Services	Show Status	View Log	Write Configuration (including Bypass, Setting FIPS Mode, Setting Passwords, and Zeroization)	Read Configuration	Diagnostic (including self-tests)	Upgrade
Administrator	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Maintenance		\checkmark	\checkmark		\checkmark	\checkmark	
Log Viewer			\checkmark				
MSP End User							
RSN End User	\checkmark						
IPsec/L2TP End User	V						

Table 12: Roles each Service is authorized to perform

4.2 Roles and access to Keys or CSPs

The FMP doesn't allow access to the encryption keys; these are protected within the operating environment. The following table lists the services that involve using cryptographic keys. (R=Read W=Write E=Execute)

Service	Access to Cryptographic Keys and CSPs	R	W	E
Encrypt/Decrypt [MSP RSN IPsec SSH TLS] PDU Services	 MSP: MSP Secret Key, Static Group Key, Static Private Key, Static Public Key, Static Secret Encryption Key, Dynamic Private Key, Dynamic Public Key, Dynamic Secret Encryption Key RSN: PMK, PTK, GMK, GTK IPsec DH Private/Public Key, ECDSA Private/Public Keys, IKE-SKEYSEED, Session Key. PSK SSH: ECDSA Private Key, ECDSA Public Key, SSH Key Block TLS: ECDSA Private Key, ECDSA Public Key, TLS: 			
	TLS Key Block, TLS Pre Master Secret DRBG Cryptlib/SSL (Entropy, Key, init_seed, DRBG-V-Value)			
Show Status	No access to crypto material			
L V:				
Log view				
Write Configuration	Change own, Maintenance, and Log viewer password	1	N	
	 Set Access ID -<i>random</i> (1) This set option will display the generated Access ID before it's confirmed and written to the database. 	√(1)	N	
	Set Access ID		\checkmark	
	Set Bypass			
	Set FIPS Mode			
	Zeroization			
	Set IEEE 802.11 PSK (RSN & IPsec)			
	Digital Signature Generation and Verification			
	Passwords			
Read Configuration	None of the configured crypto material can be read directly.			
	Only an encrypted copy of these configured materials can be retrieved for the purpose of backing up the configuration.			
Diagnostics	No access to crypto material			
Firmware Boot and Load	Firmware Upgrade Key & Firmware Load Key			V

Table 13: Roles who have Access to Keys or CSPs

4.3 Zeroization

All keys and Critical Security Parameters are stored in a database and zeroized when:

- Restoring the factory defaults
- Manually replaced with new values.
- FMP is rebooted (for keys and CSPs stored in volatile memory)

Please refer to the appropriate User Guide to determine the actual zeroization process.

Table 14: Defaults and Zeroization

CSP	Reset value
Access ID	All Zeros
Administrator Password	Default Password
Log Viewer Password	Default Password
Maintenance Password	Default Password
PSK	All Zeros

4.4 Upgrades

4.4.1 Introduction

The FMP firmware can be upgraded in FIPS mode. The validated upgrade image is downloaded from a workstation via using the UI. The upgrade image is integrity checked and stored on the internal flash and booted. The previous image is kept stored on flash and can be selected as the boot image in case of problems with the upgrade image.

Any firmware loaded into this module that is not shown on the module certificate, is out of the scope of this validation and requires a separate FIPS 140-2 validation.

4.4.2 Selecting Software Image

The FMP stores two, user-selectable copies (or images) of the FMP software on separate partitions of the internal flash memory. Please refer to the User Guide to determine how to select the image for execution.

5.0 Physical Security Policy

5.1 Hardware

The software executes one the following hardware platforms:

- ES520 Version 1
- ES520 Version 2
- ES820
- ES2440

5.2 Physical Boundary

All hardware platforms are or will be manufactured to meet FIPS 140-2, L2 requirements.

The FMP Firmware is installed by General Dynamics on a production-quality, FCC certified hardware device, which also define the FMP's physical boundary.

The physical boundary of the module is the perimeter of the module's casing, which is depicted as the borders of the box in the image below.

The cryptographic boundary does not include the IO related devices (serial, Ethernet, wireless adapters ...) or the network stack code. The cryptographic boundary is concerned with the crypto algorithms, protocols, storage, and authentication. Refer to 'Figure 1 Physical Boundary vs Cryptographic Boundary'.

Page 27 of 38 Copyright © 2013-2021 General Dynamics Mission Systems, 150 Rustcraft Road, Dedham, MA 02026 This document can be reproduced and distributed only whole and intact, including this copyright notice.

5.3 Tamper Evidence Application

These hardware platforms use Loctite 425 blue adhesive to cover screws for tamper evidence as shown in the following figures (2-7). The adhesive is applied during manufacturing. If the glue is removed or becomes damaged, it's recommended that the hardware be returned to General Dynamics to reapply.

5.4 Tamper Evidence Inspections

The following table details the recommended physical security activities that should be carried out by the Crypto Officer.

Physical Security Object	Recommended Frequency of Inspection	Inspection Guidance
Appropriate chassis screws covered with Loctite 425 blue epoxy coating.	Daily	Inspect screw heads for chipped epoxy material. If found, remove FMP from service.
Overall physical condition of the FMP	Daily	Inspect all cable connections and the FMP's overall condition. If any discrepancy found, correct and test the system for correct operation or remove FMP from service.

Table 15: Recommended Physical Security Activities

The host hardware platform server must be located in a controlled access area.

Tamper evidence is provided by the use of Loctite 425 blue epoxy material covering the chassis access screws.

Please note manufacturing may apply epoxy to additional screws, however the screws highlighted in the figures **must** be properly coated.

See the following figures (2-7) for the appropriate chassis screws.

Figure 2: ES2440 Tamper Evidence (2 screws)

Figure 3: ES820 Tamper Evidence (3 screws)

Figure 4: ES520 Version 1 (Front) Tamper Evidence (4 screws)

Figure 5 ES520 Version 1 (Rear) Tamper Evidence (4 screws)

Figure 6 ES520 Version 2 (Front) Tamper Evidence (3 screws)

Figure 7 ES520 Version 2 (Rear) Tamper Evidence (4 screws)

Tamper Detection

If evidence of tampering is detected:

- Immediately power down the FMP.
- Disconnect the FMP from the network.
- Notify the appropriate administrators of a physical security breach.

6.0 Security Policy for Mitigation of Other Attacks Policy

No special mechanisms are built in the FMP; however, the cryptographic modules are designed to mitigate several specific attacks above the FIPS defined functions. Additional features that mitigate attacks are listed here:

- The MSP Dynamic Secret Encryption Key is changed at least once every 24 hours, with 4 hours being the factory default duration: Mitigates key discovery.
- In the MSP, the second Diffie-Hellman key exchange produces a dynamic common secret key in each of the FMPs by combining the other FMP's dynamic public key with the FMP's own dynamic private key: *Mitigates "man-in-the-middle" attacks*.
- In MSP, RSN and IPsec key exchanges after the first Diffie-Hellman exchange are encrypted: *Mitigates* encryption key sniffing by hackers.
- In MSP compression and encryption of header information inside of the frame, making it impossible to guess. MSP, RSN, or IPsec uses strong encryption further protects the information. Any bit flipping would be useless in this frame to try to change the IP address of the frame: *Mitigates active attacks from both ends*.
- In both MSP and RSN encryption happens at the datalink layer so that all network layer information is hidden: *Mitigates hacker's access to the communication.*
- In MSP Multi-Factor Authentication: The FMP guards the network against illicit access with "multi-factor authentication", checking three levels of access credentials before allowing a connection. These are:
 - Network authentication requires a connecting device to use the correct shared identifier for the network
 - *Device authentication* requires a connecting device to be individually recognized on the network, through its unique device identifier.
 - User authentication requires the user of a connecting device to enter a recognized user name and password.

7.0 FIPS Mode

The following are the requirements for FIPS mode:

- 1. The FMP settings shall be initialized to factory default.
- 2. You must verify the FMP has the proper seals as described in section '6.0 Physical Security Policy'.
- 3. The FMP must be in FIPS Mode.
 - The operating mode can be determined by whether the CLI prompt displays a FIPS suffix; (e.g.: MP001-FIPS. The GUI Mode Indicator (Left Top of the GUI Screen) will show whether the FMP is in Normal or FIPS mode.
 - FIPS operating mode is the default mode of the FMP. Normal operating mode does not comply with FIPS. FIPS can be disabled or enabled through the management user interface (CLI or GUI) by the Administrator.
- 4. The following configuration guidelines are required for FIPS compliance. Failure to adhere to these guidelines will result in the module operating in a non-approved mode of operation:

Configuration Parameter	CLI command	GUI		
		Web Page	Field	
Reset FMP to factory defaults	reset default	System	restore factory defaults	
		Options		
FIPS mode must be enabled; by default FIPS	set fips on	Security	operating mode	
is enabled.	show fips			
The SNMP agent must be disabled; by default	set snmp –enable n	Not available	e on GUI	
SNMP is disabled.	show snmp			
The Access ID for a mesh network shall be generated using an approved DRBG	set accessid	Security	change access ID	
The PSK shall be entered using hex values for	add bss –keytype hex	Add BSS	preshared Key must be	
RSN, the passphrase method shall not be used.	update bss –keytype hex	Edit BSS	'key'	
WIFI Access Points must be configured to use	add bss -1X11i <mode></mode>	Add BSS	The 'Security Suite'	
WPA2-PSK or WPA2-enterprise mode.	update bss –1X11i <mode></mode>	Edit BSS	selection must be 'wpa2psk' or 'wpa2'	
mode = [wpa2 wpa2psk]				
The PSK shall be entered using hex values for	set ipsec-psk -hex	IPsec	key type must be 'hex'	
used.		Add Pre-		
		Shareu Key		
IPsec has to be configured as SuiteB128 or	set ipsec -crypto <v></v>	IPsec	suites	
	show ipsec	Settings		

Security	Policv	for the	Fortress	Mesh	Point
Coounty			1 010000		

Configuration Parameter	CLI command		GUI
IPsec sessions must be limited by KB usage. V >=1 and <=256,000,000	set ipsec –salifeKB <v> show ipsec</v>	IPsec Settings	SA Lifetime
Only ECC type keypairs keys must be created. RSA2048 key types shall not be generated. V = [ec384 ec256]	generate keypairtype <v> generate csrtype <v> show keypair</v></v>	Certificate	generate 'Key Pair and CSR'
Any configured external RADIUS network connection must be securely tunneled within an IPsec or MSP tunnel.	add auth update auth show auth	RADIUS	server list

8.0 Customer Security Policy Issues

General Dynamics Mission Systems expects that after the FMP's installation, any potential *customer* (government organization or commercial entity or division) *employs its own internal security policy* covering all the rules under which the FMP(s) and the customer's network(s) must operate. In addition, the customer systems are expected to be upgraded as needed to contain appropriate security tools to enforce the internal security policy.

9.0 Acronyms

Table 16: Acronyms

Acronym	Description
CKG	Cryptographic Key Generation
CSP	Critical Security Parameters
DH	Diffie-Hellman
DRBG	Deterministic Random Bit Generator
ECDH	Elliptic-curve Diffie-Hellman
FMP	Fortress Mesh Point:
	Fortress ES520 (Deployable Mesh Point), ES820 (Vehicle Mesh Point), and ES2440 (High-Capacity Infrastructure Mesh Point).
MSP	Mobile Security Protocol
	Fortress proprietary encryption protocol.
PDU	Protocol Data Unit. (a network frame)
PSK	Pre-Shared Key
RSN	Robust Secure Network
	Also known as WPA2.
UI	User Interface.
	Refers to the command line and the HTTPS browser management interfaces.