
Luna2 Security Policies

DOCUMENT CLASS: Overview

CODE NAME: n/a

SECURITY LEVEL: Unrestricted

ORIGINATOR: Wayne A. Reed

DEPARTMENT: Engineering

DATE ORIGINATED: 21 October 1998

DOCUMENT NUMBER: 800513

VERSION: 2.40

PROJECT NO: 5500-100

PRINTED BY: Wayne Reed

PRINTED ON: September 20, 2000 at 7:59 AM
Select embedded fields and press F9 to update.

APPROVALS

Roger Hebb

Manager, Firmware
Development

Date

Bruno Couillard

Chief Technical
Officer

Date

Wayne Reed

V.P., Engineering _____________________________
Date

 (c) Copyright 1997-98 Chrysalis-ITS, Inc.

All rights reserved. Canadian Security Establishment (CSE) and National Institute of Standards and Technology (NIST) are
granted the right to copy and distribute this document provided such reproduction is in its entirety.

Revision History

Revision Date Description

0.10 22 Oct. 1997 Draft

0.20 08 April 1998 Edit by Technical Writer

0.30 10 April 1998 Added document number and made document consistent with other
design documents.

1.00 28 April 1998 Added bit descriptions for SCP and CCM components.

1.10 29 June1998 Updated bit descriptions for SCP component.

2.00 21 August 1998 Relaxed classification; revised for submission to NIST and public
domain; distinguished between Luna2/LunaCA/LunaCA3.

2.10 24 August 1998 Revised TPV key single function bit; added a statement on physical
security.

2.20 21 September 1998 Modified copyright and security classification.

2.30 20 October 1998 Added algorithm matrix and FPV matrix.

2.40 21 October 1998 Added Luna command session and login state information.

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted i

Table of Contents
1. Introduction ...1

1.1. Purpose...1

1.2. Scope..1

1.3. Intended Audience..1

2. Luna2 Overview...1

3. Security Policy Tools ..2
3.1. Fixed Policy Vector (FPV)...2

3.1.1. Number of SO Login Fails Allowed..2

3.1.2. Secret Key Policy...2

3.1.3. Private Key Policy..2

3.1.4. Token Security Policy ..3

3.2. Cryptographic Algorithm Vector (CAV) ...4

3.3. Token Policy Vector (TPV) ...5

3.3.1. Number of User Login Fails Allowed ...5

3.3.2. Minimum/Maximum PIN Length ..5

3.3.3. Local Policies...5

4. Identification and Authentication (I&A) ...6

5. Discretionary Access Control (DAC) ...6

6. Object Reuse ...7

7. References...7

APPENDIX A. Cryptographic Algorithms Support..8

APPENDIX B. Policy Vector Settings...10

APPENDIX C. Session And Login States Required For Luna Token Commands ...12

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted ii

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 1

1. Introduction

1.1. Purpose
This document describes the security policies implemented by the Luna2 PC Card (Luna2 token) and how
the design of its firmware enforces these policies.

1.2. Scope
This document addresses the Luna2 token’s security policies.

1.3. Intended Audience
The intended audience for this document is: the Luna2 Engineering and Product Management Team,
external agencies for validation or endorsement of the Luna2 token; selected industry partners; and
potential users of Luna2 tokens that want to understand the security policies of the product for FIPS
operations.

The reader of this document should be familiar with the PKCS#11 standard [PKCS#11] defined by RSA
Laboratories.

2. Luna2 Overview
The Luna2 token securely stores data and keying material inside its cryptographic boundary. The Luna2
token also performs cryptographic operations on data provided by external applications using the keying
material stored in the token. These abilities are defined as key management, object management, and
cryptographic capability.

Before a Luna2 token can be used to perform any cryptographic or key/object management functions, the
token must receive a valid operator identity (also known as a user number), as well as valid authentication
code (a PIN). These two inputs are processed by the token during a "LOGIN" command. When this
command has completed successfully, the token allows the user to perform operations based on the policy
settings defined for that token.

The token has the ability to distinguish two categories of users: super-users and normal users. The super-
user category is referred to as the Security Officer (SO) and the normal user category is referred to as the
user. A token can have only one SO. The SO is allowed to perform all of the cryptographic, key and object
management functions provided by the token, as well as a set of functions called the SO functions. These
SO functions are available only to the SO, and they allow the SO to manage the token policy.

For a Luna2 token, there is no limit on the number of users that can be created by the SO. All users are
subjected to the same policy settings as those established by the SO. However, each user has its own
authentication code (or PIN) initially assigned under control of the SO, which is used internally to protect the
data the user owns.

The Luna2 token meets and is validated against FIPS 140-1 level 2 physical security requirements. For
example, one aspect of physical security is through tamper evidence provided by the case: an attacker
cannot get into the Luna2 token and access plaintext keys in an operational state. Contact Chrysalis-ITS
for more details of the physical security used to protect the Luna2 token.

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 2

3. Security Policy Tools
The Luna2 token provides two levels of security policy enforcement. A vector that is loaded on the token
during manufacturing dictates the first level of security. This vector, called the Fixed Policy Vector (FPV),
establishes an envelope of security that cannot be modified after manufacturing.

The second level of security is provided by policy vector that can be modified by the token's SO. This
vector is called the Token Policy Vector (TPV), and consists of a series of policy settings that can be
established and modified by the token’s legitimate SO.

3.1. Fixed Policy Vector (FPV)
The FPV contains the settings necessary to enforce policy rules that apply across a wide range of token
users, regardless of their organizational policies. For example, one bit in the FPV defines whether the token
can be exported. In an exportable version, the token provides a reduced set of algorithms and imposes
limitations on maximum key lengths as required by export regulations.

The FPV cannot be modified by the SO or any of the users. The FPV is put on the token when it is
manufactured and remains in place until the token is destroyed or the firmware is erased. The integrity of
the FPV is maintained through the same mechanism used to protect the executable code from being
modified. This mechanism is a 32-bit CRC computation.

The format of the FPV is a 32-bit vector that is divided into four fields of eight bits. These fields and their
contents are defined in the following sections.

3.1.1. Number of SO Login Fails Allowed
This field defines the number of consecutive failed login attempts that can be made by the SO before the
token erases the flash memory to prevent illegal access to its contents.

This security measure prevents an impostor from cracking the SO’s password on the token.

3.1.2. Secret Key Policy
The following table defines the flags that identify the security policies that are followed for secret key
objects.

Name Description

FPV_SEC_KEY_POLICY_SENSITIVE This bit determines whether a secret key object must always be made
sensitive or if it can be determined by the high-level application using the
token. When this bit is set, all secret keys stored on the token are sensitive.
The keys are encrypted when in the flash memory and they can be
extracted only outside of the token in encrypted form using the
GESC_WRAP_KEY function.
This bit must be set for FIPS-compliant tokens.

FPV_SEC_KEY_POLICY_NO_CREATE This bit determines whether a secret key object can be created by an
external application using the token, instead of being generated by the
token. When this bit is set, an external application cannot create a secret
key on the token; it is not possible to enter a secret key in plain text form on
the token.
This bit must be set for FIPS-compliant tokens.

3.1.3. Private Key Policy
The following table defines the flags that identify the security policies that are followed for private key
objects.

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 3

Name Description

FPV_PRI_KEY_POLICY_SENSITIVE This bit determines whether a private key object must always be made
sensitive or if it can be determined by the high-level application using the
token through PKCS#11. When this bit is set, all private keys stored on the
token must be flagged as sensitive whether or not the high-level application
requested this flag when the keys were created. When this bit is set, all
private keys are encrypted while stored in flash memory.
Note: After a private key is sensitive, it cannot be extracted from the token
even in encrypted format.
This bit must be set for FIPS-compliant tokens.

FPV_PRI_KEY_POLICY_NO_CREATE This bit determines whether a private key object can be created by an
external application using the GESC_CREATE_OBJ call, instead of being
generated by the token. When this bit is set, an external application cannot
create a private key on the token; it is not possible to enter a private key in
plain text form on the token.
This bit must be set for FIPS-compliant tokens.

3.1.4. Token Security Policy
The following table defines the flags that identify the security policies that dictate the behavior of the token
in general.

Name Description

FPV_SECURITY_POLICY_DOMESTIC This bit determines whether the token can be exported. When this bit is set,
the token is configured for the domestic market and cannot be exported.
This bit is verified internally every time a cryptographic function implying an
encryption or a decryption is performed. If the bit is set, no restrictions exist
on key sizes. If the bit is not set, a limitation of 56 bits is applied to any
symmetric keys used for encryption or decryption, and a 512-bit limitation
on asymmetric keys used for wrapping and unwrapping operations.
Signature and verification operations are not restricted in terms of key
lengths.

FPV_SECURITY_POLICY_SERVER This bit indicates that the token is intended for use in a server environment.
When this bit is set, server operations are enabled. For a Luna2 token, this
bit is not set.

FPV_SECURITY_POLICY_USE_CAV This bit is used by the firmware to determine whether the token was loaded
with Cryptographic Algorithm Vector (CAV). When this bit is set, CAV is
present. This setting is intended for tokens that were manufactured before
CAV was created and that are being updated with new firmware.

FPV_SECURITY_POLICY_WRAPPING_TOKEN This bit determines whether RSA private keys can be wrapped. When this
bit is set, an RSA private key can be wrapped.

FPV_SECURITY_POLICY_USE_M_OF_N This bit defines whether the token can perform M of N activation. When this
bit is set, the token can be configured to perform M of N activation. M of N
activation is not a feature ordinarily enabled on a Luna2 token.

FPV_SECURITY_POLICY_USE_RAW_RSA This bit determines whether RAW RSA operations can be performed on the
token. When this bit is set, RAW RSA operations are allowed. RAW RSA
provides access to RSA to perform encrypt and decrypt operations on data
without any padding.

FPV_SECURITY_POLICY_SPECIAL_CLONING This bit determines whether the token can participate in key cloning. When
this bit is set, key cloning can be performed. Key cloning is not a feature
ordinarily enabled on a Luna2 token.

FPV_ENABLE_CCM This bit determines whether a custom command module can be loaded
onto the token. When this bit is set, a custom command module can be
loaded onto the token.

This bit must be cleared (i.e., zero) for FIPS-compliant tokens.

FPV_PIN_MUST_USE_SP This bit determines if the serial communication port must be used to enter
an authentication code. When this bit is set, an authentication code can
only be entered through the serial communication port. When this bit is

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 4

Name Description

cleared, authentication codes are entered via the host computer. Use of
the serial communication port is NOT a feature of a Luna2 token; this bit is
clear on a Luna2 token.

FPV_MOFN_MUST_USE_SP This bit determines if the serial communication port must be used to enter
the M of N secret. When this bit is set, the M of N secret can only be
entered through the serial communication port. When this bit is cleared,
the M of N secret is entered via the host computer. Use of the serial
communication port is NOT a feature of a Luna2 token; this bit is clear on a
Luna2 token.

FPV_KCV_MUST_USE_SP This bit determines if the serial communication port must be used to enter
the key cloning domain identifier. When this bit is set, the key cloning
domain identifier can only be entered through the serial communication
port. When this bit is cleared, the key cloning domain identifier is entered
via the host computer. Use of the serial communication port is NOT a
feature of a Luna2 token; this bit is clear on a Luna2 token.

3.2. Cryptographic Algorithm Vector (CAV)
CAV contains a series of flags that identify which cryptographic algorithms are active on a token. One bit is
defined for each algorithm that the token firmware can perform.

Name Description

CA_CAV_DES_ENCRYPT When set, the token can perform a DES encryption operation.
CA_CAV_DES_DECRYPT When set, the token can perform a DES decryption operation.
CA_CAV_3DES_ENCRYPT When set, the token can perform a triple-DES encryption operation.
CA_CAV_3DES_DECRYPT When set, the token can perform a DES decryption operation.
CA_CAV_RC2_ENCRYPT When set, the token can perform an RC2 encryption operation.
CA_CAV_RC2_DECRYPT When set, the token can perform an RC2 decryption operation.
CA_CAV_RC4_ENCRYPT When set, the token can perform an RC4 encryption operation.
CA_CAV_RC4_DECRYPT When set, the token can perform an RC4 decryption operation.
CA_CAV_RC5_ENCRYPT When set, the token can perform an RC5 encryption operation.
CA_CAV_RC5_DECRYPT When set, the token can perform an RC5 decryption operation.
CA_CAV_CAST_ENCRYPT When set, the token can perform a CAST encryption operation.
CA_CAV_CAST_DECRYPT When set, the token can perform a CAST decryption operation.
CA_CAV_CAST3_ENCRYPT When set, the token can perform a CAST3 encryption operation.
CA_CAV_CAST3_DECRYPT When set, the token can perform a CAST3 decryption operation.
CA_CAV_CAST5_ENCRYPT When set, the token can perform a CAST5 encryption operation.
CA_CAV_CAST5_DECRYPT When set, the token can perform a CAST5 decryption operation.
CA_CAV_MD2 When set, the token can perform an MD2 operation.
CA_CAV_MD5 When set, the token can perform an MD5 operation.
CA_CAV_SHA_1 When set, the token can perform an SHA-1 operation.
CA_CAV_RSA When set, the token can perform an RSA operation.
CA_CAV_DSA When set, the token can perform a DSA operation.
CA_CAV_DH When set, the token can perform a Diffie Hellman operation.

There are two fields in CAV that each consist of four bits. These fields represent the major and minor
version of CAV.

Name Description

CA_CAV_VERSION_MAJOR These four bits represent the major version number of the CAV vector.
CA_CAV_VERSION_MINOR These four bits represent the minor version of the CAV vector.

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 5

3.3. Token Policy Vector (TPV)
The TPV contains the settings necessary to enforce policy rules locally in an organization. For example,
one bit in the TPV defines whether the token can perform a signature operation using a signing key
generated by an outside process or if it must use an internally-generated key for this function. The TPV can
be modified by the token’s SO. The TPV contents are used by the internal code to validate the operations
performed by the token’s USER.

The format of the TPV is a 32-bit vector that is divided into four fields of eight bits. These fields and their
contents are defined in the following sections.

3.3.1. Number of User Login Fails Allowed
This field defines the number of consecutive failed login attempts that can be made by a USER before the
USER gets locked out or the USER’s data is erase. This security feature prevents illegal access to the
USER’s data and keys: it prevents an impostor from cracking the USER’s password on the token. Whether
the user is locked out or the data is erased depends upon the "USER zeroize" bit. If the USER zeroize bit
is disabled, too many failed login attempts results in the USER getting locked out. In this case, a USER
must make a request to the SO to regain access to the token. The SO also provides a new password for
the USER.

3.3.2. Minimum/Maximum PIN Length
These two fields define the minimum and maximum length restrictions for a USER's PIN.

3.3.3. Local Policies
The following table defines the flags that identify the security policies that dictate the behavior of the users
on the token.

Name Description

TPV_USER_ZEROIZE This bit determines whether the token can be zeroized by a normal user or if only
the SO can zeroize the token.
This bit indicates whether the token is centrally controlled.
When this bit is set, it indicates that a valid token user can zeroize the token. This bit
enables using the token in an environment where the SO is not commonly used.
When this bit is set, the SO cannot change a user password, and a user is zeroized
after too many unsuccessful login attempts.

TPV_USER_FW_UPDATE This bit determines whether the firmware can be updated by a normal user or if only
the token’s SO can update the firmware. When this bit is set, a normal user can
perform the firmware update.

TPV_M_OF_N_ACTIVATION This bit determines whether M of N activation is required for a user to gain access to
the token. When this bit and the FPV_SECURITY_POLICY_USE_M_OF_N bit in
the FPV is set, the token is not activated until the required number of parts to a split
secret have been entered. Ordinarily, this bit is not set for Luna2 tokens.

TPV_KEY_ATTRIB_LOCK This bit determines whether the flag attributes of a key can be modified once the key
is a valid object on the token. When this bit is set, it indicates that the flag attributes
of a key cannot be modified after they have been established. For example, if this bit
is set and a DES key is created for encryption and decryption, these attributes
cannot be changed to wrap and unwrap once the key exists on the token.

TPV_KEY_SINGLE_FUNCTION This bit determines whether a key can be used to perform multiple types of
operations (i.e., use a key for encrypting, signing, and wrapping). When this bit is
set, it indicates that keys can be used only to perform single functions. For
symmetric keys, a single function is considered to be a pair of related functions such
as encryption/decryption, wrapping/unwrapping, or sign/verify. . With the validated
release of Luna2, multiple use of a key is allowed regardless of the value of

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 6

Name Description

TPV_KEY_SINGLE_FUNCTION.
TPV_SIGNING_KEY_LOCAL When performing a signing operation, the private key used may have been

generated locally or provided by an external source. In most environments, it is
preferable to have the signing/verifying key pair generated by the token and never
extracted from it. However, in certain cases the signing keys are generated
externally and loaded on the token for subsequent signature operations. When this
bit is set, it indicates that externally generated keys cannot be used for signing
operations performed by the token.

TPV_MOFN_MUST_USE_SP This bit determines whether the M of N secret must be entered through the serial
communication port. When this bit and the FPV_MOFN_MAY_USE_SP bit in the
FPV is set, the token must use the serial communication port to enter the M of N
secret. If the FPV_MOFN_MAY_USE_SP bit is not set, the
TPV_MOFN_MUST_USE_SP bit is ignored and the M of N secret must be entered
through the host computer. Ordinarily, this bit is not set for Luna2 tokens.

TPV_KCV_MUST_USE_SP This bit determines whether the key cloning domain identifier must be entered
through the serial communication port. When this bit and the
FPV_KCV_MAY_USE_SP bit in the FPV is set, the token must use the serial
communication port to enter the key cloning domain identifier. If the
FPV_KCV_MAY_USE_SP bit is not set, the TPV_KCV_MUST_USE_SP bit is
ignored and the key cloning domain identifier must be entered through the host
computer. Ordinarily, this bit is not set for Luna2 tokens.

4. Identification and Authentication (I&A)
The Luna2 token enforces an identity-based user authentication policy. For normal users, the user number
and a valid PIN must be provided to the token before access to private data and token services can be
granted. For the SO, only a PIN is required.

Note: Normal users also have a text-based name associated with them. The name corresponding to a
particular user number can be queried from the token.

The PINs for the SO and users can be changed at any time by their respective owners. The SO can also
re-instate users with lost PINs. Re-instating users does not affect the cryptographic material and data
owned by the user and protected under the old PIN.

The Luna2 token implements policy that limits the number of login attempts. This feature prevents an
exhaustive search approach for finding the PIN of the SO or user. The implementation of this feature differs
from that of an SO PIN search and that of a user PIN search.

For a user PIN search:

• If “n” consecutive user logon attempts fail, the token flags the event in the user’s
authorization vector (UAV). This locks out the user until the SO logs back on to the token
and unlocks the user. (The value of "n" is defined by the SO in the TPV.)

 For an SO PIN search:

• If “n” consecutive SO logon attempts fail, the token is zeroized and its operational state
goes to ZEROIZED. (The value of "n" is defined in the FPV, which is defined when a
Luna2 token is manufactured and cannot be modified without invalidating the CRC value of
the software load.)

5. Discretionary Access Control (DAC)
Every data object on the token can be public or private. Private data objects are labeled with a number that
corresponds to the owner and can be accessed only by the legitimate owner. A user cannot create a key or
certificate object as a public object. Only data objects can be public or private.

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 7

The token does not allow for any granularity of ownership other than that of individual or public (i.e., a data
object cannot be owned by two users and restricted from other users). Also, the ownership of an object
implies read/write/modify/execute access to the object, which means full access rights to the object.

6. Object Reuse
The token enforces an object reuse policy in that every object is allocated a portion of memory (flash or
SRAM). The policy also ensures that no other objects are placed in the same memory location unless all
previous memory content are initialized and purged. When cryptographic functions are performed, a
cryptographic context is created to hold data required by the function (e.g., a DES key schedule for a DES
function or an MD5 chaining vector). The cryptographic context only exists in SRAM memory and is not
assigned to any functions except those defined by its owner. The memory assigned to a cryptographic
context is always purged of its content before being handed over to a function.

7. References
[PKCS#11] PKCS #11: Cryptographic Token Interface Standard, RSA Laboratories, Draft 1, version

2.01, September 12,1997.

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 8

APPENDIX A. Cryptographic Algorithms Support

Encrypt/Decrypt:

• DES-ECB
• DES-CBC
• 3-DES-ECB
• 3-DES-CBC
• RC2-ECB
• RC2-CBC
• RC4
• RC5-ECB
• RC5-CBC
• CAST-ECB
• CAST-CBC
• CAST3-ECB
• CAST3-CBC
• CAST5-ECB
• CAST5-CBC
• RSA X-509

Digest:

• MD2
• MD5
• SHA-1

Sign/Verify:

• RSA -1024
• RSA -2048
• DSA
• DES-MAC
• 3-DES-MAC
• RC2-MAC
• RC5-MAC
• CAST-MAC
• CAST3-MAC
• CAST5-MAC
• SSL3-MD5-MAC
• SSL3-SHA1-MAC
• HMAC-SHA1
• HMAC-MD5

Generate Key:

• DES
• double length DES
• triple length DES
• RC2
• RC4
• RC5
• CAST
• CAST3
• CAST5
• PBE-MD2-DES
• PBE-MD5-DES
• PBE-MD5-CAST
• PBE-MD5-CAST3
• PBE-SHA-1-CAST5
• GENERIC-SECRET
• SSL PRE-MASTER

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 9

Generate Key Pair:

• RSA-1024
• RSA-2048
• DSA-1024
• DH-1024

Wrap Symmetric Key Using Symmetric Algorithm:

• DES-ECB
• 3-DES-ECB
• RC2-ECB
• CAST-ECB
• CAST3-ECB
• CAST5-ECB

Wrap Symmetric Key Using Asymmetric Algorithm:

• RSA-1024
• RSA-2048

Wrap Asymmetric Key Using Symmetric Algorithm:

• 3-DES-CBC1

Unwrap Symmetric Key With Symmetric Algorithm:

• DES-ECB
• 3-DES-ECB
• RC2-ECB
• CAST-ECB
• CAST3-ECB
• CAST5-ECB

Unwrap Symmetric Key With Asymmetric Algorithm:

• RSA-1024
• RSA-2048

Unwrap Asymmetric Key With Symmetric Algorithm:

• DES-CBC
• 3-DES-CBC
• CAST-CBC
• CAST3-CBC
• CAST5-CBC

Derive Key Value:

• DH-1024
• concatenate Base & Key
• concatenate Base & Data
• concatenate Data & Base
• XOR Base and Data
• Extract Key from Key
• MD2 Derivation
• MD5 Derivation
• SHA-1 Derivation
• SSL3-Master
• SSL3-Key & MAC

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 10

APPENDIX B. Policy Vector Settings

Standard
Luna2
Domestic

Standard
Luna2
Export

Token Policy Vector Settings

TPV_USER_ZEROIZE 1 1

TPV_USER_FW_UPDATE 0 0

TPV_M_OF_N_ACTIVATION 0 0

TPV_KEY_ATTRIB_LOCK 1 1

TPV_KEY_SINGLE_FUNCTION 0 0

TPV_SIGNING_KEY_LOCAL 1 1

TPV_MAX_PIN_LEN 48 48

TPV_MIN_PIN_LEN 4 4

TPV_LOGIN_FAILS_ALLOWED 10 10

Fixed Policy Vector Settings

FPV_SECURITY_POLICY_DOMESTIC 1 0

FPV_SECURITY_POLICY_SERVER 0 0

FPV_SECURITY_POLICY_USE_CAV 0 0

FPV_SECURITY_POLICY_WRAPPING_TOKEN 0 0

FPV_SECURITY_POLICY_USE_M_OF_N 0 0

FPV_SECURITY_POLICY_USE_RAW_RSA 1 1

FPV_SECURITY_POLICY_SPECIAL_CLONING 0 0

FPV_ENABLE_CCM 0 0

FPV_SEC_KEY_POLICY_SENSITIVE 1 1

FPV_SEC_KEY_POLICY_NO_CREATE 1 1

FPV_PRI_KEY_POLICY_SENSITIVE 1 1

FPV_PRI_KEY_POLICY_NO_CREATE 1 1

FPV_SO_LOGIN_FAILS_ALLOWED 3 3

FPV_PIN_MUST_USE_SP 0 0

FPV_MOFN_MUST_USE_SP 0 0

FPV_KCV_MUST_USE_SP 0 0

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 11

Standard
Luna2
Domestic

Standard
Luna2
Export

Cryptographic Algorithm Vector Settings

CA_CAV_VERSION_MAJOR 15 15

CA_CAV_VERSION_MINOR 15 15

CA_CAV_DES_ENCRYPT 1 1

CA_CAV_DES_DECRYPT 1 1

CA_CAV_3DES_ENCRYPT 1 1

CA_CAV_3DES_DECRYPT 1 1

CA_CAV_RC2_ENCRYPT 1 1

CA_CAV_RC2_DECRYPT 1 1

CA_CAV_RC4_ENCRYPT 1 1

CA_CAV_RC4_DECRYPT 1 1

CA_CAV_RC5_ENCRYPT 1 1

CA_CAV_RC5_DECRYPT 1 1

CA_CAV_CAST_ENCRYPT 1 1

CA_CAV_CAST_DECRYPT 1 1

CA_CAV_CAST3_ENCRYPT 1 1

CA_CAV_CAST3_DECRYPT 1 1

CA_CAV_CAST5_ENCRYPT 1 1

CA_CAV_CAST5_DECRYPT 1 1

CA_CAV_MD2 1 1

CA_CAV_MD5 1 1

CA_CAV_SHA_1 1 1

CA_CAV_RSA 1 1

CA_CAV_DSA 1 1

CA_CAV_DH 1 1

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 12

APPENDIX C. Session And Login States Required For Luna Token
Commands

Command
To

Token

No
Session

Open

Session
Open, No

Login

SO
Logged

On

User
Logged

On

Token Main Module Commands
LUNA_ZEROIZE √
LUNA_INIT_TOKEN √
LUNA_GET √
LUNA_GET_USV √
LUNA_SET_TPV √
LUNA_FW_UPDATE √

Session Manager Commands
LUNA_OPEN_ACCESS √
LUNA_CLEAN_ACCESS √
LUNA_CLOSE_ACCESS √
LUNA_OPEN_SESSION √
LUNA_CLOSE_SESSION √
LUNA_CLOSE_ALL_SESSIONS √
LUNA_GET_SESSION_INFO √
LUNA_EXTRACT_CONTEXTS √
LUNA_INSERT_CONTEXTS √

User Module Commands
LUNA_GET_USER_LIST √
LUNA_GET_USER_NAME √
LUNA_LOGIN √
LUNA_LOGOUT √
LUNA_SET_PIN √
LUNA_INIT_PIN √
LUNA_CREATE_USER √
LUNA_DELETE_USER √

Object Management Module
LUNA_CREATE_OBJECT √
LUNA_COPY_OBJECT √
LUNA_DESTROY_OBJECT √
LUNA_GET_OBJECT_SIZE √
LUNA_GET_ATTRIBUTE_VALUE √
LUNA_GET_ATTRIBUTE_LENGTH √
LUNA_MODIFY_OBJECT √
LUNA_FIND_OBJECTS √

Random Number Generator Module
LUNA_GET_RANDOM √
LUNA_SEED_RANDOM √

Key Management Module
LUNA_GENERATE_KEY √
LUNA_GENERATE_KEY_W_VALUE √
LUNA_GENERATE_KEY_PAIR √
LUNA_WRAP_KEY √
LUNA_UNWRAP_KEY √
LUNA_UNWRAP_KEY_W_VALUE √
LUNA_DERIVE_KEY √
LUNA_DERIVE_KEY_W_VALUE √
LUNA_MFG_LOAD √

Cryptographic Algorithm Module

Overview  Luna2 Security Policies Document #800513 V2.40

Unrestricted 13

Command
To

Token

No
Session

Open

Session
Open, No

Login

SO
Logged

On

User
Logged

On
LUNA_ENCRYPT_INIT √
LUNA_ENCRYPT_INIT_W_VALUE √
LUNA_ENCRYPT √
LUNA_ENCRYPT_FIFO √
LUNA_ENCRYPT_END √
LUNA_DECRYPT_INIT √
LUNA_DECRYPT_INIT_W_VALUE √
LUNA_DECRYPT √
LUNA_DECRYPT_FIFO √
LUNA_DECRYPT_END √
LUNA_DECRYPT_RAW_RSA √
LUNA_DIGEST_INIT √
LUNA_DIGEST √
LUNA_DIGEST_FIFO √
LUNA_DIGEST_KEY √
LUNA_DIGEST_KEY_VALUE √
LUNA_DIGEST_END √
LUNA_SIGN_INIT √
LUNA_SIGN_INIT_W_VALUE √
LUNA_SIGN √
LUNA_SIGN_FIFO √
LUNA_SIGN_END √
LUNA_SIGN_UPDATE_KEY √
LUNA_SIGN_FINAL_DERIVE_KEY √
LUNA_VERIFY_INIT √
LUNA_VERIFY_INIT_W_VALUE √
LUNA_VERIFY √
LUNA_VERIFY_FIFO √
LUNA_VERIFY_END √
LUNA_GET_MECH_LIST √
LUNA_GET_MECH_INFO √
LUNA_SELF_TEST √
LUNA_SET_UP_MASKING_KEY √
LUNA_CLONE_AS_SOURCE √
LUNA_CLONE_AS_TARGET_INIT √
LUNA_CLONE_AS_TARGET √
LUNA_GEN_TKN_KEYS √
LUNA_LOAD_CERT √
LUNA_GEN_KCV √
LUNA_LOAD_CUSTOMER_VERIFICATION_KEY √
LUNA_M_OF_N_GENERATE √
LUNA_M_OF_N_ACTIVATE √
LUNA_M_OF_N_MODIFY √
LUNA_ISAKMP_INIT √
LUNA_ISAKMP_PROCESS_PACKET √
LUNA_ISAKMP_END √

Custom Command Module
LUNA_LOAD_CUSTOM_MODULE √
LUNA_LOAD_ENCRYPTED_CUSTOM_MODULE √
LUNA_UNLOAD_CUSTOM_MODULE √
LUNA_EXECUTE_CUSTOM_COMMAND √
LUNA_GET_CUSTOM_MODULE_LIST √
LUNA_GET_CUSTOM_MODULE_INFO √

