BCM58200 Series: BCM58201, BCM58202

Non-Proprietary Security Policy
Document Version 0.6

Broadcom, Inc.

Revision Date: 2021-04-22

TABLE OF CONTENTS

1. MODULE OVERVIEW	3
2. SECURITY LEVEL	
3. MODES OF OPERATION	
4. PORTS AND INTERFACES	
5. IDENTIFICATION AND AUTHENTICATION POLICY	11
6. ACCESS CONTROL POLICY	12
DEFINITION OF SERVICES	12
DEFINITION OF CRITICAL SECURITY PARAMETERS (CSPs)	16
7. OPERATIONAL ENVIRONMENT	
8. SECURITY RULES	26
9. PHYSICAL SECURITY POLICY	29
Physical Security Mechanisms	29
10. MITIGATION OF OTHER ATTACKS POLICY	30
11. REFERENCES	30
12 DEFINITIONS AND ACRONYMS	31

1. Module Overview

The BCM58200 Series: BCM58201, BCM58202, a single-chip module encased in hard opaque tamper evident IC packaging, is a highly integrated system on a chip. It is marketed in two-part numbers.

- BCM58201A0KFBG: integrated system on a chip with no NFC capabilities
- BCM58202PA0KFBG: integrated system on a chip with NFC capabilities

All devices use the same physical package.

The module runs firmware version 1.1.0 with hash ID e4ef4c0cd87e42d6ae0e567347c78e22efadba5c, as of September 15, 2020.

Figure 1 shows that the BCM58200 Series is composed of two components, the BCM5820X component and the optional NFC component. These modules are interconnected with a SPI (Serial Peripheral Interface bus) connection. The NFC component is purely a peripheral block to BCM5820X for NFC communication. No cryptographic implementation is included in this component; all cryptographic capabilities are encapsulated in the BCM5820X component. The interconnect between BCM5820X and NFC is for data communication only, no cryptographic material or key is passed between the modules.

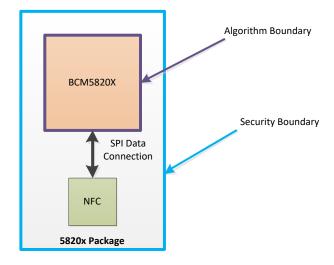


Figure 1 - BCM58200 Top Level Blocks

For the purpose of FIPS140-2 validation, the physical boundary of the chip is used as the security boundary of the cryptographic module.

The BCM58200 Series cryptographic module's FIPS boundary is defined as:

• The external surface of the BCM58200 chip including the hard, opaque encapsulating material that physically protects all module components.

The algorithm boundary is defined as the BCM5820X component.

The figures below illustrate the cryptographic module's physical boundary, interfaces, and logical software execution contexts within the physical boundary.

Figure 2 - Pictures of the Cryptographic Module Physical Boundary: BCM58201

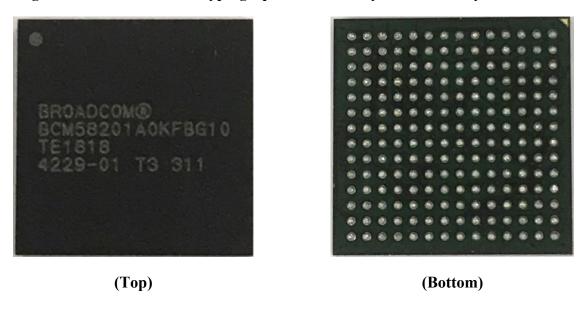
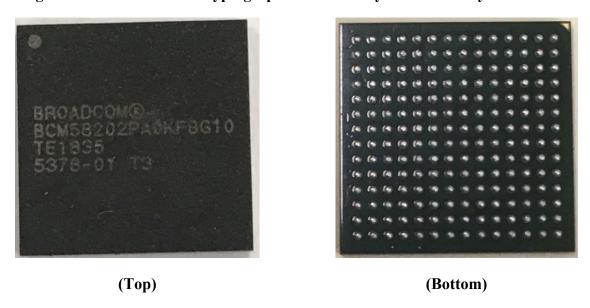



Figure 3 - Pictures of the Cryptographic Module Physical Boundary: BCM58202

58200 Cryptographic Module Clock USB - Control Input to module **Host System Command Parser** - Status output from module - Control Input to module **USB** application - Status output from module runs in user mode, - Data input / output accessible to **Reset Pins** memory region - Control Input to module allocated by the - Status output from module Memory **SPI** – Flash memory Management Unit Secure Boot Image (SBI) of A7. - Data / Code output to module **Power SCAPI** Dedicated IO and core power (Standardized API supply pins separated from layer to access signal pins module crypto HW or crypto <u>UART</u> primitives.) - Error Status output from module **MIPI** Approved Crypto - Data input to module Algorithms <u>NFC</u> - Data input/output

Figure 44 - Block Diagram of Module Interfaces & Logical Software Execution Contexts

2. Security Level

The cryptographic module meets the overall requirements applicable to Level 3 security of FIPS 140-2.

Security Requirements Section Level Cryptographic Module Specification 3 Module Ports and Interfaces 3 3 Roles, Services and Authentication 3 Finite State Model Physical Security 3 **Operational Environment** N/A Cryptographic Key Management 3 EMI/EMC 3 3 Self-Tests 3 Design Assurance N/A Mitigation of Other Attacks

Table 1 - Module Security Level Specification

3. Modes of Operation

FIPS Approved Mode of Operation

The BCM58200 Series cryptographic module supports a single FIPS Approved mode of operation. The user can determine that the cryptographic module is running in FIPS Approved mode of operation when the status output RESET_OUT_L is high. The module does not support a non-Approved mode of operation.

Approved Algorithms

The module implements the following approved and allowed cryptographic algorithms using a hardware crypto engine called [SMAU - Crypto/Auth] block. The same hardware block is used twice in the Secure Memory Access Unit or SMAU. One instance is being used for offloading generic cryptographic operations. The other instance is being used to support secure caching of instruction and data stored externally in encrypted and integrity-protected format. Individual self-tests are conducted after power-on to test the instantiation for generic cryptographic operations. Each algorithm implementation is used during different scenarios. They are never used simultaneously for the same operation. Each algorithm implementation has its own algorithm certificate and has its own power-on self-test.

Table 2 – Approved and Allowed Algorithms

Cryptographic Algorithm	Description	Certificate Number
AES	[SMAU – Crypto/Auth] block, ECB, CBC, CTR Encryption and decryption Key size: 128, 192, 256	5895
AES CCM	[SMAU – Crypto/Auth] block Encryption and decryption Key size: 128, Nonce Len 12, Tag Len 4, 8, 12, 16 Note: Key sizes 192 and 256 were tested but are not implemented.	5896
Cryptographic Key Generation based on DRBG output	DRBG output is used for the following keys. 256-bit ephemeral key pair for ECDH session; output of DRBG used as key. 128/192/256-bit AES key for host requested services. 256-bit HMAC key for host requested service. Keys are generated according to section 4 of SP 800-133 rev 2. All keys are from an unmodified output.	Vendor Affirmed
CVL	ECDSA Signature Generation Component, curve P-256	C222
DRBG	SP800-90A HASH DRBG using SHA-256	2452
DSA	Signature generation, signature verification 2048-bit key, with SHA-256 for signature generation	1486

ECDSA	Signature verification 256-bit key, curve P-256	1593
HMAC- SHA256	[SMAU – Crypto/Auth] block	3870
KAS-SSC	SP800-56A-Rev3 Shared Secret Computation; key establishment methodology provides 128 bits of encryption strength. KAS-SSC is used in conjunction with the KDA below.	Vendor Affirmed
KDA	SP800-56c-rev1 One-Step Key Derivation Function, Section 4.1, Option 1. Key derivation process follows specification in section 4.1 Approved hash function of SHA256 is used.	Vendor Affirmed
KTS	SP800-38F – Key Transport based on AES-CCM with 128-bit of security Key establishment methodology provides 128 bits of encryption strength	5896
RSA	Signature generation, signature verification 2048-bit key with SHA-256	3087
SHA-3	[SMAU – Crypto/Auth] block Digest size: 224-bit, 256-bit, 384-bit, 512-bit	60
SHA256	[SMAU – Crypto/Auth] block	4646

Allowed Non-Approved Algorithms

The module implements the following non-approved, but allowed cryptographic algorithm:

NDRNG: Internal module source utilizing free running oscillators to capture thermal noise as the source of randomness. The NDRNG is used to collect entropy to be fed to the FIPS SP800-90A DRBG. The entropy source assesses at 0.0164 bits of min entropy per 1-bit sample when considering complete 2-bit blocks. The NDRNG seeds the DRBG with 20,000 bits, which is sufficient for the module to claim a security strength of 128 bits. The module generates cryptographic keys whose strengths are modified by available entropy.

4. Ports and Interfaces

The BCM58200 Series Cryptographic Module provides physical ports as listed in Table 3 below.

Table 3 – Physical Ports

Note: the BCM5820X chip has a total of 141 signal pins. Each BCM5820X Interface Group listed in Table 3 contains several BCM58200 pins. Unused Interface Groups will be marked as "Non-Available" because they are currently disabled by the cryptographic module.

Clock group	Control Input	Clock
l cross group		- 26MHz clock
		- 32KHz clock
	Status Output	Clock output
		- 26MHz clock output
Reset group	Control input	One reset input
	Status output	Reset output: Indicates that
		system power supply is stable.
Secure boot	Control Input	- one key zeroization request
		input (MANU_DEBUG)
		- Ten external tamper
		detection (e.g., can be hooked
		up to a temperature sensor or a
	Status Output	voltage sensor. No claims
		made for FIPS mode).
		- One ERROR status.
SPI group:	Data input (code and data)	Code and data from SPI flash
All Code/Data Input is		(clock, device select, and four
authenticated by the module.		data I/O)
USB group:	Data input	Service request input
Device interface used by the	Data output	Service response output
module's operators to make	Control input	(USB differential data bus)
service requests. Requests	Status output	
are authenticated via the		
ECDH secure session.		
UART group:	Status output	Status output
UART0 port is enabled as		(Four UART ports of four
error status output.	Other UART ports are	signals each.)
Other UART ports are	intended for future use:	Intended use in the future:
disabled and logic is put in	Data input	Data received or transmitted for
reset state.	Data output	UART console application
Static Memory Interface	Non-available	Non-available
group:	Intended use in the future:	(chip select, read/write control, 8
Clock to the group block is	Data input	data bit, 20 address bit)

disabled <u>and</u> logic is put in reset state.	Data output	Intended use in the future: Code and data from SRAM or flash memory.
NFC group	Non-available; BCM58202: Data input Data output Not supported in BCM58201; interface port is not present on BCM58201.	(Four antenna connections, two SWP interface ports.): Data received or transmitted for contactless smart card applications.
Smart Card group:	Non-available	Non-available
Clock to the group block is		(Seven interface signals)
disabled and logic is put in	Intended use in the future:	Intended use in the future:
reset state.	Data input	Data received or transmitted for
	Data output	contacted Smart Card
MIDI onoun	Non-available;	applications. (One differential pair for data,
MIPI group	BCM58201:	one differential pair for clock.):
	Data input	Data and clock signals for
	Data output	connecting to external CSI-2
	Not supported in	compliant camera.
	BCM58202; interface	-
	port is not present on BCM58202.	
SDIO group	Non-available;	(Clock, reset, status, command, 8
	Data input	data bit.):
TTL C	Data output	SDIO interface signals
JTAG group:	Non-available	Non-available
Completely disabled by HW in FIPS mode.		
III FIFS mode.		
Module HW\FW\SW		
enforces that non-volatile		
plaintext critical security		
parameters cannot be shared,		
used, or viewed in FIPS		
mode.		
Power group	Power is distributed to	Over 50 power and ground
	the chip using	pins.
	designated IO and core power pins that	
	are completely	
	separated from any	
	signal pin groups.	

Power pins are only	
connected to the	
internal power planes	
of the silicon chip.	

5. Identification and Authentication Policy

Assumption of Roles

The BCM58200 Series cryptographic module supports two operator roles, User and Cryptographic-Officer. Only the authorized user (in either role) could establish a secure session with the cryptographic module. The module is designed to operate with a single entity that is assigned the User and Cryptographic-Officer roles. The user identity is embedded in the module's SBI during manufacturing (Secure Boot Image: an authenticated software extension of the module's BOOT ROM. SBI software is part of the BCM58200 Series cryptographic module). The cryptographic module implements identity-based operator authentication to allow only the authorized user to access cryptographic services.

Authentication is accomplished via a 256-bit ECDSA-based signature verification process. A single 256-bit ECDSA public key is embedded in the SBI. The 256-bit ECDSA public key is used to authenticate the operator during the establishment of an ECDH secure session between the module and the operator on the external host system.

After an operator is authenticated successfully, the operator can assume either the role of the Cryptographic Officer or the role of the User. The module allows the operator to perform both CO and User services.

Role	Type of Authentication	Authentication Data
User	Identity-based operator authentication	256-bit ECDSA signature verification
Cryptographic-Officer	Identity-based operator authentication	• 256-bit ECDSA signature verification

Table 4 - Roles and Required Identification and Authentication

Table 5 - Strengths of Authentication Mechanisms

Authentication Mechanism	Strength of Mechanism
ECDSA Signature Verification (256 bit)	The probability that a random attempt will succeed, or a false acceptance will occur is $1/2^{128}$ which is less than $1/1,000,000$. The probability of successfully authenticating

to the module within one minute is 3,750/2 ¹²⁸ which is less than 1/100,000. The module will only allow one attempt to verify the operator – if that attempt fails the module will be in an error state and must be rebooted to try and become operational again. Please see Section "8. Security Rules" below (security rules imposed by the vendor) for the detail supporting this calculation.
supporting this calculation.

6. Access Control Policy

Definition of Services

The cryptographic module supports the following authenticated services defined in Table 6:

Table 6 - Authenticated Services

Name of Service	Description of Service
Generate Key	This service generates an AES or HMAC key to be used during operator requested services.
AES Encrypt	This service encrypts bulk operator supplied data using a previously generated AES key.
AES Decrypt	This service decrypts bulk operator supplied data using a previously generated AES key.
SHA-256 Hashing	This service generates a SHA-256 digest on supplied data.
SHA-3 Hashing	This service generates a SHA-3 digest on supplied data. Digest lengths of 224, 256, 384, and 512 bits are supported.
Load Key	This service allows an operator to load a key into the module's key cache.
	The key being loaded can be a private key or a public key of an asymmetrical key pair, or a symmetrical key for AES or HMAC.
	All keys loaded via this service are being protected by the ECDH established session providing 128-bit AES-CCM encryption and integrity protection.
RSA Signature	This service performs RSA Signature Verification on operator supplied data with a previously loaded public key (see service

Verification	"Load Key").
DSA Signature Verification	This service performs DSA Signature Verification on operator supplied data with a previously loaded public key (see service "Load Key").
ECDSA Signature Verification	This service performs ECDSA Signature Verification on operator supplied data with a previously loaded public key (see service "Load Key").
RSA Signature Generation	This service performs RSA Signature Generation on operator supplied data with a previously loaded private key (see service "Load Key").
DSA Signature Generation	This service performs DSA Signature Generation (2048 bit key) on operator supplied data with a previously loaded private key (see service "Load Key").
ECDSA Signature Generation	This service performs ECDSA Component Signature Generation on operator supplied data with a previously loaded private key (see service "Load Key").
Generate Random Number	This service generates a random number with the module's FIPS 800-90A DRBG and outputs the generated random number to the requesting operator.
EC Diffie-Hellman Key Exchange	This service is comprised of several steps which establish the AES-CCM key used for data encryption between the module and an external entity.
HMAC Request	Compute an HMAC on an operator supplied blob of data.

The cryptographic module supports the following unauthenticated services defined in Table 7:

Table 7 - Unauthenticated Services

Name of Service	Description of Service
Self-Test	This service executes the suite of self-tests required by FIPS 140-2. Self-tests are invoked by power cycling the module.
Show Status	This service provides the current status of the cryptographic module.
Get Info	This service computes and outputs the ECDSA device public key of the cryptographic module

Get Version	This service returns the version/revision information of the cryptographic module
Zeroize	Power-cycle or hard reset will zeroize all volatile critical security parameters including internally generated CSPs or loaded keys.
	• When the MANU_DEBUG pin within the Secure Boot group physical interface is turned high all volatile and non-volatile plaintext critical security parameters will be zeroized – after this the module will not boot again.

Table 8 - Specification of Service Inputs & Outputs

Service	Control Input	Data Input	Data Output	Status Output
Generate Key	Key Type	N/A	Key Handle	Success/fail
AES Encrypt	Length Key Handle	Plaintext	Ciphertext	Success/fail
AES Decrypt	Length Key Handle	Ciphertext	Plaintext	Success/fail
SHA-256 Hashing	Hash Type	Data Blob	Digest	Success/fail
SHA-3 Hashing	Hash Type	Data Blob	Digest	Success/fail
Load Key	Key Type Key Handle	Key	N/A	Success/fail
RSA Signature Verification	Hash Length Key Handle	Input is hashed, then a signature is generated for validation.	N/A	Success/fail
DSA Signature Verification	Hash Length Key Handle	Input is hashed, then a signature is generated for validation.	N/A	Success/fail
ECDSA Signature Verification	Hash Length Key Handle	Input message is the hashed message. Signature is generated using the inputs for validation.	N/A	Success/fail
RSA Signature Generation	Hash Length Key Handle	Input is hashed, then a signature is generated	Signature	Success/fail

Service	Control Input	Data Input	Data Output	Status Output
DSA Signature Generation	Hash Length Key Handle	Input is hashed, then a signature is generated.	Signature	Success/fail
ECDSA Signature Generation	Hash Length Key Handle	Input is the hashed message.	Signature	Success/fail
Generate Random Number	DRBG Type Length	N/A	Random Number	Success/fail
EC Diffie- Hellman Key Exchange (comprised of two steps)	Header info.	EC Diffie-Hellman key establishment data received from Host System.	EC Diffie-Hellman key establishment data sent to Host System.	Success/fail
HMAC Request	Length Hash Type Key Handle	Data Blob	MAC	Success/fail
Self Test	N/A (Power cycle)	N/A	N/A	Success/fail
Show Status	N/A	N/A	N/A	All the above Status Output (Table–8 Specification of Service Inputs & Outputs) Status Output of Interface groups (Table 3 Physical Ports)
Get Info	N/A	N/A	Cryptographic Module device public key KDI-EC-PUB	Success/fail
Get Version	N/A	N/A	Version and Revision information of the Cryptographic Module	Success/fail
Zeroize	Power-cycle, hard reset, or set	N/A	N/A	N/A

Service	Control Input	Data Input	Data Output	Status Output
	MANU_DEBUG pin			

Definition of Critical Security Parameters (CSPs)

The following are the CSPs contained in the module.

Table 9 - Secret and Private Keys

Key	Description/Usage	Generation	Storage	Entry/Output	Destruction
KECDH-PRIV 256-bit random number used for ephemeral ECDH key.	Used to establish an ECDH based session key.	Ephemeral key generated internally via DRBG per SP800- 90A.	Stored in plaintext internally in the module's [Scratch RAM] block. Key-to-entity association: associated with a session ID during the ECDH secure session establishment.	Entry: N/A Entry Key-to- entity association: N/A Output: N/A Output Key-to- entity association: N/A.	Zeroize service. Additionally, always destroyed after the symmetrical session key is established.
KAES 256-bit AES key. A unique value for each module.	Used to encrypt and decrypt the Secure Boot Image (SBI) when the SBI is loaded (symmetrically).	Generated internally during manufacturing via DRBG per SP800-90A.	Stored in plaintext internally in OTP. When in use it is temporality copied to the [Scratch RAM] block. Key-to-entity association: Key index = 2 in OTP.	Entry: N/A Entry Key-to- entity association: N/A Output: N/A Output Key-to- entity association: N/A.	Zeroize service. Temporary copy in [Scratch RAM] block always destroyed after each reset cycle.

Key	Description/Usage	Generation	Storage	Entry/Output	Destruction
KHMAC 256-bit HMAC- SHA-256 key. A unique value for each module.	Used to protect and verify the SBI.	Generated internally during manufacturing via DRBG per SP800-90A.	Stored in plaintext internally in OTP. When in use it is temporality copied to the [Scratch RAM] block. Key-to-entity association: Key index = 3 in OTP.	Entry: N/A Entry Key-to- entity association: N/A Output: N/A Output Key-to- entity association: N/A.	Zeroize service. Temporary copy in [Scratch RAM] block always destroyed after each reset cycle.
KDI-EC-PRIV 256-bit ECDH private key. A unique value for each module.	Used to establish the mutually authenticated ECDH secure session communication channel between the module and an external entity. Used as the identity key of the module in these authenticated communications.	Generated internally during manufacturing via DRBG per SP800-90A.	Stored in plaintext internally in OTP. When in use it is temporality copied to the [Scratch RAM] block. Key-to-entity association: Key index = 4 in OTP.	Entry: N/A Entry Key-to- entity association: N/A Output: N/A Output Key-to- entity association: N/A.	Zeroize service. Temporary copy in [Scratch RAM] block always destroyed after each reset cycle.

Key	Description/Usage	Generation	Storage	Entry/Output	Destruction
KAPP-AES 128, 192 or 256-bit AES keys.	Used to encrypt/decrypt application data when external applications issue encrypt or decrypt service requests.	Generated internally during operation via DRBG per SP800-90A. See Generate Key service.	Stored in the volatile "key cache" within the [Scratch RAM] block. Key-to-entity association: "key cache" handle. Note this handle is given by the application that requested the creation of the key so that application can request encryption/decryption with the key at a later point in time.	Entry: Entered into the module by Load Key service ¹ Entry Key-toentity association: Session key derived during the EC Diffie-Hellman Key Exchange service. Output: N/A Output Key-toentity association: N/A.	Zeroize service. Temporary copy in [Scratch RAM] block always destroyed after each reset cycle.

¹ 192 and 256-bit keys entered using the Load Key service only provide 128 bits of security strength.

Key	Description/Usage	Generation	Storage	Entry/Output	Destruction
KAPP-HMAC 256-bit HMAC keys (SHA-256).	Used to protect and verify application data when external applications issue protection or verification service requests.	Generated internally during operation via DRBG per SP800-90A. See Generate Key service.	Stored in the volatile "key cache" within the [Scratch RAM] block. Key-to-entity association: "key cache" handle. Note this handle is given by the application that requested the creation of the key so that application can request protection/ verification with the key at a later point in time.	Entry: Entered into the module by Load Key service Entry Key-to-entity association: Session key derived during the EC Diffie-Hellman Key Exchange service. Output: N/A Output Key-to-entity association: N/A.	Zeroize service. Temporary copy in [Scratch RAM] block always destroyed after each reset cycle.
KAPP-PRIV 2048-bit DSA 2048-bit RSA 256-bit ECDSA	Used to perform signature generation during the RSA, DSA or ECDSA Signature services.	N/A	Multiple instances. Stored in the volatile "key cache" within the [Scratch RAM] block. Key-to-entity association: "key cache" handle. Note this handle is given by the application that requested the entry of the key so that the application can request signature generation with the key at a later point in time.	Entry: Entered into the module by Load Key service Entry Key-to-entity association: This is a private key that is associated with the public key member of a key-pair. Output: N/A Output Key-to-entity association: N/A.	When the zeroize service is requested. Always destroyed after each reset cycle.

Key	Description/Usage	Generation	Storage	Entry/Output	Destruction
KECDH-SS 256-bit ephemeral ECDH shared secret.	Used to derive the session key Kss	Derived using ECDH key exchange algorithm based on KECDH-PRIV and KECDH-OP-PUB	Stored only temporarily stored in the scratch RAM, erased after Kss is derived Key-to-entity association: associated with a session ID during the ECDH secure session establishment.	Entry: N/A Entry Key-to- entity association: N/A Output: N/A Output Key-to- entity association: N/A.	Zeroize service. Additionally, always destroyed after the symmetrical session key is established.
Kss 128-bit AES-CCM key.	Session key derived during the EC Diffie-Hellman Key Exchange service. The module will use this key for secure communications to/from the external host system. This key is not loaded with the Load Key service.	Established during the EC Diffie-Hellman Key Exchange service with SP800-56C-rev1 KDA. This is a part of the ECDH component. The key derivation procedure is as described in SP 800-56C-rev1, section 4.1, option 1. Repetition count and other inputs are included in the generation process.	Stored in the volatile "key cache" within the [Scratch RAM] block. Key-to-entity association: Only one session key exists at any given point in time.	Entry: N/A Entry Key-to- entity association: N/A Output: N/A Output Key-to- entity association: N/A.	Zeroize service. Temporary copy in [Scratch RAM] block always destroyed after each reset cycle.
DRBG Seed 20,000 bits	Entropy value fed to the SP800-90A.	Gathered from internal module NDRNG utilizing free running oscillators to capture thermal noise.	Generated via NDRNG and stored in DRBG registers Key-to-entity association: Only one DRBG seed key exists at any given point in time.	Entry: N/A Entry Key-to- entity association: N/A Output: N/A Output Key-to- entity association: N/A.	Zeroize service, Reset DRBG or power cycle the chip.

Key	Description/Usage	Generation	Storage	Entry/Output	Destruction
DRBG State (values V and C)	State of the module's SP800-90A.	Generated within the module's SP800-90A DRBG.	Stored in DRBG registers. Key-to-entity association: The DRBG maintains one state at a given time.	Entry: N/A Entry Key-to- entity association: N/A Output: N/A Output Key-to- entity association: N/A.	Reset DRBG or power cycle the chip.

Definition of Public Keys:

The following are public keys contained in the module.

Table 10 - Public Keys

Key	Description/Usage	Generation	Storage	Entry/Output
KDI-EC-PUB 256-bit ECDSA public key. A unique value for each module.	Used by the operator to authenticate the cryptographic module in a mutually authenticated secure session	Computed internally upon each get_info request per ECDSA algorithm	Stored only stored temporarily in the scratch RAM during the processing of the get_info service Key-to-entity association: Public part of the device identity key.	Entry: N/A Entry Key-to-entity association: N/A Output: as the result of get_info service Output Key-to-entity association: embedded in the get_info command response.

Key	Description/Usage	Generation	Storage	Entry/Output
KECDH-PUB 256-bit public ephemeral ECDH key of the cryptographic module	Used to establish an ECDH based session.	Ephemeral public key generated internally with DRBG for ECDH	Stored only stored temporarily in the scratch RAM during the process of establishing the ECDH session, erased after the session key is established Key-to-entity association: Public key of the ephemeral ECDH key pair.	Entry: N/A Entry Key-to-entity association: N/A Output: as the result of the ECDH key exchange Output Key-to- entity association: embedded in the command response for ECDH key exchange.
KECDH-OP- PUB 256-bit public ephemeral ECDH key of the operator	Used to establish an ECDH based session.	Ephemeral public key generated and signed by the operator, pass into the cryptographic module during ECDH session key exchange	Stored only stored temporarily in the scratch RAM during the process of establishing the ECDH session, erased after the session key is established Key-to-entity association: Associated with the authentication session. Only one session is active.	Entry: input of the ECDH key exchange Entry Key-to-entity association: embedded in the command for ECDH key exchange. Output: NA Output Key-to-entity association: NA

Key	Description/Usage	Generation	Storage	Entry/Output
KAPP-PUB 2048-bit DSA 2048-bit RSA 256-bit ECDSA	Used to perform signature verification during the RSA, DSA or ECDSA Signature Verification services.	N/A	Stored in the volatile "key cache" within the [Scratch RAM] block on the block diagram. Key-to-entity association: "key cache" handle. Note this handle is passed back to the application that requested the entry of the key so that the application can request signature verification with the key at a later point in time.	Entry: Entered into the module by the Load Key service. Entry Key-to-entity association: This is a public key that is associated with the private key member of a key-pair. Output: N/A Output Key-to-entity association: N/A.
KOP-PUB 256-bit ECDSA	Operator's public key Used to authenticate the operator during an ECDH secure session.	N/A	Stored in the onchip RAM. Key-to-entity association: This key is located at a fixed offset of the SBI image known to the implementation of the cryptographic module.	Entry: Embedded in the SBI during the manufacturing process. Entry Key-to-entity association: This is a public key that is associated with the private key member of a key-pair. Output: N/A Output Key-to-entity association: N/A.

Definition of CSPs Modes of Access

Table 11 defines the relationship between access to CSPs and the different module services. The modes of access shown in the table are defined as:

- G = Generate: The module generates the CSP.
- $\underline{\mathbf{R}} = \underline{\mathbf{Read}}$: The module reads the CSP. The read access is typically performed before the module uses the CSP.
- E = Execute: The module executes using the CSP.
- <u>W = Write</u>: The module writes the CSP. The write access is typically performed after a CSP is imported into the module, or the module generates a CSP, or the module overwrites an existing CSP.
- $\mathbf{Z} = \text{Zeroize}$: The module zeroizes the CSP.

Table 11 - CSP Access Rights within Roles & Services

Role		Service	Cryptographic Keys and CSPs Access Operation	
C.O.	User			
Х	Х	Generate Key	G K _{APP-AES} G K _{APP-HMAC}	
			R DRBG internal state	
			For each service call a handle to the generated key will be passed back to the operator.	
Х	Х	AES Encrypt	R K _{APP-AES} E	
			For each service request the operator will indicate which K _{APP-AES} key to use by passing in the key's handle as input.	
Х	Х	AES Decrypt	R K _{APP-AES} E	
			For each service request the operator will indicate which K _{APP-AES} key to use by passing in the key's handle as input.	
Х	Х	SHA-256 Hashing	N/A	
Х	Х	SHA-3 Hashing	N/A	
X	Х	Load Key	W K _{APP-PUB}	
			W KAPP-PRIV	
			W KAPP-AES	
			W KAPP-HMAC	
			For each service request a handle to the loaded key will be	

			passed back to the operator.
X	Х	RSA Signature Verification	R K _{APP-PUB} E
			For each service request the operator will indicate which K _{APP-PUB} RSA key to use by passing in the key's handle as input.
Х	Х	DSA Signature Verification	R K _{APP-PUB} E
			For each service request the operator will indicated which K _{APP-PUB} DSA key to use by passing in the key's handle as input.
Х	Х	ECDSA Signature Verification	R K _{APP-PUB} E
			For each service request the operator will indicated which $K_{APP-PUB}$ ECDSA key to use by passing in the key's handle as input.
Х	Х	RSA Signature Generation	R K _{APP-PRIV} E
			For each service request the operator will indicated which K _{APP-PRIV} RSA key to use by passing in the key's handle as input.
Х	Х	DSA Signature Generation	R KAPP-PRIV E
			For each service request the operator will indicated which $K_{APP-PRIV}$ DSA key to use by passing in the key's handle as input.
Х	Х	ECDSA Signature Generation	R KAPP-PRIV
			For each service request the operator will indicated which K _{APP-PRIV} ECDSA key to use by passing in the key's handle as input.
Х	Х	Generate Random Number	R DRBG Seed (note: a new Seed is generated for each call to service Generate Random Number).
			R DRBG Internal State E
			The DRBG is seeded with the Seed. The random number generated by the DRBG is returned to the operator requesting the service.

X	X	EC Diffie- Hellman Key Exchange	R K _{DI-EC-PRIV} R K _{ECDH-PRIV} R K _{OP-PUB} G K _{ECDH-PUB} R K _{ECDH-OP-PUB} G K _{ECDH-SS} G Kss R DRBG internal states E The operator establishes a secure ECDH key exchange session with a derived session key Kss.
Х	Х	HMAC Request	R K _{APP-HMAC} E For each service request the operator will indicate which key to use by passing in key handles as input.
Х	Х	Self Test	R K _{AES} R K _{HMAC}
Х	Х	Show Status	N/A
Х	Х	Get Info	R K _{DI-EC-PUB}
Х	Х	Get Version	NA
Х	Х	Assert MANU_DEBUG pin	Z zeroize all volatile and non-volatile CSP
Х	Х	Assert hardware reset pin, or software reset	Z zeroize all volatile CSP

7. Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are not applicable because the module does not contain a modifiable operational environment.

8. Security Rules

This section documents the security rules enforced by the BCM58200 Series Cryptographic Module to implement the security requirements for a FIPS 140-2 Level 3 module.

- 1. The module indicates when the device is in the Approved mode of operation.
- 2. The module implements one approved mode of operation. Power-cycling zeroizes all volatile plaintext critical security parameters.
- 3. Prior to completion of all FIPS power-on self-tests, the module performs several special

initialization period functions (e.g., RAM Memory BIST Read/Write). Failure during these special initialization period functions causes a chip reset. Subsequent to the special initialization period functions, any failure in a FIPS power-on self-test cause the ERROR status to be issued followed by a chip reset.

- 4. No hardware, software, or firmware components of the cryptographic module are excluded from the security requirements of FIPS 140-2.
- 5. The module restricts all information flow and physical access points to physical ports and logical interfaces that define all entry and exit points to and from the module.
- 6. All data output via the data output interface are inhibited when an error state exists and during self-tests.
- 7. The output data paths are logically disconnected from the circuitry and processes that perform key generation, and key zeroization.
- 8. The module never outputs plaintext cryptographic keys or CSPs or sensitive data.
- 9. Status information never contains CSPs or sensitive data that if misused could lead to a compromise of the module
- 10. The module provides two operator roles; these are the User role, and the Cryptographic-Officer role.
- 11. The module does not support concurrent operators.
- 12. The module does not support a maintenance role.
- 13. The module does not support a bypass capability.
- 14. The module supports identity-based authentication.
- 15. When the module is powered off and subsequently powered on, the results of previous authentications are not retained, and the module requires the operator to be reauthenticated.
- 16. Authentication data within the module is protected against unauthorized disclosure, modification, and substitution.
- 17. The module contains the authentication data required to authenticate the operator for the first time.
- 18. For each attempt to use the authentication mechanism, the probability is less than one in 1,000,000 that a random attempt will succeed, or a false acceptance will occur.
- 19. For multiple attempts to use the authentication mechanism during a one-minute period, the probability is less than one in 100,000 that a random attempt will succeed, or a false acceptance will occur.
- 20. The module's authentication mechanism does not supply any feedback information to the operator.
- 21. Recovery from "soft" error states is possible via power-cycling. Recovery from "hard" error states is not possible.
- 22. The module is physically protected with a production-grade hard opaque tamper

- evident encapsulating material.
- 23. The module does not contain any doors or removable covers.
- 24. Secret keys, private keys, and CSPs within the module are protected from unauthorized disclosure, modification, and substitution.
- 25. Public keys within the module are protected against unauthorized modification and substitution.
- 26. Compromising the security of the key generation methods requires as least as many operations as determining the value of the generated keys.
- 27. Entropy with nonce and personalization string are gathered internally for DRBG initialization and reseeding.
- 28. Intermediate key generation values are not output from the module.
- 29. Key agreement is performed via KAS-SSC and KDA.
- 30. The ECDH key for host session establishment provides 128 bits of security, same as the AES-CCM key agreed upon for the session.
- 31. The module does not support manual key entry.
- 32. All secret and private keys entered into the module must be encrypted with an ECDH session key, 128-bit AES-CCM mode key.
- 33. The module does not support key entry via split knowledge procedures.
- 34. The module does not support a SW/FW Load service from the operator (host).
- 35. The module provides a method to zeroize all plaintext secret and private cryptographic keys and CSPs within the module (MANU_DEBUG PIN within the Secure Boot group physical interface turned high).
- 36. The module conforms to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B (i.e., for home use).
- 37. The module performs the following self-tests:

a. Power up Self-Tests:

- i. Cryptographic algorithm tests:
 - AES encrypt and decrypt (CCM and CTR with 128 bit key; CBC with 128, 192, 256 bit keys)
 - SHA-256 KAT
 - HMAC SHA256 KAT.
 - DRBG SP800-90A KAT (covering instantiation, generation, and reseeding functions)
 - RSA 2048 sign and verify KATs
 - DSA 2048 sign and verify PCT
 - ECDSA P-256 verify KAT
 - ECDSA P-256 sign KAT
 - SP800-56A-r3 KAS-SSSC:

- DLC primitives KAT
- ECDH Key Agreement KAT
- SP800-56C-r1 KDA KAT
- SHA-3 KAT of 224, 256, 384, 512
- ii. Firmware Integrity Test:
 - HMAC-SHA-256 FW Integrity Check
- iii. Critical Functions Tests:
 - Memory BIST (Read/Write)
 - OTP Checksum Verification

b. Conditional Self-Tests:

- i. DRBG Continuous Random Number Generator Test
- ii. NDRNG Continuous Random Number Generator Test
- iii. Pair-wise Consistency Test for generated ECDH keys
- iv. Firmware Load Test (HMAC SHA-256)
- 38. The operator is capable of commanding the module to perform the power-up self-test via power cycling.
- 39. After a secure session is established, all data transfer between the operator and the cryptographic module is encrypted. Any key and secure material that enters and exits the cryptographic module is encrypted.

This section documents the security rules imposed by the vendor:

- 1. The module does not support the update of the logical serial number or vendor ID.
- 2. Each 256-bit ECDSA operation takes > 8ms to perform. For each authentication attempt, the cryptographic module has to perform two (2) ECDSA operations, one for ECDSA signature generation and the other for ECDSA signature verification before the operator can be authenticated. The operator can make no more than 3750 attempts in every minute even if attempts were made continuously.

9. Physical Security Policy

Physical Security Mechanisms

The BCM58200 Series Cryptographic Module includes the following physical security mechanisms:

- The module is production-grade and uses standard passivation techniques.
- The module is enclosed in a hard, opaque tamper-evident enclosure.
- User can periodically, depending on application, examine the device package for visual evidence of tampering like, scratch marks.

10. Mitigation of Other Attacks Policy

The module has not been designed to mitigate any specific attack beyond the requirements of FIPS 140-2.

11. References

- National Institute of Standards and Technology, <u>Digital Signature Standard (DSS)</u>, Federal Information Processing Standards Publication 186-4 July 2013
- NIST Special Publication 800-90A, Revision 1, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, June 2015
- National Institute of Standards and Technology, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, Special Publication 800-56A, Revision 3 April 2018

12. Definitions and Acronyms

1770			
AES:	Advanced Encryption Standard as defined by FIPS197 and SP800-38A to		
ECB, CBC,	SP800-38D		
CTR, CCM			
API	Application Programming Interface		
	Application i regianining interface		
BIST	Built-In Self-Test		
DIST	Built-in Sen-Test		
CCD	A FYPG G M A G C C P		
CSP	A FIPS <u>Critical Security Parameter</u>		
DLC	Discrete Logarithm Cryptography		
DSA	Digital Signature Algorithm as defined by FIPS186-4		
DRBG	Deterministic Random Bit Generator		
ECDH	Elliptic-curve Diffie-Hellman algorithm		
ECDII	Empho-curve Diffic-fremman argoriumi		
ECDCA	F11' 4' D' '4 10' 4 A1 '4 1 C 11 FIDC106 4		
ECDSA	Elliptic-curve Digital Signature Algorithm as defined by FIPS186-4		
EMI/EMC	Electromagnetic Interference/Electromagnetic Compatibility		
FIPS	Federal Information Processing Standard		
FW	Firmware		
HMAC	A keyed-Hash Message Authentication Code		
	Trikeyed Hashi Wessage Hathentication Code		
HW	Hardware		
11 44	Tialdware		
ITAC			
JTAG	Joint Test Action Group – refer to the test interface standard as defined by		
	IEEE 1149.1 Standard		
KAS-SSC	Key Agreement Scheme – Shared Secret Calculation		
KDA	Key Derivation Algorithm		
LPC	Low Pin Count interface		
	2011 III Count interface		
MIPI	Mobile Industry Processor Interface		
14111 1	Without middsity Flocessor michaec		
NEC	Near Field Communication		
NFC	Near Field Communication		
0.000			
OTP	One Time Programmable memory.		
RAM	Random Access Memory		
·	·		

ROM	Read Only Memory	
RSA	Rivest, Shamir, and Adleman algorithm for public key encryption	
SBI	Secure Boot Image. Authenticated software extension of the module's BOOT ROM (note: SBI software is part of the BCM5880 Cryptographic Module).	
SCAPI	Simple Cryptographic Application Programming Interface (refer to the crypto library of BCM5880 firmware that utilizes the cryptographic hardware of the BCM5880)	
SHA	Secure Hash Algorithm	
SMAU	Secure Memory Access Unit	
SPI	Synchronous Peripheral Interface	
SRAM	Static Random Access Memory	
STS TESTING	Statistical Testing	
SW	Software	
NDRNG	Non-Deterministic Random Number Generator	
UART	Universal Asynchronous Receiver/Transmitter	
USB	Universal Serial Bus	