

Spectralink Cryptographic Module for BoringSSL

FIPS 140-2 Non-Proprietary Security Policy

Document Version 1.1

June 17, 2021

Prepared for:

Spectralink

2560 55th St. Boulder CO, 80301 spectralink.com +1 303.441.7500 Prepared by:

KeyPair Consulting Inc.

987 Osos Street
San Luis Obispo, CA 93401

keypair.us
+1 805.316.5024

Table of Contents

1	Int	oduction	4	
2	FIP	S 140-2 Security Levels	5	
3	Cry	ptographic Module Specification	6	
	3.1	Cryptographic Boundary	6	
4	Mo	des of Operation		
5		ptographic Module Ports and Interfaces		
6		es, Authentication and Services		
_		rsical Security		
7		•		
8	-	erational Environment		
9	Cry	ptographic Algorithms & Key Management		
	9.1	Approved Cryptographic Algorithms	10	
	9.2	Allowed Cryptographic Algorithms	11	
	9.3	Non-Approved Cryptographic Algorithms	11	
	9.4	Cryptographic Key Management	12	
	9.5	Public Keys	12	
	9.6	Key Generation	13	
9.7		Key Storage		
	9.8	Key Zeroization	13	
1	0 Sel	f-Tests	14	
	10.1	Power-On Self-Tests	14	
	10.2	Conditional Self-Tests		
1	1 Mit	igation of other Attacks		
1		dance and Secure Operation		
	12.1	Installation Instructions		
	12.2	Secure Operation		
	12.2	·		
	12.2			
	12.2			
	12.2	5 7		
	12.2	2.5 RSA and ECDSA Keys	17	
1	3 Ref	erences	19	
1	4 Acr	onyms and Definitions	19	

List of Tables

5
7
8
8
9
LO
۱1
۱1
L2
L2
L4
L4
١9
۱9
6

1 Introduction

The Spectralink Cryptographic Module for BoringSSL (hereafter referred to as the "module") is an open-source, general-purpose cryptographic library which provides FIPS 140-2 approved cryptographic algorithms to serve BoringSSL and other user-space applications. The validated version of the library is 7f02881e96e51f1873afcf384d02f782b48967ca. For the purposes of the FIPS 140-2 validation, its embodiment type is defined as multi-chip standalone.

The cryptographic module was tested on the following operational environments on the general-purpose computer (GPC) platforms detailed below:

Table 1 - Tested Operational Environments

#		Operational Environment	Processor Family
	1	Android 10 on Spectralink Versity 9553 Smartphone	Qualcomm® Snapdragon™ 660 (with PAA)
	2	Android 10 on Spectralink Versity 9553 Smartphone	Qualcomm® Snapdragon™ 660 (without PAA)

The cryptographic module is also supported on the following operating environments for which operational testing and algorithm testing was not performed:

- Android 10 on Spectralink Versity 9240 Smartphone
- Android 10 on Spectralink Versity 9253 Smartphone
- Android 10 on Spectralink Versity 9540 Smartphone
- Android 10 on Spectralink Versity 9640 Smartphone
- Android 10 on Spectralink Versity 9653 Smartphone

As per FIPS 140-2 Implementation Guidance (IG) G.5, compliance is maintained for other versions of the respective operational environments where the module binary is unchanged. No claim can be made as to the correct operation of the module or the security strengths of the generated keys if any source code is changed and the module binary is reconstructed.

The GPC(s) used during testing met Federal Communications Commission (FCC) FCC Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) requirements for business use as defined by 47 Code of Federal Regulations, Part 15, Subpart B. FIPS 140-2 validation compliance is maintained when the module is operated on other versions of the GPOS running in single user mode, assuming that the requirements outlined in FIPS 140-2 IG G.5 are met.

The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

2 FIPS 140-2 Security Levels

The following table lists the level of validation for each area in FIPS 140-2:

Table 2 - Validation Level by FIPS 140-2 Section

FIPS 140-2 Section Title	Validation Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services, and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A
Overall Level	1

3 Cryptographic Module Specification

3.1 Cryptographic Boundary

The module is a software library providing a C-language application program interface (API) for use by other processes that require cryptographic functionality. All operations of the module occur via calls from host applications and their respective internal daemons/processes. As such there are no untrusted services calling the services of the module.

The physical cryptographic boundary is the general-purpose computer on which the module is installed. The logical boundary of the module is a single object file named bcm.o, which is linked into the libcrypto.so shared library. The module performs no communications other than with the calling application (the process that invokes the module services) and the host operating system.

Figure 1 shows the logical relationship of the cryptographic module to the other software and hardware components of the computer.

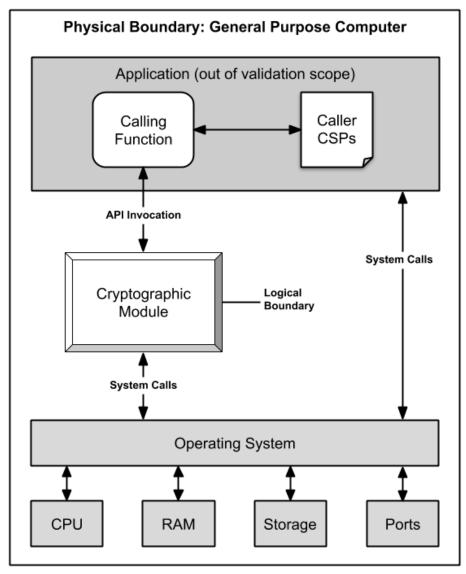


Figure 1 - Logical Boundary

4 Modes of Operation

The module supports two modes of operation: Approved and Non-approved. The module will be in FIPS-approved mode when all power up self-tests have completed successfully, and only Approved or allowed algorithms are invoked. See Table 7 below for a list of the supported Approved algorithms and Table 8 for allowed algorithms. The non-Approved mode is entered when a non-Approved algorithm is invoked. See Table 9 for a list of non-Approved algorithms.

5 Cryptographic Module Ports and Interfaces

The Data Input interface consists of the input parameters of the API functions. The Data Output interface consists of the output parameters of the API functions. The Control Input interface consists of the actual API input parameters. The Status Output interface includes the return values of the API functions.

FIPS Interface Physical Ports Logical Interfaces Data input Physical ports of the tested platforms API input parameters Data output Physical ports of the tested platforms API output parameters and return values Control input Physical ports of the tested platforms API input parameters Status output Physical ports of the tested platforms API return values Physical ports of the tested platforms Power input N/A

Table 3 - Ports and Interfaces

As a software module, control of the physical ports is outside module scope. However, when the module is performing self-tests, or is in an error state, all output on the module's logical data output interfaces is inhibited.

6 Roles, Authentication and Services

The cryptographic module implements both User and Crypto Officer (CO) roles. The module does not support user authentication. The User and CO roles are implicitly assumed by the entity accessing services implemented by the module. A user is considered the owner of the thread that instantiates the module and, therefore, only one concurrent user is allowed.

The Approved services supported by the module and access rights within services accessible over the module's public interface are listed in the table below.

Service **Approved Security Keys and/or CSPs** Roles Access Rights to **Functions** Keys and/or CSPs Module Initialization N/A N/A N/A CO Symmetric Encryption/ AES, Triple-DES User, CO Execute AES, Triple-DES Decryption symmetric keys **Keyed Hashing HMAC-SHA HMAC** key User, CO Execute Hashing SHS None User, CO N/A Random Bit Generation CTR_DRBG DRBG seed, internal state User, CO Write/Execute V and Key values Signature Generation/ CTR DRBG, RSA, ECDSA RSA, ECDSA private key Write/Execute User, CO Verification **Key Transport RSA** RSA private key User, CO Write/Execute KAS ECC Write/Execute **Key Agreement** EC DH private key User, CO CTR DRBG, RSA, ECDSA RSA, ECDSA private key User, CO Write/Execute **Key Generation** On-demand Self-test N/A User, CO Execute N/A Zeroization N/A All keys User, CO Write/Execute N/A N/A **Show Status** User, CO N/A

Table 4 - Approved Services, Roles and Access Rights

The module provides the following non-Approved services which utilize algorithms listed in Table 9:

Service Non-Approved Functions Roles **Keys and/or CSPs** AES (non-compliant), DES, Triple-DES (non-compliant) Symmetric Encryption/ User, CO N/A Decryption N/A Hashing MD4, MD5, POLYVAL User, CO Signature Generation/ RSA (non-compliant), ECDSA (non-compliant) User, CO N/A Verification N/A **Key Transport** RSA (non-compliant) User, CO RSA (non-compliant), ECDSA (non-compliant) N/A **Key Generation** User, CO

Table 5 - Non-Approved or Non-Security Relevant Services

The module also provides the following non-Approved or non-security relevant services over a non-public interface:

Table 6 - Non-Security Relevant Services

Service	Approved Security Functions	Roles	Access Rights to Keys and/or CSPs
Large integer operations	None	User, CO	N/A
Disable automatic generation of CTR_DRBG "additional_input" parameter	CTR_DRBG	User, CO	N/A
Wegman-Carter hashing with POLYVAL	None	User, CO	N/A

7 Physical Security

The cryptographic module is comprised of software only and thus does not claim any physical security.

8 Operational Environment

The cryptographic module operates under Android 10. The module runs on a GPC running one of the operating systems specified in Table 1. Each approved operating system manages processes and threads in a logically separated manner. The module's user is considered the owner of the calling application that instantiates the module.

9 Cryptographic Algorithms & Key Management

9.1 Approved Cryptographic Algorithms

The module implements the following FIPS 140-2 Approved algorithms:

Table 7 - Approved Algorithms and CAVP Certificates

CAVP Cert.#	Algorithm	Standard	Mode/Method/Size	Use	
<u>A1557</u>	AES	FIPS 197 SP 800-38A	128, 192, 256 CBC, ECB, CTR	Encryption, Decryption	
<u>A1557</u>	AES	SP 800-38D	128 and 256 GCM/GMAC	Authenticated Encryption, Authenticated Decryption	
<u>A1557</u>	KTS	SP 800-38F	128, 192, 256 KW, KWP	Key Wrapping, Key Unwrapping	
<u>A1557</u>	CVL	SP 800-135rev1	TLS 1.0/1.1 and 1.2 KDF ¹	Key Derivation	
<u>A1557</u>	DRBG	SP 800-90Arev1	AES-256 CTR_DRBG	Random Bit Generation	
A1557	ECDSA	FIPS 186-4	Signature Generation Component, Key Pair Generation, Signature Generation, Signature Verification, Public Key Validation P-224, P-256, P-384, P-521	Digital Signature Services	
A1557	НМАС	FIPS 198-1	HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	Generation, Authentication	
<u>A1557</u>	RSA	FIPS 186-4	Key Generation, Signature Generation, Signature Verification (1024, 2048, 3072) Note: Key size 1024 is only used for Signature Verification	Digital Signature Services	
A1557	SHA	FIPS 180-4	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	Digital Signature Generation, Digital Signature Verification, non-Digital Signature Applications	
<u>A1557</u>	Triple-DES	SP 800-67 SP 800-38A	TCBC, TECB	Encryption, Decryption	
Vendor Affirmed	KAS-SSC	SP 800-56rev3	EC Diffie-Hellman P-224, P-256, P-384 and P-521 ² (SHA2-224, SHA2-256, SHA2-384, SHA2-512)	Key Agreement Scheme – Shared Secret Computation (KAS-SSC) per SP 800-56Arev3, Key Derivation per SP 800-135 (CVL Cert. #A1557 TLS KDF)	

Page 10 of 21

¹ The module supports FIPS 140-2 approved/allowed cryptographic algorithms for TLS 1.0, 1.1 and 1.2.

² The elliptic curves utilized in the KAS-SSC shall be the validated NIST-recommended curves and shall provide a minimum of 112 bits of encryption strength.

9.2 Allowed Cryptographic Algorithms

The module supports the following non-FIPS 140-2 Approved but allowed algorithms that may be used in the Approved mode of operation.

Table 8 - Allowed Algorithms

Algorithm	Use
RSA Key Transport	Key establishment methodology provides between 112 and 256 bits of encryption strength
MD5	When used with the TLS protocol version 1.0 and 1.1
NDRNG	Used only to seed the Approved DRBG

9.3 Non-Approved Cryptographic Algorithms

The module employs the methods listed in Table 9, which are not allowed for use in a FIPS-Approved mode. Their use will result in the module operating in a non-Approved mode.

Table 9 - Non-Approved Algorithms

Algorithm	Algorithm
MD5, MD4	DES
AES-GCM (non-compliant)	AES (non-compliant)
ECDSA (non-compliant)	RSA (non-compliant)
POLYVAL	Triple-DES (non-compliant)

9.4 Cryptographic Key Management

The table below provides a complete list of Private Keys and CSPs used by the module:

Table 10 - Keys and CSPs Supported

Key/CSP Name	Key Description	Generated/Input	Output
AES Key	AES (128/192/256) encrypt/decrypt key	Input via API in plaintext	Output via API in plaintext
AES-GCM Key	AES (128/192/256) encrypt/decrypt/ generate/verify key	Input via API in plaintext	Output via API in plaintext
AES Wrapping Key	AES (128/192/256) key wrapping key	Input via API in plaintext	Output via API in plaintext
Triple-DES Key	Triple-DES (3-Key) encrypt/decrypt key	Input via API in plaintext	Output via API in plaintext
ECDSA Signing Key	ECDSA (P-224/P-256/P-384/P-521) signature generation key	Internally generated or input via API in plaintext	Output via API in plaintext
EC DH Private Key	EC DH (P-224/P-256/P-384/P-521) private key	Internally generated or input via API in plaintext	Output via API in plaintext
HMAC Key	Keyed hash key (160/224/256/384/512)	Input via API in plaintext	Output via API in plaintext
RSA Key (Key Transport)	RSA (2048 to 16384 bits) key decryption (private key transport) key	Internally generated or input via API in plaintext	Output via API in plaintext
RSA Signature Generation Key	RSA (2048 to 16384 bits) signature generation key	Internally generated or input via API in plaintext	Output via API in plaintext
TLS Pre-Master Secret	Shared Secret; 48 bytes of pseudorandom data	Internally Generated	Output via API in plaintext
TLS Master Secret	Shared Secret; 48 bytes of pseudorandom data	Internally derived via key derivation function defined in SP 800-135 KDF (TLS)	Output via API in plaintext
CTR_DRBG V (Seed)	128 bits	Internally generated	Does not exit the module
CTR_DRBG Key	256 bits	Internally generated	Does not exit the module
CTR_DRBG Entropy Input	384 bits	Input via API in plaintext	Does not exit the module

9.5 Public Keys

The table below provides a complete list of the Public keys used by the module:

Table 11 - Public Keys Supported

Public Key Name	Key Description
ECDSA Verification Key	ECDSA (P-224/P-256/P-384/P-521) signature verification key
EC DH Public Key	EC DH (P-224/P-256/P-384/P-521) public key
RSA Key (Key Transport)	RSA (2048 to 16384 bits) key encryption (public key transport) key
RSA Signature Verification Key	RSA (1024 to 16384 bits) signature verification public key

9.6 Key Generation

The module supports generation of ECDSA, EC Diffie-Hellman and RSA key pairs as specified in Section 5 of NIST SP 800-133. The module employs a NIST SP 800-90A random bit generator for creation of the seed for asymmetric key generation. The module requests a minimum number of 128 bits of entropy from its Operational Environment per each call.

The output data path is provided by the data interfaces and is logically disconnected from processes performing key generation or zeroization. No key information will be output through the data output interface when the module zeroizes keys.

9.7 Key Storage

The cryptographic module does not perform persistent storage of keys. Keys and CSPs are passed to the module by the calling application. The keys and CSPs are stored in memory in plaintext. Keys and CSPs residing in internally allocated data structures (during the lifetime of an API call) can only be accessed using the module defined API. The operating system protects memory and process space from unauthorized access.

9.8 Key Zeroization

The module is passed keys as part of a function call from a calling application and does not store keys persistently. The calling application is responsible for parameters passed in and out of the module. The Operating System and the calling application are responsible to clean up temporary or ephemeral keys.

All CSPs can be zeroized by power cycling or by rebooting the host test platform.

10 Self-Tests

FIPS 140-2 requires the module to perform self-tests to ensure the integrity of the module and the correctness of the cryptographic functionality at start up. Some functions require conditional tests during normal operation of the module. The supported tests are listed and described in this section.

10.1 Power-On Self-Tests

Power-on self-tests are run upon the initialization of the module and do not require operator intervention to run. If any of the tests fail, the module will not initialize. The module will enter an error state and no services can be accessed.

The module implements the following power-on self-tests:

Integrity Test

Known Answer Test
(KAT)

AES KAT (encryption and decryption. Key size: 128-bits)

AES-GCM KAT (encryption and decryption. Key size: 128-bits)

Triple-DES KAT (encryption and decryption. Key size: 168-bits)

ECDSA KAT (signature generation/signature verification. Curve: P-256)

HMAC KAT (HMAC-SHA-1, HMAC-SHA-512)

SP 800-90A CTR_DRBG KAT (Key size: 256-bits)

RSA KAT (signature generation/signature verification and encryption/decryption. Key size: 2048-bit)

SHA KAT (SHA-1, SHA-256, SHA-512)

Table 12 - Power-On Self-Tests

By default, all power up self-tests are executed at module initialization. The module can be configured to only run the integrity test on subsequent instantiations by setting the environmental variable BORINGSSL_FIPS_SELF_TEST_FLAG_FILE, as allowed by FIPS 140-2 IG 9.11. If configured, after the self-tests have passed the module creates a temporary file named after the module's HMAC-SHA-256 integrity value (this value does not persist across power cycles). This file is checked for existence whenever subsequent instantiations of the module are initialized. If it exists, only the integrity test is run. If the environmental variable is not set, the file does not exist, or the file cannot be accessed for any reason, the entire set of power-on self-tests (KATs and integrity test) are run. The power-on self-tests must be passed before a User/Crypto Officer can perform services. The Power-on self-tests can be run on demand by power-cycling the host platform.

10.2 Conditional Self-Tests

Conditional self-tests are run during operation of the module. If any of these tests fail, the module will enter an error state, where no services can be accessed by the operators. The module can be reinitialized to clear the error and resume FIPS mode of operation. Each module performs the following conditional self-tests:

Table 13 - Conditional Self-Tests

Туре	Test
Pair-wise Consistency Test	ECDSA Key Pair generation, RSA Key Pair generation
CRNGT	Performed on NDRNG per IG 9.8
DRBG Health Tests	Performed on DRBG, per SP 800-90A Section 11.3. Required per IG C.1.

Pairwise consistency tests are performed for both possible modes of use, e.g. Sign/Verify and Encrypt/Decrypt.

11 Mitigation of other Attacks

The module is not designed to mitigate against attacks which are outside of the scope of FIPS 140-2.

12 Guidance and Secure Operation

12.1 Installation Instructions

A Linux workstation with the following tools is required to build and compile the module:

- git 2.23 or later (https://git-scm.com/download/linux)
- base64, curl, sha256sum (these should come with the Linux installation)

Once a Linux workstation with the above tools has been obtained, issue the following commands to download and verify repo and the manifest:

Manually validate that the output from the final command indicates the following expected hash values for each of these files:

The module can be obtained by issuing the following commands:

```
~/repo init -u https://android.googlesource.com/platform/manifest --depth 1
~/repo init -m ~/manifest_5953279.xml
~/repo sync -q -c -j 20
```

Once downloaded, the module can be built using the following commands:

For 64 bit

```
. build/envsetup.sh
lunch aosp_arm64-userdebug
m clean
m -j 20 adb bssl
```

For 32 bit

```
. build/envsetup.sh
lunch aosp_arm-userdebug
m clean
m -j 20 adb bssl
```

Upon completion of the build process, the module can be deployed to the Android device over ADB and have its FIPS status verified by issuing the following commands:

For 64 bit

```
$ANDROID_HOST_OUT/bin/adb devices -1
$ANDROID_HOST_OUT/bin/adb push $ANDROID_PRODUCT_OUT/system/bin/bssl /data/local/tmp
$ANDROID_HOST_OUT/bin/adb push $ANDROID_PRODUCT_OUT/system/lib64/lib{crypto,ssl}.so /data/local/tmp
$ANDROID_HOST_OUT/bin/adb shell LD_LIBRARY_PATH=/data/local/tmp /data/local/tmp/bssl isfips
```

For 32 bit

```
$ANDROID_HOST_OUT/bin/adb devices -1
$ANDROID_HOST_OUT/bin/adb push $ANDROID_PRODUCT_OUT/system/bin/bssl /data/local/tmp
$ANDROID_HOST_OUT/bin/adb push $ANDROID_PRODUCT_OUT/system/lib/lib{crypto,ssl}.so /data/local/tmp
$ANDROID_HOST_OUT/bin/adb shell LD_LIBRARY_PATH=/data/local/tmp /data/local/tmp/bssl isfips
```

The module will print "1" if it is in a FIPS 140-2 validated mode of operation.

12.2 Secure Operation

12.2.1 Initialization

The cryptographic module is initialized by loading the module before any cryptographic functionality is available. In User Space the operating system is responsible for the initialization process and loading of the library. The module is designed with a default entry point (DEP) which ensures that the power-up tests are initiated automatically when the module is loaded.

12.2.2 Usage of AES OFB, CFB and CFB8

In approved mode, users of the module must not utilize AES OFB, CFB and CFB8.

12.2.3 Usage of AES-GCM

In the case of AES-GCM, the IV generation method is user selectable and the value can be computed in more than one manner.

AES GCM encryption and decryption are used in the context of the TLS protocol version 1.2 (compliant to Scenario 1 in FIPS 140-2 A.5). The module is compliant with NIST SP 800-52 and the mechanism for IV generation is compliant with RFC 5288. The module ensures that it's strictly increasing and thus cannot repeat. When the IV exhausts the maximum number of possible values for a given session key, the first party, client or server, to encounter this condition may either trigger a handshake to establish a new encryption key in accordance with RFC 5246, or fail. In either case, the module prevents and IV duplication and thus enforces the security property.

The module's IV is generated internally by the module's Approved DRBG. The DRBG seed is generated inside the module's physical boundary. The IV is 96-bits in length per NIST SP 800-38D, Section 8.2.2 and FIPS 140-2 IG A.5 scenario 2.

The selection of the IV construction method is the responsibility of the user of this cryptographic module. In approved mode, users of the module must not utilize GCM with an externally generated IV.

Per IG A.5, in the event module power is lost and restored the consuming application must ensure that any of its AES-GCM keys used for encryption or decryption are re-distributed.

12.2.4 Usage of Triple-DES

In accordance with CMVP IG A.13, when operating in a FIPS approved mode of operation, the same Triple-DES key shall not be used to encrypt more than 2^{20} or 2^{16} 64-bit data blocks.

The TLS protocol governs the generation of the respective Triple-DES keys. Please refer to IETF RFC 5246 (TLS) for details relevant to the generation of the individual Triple-DES encryption keys. The user is responsible for ensuring that the module limits the number of encrypted blocks with the same key to no more than 2^{20} when utilized as part of a recognized IETF protocol.

For all other uses of Triple-DES the user is responsible for ensuring that the module limits the number of encrypted blocks with the same key to no more than 2¹⁶.

12.2.5 RSA and ECDSA Keys

The module allows the use of 1024 bits RSA keys for legacy purposes including signature generation, which is disallowed to be used in FIPS Approved mode as per NIST SP 800-131A. Therefore, the cryptographic operations with the non-approved key sizes will result in the module operating in non-Approved mode implicitly.

The elliptic curves utilized shall be the validated NIST-recommended curves and shall provide a minimum of 112 bits of encryption strength.

Non-approved cryptographic algorithms shall not share the same key or CSP as an approved algorithm. As such approved algorithms shall not use the keys generated by the module's non-Approved key generation methods or the converse.

13 References

The following Standards are referred to in this Security Policy.

Table 14 - References and Standards

Abbreviation	Full Specification Name
FIPS 140-2	Security Requirements for Cryptographic modules
FIPS 180-4	Secure Hash Standard (SHS)
FIPS 186-4	Digital Signature Standard (DSS)
FIPS 197	Advanced Encryption Standard
FIPS 198-1	The Keyed-Hash Message Authentication Code (HMAC)
IG	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program
SP 800-38A	Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext Stealing for CBC Mode
SP 800-38D	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
SP 800-38F	Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping
SP 800-56A	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography
SP 800-67	Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher
SP 800-90A	Recommendation for Random Number Generation Using Deterministic Random Bit Generators
SP 800-131A	Transitioning the Use of Cryptographic Algorithms and Key Lengths
SP 800-133	Recommendation for Cryptographic Key Generation
SP 800-135	Recommendation for Existing Application-Specific Key Derivation Functions

14 Acronyms and Definitions

Table 15 - Acronyms and Definitions

Acronym	Definition
ADB	Android Debug Bridge
AES	Advanced Encryption Standard
API	Application Programming Interface
CAVP	Cryptographic Algorithm Validation Program
СВС	Cipher-Block Chaining
CCCS	Canadian Centre for Cyber Security
CFB	Cipher Feedback
CKG	Cryptographic Key Generation
CMVP	Cryptographic Module Validation Program
СО	Cryptographic Officer
CPU	Central Processing Unit
CRNGT	Continuous Random Number Generator Test
CSP	Critical Security Parameter
CTR	Counter-mode
CVL	Component Validation List
DEP	Default Entry Point
DES	Data Encryption Standard
DH	Diffie-Hellman

Acronym	Definition
DRBG	Deterministic Random Number Generator
DSS	Digital Signature Standard
EC	Elliptic Curve
ECB	Electronic Code Book
ECC	Elliptic Curve Cryptography
EC DH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
FCC	Federal Communications Commission
FIPS	Federal Information Processing Standard
GCM	Galois/Counter Mode
GMAC	Galois Message Authentication Code
GPC	General Purpose Computer
GPOS	General Purpose Operating System
HMAC	Keyed-Hash Message Authentication Code
IETF	Internet Engineering Task Force
IG	Implementation Guidance
IV	Initialization Vector
KAS	Key Agreement Scheme
KAT	Known Answer Test
KDF	Key Derivation Function
KTS	Key Transport Scheme
KW	Key Wrap
KWP	Key Wrap with Padding
LLC	Limited Liability Company
MAC	Message Authentication Code
MD4	Message Digest algorithm MD4
MD5	Message Digest algorithm MD5
N/A	Not-Applicable
NIST	National Institute of Standards and Technology
NDRNG	Non-Deterministic Random Number Generator
NVLAP	National Voluntary Lab Accreditation Program
OFB	Output Feedback
PAA	Processor Algorithm Accelerator
RAM	Random Access Memory
RFC	Request for Comment
RSA	Rivest Shamir Adleman
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
SP	Special Publication
SSL	Secure Socket Layer
ТСВС	Triple-DES Cipher-Block Chaining
TDEA	Triple Data Encryption Algorithm
IDEA	Triple Data Encryption Algorithm

FIPS 140-2 Security Policy

Acronym	Definition
TECB	Triple-DES Electronic Code Book
TLS	Transport Layer Security
Triple-DES	Triple Data Encryption Standard