

Pavilion Cryptographic Module FIPS 140-2 Security Policy

Version I.2

Last Updated: July 2021 Document Version: Version 1.2

Legal Notice:

This material may be reproduced only in its entirety without revision.

Technical Support:

Technical Support maintains support centre's globally. If you have questions regarding an existing support agreement, please email/phone the support agreement administration team as follows:

Phone:

USA & Canada: 1-888-342-0461 United Kingdom: 0800–69-8055 Netherlands: 0800-022-2832 International: 1-408-684-4958

Email:

support@pavilion.io

Documentation:

Make sure that you have the current version of the documentation. Each document displays the date of the last update on page 2.

Documentation Feedback:

Your feedback is important for us. For documentation feedback send your comments to your Pavilion field support contact.

Table of Contents

Introduction	3
Cryptographic Boundary	4
Acronyms	4
Security Level Specification	5
Physical Ports and Logical Interfaces	5
Security Rules	6
CSPs, Public Keys & Private Keys	7
Identification and Authentication Policy	8
Access Control Policy	10
Algorithms	11
Mitigation of Other Attacks Policy	11
Physical Security	12
Electromagnetic Interference/ Electromagnetic Compatibility (EMI/EMC)	12
Operational Environment	12

Introduction

The Pavilion Data Systems Pavilion Cryptographic Module (S.W. Version: 1.0, H.W. Version: Intel Xeon D-1548) is a software-hybrid multi-chip standalone module designed to protect data at rest for storage volumes stored on the Pavilion Hyperparallel Flash Array. The software component of the module is a C-language application programming interface (API). The hardware component of the module is the CPU which supports the AES-NI instruction set, which is invoked for AES operations performed by the module.

Cryptographic Boundary

The following diagram defines the cryptographic boundary:

Exhibit 1 – Specification of Cryptographic Boundary

The physical boundary of the Pavilion Cryptographic Module is the physical boundary of the device that contains it.

Acronyms

TERM	DESCRIPTION	
API	Application Programming Interface	
AES	Advanced Encryption Standard	
CSP	Critical Security Parameter	
CO	Cryptographic Officer	
SHA	Secure Hash Algorithm	
CMVP	Cryptographic Module Validation Program	
ECDSA	Elliptic Curve Digital Signature Algorithm	

Exhibit 2 – Specification of Acronyms and their Descriptions

Security Level Specification

Security Requirements Area	Level
Cryptographic Module Specification	1
Cryptographic Module Ports and	1
Interfaces	
Roles, Services, and Authentication	1
Finite State Model	1
Physical Security	1
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

Fill in the security levels corresponding to each area:

Exhibit 3 – Security Level Table.

Physical Ports and Logical Interfaces

The physical ports for the Pavilion Cryptographic Module are the same as the device that it executes on. The logical interface is a C-language API.

FIPS Interface	Logical Interface	Physical Port
Data Input	API Input	IOC Ethernet Port (Qty:2),
	Parameters	IOC to SSD fabric port
Data Output	API Data	IOC Ethernet Port (QTY:2),
	Parameters	IOC to SSD fabric port
Control Input	API Data Return	MGMT to MGMT port,
	Values	MGMT to IOC port
Status Output	API Status Return	MGMT to MGMT port
	Values	
Power Input	N/A	Power supply port (Qty:4)

Exhibit 4 – Specification of Cryptographic Module Physical Ports and Logical Interfaces

As a software module, control of the physical ports is outside module scope. However, when the module is performing self-tests, or is in an error state, all output on the module's logical data output interfaces is inhibited.

Security Rules

The following specifies the security rules under which the cryptographic module shall operate:

- 1. The module performs the following self-tests:
 - a. Power-Up Self-Tests:
 - i. AES-XTS 128 Encrypt KAT
 - ii. AES-XTS 128 Decrypt KAT
 - iii. AES-XTS 256 Encrypt KAT
 - iv. AES-XTS 256 Decrypt KAT
 - v. AES CBC 128 Encrypt KAT
 - vi. AES CBC 128 Decrypt KAT
 - vii. AES CBC 256 Encrypt KAT
 - viii. AES CBC 256 Decrypt KAT
 - b. Software Integrity Test (ECDSA P-256 SHA-256 Verification)
- 2. The module does not provide access to CSPs until the operator is in a valid role.
- 3. The operator is capable of commanding the module to perform the power-up self-tests by cycling power or resetting the module.
- 4. Data output is inhibited during self-tests, zeroization, and error states.
- 5. Status information does not contain CSPs of sensitive data that if misused could lead to a compromise of the module
- 6. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 7. The module does not support a maintenance interface or role.
- 8. The module does not support manual key entry.
- 9. The module does not enter or output plaintext CSPs.
- 10. The module enforces logical separation of all data inputs, data outputs, control inputs, and status outputs.
- 11. The following items shall not be performed by the module user:
 - a. Shall not use kernel debugger

- b. Shall not output CSPs from the physical boundary of the module in plaintext via automated processes
- c. Shall not store CSPs outside the logical boundary of the module in a manner that could lead to a compromise.

CSPs, Public Keys & Private Keys

The following CSPs are included in the Pavilion Cryptographic Module:

Description	Туре	Generation	Establishment	Entry	Output	Storage	Zeroization
Volume Keys	AES-XTS 128 and 256 Bit Keys	N/A (Outside of the module via KMIP, user entry, or internal generation. Out- of-scope)	N/A	N/A - Passed in plaintext from consuming application (IG 7.7)	N/A	Plaintext in DRAM	Reboot, pds_crypt_d eregister_ke y() API, module shutdown.
Firmware Integrity ECDSA Public Key	ECDSA P-256 SHA-256	N /A (outside of the module on build server)	N/A	N/A - Public key embedded in the compiled module.	N/A	Plaintext and baked into the SW binary inside of Ferri SATA SSD IC	N/A

Exhibit 5 – Specification of Critical Security Parameters

Identification and Authentication Policy

The module supports the User and Cryptographic Officer (CO) roles. The module does not support authentication mechanisms. The roles have identical functionality. The Cryptographic Officer is the human officer, physically present, responsible for Module initialization and installation.

Only one role can be active at a time and the module does not allow concurrent operators. The module does not support a maintenance role.

Role	Authentication Type	Authentication Data
Cryptographic Officer	Not Required	Not Required
User	Not Required	Not Required

Exhibit 6 - Roles and Required Identification and Authentication (FIPS 140-2 Table C1)

The Cryptographic Officer shall perform the installation and initialization of the module as follows:

The Module is a software module that comes pre-installed in each IO Controller delivered from Pavilion Data Systems, either within a new chassis or as a stand-alone delivery (e.g. chassis expansion or parts replacement).

If the system software needs to be re-installed or upgraded, the Module software will be bundled with it, all delivered in the form of a single file with a name of the form:

PDOS_2.7.0.0_B2_R11562-R9507-R9416-09-01-20-03-26-55.iso

This single file should be installed by following the regular Pavilion upgrade procedure, which involves:

- Entering the chassis GUI
- Navigating to the 'Configuration' tab
- Navigating to the 'Upgrade' item
- Clicking the 'Upgrade' button
- Selecting the required node type to upgrade

• Selecting the given .iso file from the local system as the package to upgrade

• Clicking the 'Next' button, and following the status for automated installation.

Alternatively, the equivalent 'upgrade' CLI command can also be used.

The Module will always start in the secure Approved Mode, there is no additional action required to enter that secure mode. As part of this, the module will always run its power on self-tests to verify secure operation.

The System containing the module ships with the Cryptographic Officer's username set to 'admin' and the password set to 'admin'. This password should be changed at initialization time. This is done by logging in to the system GUI with a web browser as the 'admin' user, clicking on the 'admin' user in the top-right corner, selecting 'Change password' and following the prompts. The username and password are implemented by the operating system and are not within the logical boundary of the module.

The version of the Module in use can be verified by observing the following log message in the IO controller's console log:

 $pds_crypt module v1.0 initializing$ The current version is v1.0.

Successful completion of these self-tests indicate that the Module is in a secure operational state. This can be verified by either:

1. Observing that the IO controller does not reboot, or

2. Observing the following log message in the IO controller's console log:

pds_crypt module initialization completed successfully

If any power-on self-test were to fail, the module will cause the affected IO controller to log a message and reboot. This can be verified by either:

1. Observing that the IO controller does reboot, or

2. Observing the following log message in the IO controller's console log:

pds_crypt KAT selftest failed

If the module's integrity check were to fail, the module will cause the affected IO controller to log a message and reboot. This can be verified by either:

1. Observing that the IO controller does reboot, or

2. Observing the following log message in the IO controller's console log:

pds_crypt integrity check failed

The kernel will panic upon the module entering the error state, and the console log will display "kernel panic".

Service	ROLE	API Function	Cryptographic Keys & CSPs	Access
Module Initialization	СО	pds_crypt_init	Firmware Integrity ECDSA Public Key	Read, Execute
Self-Test /Show Status	CO, User	pds_crypt_init	Firmware Integrity ECDSA Public Key	Read, Execute
Module Exit	CO, User	pds_crypt_exit	Volume Keys	Write, Zeroize
Register Key	CO, User	pds_crypt_register_key	Volume Keys	Write
Zeroize	CO, User	pds_crypt_deregister_key	Volume Keys	Write, Zeroize
Check Registered Key	CO, User	pds_crypt_check_registered_key	Volume Keys	Read
Encrypt	CO, User	pds_crypt_encrypt	Volume Keys	Read, Execute
Decrypt	CO, User	pds_crypt_decrypt	Volume Keys	Read, Execute

Access Control Policy

Exhibit 7 – Services Authorized for Roles, Access Rights within Services (FIPS 140-2 Table C3, Table C4)

Algorithms Approved Algorithms

The Pavilion Cryptographic Module is designed to continually operate in a FIPS approved mode of operation. The Pavilion Cryptographic Module supports the following FIPS approved cryptographic algorithms:

CAVP Cert	Algorithm	Standard	Mode / Method
A758	SHA	180-4	SHA-256
A759	AES	FIPS 197, SP 800- 38E, SP 800-38A	CBC ¹ (Encrypt/Decrypt 128 and 256), XTS(Encrypt/Decrypt 128 and 256)
A757	ECDSA	FIPS 186-4	SigVer P-256 SHA-256

Exhibit 8 – Table of Approved Algorithms

Mitigation of Other Attacks Policy

The module is not designed to mitigate against attacks which are outside the scope of FIPS 140-2.

Other Attacks	Mitigation Mechanism	Specific Limitations		
N/A	N/A	N/A		

Exhibit 9 – Mitigation of Other Attacks

¹ This algorithm is only used as a pre-requisite to AES-XTS and is not a standalone algorithm.

Physical Security

The module is a software-hybrid module that operates on a multi-chip standalone platform which conforms to the level 1 requirements for physical security. The hardware portion of the cryptographic module is a production grade component. A production grade enclosure completely surrounds the cryptographic module.

Physical Security Mechanisms	Recommended Frequency of Inspection	Inspection Details and Guidance	
N/A	N/A	N/A	

Exhibit 10 – Inspection/Testing of Physical Security Mechanisms

Electromagnetic Interference/ Electromagnetic Compatibility (EMI/EMC)

The software runs in a platform that conforms to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A.

Operational Environment

As per FIPS 140-2, the Pavilion Cryptographic Module contains an operational environment that is modifiable, and meets the requirements for a level 1 software-hybrid module. The module is tested on the following operational environment:

 Oracle Linux 8.0 with Intel Xeon D-1548 with AES-NI Enabled The module was tested on the following hardware:

- Pavilion RF140 Hyperparallel Flash Array; Software Version 2.7.0.0
- 10 IO Controller Cards contained within the Pavilion RF140 Hyperparallell Flash Array Chassis (2 independent IO controller nodes per card); Software Version 2.7.0.0

Exhibit 10 – Intel Xeon D-1548 CPU

Exhibit 11 – Pavilion Hyperparallell Flash Array

Exhibit 12 – IO Controller Card

As per FIPS Implementation Guidance (Section G.5), the Pavilion Cryptographic Module will remain compliant in all operational environments for which the binary executable remains unchanged. The Cryptographic Module Validation Program (CMVP) makes no statement as to the correct operation of the module if the specific operational environment is not listed on the validation certificate.

The cryptographic module is implemented in a server environment. The server application is the user of the

cryptographic module. The server application makes the calls to the cryptographic module. Therefore, the server application is the single user of the cryptographic module, even when the server application is serving multiple clients.