Thales / Leonardo company

Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA nonproprietary Security Policy

Thales Alenia Space

Prepared by jtsec Beyond IT Security SL

Index

1	Rev	ision history6
2	Intr	oduction9
	2.1	Overview9
	2.2	Document organization10
3	Mo	dule specification11
	3.1	Module description and cryptographic boundary11
	3.2	Cryptographic module ports and interfaces12
	3.3	Modes of operation and security functions14
	3.4	Critical Security Parameters14
4	Role	es, authentication and services16
	4.1	Roles and authentication16
	4.2	Services16
	4.2.	1 Encryption service
	4.2.	2 Decryption Service
5	Phy	sical security22
6	Оре	erational environment
	6.1	Tested configuration23
7	Cry	ptographic key management24
	7.1	Random Number Generation24
	7.2	Key generation24
	7.3	Key entry and output24
	7.4	Key storage25
	7.5	Key zeroization25
8	EM	/EMC
9	Self	-Test
	9.1	Power-up self-test27
1(D I	Vitigation of other attacks

Version: 1.13 Date: 27/09/2021 Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space Thales Alenia Space

11	Design assurance
11.1	Configuration management29
11.2	Configuration items identification method29
12	Crypto officer and user guidance
12.1	Operation rules
12.2	Secure distribution
12.3	Integrity and confidentiality assurance31
12.4	Installation and initialization instructions31
12.5	Secure operation31
13	Glossary and abbreviations
14	Reference document

Index of tables

TABLE 1: REVISION HISTORY	8
TABLE 2: SECURITY REQUIREMENTS	10
TABLE 3: TASE-CM-PACE PORTS AND INTERFACES	14
TABLE 4: MODES OF OPERATION AND SECURITY FUNCTIONS	14
TABLE 5: LIST OF CSPS USED BY THE MODULE	15
TABLE 6: Users role and authorized services	16
TABLE 7: DESCRIPTION OF AUTHORIZED SERVICES	18
TABLE 8: TESTED CONFIGURATION	23
TABLE 9: KEYS STORAGE IN EEPROM MEMORY	25
TABLE 10: POWER-UP SELF-TEST DESCRIPTION	27

Index of figures

FIGURE 1: COMMUNICATION PROCESS BETWEEN THE GPC AND PACE TRANSPONDER	9
FIGURE 2: THE PHYSICAL AND LOGICAL BOUNDARY OF TASE-CM-PACE	12
FIGURE 3: ENCRYPTION PROCESS	18
FIGURE 4: FRAME FORMAT OF CIPHERTEXT DATA INPUT	19
FIGURE 5: DECRYPTION PROCESS	21
FIGURE 6: TOP VIEW OF THE TASE-CM-PACE	22
FIGURE 7: BOTTOM VIEW OF THE TAS-CM-PACE	22
FIGURE 8: KEY UPLOADING ENVIRONMENT	24

1 REVISION HISTORY

Revision	Date	Remark
1.0	05/16/2019	Initial Version
1.1	12/06/2019	Modified the sections 5.1, 6.4 and 8
		Updated the documentation package version in section 14
1.2	05/09/2019	Updated the documentation package version in section 14
1.3	30/01/2020	Added the sections 3.4 and revision history
		Modified the sections 3.3, 5 and 12.1
		Updated the documentation package version in section 14
1.4	07/02/2020	Modified the sections 3.2, 4.2.2, 9 and 11.2
1.5	14/02/2020	Updated the documentation package version in section 14
1.6	26/05/2020	Updated the section 3.1
		Updated the section 4.1 to specify that bypass capability is not supported.
		Updated section 5 to specify the silicone varnish employed to protect the module
		Updated the section 12.4
		Updated the documentation package version in section 14

Date: 27/09/2021

1.7	01/07/2020	Updated the module name in section 2.1
		Updated figure 2 in section 3.1
		Updated section 3.1
		Corrected wrong pin values in section 3.2
		Updated section 4.2.1
		Updated section 12.1
		Updated the documentation package version in section 14
1.8	08/09/2020	Fixed some broken references
		Updated section 3.1
		Updated section 3.3
		Updated section 4.2
1.9	25/09/2020	Updated section 3.1
		Updated section 6.1
		Updated section 12.1
		Updated the documentation package version in section 14
1.10	16/07/2021	Updated section 2 to specify the differences between the two possible firmware versions
		Updated section 3
		Updated the documentation package version in section 14
1.11	19/07/2021	Updated section 2 to provide more detail about the differences between the two firmware versions
		Updated section 3.1
		Updated the documentation package version in section 14

Version: 1.13 Date: 27/09/2021 Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space

1.12	30/08/2021	Updated sections 2.1, 3.1 and 3.4 to fix a typo. Updated table 4 to include the AES-ECB mode Updated the table 7 to rename the "initialize" service to power- up
1.13	27/09/2021	Updated the rule number 14 in section 12.1

Table 1: Revision history

2 INTRODUCTION

2.1 OVERVIEW

This document is the non-proprietary FIPS 140-2 Security Policy for the Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA which will also be referred to as "TASE-CM-PACE" through this document. This Security Policy specifies the security rules under which the cryptographic module should operate to meet FIPS 140-2 Level 1 requirements.

This cryptographic module has been developed by Thales Alenia Space and it has been implemented within the Ground Cryptographic Processor (GCP) placed on Earth and within the Plankton Aerosol, Cloud, ocean Ecosystem (PACE) transponder unit. The aim of this cryptographic module is to enable the NASA to cipher the communications in the GCP and decipher and authenticate them in the transponder unit using AES-CCM. It is able to encrypt/decrypt and authenticate messages from 24 bytes to 312 bytes of information in 64 bits blocks.

Although the TASE-CM-PACE is the same for the GCP and for the PACE transponder being able to cipher and decipher indistinctly, in a real case of use, the information will be ciphered in the GCP which will transmit it to the PACE transponder where it will be deciphered and authenticated. The following picture shows the communication process between the GCP and PACE transponder:

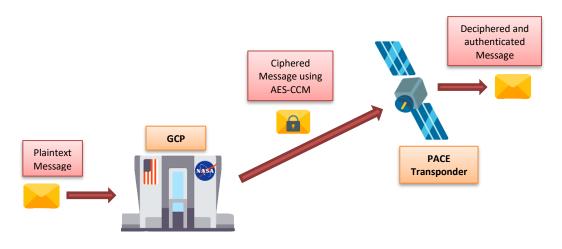


Figure 1: Communication process between the GPC and PACE transponder

This SP document addresses the firmware versions 3.32.00 and 3.32.04 of the module. The differences between them affects to:

- Some code changes not related to the cryptographic operation of the module such as variable types redefinition.
- Some code changes related to how some telecommands update the CTR. These changes are nonsecurity relevant changes because they do not modify the cryptographic operation of the module.
- Some code changes related to zeroization. Both version of the firmware zeroizes extra EEPROM
 memory positions than the occupied by the keys stored within the module. Because of timing,
 the new version of the firmware reduces a memory position, therefore, this modification is notsecurity relevant because both firmware versions zeroizes all the memory positions associated
 with the stored keys.

Moreover, the Helion IP core responsible for providing the cryptographic operation to the module is the same for both firmware versions.

The FIPS 140-2 security levels for the module are as follow:

	Security Requirements	Security Level
1	Cryptographic Module Specification	1
2	Cryptographic Module Ports and Interfaces	1
3	Roles, Services, and Authentication	1
4	Finite State Model	1
5	Physical Security	1
6	Operational Environment	N/A
7	Cryptographic Key Management	1
8	EMI/EMC	1
9	Self-Test	1
10	Design Assurance	1
11	Mitigation of Other Attacks	N/A
Ove	rall Level	1

Table 2: Security requirements

2.2 DOCUMENT ORGANIZATION

This security policy is one part in a FIPS 140-2 submission package. The submission package contains:

- Security Policy: This document.
- Algorithm certificates: See section "3.3 Modes of operation and security functions".
- Functional specification and design documentation: See sections "3.1 Module description and cryptographic boundary" and "3.2 Cryptographic module ports and interfaces" and [TASFS].
- User guide: See section "12 Crypto officer and user guidance".
- Finite state machine model: See [TASFSM].
- Configuration item list: See [TASCIL].

3 MODULE SPECIFICATION

The TASE-CM-PACE is a hardware module based on a One Time Programmable FPGA (OTP FPGA) which implements twice the Helion IP cores for supporting AES-CCM encryption/decryption within the environment of the PACE mission. This cryptographic module is classified by FIPS 140-2 as multiple-chip embedded.

In addition, the cryptographic module includes the telecommand (TC) and telemetry (TM) request libraries necessary to control and monitor the cryptographic operations and communications between the GCP and the PACE transponder.

3.1 MODULE DESCRIPTION AND CRYPTOGRAPHIC BOUNDARY

The FPGA is composed by:

- Two Helion IP cores for AES-CCM encryption/decryption and authentication.
- The CM Management block for the management of the keys CRCs, keys CTRs, etc., relative to the AES-CCM keys.
- Other functional logic (green blocks) not related to the cryptographic operations, because its function is performing tasks concerning to the communications and moreover it is not connected to the cryptographic block as it is shown in the "Figure 2: The Physical and Logical Boundary of TASE-CM-PACE".

The "Figure 2: The Physical and Logical Boundary of TASE-CM-PACE" depicts the block diagram specifying the physical and logical boundary for the TASE-CM-PACE, showing all the input/output interfaces and the information flow described below:

- The ciphertext can be entered into the TASE-CM-PACE through two data input interfaces (one is the ISBT Asics output *CDI-1* and the other one is the auxiliary input for testing *CDI-2*) and once it is inside the FPGA, it goes to the Helion IP core to be deciphered before being output from the TASE-CM-PACE in plaintext form through the data output interface (PDO).
- The plaintext is entered through another **data input** interface **(***PDI***)** into the TASE-CM-PACE and it is ciphered by the Helion IP core before being output from the module through the **data output** interface **(***CDO***)**.
- All the AES-CCM keys are entered into the TASE-CM-PACE through the **data input** interface *KEYUART* by the crypto officer and once the CM Management Block calculates their CRCs and verifies that they match with the received CRCs through the same interface, both the keys and their CRCs are stored into the EEPROM memory.
- All the TM requests and TCs are entered into the TASE-CM-PACE through the **control input** interfaces *HKUART*, *KEYUART* and *GND-UART*.
- All the status output information related to the state of the cryptographic module is output from the TASE-CM-PACE through the *HKUART* interface. The status output information related to the verification of each key CRC is output through the *KEYUART* interface and the status output information related to the length and rate of the input plaintext is output through the *GND-UART* interface.

- The green block called "other logic" which corresponds to the downlink of the module is related to the signal modulation. The information (green arrow) between this block and the UART I/F is because the *HKUART* interfaces allow configuring this block by using two TCs not related to the cryptographic operation of the module.
- The green block called "ISBT ASIC" is considered out of the cryptographic boundary because although it is responsible for providing the ciphered input to the module as a result of the demodulation of the received signal, a malfunctioning of this block during the demodulation process cannot cause a release of CSPs, plaintext or sensitive information. If an error occurs during the demodulation process and the CD-1 signal does not have the format specified in the section "4.2.1 Encryption service", then the CD-1 signal will not be processed by the TASE-CM-PACE.
- The information flow into the module is represented by the dark blue arrows.

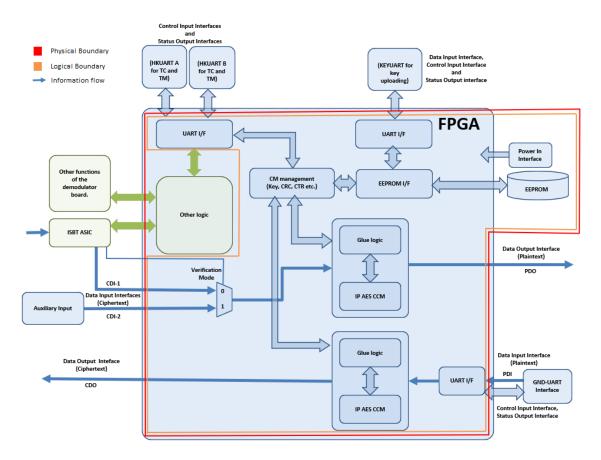


Figure 2: The Physical and Logical Boundary of TASE-CM-PACE

3.2 CRYPTOGRAPHIC MODULE PORTS AND INTERFACES

The following table summarizes the mapping between the logical interfaces required by FIPS 140-2 and the physical ports of the TASE-CM-PACE:

FIPS 140-2 logical interface	Cryptographic module physical port		Description and purpose
Data input	PDI	GND_UART_RX (pin 136)	These interfaces are used to enter the plaintext to be ciphered into the TASE-CM-PACE

		ASIC TO DATA (pin 140)		
		ASIC_TC_DATA (pin 140) ASIC TC CLOCK (pin 141)	These interfaces are used to enter	
	CDI-1		the ciphertext to be deciphered into	
		ASIC_TC_VALID (pin 142)	the TASE-CM-PACE	
	ASIC_BIT_LOCK (pin 143) KEY_UART_RX (pin 158)		All the AES-CCM keys to be used by the module in encrypt/decrypt operations are entered into the TASE-CM-PACE through this interface	
	CDI-2	AUXILIARY_ENA (pin 124)	These interfaces are used to enter the ciphertext to be deciphered into the TASE-CM-PACE in case of use	
		AUXILIARY_CMD (pin 125)	the auxiliary input	
		GND_TC_DATA (pin 133)	These interfaces are used to output	
	CDO	GND_TC_CLOCK (pin 134)	the ciphertext from the TASE-CM-	
Data output		GND_TC_VALID (pin 135)	PACE	
		DECRYPT_VALID (pin 197)	These interfaces are used to output	
	PDO	DECRYPT_DATA (pin 198)	the plaintext from the TASE-CM-	
		DECRYPT_CLOCK (pin 199)	PACE	
	HK_UAF	RT_RX_A (pin 146)	This interface is used to input TC to the TASE-CM-PACE	
	HK_UART_RX_B (pin 147)		This interface is used to input TC to the TASE-CM-PACE as the HK_UART_RX_A in order to provide redundancy	
	KEY_UART_RX (pin 158)		Besides of being used to enter the keys into the module, this interface is used to control what key is going to be entered into the module for each TC as detailed in the TASFS	
Control Input	GND_UART_RX (pin 136)		Besides of being used to enter the plaintext to be ciphered into the TASE-CM-PACE, this interface is used to enter the TCs and TMs related to the plaintext input configuration as the Nonce and rate configuration or obtain the length of the entered plaintext	
	KEY_CA	BLE_3 (pin 153)	If the harness is plugged (All these	
	KEY_CA	BLE_2 (pin 154)	pins = 0) before turning on the TASE CM-PACE, the keys entry will star	
	KEY_CA	BLE_1 (pin 155)	once the cryptographic module is turned on	
		RT_TX (pin 159)	The purpose of this interface is to output the TM related to the keys CRC checking during the key entry process	
Status output	GND_UART_TX (pin 137)		This interface returns the TMs through this interface to answer the TMs Request related to the plaintext input to be encrypted as the plaintext length or communication rate	

Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space

	HK_UART_TX_A (pin 148)	The aim of this interface is to output the rest of TM	
	HK_UART_TX_B (pin 149)	This interface has the same aim as the HK_UART_TX_A in order to provide redundancy	
	VCCDA (Pins 2, 32, 66, 67, 86, 87, 94, 95, 96, 106, 107, 126, 130, 160, 194, 196, 214, 215, 222, 223, 224, 236, 237, 238 and 251)	Power input interface at 3.3V	
	VCCA (Pins 3, 4, 22, 42, 61, 63, 84, 108, 127, 131, 150, 170, 189, 191, 212 and 238)	Power input interface at 1.5V	
Power in	VCCIB7 (pins 10, 16 and 28)		
	VCCIB6 (pins 36, 48 and 54) VCCIB5 (pins 72, 78 and 90)		
	VCCIB4 (pins 102, 114 and 120)	Power input interface at 3.3V or	
	VCCIB3 (pins 138, 144 and 156)	2.5V	
	VCCIB2 (pins 164, 176 and 182)		
	VCCIB1 (pins 200, 206 and 218)		
	VCCIB0 (pins 230 and 244)		

Table 3: TASE-CM-PACE ports and interfaces

When the module is performing self-test or key zeroization or is in an error state, all data output through the data output interfaces is inhibited. The inhibition of the data output interfaces is performed in the source code by checking when the module enters in one of detailed states. In addition, the TASE-CM-PACE does not require a maintenance interface because maintenance role is not supported.

3.3 MODES OF OPERATION AND SECURITY FUNCTIONS

The TASE-CM-PACE can only operate in FIPS 140-2 Approved mode. In this mode, the cryptographic module receives the input plaintext/ciphertext which is processed by the Helion IP core and the resultant ciphertext/plaintext is output from the module through the data output interface, thus in this configuration, the cryptographic module supports the FIPS approved security function detailed in the table below:

Algorithm	Mode	Key Size	Purpose	Certificate
[FIPS 197] AES	[SP 800-38C] CCM	256	Authenticated encryption and	A1721
			decryption	
	[SP 800-38A] ECB	256	Encryption and decryption	A1721

Table 4: Modes of operation and security functions

The TASE-CM-PACE is always operating in FIPS-mode; therefore, it does not support Non-FIPS mode. In addition, it does not support Non-Approved security functions nor vendor affirmed methods.

3.4 CRITICAL SECURITY PARAMETERS

This section specifies the critical security parameter used by the TASE-CM-PACE to be able to use the security function detailed in section above.

Version: 1.13

Date: 27/09/2021

Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space

CSPs	Description
AES_EDK	AES 256 bits key used for authenticated symmetric encryption/decryption

Table 5: List of CSPs used by the module

Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space

4 ROLES, AUTHENTICATION AND SERVICES

4.1 ROLES AND AUTHENTICATION

As the FIPS 140-2 standard requires, the TASE-CM-PACE supports the User and Crypto Officer roles. It's important to keep in mind that the cryptographic module does not allow concurrent operators to operate at the same time, because it is programed to operate in sequential execution. In addition, the module does not implement authentication mechanisms because Security Level 1 does not require it.

The table below summarizes the allowed services for each role implemented by the TASE-CM-PACE. It's important to consider that the role will be assumed implicitly depending on the accessed service by the operator:

Role	Authorized services
User	All the services related to the cryptographic operations as perform self-test on demand, encrypt/decrypt operations and get the state of the TASE-CM-PACE
Crypto Officer	The crypto officer is the ones in charge of installing the TASE-CM-PACE in a secure manner and performing the AES keys entry and zeroization

Table 6: Users role and authorized services

The TASE-CM-PACE does not support maintenance role because it does not need logical or physical maintenance services. In addition, it does not support bypass capability.

4.2 SERVICES

Once module installation has been performed successfully, each role (user and crypto officer) can use the services and keys/CSPs detailed in the table below depending on its type of access (R for reading access, W for writing access and X for execution access) by using the specified API TC/TM Request and actions.

The access types to CSPs are denoted as follows:

- 'R': Reading access
- 'W': Writing access
- 'X': Execution access

Authorized Services	Roles	Description	Keys and CSPs	API TC/TM Request or action	Access
Power-up	User	Used to power- up the TASE-CM- PACE	N/A	When the module is powered on, it operates automatically in FIPS 140-2 Approved mode of operation	N/A
Self-test	User	Used to perform the power-up self-test	N/A	The self-test is executed automatically when TASE-CM- PACE is powered-on, therefore it can be executed on demand by resetting or rebooting the cryptographic module	N/A

Enter AES keys	со	Used to enter the AES keys into the TASE-CM- PACE	AES_ EDK	 To enter the keys into the cryptographic module, the crypto officer must follow these steps: Step 1: The crypto officer must plug the harness for key uploading to the KEYUART interface. Step 2: The crypto officer must wait until the power-up self-tests and key zeroizations are completed successfully Step 3: Once the TASE-CM-PACE is in Key-Uploading state, the crypto officer can enter up to 32 keys into the cryptographic module verifying that the upload is success by using this command for each of them: TC Key loading TM Request Key loading status Note: Consult the [TASFS] for detailed information 	W
Encrypt	User	Used to encrypt an entry plaintext with the desired AES key	AES_ EDK	Follow the detailed process in section "4.2.1 Encryption service"	х
Decrypt	User	Used to decrypt an entry ciphertext with the desired AES key	AES_EDK	Follow the detailed process in section "4.2.2 Decryption Service" for detailed information	х
Zeroize	со	Used to zeroize the EEPROM memory pages where the AES keys are stored	AES_EDK	The zeroization is performed automatically before the user proceed with the new keys loading as it is indicated in section "7.5 Key zeroization"	W
Get status	User	Used to obtain the current status of the TASE-CM-PACE		The status of the module can be obtained through the HKUART interface as a response to the following TM Request: - TM Request <i>Show Crypto-</i> <i>status</i>	N/A
Set key	User	Used to choose one of the 32 keys stored in the EEPROM memory to carry out and encryption or	AES_EDK	Prior to perform an encryption or decryption operation, the user can use the Set New Key TC detailed in the [TASFS] document to choose a new key	x

	decryption operation			
--	-------------------------	--	--	--

 Table 7: Description of authorized services

4.2.1 ENCRYPTION SERVICE

To use the encryption service, the user needs to performs the following steps:

- **Step 1**: Define one of the keys stored into the EEPROM memory by using the TC **Set new key.**
- **Step 2:** Indicate the initial value of the NONCE to be used to the TASE-CM-PACE through the GND-UART interface using the TC *Define Nonce Counter Field*.
- **Step 3:** After entering the NONCE TC, enter the frames which contains the plaintext blocks which compose the message to be encrypted as [TASFS] details.

The following picture depicts the entire ciphering process (data flow is bottom up) followed in the GCP to encrypt the plaintext message to generate the ciphertext to be sent to the PACE transponder:

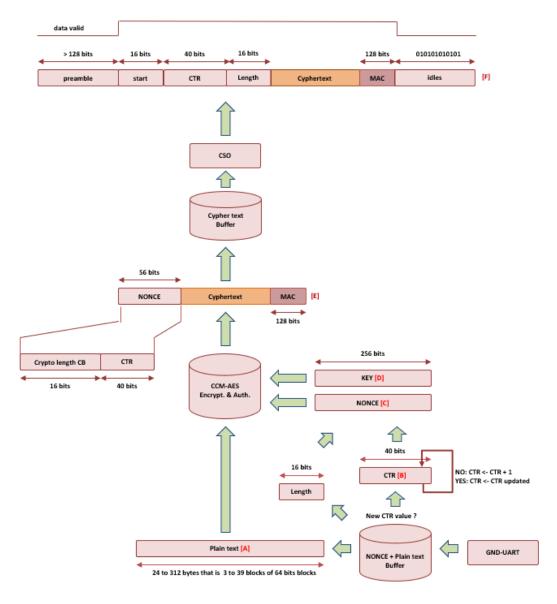


Figure 3: Encryption process

- 1. Once the initial value of the Nonce counter field (CTR) [B] is set, the FPGA will send each plaintext input data frame [A] to the Helion IP core in conjunction with the Nonce counter field (CTR), whose value will be incremented by 1 for each new plaintext frame.
- 2. The Helion IP core receive the Nonce input [C] that is the message length concatenate with the Nonce counter field (CTR).
- 3. At the same time the TASE-CM-PACE indicates to the Helion IP core the key ID [D] to be loaded from EEPROM memory. This key id is previously defined through the HK interface as indicated in section "Load new key" of the TASFS document.
- 4. Once the Helion IP core has all the needed information to proceed with the encryption operation, the cryptographic buffer receives the frame [E] composed by the Nonce (56 bits), the ciphertext and the Message Authentication Code (MAC).
- 5. Finally, the TASE-CM-PACE generates the final frame [F] with the correct format to be deciphered in the PACE transponder. This frame is composed by the preamble sequence (>128 bits), followed by the START sequence (16bits), followed by the Nonce (CTR + length = 40 and 16 bits respectively), followed by the ciphertext, followed by the MAC (128 bits) and the idle sequence (01010101) which is endlessly repeated without constraints in its length.

Note: The following rules will apply to the interfaces operation:

- The GND-UART, HK-UART and KEY-UART baud rate is 115200bps.
- The GND-UART, HK-UART and KEY-UART configuration is odd parity, 1 start bit logic 0 and 1 stop bit logic one.
- The inter-bytes gap is below 5 symbols for the GND-UART, HK-UART and KEY-UART.
- The GND-UART ignores any incomplete incoming TC or TM request.
- The plain text input data blocks of 64 bits in length are concatenated two by two by the Helion AES-CCM IP core to process them as a 128 bits data packets.
- The Nonce counter field (CTR) is incremented by 1 for each new plaintext frame regardless of the key used for the cryptographic operation. This ensures not to repeat the combination of Nonce and internal counter in any case.

4.2.2 DECRYPTION SERVICE

The decryption service is carried out in the TASE-CM-PACE located in the PACE transponder. It will start when the TASE-CM-PACE receives through the ciphertext input interface a frame which begins with the preamble sequence (>128 bits only in transmission initialization). The following 16 bits compose the start sequence followed by the Nonce counter field (CTR (40 bits) and the length (16 bits) of the ciphered message. Finally, the frame contains the ciphertext followed by the MAC (128 bits) and the idle sequence (01010101) which is endlessly repeated without constraints in its length:

Figure 4: Frame format of ciphertext data input

Then, to use the decryption service, the user must follow these steps:

- **Step 1:** Define one of the keys stored into the EEPROM memory by using the TC **Set new key.**
- **Step 2:** Wait for receiving a frame with the format specified above.

The following picture depicts the decryption process followed in the PACE transponder to decipher the information received from the GCP:

- 1. The TASE-CM-PACE extract the ciphertext [A], after splitting the input data frame.
- 2. The Helion IP core receives the Nonce Counter (CTR) [B] concatenate with the length.
- 3. The Helion IP core receives the key ID [C], previously defined through the HK interface as indicated in section "Load new key" of the TASFS document.
- 4. The Helion IP core calcs the MAC [D] with all the received parameters and then TASE-CM-PACE compares it with the MAC which composes the received frame. If they match, the ciphertext is deciphered and authenticated, obtaining the ciphertext [E] that is sent to the plaintext buffer.

Note: The following rules will apply to the GND-UART interface operation:

The TASE-CM-PACE does not output any unauthenticated data packet.

Version: 1.13 Date: 27/09/2021 Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space Thales Alenia Space



Figure 5: Decryption process

5 PHYSICAL SECURITY

The TASE-CM-PACE is compliant with Security Level 1 only. The cryptographic module consists of production grade components protected by MAP ATOX 41-B silicone varnish as a standard passivation technique and it is classified by FIPS 140-2 as multiple-chip embedded cryptographic module.

Moreover, the physical security is enhanced because in the case of the module placed in the PACE transponder there is no possibility of having physical access to it. Regarding the GCP module, it is placed in a secure room in NASA facilities and it is always used and managed under the supervision of the CO.

Figure 6: Top view of the TASE-CM-PACE

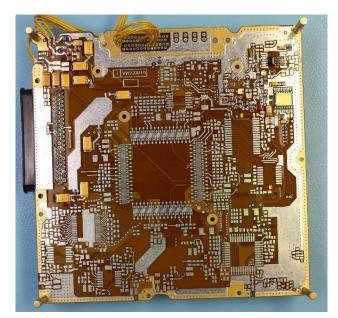


Figure 7: Bottom view of the TAS-CM-PACE

6 OPERATIONAL ENVIRONMENT

The TASE-CM-PACE is a multiple-chip embedded cryptographic module which encompasses a FPGA and an EEPROM memory used to store the AES-CCM keys and their CRCs. Therefore, the operational environment corresponds with the firmware contained in the OTP FPGA which is classified as nonmodifiable operational environment because once the OTP FPGA is burned/programmed, it is not possible to modify the firmware contained in it, and therefore, the requirements of this section are not applicable.

6.1 TESTED CONFIGURATION

The TASE-CM-PACE is composed by a FPGA which provides all the necessary to operate and interconnect the Helion IP cores (AES-CCM IP cores) to perform cryptographic operations and the EEPROM memory to store all the AES-CCM keys and their CRCs.

The model of each component is specified in the table below:

Device	Model
FPGA	RTAX2000S
IP cores	Helion AES-CCM IP core
EEPROM	28C010T

Table 8: Tested configuration

Date: 27/09/2021

Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space

7 CRYPTOGRAPHIC KEY MANAGEMENT

7.1 RANDOM NUMBER GENERATION

The TASE-CM-PACE does not support random number generation.

7.2 KEY GENERATION

The TASE-CM-PACE does not implement key generation algorithms.

7.3 KEY ENTRY AND OUTPUT

All the keys used by the TASE-CM-PACE to perform encryption or decryption operations must be entered into the cryptographic module. The module is able to store up to 32 AES-CCM keys and their CRCs identifying them using a unique ID from 1 to 32.

To carry out the key entry in a secure way, the crypto officer is the ones in charge of performing the following steps to comply with FIPS 140-2 standard:

- 1. Firstly, the keys must be manually entered (via USB) into the computer (non-networked) used to load the keys into the module.
- 2. Secondly, the crypto officer must plug the harness to the KEYUART interface prior to powering on the TASE-CM-PACE.
- 3. Once the harness is connected, the crypto officer must power on the cryptographic module.
- 4. After the cryptographic module is powered-up and the self-tests are completed successfully, the cryptographic module will detect that the harness is plugged and starts with the keys zeroization.
- 5. When the zeroization is completed, the key uploading process starts and the crypto officer can upload up to 32 keys in total by using the scheme depicted in the image below and the following sequence of TC and TM request:
 - \circ TC: **Key loading** \rightarrow This TC is used to load new key into the TASE-CM-PACE
 - \circ $\;$ Enter the new key generated externally in plaintext form via software using a PC.
 - TM Request: Key loading status → This TM Request is used to check the CRC of the last uploaded key

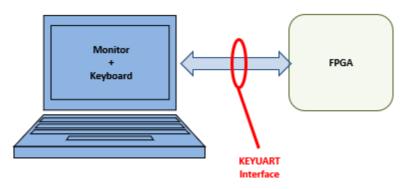


Figure 8: Key uploading environment

The upper limit is 32 keys; however, the crypto officer can enter a lower number of keys into the TASE-CM-PACE.

Regarding the key output, the cryptographic module does not support CSP's and private keys output, because it does not allow access to the keys from outside of the cryptographic boundary.

7.4 KEY STORAGE

Once the crypto officer has completed the process depicted above, the keys are stored into the EEPROM memory. Because the inhospitable conditions of space, the module has several methods to ensure the correctness of the keys to be stored. On the one hand, each key is stored with its own CRC which will be used before a decryption/encryption process to ensure the key is valid. On the other hand, the key storage is performed by using the Triple Modular Redundancy (TMR) methodology in order to protect the information against the Single Event Effects (SEE) which can disturb the keys and their CRCs content. Therefore, the result is that each ID, key and CRC will be stored three times in one EEPROM memory page.

ID	CRC	Кеу	Redundancy 1			Redundaı	ncy 2	
1	CRC1	Key 1	1	CRC1	Key 1	1	CRC1	Key 1
2	CRC2	Key 2	2	CRC2	Key 2	2	CRC2	Key 2
3	CRC3	Key 3	3	CRC3	Key 3	3	CRC3	Key 3
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
32	CRC32	Key 32	32	CRC32	Key 32	32	CRC32	Key 32
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	·	•	•

Table 9: Keys storage in EEPROM memory

When a Key stored in the EEPROM is selected, the TASE-CM-PACE applies a majority voting system for each of its bytes using the three possible stored values. The CRC over this key is calculated and it is compared with the CRC stored in the EEPROM, applying again the majority voting system.

7.5 KEY ZEROIZATION

The key zeroization will be performed automatically prior the key uploading process as it is specified in section "7.3 Key entry and output". During this process the TASE-CM-PACE will only erase the 32 memory pages where the AES-CCM keys and CRCs are stored because these are the only memory pages which contains keys and CSPs.

During the key zeroization process all data output interfaces are inhibited in order to prevent inadvertent disclosure of sensitive information as the plaintext cryptographic keys or CSPS.

 Version: 1.13
 Date: 27/09/2021

 Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space
 Thales Alenia Space

8 EMI/EMC

The TASE-CM-PACE complies with the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A.

9 SELF-TEST

The module will be in Operative state once the power-up self-tests are passed successfully (**status code** of the module is set to 101) and a key from the EEPROM memory is defined correctly (its CRC is verified) to be used. Until this moment, the outputs are inhibited to avoid the inadvertent disclosure of the key components or CSPs, thus the module is not able to output any type of cryptographic data nor perform cryptographic operations.

Moreover, if the power-up self-test fails, the module will reach the error state, not allowing to perform any cryptographic operation and keeping all the outputs inhibited.

9.1 POWER-UP SELF-TEST

Because the TASE-CM-PACE is a hardware cryptographic module based on an OTP FPGA whose firmware cannot be modified as it is specified in section "6 Operational environment", it is not necessary to implement the integrity test of the firmware to verify its signature, so that, during the power-up self-test the TASE-CM-PACE only performs the KAT (Known Answer Test) to verify the correct operation of the AES-CCM, performing the ciphering/deciphering and authentication of a known piece of information.

In addition, the user can perform a power-up self-test on demand by rebooting/resetting the TASE-CM-PACE. The KAT is applied for the Approved algorithm detailed in the table below:

Algorithm	Description
AES CCM	Known answer test. By performing an encryption/decryption and authentication

Table 10: Power-up self-test description

The module does not implement any critical functions that need to be tested in the power-up self-test.

Version: 1.13 Date: 27/09/2021
Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy
Thales Alenia Space

10 MITIGATION OF OTHER ATTACKS

The module is not designed to mitigate other attacks which are outside of the scope of FIPS 140-2.

11 DESIGN ASSURANCE

11.1 CONFIGURATION MANAGEMENT

The configuration management list is composed by the Configuration Items version control, change control, flaw remediation tracking and the source code revision which are managed by Thales Alenia Space in a private Git repository with write access restricted to the authorized developers.

11.2 CONFIGURATION ITEMS IDENTIFICATION METHOD

The internal versioning of the VHDL source code is performed by Git automatically and the assigned version and revision are used internally to control the code development, so that it must not be confused with the final released version of the VHDL that is appended manually to the name of the VHDL code file using the following format "PACE_WFIRST_Model.XX_YY_ZZ", where XX is the version number, YY is the revision number, ZZ is associated with bug fixing. In addition, the TASE-CM-PACE will be able to return the version by using the "FW version" TM Request.

Regarding each associated module documentation, they are manually versioned by appending the version and revision on their filename as follow: Document-X.Y. The assigned version number is stated as part of the file name with the following naming convention:

- Naming: Name-X.Y, where Name is the unique name of the related document, and X.Y are the version and revision of the document. Every new document is named with version v1.0.
- Version Update: When the document is modified and this modification implies major changes, the X number must be changed. However, if changes and modifications imply minor changes, then the Y number must be changed.

The configuration item list can be consulted in [TASCIL].

12 CRYPTO OFFICER AND USER GUIDANCE

12.1 OPERATION RULES

When the module is powered on, it is initialized to operate in FIPS mode that is its only mode of operation complying with the following rules:

- 1. The cryptographic module is initialized in FIPS mode of operation automatically after the selft-test are completed successfully.
- 2. The replacement or modification of the module by unauthorized users is prohibited.
- 3. Power-up self-test do not require any operator action to be executed.
- 4. Data output interfaces are inhibited during the key entry, power-up self-test, zeroization and error states.
- 5. Any input interface will ignore any incomplete incoming TC or TM request.
- 6. Status information does not contain CSPs or sensitive data
- 7. The zeroization affects to the 32 EEPROM memory pages which contains the possible 32 keys to be stored.
- 8. The cryptographic module does not support the maintenance interfaces or role.
- 9. The cryptographic module does not implement authentication mechanisms because it is not required for Security Level 1.
- 10. The cryptographic module does not support manual key entry.
- 11. The cryptographic module does not need to implement conditional self-test.
- 12. The keys are entered into the TASE-CM-PACE in plaintext form via software.
- 13. The cryptographic module does not output CSPs, secret or private keys from the module.
- 14. The maximum number of invocations for each key is 2⁴⁰-1 that is lower than the maximum limit of 2⁶¹ times stated in the SP 800-38C.
- 15. In case of module reset; the Crypto Officer is the responsible of setting the Nonce counter field (CTR) value to the next of the last invoked in order to avoid the possibility of using a Nonce counter field (CTR) previously used. The Nonce counter field (CTR) can be read by using the TM Request subtype 112 (Request CTR value) of the HKUART interface detailed in the [TASFS] document. And then Ciphering Nonce counter field could be set by using the TC subtype 96 of the GNDUART interface.
- 16. During the power-up self-test, the module does not perform integrity test because the firmware contained in the OTP FPGA cannot be modified after programming the FPGA.
- 17. All the keys are stored into an EEPROM memory with a unique identifier which allow the user operate with them without having access to their content or value.
- 18. The crypto officer is the ones in charge to carry out the keys zeroization and the uploading of the new keys to be stored into the EEPROM memory.
- 19. If the TASE-CM-PACE is in Error state, it will not be able to perform cryptographic operations.

12.2 SECURE DISTRIBUTION

The module is shipped only to NASA via certified courier service by Thales Alenia Space, and the it is shipped in Thales boxes with Thales adhesive; therefore, the recipient will be able to notice if it is tampered. In addition, due to the module is an OTP FPGA, it is not possible to modify its firmware, notwithstanding, once the module is installed, it is possible to verify that the firmware version is correct as it is detailed in section 12.4 Installation and initialization instructions.

12.3 INTEGRITY AND CONFIDENTIALITY ASSURANCE

As it is mentioned in the section "9.1 Power-up self-test" it is not necessary to perform the firmware verification because the TASE-CM-PACE is based on an OTP FPGA whose firmware cannot be modified once the FPGA is programmed. Therefore, the integrity and confidentiality of the cryptographic module are assured by following the secure distribution methodology specified in the section above and by verifying the firmware version after following the steps to initialize the module in a secure manner as is specified in the section below.

12.4 INSTALLATION AND INITIALIZATION INSTRUCTIONS

When NASA receives the module, the crypto officer will be the one in charge of interconnecting and anchoring the support in the GCP and the PACE transponder, then the module can be initiated in a secure manner by following the steps below:

Step 1: Once the TASE-CM-PACE is installed and interconnected in a secure manner, it does not contain any AES-CCM key to operate, therefore, the first step is to proceed with the key entry into the cryptographic module. The crypto officer that is responsible for the CSPs and keeping them into the module must follow the steps described in section "7.3 Key entry and output" to insert up to 32 keys into the module and to store them into the EEPROM memory.

Step 2: After the keys are entered and stored into the cryptographic module, the crypto officer must power off the TASE-CM-PACE and unplug the harness from the KEYUART port.

Step 3: Finally, it is possible to verify the correct version of the firmware installed in the module by using the "FW version" TM Request detailed in the [TASFS] after powering on the module.

12.5 SECURE OPERATION

When the module has been configured and the AES-CCM keys stored in a secure manner by the crypto officer, the TASE-CM-PACE can be powered on to be used by or user role by using the TCs and TMs request detailed in [TASFS] and the procedures specified in "Table 6: Users role and authorized services".

Once the self-tests are passed successfully, the data encryption and decryption can be performed without additional security measures, because the module is always operating in FIPS mode. In addition, the module does not return any private secret, key component or CSP through the output data interface.

Version: 1.13

Date: 27/09/2021

Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space

13 GLOSSARY AND ABBREVIATIONS

AES	Advanced Encryption Standard
ССМ	Counter with CBC-MAC
EEPROM	Electrically Erasable Programmable Read-Only Memory
EMI/EMC	Electromagnetic Interference/Electromagnetic Compatibility
FGPA	Field Programmable Gate Array
GCP	Ground Centre Processor
IP	Intellectual Property
MAC	Message Authentication Code
OTP FPGA	One Time Programmable FPGA
PACE	Plankton, Aerosol, Cloud, ocean Ecosystem
TASE-CM-PACE	Thales Alenia Space Cryptographic Module
тс	Telecommand
ТМ	Telemetry
UART	Universal Asynchronous Receiver-Transmitter

Version: 1.13

Date: 27/09/2021

Thales Alenia Space Cryptographic Module for Microsemi RTAX FPGA non-proprietary Security Policy Thales Alenia Space

14 REFERENCE DOCUMENT

TASSP	Theles Aleria Space EIRS 140-2 Security Policy 1-12
IAJJF	Thales Alenia Space FIPS 140-2 Security Policy-1.13
TASCIL	Thales Alenia Space FIPS 140-2 Configuration Item List-1.123
TASFSM	Thales Alenia Space FIPS 140-2 Finite State Model-1.13
TASFS	Thales Alenia Space FIPS 140-2 Functional Specification-1.13
RT-PROTO-FPGAS	Prototyping for Space-Flight Designs with Microsemi ("MSC") RT-PROTO FPGAS
FIPS 197	Advanced Encryption Standard (AES)
SP 800-38A	Recommendation for Block Cipher Modes of Operation
SP 800-38C	Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality