
Unisys Linux Kernel Cryptographic API Module
Version 2.0

FIPS 140-2 Level 1 Validation
Non-Proprietary Security Policy

July 13, 2021

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 1

Table of Contents

1. Introduction ... 2

1.1. Document History ... 2

1.2. Purpose .. 2

2. Cryptographic Module Description .. 3

2.1. Cryptographic Boundary ... 3

2.2. Description of Modes of Operation ... 5

2.3. AES Implementations ... 6

2.4. SHA1 and SHA2 Implementations ... 7

3. Module Ports and Interfaces ... 7

4. Roles, Services, and Authentication ... 8

4.1 Crypto-Officer Role .. 8

4.2 User Role ... 9

5. Physical Security ... 11

6. Operational Environment .. 12

7. Cryptographic Key Management .. 12

7.1 Critical Security Parameters .. 12

7.2 Random Number Generation .. 13

7.3 Key Generation .. 13

7.4 Key Entry and Output .. 13

7.5 Key Storage ... 13

7.6 Key Zeroization .. 14

8. Electromagnetic Interference and Electromagnetic Compatibility .. 14

9. Self-tests .. 14

9.1 Power-up Self-tests ... 14

9.2 Continuous Self-tests .. 15

10. Crypto-Officer and User Guidance ... 15

10.1 Secure Setup ... 15

10.2 Initialization .. 16

10.3 AES-GCM Key/IV Usage ... 16

10.4 AES-XTS ... 16

11. Mitigation of Other Attacks ... 16

Appendix A. Glossary and Abbreviations .. 16

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 2

1. Introduction

1.1. Document History

Authors Date Version Comment
Unisys Stealth Team March 7, 2019 0.1 Initial draft.
Unisys Stealth Team June 25, 2019 0.2 Revised with comments.
Unisys Stealth Team June 26, 2020 0.3 Revised with comments.
Unisys Stealth Team July 22, 2020 0.4 Final document.
Unisys Stealth Team July 13, 2021 0.5 Revised final document.

1.2. Purpose

This is the non-proprietary security policy for the Unisys Linux Kernel Cryptographic API Module Version
2.0, which is referred to as the module. This document describes how the module meets the security
requirements of Federal Information Processing Standards (FIPS) Publication 140-2. This document
also describes how to run the module in a secure, FIPS-approved mode of operation. This Policy forms
a part of the submission package to the validating lab. The module uses the Unisys Linux
strongSwan Cryptographic Module (version 5.6.3-6.4) as a bound module, which is referred to as
the bound module. The bound module is a FIPS 140-2 validated module (cert. #3971) with CAVS
certificate C1012.

FIPS 140-2 specifies the security requirements for a cryptographic module protecting sensitive
information. Based on four security levels for cryptographic modules this standard identifies requirements
in eleven sections. For more information about the standard visit www.nist.gov/cmvp

The product meets the overall requirements applicable to Level 1 security for FIPS 140-2. The module
does not support authentication mechanisms.

Table 1 – Module Compliance Table

Security Component Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 3

2. Cryptographic Module Description

The module meets overall Level 1 requirements for FIPS 140-2, and the following table describes
the level achieved by the module in each of the eleven sections of the FIPS 140-2 requirements.

The following table describes the multi-chip standalone platforms on which the module has been tested. It
includes processor options with and without AES-NI, PCLMULQDQ, and SSSE3, in combinations that
can be invoked.

Table 2 – Tested Operational Environments

Manufacturer Model Operating System

Intel® Xeon® Gold 5115 Processor Dell PowerEdge R640 Server Ubuntu 18.04 LTS Server
distribution

The module is a software-only cryptographic module that comprises a set of Linux kernel modules. It
provides general purpose cryptographic services to the remainder of the Linux kernel.

The module performs a software integrity check on itself using an HMAC SHA-512. The Linux kernel is
configured so that the Linux kernel modules are loaded separately from other kernel functions. Only
FIPS-approved and validated algorithms are loadable.

2.1. Cryptographic Boundary

The module is a software-only cryptographic module that comprises a set of Linux kernel modules; this
set defines the module’s cryptographic boundary. It provides cryptographic functionality for any application
that calls into it. The module is embodied by the Linux kernel modules implementing the ciphers in
/lib/modules/4.15.0-54-stealth/kernel/crypto and /lib/modules/4.15.0-54-stealth/kernel/arch/x86/crypto. Only
the Linux kernel modules implementing the approved mechanisms are available and loaded at boot time.

The Linux kernel modules are:

/lib/modules/4.15.0-54-stealth/kernel/crypto/:
842.ko ablk_helper.ko aead.ko aes_generic.ko
aes_ti.ko af_alg.ko akcipher.ko algif_aead.ko
algif_hash.ko algif_rng.ko algif_skcipher.ko ansi_cprng.ko
asymmetric_keys async_tx authencesn.ko authenc.ko
cbc.ko ccm.ko cfb.ko cryptd.ko
crypto_acompress.ko crypto_algapi.ko crypto_blkcipher.ko crypto_engine.ko
crypto_hash.ko crypto.ko cryptomgr.ko crypto_null.ko
crypto_simd.ko crypto_wq.ko ctr.ko deflate.ko
drbg.ko ecb.ko echainiv.ko fipsavs.ko
gcm.ko gf128mul.ko ghash-generic.ko hmac.ko
hw_jitter_rng.ko jitterentropy_rng.ko keywrap.ko kpp.ko
mcryptd.ko ofb.ko pcrypt.ko poly1305_generic.ko
rng.ko rsa_generic.ko seqiv.ko sha1_generic.ko
sha256_generic.ko sha3_generic.ko sha512_generic.ko sm3_generic.ko
tcrypt.ko xor.ko xts.ko

/lib/modules/4.15.0-54-stealth/kernel/crypto/asymmetric_keys:
asymmetric_keys.ko

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 4

/lib/modules/4.15.0-54-stealth/kernel/crypto/async_tx:
async_memcpy.ko async_pq.ko async_raid6_recov.ko async_tx.ko
async_xor.ko

/lib/modules/4.15.0-54-stealth/kernel/arch/x86/crypto/:
aesni-intel.ko aes-x86_64.ko ghash-clmulni-intel.ko glue_helper.ko
poly1305-x86_64.ko sha1-ssse3.ko sha256-ssse3.ko sha512-ssse3.ko

Figure 1 is the software block diagram of the module, and it illustrates the module boundary. The
proprietary portions of the Consumer and Provider interfaces are contained in the Linux kernel modules
and implement the described and approved mechanisms for the software integrity check, the valid modes
of operation, and the self-tests.

Figure 1 – Software Block Diagram

The physical boundary of the module is defined by the surface of the case of the platform. Figure 2
illustrates the hardware block diagram that comprises the platform.

Figure 2 – Hardware Block Diagram

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 5

2.2. Description of Modes of Operation

The module supports only a FIPS-approved mode, and the module must always be configured as
described in 10.1, “Secure Setup.”

The module supports the following approved functions listed in Table 3:

Table 3 – FIPS-approved Algorithm Implementations

Algorithm Modes Certificate Number

Generic implementation of
AES

CBC, CCM, CFB, CTR, ECB, GCM, OFB
encrypt/decrypt (128, 192, 256-bits)

XTS encrypt/decrypt (128bits)

C873

AES-NI implementation of AES CBC, CFB, CTR, ECB, GCM, OFB
encrypt/decrypt (128, 192, 256-bits)

XTS encrypt/decrypt (128bits)

Generic implementation of
SHA

SHA-1, SHA-224, SHA-256, SHA-384, SHA-
512, SHA3-224, SHA3-256, SHA3-384,
SHA3-512

SSSE3 implementation of
SHA

SHA-1, SHA-224, SHA-256, SHA-384, SHA-
512

HMAC SHA-1, SHA-224, S HA-256, SHA-384, SHA-
512, SHA3-224, SHA3-256, SHA3-384,
SHA3-512

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 6

RSA 2048, 3072-bit modulus, PKCS#1 1.5
Signature Verification (SHA-256, SHA-512)

The module also implements cipher algorithms other than those listed previously. These ciphers are
technically unavailable. When calling these ciphers, the module returns an error.

The module maintains a process flag to indicate that the module is in a FIPS-approved mode. The flag is
provided in the file /proc/sys/crypto/fips_enabled. If this file contains a value of 1, the module is operational
in a FIPS-approved mode. If it contains a value of 0, then the FIPS-approved mode was disabled. This
indicates an error condition. The Crypto-Officer must enable the FIPS-approved mode (for example, by
reinstalling the module), and the operating system must be rebooted. If the power-up self-tests failed, the
module will enter an error mode, and the Crypto-Officer must reboot the operating system to perform
power-up self-tests. See Section 9, "Self-tests," and Section 10, "Crypto-Officer and User Guidance," for
more information.

The bound module provides the following approved functions in Table 4 which the module utilizes:

Table 4 – FIPS-approved Algorithm Implementations from Bound Module

Algorithm Modes Certificate Number

SP 800-135rev1 IKEv2 KDF HMAC with SHA-1, SHA-256, SHA-
384 and SHA-512

C1012

Note: The bound module supports additional algorithms not listed in the above table. The module only
utilizes the algorithms which are listed in the table.

2.3. AES Implementations

The module supports the following two implementations of AES:

 AES using the new Intel instruction set when the aesni-intel kernel module is loaded (which is
only used if the underlying processor provides the AES-NI and PCLMULQDQ instruction sets).

 AES implemented with generic C code when the generic AES kernel modules are loaded.

Note that if more than one of the previously listed kernel modules are loaded, the respective
implementation can be requested by using the following cipher mechanism strings with the
initialization calls (for example, crypto_alloc_skcipher):

 aesni-intel kernel module: “aes-aesni”

 Generic AES kernel module: “aes-generic”

 Automation selection: “aes”

Mode chaining also follows this convention. The algorithm “cbc(aes-generic)” is used to get the generic
AES implementation, and “cbc(aes-aesni)” is used to get the AES-NI implementation. The generic CBC
implementation is used in either case. The algorithm “cbc-aes-aesni” is used to get an entirely AES-NI
implementation. The algorithm “cbc(aes)” automatically selects the implementation for both CBC and

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 7

AES.

For example, if the kernel module aesni-intel is loaded, and if the caller uses the initialization call (for
example, crypto_alloc_blkcipher) with the cipher string of "aes", then the aesni-intel implementation is
used. Or, if only the aes-x86_64 kernel module is loaded, the cipher string of "aes" implies that the aes-
x86_64 implementation is used.

The discussion about the naming and priorities of the AES implementation also applies when cipher
strings are used that include the block chaining mode, such as "cbc(aes)", "cbc(aes-generic)", or
"cbc(aes-aesni)".

The full list of algorithms and implementations is provided in the file /proc/crypto.

2.4. SHA1 and SHA2 Implementations

The module supports the following two implementations of SHA1 and SHA2 as follows:

 SHA using the new Intel instruction set when the SSSE3 kernel modules are loaded (which is
only used if the underlying processor provides the SSSE3 instruction set).

 SHA implemented with generic C code when the generic SHA1 and SHA2 kernel modules are
loaded.

Note that if more than one of the previously listed kernel modules are loaded, the respective
implementation can be requested by using the following cipher mechanism strings with the initialization
calls (for example, crypto_alloc_ahash):

 SSSE3 kernel modules: “shaX-ssse3”

 Generic SHA kernel module: “shaX-generic”

 Automation selection: “shaX”

Where X is: 1, 224, 256, 384, or 512.

Mode chaining also follows this convention. The algorithm “hmac(sha1-generic)” is used to get the
generic SHA1 implementation and “hmac(sha1-ssse3)” is used to get the SSSE3 implementation.
The full list of algorithms and implementations is provided in the file /proc/crypto.

3. Module Ports and Interfaces

The module is considered to be a multi-chip standalone module designed to meet FIPS 140-2 Level 1
requirements. The physical ports of the module are the same as the computer system on which the
software module is executing. The logical interface is an application program interface (API) as shown in
Table 5.

Table 5 – Mapping Physical and Logical Interfaces

FIPS 140-2
Logical Interface

Module Logical Interface Physical Ports

Data Input Consumer Interface SAS port, DVD port, Network Port, USB port,
Serial Port

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 8

Data Output Consumer Interface SAS port, Network Port, USB port, Serial Port

Control Input Consumer Interface Network Port, USB port, Serial Port

Status Output Consumer Interface SAS port, Network Port, USB port, Serial Port
status LEDs, Network Port status LEDs, Video
port

Power Input Not Applicable Power Supply

When the module is performing self-tests, all output on the logical data output interface is inhibited by
sequencing the loading of self-tests and software modules. When the module is in an error state, all
output on the logical data output interface is inhibited, because the module forces a kernel panic. See
Section 9.1, “Power-up Self-tests” for more information. As a software module, it cannot control the
physical ports.

4. Roles, Services, and Authentication

There are two roles in the module (as required by FIPS 140-2) that operators may assume: a Crypto-Officer role
and a User role. The Crypto-Officer and User roles are implicitly assumed by the entity accessing the services
implemented by the module. No further authentication is required for a Level 1 validation. The module
does not allow concurrent operators.

The following section describes the services available to each role, and each service’s corresponding
interface, which is depicted in Figure 1.

This module supports a Crypto-Officer role and a User role.

4.1 Crypto-Officer Role

The Crypto-Officer is any operator on the host appliance with the permissions to check the status of the module.
Descriptions of the services available to the Crypto-Officer role are provided in Table 6. The Crypto-Officer also
has access to all User services, as described in Table 7.

Note that the Type of Access to CSP column in Table 6 and Table 7 indicates the type of access each service
has to its Critical Security Parameter (CSP) using the following notation:

 R – Read: The CSP is read.

 W – Write: The CSP is established, generated, modified, or zeroized.

 X – Execute: The CSP is used within an approved or allowed security function or authentication
mechanism.

For more information on each CSP, see Section 7.1, "Critical Security Parameters."

Table 6 – Crypto-Officer Services

Service Description Keys/CSPs
Type of Access

to CSP
API

Calls

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 9

Initialize FIPS-
approved mode

Performs integrity check and power-
up self-tests. Sets the FIPS-
approved mode flag to on.

N/A N/A N/A

Run self-tests Restarting the appliance will force
the self-tests to run when the
module is loaded.

HMAC Integrity Key R, X N/A

Show Status Uses the “/opt/unisys/fips status”
command to return the current
status of the module from the dmesg
log file

N/A N/A N/A

Zeroize keys Cycling the power zeroizes and de-
allocates memory containing
sensitive data.

All keys/CSPs W N/A

The credentials for the Crypto-Officer are not considered CSPs, as requirements for module
authentication are not enforced for Level 1 validation. The credentials are provided to the host operating
system, and are not part of the module.

4.2 User Role

The User role is able to utilize the cryptographic operations of the module through its APIs. Descriptions
of the services available to the User role are provided in Table 7.

Table 7 – User Services

Service Description Keys/CSPs
Type of

Access to
CSP

API Calls

Encryption/
Decryption

Encrypt or decrypt a
block of data using a
symmetric algorithm.

AES key RWX crypto_alloc_skcipher
crypto_free_skcipher
crypto_has_skcipher
crypto_skcipher_ivsize
crypto_skcipher_blocksize
crypto_skcipher_setkey
crypto_skcipher_reqftm
crypto_skcipher_encrypt
crypto_skcipher_decrypt
crypto_skcipher_reqsize
crypto_request_set_tfm
crypto_request_alloc
crypto_request_free
crypto_request_set_callback
crypto_request_set_crypt

Signature
verification

Verify a digital
signature using an
asymmetric algorithm.

RSA public
key

RX crypto_alloc_akcipher
crypto_free_akcipher
crypto_akcipher_set_pub_key
crypto_akcipher_maxsize
crypto_akcipher_verify
akcipher_request_alloc

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 10

Service Description Keys/CSPs
Type of

Access to
CSP

API Calls

akcipher_request_free
akcipher_request_set_callback
akciper_request_set_crypt

Authenticated
Encryption
with
Associated
Data (AEAD)

A combined
cryptographic protocol
that only supports the
approved algorithms
used in the module.

AES key,
AES-GCM IV

RWX crypto_alloc_aead
crypto_free_aead
crypto_aead_ivsize
crypto_aead_authsize
crypto_aead_blocksize
crypto_aead_setkey
crypto_aead_setauthsize
crypto_aead_encrypt
crypto_aead_decrypt
crypto_aead_reqsize
aead_request_set_tfm
aead_request_alloc
aead_request_free
aead_request_set_callback
aead_request_set_crypt
aead_request_set_ad

Hashing Perform a hashing
operation on a block of
data, using SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,
SHA3-224,
SHA3-256,
SHA3-384, or
SHA3-512.

N/A N/A crypto_alloc_ahash
crypto_free_ahash
crypto_ahash_digestsize
crypto_ahash_statesize
crypto_ahash_reqtfm
crypto_ahash_reqsize
crypto_ahash_setkey
crypto_ahash_finup
crypto_ahash_final
crypto_ahash_digest
crypto_ahash_export
crypto_ahash_import
crypto_ahash_init
ahash_request_set_tfm
ahash_request_alloc
ahash_request_free
ahash_request_set_callback
ahash_request_set_cryot
crypto_alloc_shash
crypto_free_shash
crypto_shash_blocksize
crypto_shash_digestsize
crypto_shash_decsize
crypto_shash_setkey
crypto_shash_digest
crypto_shash_export
crypto_shash_import
crypto_shash_init
crypto_shash_update
crypto_shash_final
crypto_shash_finup

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 11

Service Description Keys/CSPs
Type of

Access to
CSP

API Calls

HMAC signing Perform a hashing
operation on a block of
data, using a keyed
Hashed Message
Authentication Code
with SHA-1, SHA-224,
SHA-256,
SHA-384,
SHA-512,
SHA3-224,
SHA3-256,
SHA3-384, or
SHA3-512.

HMAC key RWX crypto_alloc_ahash
crypto_free_ahash
crypto_ahash_digestsize
crypto_ahash_statesize
crypto_ahash_reqtfm
crypto_ahash_reqsize
crypto_ahash_setkey
crypto_ahash_finup
crypto_ahash_final
crypto_ahash_digest
crypto_ahash_export
crypto_ahash_import
crypto_ahash_init
ahash_request_set_tfm
ahash_request_alloc
ahash_request_free
ahash_request_set_callback
ahash_request_set_cryot
crypto_alloc_shash
crypto_free_shash
crypto_shash_blocksize
crypto_shash_digestsize
crypto_shash_decsize
crypto_shash_setkey
crypto_shash_digest
crypto_shash_export
crypto_shash_import
crypto_shash_init
crypto_shash_update
crypto_shash_final
crypto_shash_finup

5. Physical Security

This is a software module and provides no physical security.

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 12

6. Operational Environment

This module will operate in a modifiable operational environment per the FIPS 140-2 definition.

The operating system shall be restricted to a single operator mode of operation (that is, concurrent
operators are explicitly excluded).

The external application that makes calls to the cryptographic module is the single user of the
cryptographic module, even when the application is serving multiple clients.

7. Cryptographic Key Management

7.1 Critical Security Parameters

The module supports the CSPs listed in Table 8.

Table 8 – Listing of Key and Critical Security Parameters

Key or
CSP

Key/IV Type
Generation/

Entry
Output Storage Zeroization Use

AES key AES 128-, 192-, 256-
bit key

Input via API in
plaintext.

Never The module
does not store
keys.

Reboot operating
system; Cycle host
power

Encryption/

Decryption

AES-GCM
IV

AES-GCM
Initialization Vector
as per RFC 4106

Internally
constructed 96-bit
IV: 64-bit
invocation counter,
32-bit context
value
concatenated.

Never The module
does not store
IVs.

Reboot operating
system; Cycle host
power

IV input to
AES GCM
function

HMAC key HMAC key Input via API in
plaintext

Never The module
does not store
keys.

Reboot operating
system; Cycle host
power

Message
Integrity/
Authenticat
ion with
SHS

RSA
public key

RSA 2048-bit key RSA key pair is
maintained per
company policy.
The public key is
inserted into read-
only data section
of the kernel
dynamic module
integrity check
code during the
build.

Never During integrity
check
initialization, the
public key is
loaded into the
system trusted
keyring.

N/A PKCS 1.5
kernel
dynamic
module
integrity
check

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 13

Key or
CSP

Key/IV Type
Generation/

Entry
Output Storage Zeroization Use

HMAC
Integrity
Key

HMAC key Hardcoded (pre-
loaded) into
Module binary at
factory.

Never Hardcoded into
Module binary

N/A Module
power-on
integrity
test

Note: The fixed key lengths for HMAC are equal to the block size of the underlying hash function (that is,
the fixed key length for the SHA-1, SHA-224, SHA-256, is 64 bytes; SHA-384, SHA-512, SHA-512/224,
SHA-512/256, is 128 bytes; SHA3-224 is 144 bytes; SHA3-256 is 136 bytes; SHA3-384 is 104 bytes; and
SHA3-512 is 72 bytes).

7.2 Random Number Generation

The module provides the following:

 A non-approved RNG, the jitterentropy_rng module, which uses operating system collected hardware
jitter to generate random bits.

 A non-approved Deterministic Random Bit Generator (DRBG) based on [SP800-90A]. The DRBG
supports the Hash_DRBG, HMAC_DRBG and CTR_DRBG mechanisms.

The module uses a non-approved RNG, the jitterentropy_rng module, as one of the entropy sources for
seeding the DRBG. The jitterentropy_rng RNG provides at least 128 bits of entropy to the DRBG during
initialization (seed) and reseeding (reseed).

The module uses a non-approved RNG, the kernel urandom RNG, as the second of the entropy sources
for seeding the DRBG. The urandom RNG provides at least 128 bits of entropy to the DRBG during
initialization (seed) and reseeding (reseed).

The module performs continuous self-tests on the output of RNG jitterentropy_rng to ensure that
consecutive random numbers do not repeat.

The Module performs DRBG self-tests as defined in section 11.3 of [SP800-90A]. The testing is
performed once when the DRBG software module is initialized. Subsequent self-tests, as defined in
section 11.3 of [SP800-90A], are not performed because it is mathematically impossible that the initial
self-tests were successful and subsequent tests are not successful.

7.3 Key Generation

Keying material may not be generated with the SP 800-90A DRBG. Keying material may be entered into
the module via API. The module does not support any explicit key generation functions.

7.4 Key Entry and Output

Keys are passed into the module’s logical boundary in plaintext via the exposed APIs, but only from
applications resident on the host platform. However, the module does not support key entry or key output
across the host platform’s physical boundary. Similarly, keys and CSPs exit the module in plaintext (but
remain in the physical boundary) via the well-defined exported APIs.

7.5 Key Storage

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 14

Keys are not persistently stored by the module.

7.6 Key Zeroization

The module does not persistently store keys (with the exception of the module integrity key). Keys are
provided to the module by the calling application and are destroyed when released by the appropriate API
function calls. No keys enter or exit the physical boundary of the module’s tested platform. All memory is
managed by the host operating system. Volatile memory used to store keys and CSPs is zeroized
(destroyed) by power-cycling the host platform.

8. Electromagnetic Interference and Electromagnetic
Compatibility

The module’s electromagnetic interference (EMI) and electromagnetic compatibility (EMC) features are
summarized in Table 9.

Table 9 – Electromagnetic Interference and Compatibility

Testing Platform Model Number EMI/EMC Notes

Intel Xeon Gold 5115 Processor Dell PowerEdge R640
Server

FCC Class A

9. Self-tests

In order to prevent any secure data from being released, it is important to test the cryptographic
components of a security module to ensure all components are functioning correctly. All kernel modules
are loaded as a part of the operating system boot sequence, and power-up self-tests are performed
automatically by the module, without requiring any operator intervention.

9.1 Power-up Self-tests

To confirm correct functionality, the software library performs the following self-tests:

 Software Integrity Tests using a HMAC SHA-512 and RSA PKCS#1 1.5 on all of the module’s
components

 Known Answer Tests (KATs)

o AES (all supported modes) encrypt KATs

o AES (all supported modes) decrypt KATs

o SHA (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384,
SHA3-512) KATs

o HMAC (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384,
SHA3-512) KATs

o DRBG (CTR, Hash, HMAC) KATs

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 15

o RSA PKCS#1 1.5 Signature Verification (SHA-256, SHA-512) KATs

 DRBG tests based on section 11.3 of [SP800-90A]

Data output from the module’s data output interface is inhibited while performing self-tests. We are relying
on the kernel initialization being single threaded. We insure this by using a hook script in the initrd that
stops kernel initialization until after the module has loaded and completed self-tests. All kernel object
modules must pass power-up self-tests before the system is allowed to enter any user modes. We have
added dependencies to the boot process that assures that initialization stalls until crypto self-tests are
complete and the module is loaded into the kernel. If any of the power-up self-tests fail, the module enters
an error state and ceases operation, inhibiting any further data output from the module. The module does
not perform any cryptographic operations while in an error state. When entering an error state, the module
forces the kernel to panic. If the boot process is subverted in some way that allows the module to start,
the module will still enter an error state and the kernel will panic during the crypto_init phase of any API
call by a user. After self-tests are complete, they are disabled through the use of a compliance flag.
Subsequent attempts to run self-tests will have no effect, and an error indicator will be returned to the
user.

If the module enters an error state, the Crypto-Officer must reboot the system to perform power-up self-
tests. Successful completion of the power-up self-tests will return the module to normal operation.

9.2 Continuous Self-tests

The module performs continuous self-tests on the output of non-approved RNG jitterentropy_rng to
ensure that consecutive random numbers do not repeat.

10. Crypto-Officer and User Guidance

The module consists of several Linux kernel object modules that provide cryptographic services as part
of the Unisys Stealth Secure Virtual Gateway software appliance.

The sections below describe how to install, configure, and keep the module in a FIPS-approved mode
of operation.

10.1 Secure Setup

To operate the module, the operating system must be restricted to a single-user mode of operation.

Installation and operation of the module requires the proper installation of the following Linux Kernel
Debian packages:

- linux-buildinfo 4.15.0-54-stealth
- linux-cloud-tools 4.15.0-54-stealth
- linux-headers 4.15.0-54-stealth
- linux-image 4.15.0-54-stealth
- linux-modules 4.15.0-54-stealth
- linux-tools 4.15.0-54-stealth
- fips-support 1.0.2

The ptrace(2) system call, the debugger (gdb(1)), and strace(1) shall not be used. In addition, other
tracing mechanisms offered by the Linux environment, such as ftrace or systemtap shall not be used.

The operating system command line parameter “fips=1” shall not be modified. Changing the parameter

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 16

will disable FIPS-approved mode of operation.

10.2 Initialization

The module is initialized during the operating system boot sequence, before any cryptographic
functionality is available. The module is designed with a default entry point (DEP) that ensures that
the power-up self-tests are initiated automatically when the module is loaded.

The module enters a FIPS-approved mode upon successful completion of the self-tests. If the self-
tests fail, the module will enter an error mode, and the Crypto-Officer must reboot the system to perform
power-up self-tests. Successful completion of the power-up self-tests will return the module to normal
operation.

10.3 AES-GCM Key/IV Usage

The module generated IVs for use in the AES-GCM algorithm. The IVs are generated in compliance with
RFC 4106. The bound module implements RFC 7296 compliant IKEv2 to establish the shared secret
SKEYSEED from which the module’s AES-GCM encryption keys are derived. The module implements a
64-bit counter i.e. nonce.

All the keys and the constructed IVs used are ephemeral and have a limited lifetime. When the host
platform is powered off or rebooted, these keys and encryption contexts are destroyed. New encryption
contexts need to be created by the calling application when the operating system is rebooted.

To ensure the uniqueness of the AES-GCM key/IV pair for each encryption sent to the module, users of
the module shall not reuse keys between encryption contexts, even those on separate host systems.
Techniques for achieving this are documented in Section 7, “Generation of Keys for Symmetric-Key
Algorithms” in NIST Special Publication 800-133.

If the same encryption context is used more than 264-1 times, the encryption operation will fail and a new
encryption context must be established.

10.4 AES-XTS

The AES-XTS algorithm is only used for cryptographic protection of storage devices. Only 128-bit keys
can be used. The largest data unit which can be encrypted is 16 MB. The module implements a check to
insure the two AES keys are not the same.

11. Mitigation of Other Attacks
This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2
Level 1 requirements for this validation.

Appendix A. Glossary and Abbreviations

 AES – Advanced Encryption Standard

 AES-NI – Advanced Encryption Standard New Instruction set

 API – Application Program Interface

 CBC – Cipher Block Chaining

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 2.0 July 13, 2021

© Copyright 2021 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 17

 CCM – Counter with CBC-MAC

 CFB – Cipher Feedback

 CKG – Cryptographic Key Generation

 CMVP – Cryptographic Module Validation Program

 CSP – Critical Security Parameter

 CTR – Counter

 ECB – Electronic Code Book

 GCM – Galois/Counter Mode

 GMAC – Galois Message Authentication Code

 HMAC – Hash Message Authentication Code

 IV – Initialization Vector

 KAT – Known Answer Test

 MAC – Message Authentication Code

 NIST – National Institute of Science and Technology

 OFB – Output Feedback

 OS – Operating System

 PCLMULQDQ – Carry-less Multiplication Quadword

 PKCS – Public Key Cryptography Standards

 RSA - Rivest–Shamir–Adleman public key cryptographic system

 SHA – Secure Hash Algorithm

 SHS – Secure Hash Standard

 SSSE3 – Supplemental Streaming SIMD Extensions 3

 XTS – XEX-based tweaked-codebook mode with ciphertext stealing

