
# Citrix Systems, Inc.

# Citrix ADC VPX

Software Version: 12.1.55.180



#### **Prepared for:**



#### Citrix Systems, Inc.

851 Cypress Creek Road Fort Lauderdale, FL 33309 United States of America

Phone: +1 954 267 3000

www.citrix.com

#### Prepared by:



#### Corsec Security, Inc.

13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

Phone: +1 703 267 6050

www.corsec.com

# **Table of Contents**

| 1. | Intro | oduction                                          | 4  |
|----|-------|---------------------------------------------------|----|
|    | 1.1   | Purpose                                           | 4  |
|    | 1.2   | References                                        | 4  |
|    | 1.3   | Document Organization                             | 4  |
| 2. | Citri | x ADC VPX                                         | 5  |
|    | 2.1   | Overview                                          | 5  |
|    | 2.2   | Module Specification                              |    |
|    |       | 2.2.1 Physical Cryptographic Boundary             |    |
|    |       | 2.2.2 Logical Cryptographic Boundary              | 8  |
|    |       | 2.2.3 Algorithm Implementations                   |    |
|    | 2.3   | Module Interfaces                                 | 14 |
|    | 2.4   | Roles and Services                                |    |
|    |       | 2.4.1 Authorized Roles                            |    |
|    |       | 2.4.2 Operator Services                           |    |
|    |       | 2.4.3 Additional Services                         | 22 |
|    | 2.5   | Physical Security                                 | 24 |
|    | 2.6   | Operational Environment                           | 24 |
|    | 2.7   | Cryptographic Key Management                      | 26 |
|    | 2.8   | EMI / EMC                                         | 36 |
|    | 2.9   | Self-Tests                                        | 36 |
|    |       | 2.9.1 Power-Up Self-Tests                         | 36 |
|    |       | 2.9.2 Conditional Self-Tests                      | 37 |
|    |       | 2.9.3 Critical Functions Self-Tests               | 37 |
|    |       | 2.9.4 Self-Test Failures                          | 37 |
|    | 2.10  | Mitigation of Other Attacks                       | 38 |
| 3. | Secu  | ure Operation                                     | 40 |
|    | 3.1   | Installation and Setup                            | 40 |
|    |       | 3.1.1 Installation                                | 40 |
|    |       | 3.1.2 General Configuration                       | 40 |
|    |       | 3.1.3 FIPS-Approved Mode Configuration and Status | 41 |
|    | 3.2   | Crypto Officer Guidance                           | 43 |
|    |       | 3.2.1 Management                                  | 43 |
|    |       | 3.2.2 On-Demand Self-Tests                        | 43 |
|    |       | 3.2.3 Zeroization                                 | 43 |
|    |       | 3.2.4 Monitoring Status                           | 43 |
|    | 3.3   | User Guidance                                     |    |
|    | 3.4   | Additional Guidance and Usage Policies            |    |
|    | 3.5   | Non-FIPS-Approved Mode                            | 45 |
| _  | _     |                                                   |    |

# **List of Tables**

| Table 1 – Security Level per FIPS 140-2 Section                                    | 6  |
|------------------------------------------------------------------------------------|----|
| Table 2 – Tested Platforms                                                         |    |
| Table 3 – Vendor-Affirmed Platforms                                                |    |
| Table 4 – Algorithm Certificate Numbers (Citrix ADC CP Cryptographic Library v3.0) |    |
| Table 5 – Algorithm Certificate Numbers (Citrix ADC DP Cryptographic Library v3.0) | 12 |
| Table 6 – CVL Certificate Numbers                                                  |    |
| Table 7 – Allowed Algorithm Implementations                                        |    |
| Table 8 – VPX Interface Mappings                                                   |    |
| Table 9 – Mapping of Module Services to Roles, CSPs, and Type of Access            |    |
| Table 10 – Additional Services                                                     |    |
| Table 11 – Cryptographic Keys, Cryptographic Key Components, and CSPs              | 26 |
| Table 12 – Acronyms                                                                |    |

# **List of Figures**

| Figure 1 – Block Diagram of the Host Server   |   | 3 |
|-----------------------------------------------|---|---|
| Figure 2 – VPX Logical Cryptographic Boundary | , | Э |

# 1. Introduction

#### 1.1 Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Citrix ADC VPX from Citrix Systems, Inc. (hereafter referred to as Citrix). This Security Policy describes how the Citrix ADC VPX meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S.¹ and Canadian government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the Cryptographic Module Validation Program (CMVP) website, which is maintained by the National Institute of Standards and Technology (NIST) and the Canadian Centre for Cyber Security (CCCS).

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module. The Citrix ADC VPX is referred to in this document as "VPX" or "the module".

#### 1.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Citrix website (<a href="https://www.citrix.com">https://www.citrix.com</a>) contains information on the full line of products from Citrix.
- The search page on the CMVP website (<a href="https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Validated-Modules/Search">https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Validated-Modules/Search</a>) can be used to locate and obtain vendor contact information for technical or sales-related questions about the module.

#### 1.3 Document Organization

The Security Policy document is organized into two (2) primary sections. Section 2 provides an overview of the validated module. This includes a general description of the capabilities and the use of cryptography, as well as a presentation of the validation level achieved in each applicable functional area of the FIPS standard. It also provides high-level descriptions of how the module meets FIPS requirements in each functional area. Section 0 documents the guidance needed for the secure use of the module, including initial setup instructions and management methods and policies.

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to Citrix. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to Citrix and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Citrix.

## 2. Citrix ADC VPX

#### 2.1 Overview

The Citrix ADC VPX is a virtual application delivery controller (ADC) that accelerates application performance, enhances application availability with advanced L4-L7<sup>2</sup> load balancing, provides an integrated application firewall, and lowers server expenses by offloading computationally intensive tasks. All these capabilities are combined into a single, integrated virtual appliance.

VPX provides the web-based GUI<sup>3</sup>, REST<sup>4</sup>ful Nitro API<sup>5</sup>, and CLI<sup>6</sup> interfaces for configuring and managing the appliance. The GUI includes a configuration utility for configuring the appliance as well as a statistical utility called Dashboard.

VPX appliances are installed in a data center on-premises or in a public cloud (such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)) between the clients and the servers, so that client requests and server responses pass through it. In a typical installation, virtual servers configured on the appliance provide connection points that clients use to access the applications behind the appliance. In this case, the appliance owns public IP<sup>7</sup> addresses that are associated with its virtual servers, while the real servers are isolated in a private network. Administrators enable appliance features and apply configured policies to incoming and outgoing traffic.

The VPX feature set can be broadly categorized as consisting of switching features, security and protection features, and server-farm optimization features:

- Switching features When deployed in front of application servers, the VPX ensures optimal distribution of traffic by the way in which it directs client requests. Administrators can segment application traffic according to information in the body of an HTTP<sup>8</sup> or TCP<sup>9</sup> request, and on the basis of L4–L7 header information such as URL<sup>10</sup>, application data type, or cookie. Numerous load balancing algorithms and extensive server health checks improve application availability by ensuring that client requests are directed to the appropriate servers.
- <u>Security and protection features</u> VPX security and protection features protect web applications from Application Layer attacks. The VPX allows legitimate client requests and can block malicious requests. It provides built-in defenses against denial-of-service (DoS) attacks and supports features that protect against legitimate surges in application traffic that would otherwise overwhelm the servers. An available built-in firewall protects web applications from Application Layer attacks, including buffer overflow exploits, SQL<sup>11</sup> injection attempts, cross-site scripting attacks, and more. In addition, the firewall provides identity theft protection by securing confidential corporate information and sensitive customer data.

<sup>&</sup>lt;sup>2</sup> L4-L7 – Layer 4 through Layer 7

<sup>&</sup>lt;sup>3</sup> GUI – Graphical User Interface

<sup>&</sup>lt;sup>4</sup> REST – Representational State Transfer

<sup>&</sup>lt;sup>5</sup> API – Application Programming Interface

<sup>&</sup>lt;sup>6</sup> CLI – Command Line Interface

<sup>&</sup>lt;sup>7</sup> IP – Internet Protocol

<sup>&</sup>lt;sup>8</sup> HTTP – Hypertext Transfer Protocol

<sup>&</sup>lt;sup>9</sup> TCP – Transmission Control Protocol

<sup>&</sup>lt;sup>10</sup> URL – Universal Resource Locator

<sup>&</sup>lt;sup>11</sup> SQL – Structured Query Language

Optimization features — Optimization features offload resource-intensive operations, such as SSL <sup>12</sup> processing, data compression, client keep-alive, TCP buffering, and the caching of static and dynamic content from servers. This improves the performance of the servers in the server farm and therefore speeds up applications. The VPX supports several transparent TCP optimizations, which mitigate problems caused by high latency and congested network links, accelerating the delivery of applications while requiring no configuration changes to clients or servers.

The VPX is validated at the FIPS 140-2 Section levels shown in Table 1.

Table 1 – Security Level per FIPS 140-2 Section

| Section | Section Title                             | Level             |
|---------|-------------------------------------------|-------------------|
| 1       | Cryptographic Module Specification        | 1                 |
| 2       | Cryptographic Module Ports and Interfaces | 1                 |
| 3       | Roles, Services, and Authentication       | 1                 |
| 4       | Finite State Model                        | 1                 |
| 5       | Physical Security                         | N/A <sup>13</sup> |
| 6       | Operational Environment                   | 1                 |
| 7       | Cryptographic Key Management              | 1                 |
| 8       | EMI/EMC <sup>14</sup>                     | 1                 |
| 9       | Self-tests                                | 1                 |
| 10      | Design Assurance                          | 1                 |
| 11      | Mitigation of Other Attacks               | 1                 |

## 2.2 Module Specification

The VPX is a software module with a multiple-chip standalone embodiment. The overall security level of the module is 1. It executes as a virtual appliance and was tested and found complaint on the platform(s) listed in Table 2.

Table 2 – Tested Platforms

| Server              | CPU <sup>15</sup>                           | Hypervisor                       | Guest OS     |
|---------------------|---------------------------------------------|----------------------------------|--------------|
| Dell PowerEdge R630 | Intel Xeon E5-2680 v4 2.4 GHz <sup>16</sup> | VMware ESXi 6.5 U2 <sup>17</sup> | FreeBSD v8.4 |

<sup>&</sup>lt;sup>12</sup> SSL – Secure Sockets Layer

<sup>&</sup>lt;sup>13</sup> N/A – Not Applicable

<sup>&</sup>lt;sup>14</sup> EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

<sup>&</sup>lt;sup>15</sup> CPU – Central Processing Unit

<sup>&</sup>lt;sup>16</sup> GHz – Gigahertz

<sup>&</sup>lt;sup>17</sup> U2 – Update 2

The vendor affirms the module's continued validation compliance when operating on the platforms listed in Table 3.

CPU<sup>18</sup> **Guest OS** Server **Hypervisor** Dell PowerEdge R630 Intel Xeon E5-2697 v4 Citrix XenServer 7.1 LTSR19 FreeBSD v8.4 Dell PowerEdge R630 Intel Xeon E5-2697 v4 Microsoft Hyper-V FreeBSD v8.4 Dell PowerEdge R630 Intel Xeon E5-2697 v4 KVM w/ Ubuntu 16.04.05 LTS<sup>20</sup> FreeBSD v8.4 Dell PowerEdge R640 Intel Xeon Platinum 8276 Microsoft Hyper-V FreeBSD v8.4 Dell PowerEdge R640 Intel Xeon Platinum 8276 KVM w/ Ubuntu 16.04.05 LTS<sup>21</sup> FreeBSD v8.4 Lenovo SR630 Intel Xeon Silver 4114 Citrix XenServer 8.2 LTSR FreeBSD v8.4

Table 3 – Vendor-Affirmed Platforms

Per FIPS 140-2 G.5, the cryptographic module maintains validation compliance when operating on any compatible GPC, provided that the GPC uses a single-user operating system/mode specified on the validation certificate, or another compatible single-user operating system. Note that such a GPC may be deployed in a supported cloud environment (Amazon Web Services, Google Cloud Platform, or Microsoft Azure).

The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment not listed on the validation certificate.

### 2.2.1 Physical Cryptographic Boundary

As a virtual appliance, the software module has no physical characteristics; however, the module makes use of the physical interfaces of the server hosting the virtual environment upon which the module is installed. The hypervisor controls and directs all interactions between the module and the operator and is responsible for mapping the module's virtual interfaces to the host server's physical interfaces.

The physical boundary of the cryptographic module is defined by the hard enclosure around the host server on which it runs. For this validation, the module will be tested on the platforms listed in Section 2.2, and each platform consists of a motherboard, a multi-core Intel Xeon CPU, random access memory (RAM), a hardware case, a power supply, and interface ports.

Figure 1 below displays the hardware components of the server used for testing (the dashed line surrounding the hardware components represents the module's physical cryptographic boundary, which is the outer case of the server), and identifies the hardware with which the processors interface.

<sup>&</sup>lt;sup>18</sup> CPU – Central Processing Unit

<sup>&</sup>lt;sup>19</sup> LTSR – Long Term Service Release

<sup>&</sup>lt;sup>20</sup> LTS – Long Term Support

<sup>&</sup>lt;sup>21</sup> LTS – Long Term Support

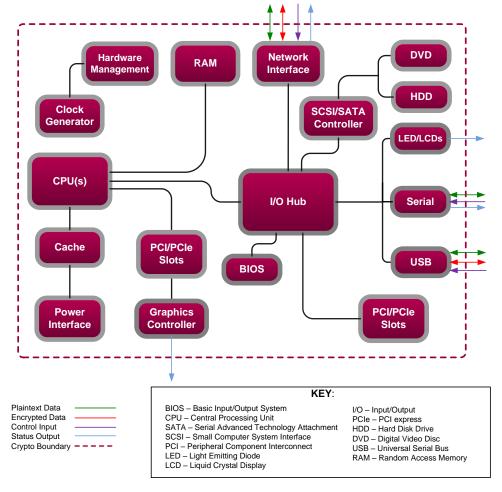



Figure 1 - Block Diagram of the Host Server

## 2.2.2 Logical Cryptographic Boundary

The logical cryptographic boundary of the module (shown by the red dotted line in Figure 2 below) consists of the VPX virtual appliance software and FreeBSD operating system acting as the guest OS.

**KEY:**Logical Cryptographic

Physical Cryptographic

Boundary

Boundary

Data Input
Data Output
Control Input

Status Output System Calls

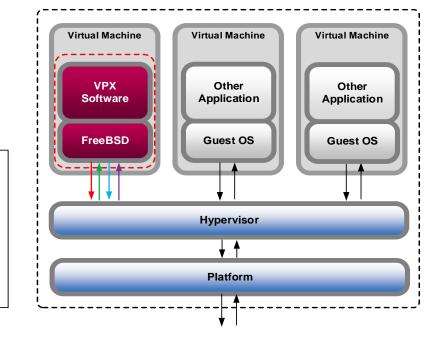



Figure 2 - VPX Logical Cryptographic Boundary

## 2.2.3 Algorithm Implementations

The module includes two software cryptographic libraries that provide basic cryptographic functionalities and support secure networking protocols. The software libraries for the module are:

- Citrix ADC CP<sup>22</sup> Cryptographic Library v3 (based on OpenSSL FOM<sup>23</sup>)
- Citrix ADC DP<sup>24</sup> Cryptographic Library v3 (modified OpenSSL library developed by Citrix)

Table 4 below lists the FIPS-Approved algorithms implemented by the Citrix ADC CP Cryptographic Library v3.

Table 4 – Algorithm Certificate Numbers (Citrix ADC CP Cryptographic Library v3.0)

| Certificate<br>Number | Algorithm         | Standard                      | Mode / Method                         | Key Lengths /<br>Curves / Moduli | Use                   |
|-----------------------|-------------------|-------------------------------|---------------------------------------|----------------------------------|-----------------------|
| C1918                 | AES <sup>25</sup> | FIPS PUB 197                  | CBC <sup>26</sup> , CTR <sup>27</sup> | 128, 192, 256                    | encryption/decryption |
|                       |                   | NIST SP 800-38D               | GCM <sup>28</sup>                     | 128, 256                         | encryption/decryption |
| Vendor<br>Affirmation | CKG <sup>29</sup> | NIST SP <sup>30</sup> 800-133 | -                                     | -                                | key generation        |

<sup>&</sup>lt;sup>22</sup> CP - Control Plane

<sup>&</sup>lt;sup>23</sup> FOM – FIPS Object Module

<sup>&</sup>lt;sup>24</sup> DP – Data Plane

<sup>&</sup>lt;sup>25</sup> AES – Advance Encryption Standard

<sup>&</sup>lt;sup>26</sup> CBC – Cipher Block Chaining

<sup>&</sup>lt;sup>27</sup> CTR - Counter

<sup>&</sup>lt;sup>28</sup> GCM – Galois Counter Mode

<sup>&</sup>lt;sup>29</sup> CKG – Cryptographic Key Generation

<sup>&</sup>lt;sup>30</sup> SP – Special Publication

| Certificate<br>Number | Algorithm             | Standard            | Mode / Method                                             | Key Lengths /<br>Curves / Moduli                                    | Use                                                                                                                                                          |
|-----------------------|-----------------------|---------------------|-----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1918                 | CVL <sup>31</sup>     | NIST SP 800-56Arev3 | ECC CDH <sup>33</sup> Primitive                           | P-224, P-256, P-384,<br>P-521                                       | shared secret computation<br>per NIST SP 800-56Arev3 and<br>key derivation per NIST SP<br>800-135rev1 (Certs. #C855<br>and #C1917)                           |
| C1918                 | DRBG <sup>34</sup>    | NIST SP 800-90Arev1 | CTR-based                                                 | -                                                                   | deterministic random bit generation                                                                                                                          |
| C1918                 | ECDSA <sup>35</sup>   | FIPS PUB 186-4      | KPG <sup>36</sup>                                         | P-224, P-256, P-384,<br>P-521                                       | key pair generation                                                                                                                                          |
|                       |                       |                     | SIG(gen), SIG(ver)                                        | P-224, P-256, P-384,<br>P-521                                       | digital signature generation and verification                                                                                                                |
| C1918                 | HMAC <sup>37</sup>    | FIPS PUB 198-1      | SHA <sup>38</sup> -1, SHA-256, SHA-384,<br>SHA-512        | 160, 256, 384, 512                                                  | message authentication                                                                                                                                       |
|                       |                       |                     |                                                           |                                                                     | The cryptographic library supports the truncation of HMAC SHA-1 to 96 bits according to NIST SP 800-107rev1.                                                 |
| Vendor<br>Affirmed    | KAS-SSC <sup>43</sup> | NIST SP800-56Arev3  | ECDH <sup>44</sup>                                        | P-224, P-256, P-384,<br>P-521                                       | key agreement scheme -<br>shared secret computation<br>per NIST SP 800-56Arev3 and<br>key derivation per NIST SP<br>800-135rev1 (Certs. #C855<br>and #C1917) |
| Vendor<br>Affirmed    | KAS-SSC               | NIST SP800-56Arev3  | DH<br>(Groups 14, 15, 16, 17, and 18)                     | 112 – 200-bits<br>security strength                                 | key agreement scheme -<br>shared secret computation                                                                                                          |
|                       |                       |                     | FFC <sup>45</sup> DH <sup>46</sup> Primitive              | (MODP-2048,<br>MODP-3027,<br>MODP-4096,<br>MODP-6144,<br>MODP-8192) | per NIST SP 800-56Arev3 and<br>key derivation per NIST SP<br>800-135rev1 (Certs. #853,<br>#C855, and #C1917)                                                 |
| Vendor<br>Affirmed    | PBKDF <sup>54</sup>   | NIST SP 800-132     | Option 1a with HMAC SHA-1,<br>Option 1a with HMAC SHA-256 | -                                                                   | password-based key<br>derivation                                                                                                                             |
| C1918                 | RSA <sup>55</sup>     | FIPS PUB 186-4      | KeyGen9.31                                                | 2048, 3072                                                          | key pair generation                                                                                                                                          |
|                       |                       |                     | SigGenPKCS <sup>56</sup> 1.5                              | 2048, 3072                                                          | digital signature generation                                                                                                                                 |
|                       |                       |                     | SigVerPKCS1.5                                             | 2048, 3072                                                          | digital signature verification                                                                                                                               |

<sup>&</sup>lt;sup>31</sup> CVL – Component Validation Listing

<sup>&</sup>lt;sup>33</sup> ECC CDH – Elliptical Curve Cryptography Cofactor Diffie-Hellman

<sup>34</sup> DBRG – Deterministic Random Bit Generator

<sup>&</sup>lt;sup>35</sup> ECDSA – Elliptic Curve Digital Signature Algorithm

<sup>&</sup>lt;sup>36</sup> KPG – Key Pair Generation

<sup>&</sup>lt;sup>37</sup> HMAC – (keyed-) Hashed Message Authentication Code

<sup>38</sup> SHA – Secure Hash Algorithm

<sup>&</sup>lt;sup>43</sup> KAS-SSC – Key Agreement Scheme Shared Secret Computation

<sup>44</sup> ECDH – Elliptic Curve Diffie-Hellman

<sup>&</sup>lt;sup>45</sup> FFC – Finite Field Cryptography

<sup>&</sup>lt;sup>46</sup> DH – Diffie-Hellman

 $<sup>^{\</sup>rm 54}$  PBKDF - Password-based Key Derivation Function 2

<sup>&</sup>lt;sup>55</sup> RSA – Rivest Shamir Adleman

<sup>&</sup>lt;sup>56</sup> PKCS – Public Key Cryptography Standard

| Certificate<br>Number | Algorithm                | Standard       | Mode / Method                        | Key Lengths /<br>Curves / Moduli | Use                   |
|-----------------------|--------------------------|----------------|--------------------------------------|----------------------------------|-----------------------|
| C1918                 | SHS <sup>59</sup>        | FIPS PUB 180-4 | SHA-1, SHA-256, SHA-384, SHA-<br>512 | -                                | message digest        |
| C1918                 | Triple-DES <sup>60</sup> | NIST SP 800-67 | СВС                                  | Keying Option 1                  | encryption/decryption |

The vendor affirms the following cryptographic security methods implemented by the Citrix ADC CP Cryptographic Library v3:

- Per NIST SP 800-132, the module uses PBKDF option 1a for KEK<sup>62</sup>, PEM<sup>63</sup>, and Kerberos Negotiate Key key establishment:
  - The PBKDF for KEK establishment takes an input salt that is 128 bits in length with a password/passphrase containing at least 8 characters and produces a random value of 256 bits. In addition, the function has an iteration count of 2,048. The underlying pseudorandom function used in this derivation is HMAC SHA-256.
  - o The PBKDF for PEM key establishment takes an input salt that is 128 bits in length with a password/passphrase containing at least 8 characters and produces a random value of 256 bits for AES keys and 192-bits for Triple-DES keys. In addition, the function has an iteration count of 2,048. The underlying pseudorandom function used in this derivation is HMAC SHA-1.
  - The PBKDF for the Kerberos Negotiate Key key establishment takes an input salt that is 128 bits in length with a password/passphrase containing at least 8 characters and produces a random value of 256 bits for AES keys and 192-bits for Triple-DES keys. In addition, the function has an iteration count of 2,048. The underlying pseudorandom function used in this derivation is HMAC SHA-256.
  - The keys derived from these PBKDF functions are only used for storage applications.
- Per NIST SP 800-133 section 4, the module uses the FIPS-Approved counter-based DRBG specified in NIST SP 800-90Arev1 to generate both symmetric cryptographic keys and the random values used for asymmetric key generation. The resulting symmetric key or generated seed is an unmodified output from the DRBG.
- Key agreement scheme (shared secret computation) per NIST SP 800-56Arev3:
  - The module implements an FFC DH shared secret computation for its DH key agreement scheme. The shared secret computation is compliant with section 5.7.1.1 of NIST SP 800-56Arev3. This primitive is used by the dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes found in section 6 of that recommendation.

<sup>&</sup>lt;sup>59</sup> SHS – Secure Hash Standard

<sup>&</sup>lt;sup>60</sup> DES – Data Encryption Standard

<sup>62</sup> KEK - Key Encryption Key

<sup>63</sup> PEM - Privacy-Enhanced Mail

 The module also implements an ECC CDH shared secret computation for its ECDH key agreement scheme. The shared secret computation is compliant with section 5.7.1.2 of NIST SP 800-56Arev3.
 This primitive is used by the Full Unified Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass Diffie-Hellman, and Static Unified Model schemes found in section 6 of that recommendation.

Table 5 below lists the FIPS-Approved algorithms implemented by the Citrix ADC DP Cryptographic Library v3.

Table 5 – Algorithm Certificate Numbers (Citrix ADC DP Cryptographic Library v3.0)

| Certificate<br>Number | Algorithm | Standard            | Mode / Method                                     | Key Lengths / Curves /<br>Moduli | Use                                                                                                                                                |
|-----------------------|-----------|---------------------|---------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| C1917                 | AES       | FIPS PUB 197        | СВС                                               | 128, 192, 256                    | encryption/decryption                                                                                                                              |
|                       |           | NIST SP 800-38D     | GCM                                               | 128, 256                         | encryption/decryption                                                                                                                              |
| Vendor<br>Affirmation | CKG       | NIST SP 800-133     | -                                                 | -                                | key generation                                                                                                                                     |
| C1917                 | CVL       | NIST SP 800-56Arev3 | ECC CDH Primitive                                 | P-224, P-256, P-384, P-<br>521   | shared secret computation<br>per NIST SP 800-56Arev3<br>and key derivation per NIST<br>SP 800-135rev1 (Cert.<br>#C1919)                            |
| C1917                 | DRBG      | NIST SP 800-90Arev1 | Hash-based                                        | -                                | deterministic random bit generation                                                                                                                |
| C1917                 | ECDSA     | FIPS PUB 186-4      | SIG(gen), SIG(ver)                                | P-224, P-256, P-384, P-<br>521   | digital signature generation and verification                                                                                                      |
| C1917                 | НМАС      | FIPS PUB 198-1      | SHA-1, SHA-224, SHA-<br>256, SHA-384, SHA-<br>512 | 160, 224, 256, 384, 512          | message authentication                                                                                                                             |
| Vendor<br>Affirmed    | KAS-SSC   | NIST SP 800-56Arev3 | ECDH                                              | P-224, P-256, P-384, P-<br>521   | key agreement<br>scheme - shared secret<br>computation per NIST SP<br>800-56Arev3 and key<br>derivation per NIST SP 800-<br>135rev1 (Cert. #C1919) |
| C1917                 | RSA       | FIPS PUB 186-4      | SigGenPKCS1.5                                     | 2048, 3072, 4096                 | digital signature generation                                                                                                                       |
|                       |           |                     | SigVerPKCS1.5                                     | 1024, 2048, 3072                 | digital signature verification                                                                                                                     |
| A606                  | RSA       | FIPS PUB 186-4      | SigGenPKCS1.5                                     | 4096                             | digital signature generation                                                                                                                       |
|                       |           |                     | SigVerPKCS1.5                                     | 4096                             | digital signature verification                                                                                                                     |
| C1917                 | SHS       | FIPS PUB 180-4      | SHA-1, SHA-224, SHA-<br>256, SHA-384, SHA-<br>512 | -                                | message digest                                                                                                                                     |

The vendor affirms the following cryptographic security method implemented by the Citrix ADC DP Cryptographic Library v3:

- Per NIST SP 800-133 section 4, the module uses the FIPS-Approved hash-based DRBG specified in NIST SP 800-90A Revision 1 to generate both symmetric cryptographic keys and the random values used for asymmetric key generation. The resulting symmetric key or generated seed is an unmodified output from the DRBG.
- Key agreement scheme (shared secret computation) per NIST SP 800-56Arev3:
  - The module also implements an ECC CDH shared secret computation for its ECDH key agreement scheme. The shared secret computation is compliant with section 5.7.1.2 of NIST SP 800-56Arev3.
     This primitive is used by the Full Unified Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass Diffie-Hellman, and Static Unified Model schemes found in section 6 of that recommendation.

Per FIPS 140-2 IG 7.14, the module generates cryptographic keys whose strengths are modified by available entropy.

In addition, the module includes several protocol libraries that implement FIPS-Approved KDFs<sup>64</sup>. The IKE<sup>65</sup> KDFs are implemented by the Citrix ADC CP IKE KDF Library v1 (based on the Racoon2 protocol library), the SSH<sup>66</sup> KDF is implemented by the Citrix ADC CP SSH KDF Library v1 (based on the open source OpenSSH protocol library), and the SNMP<sup>67</sup>v3 KDF is implemented by the Citrix ADC CP SNMP KDF Library v1 (a modified version of the Net-SNMP protocol library). These libraries all link to the Citrix ADC CP Cryptographic Library v3 for their cryptographic operations.

There are two TLS<sup>68</sup> KDF implementations supported by the module. The first is implemented by the Citrix ADC CP TLS KDF Library v2 (based on the OpenSSL libssl protocol library) and uses the Citrix ADC CP Cryptographic Library v3 for its cryptographic operations. The second is implemented by the Citrix ADC DP Cryptographic Library v3.

The module implements the FIPS-Approved KDFs listed in Table 6 below.

Key Lengths / Library Certificate Mode / Algorithm Specification Curves / Use Number Method Moduli C1917 TLS NIST SP 800-135rev1 key derivation Citrix ADC CP Cryptographic v1.0/1.1/1.2 Library v3.0 KDF C1919 TLS NIST SP 800-135rev1 Citrix ADC DP Cryptographic key derivation v1.0/1.1/1.2 Library v3.0 **KDF** SSH KDF Citrix ADC CP Cryptographic C855 NIST SP 800-135rev1 key derivation Library v3.0

Table 6 - CVL Certificate Numbers

<sup>&</sup>lt;sup>64</sup> KDF – Key Derivation Function

<sup>65</sup> IKE – Internet Key Exchange

<sup>&</sup>lt;sup>66</sup> SSH – Secure Shell

<sup>&</sup>lt;sup>67</sup> SNMP – Simple Network Management Protocol

<sup>&</sup>lt;sup>68</sup> TLS – Transport Layer Security

| Certificate<br>Number | Algorithm    | Specification       | Mode /<br>Method | Key Lengths /<br>Curves /<br>Moduli | Use            | Library                                     |
|-----------------------|--------------|---------------------|------------------|-------------------------------------|----------------|---------------------------------------------|
| C853                  | IKEv1/v2 KDF | NIST SP 800-135rev1 | -                | -                                   | key derivation | Citrix ADC CP Cryptographic<br>Library v3.0 |
| C854                  | SNMPv3 KDF   | NIST SP 800-135rev1 | -                | -                                   | key derivation | Citrix ADC CP Cryptographic<br>Library v3.0 |

Note: No parts of the IKE, SNMP, SSH, and TLS protocols, other than the KDFs, have been tested by the CAVP<sup>69</sup> or CMVP.

The algorithm implementations shown in Table 7 below are allowed for use in a FIPS-Approved mode of operation.

**Algorithm** Use Caveat RSA key establishment methodology provides 112 or kev transport 128 bits of encryption strength (Citrix ADC CP Cryptographic Library v3) key establishment methodology provides 112 or key transport (Citrix ADC DP Cryptographic Library v3) 128-bits of encryption strength  $MD5^{70}$ hashing passwords; TLS 1.0/1.1 tunnel setup NDRNG<sup>71</sup> seeding for the control plane DRBG (FreeBSD /dev/random) **NDRNG** seeding for data plane hardware and firmware (Intel RDRAND) DRBG

Table 7 – Allowed Algorithm Implementations

## 2.3 Module Interfaces

The module's design separates the physical ports into four logically distinct and isolated categories. They are:

- Data Input Interface
- Data Output Interface
- Control Input Interface
- Status Output Interface

As a virtual appliance, the VPX has no physical characteristics. Its interfaces are logical; the hypervisor provides virtualized ports and interfaces for the module that map to the host server's physical ports and interfaces. The module relies on the physical and electrical characteristics, manual controls, and physical indicators of the host server.

The mapping of the module's logical interfaces in the software to FIPS 140-2 logical interfaces is described in Table 3 below.

-

<sup>&</sup>lt;sup>69</sup> CAVP – Cryptographic Algorithm Validation Program

<sup>&</sup>lt;sup>70</sup> MD5 – Message Digest 5

<sup>&</sup>lt;sup>71</sup> NDRNG – Non-Deterministic Random Number Generator

Table 8 - VPX Interface Mappings

| Physical Port/Interface                                         | Virtual Port/Interface        | FIPS 140-2 Logical Interface                                                                 |
|-----------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------|
| Host platform Network Interface<br>(Ethernet 10/100/1000) ports | Virtual Network Interface     | <ul><li>Data Input</li><li>Data Output</li><li>Control Input</li><li>Status Output</li></ul> |
| Host platform Graphics Controller                               | Virtual Graphics Controller   | Status Output                                                                                |
| Host platform LED/LCDs                                          | Virtual LED/LCDs              | Status output                                                                                |
| Host platform serial port                                       | Virtual serial port (console) | <ul><li>Data Input</li><li>Data output</li><li>Control Input</li><li>Status output</li></ul> |
| Host platform USB port                                          | Virtual USB port              | Data input     Data output     Control input                                                 |
| Host platform power interface                                   | Virtual power interface       | • Power                                                                                      |

#### 2.4 Roles and Services

The sections below describe the module's roles and services and defines any authentication methods employed.

### 2.4.1 Authorized Roles

As required by FIPS 140-2, the module supports two roles that operators may assume:

- Crypto Officer (CO) The CO role performs administrative services on the module, such as initialization, configuration, and monitoring of the module. The CO role includes the privileges listed under the readonly, operator, network, and sysadmin VPX command policies.
- User Users can view the current status of the module and employ the services of the module (including IPsec<sup>72</sup>, TLS, SSH, and SNMPv3 services). The User role includes the privileges listed under the read-only VPX command policy.

For more information on the VPX command policies, refer to the <u>Configuring users</u>, <u>user groups</u>, <u>and command policies</u> webpage on Citrix's online product documentation portal.

<sup>72</sup> IPsec – Internet Protocol Security

### 2.4.2 Operator Services

Descriptions of the services available to the CO role and User role are provided in Table 9 below. Please note that the keys and Critical Security Parameters (CSPs) listed in the table indicate the type of access required using the following notation:

- R Read: The CSP is read.
- W Write: The CSP is established, generated, or modified.
- X Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.
- Z Zeroize: The CSP is deleted.

Table 9 – Mapping of Module Services to Roles, CSPs, and Type of Access<sup>73</sup>

|                                             | Operator |  |                                                           |                        |                                          |                                                                                                                                   |
|---------------------------------------------|----------|--|-----------------------------------------------------------|------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Service                                     | CO User  |  | Description                                               | Input                  | Output                                   | CSP and Type of Access                                                                                                            |
| Perform initial<br>network<br>configuration | <b>✓</b> |  | Set up initial network configuration and VPX licenses     | Command and parameters | Command<br>response/<br>status<br>output | None                                                                                                                              |
| Create KEK                                  | <b>~</b> |  | Create system master key                                  | Command                | Status<br>output                         | KEK Passphrase – R/X KEK – W CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X |
| View system information                     | <b>✓</b> |  | View system info and statistics; view/end system sessions | Command                | Status<br>output                         | None                                                                                                                              |

<sup>&</sup>lt;sup>73</sup> For commands and parameters related to the listed services, refer to the Citrix ADC 12.1 Product Documentation located at <a href="https://docs.citrix.com/en-us/citrix-adc/12-1.html">https://docs.citrix.com/en-us/citrix-adc/12-1.html</a>.

| Samila                              | Ope      | rator | Danawinskin u                                                                     | la mod.                | Outrot                                   | CCD and Time of Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------|----------|-------|-----------------------------------------------------------------------------------|------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service                             | со       | User  | Description                                                                       | Input                  | Output                                   | CSP and Type of Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reboot                              | <b>√</b> |       | Reboot the module                                                                 | Command                | Status<br>output                         | PEM Passphrase – Z PEM Key – Z AES GCM Key – Z AES GCM IV – Z DH/ECDH/RSA Private Key Component – Z DH/ECDH/RSA Public Key Component – Z SSH Shared Secret – Z SSH Session Key – Z SSH Authentication Key – Z IKE/IPsec Shared Secret – Z IKE/IPsec Session Key – Z IKE/IPsec Authentication Key – Z ILS Pre-Master Secret – Z TLS Master Secret – Z TLS Master Secret – Z TLS Authentication Key – Z TLS Ticket Encryption Key – Z TLS Ticket Encryption Key – Z TLS Authentication Key – Z TLS Authentication Key – Z TLS Authentication Key – Z CTR DRBG Entropy – Z Hash DRBG "V" Value" – Z Hash DRBG "C" Value – Z CTR DRBG Seed – Z CTR DRBG "Key" Value – Z CTR DRBG "Key" Value – Z SNMPv3 Private Key – Z SNMPv3 Authentication Key - Z |
| Configure<br>system settings        | <b>√</b> |       | Configure modes and features, system settings, and cloud parameters               | Command and parameters | Command<br>response/<br>status<br>output | AES Key – W KEK – X Hash DRBG Entropy – R/X Hash DRBG Seed – R/W/X Hash DRBG 'V' Value – R/W/X Hash DRBG 'C' Value – R/W/X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Configure HA <sup>74</sup>          | <b>✓</b> |       | Configure HA nodes,<br>route monitors, failover<br>interface set                  | Command and parameters | Status<br>output                         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Manage NTP <sup>75</sup><br>servers | <b>√</b> |       | Add, edit, delete NTP servers; configure NTP parameters and synchronization state | Command                | Status<br>output                         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Configure<br>system profiles        | <b>✓</b> |       | Add, edit, delete system profiles                                                 | Command and parameters | Command<br>response/<br>status<br>output | TLS Master Secret – R/W/X TLS Ticket Encryption Key – R/W TLS Ticket Authentication Key – R/W KEK – X CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

<sup>&</sup>lt;sup>74</sup> HA – High Availability <sup>75</sup> NTP – Network Time Protocol

|                               | Ope      | rator |                                                                                                                                           | _                      |                                          |                                                                                                                                                                                                                                                                             |
|-------------------------------|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service                       | со       | User  | Description                                                                                                                               | Input                  | Output                                   | CSP and Type of Access                                                                                                                                                                                                                                                      |
| Manage users                  | <b>✓</b> |       | Add, edit delete users, groups, and command policies; view user/group partition bindings                                                  | Command                | Status<br>output                         | None                                                                                                                                                                                                                                                                        |
| Configure<br>system auditing  | <b>✓</b> |       | Add, edit, delete<br>syslog/nslog auditing<br>policies and servers; bind<br>classic/advanced global<br>policies                           | Command and parameters | Command<br>response/<br>status<br>output | None                                                                                                                                                                                                                                                                        |
| View audit logs               | <b>✓</b> |       | View authentication, system, and event logs                                                                                               | Command                | Status<br>output                         | None                                                                                                                                                                                                                                                                        |
| Configure<br>network settings | <b>✓</b> |       | Configure network routing protocols                                                                                                       | Command and parameters | Command<br>response/<br>status<br>output | ZebOS Router Password – R/W<br>KEK – X                                                                                                                                                                                                                                      |
| Exchange routing information  | <b>✓</b> |       | Exchange routing update information using ZebOS, authenticate source of packets                                                           | Command                | Status<br>output                         | ZebOS Router Password – X<br>KEK – X                                                                                                                                                                                                                                        |
| Configure SSH                 | <b>✓</b> |       | Configure SSH<br>authentication settings;<br>generate SSH keys                                                                            | Command and parameters | Command<br>response/<br>status<br>output | SSH Private Key – W/X SSH Public Key – W CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X                                                                                                                               |
| Establish SSH<br>sessions     | <b>√</b> | 1     | Establish an SSH session                                                                                                                  | Command                | Status<br>output                         | SSH Public Key – R/X DH/ECDH Private Key Component – W/X DH/ECDH Public Key Component – R/X SSH Shared Secret – W/X SSH Session Key – W/X SSH Authentication Key – W/X CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X |
| Configure<br>CloudBridge      | <b>~</b> |       | Configure IPsec profile;<br>configure CloudBridge<br>Connector settings,<br>network bridges, and IP<br>tunnels; view IP tunnel<br>details | Command and parameters | Command<br>response/<br>status<br>output | IKE/IPsec PSK <sup>76</sup> – R/W<br>KEK – X                                                                                                                                                                                                                                |
| Configure<br>clustering       | <b>✓</b> |       | Configure an appliance<br>to either be the cluster<br>coordinator or a node in<br>the cluster                                             | Command and parameters | Command<br>response/<br>status<br>output | Cluster Password – R/W                                                                                                                                                                                                                                                      |

<sup>76</sup> PSK – Pre-shared Key

| Comito                     | Ope      | rator    | Bassistian                                                                          |         | O Marie          | CCD and Town of Assessed                                                                                                                                                                                                                                                                 |
|----------------------------|----------|----------|-------------------------------------------------------------------------------------|---------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service                    | со       | User     | Description                                                                         | Input   | Output           | CSP and Type of Access                                                                                                                                                                                                                                                                   |
| Establish IPsec<br>session | <b>*</b> | <b>✓</b> | Establish an IPsec<br>Session                                                       | Command | Status<br>output | DH Private Key Component – W/X DH Public Key Component – R/X IKE/IPsec Shared Secret – W/X IKE/IPsec PSK – X KEK – X IKE/IPsec Session Key – W/X IKE/IPsec Authentication Key – W/X CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X |
| Backup and restore         | <b>~</b> |          | Backup/import system configuration files; download and delete backup files; restore | Command | Status<br>output | None                                                                                                                                                                                                                                                                                     |
| Manage<br>encryption keys  | <b>~</b> |          | Add, edit, delete<br>encryption keys                                                | Command | Status<br>output | AES Key – R/W KEK – X Hash DRBG Entropy – R/X Hash DRBG Seed – R/W/X Hash DRBG 'V' Value – R/W/X Hash DRBG 'C' Value – R/W/X                                                                                                                                                             |
| Manage HMAC<br>keys        | <b>✓</b> |          | Add, edit, delete HMAC<br>keys                                                      | Command | Status<br>output | HMAC Key – R/W KEK – X Hash DRBG Entropy – R/X Hash DRBG Seed – R/W/X Hash DRBG 'V' Value – R/W/X Hash DRBG 'C' Value – R/W/X                                                                                                                                                            |

| Comica                       | Ope      | rator    | Description                                                                                                                                                                                                            | lanut                  | Outrout                                  | CCD and Time of Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service                      | со       | User     | Description                                                                                                                                                                                                            | Input                  | Output                                   | CSP and Type of Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Configure traffic management | <b>√</b> |          | Configure TLS; Configure load balancing, priority load balancing, content switching, and cache redirection settings, DNS <sup>77</sup> , GSLB <sup>78</sup> , Subscriber, service chaining, and user protocol settings | Command and parameters | Command<br>response/<br>status<br>output | CA <sup>79</sup> Public Key – R/W/X TLS Private Key – R/W/X TLS Public Key – R/W Private DNS KSK <sup>80</sup> – R/W/X Public DNS KSK – R/W/X Private DNS ZSK <sup>81</sup> – R/W/X Public DNS ZSK – R/W/X SSH Private Key – R/W/X SSH Private Key – R/W/X SSH Public Key – R/W/X PEM Passphrase – R/W/X PEM Rey – W/X KEK – X CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X Hash DRBG Seed – R/W/X Hash DRBG 'C' Value – R/W/X Hash DRBG 'C' Value – R/W/X                                                                            |
| Establish TLS<br>session     | <b>✓</b> | <b>✓</b> | Establish a web session using TLS protocol                                                                                                                                                                             | Command                | Status<br>output                         | TLS Public Key – R/X DH Private Key Component – W/X DH Public Key Component – R/X ECDH Private Key Component – W/X ECDH Public Key Component – R/X RSA Private Key Component – W/X RSA Private Key Component – R/X TLS Premaster Secret – R/W/X TLS Master Secret – W/X TLS Session Key – W/X TLS Authentication Key – W/X AES GCM IV <sup>82</sup> – W/X AES GCM Key – W/X PEM Passphrase – R/X PEM Rey – W/X CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X Hash DRBG Seed – R/W/X Hash DRBG Seed – R/W/X Hash DRBG 'C' Value – R/W/X |

<sup>77</sup> DNS – Domain Name System

 $<sup>^{78}\, {</sup>m GSLB} - {
m Global}\, {
m Server}\, {
m Load}\, {
m Balancing}$ 

 $<sup>^{79}</sup>$  CA – Certificate Authority

<sup>&</sup>lt;sup>80</sup> KSK – Key Signing Key

<sup>81</sup> ZSK – Zone Signing Key

<sup>82</sup> IV – Initialization Vector

| Comito                                                                             | Ope      | rator    | Description.                                                                                                                                                                | 1                      | Out wat                                  |                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service                                                                            | со       | User     | Description                                                                                                                                                                 | Input                  | Output                                   | CSP and Type of Access                                                                                                                                                                                                                                                       |
| Resume TLS<br>session                                                              | <b>√</b> | <b>√</b> | Resume a web session using TLS protocol                                                                                                                                     | Command                | Status<br>output                         | TLS Ticket Encryption Key – R/W/X TLS Ticket Authentication Key – R/W/X TLS Session Key – R/X TLS Authentication Key – R/X AES GCM IV – W/X AES GCM Key – W/X KEK – X Hash DRBG Entropy – R/X Hash DRBG Seed – R/W/X Hash DRBG 'V' Value – R/W/X Hash DRBG 'C' Value – R/W/X |
| Apply data policies                                                                | <b>✓</b> |          | Apply data policies to user data in transit (according to configuration)                                                                                                    | Command                | Status<br>output                         | AES Key – X<br>HMAC Key – X<br>KEK – X                                                                                                                                                                                                                                       |
| Configure security                                                                 | ~        |          | Configure DNS security profiles, application firewall profiles and policies, reputation settings, protection features, and content inspection policies                      | Command and parameters | Command<br>response/<br>status<br>output | None                                                                                                                                                                                                                                                                         |
| Configure Citrix<br>ADC Gateway                                                    | <b>✓</b> |          | Configure Gateway<br>global settings, virtual<br>servers, portal themes,<br>AAA <sup>83</sup> groups and users,<br>policies, and resources                                  | Command and parameters | Command<br>response/<br>status<br>output | RDP <sup>84</sup> PSK – W<br>KEK – X                                                                                                                                                                                                                                         |
| Establish Citrix<br>ADC Gateway                                                    | <b>✓</b> |          | Establish Gateway<br>connection based on<br>global settings                                                                                                                 | Command and parameters | Command<br>response/<br>status<br>output | RDP PSK – R/X<br>KEK – X                                                                                                                                                                                                                                                     |
| Configure<br>external servers<br>for system, AAA,<br>and Gateway<br>authentication | <b>✓</b> |          | Configure LDAP <sup>85</sup> , Oauth,<br>OpenID, DFA <sup>86</sup> , Kreberos,<br>and SAML <sup>87</sup> servers to be<br>used in system, AAA, or<br>Gateway authentication | Command and parameters | Command<br>response/<br>status<br>output | LDAP Admin Password – R/W Oauth Client Secret – R/W DFA Shared Secret – R/W Kerberos CA Public Key – R/W Kerberos User Public Key – R/W Kerberos User Private Key – R/W Kerberos Negotiate Key – W KEK – X                                                                   |

<sup>83</sup> AAA – Authentication, Authorization, Accounting

<sup>&</sup>lt;sup>84</sup> RDP – Remote Desktop Protocol

<sup>&</sup>lt;sup>85</sup> LDAP – Lightweight Directory Access Protocol

 $<sup>^{\</sup>rm 86}$  DFA – Delegated Form Authentication

<sup>&</sup>lt;sup>87</sup> SAML – Security Assertion Markup Language

|                                  | Ope      | rator    |                                                                                                                                       | _                      |                                          |                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service                          | со       | User     | Description                                                                                                                           | Input                  | Output                                   | CSP and Type of Access                                                                                                                                                                                                                                                                                                                     |
| Perform<br>Kerberos<br>functions | •        | <b>✓</b> | Establish Kerberos<br>session; Access Kerberos<br>service; Perform<br>Kerberos negotiation                                            | Command                | Status<br>Output                         | Kerberos CA Public Key – W/X Kerberos User Public Key – W Kerberos User Private Key – X Kerberos Server Public Key - W Kerberos DH Public Key – R/W/X Kerberos DH Private Key – R/W/X Kerberos Secret Key – W/X Kerberos Client/TGS <sup>88</sup> Session Key – R/X Kerberos Client/Server Session Key – W, X Kerberos Negotiate Key – R/X |
| Configure<br>SNMPv3              | ~        |          | Configure SNMP communities, traps, managers, views, groups, users, alarms, and engine ID <sup>89</sup> ; view SNMP OIDs <sup>90</sup> | Command and parameters | Command<br>response/<br>status<br>output | SNMPv3 Authentication Passphrase – R/W<br>SNMPv3 Privacy Passphrase – R/W<br>KEK – X                                                                                                                                                                                                                                                       |
| SNMPv3 traps                     | ~        | <b>✓</b> | Provides system condition information                                                                                                 | None                   | Status<br>output                         | SNMPv3 Authentication Passphrase – X<br>SNMPv3 Privacy Passphrase – X<br>SNMPv3 Privacy Key – W/X<br>SNMPv3 Authentication Key – W/X                                                                                                                                                                                                       |
| Show status                      | ~        | <b>✓</b> | Show the system status                                                                                                                | Command                | Status<br>output                         | None                                                                                                                                                                                                                                                                                                                                       |
| Zeroize KEK                      | ~        |          | Zeroize KEK                                                                                                                           | Command                | Status<br>output                         | KEK – Z                                                                                                                                                                                                                                                                                                                                    |
| Zeroize SSH<br>private keys      | <b>✓</b> |          | Zeroize SSH private keys                                                                                                              | Command                | Status<br>output                         | SSH Private Key – Z                                                                                                                                                                                                                                                                                                                        |

#### 2.4.3 Additional Services

The module provides a limited number of services for which the operator is not required to assume an authorized role. Table 10 lists the services for which the operator is not required to assume an authorized role. None of these services disclose or substitute cryptographic keys and CSPs or otherwise affect the security of the module.

90 OID - Object Identifier

<sup>88</sup> TGS – Ticket Granting Service

<sup>89</sup> ID – Identifier

Table 10 – Additional Services<sup>91</sup>

| Service | Description           | Input       | Output        | CSP and Type of Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|-----------------------|-------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zeroize | Zeroize keys and CSPs | Power cycle | Status output | PEM Passphrase – Z PEM Key – Z AES GCM Key – Z AES GCM IV – Z DH/ECDH/RSA Private Key Component – Z DH/ECDH/RSA Public Key Component – Z SSH Session Key – Z SSH Session Key – Z IKE/IPsec Shared Secret – Z IKE/IPsec Session Key – Z IKE/IPsec Authentication Key – Z IKE/IPsec Authentication Key – Z ITS Pre-Master Secret – Z TLS Master Secret – Z TLS Master Secret – Z TLS Authentication Key – Z TLS Ticket Encryption Key – Z TLS Ticket Encryption Key – Z Hash DRBG Entropy – Z Hash DRBG Seed – Z Hash DRBG "V" Value" – Z CTR DRBG Seed – Z CTR DRBG "C" Value – Z CTR DRBG "Key" Value – Z SNMPv3 Private Key – Z SNMPv3 Authentication Key – Z |

<sup>&</sup>lt;sup>91</sup> For commands and parameters related to the listed services, refer to the Citrix ADC 12.1 Product Documentation located at <a href="https://docs.citrix.com/en-us/citrix-adc/12-1.html">https://docs.citrix.com/en-us/citrix-adc/12-1.html</a>.

| Service                      | Description                            | Input       | Output        | CSP and Type of Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------|----------------------------------------|-------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Perform On-Demand Self-Tests | Perform self-tests on demand           | Power cycle | Status output | PEM Passphrase – Z PEM Key – Z AES GCM Key – Z AES GCM IV – Z DH/ECDH/RSA Private Key Component – Z DH/ECDH/RSA Public Key Component – Z SSH Shared Secret – Z SSH Session Key – Z SSH Authentication Key – Z IKE/IPsec Shared Secret – Z IKE/IPsec Authentication Key – Z ILS Pre-Master Secret – Z TLS Master Secret – Z TLS Authentication Key – Z TLS Ticket Encryption Key – Z TLS Authentication Key – Z TLS DRBG Seed – Z CTR DRBG Seed – Z CTR DRBG Seed – Z CTR DRBG "V" Value – Z CTR DRBG "Key" Value – Z SNMPv3 Private Key – Z SNMPv3 Authentication Key - Z |
| Authenticate operators       | Used for operator logins to the module | Command     | Status output | Operator Password - R LDAP Admin Password - R/X SSH Public Key - X Oauth Client Secret - X DFA Shared Secret - X TLS Public Key - X AES Key - X AES GCM Key - X AES GCM IV - X KEK - X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### 2.5 Physical Security

The VPX is a software module, which FIPS defines as a multiple-chip standalone cryptographic module. As such, it does not include physical security mechanisms. Therefore, as per Section G.3 of the Implementation Guidance for FIPS PUB 140-2 and the CMVP, requirements for physical security are not applicable.

## 2.6 Operational Environment

The operational environment of the module does not provide a general-purpose OS to module operators.

The VPX runs on the FreeBSD v8.4 OS, which acts as the guest OS on top of the virtualization layer. The virtualization layer is provided by VMware's ESXi hypervisor v6.5. The VMware hypervisor runs directly on the

server's hardware, with no need for an underlying operating system. Only the module's signed image can be executed, and all software upgrades are digitally signed.

The module generates cryptographic keys whose strengths are modified by available entropy. The module receives 256-bits of full entropy from the module's entropy source, more than the minimum FIPS requirement of 112 bits of entropy.

# 2.7 Cryptographic Key Management

The module supports the CSPs listed below in Table 11.

Table 11 – Cryptographic Keys, Cryptographic Key Components, and CSPs

| CSP            | CSP Type                                  | Generation / Input                                                                                                                                         | Output                                                                 | Storage                                                              | Zeroization                                | Use                                                    |
|----------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|
| KEK Passphrase | Alphanumeric string                       | Generated externally, input in plaintext form via local console or in encrypted form via SSH session                                                       | Never exits the module                                                 | Plaintext in volatile memory                                         | N/A                                        | Derivation of KEK                                      |
| KEK            | 256-bit AES key                           | Generated internally via PBKDF                                                                                                                             | Never exits the module                                                 | Plaintext on disk                                                    | CLI command                                | Encryption and decryption of passwords and passphrases |
| PEM Passphrase | Alphanumeric string (8-31 characters)     | Generated externally, input in plaintext form via local console or in encrypted form via TLS or SSH session                                                | Exits the module in encrypted form as part of config backup file       | Plaintext in volatile<br>memory or<br>encrypted on disk<br>(via KEK) | [for plaintext]<br>Reboot;<br>remove power | Derivation of PEM Key                                  |
| PEM Key        | 256-bit AES key<br>192-bit Triple-DES key | Generated internally via PBKDF                                                                                                                             | Never exits the module                                                 | Plaintext in volatile memory                                         | Reboot;<br>remove power                    | Encryption and decryption of asymmetric private keys   |
| AES key        | 128/192/256-bit AES key                   | Generated internally via Approved DRBG  OR  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session | Exits the module in<br>encrypted form as part of<br>config backup file | Encrypted on disk<br>(via KEK)                                       | N/A                                        | Encryption and decryption                              |
| AES GCM key    | 256-bit AES GCM key                       | Generated internally via<br>Approved DRBG                                                                                                                  | Never exits the module                                                 | Plaintext in volatile memory                                         | Reboot;<br>remove power                    | Encryption and decryption                              |
| AES GCM IV     | 96-bit IV                                 | Internally generated<br>deterministically in compliance<br>with TLS 1.2 GCM Cipher Suites<br>for TLS and Section 8.2.1 of NIST<br>SP 800-38D               | Never exits the module                                                 | Plaintext in volatile memory                                         | Reboot;<br>remove power                    | IV for AES GCM                                         |

| CSP                         | CSP Type                                                                                                                                                   | Generation / Input                                                                                                                                         | Output                                                                                  | Storage                        | Zeroization                                     | Use                                                                                               |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|
| HMAC Key                    | 160/224/256/384/512-bit<br>HMAC key                                                                                                                        | Generated internally via Approved DRBG  OR  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session | Exits the module in encrypted form as part of config backup file                        | Encrypted on disk<br>(via KEK) | N/A                                             | Message authentication with SHS                                                                   |
| CA Public Key               | 1024/2048/3072/4096-bit<br>RSA public key<br>P-224/P-256/P-384/P-521<br>ECDSA public key                                                                   | Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session                                             | Exits the module in plaintext form                                                      | Plaintext on disk              | N/A                                             | TLS certificate authentication  1024-bit RSA public keys are used for signature verification only |
| DH Private Key<br>Component | [for SSH sessions] 2048, 4096, 8192-bit DH private key  [for TLS sessions] 2048, 3072, 4096-bit DH private key  [for IKE sessions] 2048-bit DH private key | Generated internally via<br>Approved DRBG                                                                                                                  | Never exits the module                                                                  | Plaintext in volatile memory   | Reboot;<br>remove power;<br>session termination | Generation of SSH, TLS, and<br>IKE shared secrets                                                 |
| DH Public Key<br>Component  | [for SSH sessions] 2048, 4096, 8192-bit DH public key  [for TLS sessions] 2048, 3072, 4096-bit DH public key  [for IKE sessions] 2048-bit DH public key    | [for the module] Generated internally via Approved DRBG  [for a peer] Input in plaintext form                                                              | [for the module] Exits the module in plaintext form [for a peer] Never exits the module | Plaintext in volatile memory   | Reboot;<br>remove power;<br>session termination | Generation of SSH, TLS, and<br>IKE shared secrets                                                 |

| CSP                           | CSP Type                                                                       | Generation / Input                                                                                                                                 | Output                                                                                  | Storage                                                                       | Zeroization                                     | Use                                                                    |
|-------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------|
| ECDH Private Key<br>Component | Private key of ECDH protocol  (P-224/P-256/P-384/P-521 curves)                 | Generated internally via<br>Approved DRBG                                                                                                          | Never exits the module                                                                  | Plaintext in volatile memory                                                  | Reboot;<br>remove power;<br>session termination | Generation of SSH and TLS<br>shared secrets                            |
| ECDH Public Key<br>Component  | Public key of ECDH protocol (P-224/P-256/P-384/P-521 curves)                   | [for the module] Generated internally via Approved DRBG  [for a peer] Input in plaintext form                                                      | [for the module] Exits the module in plaintext form [for a peer] Never exits the module | Plaintext in volatile memory                                                  | Reboot;<br>remove power;<br>session termination | Generation of SSH and TLS shared secrets                               |
| RSA Private Key<br>Component  | 2048, 3072-bit RSA Private<br>Key                                              | Generated internally via<br>Approved DRBG                                                                                                          | Never exits the module                                                                  | Plaintext in volatile memory                                                  | Reboot;<br>remove power;<br>session termination | Generation of TLS shared secrets                                       |
| RSA Public Key<br>Component   | 2048, 3072-bit RSA Public<br>Key                                               | [for the module] Generated internally via Approved DRBG  [for a peer] Input in plaintext form                                                      | [for the module] Exits the module in plaintext form [for a peer] Never exits the module | Plaintext in volatile memory                                                  | Reboot;<br>remove power;<br>session termination | Generation of TLS shared secrets                                       |
| SSH Public Key                | 2048/3072-bit<br>RSA public key<br>P-224/P-256/P-384/P-521<br>ECDSA public key | [for the module] Generated internally via Approved DRBG  OR Generated externally, imported in plaintext form  [for a peer] Input in plaintext form | [for the module] Exits the module in plaintext form [for a peer] Never exits the module | [for the module] Plaintext on disk  [for a peer] Plaintext in volatile memory | N/A                                             | Authentication during SSH session negotiation; GSLB configuration sync |

| CSP                             | CSP Type                                                                        | Generation / Input                                                                                                      | Output                                                                 | Storage                        | Zeroization                                     | Use                                                                                                                                          |
|---------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| SSH Private Key                 | 2048/3072-bit<br>RSA private key<br>P-224/P-256/P-384/P-521<br>ECDSA public key | Generated internally via<br>Approved DRBG                                                                               | Exits the module in encrypted form as part of config backup file       | Plaintext on disk              | CLI command                                     | Authentication during SSH session negotiation; RBA <sup>92</sup> Authentication for LDAP; GSLB configuration sync                            |
| SSH Shared Secret               | Shared secret                                                                   | Derived internally via DH/ECDH shared secret computation                                                                | Never exits the module                                                 | Plaintext in volatile memory   | Reboot;<br>remove power;<br>session termination | Derivation of the SSH Session<br>Key and SSH Authentication<br>Key                                                                           |
| SSH Session Key                 | 128/192/256-bit AES key<br>(CBC and CTR mode)<br>192-bit Triple-DES key         | Derived internally via SSH KDF                                                                                          | Never exits the module                                                 | Plaintext in volatile memory   | Reboot;<br>remove power;<br>session termination | Encryption and decryption of SSH session packets                                                                                             |
| SSH Authentication Key          | 160/256/512-bit HMAC key                                                        | Derived internally via SSH KDF                                                                                          | Never exits the module                                                 | Plaintext in volatile memory   | Reboot;<br>remove power;<br>session termination | Authentication of SSH session packets                                                                                                        |
| IKE/IPsec Shared Secret         | Shared secret                                                                   | Derived internally via DH shared secret computation                                                                     | Never exits the module                                                 | Plaintext in volatile memory   | Reboot;<br>remove power;<br>session termination | Derivation of the IKE/IPsec<br>Session Keys and IKE/IPsec<br>Authentication Keys                                                             |
| IKE/IPsec PSK                   | Pre-shared key                                                                  | Generated externally, imported in<br>plaintext form via local console or<br>in encrypted form via TLS or SSH<br>session | Exits the module in<br>encrypted form as part of<br>config backup file | Encrypted on disk<br>(via KEK) | N/A                                             | Authentication during IKE/IPsec session negotiation  [IKEv1 Only] Derivation of the IKE/IPsec Session Keys and IKE/IPsec Authentication Keys |
| IKE/IPsec Session Key           | 128/192/256-bit AES key                                                         | Derived internally via IKE KDF                                                                                          | Never exits the module                                                 | Plaintext in volatile memory   | Reboot;<br>remove power;<br>session termination | Encryption and decryption of IKE/IPsec session packets                                                                                       |
| IKE/IPsec<br>Authentication Key | 160/256/384/512-bit<br>HMAC key                                                 | Derived internally via IKE KDF                                                                                          | Never exits the module                                                 | Plaintext in volatile memory   | Reboot;<br>remove power;<br>session termination | Authentication of IKE/IPsec session packets                                                                                                  |

<sup>&</sup>lt;sup>92</sup> RBA – Role-based Authentication

| CSP                   | CSP Type                                                                                       | Generation / Input                                                                                                                                                                                                                                                                                                          | Output                                                                                                                                                                                                                                       | Storage                                                                       | Zeroization                                                                                              | Use                                                                                                                                                     |
|-----------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| TLS Public Key        | 1024/2048/3072/4096-bit<br>RSA public key<br>P-224/P-256/P-384/P-521<br>ECDSA public key       | [for the module] Generated internally via Approved DRBG (1024/2048/3072-bit)  OR  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (1024/2048/3072/4096-bit)  [for a peer] Input in plaintext form as part of TLS session negotiation 1024/2048/3072/4096-bit | [for the module] Exits the module in plaintext form  [for a peer] Never exits the module                                                                                                                                                     | [for the module] Plaintext on disk  [for a peer] Plaintext in volatile memory | N/A                                                                                                      | TLS authentication; SAML authentication (RSA only); OpenID authentication (RSA only)  1024-bit RSA public keys are used for signature verification only |
| TLS Private Key       | 2048/3072/4096-bit<br>RSA private key<br>P-224/P-256/P-384/P-521<br>ECDSA public key           | Generated internally via Approved DRBG (2048/3072-bit)  OR  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit)                                                                                                                             | Exits the module in<br>encrypted form as part of<br>config backup file                                                                                                                                                                       | Encrypted on disk<br>(via PEM key)                                            | N/A                                                                                                      | TLS authentication;<br>SAML authentication (RSA<br>only); OpenID authentication<br>(RSA only)                                                           |
| TLS Pre-Master Secret | [for RSA cipher suites] 384-bit random value [for DH/ECDH cipher suites] DH/ECDH shared secret | [for RSA cipher suites and module acting as client] Generated internally via FIPS-Approved DRBG  [for RSA cipher suites and module acting as server] Generated externally, imported in encrypted form via RSA key transport  [for DH/ECDH cipher suites] Derived internally via DH/ECDH shared secret computation           | [for RSA cipher suites and module acting as client] Exits the module in encrypted form via RSA key transport  [for RSA cipher suites and module acting as server] Never exits the module  [for DH/ECDH cipher suites] Never exits the module | Plaintext in volatile memory                                                  | Reboot;<br>remove power;<br>completion of TLS<br>Session Key and TLS<br>Authentication Key<br>derivation | Derivation of the TLS Master<br>Secret                                                                                                                  |

| CSP                              | CSP Type                                       | Generation / Input                                                                                                                                         | Output                 | Storage                                                                                                       | Zeroization                                                   | Use                                                                |
|----------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| TLS Master Secret                | 384-bit shared secret                          | Derived internally using the TLS<br>Pre-Master Secret via TLS KDF                                                                                          | Never exits the module | Plaintext in volatile memory                                                                                  | Reboot;<br>remove power;<br>session termination               | Derivation of the TLS Session<br>Key and TLS Authentication<br>Key |
| TLS Session Key                  | 128/256-bit AES key<br>128/256-bit AES GCM key | Derived internally using the TLS<br>Master Secret via TLS KDF                                                                                              | Never exits the module | Plaintext in volatile memory                                                                                  | Reboot;<br>remove power;<br>session termination               | Encryption and decryption of TLS session packets                   |
| TLS Authentication Key           | 160/256/384-bit<br>HMAC key                    | Derived internally using the TLS<br>Master Secret via TLS KDF                                                                                              | Never exits the module | Plaintext in volatile memory                                                                                  | Reboot;<br>remove power;<br>session termination               | Authentication of TLS session packets                              |
| TLS Ticket<br>Encryption Key     | 128-bit AES key                                | Generated internally via Approved DRBG  OR  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session | Never exits the module | [for internally generated keys] Plaintext in volatile memory  [for imported keys] Encrypted on disk (via KEK) | [for internally<br>generated keys]<br>Reboot;<br>remove power | Encryption and decryption of TLS session tickets                   |
| TLS Ticket<br>Authentication Key | 256-bit HMAC key                               | Generated internally via Approved DRBG  OR  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session | Never exits the module | [for internally generated keys] Plaintext in volatile memory  [for imported keys] Encrypted on disk (via KEK) | [for internally<br>generated keys]<br>Reboot;<br>remove power | Computes the digest of TLS session tickets                         |
| Hash DRBG Entropy                | 256-bit value                                  | Generated externally                                                                                                                                       | Never exits the module | Plaintext in volatile memory                                                                                  | Reboot;<br>remove power                                       | Entropy input for Hash DRBG                                        |
| Hash DRBG Seed                   | 440-bit value                                  | Generated internally                                                                                                                                       | Never exits the module | Plaintext in volatile memory                                                                                  | Reboot;<br>remove power                                       | Seed material for Hash DRBG                                        |
| Hash DRBG 'V' Value              | Internal state value                           | Generated internally                                                                                                                                       | Never exits the module | Plaintext in volatile memory                                                                                  | Reboot;<br>remove power                                       | Internal state value used with Hash DRBG                           |
| Hash DRBG 'C' Value              | Internal state value                           | Generated internally                                                                                                                                       | Never exits the module | Plaintext in volatile memory                                                                                  | Reboot;<br>remove power                                       | Internal state value used with<br>Hash DRBG                        |

| CSP                                 | CSP Type            | Generation / Input                                                                    | Output                                                           | Storage                        | Zeroization             | Use                                                            |
|-------------------------------------|---------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|-------------------------|----------------------------------------------------------------|
| CTR DRBG Entropy                    | 256-bit value       | Generated externally                                                                  | Never exits the module                                           | Plaintext in volatile memory   | Reboot;<br>remove power | Entropy input for CTR DRBG                                     |
| CTR DRBG Seed                       | 384-bit value       | Generated internally                                                                  | Never exits the module                                           | Plaintext in volatile memory   | Reboot;<br>remove power | Seed material for CTR DRBG                                     |
| CTR DRBG 'V' Value                  | 128-bit value       | Generated internally                                                                  | Never exits the module                                           | Plaintext in volatile memory   | Reboot;<br>remove power | Internal state value used with CTR DRBG                        |
| CTR DRBG 'Key' Value                | 256-bit AES key     | Generated internally                                                                  | Never exits the module                                           | Plaintext in volatile memory   | Reboot;<br>remove power | Internal state value used with CTR DRBG                        |
| SNMPv3 Privacy<br>Passphrase        | Alphanumeric string | Input in plaintext form via local console or in encrypted form via TLS or SSH session | Exits the module in encrypted form as part of config backup file | Encrypted on disk<br>(via KEK) | N/A                     | Derivation of the SNMPv3<br>Privacy Key                        |
| SNMPv3 Authentication<br>Passphrase | Alphanumeric string | Input in plaintext form via local console or in encrypted form via TLS or SSH session | Exits the module in encrypted form as part of config backup file | Encrypted on disk<br>(via KEK) | N/A                     | Derivation of the SNMPv3<br>Authentication Key                 |
| SNMPv3 Privacy Key                  | 128-bit AES key     | Derived internally via the SNMP<br>KDF                                                | Never exits the module                                           | Plaintext in volatile memory   | Reboot;<br>remove power | Encryption and decryption of SNMPv3 packets                    |
| SNMPv3 Authentication<br>Key        | 160-bit HMAC key    | Derived internally via the SNMP KDF                                                   | Never exits the module                                           | Plaintext in volatile memory   | Reboot;<br>remove power | Authentication of SNMPv3 packets                               |
| LDAP Admin Password                 | Alphanumeric string | Input in plaintext form via local console or in encrypted form via TLS or SSH session | Exits the module in encrypted form as part of config backup file | Encrypted on disk<br>(via KEK) | N/A                     | Used to bind to the LDAP server                                |
| RDP PSK                             | Shared secret       | Input in plaintext form via local console or in encrypted form via TLS or SSH session | Exits the module in encrypted form as part of config backup file | Encrypted on disk<br>(via KEK) | N/A                     | Encryption and decryption of RDP user and target information   |
| Oauth Client Secret                 | Shared secret       | Input in plaintext form via local console or in encrypted form via TLS or SSH session | Exits the module in encrypted form as part of config backup file | Encrypted on disk<br>(via KEK) | N/A                     | Oauth and Oauth IDP <sup>93</sup> authentication to the module |
| DFA Shared Secret                   | Shared secret       | Input in plaintext form via local console or in encrypted form via TLS or SSH session | Exits the module in encrypted form as part of config backup file | Encrypted on disk<br>(via KEK) | N/A                     | DFA authentication to the module                               |

<sup>93</sup> IDP – Identity Provider

| CSP                    | CSP Type                              | Generation / Input                                                                                                                                                        | Output                                                           | Storage                            | Zeroization             | Use                                 |
|------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------|-------------------------|-------------------------------------|
| ZebOS Router Password  | Alphanumeric string                   | Input in plaintext form via local console or in encrypted form via TLS or SSH session                                                                                     | Exits the module in encrypted form as part of config backup file | Encrypted on disk<br>(via KEK)     | N/A                     | Router authentication               |
| Public DNS KSK         | 2048/3072/4096-bit<br>RSA public key  | Generated internally (2048/3072-bit)  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit) | Exits the module in plaintext form as part of config backup file | Plaintext on disk                  | N/A                     | Public DNS ZSK authentication       |
| Private DNS KSK        | 2048/3072/4096-bit<br>RSA private key | Generated internally (2048/3072-bit)  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit) | Exits the module in encrypted form as part of config backup file | Encrypted on disk<br>(via PEM key) | N/A                     | Public DNS ZSK signature generation |
| Public DNS ZSK         | 2048/3072/4096-bit<br>RSA public key  | Generated internally (2048/3072-bit)  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit) | Exits the module in plaintext form as part of config backup file | Plaintext on disk                  | N/A                     | DNS zone authentication             |
| Private DNS ZSK        | 2048/3072/4096-bit<br>RSA private key | Generated internally (2048/3072-bit  Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit)  | Exits the module in encrypted form as part of config backup file | Encrypted on disk<br>(via PEM key) | N/A                     | DNS zone signature generation       |
| Kerberos CA Public Key | 2048-bit RSA public key               | Generated externally, imported into the module  [for a peer]                                                                                                              | Exits the module in plaintext [for a peer]                       | Plaintext on disk [for a peer]     | Reboot;<br>remove power | Used in Kerberos authentication     |
|                        |                                       | Input in plaintext form as part of the Kerberos authentication                                                                                                            | Never exits the module                                           | Plaintext in volatile memory       |                         |                                     |

| CSP                                   | CSP Type                 | Generation / Input                                                                                             | Output                             | Storage                            | Zeroization             | Use                                                                                                          |
|---------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------|
| Kerberos User Public<br>Key           | 2048-bit RSA public key  | Generated internally via<br>Approved DRBG                                                                      | Exits the module in plaintext      | Plaintext on disk                  | Reboot;<br>remove power | Used in Kerberos authentication                                                                              |
|                                       |                          | OR                                                                                                             |                                    |                                    |                         |                                                                                                              |
|                                       |                          | Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session |                                    |                                    |                         |                                                                                                              |
| Kerberos User Private<br>Key          | 2048-bit RSA private key | Generated internally via<br>Approved DRBG                                                                      | Never exits the module             | Encrypted on disk<br>(via PEM key) | Reboot;<br>remove power | Used to sign authentication request                                                                          |
|                                       |                          | OR                                                                                                             |                                    |                                    |                         |                                                                                                              |
|                                       |                          | Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session |                                    |                                    |                         |                                                                                                              |
| Kerberos Server Public<br>Key         | 2048-bit RSA public key  | Generated externally, imported into the module in plaintext                                                    | Never exits the module             | Plaintext in volatile memory       | Reboot;<br>remove power | Used in Kerberos authentication                                                                              |
| Kerberos DH Public Key                | 2048-bit DH public key   | {For the module} Generated internally                                                                          | Exits the module in plaintext form | Plaintext in volatile memory       | Reboot;<br>remove power | Used to generate the<br>Kerberos secret key                                                                  |
|                                       |                          | [For a peer] Generated externally, imported into the module in plaintext                                       |                                    |                                    |                         |                                                                                                              |
| Kerberos DH Private<br>Key            | 2048-bit DH private key  | Generated internally                                                                                           | Never exits the module             | Plaintext in volatile memory       | Reboot;<br>remove power | Used to generate the<br>Kerberos secret key                                                                  |
| Kerberos Secret Key                   | 256-bit AES key          | Generated internally using DH components                                                                       | Never exits the module             | Plaintext in volatile memory       | Reboot;<br>remove power | Used to encrypt the Kerberos<br>Client/TGS Session Key                                                       |
| Kerberos Client/TGS<br>Session Key    | 256-bit AES key          | Generated externally, imported electronically in encrypted form                                                | Never exits the module             | Plaintext in volatile memory       | Reboot;<br>remove power | Used in the Kerberos Client<br>Authentication. Used to<br>decrypt the Kerberos<br>Client/Server Session Key. |
| Kerberos Client/Server<br>Session Key | 256-bit AES key          | Generated externally, imported electronically in encrypted form                                                | Never exits the module             | Plaintext in volatile memory       | Reboot;<br>remove power | Used to authenticate to the<br>Kerberos Service Server                                                       |

| CSP                    | CSP Type            | Generation / Input                                                                    | Output                              | Storage                        | Zeroization             | Use                                                                            |
|------------------------|---------------------|---------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|-------------------------|--------------------------------------------------------------------------------|
| Kerberos Negotiate Key | 256-bit AES key     | Generated internally via PBKDF                                                        | Never exits the module              | Plaintext in volatile memory   | Reboot;<br>remove power | Used to decrypt and verify packets received from the Kerberos server           |
| Cluster Password       | Alphanumeric string | Input in plaintext form via local console or in encrypted form via TLS or SSH session | Exits the module in encrypted form  | Encrypted on disk<br>(via KEK) | N/A                     | Used to connect nodes to the cluster coordinator                               |
| Operator Password      | Alphanumeric string | Input in plaintext form via TLS or<br>SSH session                                     | Exists the module in encrypted form | Plaintext in volatile memory   | Reboot; remove power    | Authenticate the operator to the module via an external authentication service |

**Note:** Keys derived from the PBKDF function shall only be used for storage applications.

All RSA and ECDSA keys at 2048 and 3072-bit modulus size are generated internally by the Citrix ADC CP Cryptographic Library v3. All RSA and ECDSA keys at the 4096-bit modulus size are generated outside of the module and input either in plaintext form via local console or encrypted form via a TLS or SSH session.

The AES-GCM IV is used in the TLS protocol. The TLS AES-GCM IV is generated in compliance with TLS v1.2 GCM cipher suites as specified in RFC<sup>94</sup> 5288 and section 3.3.1 of NIST SP 800-52rev1. Per RFC 5246, when the nonce\_explicit part of the IV exhausts the maximum number of possible values for a given session key, the module will trigger a handshake to establish a new encryption key. The AES-GCM IV is a random 96-bit value generated with available entropy provided by the available entropy source.

<sup>&</sup>lt;sup>94</sup> RFC – Request For Comment

## 2.8 **EMI / EMC**

The module's host servers were tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (business use).

#### 2.9 Self-Tests

Cryptographic self-tests are performed automatically by the module when the module is first powered up and loaded into memory as well as conditionally. The following sections list the self-tests performed by the module, their expected error status, and the error resolutions.

#### 2.9.1 Power-Up Self-Tests

The VPX performs the following self-tests at power-up:

- Software integrity test (using RSA 2048 with SHA-512)
- Citrix ADC CP Cryptographic Library v3 self-tests
  - AES CBC encrypt KAT<sup>95</sup> (256-bit length)
  - AES CBC decrypt KAT (256-bit length)
  - AES GCM encrypt KAT
  - AES GCM decrypt KAT
  - Triple-DES CBC encrypt KAT
  - Triple-DES CBC decrypt KAT
  - SHA-1, SHA-256, SHA-512 KAT
  - o HMAC KAT with SHA-1, SHA-256, and SHA-512
  - CTR DRBG KAT
  - RSA sign/verify (SHA-256 w/ 2048-bit key) KAT
  - ECDSA PCT<sup>96</sup> (P-256)
  - DH Primitive "Z" computation test
  - o ECDH Primitive "Z" computation test
- Citrix ADC DP Cryptographic Library v3 self-tests
  - AES CBC encrypt KAT (256-bit length)
  - AES CBC decrypt KAT (256-bit length)
  - AES GCM encrypt KAT
  - AES GCM decrypt KAT
  - SHA-1, SHA-256, SHA-512 KAT
  - o HMAC KAT with SHA-1, SHA-256, and SHA-512
  - Hash DRBG KAT
  - RSA sign/verify (SHA-256 w/ 2048-bit key) KAT
  - o ECDSA PCT (P-256)
  - o ECDH Primitive "Z" computation test

<sup>95</sup> KAT – Known Answer Test

<sup>&</sup>lt;sup>96</sup> PCT – Pairwise Consistency Test

#### 2.9.2 Conditional Self-Tests

The VPX performs the following conditional self-tests:

- Citrix ADC CP Cryptographic Library v3 conditional self-tests
  - CRNGT<sup>97</sup> for NDRNG
  - RSA PCT for sign/verify
  - RSA PCT for encrypt/decrypt
  - ECDSA PCT for sign/verify
- Citrix ADC DP Cryptographic Library v3 conditional self-tests
  - CRNGT for NDRNG

## 2.9.3 Critical Functions Self-Tests

VPX implements the NIST SP 800-90A Hash DRBG and CTR DRBG as its random number generators. The NIST SP 800-90A specification requires that certain critical functions be tested to ensure the security of the DRBGs. Therefore, the following power-up critical function tests are implemented by the cryptographic module for the Hash and CTR DRBGs:

- Instantiate Critical Function Test
- Generate Critical Function Test
- Reseed Critical Function Test

#### 2.9.4 Self-Test Failures

If any of the power-up self-tests fail, the module enters a critical error state, and an error message is logged. In this state, cryptographic operations are halted, and the module inhibits all data output from the module.

If the module enters the critical error state due to a failure of the integrity test, the boot sequence and entire system is halted. The only action available from this state is to reboot the module to trigger the re-execution of the integrity test. The error condition is considered to have been cleared if the module successfully passes the integrity test and then all subsequent power-up self-tests. If the module continues to return to a halted state, the module is considered to be malfunctioning or compromised, and Citrix Customer Support must be contacted.

If the module enters the critical error state due to a failure of any of the remaining power-up self-tests, the module will automatically reboot to clear the error state and an error message will be logged. The CO must contact Citrix Customer Support if this error occurs.

The successful completion or failure of the power-up self-tests can be verified by checking the log files. Successful completion of the Citrix ADC DP Cryptographic Library v3 self-tests is indicated by "FIPS POST Successful" in /var/log/ns.log and successful completion of the Citrix ADC CP Cryptographic Library v3 self-tests in indicated by "POST Success" in /var/log/FIPS-post.log. Failure of the Citrix ADC DP Cryptographic Library v3 self-tests is indicated by "FIPS Post Failed" in /var/log/ns.log and failure of the Citrix ADC CP Cryptographic Library v3 self-tests is indicated by "POST Failed" in /var/log/FIPS-post.log (both messages indicate a critical error state).

<sup>97</sup> CRNGT – Continuous Random Number Generator Test

If any of the conditional self-tests fail, the module goes through a soft error state and the following message is displayed:

Internal failure in SSL cert/key generation tool

Once the message is displayed (and the error is logged), the module returns to an operational state. The user may retry the service (which calls the conditional self-test again) or move to other operations. Successful completion of the conditional self-test is indicated by the absence of an error message.

## 2.10 Mitigation of Other Attacks

The module's software includes several features that provide defenses against a wide range of application and web server DoS attacks. These features (including packet inspection, priority queuing, bypassing the cache, rate limiting, and packet rejection) prevent the allocation of server resources for specific connections. Additionally, the module mitigates SYN flood attacks by utilizing SYN cookies rather than maintaining half-open connections on the system memory stack. DNS DoS attacks are mitigated using parameters that protect the DNS cache memory.

The module's built-in Web App Firewall provides configurable security checks to detect and mitigate Web attacks (including attacks on operating system and web server software vulnerabilities, SQL database vulnerabilities, errors in the design and coding of web sites and web devices, and failures to secure sites that host or can access sensitive information). Web requests or responses that violate security checks are blocked or transformed (making the attack harmless). Specific attacks mitigated by the Web App Firewall include:

- HTML<sup>98</sup>/XML<sup>99</sup> Cross-Site Scripting (XSS) attacks
- HTML/XML SQL injection attacks
- HTML Cross-Site Request Forgery (CSRF) attacks
- HTML Form/hidden field and parameter manipulation
- XML DoS attacks
- Cookie or session poisoning
- Forceful browsing
- Buffer overflow attacks
- XML-based attacks using invalid or poorly formed XML requests, content injection, or inconsistencies in XML interoperability

The IP Reputation feature of the module protects against password cracking attacks (via botnets), Windows exploit attacks, and phishing proxy attacks by identifying IP addresses that are sending unwanted request and rejecting requests received from an IP with a bad reputation.

The module's DNS Security Options feature and configurable DNS parameters are used to mitigate DNS-based attacks. These attacks include random subdomain/NXDOMAIN/NODATA attacks, root referral amplification attacks, cache poisoning, and Slowloris attacks. The attacks are mitigated by preventing the insertion of corrupt data into the DNS cache, restricting access to root referrals for unrelated domains that are not configured or cached, forcing DNS transactions to use TCP instead of UDP<sup>100</sup> when clients send a flood of queries but cannot handle responses, and dropping DNS queries that exceed a specified length or are split into multiple packets.

99 XML – Extensible Markup Language

100 UDP – User Datagram Protocol

. .

<sup>98</sup> HTML – Hypertext Markup Language

| The module software includes defenses against TCP spoofing. TCP spoofing is mitigated by enabling configurable |
|----------------------------------------------------------------------------------------------------------------|
| parameters to respond to invalid sequence numbers with a corrective acknowledgement, and/or to drop invalid    |
| SYN packets.                                                                                                   |
|                                                                                                                |

## 3. Secure Operation

The sections below describe how to place and keep the module in the FIPS-approved mode of operation. Any operation of the module without following the guidance provided below will result in non-compliant use and is outside the scope of this Security Policy.

## 3.1 Installation and Setup

The module is available as a software package that includes both the application software and the operating system. After purchasing the VPX, the installation files can be downloaded from <a href="Citrix ADC Downloads">Citrix ADC Downloads</a> using valid credentials provided by Citrix. License entitlement(s) are sent by Citrix via email after purchase or can be accessed via the <a href="Citrix Support Portal">Citrix Support Portal</a> using valid credentials. The module was tested with a Platinum edition license.

The CO is responsible for all initial setup activities, including configuring the virtual machine and installing/configuring the VPX virtual appliance. Prior to the installation, the CO should read the document entries within the <u>Getting Started with Citrix ADC</u> webpage on Citrix's online product documentation portal.

The following sections provide references to step-by-step instructions for the installation of the VPX, as well as the steps necessary to configure the module for its FIPS-Approved mode of operation.

### 3.1.1 Installation

For detailed guidance regarding the installation of VPX, please see the <u>Deploy a Citrix ADC VPX instance</u> webpage on Citrix's online product documentation portal and refer to the following document entries:

- Support matrix and usage guidelines
- Install a Citrix ADC VPX instance on VMware ESX

The above document entries include the VPX support matrix and usage guidelines, prerequisites for installing the VPX virtual appliance, hardware requirements for the host platforms, and VPX installation instructions. To install the required license files, the CO must follow the instructions on the <a href="Citrix ADC licensing overview">Citrix ADC licensing overview</a> webpage on Citrix's online product documentation portal.

## 3.1.2 General Configuration

After the VPX has been installed on a VMware ESXi 6.5 U2 hypervisor, the CO is responsible for the general configuration of the module. The Web GUI (configuration utility) or CLI can be used for the general configuration of the module. All general configuration steps must be complete before performing configuration necessary to place the module in a FIPS-Approved mode of operation.

The general configuration requirements and instructions are described in the "Quick Start Installation and Configuration" section of the <u>Citrix NetScaler Deployment Guide</u> found on Citrix's online product documentation portal.

## 3.1.3 FIPS-Approved Mode Configuration and Status

The CO is responsible for the security-relevant configuration of the module. To initialize the VPX for FIPS mode of operation, the CO must:

- Enforce strong passphrase requirements
- Replace the default TLS certificate
- Disable HTTP access to the Web GUI
- Create the KEK master key
- Disable local authentication after initial configuration

To accomplish these tasks, the CO must follow the procedures detailed in the sections below (for more information, please see the "Configuration Guidelines" section of the document entry <u>Secure Deployment Guide</u> for NetScaler MPX, VPX, and SDX Appliances).

#### 3.1.3.1 Enforce strong passphrase requirements

Passphrases are used to derive keys using PBKDF. The CO must enable strong passphrase requirements. This is accomplished with the following steps from the VPX GUI:

- 1. In the Configuration navigation pane, go to **System** and click the **Settings** node.
- 2. In the Settings section, click the Change Global System Settings link.
- 3. In the Strong Password field, select Enable All.
- 4. In the Min Password Length field, type "8".
- 5. Click **OK**.

#### 3.1.3.2 Replace the default TLS certificate

By default, the VPX includes a factory-provisioned RSA certificate for TLS connections (ns-server.cert and ns-server.key). This certificate is not intended for use in production deployments and must be replaced. The CO must replace the default certificate with a newly generated certificate after the initial installation.

To replace the default TLS certificate, the CO must follow these steps:

1. Run the following CLI command to set the hostname of the VPX:

```
set ns hostName [hostname]
```

- 2. From the VPX GUI, complete the following procedure to create a Certificate Signing Request (CSR):
  - In the Configuration navigation pane, go to **Traffic Management** and click the **SSL** node.
  - In the SSL Certificates section, click the Create Certificate Request link.
  - Make sure to provide values for all the required fields marked with an "\*" and then click Create. Note
    that the Common Name field will contain the value of hostname created in step 1 above.
- 3. Submit the CSR file to a trusted CA. The CSR file is available in the /nsconfig/ssl directory.
- 4. After receiving the certificate from the trusted CA, copy the file to the /nsconfig/ssl directory.
- From the VPX GUI, navigate to Traffic Management > SSL and choose ns-server-certificate.
- 6. Click Update.

- 7. In the **Certificate File Name** field, choose the certificate file that was received from the CA. Use the **Browse** option to choose the file that you have received from CA after signing. Choose the **Browse > Local** option if the file is saved on your workstation/local drive.
- 8. In the Private Key File Name field, specify the default private key file name (ns-server.key).
- 9. Select the No Domain Check option.
- 10. Click **OK**.

For more information, please refer to the Citrix Support Knowledge Center article <a href="CTX122521">CTX122521</a>) on Citrix's online product documentation portal.

#### 3.1.3.3 Disable HTTP access to the Web GUI

To protect traffic to the administrative interface and Web GUI, the VPX must be configured to use HTTPS<sup>101</sup>. Once the VPX has been configured to use new TLS and SSH certificates (see section 3.1.3.1 above), the CO must disable HTTP access to the GUI management interface with the following CLI command:

```
set ns ip <NSIP> -qui SECUREONLY
```

#### 3.1.3.4 Create the KEK Master Key

The KEK master key is used to encrypt passphrases and other sensitive information. To prevent the default KEK from being used, the CO must create a new KEK. To create the KEK, the CO must run the following CLI command:

```
create system kek
```

When prompted, the CO shall enter a strong passphrase (the KEK will be derived from this).

#### 3.1.3.5 Disable local authentication

The nsroot account is a default account with root CLI access (superuser) privileges that is required for initial configuration. After initial configuration, local system authentication must be disabled to block access to all local accounts (including the nsroot account), and the CO must ensure that superuser privileges are not assigned to any user account. To disable local system authentication and enable external system authentication, the CO must run the following CLI command to disable local authentication:

```
set system parameter -localauth disabled
```

#### 3.1.3.6 Enable External Authentication

Once the module is configured in FIPS-Approved mode and the nsroot account is disabled, then external authentication must be configured. Follow the instructions on the Configuring external user authentication webpage found on the Citrix online product documentation portal to configure external system authentication. The CO must ensure the following before enabling external authentication:

- Ensure a secure connection is established with the external authentication service.
- Ensure shell access is disabled for all profiles on the external authentication service.

<sup>101</sup> HTTPS – Hypertext Transfer Protocol Secure

## 3.2 Crypto Officer Guidance

The CO is responsible for ensuring that the module is operating in the FIPS-Approved mode of operation. When configured and operated according to the guidance in this Security Policy (including the previous instructions in section 3.1.3), the module only runs in the FIPS-Approved mode of operation.

## 3.2.1 Management

Once installed and configured, the Crypto Officer is responsible for maintaining and monitoring the status of the module to ensure that it is running in its FIPS-Approved mode. Please refer to sections 3.1.3, 3.2, and 3.4 for guidance that the Crypto Officer must follow to ensure that the module is operating in a FIPS-Approved manner.

## 3.2.2 On-Demand Self-Tests

Although power-up self-tests are performed automatically during module power up, they can also be manually launched on demand. Self-tests can be executed by power-cycling the module, using the reset button on the platform (if applicable), the reboot CLI command, the reboot API method, or via the Web GUI by navigating to Configuration > System > System Information and clicking the Reboot button.

#### 3.2.3 Zeroization

There are many CSPs within the module's cryptographic boundary including symmetric keys, private keys, public keys, and passphrases. CSPs reside in multiple storage media including the RAM and system memory. All ephemeral keys are zeroized on module reboot, power removal, or session termination.

The KEK is stored as plaintext in non-volatile memory. The zeroization of the KEK renders all passphrases and passwords stored in the non-volatile memory unrecoverable, effectively zeroizing them. The KEK is zeroized via the following CLI command:

```
rm system csps -type KEK
```

SSH private keys are stored as plaintext in non-volatile memory. SSH private keys are zeroized via the following CLI command:

```
rm system csps -type SSH HOST KEYS
```

## 3.2.4 Monitoring Status

The CO shall be responsible for regularly monitoring the module's status for the FIPS-Approved mode of operation. When configured according to the CO's guidance, the module only operates in the FIPS-Approved mode. Thus, the current status of the module when operational is always in the FIPS-Approved mode.

An operator logged in via the CLI can view the operational status by using the following CLI commands:

- show ns info shows details about the software including software version, enabled and disabled features, and configured network information.
- show ns version shows version and build number of the appliance.
- show ns hardware shows details of the appliance hardware and information such as the host ID<sup>102</sup>
  and serial number.

The RESTful Nitro API can be used with the GET method to view the operational status by using the following URLs:

- https://<netscaler-ip-address>/nitro/v3/config/nshardware
- https://<netscaler-ip-address>/nitro/v3/config/nsversion

An operator logged in via the Web GUI can also view the operational status by navigating to **Configuration > System > System Information**.

This will display general system and hardware information about the device, including the platform version, CPU information, and appliance serial number. Additionally, the Web GUI's dashboard includes a system overview section with information such as system HA state, system master state, and system uptime.

#### 3.3 User Guidance

The User role does not have the ability to configure sensitive information on the module. The User must be diligent to select strong passwords and must not reveal their password to anyone. Additionally, User role operators should be careful to protect any secret or private keys in their possession.

## 3.4 Additional Guidance and Usage Policies

This section notes additional policies below that must be followed by module operators:

- All private keys (except for SSH private keys) must be stored as PEM files in encrypted format using a FIPS-Approved encryption algorithm listed in Table 2 or Table 3.
- Upon successful bootup of the module, the VPX is configured by default to use only NIST SP 800-52rev2
  recommended cipher suites for TLS connections. If modified, the CO must ensure that only FIPS-Approved
  cipher suites are configured while in the FIPS-Approved mode. It is recommended to use the list of
  Approved TLS cipher suites in section 3.3 of NIST SP 800-52 Rev2 as guidance.
- The VPX must be configured to use PSK-based authentication for IPsec connections. The CO must provide
  a PSK value when configuring IPsec profiles via the GUI, CLI, or API. Configuring digital certificate-based
  authentication for IPsec connections is prohibited while in the FIPS-Approved mode of operation.

<sup>102</sup> ID – Identifier

- The VPX supports Kerberos traffic management. This feature must be configured to use PKINIT<sup>103</sup>. Once
  configured the module restricts Kerberos to using only FIPS-Approved ciphersuites. For details on
  configuring the protocol to use PKINIT refer to <u>Citrix ADC 12.1 An Overview of Citrix ADC Kerberos SSO</u>.
- The VPX supports client-side Kerberos. The CO must configure a password or keytab file to use this feature.
   VPX will only accept packages using FIPS 140-2 encryption. For details on configuring client-side Kerberos refer to <a href="Citrix ADC 12.1">Citrix ADC 12.1</a> Configuring Kerberos Authentication on the Citrix ADC Appliance.
- The VPX supports clustering. A VPX may either be the cluster coordinator or the cluster node. Once
  appliances are clustered together, all configuration is done on the cluster coordinator and pushed to
  nodes within the cluster. For details on configuring clusters, refer to <a href="Citrix ADC 12.1">Citrix ADC 12.1</a> <a href="Clustering">Clustering</a>.
- The CO must ensure that communication between the module and the external authentication service is secure.
- The CO must ensure that shell access is disabled for all profiles on the external authentication service.
- The CO must ensure that the "Key" and "AutoKey" authentication parameters are not set when adding NTP servers via the GUI, CLI, or API.
- Module operators shall ensure that only those algorithms and key sizes mentioned in Section 2.7 (Cryptographic Key Management) of this document are in use to remain in the FIPS-Approved mode of operation.
- If the module's power is lost and then restored, the module operator shall establish a new key for AES GCM encryption.
- The module operator shall ensure that the number of encryptions performed by the TDES key is performed no more than 2<sup>16</sup> times by periodically rebooting the module.
- The VPX has built-in CA tools used to create self-signed certificates for testing purposes. While the feature
  does include the generation of keys, those keys are not considered CSPs because they are not being used
  for production purposes or for true protection of data,. The CO must ensure that all certificates are signed
  using a trusted CA and not by a self-signed certificate.

## 3.5 Non-FIPS-Approved Mode

When initialized, configured, and operated according to the guidance in this Security Policy, the module does not support a non-FIPS-Approved mode of operation.

<sup>103</sup> PKINIT – Public Key Cryptography for Initial Authentication in Kerberos – details for PKINIT in the Kerberos protocol are in RFC #4556

# 4. Acronyms

Table 12 provides definitions for the acronyms used in this document.

Table 12 - Acronyms

| Acronym | Definition                                                 |
|---------|------------------------------------------------------------|
| AAA     | Authentication, Authorization, Accounting                  |
| ADC     | Application Delivery Controller                            |
| AES     | Advanced Encryption Standard                               |
| API     | Application Programming Interface                          |
| AWS     | Amazon Web Services                                        |
| CA      | Certificate Authority                                      |
| CAVP    | Cryptographic Algorithm Validation Program                 |
| СВС     | Cipher Block Chaining                                      |
| cccs    | Canadian Centre for Cyber Security                         |
| СКС     | Cryptographic Key Generation                               |
| CLI     | Command Line Interface                                     |
| CMVP    | Cryptographic Module Validation Program                    |
| со      | Crypto Officer                                             |
| СРИ     | Central Processing Unit                                    |
| CRNGT   | Continuous Random Number Generator Test                    |
| CSP     | Critical Security Parameter                                |
| CSR     | Certificate Signing Request                                |
| CSRF    | Cross-Site Request Forgery                                 |
| CTR     | Counter                                                    |
| CVL     | Component Validation List                                  |
| DES     | Data Encryption Standard                                   |
| DFA     | Delegated Form Authentication                              |
| DH      | Diffie-Hellman                                             |
| DNS     | Domain Name System                                         |
| DoS     | Denial-of-Service                                          |
| DRBG    | Deterministic Random Bit Generator                         |
| ECC CDH | Elliptic Curve Cryptography Cofactor Diffie-Hellman        |
| ECDH    | Elliptic Curve Diffie-Hellman                              |
| ECDSA   | Elliptic Curve Digital Signature Algorithm                 |
| EMI/EMC | Electromagnetic Interference/Electromagnetic Compatibility |

| Acronym | Definition                                     |
|---------|------------------------------------------------|
| FIPS    | Federal Information Processing Standard        |
| FOM     | FIPS Object Module                             |
| GCM     | Galois/Counter Mode                            |
| GCP     | Google Cloud Platform                          |
| GHz     | Gigahertz                                      |
| GSLB    | Global Server Load Balancing                   |
| GUI     | Graphical User Interface                       |
| НА      | High Availability                              |
| НМАС    | (keyed-) Hash Message Authentication Code      |
| HTML    | Hypertext Markup Language                      |
| HTTP    | Hypertext Transfer Protocol                    |
| HTTPS   | Hypertext Transfer Protocol Secure             |
| ID      | Identifier                                     |
| IDP     | Identity Provider                              |
| IKE     | Internet Key Exchange                          |
| IP      | Internet Protocol                              |
| IPsec   | Internet Protocol Security                     |
| IV      | Initialization Vector                          |
| KAT     | Known Answer Test                              |
| KDF     | Key Derivation Function                        |
| KEK     | Key Encryption Key                             |
| KPG     | Key Pair Generation                            |
| KSK     | Key Signing Key                                |
| KVM     | Kernel-based Virtual Machine                   |
| L4-L7   | Layer 4 through Layer 7                        |
| LDAP    | Lightweight Directory Access Protocol          |
| LTS     | Long Term Support                              |
| LTSR    | Long Term Service Release                      |
| MD5     | Message Digest 5                               |
| N/A     | Not Applicable                                 |
| NDRNG   | Non-Deterministic Random Number Generator      |
| NIST    | National Institute of Standards and Technology |
| NTP     | Network Time Protocol                          |
| OID     | Object Identifier                              |
| os      | Operating System                               |
| PBKDF   | Password-based Key Derivation Function         |

| Acronym | Definition                         |
|---------|------------------------------------|
| PCT     | Pairwise Consistency Test          |
| PEM     | Privacy-Enhanced Mail              |
| PKCS    | Public Key Cryptography Standard   |
| PSK     | Pre-shared Key                     |
| RAM     | Random Access Memory               |
| RBA     | Role-Based Authentication          |
| RDP     | Remote Desktop Protocol            |
| REST    | Representational State Transfer    |
| RFC     | Request For Comment                |
| RSA     | Rivest Shamir Adleman              |
| SAML    | Security Assertion Markup Language |
| SHA     | Secure Hash Algorithm              |
| SHS     | Secure Hash Standard               |
| SNMP    | Simple Network Management Protocol |
| SP      | Special Publication                |
| SQL     | Structured Query Language          |
| SSH     | Secure Shell                       |
| SSL     | Secure Socket Layer                |
| ТСР     | Transmission Control Protocol      |
| TLS     | Transport Layer Security           |
| U2      | Update 2                           |
| UDP     | User Datagram Protocol             |
| URL     | Uniform Resource Locator           |
| U.S.    | United States                      |
| XML     | Extensible Markup Language         |
| xss     | Cross-Site Scripting               |
| ZSK     | Zone Signing Key                   |

# Prepared by: Corsec Security, Inc.



13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

> Phone: +1 703 267 6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>