

Non-Proprietary FIPS 140-2 Security Policy: Motorola Solutions Cryptographic Firmware Module

The cryptographic module is used in multiple Motorola Solutions subscribers. Visit the Motorola Solutions website to verify your subscriber has this module by viewing the subscriber specifications sheet.

Document Version: 1.2 Date: January 27, 2022

Table of Contents

1	Introduction4			
	1.1 Module Description and Cryptographic Boundary	6		
2	Modes of Operation	6		
3	Cryptographic Functionality	7		
	3.1 Critical Security Parameters	8		
4	Roles, Authentication and Services	8		
	4.1 Assumption of Roles4.2 Services	8 9		
5	Self-Tests	11		
	5.1 Power-up Self-Tests	.11		
6	Physical Security Policy	12		
7	Operational Environment	12		
8	Mitigation of Other Attacks Policy	12		
9	Security Rules and Guidance	12		
	9.1 Invariant Rules	.12		
10	References and Definitions	13		

List of Tables

Table 1: FIPS Validated Operational Environment	.4
Table 2: FIPS Non-Validated Operational Environment	.4
Table 3: Security Level of Security Requirements	.5
Table 4: Ports and Interfaces	.6
Table 5: Approved Algorithms	.7
Table 6: Non-Approved but Allowed Cryptographic Functions	.7
Table 7: Non-Approved Cryptographic Functions	.8
Table 8: Critical Security Parameters (CSPs)	.8
Table 9: Roles Description	.9
Table 10: Approved Services	.9
Table 12: Security Parameters Access by Service	11
Table 13: References	13
Table 14: Acronyms and Definitions	14

List of Figures

ure 1: Module Block Diagram6

1 Introduction

This document defines the Security Policy for the Motorola Solutions Cryptographic Firmware Module, hereafter denoted the module. The module is a firmware-based cryptographic module that runs on a Motorola Solutions radio hardware platform. The module provides FIPS 140-2 approved cryptographic functionalities via an Application Programming Interface (API) to the application layer running in Motorola Solutions radio products supporting the APCO Project 25 standard.

The module is intended for use by the markets that require FIPS 140-2 validated overall Security Level 1.

Firmware Version: R01.09.01, R01.11.00

Operating Environment	Operating System	Hardware Platform
OE #1	Mentor Graphics Nucleus 3.0 (version 2013.08.1)	ARM926EJ-S core of Texas Instrument (TI) OMAP-L138 C6000 DSP+ARM
OE #2	Texas Instrument (TI) DSP/BIOS 5.41.04.18	TMS320C674x DSP core of Texas Instrument (TI) OMAP-L138 C6000 DSP+ARM

Table 1: FIPS Validated Operational Environment

The module has also been confirmed by Motorola Solutions to be operational on the following OE shown in Table 2, as allowed by the FIPS 140-2 Implementation Guidance G.5. However, no target testing was performed on this OE for FIPS 140-2 validation with the specific firmware versions listed in this document.

Table 2: FIPS Non-Validated Operational Environment

Operating System	Hardware Platform and Processor
Enea OSE, Version 5.8	Motorola Solutions GRV 8000 Comparator, NXP QorIQ P1021

Note: The CMVP makes no statement as to the correct operation of the module on the operational environments for which operational testing was not performed.

The FIPS 140-2 security levels for the module are as follows:

Table 3: Security	/ Level of Security	Requirements
-------------------	---------------------	---------------------

Security Requirement	Security Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services, and Authentication	1
Finite State Model	1
Physical Security	1
Operational Environment	N/A
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A
Overall	1

1.1 Module Description and Cryptographic Boundary

The module is classified by FIPS 140-2 as a firmware module, and multi-chip standalone module embodiment. The physical cryptographic boundary is the Motorola Solutions Radio Platform on which the module is installed. The logical cryptographic boundary of the module is the static linked library that is linked into the application running on Motorola Solutions radio products.

Figure 1: Module Block Diagram

The module's ports and associated FIPS defined logical interface categories are listed in Table 4.

Table 4: Ports and Interfaces

Logical Interface Type	Description
Control input	API entry point and corresponding stack parameters
Data input	API entry point data input stack parameters
Status output	API entry point return values and status stack parameters
Data output	API entry point data output stack parameters

2 Modes of Operation

The module can operate in a FIPS 140-2 Approved mode of operation and a non-Approved mode of operation. The mode of operation is determined by the services used by the operator of the module. To operate in a FIPS 140-2 Approved mode, the operator shall only use the approved cryptographic functions listed in Section 3 in conjunction with the approved services listed in Section 4.2. Using non-Approved cryptographic functions or non-Approved services constitutes running the module in a non-Approved mode.

The user can verify the firmware version matches an approved version listed on NIST's website: http://csrc.nist.gov/groups/STM/cmvp/validation.html

3 Cryptographic Functionality

The module's supported cryptographic functions are listed in the following tables.

Cert	Algorithm	Mode	Key Size	Functions/Caveats
		ECB [38A]	Key Sizes: 256	Encrypt, Decrypt
		CBC [38A]	Key Sizes: 256	Encrypt, Decrypt
	AES [197]	OFB [38A]	Key Sizes: 256	Encrypt, Decrypt
		GCM [38D] ¹	Key Sizes: 256	Encrypt, Decrypt
		CTD ²	450.250	Deterministic Random
	DRBG [90A]		AE3-250	Bit Generation
			(1024 bit)	Message authentication,
	HIVIAC [198-1]	HIVIAC-SHA-384		Code Integrity tests
A936, A1168	KTS [38F]	AES-KW	Key Sizes: 256	Key Wrap
	KTS [IG D.9]	GCM	Key Sizes: 256	Key Wrap
	PBKDF [132]	Option 1a Option 2a	sLen = 16 – 512 bytes C = 1 – 100,000 SHA2-384	Password-Based Key Derivation. Supported only on OE #1.
	SHS [180]	SHA-256 SHA-384 SHA-512	N/A	Message Digest Generation, Password Obfuscation
Vendor Affirmed	СКБ	CTR_DRBG	N/A	Symmetric key generation in accordance with SP 800-133rev2 and IG D.12

Table 5: Approved Algorithms

Table 6: Non-Approved but Allowed Cryptographic Functions

Algorithm	Description
AES MAC	[IG G.13] AES MAC for Project 25 APCO OTAR (Cert. #A936)

¹ Per IG A.5 option 2, the module generates 96-bit GCM IVs randomly as specified in SP800-38D section 8.2.2 using an approved DRBG (Cert. #A936).

² The entropy for seeding the SP 800-90A DRBG is determined by the user of the module which is outside of the module's logical boundary. The target application shall use entropy sources that meet the security strength required for the random number generation mechanism as shown in [SP 800-90A] Table 3 (CTR_DRBG) and set required bits into the module by calling module defined API function. Since entropy is loaded passively into the module, there is no assurance of the minimum strength of generated keys.

The following algorithms and services are supported by the module, but do not satisfy FIPS 140-2 requirements:

Algorithm	Description	
DES	DES Encryption/Decryption – ECB, OFB and CBC Mode.	
KAS [56Ar3]	Key Agreement Scheme provides 192 bits of encryption strength. Supported only on OE #1.	
ECDSA [186]	P-384, SHA(384) KeyGen. Supported only on OE #1.	
KDM [56Cr2] (§4.1)	SP 800-56Cr2 Section 4.1, Option 1 with SHA-384. Supported only on OE #1.	

Table 7: Non-Approved Cryptographic Functions

3.1 Critical Security Parameters

All CSPs used by the module are described in this section. Usage of these CSPs by the module (including all CSP lifecycle states) is described in the services detailed in the Section 4. All CSPs are stored plaintext in the volatile memory while in use, and zeroized by power cycling the module.

CSP	Generation	Description / Usage
SP800-90A Seed	Externally generated and imported into the module.	384-bit seed value used within the SP800-90A DRBG.
SP800-90A Internal State ("V" and "Key")	Internally generated.	Internal state of SP800-90A CTR_DRBG (V and Key).
Keyed Hash Key	Externally generated and imported into the module.	Key used for generating HMAC SHA384 Message Authentication Code.
AES-256 Key	Externally generated and imported into the module.	AES-256 key used for voice and data encryption/decryption.
AES-256 Key Wrap Key	Externally generated and imported into the module.	Key used for AES Key Wrapping/Unwrapping.
PBKDF Secret Value	Externally generated and imported into the module.	PBKDF [SP 800-132] Secret value used in construction of Keyed-Hash key for the specified PRF.
OTAR MAC Key	Externally generated and imported into the module.	AES256 key used for APCO OTAR MAC Generation.

Table 8: Critical Security Parameters (CSPs)

4 Roles, Authentication and Services

4.1 Assumption of Roles

The module supports two distinct operator roles, User and Cryptographic Officer (CO). A user is

considered the owner of the thread that instantiates the module and, therefore, only one concurrent user is allowed.

Table 9 lists all operator roles supported by the module. The module does not support a maintenance role and/or bypass capability.

Role ID	Role Description	Authentication Type
СО	Cryptographic Officer	N/A – Authentication not required for Level 1
User	User	N/A – Authentication not required for Level 1

Table 9: Roles Description

4.2 Services

All services supported by the module are listed in the Table 10 and Table 11 below. The user of the module may change the mode of operation to FIPS non-Approved mode by using non-Approved services, or by using Approved services which use non-Approved cryptographic functions.

Table 10: Approved Services

Sorrico	Description		Role	
Service			User	
Self-Test	Perform all KATs prior to module initialization	Х	Х	
Module Status	Show the module status and version number.	Х	Х	
Utility	Key check and other services	Х	Х	
Encrypt	Encryption of voice and data	х	Х	
Decrypt	Decryption of voice and data	Х	Х	
AES Key Wrapping	Used for the encryption of keys using the AES Key Wrap [SP 800-38F] algorithm.	х	х	
AES Key Unwrapping	Used for the decryption of keys using the AES Key Wrap [SP 800-38F] algorithm.	х	х	
Generate OTAR MAC	Used to generate MAC (Message Authentication Code) as defined in [OTAR].	х	х	
DRBG	Used for random number, IV and key generation using DRBG [SP 800-90A].	х	х	
Hashing	Used to generate SHA-256/384/512 message digest.	х	х	
HMAC-SHA	Used to calculate data integrity codes with HMAC.	Х	х	

Sorvico	Description		Role	
Service			User	
Zeroize ³	Zeroize all CSPs	Х	Х	
PBKDF ⁴	Used to generate keys using PBKDF [SP 800-132]	Х	Х	

Table 11: Non-Approved Services

Comico	Description		Role	
Service			User	
KAS	Used for key agreement process using ECDH	х	Х	
KDM	Key derivation function used after key exchange negotiation.	Х	х	
ECDSA Key Gen	Used for generating asymmetric key pair	Х	Х	

Table 11 defines the relationship between access to the security parameters and the different module services. The modes of access shown in the table are defined as:

- G= Generate CSP. Internally create the CSP.
- S = Store CSP: Stores CSP in the volatile memory. The module uses CSPs passed in by the calling application on the stack.
- U = Use CSP: Uses key internally for encryption/decryption services.
- Z = Zeroize: The service zeroizes the CSP in the volatile memory.
- - = No access: The service does not access the CSP.

The target operating system protects memory and process space from unauthorized access. Keys residing in the module's internally allocated data structure during the lifetime of the services can only be accessed through the APIs provided by the module. The keys can be zeroized in the module's volatile memory by calling appropriate API function.

³ The Zeroize service zeroizes the key in the volatile memory by power cycling the module.

⁴ As per NIST SP 800-132, keys generated by the module shall be used as recommend in Section 5.4 of [132]. Any other use of the approved PBKDF is non-conformant. In approved mode the operator shall enter a password no less than 8 hexadecimal digits in length. The probability of guessing the password will be equal to 1:16⁸. The iteration count associated with the PBKDF should be as large as practical. Keys derived from passwords may only be used in storage applications.

	CSPs								
Services	AES Key	Keyed Hash Key (384)	SP800-90A Seed	SP800-90A Internal State (V and Key)	AES-256 Key Wrap Key	OTAR MAC Key	PBKDF Secret Value		
Configure	-	-	-	-	-	-	-		
Module Status	-	-	-	-	-	-	-		
Utility	-	-	-	-	-	-	-		
Encrypt	U,S,Z	-	-	U	-	-	-		
Decrypt	U,S,Z	-	-	-	-	-	-		
AES Key Wrapping	-	-	-	U	U,S,Z	-	-		
AES Key Unwrapping	-	-	-	-	U,S,Z	-	-		
Generate OTAR MAC	-	-	-	-	-	U,S,Z	-		
DRBG	-	-	U,S	U,S	-	-	-		
Hashing	-	-	-	-	-	-	-		
HMAC-SHA	-	U,S	-	-	-	-	-		
Zeroize	Z	Z	Z	Z	Z	Z	Z		
PBKDF	-	-	-	-	-	-	U		

Table 11: Security Parameters Access by Service

5 Self-Tests

5.1 Power-up Self-Tests

- Cryptographic algorithm tests
 - AES256 Encrypt/Decrypt (ECB,GCM) KAT
 - o SHA-256/512 KAT
 - DRBG [SP 800-90A] KAT (Instantiate and Generate)
 - PBKDF [SP 800-132]
- Firmware integrity test: HMAC-SHA384

6 Physical Security Policy

The module is firmware only and operates in a Motorola Solutions radio that is built with production grade materials. For the purposes of FIPS 140-2, the embodiment is defined as a multiple-chip standalone cryptographic module and is designed to meet Level 1 security requirements.

7 Operational Environment

The module operates and was tested on the following non-modifiable operational environment:

• Motorola Solutions Radio using hardware platform as specified in Table 1.

8 Mitigation of Other Attacks Policy

The module is not designed to mitigate any specific attacks outside of those required by FIPS 140-2.

9 Security Rules and Guidance

The module enforces the following security rules. These rules are separated into those imposed by FIPS 140-2 and those imposed by Motorola Solutions.

9.1 Invariant Rules

- 1. The module does not provide any operator authentication.
- 2. The module is available to perform services only after successfully completing the power-up self-tests.
- 3. Data output is inhibited during key generation, self-tests, zeroization, and while in critical error state.
- 4. The module shall not support a concurrent operator.
- 5. The module enters the Uninitialized state if any power-up self-tests or conditional self-tests fail. The Uninitialized state can be exited by restarting the module.
- 6. The module does not perform any cryptographic functions while in the Uninitialized state.
- 7. The module returns the results of the power-up and integrity self-tests to the operator.
- 8. The module may be power cycled to zeroize all CSPs.
- 9. The module is to be installed on Motorola Solutions radio products.
- 10. The module only runs in FIPS-approved mode when using approved or allowed cryptographic functions in conjunction with approved services

10 References and Definitions

The following standards are referred to in this Security Policy.

Abbreviation	Full Specification Name
[FIPS140-2]	Security Requirements for Cryptographic Modules, May 25, 2001
[IG]	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program
[131A]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths, March 2019
[132]	NIST Special Publication 800-132, Recommendation for Password-Based Key Derivation, Part 1: Storage Applications, December 2010
[133r2]	NIST Special Publication 800-133 Revision 1, Recommendation for Cryptographic Key Generation, June 2020
[186]	National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-4, July 2013.
[197]	National Institute of Standards and Technology, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, November 26, 2001
[198]	National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication 198-1, July, 2008
[180]	National Institute of Standards and Technology, Secure Hash Standard, Federal Information Processing Standards Publication 180-4, August, 2015
[38A]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation, Methods and Techniques, Special Publication 800-38A, December 2001
[38B]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication, Special Publication 800- 38B, October 2016
[38D]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, Special Publication 800-38D, November 2007
[38F]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping, Special Publication 800-38F, December 2012
[56Ar3]	NIST Special Publication 800-56A Revision 3, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, April 2018

Table 12: References

Abbreviation	Full Specification Name
[90A]	National Institute of Standards and Technology, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Special Publication 800-90A, June 2015.
[OTAR]	Project 25 – Digital Radio Over-The-Air-Rekeying (OTAR) Messages and Procedures [TIA-102.AACA-A], September 2014
[56Cr2]	NIST Special Publication 800-56C Revision 2, Recommendation for Key-Derivation Methods in Key-Establishment Schemes, August 2020

Table 13: Acronyms and Definitions

Acronym	Definition
AES	Advanced Encryption Standard
API	Application Programming Interface
CBC	Cipher Block Chaining
CKG	Cryptographic Key Generation
CSP	Critical Security Parameter
DES	Data Encryption Standard
DPK	Data Protection Key
DRBG	Deterministic Random Bit Generator
ECB	Electronic Code Book
ECDH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
FIPS	Federal Information Processing Standards
GCM	Galois/Counter Mode
HMAC	Keyed-hash Hash Message Authentication Code
IV	Initialization Vector
КАТ	Known Answer Test
KDF	Key Derivation Function
MAC	Message Authentication Code
МК	Master Key
OFB	Output Feedback
PBKDF	Password-Based Key Derivation Function
RTOS	Real-Time Operating System
SHS	Secure Hash Standard

Acronym	Definition
VA	Vendor Affirmed