

Monaco Enterprises,

Inc.

14820 E. Sprague Avenue, P. O. Box 14129, Spokane, Washington 99214-0129 Web Site: www.monaco-inc.com & Email: service@monaco-inc.com Telephone: (509) 926-6277 Φ FAX: (509) 924-4980

Monaco Enterprises Inc.

Monaco Communication Cryptographic Module 1.0 FIPS 140-2 SECURITY POLICY

H.W. Part Number: 314R0006 F.W. Version: 51.01

Document Revision: 1.1 Document Date: March 30, 2022

Non-proprietary Security Policy

REVISION HISTORY

Author(s)	Version	Updates
Don Skinfill	1.0	Initial release
John Webster	1.1	Minor clarifications

Contents

1	INTRODUCTION	
2	SECURITY LEVEL SPECIFICATION	
3	MODULE OVERVIEW	. 4
3.1	CRYPTOGRAPHIC BOUNDARY	
3.2	PHYSICAL PORTS AND LOGICAL INTERFACES	. 6
4	MODES OF OPERATION	. 7
4.1	APPROVED MODE OF OPERATION	
4.2	SECURITY RULES	
4.3	CRYPTOGRAPHIC ALGORITHMS	. 9
5	CRYPTOGRAPHIC KEY MANAGEMENT	10
5.1	LIST OF KEYS AND CSPS	
6	ROLES, SERVICES AND ACCESS CONTROL POLICY	11
6.1	ROLES	11
6.2	SERVICES AND ACCESS CONTROL	11
6.3	BYPASS CAPABILITY	13
7	SELF-TESTS	14
8	IDENTIFICATION AND AUTHENTICATION POLICY	15
9	PHYSICAL SECURITY POLICY	
10	OPERATIONAL ENVIRONMENT	16
11	EMI/EMC	16
12	MITIGATION OF OTHER ATTACKS	16
13	ACRONYMS	17

1 Introduction

The Monaco Enterprises Inc. Monaco Communication Cryptographic Module 1.0 (H.W. Part Number: 314R0006, F.W. Version: 51.01) is a single chip cryptographic module designed to provide FIPS 140-2 AES-256 encryption for secure RF radio communications. The Overall security level of the Monaco Communication Cryptographic Module 1.0 is Level 1.

2 Security Level Specification

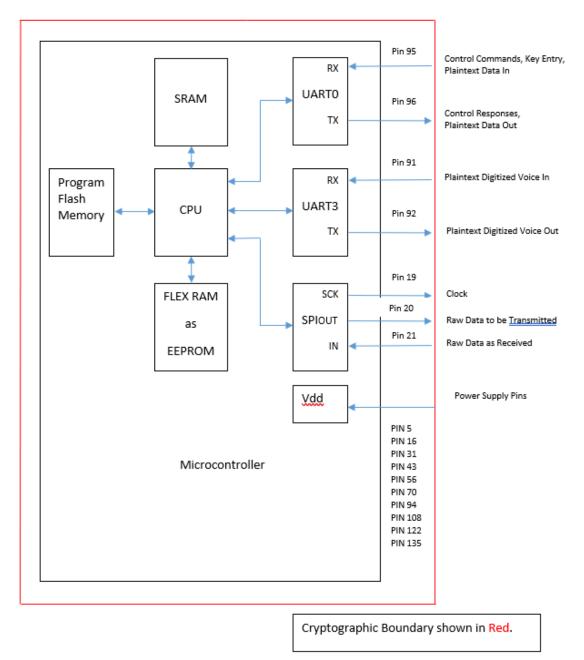

SECURITY REQUIREMENTS AREA	LEVEL
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services, and Authentication	1
Finite State Model	1
Physical Security	1
Operational Environment	N/A
Cryptographic Key Management	1
EMI/EMC	1
Self-tests	1
Design Assurance	1
Mitigation of Other Attacks N/A	

Table 1 – Security Level of Security Requirements.

3 Module Overview

3.1 Cryptographic Boundary

The following diagram defines the cryptographic boundary:

Figure 1 – Specification of Cryptographic Boundary

Monaco Communication Cryptographic Module 1.0 FIPS 140-2 Security Policy

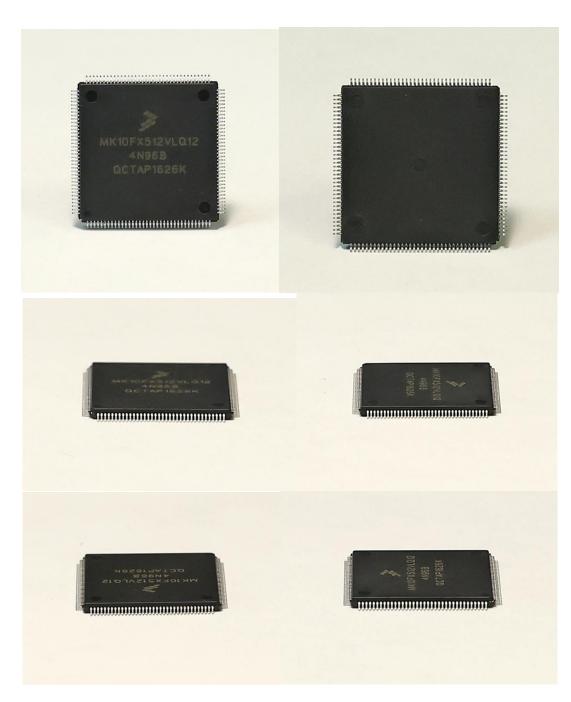


Figure 2 – The Monaco Communication Cryptographic Module 1.0

3.2 Physical Ports and Logical Interfaces

The Cryptographic Module provides the following physical ports and interfaces.

Physical Port	Logical Interface
UART3 Data Input	
SPI port	
UART0	
UART0	Control Input
UART3	Data Output
SPI port	
UART0	
UART0	Status Output
Dedicated I/O pin for indicators	
Vdd Power Input	

Table 2 – Specification of Cryptographic Module Physical Ports and Logical Interfaces

All of the three ports are bidirectional i.e. the port can be used for both an input and output, however, the inputs and outputs are on separate physical lines. The firmware inside the cryptographic module is built around a state machine such that there are no states where confusion can exist between input data and control input information or between the data output and the status output signals.

In addition, control input signal and status output signals are formatted in such a way both in timing and in content to make them unique from general data input and output. This process also prevents key entry from interfering with general input digital data stream input which shares the same port.

The other two ports, the SPI port and UART3 are physically separate from the port, UART0, that handles digital data and input and output commands for control and status. The nature of the port control within the processor is such that the three ports may be operated simultaneously without interfering with each other or corrupting each other information stream.

4 Modes of Operation

4.1 Approved Mode of Operation

The module has only one mode of operation which is the Approved Mode. The module will remain operating in the Approved Mode if all the power-up self-tests and conditional self-tests pass.

4.2 Security Rules

The following specifies the security rules under which the cryptographic module shall operate:

- The module is initialized automatically the first time that it is powered up after having the firmware loaded.
- The module is embedded in another piece of equipment with no physical user access without disassembling. The module cannot be accessed before initialization and no other access points other than what is explicitly described in this document is provided.
- ✤ Maintenance (N/Å): The module does not support a maintenance role.
 - There are no maintenance capabilities related to encryption or security, only normal radio operation and adjustments.
- Key Programming Rules (Key Entry) When entering keys into the module the operator shall follow these rules:
 - 1- Key programming shall only be performed on the MCU Pin #95 interface,
 - 2- Configure MCU PIN #83 to High, and
 - 3- Configure MCU PIN #82 to non-active.
- ✤ Key rotation: The Crypto officer must perform KEY ROTATION once a year.
- The module will always decrypt a received message if it has the active key for the received message and is not in an error state.
- ✤ The module will run the self-tests automatically upon power up (<u>See section 7</u>).
- If the module encounters an error the module will remain in that error state until an error recovery is performed.
- The Crypto-officer is responsible for
 - Maintaining module's operation
 - Managing the Keys
 - Firmware loading
- Any firmware loaded into this module that is not shown on the module certificate, is out of the scope of this validation and requires a separate FIPS 140-2 validation
- To recover the module the Crypto-officer shall first power-cycle the module to rerun the self-test and observe that the self-tests have passed.

The following describes the status output indication when operating normally and when encountering a Self-test Error:

Self-test	Status output	Module Status
No failure	Pin 66: N/A Pin 67: N/A	The module operating normally
Bootloader CRC-32, App CRC-32, CMAC KAT, or CMAC Key CRC-32*: Fail	Pin 66 high Pin 67 toggles every 24ms	The module is inoperable
App CRC-32: Pass CMAC self-test: Pass AES-KATs: Fail	Pin 66 toggles every 88ms Pin 67 high	Pin 66 will toggle until the error is cleared (power- cycling the module)
Any failed conditional self- test	Pin 66 high Pin 67 toggles every 1.4s	Pin 67 will toggle until the error is cleared (power- cycling the module)

Table 3 – Power-up self-test Failures

Pin output Legend: High = 3.3V, Low = ground (0V), Toggle = transition from low to high or high to low

Note*: A Zeroized CMAC key will also cause a power-up self-test failure and the module will become inoperable.

4.3 Cryptographic Algorithms

Approved Algorithms

The following is a list of the Approved Algorithms:

ACVTS Cert	Algorithm	Standard	Mode/Method	Key Lengths, Curves, Or Moduli	Use
<u>A1230</u>	AES ECB OFB	FIPS 197 SP 800-38A	Encrypt Decrypt	256	Encryption Decryption
<u>A1230</u>	AES-CMAC	SP800-38B	Verify	256	Firmware Integrity

Table 4 - Table of Approved Algorithms

5 Cryptographic Key Management

5.1 List of Keys and CSPs

Description /Usage	Туре	Generation/ Establishment	Input/Output	Storage Persistent (NVM)/ Working Memory (RAM)	Zeroization
Short data keys (12-bytes or less)	AES-256 ECB		Input: Plaintext, Manual distribution, electronic entry Output: N/A	persistent, working memory	Zeroize Service: actively overwriting memory
Long data keys	AES-256 OFB		Input: Plaintext, Manual distribution, electronic entry Output: N/A	persistent, working memory	Zeroize Service: actively overwriting memory
Voice keys	AES-256 OFB		Input: Plaintext, Manual distribution, electronic entry Output: N/A	persistent, working memory	Zeroize Service: actively overwriting memory
Key CRC	CRC-32		Input: Plaintext, Manual distribution, electronic entry Output: N/A	persistent, working memory	Zeroize Service: actively overwriting memory
Firmware Upgrade Key	AES-CMAC- 256		Input: N/A Output: N/A	persistent, working memory	Zeroize Service: actively overwriting memory

Table 5 – Cryptographic Keys and CSPs Management Table

10

6 Roles, Services and Access Control Policy

6.1 Roles

The module has two roles that are implicitly assumed by the operator. The module does not support concurrent operators.

The Crypto-Officer Role: is the operator that manages the Encryption Keys and can also perform all of the functions and responsibilities of a User. The CO is responsible for generating and safeguarding the encryption keys.

The User Role: is an operator who manages the configuration of the radios. This includes injecting the Keys, managing the status of the encryption keys and configuring the non-security relevant radio parameters.

Service	Description	Role(s)*	Access Type(s) of Keys and CSPs**
Data Encryption	This service encrypts outgoing data such as short data, long data, and voice data.	CO, U	Short data keys (E) Long data keys (E) Voice keys (E)
Data Decryption	This service decrypts incoming data such as short data, long data, and voice data.	CO, U	Short data keys (E) Long data keys (E) Voice keys (E)
Keying/unkeying the transmitter	This service toggles on/off the transmitter	CO, U	Short data keys (R) Long data keys (R) Voice keys (R)
Change Channel Key number (Bypass Toggle)	The radio four communication channels that can be configured for use. Only one channel is active at a time. Each channel can be configured for encrypted communication or non-encrypted communication (bypassed). If encrypted, a key from a table of 64 possible keys needs to be	CO, U	Short data keys (R) Long data keys (R) Voice keys (R)

6.2 Services and Access Control

11

		1	
Change Changel	configured to use for encryption. This command allows the current key number (not key value) that is use on a channel to be changed. This service will change the current	CO, U	Short data kaya (P)
Change Channel (Bypass Toggle)	channel. The new channel could be another encrypted channel or a non-encrypted channel (bypass)	0,0	Short data keys (R) Long data keys (R) Voice keys (R)
Key Programming	This service allows the CO to change the 256-bit key value for any of the 64 keys in the key table	со	Short data keys (W) Long data keys (W) Voice data keys (W) Key CRC (W)
Activate/Deactivate Key	A non-zeroized key can be marked as Active or Inactive.	CO, U	N/A
Self-test	Preforms the power-up self-tests (via power cycling)	CO, U	N/A
Show Status	Shows the status of the module	CO, U	N/A
Test Tone	This service keys up the radio with a modulated 1031Hz test tone if on a digital channel	CO, U	Voice keys (E)
Zeroize	This service can zeroize a specific set of keys (Short key, Long key, and Voice Key for a key number), or all existing keys and CSPs in the module.	CO, U	Short data keys (Z) Long data keys (Z) Voice keys (Z) Key CRC (Z) Firmware Upgrade Key (Z)
Firmware Upgrade	This service allows loading new firmware to the module.	CO	Firmware Upgrade Key (R, E)
Field Use (Non-FIPS related)	This service allows the operator to perform non-security relative operations in the field such as radio configuration.	CO, U	N/A

Table 6 – Services Authorized for Roles, Access Rights within Services

Note*:	CO = Crypto-Officer, U = User
Nata **.	

Note**: R=read, W=write, E=execute, Z=zeroize

6.3 Bypass capability

The module has four communication channels that can be configured for use. Only one channel is active at a time. Each channel can be configured for encrypted communication or non-encrypted communication (bypassed).

The module can be configured to operate from normal operation to bypass mode and vice versa using the following two services:

1- Change Channel Key number:

Normal operation to Bypass mode configuration:

The operator must use the "Change Chanel Key number" service and remove the assigned key. The module will request confirmation from the user before executing the command.

Bypass mode to Normal operation configuration:

The operator must use the "Change Channel Key number" service and set a key to be used for this channel.

2- Change Channel:

Normal operation to Bypass mode configuration:

The operator must use the "Change Chanel" service and switch to a non-encrypted channel . The module will request confirmation from the user before executing the command.

Bypass mode to Normal operation configuration:

The operator must use the "Change Channel" service and switch to an encrypted channel.

When switching to non-bypass mode the module will perform the alternating bypass mode self-test which will verify the Keys CRCs and run the AES Known Answer Tests listed in section 7.

The operator can use the status command to check if a given channel is in bypass mode or not. If the module is in bypass mode it will return "Using software channel # bypass mode".

13

7 Self-Tests

Power-up self-tests

ALGORITHM	Test Description		
AES-ECB-256	Encrypt ECB KAT		
AES-ECB-256	Decrypt ECB KAT		
AES-OFB-256	Encrypt OFB KAT		
AES-CMAC-256	Verify KAT		
CRC-32	Bootloader Firmware integrity test		
CRC-32	App Firmware integrity test		

Table 7 - Power-up Self-test Table

Conditional Self-tests

Self-Test	Test Description
Manual key Entry Test	CRC-32
Firmware Load Test	AES-CMAC-256
Alternating Bypass Test	CRC-32 with AES-OFB KAT and AES-ECB KATs

Table 8 - Conditional Self-test Table

8 Identification and Authentication Policy

The Module does not implement Authentication of the operator roles.

Role	Authentication Type	Authentication Data
Cryptographic Officer	N/A	N/A
User	N/A	N/A

Table 9 - Roles and Required Identification and Authentication

Authentication Mechanism	Strength of Mechanism
N/A	N/A
N/A	N/A

Table 10 - Strengths of Authentication Mechanisms

9 Physical Security Policy

The module is a single chip cryptographic module which meets the Security Level 1 production-grade components requirement.

Physical Security	Recommended Frequency of	Inspection/Test
Mechanisms	Inspection/Test	Guidance Details
N/A	N/A	N/A

Table 11- Inspection/Testing of Physical Security Mechanisms

10 Operational Environment

The module runs in a limited operational environment.

11 EMI/EMC

The module is part of a device that meets 47 CFR FCC Part 15. Subpart B, Class A (Business use). Applicable FCC requirements (for radio).

12 Mitigation of Other Attacks

The module provides no additional mitigation of other attacks.

Other Attacks	Mitigation Mechanism	Specific Limitations
N/A	N/A	N/A

Table 12 – Table of Mitigation of Other Attacks

13 Acronyms

TERM	DESCRIPTION	
ACVP	Automated Cryptographic Validation Program	
AES	Advanced Encryption Standard, as specified in [FIPS 197]	
CAVP	Cryptographic Algorithm Validation Program	
CBC	Cipher Block Chaining	
CCCS	Canadian Centre for Cyber Security	
CERT	Certificate	
CMVP	Cryptographic Module Validation Program	
СО	Crypto Officer	
CST	Cryptographic and Security Testing	
FIPS	Federal Information Processing Standard	
FISMA	Federal Information Security Management Act	
FSM	Finite State Model	
IG	Implementation Guidance	
NIST	National Institute of Standards and Technology	
NVLAP	National Voluntary Laboratory Accreditation Program	
OFB	Output Feedback	
PUB	Publication	
TILL IN CRAdification	of Acronyms and their Descriptions	

Table 13 – Specification of Acronyms and their Descriptions