
Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 1 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Microsoft FIPS 140 Validation
Microsoft Azure Linux Kernel Crypto API

Software Versions: 1.0 and 2.0

Non-Proprietary

Security Policy Document

Version Number 1.2
Updated On October 04, 2023

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 2 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

© 2023 Microsoft Corporation. All rights reserved.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 3 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Version History

Version Date Summary of changes

1.0 September 22, 2021 First Draft

1.1 March 23, 2023 Updated to include Azure
Linux Kernel version 2

1.2 October 04, 2023 Draft sent to NIST CMVP

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 4 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

TABLE OF CONTENTS

SECURITY POLICY DOCUMENT ...1

VERSION HISTORY ..3

1 INTRODUCTION ...7

1.1 LIST OF CRYPTOGRAPHIC MODULE LIBRARIES AND BINARIES ..7

1.2 VALIDATED PLATFORMS ..9

1.3 MODES OF OPERATION ...9

1.4 CRYPTOGRAPHIC BOUNDARY .. 11

1.5 FIPS 140-2 APPROVED ALGORITHMS .. 12

1.6 NON-APPROVED ALGORITHMS ... 14

1.7 HARDWARE COMPONENTS OF THE CRYPTOGRAPHIC MODULE .. 16

2 CRYPTOGRAPHIC MODULE PORTS AND INTERFACES .. 17

3 ROLES, SERVICES, AND AUTHENTICATION .. 17

3.1 ROLES ... 17

3.2 FIPS 140-2 APPROVED SERVICES .. 17

3.3 AUTHENTICATION .. 19

4 FINITE STATE MODEL ... 19

4.1 STATE DESCRIPTIONS .. 20

5 OPERATIONAL ENVIRONMENT... 21

5.1 SINGLE OPERATOR ... 21

5.2 TRACING ... 21

6 CRYPTOGRAPHIC KEY MANAGEMENT .. 21

6.1 RANDOM NUMBER GENERATION .. 21

6.2 KEY AND CSP MANAGEMENT SUMMARY .. 22

6.3 KEY AND CSP ACCESS ... 23

6.4 KEY AND CSP STORAGE .. 23

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 5 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

6.5 KEY AND CSP ZEROIZATION ... 23

6.6 KEY ESTABLISHMENT AND TRANSPORT ... 24

7 SELF-TESTS .. 24

7.1 POWER-ON SELF-TESTS .. 24

7.1.1 INTEGRITY TESTS.. 24

7.1.2 CRYPTOGRAPHIC ALGORITHM TESTS ... 25

7.2 ON-DEMAND SELF-TESTS .. 25

7.3 CONDITIONAL TESTS ... 25

7.3.1 DRBG ... 25

7.3.2 ENT .. 26

7.3.3 KAS-FFC KEY AGREEMENT METHOD .. 26

7.3.3.1 Owner Assurance of Public-Key Validity ... 26

7.3.3.2 Public Key Validation ... 26

7.3.3.3 DLC Primitives ... 26

7.3.4 KAS-ECC KEY AGREEMENT PROTOCOL ... 26

7.3.4.1 Public Key Validation ... 26

7.3.5 AES-XTS ... 26

8 GUIDANCE .. 26

8.1 CRYPTO-OFFICER GUIDANCE .. 26

8.1.1 MODULE INSTALLATION .. 26

8.1.2 OPERATING ENVIRONMENT CONFIGURATION ... 26

8.2 USER GUIDANCE ... 27

8.2.1 CTR AND RFC3686 ... 27

8.2.2 AES .. 27

8.2.2.1 AES-XTS ... 27

8.2.2.2 AES-GCM IV ... 27

8.2.3 TRIPLE-DES .. 28

8.3 HANDLING FIPS-RELATED SELF-TEST ERRORS .. 28

9 MITIGATION OF OTHER ATTACKS ... 28

10 SECURITY LEVELS ... 28

11 ADDITIONAL DETAILS .. 29

12 GLOSSARY AND ABBREVIATIONS ... 30

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 6 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

13 REFERENCES .. 30

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 7 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1 Introduction
The Microsoft Azure Linux Kernel Crypto API (the “module”) is a general-purpose, software-based

cryptographic module. The module provides general purpose cryptographic services that leverage FIPS

140-2-approved cryptographic algorithms. The module runs as part of the operating system kernel,

provides cryptographic services to kernel applications through a C language Application Program

Interface (API), and provides cryptographic services to user applications through an AF_ALG socket

interface. The module is implemented as a set of shared libraries and binary files. This Security Policy

covers two versions of module: version 1.0, based on Azure Linux 1.1.1k-5cm1, and version 2.0, based

on Azure Linux 1.1.1k-13cm2. Except for the module package name, the security policies and related

design elements of the two versions are the same.

1.1 List of Cryptographic Module Libraries and Binaries
The module includes the following libraries and binaries in 1.1.1k-5cm1 (version 1.0):

Library or Binary Description

/usr/bin/sha512hmac Integrity check binary file

/usr/lib/hmaccalc/sha512hmac.hmac Integrity check binary HMAC
file

/boot/vmlinuz-5.10.57.1-1.cm1 Static kernel binary

/boot/.vmlinuz-5.10.57.1-1.cm1.hmac Static kernel binary HMAC
file

/lib/modules/5.10.57.1-1.cm1/kernel/crypto/af_alg.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/algif_aead.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/algif_hash.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/algif_rng.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/algif_skcipher.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/ansi_cprng.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/arc4.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/authenc.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/authencesn.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/blake2b_generic.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/ccm.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/cmac.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/crypto_engine.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/crypto_user.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/des_generic.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/dh_generic.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/ecc.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/ecdh_generic.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/echainiv.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/essiv.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/gcm.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/gf128mul.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/ghash-generic.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/lrw.ko.xz

Loadable kernel
cryptography components

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 8 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

/lib/modules/5.10.57.1-1.cm1/kernel/crypto/lzo-rle.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/lzo.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/md4.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/sha3_generic.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/tcrypt.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/xor.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/crypto/xxhash_generic.ko.xz
/lib/modules/5.10.57.1-1.cm1/kernel/arch/x86/crypto/crc32c-
intel.ko.xz

The module includes the following libraries and binaries in 1.1.1k-13cm2 (version 2.0):

Library or Binary Description

/usr/bin/sha512hmac Integrity check binary file

/usr/lib/hmaccalc/sha512hmac.hmac Integrity check binary HMAC
file

/boot/vmlinuz- 5.15.94.1-1.cm2 Static kernel binary

/boot/.vmlinuz 5.15.94.1-1.cm2.hmac Static kernel binary HMAC
file

/lib/modules/5.15.94.1-1.cm2/kernel/crypto/af_alg.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/algif_aead.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/algif_hash.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/algif_rng.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/algif_skcipher.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/ansi_cprng.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/arc4.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/authenc.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/authencesn.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/blake2b_generic.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/ccm.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/cmac.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/crypto_engine.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/crypto_user.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/des_generic.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/dh_generic.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/ecc.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/echainiv.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/essiv.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/gcm.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/gf128mul.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/ghash-generic.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/lrw.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/lzo-rle.ko.xz
/lib/modules/5.15.94.1-1.cm2.cm1/kernel/crypto/lzo.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/md4.ko.xz

Loadable kernel
cryptography components

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 9 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

/lib/modules/5.15.94.1-1.cm2/kernel/crypto/sha3_generic.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/xor.ko.xz
/lib/modules/5.15.94.1-1.cm2/kernel/crypto/xxhash_generic.ko.xz

The following packages are required for the module to operate in 1.1.1k-5cm1 (version 1.0):

Package Name Description

kernel-5.10.57.1-1.cm1.x86_64.rpm Provides the binary files and integrity check HMAC file for the
kernel

libkcapi-1.2.0-5.cm1.x86_64.rpm Provides the sha512hmac binary file that verifies the integrity
of both the sha512hmac file and the vmlinuz (static kernel
binary) file

The following packages are required for the module to operate in 1.1.1k-13cm2 (version 2.0):

Package Name Description

kernel-5.15.94.1-1.cm2.x86_64 Provides the binary files and integrity check HMAC file for the
kernel

libkcapi-1.3.1-2.cm2.x86_64 Provides the sha512hmac binary file that verifies the integrity
of both the sha512hmac file and the vmlinuz (static kernel
binary) file

1.2 Validated Platforms
The module has been validated on the following platforms:

Platform Processor Operating
System

Configuration

Azure Compute C2030 Server Intel® Xeon® Platinum
8272CL (Intel x86 64-bit)

Azure Linux
1.0

With and
without AES-NI
(PAA)

Virtual Machine on Azure Host
Hypervisor, running on Azure
Compute C2030 Server

Intel® Xeon® Platinum
8272CL (Intel x86 64-bit)

Azure Linux
1.0

With and
without AES-NI
(PAA)

Azure Compute C2030 Server Intel® Xeon® Platinum
8272CL (Intel x86 64-bit)

Azure Linux
2.0

With and
without AES-NI
(PAA)

Virtual Machine on Azure Host
Hypervisor, running on Azure
Compute C2030 Server

Intel® Xeon® Platinum
8272CL (Intel x86 64-bit)

Azure Linux
2.0

With and
without AES-NI
(PAA)

1.3 Modes of Operation
The Microsoft Azure Linux Kernel Crypto API supports three modes of operation:

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 10 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1. FIPS approved mode (“approved mode”): In this mode, only FIPS-approved security functions

with sufficient security strength can be used.

2. Non-FIPS approved mode (“non-approved mode”): In this mode, non-approved security

functions can also be used.

3. FIPS approved mode with DRBG and CPU Jitter Entropy unavailable: same as “approved mode”

but DRBG and Jitter Entropy APIs return error.

The module enters the FIPS approved mode after Power-On Self-Tests (POST) succeed. If the POST or

Conditional Tests fail, the module goes into an error state. The status of the module can be determined

by the availability of the module. If the module is available, then it has passed all self-tests; if it is not

available, then it has not passed all self-tests.

If the DRBG or CPU jitter entropy self-tests encounter permanent errors, the module enters a second

type of error state. The status of the module can be determined by calling the APIs for instantiating

and/or generating random numbers using DRBG or CPU jitter entropy: these APIs return an error value.

During this second type of error state, cryptographic services other than DRBG or CPU jitter entropy

continue to function in approved mode.

A non-approved algorithm or an approved algorithm with a non-approved key size will result in the

module implicitly entering the non-FIPS approved mode of operation. Critical Security Parameters (CSPs)

used or stored in FIPS approved mode are not used in the non-FIPS approved mode, and vice versa.

Once the module is operational, the mode of operation is implicitly assumed depending on the security

function invoked and the security strength of the cryptographic keys.

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 11 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1.4 Cryptographic Boundary
Figure 1 shows the software block diagram for the module, including its interfaces, operational

environment, and logical boundary. All components in the orange box are included in the module.

Figure 1: Module Software Block Diagram

Test Platform

User space

Kernel space

Hardware

Cryptographic Module

sha512hmac

User Application libkcapi

Static kernel

Loadable kernel

object modules

Other kernel

mechanisms

.hmac

Processor

Algorithm

Acceleration

functions

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 12 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Figure 2 shows the logical boundary of the module.

Figure 2: Module Logical Boundary

1.5 FIPS 140-2 Approved Algorithms
The following table presents the approved algorithms that the module may use in FIPS mode, along with

the CAVP certificate that covers each.

Publication and Algorithm(s) CAVP
Certificate
(Azure Linux
Kernel)
1.1.1k-5cm1
(version 1.0)

CAVP Certificate
(Azure Linux
Kernel on Azure
Host
Hypervisor)
1.1.1k-5cm1
(version 1.0)

CAVP
Certificate
(Azure Linux
Kernel)
1.1.1k-13cm2
(version 2.0)

CAVP
Certificate
(Azure Linux
Kernel on
Azure Host
Hypervisor
1.1.1k-13cm2
(version 2.0)

FIPS 197
AES-128, AES-192, and AES-256 in
ECB, CBC, and CTR modes

#A1755 #A1755 #A3494

#A3494

NIST SP 800-38B and SP 800-38C
AES-128, AES-192, and AES-256 in
CCM mode

#A1755 #A1755 #A3494

#A3494

NIST SP 800-38B and SP 800-38C
AES-128 in CMAC mode

#A1755 #A1755 #A3494

#A3494

NIST SP 800-38D
AES-128, AES-192, and AES-256
GCM

#A1755 #A1755 #A3494

#A3494

Kernel Crypto API

libkcapi

Data and status out

Data and control in

Kernel space

User space

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 13 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

NIST SP 800-38E AES-128, AES-256
XTS Mode1

#A1755 #A1755 #A3494

#A3494

NIST SP 800-38F KTS

AES Cert.
#A1755 and
HMAC Cert.

#A17552

AES Cert.
#A1755 and
HMAC Cert.

#A17552

AES Cert.
#A3494 and
HMAC Cert.

#A34942

AES Cert.
#A3494 and
HMAC Cert.

#A34942

NIST SP 800-38F KTS

AES Cert.
#A17552

AES Cert.
#A17552

AES Cert.
#A34942

AES Cert.
#A34942

NIST SP 800-38F KTS

Triple-DES Cert.
#A1755 and
HMAC Cert.

#A17553

Triple-DES Cert.
#A1755 and
HMAC Cert.

#A17553

Triple-DES Cert.
#A3494 and
HMAC Cert.

#A34943

Triple-DES
Cert. #A3494

and HMAC
Cert. #A34943

NIST SP 800-67 rev 1
Triple-DES, 168-bit in ECB, CBC,
CMAC, and CFB64 Modes

#A1755 #A1755 #A3494

#A3494

FIPS 180-4
SHS SHA-1, SHA2-256, SHA2-384,
and SHA2-512

#A1755 #A1755 #A3494

#A3494

FIPS 202
SHS SHA3-224, SHA3-256, SHA3-
384, SHA3-512

#A1755 #A1755 #A3494

#A3494

FIPS 198-1
HMAC-SHA-1, HMAC-SHA2-256,
HMAC-SHA2-384, HMAC-SHA2-512,
HMAC-SHA3-224, HMAC-SHA3-256,
HMAC-SHA3-384, and HMAC-SHA3-
512

#A1755 #A1755 #A3494

#A3494

FIPS 186-4
RSA PKCS#1 v1.5 Digital Signature
Verification with 2048, 3072, and
4096 Moduli; supporting SHA2-256,
SHA2-384, and SHA2-512

#A1755 #A1755 #A3494

#A3494

FIPS 186-4
RSA PKCS#1 v1.5 Digital Signature
Generation with 2048, 3072, and
4096 Moduli; supporting SHA2-256,
SHA2-384, and SHA2-512

#A1755 #A1755 #A3494

#A3494

1 AES XTS must be used only to protect data at rest and the caller needs to ensure that the length of data
encrypted does not exceed 220 AES blocks.
2 Key establishment methodology provides between 128 and 256 bits of encryption strength
3 Key establishment methodology provides 112 bits of encryption strength

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 14 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

NIST SP 800-56A rev 3
KAS-ECC (ECDH) Component (P-
256), for Partial Public Key
Validation (CVL)

#A1755 #A1755 #A3494

#A3494

NIST SP 800-90A
AES-256 CTR Mode DRBG

#A1755 #A1755 #A3494

#A3494

NIST SP 800-90A
SHA1, SHA2-256 Hash Mode DRBG

#A1755 #A1755 #A3494

#A3494

NIST SP 800-90A
SHA1, SHA2-256, SHA2-384, SHA2-
512 HMAC Mode DRBG

#A1755 #A1755 #A3494

#A3494

NIST SP 800-131A rev 1
RSA Signature Primitive (CVL)

#A1755 #A1755 #A3494

#A3494

NIST SP 800-90B ENT (NP) N/A N/A N/A N/A

NIST SP 800-56A rev 3
KAS-FFC-SSC, for KAS Initiation
(Externally generated) p=2048-
bits/q=256-bits key pairs, dhStatic
scheme

#A1755 #A1755 #A3494

#A3494

1.6 Non-Approved Algorithms
The following table presents the non-approved algorithms implemented by version 2.0 based on Azure

Linux 1.1.1k-13cm2, and the purpose for which they are used.

Purpose Algorithm(s) Notes/Modes CSPs

Symmetric
Encryption /
Decryption

AES CMAC
CFB

192 and 256-bit AES keys

GCM encryption with
external IV

128, 192, 256-bit AES keys

GMAC 128, 192, 256-bit AES keys

DES ECB 56 bits DES keys

Message Digest
(SHS)

SHA-1 (multiple-
buffer
implementation)

N/A N/A

Keyed Hash
(HMAC)

HMAC Keys smaller than 112 bits HMAC keys with size
less than 112 bits

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 15 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Signature
Generation

RSA Using SHA-1 RSA private key

Key Generation ECDSA P-192, P-256, P384,

curve25519

The PCT is not
implemented.

ECDSA private key

Shared Secret
Computation

KAS-ECC Shared secret
computation

KAS-ECC
private keys (P-192)

KAS-FFC KAS-FFC
private keys
(smaller than 2048 bits and
keys larger than 2048 bits)

Random Number
Generation

ansi_cprng N/A seed

The following table presents the non-approved algorithms implemented by version 1.0, based on Azure

Linux 1.1.1k-5cm1, and the purpose for which they are used.

Purpose Algorithm(s) Notes/Modes CSPs

Symmetric

Encryption /

Decryption

AES CMAC 192 and 256-bit AES keys

XTS with 192-bit keys 192-bit AES keys

GCM encryption with

external IV

128, 192, 256-bit AES keys

GMAC 128, 192, 256-bit AES keys

DES ECB 56 bits DES keys

Message Digest

(SHS)

SHA-1 (multiple-

buffer

implementation)

N/A N/A

Keyed Hash

(HMAC)

HMAC Keys smaller than 112 bits HMAC keys with size

less than 112 bits

Signature

Generation

RSA Using SHA-1 RSA private key

Key Generation ECDSA P-192, P-256 ECDSA private key

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 16 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The PCT is not

implemented.

Shared Secret

Computation

KAS-ECC Shared secret

computation

KAS-ECC
private keys (P-192)

KAS-FFC KAS-FFC
private keys
(smaller than 2048 bits and

keys larger than 2048 bits)

Random Number

Generation

ansi_cprng N/A seed

1.7 Hardware Components of the Cryptographic Module
The Microsoft Azure Linux Kernel Crypto API is a multi-chip standalone module. The physical boundary

of the module is the physical boundary of the computer that contains the module. The following

diagram illustrates the hardware components used by the module:

Figure 3: Module Physical Boundary / Hardware Components

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 17 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2 Cryptographic Module Ports and Interfaces
The module is a software module and has no physical ports of its own. The physical ports of the module

are interpreted as those on the underlying hardware platform. The logical interfaces are the application

program interface (API) through which applications request services. The table below describes the

logical interfaces and the physical ports they leverage:

Logical Interface Physical Port Description

Data Input Keyboard API input parameters from the kernel system calls
AF_ALG type socket.

Data Output Display API output parameters from the kernel system calls
AF_ALG type socket.

Control Input Keyboard API function calls
API input parameters for control from kernel system calls
AF_ALG type socket
kernel command line.

Status Output Display API return codes
AF_ALG type socket
kernel logs.

Power Input GPC Power
Supply Port

N/A

3 Roles, Services, and Authentication

3.1 Roles
The module supports two roles: user and crypto officer. The user and crypto officer roles are implicitly

assumed by the entity accessing the module services.

• User role: performs all services except module installation.

• Crypto Officer role: performs module installation and configuration.

3.2 FIPS 140-2 Approved Services
Table 5 provides a mapping of the available services, algorithms, Critical Security Parameters, and access

types when the module is operating in FIPS Approved mode of operation. See the section, FIPS 140-2

Approved Algorithms, for the CAVP certificate details for each algorithm.

The module exposes FIPS approved services using the APIs described by

https://www.kernel.org/doc/html/latest/crypto/index.html.

Service Algorithms Notes/Modes CSPs Access

Symmetric
Encryption /
Decryption

AES CBC, CCM, CMAC,
CTR, ECB, GCM
(external IV,

128, 192 and 256 bits
AES keys

Read

https://www.kernel.org/doc/html/latest/crypto/index.html

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 18 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

decryption only),
GMAC, XTS

(XTS mode only with 128
and 256 bits keys)

ECB, GCM
(internal IV,
encryption/decryption)

ECB, GCM
(external IV,
decryption only)

Triple-DES CMAC, ECB, CBC, CFB 64 168 bits Triple-DES keys

Message Digest
(SHS)

SHA-1, SHA-256,
SHA-384, SHA-512

N/A N/A N/A

SHA3-224, SHA3-
256, SHA3-384,
SHA3-512

Keyed Hash
(HMAC)

HMAC SHA-1,
HMAC SHA-256,
HMAC SHA-384,
HMAC SHA-512

BS < KS, KS = BS, KS > BS At least 112 bits HMAC
keys

Read

HMAC-SHA3-224,
HMAC-SHA3-256,
HMAC-SHA3-384
HMAC-SHA3-512

Signature
Verification

RSA 2048- and 3072-bit
signature verification
according to PKCS#1
v1.5 using SHA-256,
SHA-384, SHA-512

N/A Read

Signature
Generation

RSA SHA-256, SHA-384, SHA-
512

2048, 3072, 4096-bit RSA
private key

Read

Component
Public Key
Validation and
Shared Secret
Computation

KAS-ECC P-256 with SHA-256,
SHA-384, SHA-512

P-256-based KAS-ECC
private key, Shared
Secret

Read,
Write

Authenticated
Encryption
(KTS)

AES-CBC, HMAC
SHA-1, HMAC SHA-
224, HMAC SHA-
256, HMAC SHA-
384, HMAC SHA-
512

CBC and HMAC used
with encrypt-then-MAC
cipher (authenc) used
for IPsec

128, 192 and 256 bits
AES keys, HMAC keys

168 bits Triple-DES keys

Read

Triple-DES-CBC and
HMAC SHA-1,
HMAC SHA-224,
HMAC SHA-256,
HMAC SHA-384,
HMAC SHA-512

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 19 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

AES GCM and CCM

Random Bit
Generation (SP
800-90A DRBG)

CTR DRBG With derivation
function, with and
without prediction
resistance function
using AES-256

Entropy input string,
seed, V, C values and Key
(K)

Read,
Write

Hash DRBG With derivation
function, with and
without prediction
resistance function
using SHA-1 and SHA-
256

HMAC DRBG With and without
prediction resistance
function using SHA-1,
SHA-256, SHA-384 and
SHA-512

Entropy Source
(SP 800-90B)

ENT CPU time jitter entropy
source

N/A N/A

Self-Tests HMAC SHA-512,
RSA signature
verification

Integrity test of the
kernel static binary
performed by the
sha512hmac binary RSA
signature verification
performs the signature
verification of the kernel
loadable components

N/A N/A

Show Status N/A Via verbose mode, exit
codes and kernel logs
(dmesg)

N/A N/A

Zeroization N/A N/A All CSPs N/A

Installation and
Configuration

N/A N/A N/A N/A

 Table 5: Services in the FIPS-Approved Mode of Operation

3.3 Authentication
The module does not provide authentication of users. Roles are implicitly assumed based on the

services that are executed.

4 Finite State Model
The following diagram presents the module’s operational and error states.

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 20 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

4.1 State Descriptions
The module has nine distinct states, as shown in the diagram above and described in the list below.

Panic error state,

no services

available

POSTs

Tests

succeeded

?

FIPS Approved

mode

DRBG and

Entropy self-tests

Power on

Tests

succeeded

?

Approved

algorithm

and key?

Service request
Non-FIPS

Approved mode

DRBG disabled,

other services

available

Power off

No

No

No

Yes

Yes

Yes

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 21 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1) Power-On State: The module transitions to the Power-On state when the module (kernel) is

loaded into memory by the bootloader.

2) Power-On Self-Test (POST) State: After being loaded, the module enters the POST state when

“fips=1” is set on the Linux kernel command line and the execution of the kernel begins. The

POST state will execute the integrity tests as well as the self-tests. Depending on the test results,

the module will either enter FIPS Approved mode state or the Panic error state..

3) Panic error state: The POST failed or a conditional test failed. No crypto operations may be

performed. The module will terminate upon further use.

4) FIPS Approved mode: The POST passed. Approved cryptographic services can now be used.

5) Service request state: a caller is requesting a cryptographic service from the module.

6) Non-FIPS Approved mode: a non-Approved algorithm or key has been used during a service

request.

7) DRBG and Entropy self-tests: The module is executing DRBG and/or entropy self-tests.

Depending on the test results, the module will return to FIPS Approved mode or enter the DRBG

disabled state.

8) DRBG disabled: Same as FIPS approved mode but the DRBG is disabled.

9) Power-off state: the hardware and module has been shut down.

5 Operational Environment
The operational environment for the module is the Azure Linux operating system, running on one of the

supported hardware platforms specified in the Validated Platforms section.

5.1 Single Operator
The underlying operating system of the module is restricted to a single operator. The application that

requests cryptographic services is the single user of the module.

5.2 Tracing
In FIPS Approved mode, the ptrace system call, the debugger (gdb) and other tracing mechanisms such

as ftrace or systemtap shall not be used.

6 Cryptographic Key Management

6.1 Random Number Generation
The module employs a SP 800-90A DRBG as a random number generator for the creation of random

numbers. In addition, the module provides a Random Number Generation service to applications.

The module supports the Hash_DRBG, HMAC_DRBG and CTR_DRBG mechanisms, with security

strengths of 128, 192 and 256. For seeding, the module uses a number of entropy input bits equal to 1.5

times the security strength of of the DRBG algorithm. For reseeding, it uses a number of entropy input

bits equal to the security strength of of the DRBG algorithm. The entropy input bits are obtained from a

SP800-90B compliant CPU time Jitter RNG, implemented within the module's logical boundary.

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 22 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The module creates a personalization string obtained from the Linux RNG. An application using the

DRBG can provide a second personalization string. The bits from both of these personalization strings

are used for seeding the DRBG, together with the entropy input from the CPU time Jitter RNG.

6.2 Key and CSP Management Summary
The following table summarizes the management of keys or other CSPs by the module.

Key / CSP Generation Entry / Output Zeroization

AES symmetric
keys

N/A Keys are passed
to the module
via API input
parameters

Memory is automatically overwritten by
zeroes when freeing the cipher handler

Triple-DES
symmetric keys

N/A Keys are passed
to the module
via API input
parameters

Memory is automatically overwritten by
zeroes when freeing the cipher handler

SP 800-90B
DRBG seed
material and
internal state
values V, C, and
K

Derived from
entropy input
as defined in
SP800-90A

N/A Memory is automatically overwritten by
zeroes when freeing the cipher handler

HMAC keys N/A HMAC key can
be supplied by
calling
application

Memory is automatically overwritten by
zeroes when freeing the cipher handler

KAS-FFC domain
parameters

N/A Domain
parameters
passed to the
module via API
input
parameters

Memory is automatically overwritten by
zeroes when freeing the cipher handler

KAS-ECC key pair N/A Key passed to
the module via
API input
parameters

Memory is automatically overwritten by
zeroes when freeing the cipher handler

Shared secret Generated
during
the KAS-FFC
or KAS-ECC
shared secret
computation.

Keys are passed
to the module
via API input
parameters.
Shared Secret is
output in
plaintext via API
output.

Memory is automatically overwritten by
zeroes when freeing the cipher handler

RSA private key N/A Keys are passed
to the module

Memory is automatically overwritten by
zeroes when freeing the cipher handler

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 23 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

via API input
parameters

RSA public key N/A Keys are passed
to the module
via API input
parameters

Memory is automatically overwritten by
zeroes when freeing the cipher handler

Static Kernel
image integrity
HMAC

N/A Key built into
the sha512hmac
binary during its
compilation.

Memory is overwritten with zero values
when the sha512hmac application exits.

Loaded modules
signature
verification
public key

N/A RSA public key
loaded from a
keyring file in
/proc/keys/

Memory is overwritten with zero values
after the signature verification.

Entropy Input Generated
internally from
SP 800-90B
ENT (NP)

N/A N/A

6.3 Key and CSP Access
When an authorized application is the module user (the User role), it has access to all key data

generated during the operation of the module.The module does not support the output of intermediate

key generation values during the key generation process.

6.4 Key and CSP Storage
Symmetric and asymmetric keys are provided to the module by the appropriate API input parameters

and are destroyed when released by the appropriate API function calls.

The module does not perform persistent storage of keys. Most keys and CSPs are stored as plaintext in

the RAM. The RSA public key used for signature verification of the kernel-loadable components is stored

outside of the module’s boundary, in a keyring file in /proc/keys/. The KAS-FFC and KAS-ECC public keys

are stored in protected kernel memory.

The kernel computes HMAC-SHA-512 values on behalf of the sha512hmac application, for the

application binary file and the kernel static image image. sha512hmac compares these values with the

expected HMAC values from /usr/lib/hmaccalc/sha512hmac.hmac and /boot/.vmlinuz-5.10.57.1-

1.cm1.hmac in 1.1.1k-5cm1 (version 1.0) and /boot/vmlinuz- 5.15.94.1-1.cm2.hmac in 1.1.1k-13cm2

(version 2.0).

6.5 Key and CSP Zeroization
The application that uses the module is responsible for appropriate destruction and zeroization of the

key material. The memory occupied by keys is allocated by regular memory allocation operating system

calls. The library provides functions for key allocation and destruction, which overwrites the memory

that is occupied by the key information with zeros before it is deallocated.

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 24 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

6.6 Key Establishment and Transport
The module supports KAS-FFC and KAS-ECC shared secret primitive computation:

• KAS-FFC: shared secret computation provides 112 bits of encryption strength.

• KAS-ECC: shared secret computation provides 128 bits of encryption strength.

The module provides SP 800-38F compliant key wrapping using AES with GCM and CCM block chaining

modes, as well as a combination of AES-CBC for encryption/decryption and HMAC for authentication.

The module also provides SP 800-38F compliant key wrapping using a combination of Triple-DES-CBC for

encryption/decryption and HMAC for authentication.

According to “Table 2: Comparable strengths” in [SP 800-57], the key sizes of AES provides the following

security strength in FIPS mode of operation:

• AES: key wrapping provides between 128 and 256 bits of encryption strength.

• Triple-DES: key wrapping provides 112 bits of encryption strength.

7 Self-Tests
FIPS 140-2 requires that the Module perform self-tests to ensure the integrity of the Module and the

correctness of the cryptographic functionality at start up. If any self-test fails, it panics the Module,

which then enters an error state. In this error state, no data output or cryptographic operations are

allowed. The only recovery is to reboot. For persistent failures, you must reinstall the kernel. No user

intervention is required during the running of the self-tests.

If permanent errors are encountered by the DRBG or CPU jitter entropy self-tests, the Module enters a a

second type of error state. During this error state, APIs related to DRBG and CPU Jitter entropy return

failure error codes, but other services continue to work in approved mode.

7.1 Power-On Self-Tests
The module performs power-up self-tests at module initialization to ensure that the module is not

corrupted and that the cryptographic algorithms work as expected. The self-tests are performed without

any user intervention.

While the module is performing the power-up tests, services are not available and neither input nor

output is possible. The module will not return to the calling application until the power-up self-tests are

completed successfully.

7.1.1 Integrity Tests

The module verifies its integrity through an HMAC SHA-512 calculation that is performed on the

sha512hmac utility and static kernel binary. The kernel integrity check passing, which requires the

loading of sha512hmac with the self tests, implies a successful execution of the integrity and self tests of

sha512hmac. The expected HMAC values are stored in /usr/lib/hmaccalc/sha512hmac.hmac and

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 25 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

/boot/.vmlinuz-5.10.57.1-1.cm1.hmac in 1.1.1k-5cm1 (version 1.0) and /boot/vmlinuz- 5.15.94.1-

1.cm2.hmac in 1.1.1k-13cm2 (version 2.0).

The static kernel loads from the keyring file in /proc/keys/ a Microsoft RSA public key corresponding to

the private key used for signing kernel loadable modules. It uses that public key and kernel’s RSA

signature verification implementation to verify the integrity of any kernel module files that might be

loaded, before allowing the execution of these modules. The fact that the self tests of these

cryptographic components are displayed implies that the integrity checks of each kernel component

passed successfully.

7.1.2 Cryptographic Algorithm Tests

The table below summarizes the power-on self tests performed by the module, which includes the

Integrity Test of the module itself, as stated above, and the Known Answer Test for each approved

cryptographic algorithm. See the section, FIPS 140-2 Approved Algorithms, for full details on all

approved cryptographic algorithms.

Algorithm Power-On Tests

AES (ECB, CBC, CTR, CCM, CMAC, GCM, GMAC,
and XTS modes)

KAT, encryption/decryption tested separately

Triple-DES (ECB, CBC, and CMAC) KAT, encryption/decryption tested separately

RSA signature generation KAT

RSA signature verification KAT, also covered by integrity test

DRBG (AES CTR, Hash, HMAC) KAT

HMAC SHA-1, HMAC SHA-256, HMAC SHA-384,
HMAC SHA-512

KAT

HMAC SHA3-224, HMAC SHA3-256, HMAC SHA3-
384, HMAC SHA3-512

KAT

SHA-1, SHA-256, SHA-384, SHA-512 KAT

SHA3-224, SHA3-256, SHA3-384, SHA3-512 KAT

KAS-FFC Z primitive with 2048 bits KAT

KAS-ECC Z primitive with P-256 KAT

Static kernel image integrity check Verify expected HMAC SHA-512 value

Loaded modules integrity check Verify SHA-512 signature using RSA public key

7.2 On-Demand Self-Tests
The Crypto Officer with physical or logical access to the Module can run the POST (Power-On Self-Tests)

on demand by power cycling the computer or by rebooting the operating system. During the execution

of the on-demand self-tests, services are not available and neither data output nor input is possible.

7.3 Conditional Tests

7.3.1 DRBG

The module performs DRBG health tests as defined in section 11.3 of [SP800-90A], Including Instantiate,

Generate, and Reseed. These tests are run for each DRBG type (HMAC, CTR, Hash)

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 26 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.3.2 ENT

The SP800-90B Repetition Count Test (4.4.1) and Adaptive Proportion Test (4.4.2) are performed for the

CPU time jitter entropy source.

7.3.3 KAS-FFC Key Agreement Method

7.3.3.1 Owner Assurance of Public-Key Validity

This is implemented as specified by SP800-56Arev3 5.6.2.1.3.

7.3.3.2 Public Key Validation

If Q is provided as part of the domain parameters, a full validation according to SP800-56A section

5.6.2.3.1 is performed. If Q is not provided, a partial validation according to SP800-56A section 5.6.2.3.2

is performed.

7.3.3.3 DLC Primitives

The module validates the shared secret as specified by SP800-56Arev3 5.7.1.1.

7.3.4 KAS-ECC Key Agreement Protocol

7.3.4.1 Public Key Validation

The module performs partial verification for ephemeral keys, per SP800-56A section 5.6.2.3.4, and full

validation for other keys, per SP800-56Arev3 5.6.2.1.3.

7.3.5 AES-XTS

The module implements the Key_1 ≠ Key_2 test, per IG A.9.

8 Guidance

8.1 Crypto-Officer Guidance
To operate the Kernel Crypto API module, the operating system must be restricted to a single operator

mode of operation.

8.1.1 Module Installation

Crypto Officers use the Installation instructions to install the Module in their environment.

The version of the RPM containing the FIPS validated module is stated in section 1. The integrity of the

RPM is automatically verified during the installation and the Crypto Officer shall not install the RPM file

if the RPM tool indicates an integrity error.

8.1.2 Operating Environment Configuration

To configure the operating environment to support FIPS, perform the following steps.

• Install the dracut-fips package:

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 27 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

tdnf install dracut-fips

• Regenerate the initramfs

mkinitrd

• Modify the mariner.cfg file:

Append fips=1 to variable mariner_cmdline in /boot/mariner.cfg.

• Reboot the system.

• Check that the file /proc/sys/crypto/fips_enabled contains 1.

8.2 User Guidance
To run in FIPS mode, the Module must be operated using FIPS-approved services with the corresponding

FIPS-approved cryptographic algorithms.

When using the Module, the user shall use memory allocation mechanisms provided by the kernel

crypto API. The user shall not use the function copy_to_user() on any portion of the data structures used

to communicate with the API. Only the cryptographic mechanisms provided with the API can be used.

8.2.1 CTR and RFC3686

CTR and RFC3686 mode must only be used for IPsec. It must not be used otherwise.

8.2.2 AES

There are three implementations of AES: aes-generic, aesni-intel, and aes-x86_64 on x86_64 machines.

The additional specific implementations of AES for the x86 architecture are disallowed and not available

on the test platforms.

8.2.2.1 AES-XTS

The AES-XTS mode was designed for the cryptographic protection of data on storage devices. It must

only be used for the disk encryption functionality offered by dm-crypt.

8.2.2.2 AES-GCM IV

In case the module’s power is lost and then restored, the key used for the AES-GCM encryption or

decryption shall be redistributed.

The module generates the 96-bit IV internally randomly with an approved SP 800-90A DRBG, which is

compliant with provision 2) of IG A.5.

When a GCM IV is used for decryption, the responsibility for the IV generation lies with the party that

performs the AES-GCM encryption therefore there is no restriction on the IV generation.

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 28 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

8.2.3 Triple-DES

Data encryption with the same Triple-DES key shall not exceed 2^16 64-bit blocks of data. It is the user’s

responsibility to make sure that the module complies with this requirement and that the module does

not exceed this limit.

8.3 Handling FIPS-Related Self-Test Errors
When encountering any Power-On Self-Tests (POST) failure, the Module will panic the kernel and the

operating system will not load. Errors occurred during the POST also transition the module into the error

state.

If the DRBG or CPU jitter entropy self-tests encounter permanent errors, the module enters a second

type of error state. During this second type of error state, cryptographic services other than DRBG or

CPU jitter entropy continue to function in approved mode, but APIs related to DRBG or CPU jitter

entropy return a failure error code.

Recover from any of these error states by rebooting the system. If the failure continues, you must

reinstall the software package following the directions in section 10.1.

The kernel dumps self test success and failure messages into the kernel message ring buffer. After

booting, the messages are moved to /var/log/messages. Use dmesg to read the contents of the kernel

ring buffer. The format of the ringbuffer (dmesg) output is:

alg: self-tests for %s (%s) passed

Typical messages are similar to "alg: self-tests for xts(aes) (xts(aes-x86_64)) passed" for each algorithm

and sub-algorithm type.

9 Mitigation of Other Attacks
The module does not implement mitigation of other attacks.

10 Security Levels
The security level for each FIPS 140-2 security requirement is given in the following table.

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 29 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Design Assurance 1

Mitigation of Other Attacks N/A

11 Additional Details
For more information about FIPS 140 validations of Microsoft products, please see:

https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation

https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation

Azure Linux Kernel Crypto API Security Policy Document

© 2023 Microsoft Corporation. All Rights Reserved Page 30 of 30
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

12 Glossary and Abbreviations
• AES: Advanced Encryption Standard

• CAVP: Cryptographic Algorithm Validation Program

• CSP: Critical Security Parameter

• DES: Data Encryption Standard

• DRBG: Deterministic Random Bit Generator

• DSA: Digital Signature Algorithm

• ECB: Electronic Codebook

• HMAC: Hash Message Authentication Code

• OS: Operating System

• RNG: Random Number Generator

• RSA: Rivest, Shamir, Adleman

• SHA: Secure Hash Algorithm

• SHS: Secure Hash Standard

13 References
• FIPS 140-2 Standard, https://csrc.nist.gov/projects/cryptographic-module-

validationprogram/standards

• FIPS 186-4, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

• ANSI X9.52:1998, http://webstore.ansi.org/FindStandards.aspx?

Action=displaydept&DeptID=80&Acro=X9&DpName=X9,%20Inc

• NIST SP 800-38E, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

38e.pdf

• NIST SP 800-38F SP 800-38F, Block Cipher Modes of Operation: Methods for Key Wrapping |

CSRC (nist.gov)

• NIST SP 800-90A SP 800-90A Rev. 1, Random Number Generation Using Deterministic RBGs |

CSRC

• NIST SP 800 132 SP 800-132, Recommendation for Password-Based Key Derivation Part 1:

Storag | CSRC (nist.gov)

• NIST SP 800-52 SP 800-52 Rev. 2, Guidelines for TLS Implementations | CSRC (nist.gov)

• NIST SP 800-131A SP 800-131A Rev. 2, Transitioning the Use of Crypto Algorithms and Key

Lengths | CSRC (nist.gov)

https://csrc.nist.gov/projects/cryptographic-module-validationprogram/standards
https://csrc.nist.gov/projects/cryptographic-module-validationprogram/standards
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://webstore.ansi.org/FindStandards.aspx?%20Action=displaydept&DeptID=80&Acro=X9&DpName=X9,%20Inc%20
http://webstore.ansi.org/FindStandards.aspx?%20Action=displaydept&DeptID=80&Acro=X9&DpName=X9,%20Inc%20
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://csrc.nist.gov/publications/detail/sp/800-38f/final
https://csrc.nist.gov/publications/detail/sp/800-38f/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-132/final
https://csrc.nist.gov/publications/detail/sp/800-132/final
https://csrc.nist.gov/publications/detail/sp/800-52/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final

