FIPS 140-2 Level 2 Security Policy

For

Thunder Series TH3040S, TH5440S, TH5840S, and TH7440S-11

Document Version 1.4

This security policy describes the FIPS 140-2 compliance of the module This document may be freely distributed in its entirety without modification

Table of Contents

. 3
. 4
. 6
. 9
10
12
14
15
15
15
15

1 Module Description

A10 Networks, Inc.'s Thunder Series are an outgrowth or evolution of Traffic Manager and Application Delivery Controller (ADC) systems and technologies. These A10 Thunder Series systems are advanced load balancers for ADC needs and sophisticated address translators for IPv6 migration, while being able to secure and control the traffic directed through the system for enterprise, ISP, and mobile networks. These systems include full proxies able to encrypt, decrypt, and inspect traffic for these networks.

The foundation of A10 Thunder systems is the A10 Networks' proprietary A10 Core Operating System (ACOS). ACOS is a software framework for maximized networks traffic processing performance that supports a common management and control plane architecture across a range of infrastructures; from data centers to cloud to multi-cloud.

These systems (subsequently referred to as "the module") support SSH, HTTPS, and console management interfaces. For the purposes of FIPS 140-2 the A10 Thunder Series is classified as multi-chip standalone module.

FIPS 140-2 conformance testing of the module was performed at Security Level 2. The following configurations were tested:

Module Name and Version	Firmware versions
Thunder Series TH3040S	4.1.4-GR1-P5
Thunder Series TH5440S	4.1.4-GR1-P5
Thunder Series TH5840S	4.1.4-GR1-P5
Thunder Series TH7440S-11	4.1.4-GR1-P5

Table 1: Configurations tested by the lab

Table 2: Module Security Level Statement

FIPS Security Area	Security Level
Cryptographic Module Specification	2
Module Ports and Interfaces	2
Roles, Services and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-tests	2
Design Assurance	2
Mitigation of Other Attacks	N/A

2 Cryptographic Boundary

The hardware and firmware components of the module are enclosed in a metal enclosure which is the cryptographic boundary of the module. The removable panels of the enclosure are protected by tamper-evident labels. The enclosure is opaque within the visible spectrum.

Images of the module is provided below:

Figure 1. Thunder Series TH3040S

Figure 2. Thunder Series TH5440S

Figure 3. Thunder Series TH5840S

Figure 4. Thunder Series TH7440S-11

3 Security Functions

The table below lists approved cryptographic algorithms employed by the module.

Table 5. Approved Cryptographic Functions						
CAVP Cert	Library	Algorithm	Standard	Model/ Method	Key Lengths, Curves or Moduli	Use
C1198	A10 Networks SSL FIPS Library	AES	FIPS 197, SP 800-38D	ECB, CBC, CTR, CFB1, CFB128, CFB8, OFB, GCM ¹	128, 192, 256	Data Encryption/ Decryption KTS ⁶
C1194	A10 Networks Data Plane FIPS Software Library					
C1240	A10 Networks Data Plane FIPS Library					
C1241						
C1198	A10 Networks SSL FIPS Library	DRBG	SP 800-90A	HASH_Based DRBG HMAC_Based DRBG		Deterministic Random Bit Generation ²
C1194	A10 Networks Data Plane FIPS Software Library			CTR_DRBG		
C1240	A10 Networks Data Plane FIPS Library	CVL Partial EC-DH	SP 800-56A	ECC	P-256 P-384 P-521	Shared Secret Computation
C1241						
C1240	A10 Networks Data Plane FIPS Library	НМАС	FIPS 198-1	HMAC- SHA-1, HMAC- SHA-256	160, 256, 384, 512	Message Authentication KTS ⁶
C1241				HMAC- SHA-384,		
C1198	A10 Networks SSL FIPS Library			HMAC- SHA-512		

Table 3: Approved Cryptographic Functions

CAVP Cert	Library	Algorithm	Standard	Model/ Method	Key Lengths, Curves or Moduli	Use
C1240	A10 Networks Data Plane FIPS Library	Triple-DES	SP 800-67	TCBC	168	Data Encryption/ Decryption ³
C1241						
C1240	A10 Networks Data Plane FIPS Library	SHS	FIPS 180-4	SHA-1, SHA-224, SHA-256, SHA-384		Message Digest
C1241				511A-512		
C1198	A10 Networks SSL FIPS Library					
C1198	A10 Networks SSL FIPS Library	RSA	FIPS 186-4, FIPS 186-2 ⁴	SHA-1, SHA-224, SHA-256,	1024 (verifica- tion only), 1536 (verifica-	Digital Signature Generation and
C1240	A10 Networks Data Plane FIPS Library			SHA-384, SHA-512 ANSIX9.31; PKCS1 v1.5	tion only), 2048, 3072, 4096	Verification
C1241						
C1198	A10 Networks SSL FIPS Library	ECDSA	FIPS 186-4		P-256, P-384, P-521	Digital Signature Generation and Verification
C1240	A10 Networks Data Plane FIPS Library					
C1241						

CAVP Cert	Library	Algorithm	Standard	Model/ Method	Key Lengths, Curves or Moduli	Use
C1240	A10 Networks Data Plane FIPS Library	CVL SNMP, TLS 1.0, 1.1 and 1.2,	SP 800-135			Key Derivation⁵
C1241		SSH				
C1198	A10 Networks SSL FIPS Library					
CKG (vendor affirmed)	A10 Networks SSL FIPS Library A10 Networks Data Plane FIPS Software Library	Cryptographic Key Generation	SP 800-133			Key generation ²

Note 1: Any firmware loaded into this module that is not shown on the module certificate, is out of the scope of this validation and requires a separate FIPS 140-2 validation.

Note 2: not all CAVS tested modes of the algorithms are used in this module.

¹ The module's AES-GCM implementation complies with IG A.5 scenario 1 and RFC 5288, and supports acceptable GCM cipher suites from SP 800-52, Section 3.3.1. AES-GCM is only used in TLS version 1.2. When the IV exhausts the maximum number of possible values for a given session key, the first party, client or server, that encounters this condition will trigger a handshake to establish a new encryption key. New AES-GCM keys are generated by the module if the module loses power.

²The module directly uses the output of the DRBG

³ Operators are responsible for ensuring that the same Triple-DES key is not used to encrypt more than 2^{16} 64-bit data blocks

⁴ Signature generation with key length of 4096 bit and signature verification...

⁵ No parts of these protocols, other than the KDF, have been tested by the CAVP and CMVP.

⁶ KTS (AES Cert. #C1198; key establishment methodology provides 128 or 256 bits of encryption strength); KTS (AES Cert. #C1198 and HMAC Cert. #C1198; key establishment methodology provides between 128 and 256 bits of encryption strength).

The module implements the following non-Approved cryptographic algorithms that are allowed in the Approved mode for protection of sensitive data:

Algorithm	Caveat	Use
RSA Key Wrapping using	Provides between	Used for key establishment
key \geq 2048 bits key	112 and 256 bits of	in TLS handshake
	encryption strength.	
DH using \geq 2048 bits key	Provides between	Used for key establishment
	112 and 256 bits of	in SSH and TLS handshakes.
	encryption strength.	
EC DH	Provides between	Used for key establishment
	128 and 256 bits of	in TLS handshake.
	encryption strength	
NDRNG		Used to seed SP 800-90A
		DRBG.

Table 4: Non-FIPS Approved But Allowed Cryptographic Functions

The module also implements other cryptographic algorithms:

Table 5: Other Cryptographic Algorithms

Algorithm	Usage
MD5	Used by RADIUS [*]
*	

Note: RADIUS must not be used in the Approved Mode of Operation.

4 Ports and Interfaces

The module includes the following physical ports and logical interfaces.

Port Name	Count	Interface(s)
Ethernet Port	TH3040S:14 1 GE Copper: 8 1 GE Fiber (SFP): 2 1/10 GE Fiber (SFP+): 4	Data Input, Data Output, Control Input, Status Output
	TH5440S/TH5840S: 30 1 GE Copper: 2 1/10 GE Fiber (SFP+): 24 40 GE Fiber (QSFP+): 4	
	TH7440S-11: 54 1 GE Copper: 2 1/10 GE Fiber (SFP+): 48 100 GE Fiber (CXP): 4	
Serial Console Port	1	Control Input, Status output, Data Output
USB Ports	1	Disabled

Table	6:	Ports	and	Interfaces
-------	----	-------	-----	------------

Port Name	Count	Interface(s)
Power Switch	1	Control Input
Power Port	TH3040S: 2	Power Input
	TH5440S/TH5840S: 2	
	TH7440S-11: 2	
LEDs ¹	3	Status Output

5 Roles, Services and Authentication

The module provides the following roles: a User role and Crypto Officer role. The Crypto Officers initialize and manage the module. Users employ the cryptographic services provided by the module.

The table below provides information on authentication mechanisms employed by each role.

Role	Authentication Mechanism
User	User authentication is certificate based with an RSA key of at least 2048 bits, which corresponds to 112-bit security or a probability of one successful attempt equal to 2^{-112} or ca. $2*10^{-34}$ probability of success.
	The modules support the maximum of 200,000 user connections per second, even assuming that authentication occurs instantly, this translates to 12,000,000 authentication attempts per minute, and the maximum probability of success is $2.4*10^{-27}$.
Crypto Officer	The minimum requirement for the password strength is eight characters. Any of the 89 characters can be used in any place. Thus, the probability of successfully guessing the password is 89^{-8} or ca. $3*10^{-16}$ per attempt.
	The modules support three interfaces for password authentication: console and remote (SSH and GUI/HTTPS). In the worst-case scenario console attack can be combined with the most efficient of the two remote interfaces. The probability of succeeding after 1 minute of attempts is computed as the number of guesses within one minute divided

Table 7.1: Authentication Mechanisms

¹ Also each Ethernet port uses 2 LEDs

Role	Authentication Mechanism
	by the total number of possible password combinations (still
	using the minimum password requirements as the reference).
	<i>Console access</i> : console bandwidth is 9600bps (1200Bps). Given an 8-bite password length, this translates to, 150 (=1200/8) guesses per second or 9,000 (=150*60) guesses per minute.
	<i>GUI/HTTPS</i> : the port supports 1Gbps (1,073,741,824bps). One password GUI transaction consumes at least 8,322 bytes (66,576 bits). Thus, the bandwidth supports 967,684 password guesses per minute (1,073,741,824*60/66,576). However, if we take the time of transactions into consideration, we find that each password transaction in testing took at least .29 seconds. Even assuming a 1000 times faster processing rate, the number of transactions per minute is limited to 206,896 attempts (60/.00029). Thus, GUI/HTTPS can handle at most 206,896 attempts per minute.
	<i>SSH</i> : one SSH session takes at least 6,614 bytes. SSH forces termination after three bad attempts at most in a single session. SSH protocol goes over 1Gbps connection. The maximum number of password attempts per minute is $3,652,735$ (=1,073,741,824*60*3/(6,614*8)).
	<i>The overall number of attempts per minute</i> is at most 3,661,735 $(3,652,735+9,000)$ using simultaneously console and SSH authentication. The overall 1-minute probability is at most $3,661,735*89^{-8}$ or ca. $9.3*10^{-10}$.

The module provides the following services to the operators:

Service	Role	Access to Cryptographic Keys
		and CSPs
		R- read; W – write or
		generate; E-execute
Installation of the Module	Crypto Officer	Password: W
		TLS server certificate: W
		SSH keys: E
		DRBG seed: E
Login	Crypto Officer	Password: E
		SSH Keys: E
		TLS Keys: E
		DRBG seed: E

Table 7.2: Roles and Services

Service	Role	Access to Cryptographic Keys and CSPs R- read; W – write or generate; E-execute
Device Management	Crypto Officer	Password: E SSH Keys: E TLS Keys: E DRBG seed: E
SSH	Crypto Officer	Password: E SSH Keys: E DRBG seed: E
HTTPS	Crypto Officer	Password: E TLS Keys: E DRBG seed: E
Run self-test	Crypto Officer	N/A
Show status	Crypto Officer	N/A
Reboot	Crypto Officer	N/A
Update firmware	Crypto Officer	Firmware load verification HMAC SHA-1 firmware load verification key: E
Zeroize	Crypto Officer	All keys: W
Establishment of secure TLS network connection	User	TLS keys: E TLS Certificate: E DRBG seed: E

6 Key Management

The following cryptographic keys and CSPs are supported by the module.

Name and type	Usage	Storage
TLS master secret	Used to derive TLS data	Plaintext in RAM
	encryption key and TLS	
	HMAC key	
TLS Triple-DES or AES	Used to encrypt data in TLS	Plaintext in RAM
encryption key	protocol	
TLS HMAC key	Used to protect integrity of	Plaintext in RAM
	data in TLS protocol	

Table 8: Cryptographic Keys and CSPs

Name and type	Usage	Storage
TLS server RSA or ECDSA	Used to encrypt the TLS	Plaintext in RAM
certificate and private key	master secret during the	Plaintext in flash
	TLS handshake	
TLS Diffie-Hellman keys	Used for key establishment	Plaintext in RAM
	during the handshake	
TLS EC Diffie-Hellman	Used for key establishment	Plaintext in RAM
keys	during the handshake	
SSH Diffie-Hellman keys	Used for key establishment	Plaintext in RAM
	during the handshake	
Certification Authority RSA	Used to verify client	Plaintext in RAM
Certificate	bandshake	Plaintext in Hash
SSH DSA kays	Lised for authentication	Disintext in PAM
SSII KSA Keys	during the SSH handshake	Plaintext in flash
SSH master secret	Used to derive SSH	Plaintext in PAM
SSIT master secret	encryption key and SSH	I faintext in KAW
	HMAC key	
SSH AES encryption key	Used to encrypt SSH data	Plaintext in RAM
SSH HMAC keys	Used to protect integrity of	Plaintext in RAM
5	SSH data	
CTR_DRBG CSPs: entropy	Used during generation of	Plaintext in RAM
input, V and Key	random numbers	
Hash_DRBG CSPs: entropy		
input, V and C		
HMAC_DRBG CSPs:		
entropy input, V and Key		
Firmware load verification	Used to verify firmware	Plaintext in RAM
INIAC SHA-I Key	components	Plaimext in Hash
Passwords	Used to authenticate users	Plaintext in RAM
1 455 11 01 45	esed to automicate users	Plaintext in flash
SNMP Secret	Used to authenticate Crypto	Plaintext in RAM
	Officers accessing SNMP	Plaintext in flash
	management interface	

7 Self Tests

The module runs a set of self-tests on power-up. If one of the self-tests fails, the module transitions into an error state where all data output and cryptographic operations are disabled.

The module runs power-up self-tests for the following algorithms:

Algorithm	Test
AES	Known Answer Test using GCM, ECB and
	CBC modes (encrypt/decrypt)
TDES	Known Answer Test using ECB mode
	(encrypt/decrypt)
SHS	Known Answer Test as a part of the
	HMAC KAT. Also SHA1 and SHA256 are
	tested separately.
HMAC	Known Answer Test using SHA1,
	SHA224, SHA256, SHA384 and
	SHA512 to also cover SHA POST
SP800-90A DRBG	Known Answer Test:
	CTR_DRBG: AES
	HASH_DRBG: SHA256
	HMAC_DRBG: SHA256
RSA	Known Answer Test using 2048 bit key,
	SHA-256
ECDSA	Pairwise Consistency Test (sign/verify)
	using P-224, K-233 and SHA512
Firmware integrity	MD5 of the firmware image

 Table 9.1: Power-up Self-Tests

During the module operation the following conditional self-tests are performed:

Condition	Test
Random Number Generation /DRBG	Continuous RNG Test
Random Number Generation /NDRNG	Continuous RNG Test
Firmware Load	Firmware Load Test using HMAC SHA1

Table 9.1: Conditional Self-Tests

8 Physical Security

The module consists of production-grade components enclosed in a metal enclosure. The enclosure is opaque within the visible spectrum. Sealed containers are used during the shipping of the module. The integrity of the firmware is protected.

The module is protected by tamper evident labels in accordance with FIPS 140-2 Level 2 Physical Security requirements. The tamper evident labels are applied at the factory to provide evidence of tampering if a panel is removed.

The Crypto Officer must note the locations of the tamper evidence labels upon receipt of the module. The Crypto Officer must check the integrity of the tamper evident labels periodically thereafter. Upon discovery of tampering the Crypto Officer must immediately disable the module and return the module to the manufacturer.

9 Secure Operation

9.1 Approved Mode of Operation

The module is intended to always operate in the Approved Mode of Operation. Module documentation provides detailed setup procedures and guidance for the users and administrators.

Crypto Officer must execute the following command to enable the approved mode of operation

• system fips enable

Crypto Officer must change its password during the installation.

Module users and administrators shall keep all authentication data confidential and shall not allow unauthorized access to the module.

10 References

Reference	Specification
[ANS X9.31]	Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)
[FIPS 140-2]	Security Requirements for Cryptographic modules, May 25, 2001

Reference	Specification
[FIPS 180-4]	Secure Hash Standard (SHS)
[FIPS 186-2/4]	Digital Signature Standard
[FIPS 197]	Advanced Encryption Standard
[FIPS 198-1]	The Keyed-Hash Message Authentication Code (HMAC)
[FIPS 202]	SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions
[PKCS#1 v2.1]	RSA Cryptography Standard
[PKCS#5]	Password-Based Cryptography Standard
[PKCS#12]	Personal Information Exchange Syntax Standard
[SP 800-38A]	Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext Stealing for CBC Mode
[SP 800-38B]	Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication
[SP 800-38C]	Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality
[SP 800-38D]	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
[SP 800-38F]	Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping
[SP 800-56A]	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography
[SP 800-56B]	Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography
[SP 800-56C]	Recommendation for Key Derivation through Extraction-then-Expansion
[SP 800-67R1]	Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher
[SP 800-89]	Recommendation for Obtaining Assurances for Digital Signature Applications
[SP 800-90A]	Recommendation for Random Number Generation Using Deterministic Random Bit Generators
[SP 800-108]	Recommendation for Key Derivation Using Pseudorandom Functions
[SP 800-132]	Recommendation for Password-Based Key Derivation
[SP 800-135]	Recommendation for Existing Application –Specific Key Derivation Functions