

FIPS 140-2 Non-Proprietary Security Policy for

OmniSwitch AOS Cryptographic Module

Module Software Version No: 8.6.R11 FIPS Security Level: 1

Document P/N: 015882-00

Document Version: 1.3 Date: November 17, 2022

Alcatel Lucent Enterprise USA Inc. OmniSwitch AOS Cryptographic Module Security Policy © ALE USA, Inc., 2022 This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Table of Contents

1	Intr	oduction	1
	1.1	Purpose	1
	1.2	Background	1
	1.3	Document Organization	
	1.4	Module Platforms	
	1.5	Platform Series Overview	
	1.5.1		
	1.5.2		
	1.5.3		
	1.5.4		
	1.5.5		
	1.5.6		
2		dule Overview	
	2.1	Cryptographic Module Specification.	
	2.2	Cryptographic Module Ports and Interfaces	
	2.3	Roles & Services	
	2.3.1		
	2.3.2		
	2.4	Authentication Mechanisms	
	2.5	Physical Security	
	2.6	Operational Environment	
	2.7	Cryptographic Key Management	
	2.7.1	\mathcal{O} 1	
•	2.7.2		
3		ure Operation	
	3.1	Initialization and Configuration	
	3.2	Crypto Officer Guidance	
	3.3	User Guidance	
4	Acr	onyms	20

List of Tables

Table 1 - FIPS 140-2- Section Security Levels	1
Table 2 - FIPS 140-2- Tested Platforms	
Table 3 – Module Interface Mappings	7
Table 4 - Services	
Table 5 - FIPS-Approved Algorithm Implementations	11
Table 6 - Non-Approved but Allowed Algorithm Implementations	12
Table 7 - Non-Approved Algorithm Implementations	13
Table 8 - Cryptographic Keys and CSPs	15
Table 9 - Power-On Self-Tests	16
Table 10 - Conditional Self-Tests	17
Table 11 – Acronyms and Definitions	
-	

List of Figures

Figure 1 - Block Diagram	6
--------------------------	---

1 Introduction

1.1 Purpose

This non-proprietary Security Policy for the OmniSwitch AOS Cryptographic Module by Alcatel- Lucent Enterprise (ALE USA Inc.) describes how the module meets the security requirements of FIPS 140-2 and how to run the module in a secure FIPS 140-2 mode of operation.

This document was prepared as part of the Level 1 FIPS 140-2 validation of the module. The following table lists the module's FIPS 140-2 security level for each section.

Section	Section Title	Level
1	Cryptographic Module Specification	1
2	Cryptographic Module Ports and Interfaces	1
3	Roles, Services, and Authentication	1
4	Finite State Model	1
5	Physical Security	N/A
6	Operational Environment	1
7	Cryptographic Key Management	1
8	EMI/EMC	1
9	Self-Tests	1
10	Design Assurance	1
11	Mitigation of Other Attacks	N/A

Table 1 - FIPS 140-2- Section Security Levels

1.2 Background

Federal Information Processing Standards Publication (FIPS PUB) 140-2 – Security Requirements for Cryptographic Modules details the requirements for cryptographic modules. More information on the National Institute of Standards and Technology (NIST) and the Canadian Centre for Cyber Security (CCCS) Cryptographic Module Validation Program (CMVP), the FIPS 140-2 validation process, and a list of validated cryptographic modules can be found on the CMVP website:

http://csrc.nist.gov/groups/STM/cmvp/index.html

More information about Alcatel-Lucent Enterprise and the OmniSwitch Products can be found on the Alcatel Lucent Enterprise website:

https://www.al-enterprise.com/

1.3 Document Organization

This non-proprietary Security Policy is part of the OmniSwitch AOS Cryptographic Module FIPS 140-2 submission package. Other documentation in the submission package includes:

- \Box Product documentation
- □ Vendor evidence documents
- □ Finite state model
- □ Additional supporting documents

The OmniSwitch AOS Cryptographic Module is also referred to in this document as the cryptographic module or the module.

1.4 Module Platforms

The module has been tested on the following hardware platforms:

Series	OmniSwitch Model	Processor
OS6465	6465-P6	ARM Cortex-A9
	6465-P12	
	6465-P28	
	6465T-12	
	6465T-P12	
OS6560	6560-24X4	ARM Cortex-A9
	6560-24Z8	
	6560-24Z24	
	6560-48X4	
	6560-P24X4	
	6560-P24Z8	
	6560-P24Z24	
	6560-P48X4	
	6560-P48Z16	
	6560-PXZ24	
	6560-X10	
OS6860	6860-24	ARM Cortex-A9
	6860-48	
	6860-P24	
	6860-P48	
	6860E-24	
	6860E-48	
	6860E-P24	
	6860E-P24Z8	
	6860E-P48	
	6860E-U28	
OS6865	6865-P16X	ARM Cortex-A9
	6865-U12X	
	6865-U28X	
OS6900	6900-C32	Intel Atom C2538
	6900-V72	
	6900-Q32	NXP QorIQ P2040
	6900-T20	
	6900-T40	
	6900-X72	
	6900-X20	NXP MPC8572
	6900-X40	
OS9900	9907	Intel Atom C2518

Table 2 - FIPS 140-2- Tested Platforms

Alcatel Lucent Enterprise USA Inc. OmniSwitch AOS Cryptographic Module Security Policy © ALE USA, Inc., 2022 This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

1.5 Platform Series Overview

1.5.1 OmniSwitch 6465

OS6465 switches are a family of hardened, compact, fan-less gigabit Ethernet switches that have been designed specifically for industrial applications and OmniSwitch 6465T switches that offer extended temperature and are ideal for residential/metro Ethernet triple play applications. The switches run on the widely deployed and field proven Alcatel-Lucent Operating system that offers high security, reliability, performance, and easy management. The hardened switches are designed to operate in extended temperatures, offer higher EMI/EMC tolerance, a flexible range in power inputs options and high surge protection.

The OS6465 series offers HPoE (60W PoE) providing power to a range of new age devices from PTZ IP cameras on toll booths, LED lights and building management gateways in smart buildings to industrial control systems. These switches are easy to deploy and offer out-of-the-box plug-and-play, Zero-touch provisioning, network automation and disaster recovery options. These switches support IEEE 1588v2 PTP for the nanosecond-level precision timing requirements of industrial devices and applications. With support for MACSec on all ports, OS6465 enables end-to-end encrypted networks. The OS6465 family offers advanced system and network level resiliency features and convergence through standardized protocols in a space efficient form factor.

1.5.2 OmniSwitch 6560

The Alcatel-Lucent OmniSwitch[™] 6560 Stackable Gigabit and Multi-Gigabit Ethernet LAN value switch family is an industry leading campus access solution for enterprise networks. With multi-gigabit ports for high-speed IEEE 802.11ac devices, 10 GigE uplinks and 20 GigE stacking, the OmniSwitch 6560 is the right solution for your next generation network.

Offering a design optimized for flexibility and scalability as well as low power consumption, the OmniSwitch 6560 is an outstanding edge solution. It uses the field-proven Alcatel-Lucent Operating System (AOS) to deliver highly available, secure, self-protective, easily managed and eco-friendly networks.

The Alcatel-Lucent OmniSwitch 6560 family is embedded with the latest technology innovations and offers maximum investment protection. Deployments benefiting from the OmniSwitch 6560 family are:

- □ Edge of small-to-mid-sized networks
- □ Branch office enterprise and campus workgroups
- □ Residential and commercially managed services applications

1.5.3 OmniSwitch 6860

Alcatel-Lucent OmniSwitch® 6860 Stackable LAN Switches (SLS) are compact, high-density Gigabit Ethernet (GigE) and 10 GigE platforms designed for the most demanding converged networks. In addition to high performance and availability, the OmniSwitch(OS) 6860(E) offers enhanced quality of service (QoS), deep packet inspection (DPI), and comprehensive security features to secure the network edge while accommodating user and device mobility with a high degree of integration between the wired and wireless LAN.

The enhanced models of the OmniSwitch 6860 family also supports emerging services such as application fingerprinting for network analytics and up to 60 watts of Power over Ethernet(PoE) per port, making it ready to meet the evolving business needs of enterprise networks.

These versatile LAN switches can be positioned:

- □ At the edge of mid to large-sized converged enterprise networks
- \Box At the aggregation layer
- □ In a small enterprise network core
- □ In the data center for GigE server connectivity and SDN applications

1.5.4 **OmniSwitch 6865**

The Alcatel-Lucent OmniSwitch® 6865 series of switches are industrial grade, high-density, advanced Ethernet platforms designed for operating reliably in the harshest of environmental & severe temperature environments.

OS6865 switches are rugged, high bandwidth switches that are ideal for industrial and mission-critical applications that require wider operating temperature ranges, stringent EMC/EMI requirements and an optimized feature set for high security, reliability, performance, and easy management. These switches run on the widely deployed & field-proven Alcatel-Lucent Operating system offering SPB-M based VPNs and other advanced routing & switching capabilities.

The OS6865 series offers a unique mix of features to cater to the Hardened Ethernet applications such as IEEE 1588v2 PTP capabilities for timing requirements of industrial devices, HPoE (75W PoE) for those power-hungry devices on the access network, SPB-M for fast, cost-efficient roll-out of VPN services on the edge and a comprehensive suite of security features to secure the network edge. These switches are easy to deploy with our award winning Intelligent-Fabric technology which offers out-of-the-box plug-and-play, Zero-touch provisioning and network automation. The OS6865 family offers advanced system & network level resiliency features and convergence through standardized protocols.

These versatile industrial switches are ideal for deployment in transportation and traffic control systems, power utilities, video surveillance systems and outdoor installations.

1.5.5 OmniSwitch 6900

The Alcatel-Lucent Enterprise OmniSwitch[™] 6900 Stackable LAN and data center switches are compact, high-density 10 Gigabit Ethernet (GigE) and 40 GigE platforms. In addition to high performance and extremely low latency, they offer VXLAN, OpenFlow, Shortest Path Bridging (SPB), data center bridging (DCB) capabilities, QoS, Layer-2 and Layer-3 switching, as well as system and network level resiliency.

They are designed for the most demanding software-defined operations in virtualized or physical networks and converged data centers. With their modular approach, the OmniSwitch 6900s support lossless configurations and native fibre channel ports for high-speed storage I/O consolidation.

They can be positioned as converged top-of-rack or spine switches in data center environments as well as core and aggregation devices in campus networks.

1.5.6 OmniSwitch 9900

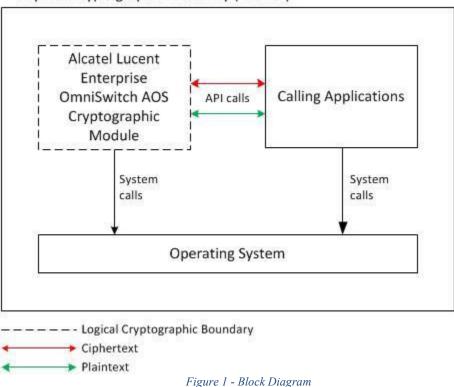
The Alcatel-Lucent OmniSwitch® 9900 series Modular LAN chassis platform is a high-capacity, highperformance modular Ethernet LAN switch that is field-proven in enterprise, service provider and data center environments. As the OmniSwitch 9900 series runs on the Alcatel- Lucent Operating System (AOS), a state-of-the-art programmable operating system designed for Software-Defined Networking (SDN), it delivers uninterrupted network uptime with non-stop Layer-2 and Layer-3 forwarding.

The OmniSwitch 9900 is a high density, multi-Terabit modular platform. The platform can linearly scale switching capacity with virtual chassis technology providing tens of Terabit of aggregate switching capacity. In particular, its modular design provides investment protection allowing for scaling out in the future with inline upgrades offering high density 25G/40G/50G/100G interfaces.

The OmniSwitch 9900 series is ideally suited for enterprise core, aggregation, and edge environments. Its resilient platform architecture providing control plane and data plane redundancy together with unparalleled scalability helps meet demanding resiliency and throughput requirements for evolving enterprises of all sizes.

The OmniSwitch 9900 series offers a broad range of modules supporting 1 GigE, 10 GigE and 40 GigE ports in an 11-RU chassis form factor, and it offers highest 1 GigE/10GigE port density inits class. The platform is also ready to support 100 GigE.

The OmniSwitch 9900 offers the highest density of Power over Ethernet (PoE) in its class, scaling up to 10080 W of inline PoE power. The gigabit PoE line card supports 8 ports of HPoE (75 W) and 40 ports of 802.3at PoE (30 W). All PoE-enabled ports are IEEE 802.3af/at compliant. The OmniSwitch 9900 leverages an energy-efficient model with leading low power consumption, making it an efficient and versatile switch.


The Alcatel-Lucent Enterprise Intelligent Fabric technology is also enabled on the OmniSwitch 9900 Modular LAN chassis. The technology brings true network flexibility ensuring business agility. It not only delivers a resilient, high-capacity infrastructure, but it also delivers automated deployment and selfhealing network capabilities to reduce overhead in IT operations. The technology platform is built upon standard IEEE protocols and key innovations such as Shortest Path Bridging (802.1aq/SPB-M) for bridged and routed services, Multiple VLAN Registration Protocol (MVRP), dynamic Virtual Network Profiles (vNP), 802.3ad/802.1AX (LACP) and Auto- Fabric for automatic protocol and topology discovery.

2 Module Overview

The OmniSwitch AOS Cryptographic Module version 8.6.R11 is a software module which provides cryptographic functionality to Alcatel-Lucent software applications present on the Alcatel-Lucent OmniSwitch series of routers. For the purposes of FIPS 140-2, the module is classified as a software module with a multi-chip standalone embodiment.

2.1 Cryptographic Module Specification

The physical boundary of the module is the OmniSwitch chassis enclosure on which the module is running. The logical cryptographic boundary contains the OmniSwitch AOS Cryptographic Module that provides cryptographic functionality for calling applications and is denoted in the figure below by a dashed line. The physical and logical boundaries are depicted in the figure below.

Physical Cryptographic Boundary (Chassis)

2.2 Cryptographic Module Ports and Interfaces

Being a software module, the logical interfaces are defined by API function calls and their associated input and output parameters (including return codes). Table 3 below shows how OmniSwitch physical ports and interface map to the logical interfaces of the module as defined in FIPS 140-2:

FIPS 140-2 Interface	Module Interface
Data Input	API Input Parameters
Data Output	API Output Parameters
Control Input	API Function Calls
Status Output	API Output Parameters and Return Codes
Power Input	N/A

Table 3 – Module Interface Mappings

2.3 Roles & Services

2.3.1 Roles

The module has two operator roles: Crypto Officer and User. The roles are assumed implicitly upon the invocation of the module services. The Crypto Officer is an administrative role that initializes the module and uses cryptographic services provided by the module, while the Users are the calling applications that utilize the cryptographic functions.

The module does not support concurrent operators.

2.3.2 Services

Table 4 below specifies the services that are available to a module operator. In the CSP Access column, "Read" and "Execute" mean the CSP is used by the API call to perform the service; and "Write" means the CSP is generated, modified, or deleted by the API call.

Service	Operator	Description	CSP	CSP Access
Encryption	User	Encrypts plaintext data	AES key	Execute
Decryption	User	Decrypts encrypted data	AES key	Execute
Generate Random Number	User	Generates random bits	DRBG Entropy, DRBG Seed, DRBG State	Read/Execute
Generate Symmetric Key	User	Generate symmetric key	AES key	Execute/Write
Generate Asymmetric Key	User	Generates asymmetric key pair	RSA, ECDSA keys	Read/Write/Execute
Hash	User	Calculates a hash using SHA	N/A	N/A
Keyed Hash	User	Calculates a hash using HMAC- SHA	HMAC key	Read/Write/Execute
Installation, Uninstallation, and Initialization	Crypto Officer	Install, initialize, configure, uninstall	N/A	N/A
Key Agreement	User	Perform key agreement on behalf of calling process. Not used to establish keys into the module	DH and EC DH keys, Shared Secret	Read/Write/Execute
Key Derivation	User	Perform key derivation per SSH or TLS	TLS pre-master secret, TLS master secret, Shared Secret	Read/Write/Execute
Key Transport	User	Encrypt or Decrypt a key value on behalf of the calling process	RSA keys	Read/Write/Execute
Self-Test	User/Crypto Officer	Performs self-tests	N/A	Execute/Read
Show Status	User	Displays module status and version	N/A	Execute
Signature Sign	User	Generates a digital signature	ECDSA, RSA keys	Execute
Signature Verify	User	Verifies a digital signature	ECDSA, RSA keys	Execute
Zeroize	User/Crypto Officer	Zeroize CSPs	All except HMAC-SHA-1 Integrity key	Write

Table 4 - Services

Alcatel-Lucent Enterprise OmniSwitch AOS Cryptographic Module Security Policy © ALE USA, Inc., 2021 This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

2.4 Authentication Mechanisms

The module does not support authentication.

2.5 Physical Security

The module is a software module and does not implement any physical security.

2.6 Operational Environment

The OmniSwitch AOS Cryptographic Module was tested on the OmniSwitch platforms listed in Table 2 above running on AOS version 8.6.R11.

The OmniSwitch AOS Cryptographic Module is invoked and functions entirely within the logical process space of the calling application. The tested operating systems segregates user processes into separate process spaces. The module does not support a software loading service or capability. The module conforms with IG 6.1, whereby the module is implemented in a client/server architecture to be used on both the client and the server. The cryptographic module will be used to provide cryptographic functions to the client and server applications. The cryptographic module is implemented in a server environment and the server application is the user of the cryptographic module. The server application makes the calls to the cryptographic module. Therefore, the server application is the single user of the cryptographic module.

2.7 Cryptographic Key Management

2.7.1 Algorithm Implementations

2.7.1.1 Approved Algorithms

A list of FIPS-Approved algorithms implemented by the module can be found in Table 5.

CAVP Cert	Algorithm	Standard	Mode/ Method	Key Lengths, Curves	Use
C1692 C1693 C1694	AES	FIPS 197, SP800-38A, SP800-38D	CBC, CTR, GCM ¹	128/256 bits	Data Encryption and Decryption
C1695 C1696					
C1697 C1698 C1699					

¹ The IV shall be generated internally in its entirety randomly using the Approved DRBG that is internal to the module's boundary. The IV length is at least 96-bits in alignment with IG A.5, Scenario 2.

Alcatel-Lucent Enterprise OmniSwitch AOS Cryptographic Module Security Policy © ALE USA, Inc., 2021 This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

VA	CKG	SP800-133	Section 4, 6.1, and 6.2.2	-	Cryptographic Key Generation
C1692	CVL TLS	SP 800-135	_	-	Key Derivation
C1693	1.0/1.1, TLS 1.2,				1109 2 011 0 0101
C1694	SSH ²				
C1695	KDFs				
C1696					
C1697					
C1698					
C1699					
C1692	DRBG	SP800- 90A	Hash_DR	Hash DRBG	Deterministic Random
C1693			BG, HMAC D	(SHA-1, SHA-	Bit Generation
C1694			RBG,	256, SHA-384, SHA-512),	
C1695			CTR_DRB G	HMAC_DRBG	
C1696			0	(SHA-1, SHA-	
C1697				256, SHA-384,	
C1698				SHA-512),	
C1699				CTR_DRBG (AES-256)	
C1692	ECDSA	FIPS 186-4	PKG, SigGen,	P-256	Digital Signature
C1693			SigVer, KeyVer	P-384 P-521	Generation and
C1694			Keyvei	1-521	Verification, Key Generation and
C1695					Verification
C1696					
C1697					
C1698					
C1699					
C1692	HMAC	FIPS 198-1	HMAC- SHA-1	Minimum	Message Authentication.
C1693			HMAC	112 bits	HMAC-SHA-1-96
C1694			SHA-1-96. ³ HMAC-		used in the SSHv2 protocol. The truncated
C1695			SHA-256 HMAC-		form of an HMAC is approved if the HMAC
C1696			SHA-384		is truncated to its ' λ '
C1697			HMAC- SHA-512		leftmost bits where $\lambda \geq 32$.
C1698					
C1699					

No parts of the TLS or SSH protocol, other than the KDFs, have been tested by the CAVP and CMVP Conformant to IG A.8 $\,$ 2

3

Alcatel-Lucent Enterprise OmniSwitch AOS Cryptographic Module Security Policy © ALE USA, Inc., 2021 This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

A1774	KAS-ECC- SSC	SP800-56A- rev3	Ephemeral Unified	P-224, P- 256, P-384, P-521	Key Agreement
	KAS-FFC- SSC	SP800-56A- rev3	DH Ephemeral	DPG: ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192	Key Agreement, Safe Primes Key Generation, Safe Primes Key Verification
C1692 C1693	RSA	FIPS 186-4	-	2048/3072 bits	Key Generation
C1694					
C1695					
C1696					
C1697					
C1698					
C1699					
C1692	RSA	FIPS 186-4	SHA-1.4	2048/3072	Digital Signature
C1693	KBA	TH 5 100-4	SHA-256	bits	Generation and
C1694			SHA-384 SHA-512		Verification
C1695			(PKCS1 v1.5,		
C1696			PKCS PSS)		
C1697			TKC5 T55)		
C1698					
C1699					
C1692	SHS	FIPS 180-4	SHA-1 SHA-	-	Message Digest
C1693			256 SHA-384 SHA-512		
C1694			511A-512		
C1695					
C1696					
C1697					
C1698					
C1699					

Table 5 - FIPS-Approved Algorithm Implementations

⁴ SHA-1 is for Digital Signature Verification Only

Alcatel-Lucent Enterprise OmniSwitch AOS Cryptographic Module Security Policy © ALE USA, Inc., 2021 This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

2.7.1.2 Non-Approved but Allowed Algorithms

A list of non-Approved but Allowed algorithms implemented by the module can be found in Table 6.

Algorithm	Caveat	Use
MD5	Allowed per IG 1.23	Used in the TLS 1.0/1.1 KDF.
RSA Key Wrapping	Provides 112 bits of encryption strength.	Non-SP800-56B conformant using the PKCS#1-v1.5 padding scheme and 2048- bit keys. Allowed until December 31, 2023 per IG D.9.

Table 6 - Non-Approved but Allowed Algorithm Implementations

2.7.1.3 Non-Approved Algorithms

A list of non-Approved algorithms implemented by the module can be found in Table 7. These algorithms are never to be used in the Approved mode of operation. Invoking any of the algorithms specified in Table 7 will result in a non-Approved configuration.

Algorithm	Use
AES 128/192/256 CFB, ECB, OFB, CFB 1, CFB 8, CFB 128, CCM, XTS	Data encryption and decryption
AES 192 CBC, CTR, GCM	Data encryption and decryption
Blowfish	Data encryption and decryption
Camellia	Data encryption and decryption
CAST	Data encryption and decryption
CMAC (AES and TDES)	Message Authentication
DES	Data encryption and decryption
DSA	Digital signature
Dual EC DRBG	Random Number Generation
ECDSA (P-224, B-curves, K-curves, and FIPS186-2 functions)	Digital signature
HMAC-SHA-224	Message authentication
IDEA	Data encryption and decryption
MD5	Hashing Algorithm
RC2	Hashing Algorithm
RC4	Hashing Algorithm
RIPEMD160	Hashing Algorithm
RSA (1024-bit, greater than 3072-bit, and FIPS 186-2 functions)	Digital signature

12

Alcatel-Lucent Enterprise OmniSwitch AOS Cryptographic Module Security Policy © ALE USA, Inc., 2021 This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

	i i
SEED	Data encryption and decryption
SHA-1	Signature Generation
SHA-224	Hashing Algorithm
Triple-DES	Data encryption and decryption
Whirlpool	Hashing Algorithm
X9.31 RNG	Pseudorandom Number Generation

Table 7 - Non-Approved Algorithm Implementations

2.7.2 Key Management Overview

Key or CSP	Usage	Storage	Storage Method	Input	Output	Zeroization	Access
AES Key	128/256-bit CTR, CBC, or GCM Key Encrypt/Decrypt	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
DRBG Entropy	Key Generation	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
DRBG Seed	Key Generation	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
DRBG State	V, C, and/or Key depending on the DRBG Key Generation	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
Diffie-Hellman Private Key	Key agreement	RAM	Plaintext	None	None	Power-Off/ API Command	CO: Z User: RWZ
Diffie-Hellman Public Key	Key agreement	RAM	Plaintext	None	None	Power-Off/ API Command	CO: Z User: RWZ
EC Diffie- Hellman Private Key	EC DH (All NIST defined P curves) private key agreement key	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User:RWZ
EC Diffie- Hellman Public Key	EC DH (All NIST defined P curves) public key agreement key	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
ECDSA Public Key	Digital Signature Verification	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
ECDSA Private Key	Digital Signature Generation	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
HMAC-SHA-1 Integrity Key	Module Integrity	Module Binary	Plaintext	None	None	None	CO: R User: R

Alcatel-Lucent Enterprise OmniSwitch AOS Cryptographic Module Security Policy © ALE USA, Inc., 2021 This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Key or CSP	Usage	Storage	Storage Method	Input	Output	Zeroization	Access
НМАС-Кеу	Message Integrity	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
RSA Public Key	Digital Signature Verification	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
RSA Private Key	Digital Signature Generation	RAM	Plaintext	None	None	Power-Off / API Command	CO: Z User: RWZ
TLS pre-master secret	Shared secret used in TLS exchange for TLS sessions.	RAM	Plaintext	None	None	Power-Off API Command Terminate Session	CO: Z User: RWZ
TLS master secret	Shared secret used in TLS exchange for TLS sessions.	RAM	Plaintext	None	None	Power-Off API Command Terminate Session	CO: Z User: RWZ
Shared Secret	Shared secret calculated from KAS-SSC (ECC or FFC)	RAM	Plaintext	None	None	Power-Off API Command Terminate Session	CO: Z User: RWZ

Table 8 - Cryptographic Keys and CSPs

Access includes Write (W), Read (R), and Zeroize (Z).

2.7.3 Key Generation & Input

The module implements SP 800-90A compliant DRBG services for creation of symmetric keys, and for generation of ECDSA and RSA keys as shown in Tables 5 and 8.

For random number generation the calling application should use entropy sources that meet the security strength required in SP 800-90A. This entropy is supplied by means of a named pipe. Those functions must return an error if the minimum entropy strength cannot be met. CSPs are passed to the module in plaintext as API parameters. Private and secret keys as well as seed and entropy are also provided to the module by the calling application.

While using ECDH algorithm, the calling application should validate the domain parameters and security strength of the elliptic curve before EC key generation to ensure that the selected elliptic curve meets the security requirements of the application.

2.7.4 Key Output

The module does not output CSPs.

2.7.5 Storage

Keys are provided to the module by the calling process and are destroyed when released by the appropriate API function call or during a power cycle. The module does not control the persistent storage of keys or CSPs. Generated data will always be associated with the relevant calling process. The module code ensures that no data can be associated with calling daemons beyond the relevant caller. The implementation of the zeroization process leaves no traces of data left for successive calls of the same or other services.

2.7.6 Zeroization

Zeroization of sensitive data is performed automatically by an API function call for temporarily stored CSPs. There are also functions provided to explicitly destroy CSPs related to random number generation services. The calling application is responsible for parameters passed in and out of the module. Private and secret keys as well as seed and entropy are destroyed when the API function calls return. No key information is output through the data output interface when the module zeroizes keys.

2.8 Electromagnetic Interference / Electromagnetic Compatibility

The OmniSwitch AOS Cryptographic Module runs on the OmniSwitch series of routers that have been tested and conform to the FCC EMI/EMC requirements in 47 Code of Federal Regulation, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A.

2.9 Self-Tests

2.9.1 **Power Up Self-Tests**

The module implements numerous self-tests, but only those associated with a conformance claim for FIPS 140-2 are listed below. The module performs the following tests automatically upon power up:

Algorithm	Туре	Description
AES GCM	KAT	Encryption and decryption are tested separately, 256-bit key length
DRBG (CTR_DRBG)	KAT	AES, 256-bit with and without derivation function
DRBG (Hash_DRBG)	KAT	SHA-256
DRBG (HMAC_DRBG)	KAT	HMAC-SHA-256
ECDSA	PCT	Keygen, sign and verify using P-256
НМАС	KAT	HMAC SHA-1, HMAC SHA-256, HMAC SHA-384, HMAC
HMAC KAI		SHA-512
KAS_FFC_SSC	KAT	Shared Secret Calculation using 2048-bit keys.
KAS_ECC_SSC	KAT	Shared Secret Calculation using P-256
KDF	KAT	SP 800-135 TLS 1.0/1.1, TLS 1.2, and SSH
RSA	KAT	Signature generation and verification are tested separately using 2048 bit key, SHA-256, PKCS#1
		This test also satisfies the KAT requirements for RSA Key
		Wrapping per IG D.9
SHS3	KAT	SHA-1 SHA-512
Module Integrity	KAT	HMAC-SHA1

Table 9 - Power-On Self-Tests

³ SHA-2 KATs are tested as part of HMAC KATs

Power-on self-tests return "1" if all self-tests succeed, and "0" if not. If a self-test fails, the module enters an error state, and all data output is inhibited. During self-tests, cryptographic functions cannot be performed until the tests are complete. If a self-test fails, subsequent invocation of any cryptographic function calls will fail. The only way to recover from a self-test failure is by reloading the module.

2.9.2 Conditional Self-Tests

The module performs the following conditional self-tests:

Algorithm	Modes and Key Sizes
DRBG	 Continuous Random Number Generation Test SP 800-90A DRBG Health Tests Instantiate Reseed Generate Uninstantiate
ECDSA	Pairwise consistency test for Sign/Verify
KAS	Public Key Validation Tests
RSA	Pairwise consistency test for both Sign/Verify and Encrypt/Decrypt
	Table 10 - Conditional Self-Tests

In the event of a DRBG self-test failure, the calling application must uninstantiate and reinstantiate the DRBG per SP 800-90A requirements.

2.10 Design Assurance

Configuration management for the module is provided by Agile, and Perforce for software. Each configuration item along with major and minor versions are identified through these tools.

Documentation version control is performed manually by updating the document date as well as the major and minor version numbers in order to uniquely identify each version of a document.

2.11 Mitigation of Other Attacks

The module does not claim to mitigate any attacks outside the requirements of FIPS 140-2.

3 Secure Operation

The AOS Cryptographic Module meets Level 1 requirements for FIPS 140-2. The sections below describe how to place and keep the module in FIPS-Approved mode of operation.

When the FIPS enable command is entered on OmniSwitch, FIPS 140-2 compliant encryption is used by the OmniSwitch devices in the various management interfaces such as SFTP, HTTP, SSH and SSL.

These strong cryptographic algorithms ensure secure communication with the device to provide interoperability, high quality, cryptographically based security for IP networks through the use of appropriate security protocols, cryptographic algorithms, and keys. This prevents any form of hijacking/hacking or attack on the device through the secure mode of communication.

When configured according to the instructions below in Sections 3.1 and 3.2, the module will operate in the Approved FIPS mode of operation.

3.1 Initialization and Configuration

The following procedure is used to configure the FIPS mode on the switch:

- Enable the FIPS mode on an OmniSwitch using the following command (Note: This will effectively invoke "fips mode set = 1" on the module itself:
 -> system fips admin-state enable
 WARNING: FIPS Admin State only becomes Operational after write memory and reload
- 2. Write the changes to the boot configuration -> write memory
- Reboot the system, a confirmation message is displayed. Type "Y" to confirm reload.
 -> reload from working no rollback-timeout
 -> Confirm Activate (Y/N): y
- 4. Use "show system fips" to view the configured and running status of the FIPS mode on the Switch. -> show system fips Admin State: Enabled Oper State: Enabled
- 5. Do not employ any algorithms from Table 7.
- 6. The AES-GCM IV must be generated internally in its entirety randomly using the Approved DRBG that is internal to the module's boundary.
- 7. Disable insecure management interfaces such as Telnet/ FTP manually after FIPS mode is enabled to achieve a complete secure device.

The following procedure must be performed whenever exiting the FIPS mode on the switch:

1. Power cycle the device to zeroize all secrets.

3.2 Crypto Officer Guidance

The Crypto-Officer (CO) is responsible for initializing and configuring the module into the FIPS- Approved mode of operation per the instructions provided in "Initialization and Configuration."

18

3.3 User Guidance

The User role is assumed by non-CO operators, calling applications, or the OS. There are no requirements imposed on the User role that are needed to operate the module securely.

4 Acronyms

Acronym	Definition
AES	Advanced Encryption Standard
AOS	Alcatel-Lucent Operating System
СА	Certificate Authority
CBC	Cipher Block Chaining
CCCS	Canadian Centre for Cyber Security
CMVP	Cryptographic Module Validation Program
СО	Crypto Officer
CSP	Critical Security Parameter
CVS	Concurrent Versions System
DRBG	Deterministic Random Bit Generator
ECC	Elliptic Curve Cryptography
EFP	Environmental Failure Protection
EMI/EMC	Electromagnetic Interference / Electromagnetic Compatibility
FCC	Federal Communications Commission
FIPS	Federal Information Processing Standards
HMAC	(Keyed-) Hash Message Authentication Code
KAS	Key Agreement Scheme
KAT	Known Answer Test
LED	Light Emitting Diode
NIST	National Institute of Standards and Technology
NDRNG	Non-Deterministic Random Number Generator
NVM	Non-Volatile Memory
PoE	Power Over Ethernet
QVGA	Quarter Video Graphics Array
ROM	Read Only Memory
RSA	Rivest, Shamir, and Adleman
SHA	Secure Hash Algorithm
Triple-DES	Triple Data Encryption Standard
USB	Universal Serial Bus
VA	Vendor Affirmed

Table 11 – Acronyms and Definitions