

Mist Systems

FIPS AP43

FIPS 140-2 Non-Proprietary Security Policy

Document Revision: V1.1

F.W. Version: fips_apfw-0.9.23115-illyrio-9e5f

H.W. Version: AP43-FIPS-US (REV. AA and AB) and AP43E-FIPS-US (REV. AA and AB)

Juniper Public

Mist Systems, Inc. | 1601 S. De Anza Blvd. #248, Cupertino, CA 95014

Table of Contents

RE	EVISION HISTORY	
1.	INTRODUCTION	
2.	SECURITY LEVEL SPECIFICATION	
3.	CRYPTOGRAPHIC BOUNDARY	
4.	PHYSICAL PORTS AND LOGICAL INTERFACES	
5.		
4	5.1 FIPS Approved Mode of Operation	
4	5.1.1 Self-tests	
4	5.1.2 FIPS Approved Services	
4	5.2 Non-FIPS Approved Mode of Operation	
4	5.2.1 Non-compliant Services	
6.	ALGORITHMS	
7.	IDENTIFICATION AND AUTHENTICATION POLICY	
8.	ACCESS CONTROL POLICY	
9.	SECURITY RULES	
10.	. CRITICAL SECURITY PARAMETERS and PUBLIC KEYS	
11.	. PHYSICAL SECURITY POLICY	40
12.	. MITIGATION OF OTHER ATTACKS POLICY	
13.	. ACRONYMS	

REVISION HISTORY

Author(s)	Version	Date	Description
Gurpreet Singh	1.0	August 15 th , 2022	Initial Release
Santosh Rokade	1.1	December 12 th , 2022	Updated firmware version, hardware version, and figures 1-12. Updated Tables 6
			and 11 for additional
			services in non- FIPS Approved
			Mode of Operation.

1. INTRODUCTION

This is a FIPS 14D-2 Non-Proprietary Security Policy for Mist Systems FIPS AP43 Cryptographic Module. The module is a multichip standalone cryptographic module designed for the wireless space supporting a secure Firmware Upgrade and other features.

The AP43 and AP43E modules, hereby referred to as the "cryptographic module" or simply "module" in the context of this document, are similar in form fit and function. The difference between the modules is internal [AP43] vs. external antennas [AP43E]. Both modules execute the identical version of the FIPS Validated firmware and employ the same Physical Security Mechanisms.

Table 1 - Module version information

Module Name	Hardware Version	Firmware Version
FIPS AP43	AP43-FIPS-US (REV. AA and AB)	fips_apfw-0.9.23115-illyrio-9e5f
	AP43E-FIPS-US (REV. AA and AB)	

NDTE: Any firmware loaded into the module with a version not showing in the module certificate is out of scope of this validation and requires a separate FIPS 14D-2 validation.

2. SECURITY LEVEL SPECIFICATION

The module achieves an overall of Security Level 2 for FIPS 140-2.

Table 2 - Security Level	

Security Requirements Area	Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-tests	2
Design Assurance	2
Mitigation of Other Attacks	N/A

3. CRYPTOGRAPHIC BOUNDARY

The cryptographic boundary of the module is the contiguous physical perimeter of the plastic enclosure (outlined in red below).

Figure 1- AP43 Front Side (REV. AA on top, AB on bottom)

Figure 2 - AP43 Back Side (REV. AA on top, AB on bottom)

Figure 3 - AP43 Top Side (REV. AA on top, AB on bottom)

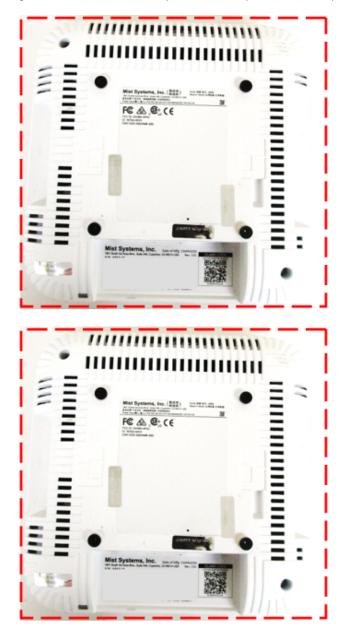


Figure 4 - AP43 Bottom Side (REV. AA on top, AB on bottom)

Figure 5 - AP43 Left Side (REV. AA on top, AB on bottom)

Figure 6 - AP43 Right Side (REV. AA on top, AB on bottom)

Figure 7- AP43E Front Side (REV. AA on top, AB on bottom)

Figure 8 - AP43E Back Side (REV. AA on top, AB on bottom)

Figure 9 - AP43E Top Side (REV. AA on top, AB on bottom)

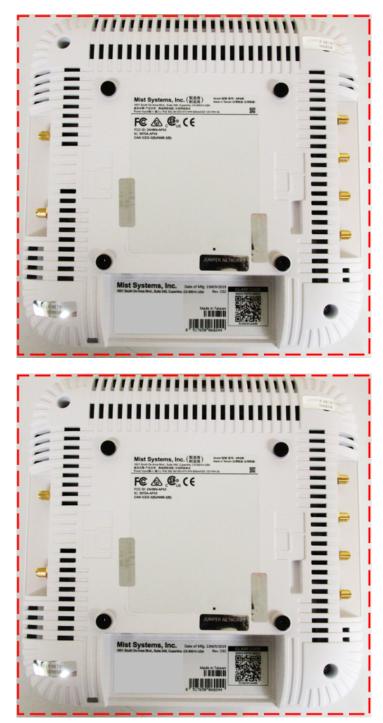


Figure 10 - AP43E Bottom Side (REV. AA on top, AB on bottom)

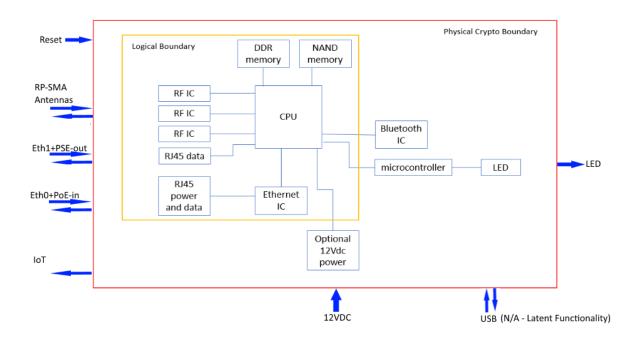


Figure 11 - AP43E Left Side (REV. AA on top, AB on bottom)

Figure 12 - AP43E Right Side (REV. AA on top, AB on bottom)

All security related components are enclosed within the opaque enclosure; the enclosure is protected by Tamper Evident Labels (TELs). There are non-security components inside of the enclosure which are excluded from the FIPS 140-2 requirements. The components do not process any cryptographic operations, and even if malfunctioning or misused, they cannot cause a compromise under any reasonable condition to the security of the module. Excluded components listed below:

- Capacitors
- FETs
- Resistors
- RF Filters
- Connectors
- Ground Test Point
- Ground
- 32KHz Crystal
- Inductors
- Power converters
- Power Diodes
- Unpopulated jumper connector
- Isolation ICs for Power
- DC-to-DC Converters
- Power Transformer

4. PHYSICAL PORTS AND LOGICAL INTERFACES

Below is a description of physical ports and corresponding logical interfaces supported by the cryptographic module.

Physical Port	FIPS 140-2 Logical Interface	Description
Reset	Control Input	Physical button; reset to factory settings.
RP-SMA	Data Input and Data output	AP43 (Internal Antennas)
Antennas		Four 2.4GHz omni-directional antennas with 4 dBi peak
		gain and Four 5GHz omni-directional antennas with 6
		dBi peak gain
		AP43E (External Antennas)
		Six RP-SMA
		Male connectors (four dual-band for client radios; two
		dual-band for 3rd radio)
Eth1+PSE-out	Data Input, Data Output, Control Input,	10/100/1000Base-T; RJ45;
	Status Output, Power	optional PoE PSE mode (requires 802.3bt on EthO)
EthO+PoE-in	Data Input, Data Output, Control Input,	100/1000Base-T, 2.5GBase-T (802.3bz);
	Status Output, Power	RJ45; PoE PD
loT	Data output ¹	8-pin interface for digital I/O and analog input
		(0 to +5V)
12VDC	Power	Input for optional DC power supply
LED	Status Output	One multi-color status LED
USB	Data Input and Data output	N/A - Latent Functionality; reserved for future use.

Table 3 - Specification	of Cryptographic Module	Physical Ports	and I ogical Interfaces
Tuble o Opeemeation	or oryptographic module	i nysicari ons	and Logical interfaces

¹ The IoT interface does not support data input (latent-functionality); only data output is supported by the module.

5. MODES OF OPERATION

The module supports a FIPS Approved Mode of Operation and a non-FIPS Approved Mode of Operation. The module is considered to be operating in the FIPS Approved Mode of Operation when abiding by the security rules and requirements in the Security Policy. The module is shipped to the end customer in the FIPS Approved Mode of Operation.

The operator transitions into the non-FIPS Approved Mode of Operation upon any violation of the security rules set forth in this Security Policy, including execution of non-compliant services. (Please see section

5.2 Non-FIPS Approved Mode of Operation).

Any violation of the Security Policy will immediately place the module in a non-FIPS Approved Mode of Operation, and the module is not considered fit to protect sensitive but unclassified information.

5.1 FIPS Approved Mode of Operation

To invoke the FIPS Approved mode of operation the Cryptographic Officer must perform the following steps:

- 1. Inspect the module and confirm you have a FIPS Validated module, verify the hardware version as per Table 1 above.
- 2. Inspect the module and confirm the Physical Security Mechanisms are in place and untampered as described in section

- 3. PHYSICAL SECURITY POLICY. (Note: The module is shipped with tamper evident labels applied.)
- Connect to the module via the EthO+PoE-in interface, this interface will provide power to the module as described in Table 3.
- After completing its power-up self-tests successfully, the module will be in the FIPS Approved Mode of Operation. The module's LED will have a Solid Green pattern to indicate to the operator that FIPS power-up self-tests passed successfully.
- 6. Invoke the Extended Status Report service and confirm the Firmware version of the module is as per Table 1 above.
- 7. DO NOT change the AP Configuration service to disable LED; settings shall remain ON for "Enable LEDs".

If the module encounters an Error during the self-tests, it will transition to the FIPS ERROR State. The FIPS ERROR State forces the module to reboot, the LED will turn OFF followed by the Blinking RED pattern to indicate the module is going through its boot sequence and re-executing the FIPS power-up self-tests. The module will transition to an operational state only if the power-up self-tests are successful.

It is recommended to power-cycle the module to exit the FIPS ERROR State, however if you are experiencing a rolling reboot the module has encountered an unrecoverable error and must be returned to manufacturing. A rolling reboot can be recognized by a recursive LED pattern of Blinking Red, Yellow, and Green. The pattern will flash until such a time that the operator disconnects power to the module.

LED	Description		
OFF	Module is powered OFF		
Blinking Red	Module is executing the FIPS power-up self-tests part 1 (Uboot)		
Alternating Green and Yellow	Module is executing the FIPS power-up self-tests part 2 (Linux)		
Solid Green	Power-up self-tests passed and module connections ready		
Blinking Yellow	Power-up self-tests passed but no ethernet link (connections not ready)		
Blinking Red, Yellow, Green	Module has encountered an unrecoverable error; rolling reboot.		
(Recursive)			

Table 4 – LED Pattern Description

5.1.1 Self-tests

The module supports the self-tests specified in this section. Please note that self-tests run regardless if the module is in the FIPS Approved Mode of Operation. To run self-tests on demand, operator shall power-cycle the module.

Power-up self-tests:

- 1. Mist Boot SPL Firmware Integrity Test: CRC-32
- 2. Uboot Firmware Integrity Test: CRC-32
- 3. Atmega Firmware Integrity Test: EDC-32 Checksum
- 4. RootFS Manifest Firmware Integrity Test: openssl_mist ECDSA P-384 with SHA-384 Digital Signature Verification
- 5. openssl_mist ECDSA P-384 SHA-384 Sign/Verify KAT
- 6. openssl_mist AES-KW-128 Wrap KAT
- 7. openssl_mist AES-KW-128 Unwrap KAT
- 8. openssl_mist AES-256-CTR with DF SP800-90A DRBG KAT
- 9. openssl_mist AES-256-CTR with DF SP800-90A DRBG Section 11.3 Health Tests²
- 10. openssl_mist HMAC-SHA-1 KAT
- 11. openssl_mist HMAC-SHA-256 KAT
- 12. openssl_mist 802.11i KDF (SP800-108) HMAC-SHA-256 KAT
- 13. gocrypto_mist SHA-256 KAT
- 14. gocrypto_mist SHA-384 KAT
- 15. gocrypto_mist HMAC-SHA-256 KAT
- 16. gocrypto_mist HMAC-SHA-384 KAT
- 17. gocrypto_mist RSA 4096 SHA-256 PSS Signature Verification KAT
- 18. gocrypto_mist AES-GCM-128 Encrypt KAT
- 19. gocrypto_mist AES-GCM-128 Decrypt KAT
- 20. gocrypto_mist TLS VI.2 KDF (SP800-135) SHA-256 KAT
- 21. gocrypto_mist TLS V1.2 KDF (SP800-135) SHA-384 KAT
- 22. gocrypto_mist ECDSA P-384 with SHA-384 Signature Verification KAT
- 23. gocrypto_mist ECCCDH P-256 Primitive "Z" Computation KAT
- 24. RD wireless driver BCM43694 AES-128-CCM Encrypt KAT
- 25. RO wireless driver BCM43694 AES-128-CCM Decrypt KAT
- 26. R1 wireless driver BCM43694 AES-128-CCM Encrypt KAT
- 27. R1 wireless driver BCM43694 AES-128-CCM Decrypt KAT
- 28. SP800-90B Power-up Health Tests (RCT and APT) for ENT (P)

² The module supports health testing for Instantiate, Generate and Reseed functions for the AES-256-CTR with DF implementation.

Conditional self-tests:

- 1. Firmware Download Test: openssl_mist ECDSA P-384 with SHA-384 Digital Signature Verification
- 2. Continuous Random Number Generation Test for ENT (P) (32-byte comparison)
- 3. Continuous Random Number Generation Test for openss1 mist SP800-90A DRBG (16-byte comparison)
- 4. SP800-90B Continuous Health Tests for ENT (P) (RCT and APT)
- 5. SP800-56Ar3 Section 5.6.2.3.3 ECCCDH Full Public Key Validation for gocrypto_mist ECCCDH P-256

5.1.2 FIPS Approved Services

The module supports the following Approved Services in the FIPS Approved Mode Service.

Service	Role	Description
Power-up self-tests	None ³	Automatically invoked by the module at boot.
Show status	None	Status of the module provided by LED.
Extended status report	None	Status report.
Upgrade	FW Download User	Firmware Upgrade service.
Reset Push button	None	Reset to Factory settings (removes all configuration). Must be pressed for 5 seconds when applying power to the module.
Reboot	CO	Control command to power-cycle the module.
Disconnect clients	CO	Control command to disconnect, deauthorize or terminate
		clients from the network.
Bounce Ethernet Ports	CO	Control command to toggle power of Ethernet ports.
Radio Reinit	CO	Control command to re-initialize the radios.
Network Status Test	CO	Control command to perform network statistic tests including
		ping, pcap, traceroute, and arp.
Configure IoT Block	CO	Configure (set and get) for IoT pins. Only data output is
		supported
Zeroize	CO	Control command to zeroize all CSPs.
AP Configuration	CO	Modify the device configuration of the AP such as LED
		brightness.

Table 5 - FIPS Approved Services

³ Unauthenticated services will be assigned "None" as the role. By virtue of being unauthenticated, a CO or User can also execute the service.

Service	Role	Description
TLSV1.2 EP Terminator	CO	Support for TLS V1.2 secure communication between the AP and
		the Cloud.
RADIUS	User	Support for RADIUS authentication within 802.1X.
802.1X WPA2	User	Support for 802.1X Port-Based Network Access Control.
WPA2	User	Support for 802.11i Wi-Fi Protected Access (WPA) II.
Bonjour	CO	Support for bonjour network service discovery protocol.
L2TP	CO	Support for Layer 2 Tunneling Protocol (Tunneling of TLS VI.2
		traffic).
BLE	CO	Support for Bluetooth Low Energy (BLE) beacons.
MESH	CO	Support for mesh network configuration.
ALS	CO	Support for AeroScout Real-Time Location Services (ALS).
Network configure	CO	Control commands to configure network settings, limits,
		routing, DNS, etc.

5.2 Non-FIPS Approved Mode of Operation

The module is operating in a non-FIPS Approved Mode of Operation when the operator executes non-compliant services. Please note any violation of the Security Policy will immediately place the module in a non-FIPS Approved Mode of Operation, and the module is not considered fit to protect sensitive but unclassified information.

5.2.1 Non-compliant Services

Executing any of the following services, will place the module in the non-FIPS Approved mode of Operation:

Service	Role	Description
QoS Learn	CO	Non-compliant service unavailable for testing
		(reserved for future use).
SSHv2 IP Tunnel	CO	Non-compliant SSHv2 communication from Cloud to AP.
IPSec	CO	Non-compliant IPSec service unavailable for testing
		(reserved for future use).
RADSec	CO	Non-compliant RADSec service unavailable for testing
		(reserved for future use).

Table 6 - Non-compliant Services

6. ALGORITHMS

The module supports the following approved algorithms in the FIPS Approved Mode of Operation. Only algorithms, modes and key sizes specified within this section are supported by the module. (i.e. other algorithms, modes and key sizes specified by CAVP certificates not listed within this section are NOT supported by the module).

Table 7 captures the algorithms implemented by the openssl_mist implementation. The BCM49408(Arm Cortex A-53) CPU is the operational environment for these algorithms.

CAVP Cert	Algorithm	Standard	Mode	Length	Use
A1759	AES	FIPS 197 SP 800-38A	CTR	256	DRBG Prerequisite
A1759	AES	FIPS 197 SP 800-38A	ECB	128	AES-KW Prerequisite
A1759	AES	SP 800-38F	KW	128	Key wrapping and unwrapping
Vendor affirmed	CKG	SP 800-133r2	N/A	N/A	Cryptographic Key Generation
A1759	DRBG	SP 800-90Ar1	AES Counter DRBG (with DF)	256	Random Number Generation
A1759	ECDSA	FIPS 186-4	SigVer	P-384	Signature Verification
N/A	ENT	SP 800-90B	N/A	N/A	Entropy Source
A1759	HMAC	FIPS 198-1	HMAC-SHA-1 HMAC-SHA2-256	16D <i>,</i> 256	Message Authentication
A1759	KBKDF	SP 800-108	Counter (HMAC- SHA2-256)	N/A	Key Based Key Derivation
A1759	KTS	SP 800-38F	KW	128	Key wrapping and unwrapping; key establishment methodology provides 128 bits of encryption strength
A1759	SHS	FIPS 180-4	SHA-1 SHA2-256 SHA2-384	N/A	Message Digest

Table 7 - Approved Algorithms implemented by openssl_mist implementation

Table 8 captures the algorithms implemented by the gocrypto_mist implementation. The BCM49408(Arm Cortex A-53) CPU is the operational environment for these algorithms. These algorithms are used to support the "TLS VI.2 EP Terminator" service, this service facilitates the TLS VI.2 communications to/from the module.

CAVP Cert	Algorithm	Standard	Mode	Length	Use
A1758	AES	FIPS 197 SP 800-38A	ECB	128, 256	AES-GCM Prerequisite
A1758	AES	SP 800-38D	GCM	128, 256	Data Encryption/ Decryption
A1758	CVL	SP 800-135r1	TLS V1.2 KDF ⁴ (SHA2-256, SHA2-384)	N/A	Key Derivation
A1758	ECDSA	FIPS 186-4	SigVer	P-384	Signature Verification
A1758	ECDSA	FIPS 186-4	KeyGen	P-256	Key Generation
A1758	HMAC	FIPS 198-1	HMAC-SHA2-256 HMAC-SHA2-384	256, 384	Message Authentication
(KAS-SSC Cert. #A1758, CVL Cert. #A1758)	KaS2	SP 800-56Ar3	N/A	P-256	Key Agreement: key establishment methodology provides 128 bits of encryption strength
A1758	KAS-SSC	SP 800-56Ar3	KAS-ECC-SSC Ephemeral Unified	P-256	Shared Secret Computation
KTS (AES Cert. #A1758)	KTS	SP 800-38D	GCM	128, 256	Key wrapping and unwrapping; key establishment methodology provides 128 or 256 bits of encryption strength
A1758	RSA	FIPS 186-4	SigVer PKCSPSS	4096	Signature Verification

Table 8 – Approved Algorithms implemented by gocrypto_mist implementation

⁴ No parts of this protocol, other than the KDF, have been tested by the CAVP and CMVP.

⁵ SP 800-56A Rev3 compliant key agreement scheme, where testing is performed separately for the shared

secret computation and for a KDF compliant with SP 800-135 Rev1. No key confirmation. Per FIPS 140-2 IG D.8 Scenario X1 path (2).

CAVP Cert	Algorithm	Standard	Mode	Length	Use
A1758	SHS	FIPS 180-4	SHA2-256	N/A	Message Digest
			SHA2-384		

Table 9 captures the algorithms implemented by the RO/RI wireless driver BCM43694 implementation. The BCM43694 RF IC is the operational environment for these algorithms. These algorithms are used to support the "802.1x WPA2" and "WPA2" services of the module which support AES-128-CCM Data Encryption & Decryption.

Table 9 – Approved Algorithms implemented by R0/R1 wireless driver BCM43694 implementation

CAVP Cert	Algorithm	Standard	Mode	Length	Use
C1273 and C1274	AES	FIPS 197 SP 800-38A	ECB	128	AES-CCM Prerequisite
C1273 and C1274	AES	SP 800-38C	CCM	128	Data Encryption/ Decryption

Table 10 - Allowed Algorithms

Algorithm	Caveat	Use
MD5	Non-approved cryptographic algorithm used to	L2TP Service
(no security	facilitate an insecure communications channel	(Tunneling of TLS V1.2 traffic)
claimed)	(L2TP) which tunnels an already secure channel	
	(TLS VI.2 traffic). No security claimed as per FIPS	
	140-2 IG 1.23 – option 2c.	
SHA-1	Non-approved cryptographic algorithm used to	L2TP Service
(no security	facilitate an insecure communications channel	(Tunneling of TLS VI.2 traffic)
claimed)	(L2TP) which tunnels an already secure channel	
	(TLS VI.2 traffic). No security claimed as per FIPS	
	140-2 IG 1.23 – option 2c.	
HMAC-SHA-1	Non-approved cryptographic algorithm used to	L2TP Service
(no security	facilitate an insecure communications channel	(Tunneling of TLS VI.2 traffic)
claimed)	(L2TP) which tunnels an already secure channel	
	(TLS VI.2 traffic). No security claimed as per FIPS	
	140-2 IG 1.23 – option 2c.	

Algorithm	Caveat	Use
HMAC-MD5	Non-approved cryptographic algorithm used to	L2TP Service
(no security	facilitate an insecure communications channel	(Tunneling of TLS VI.2 traffic)
claimed)	(L2TP) which tunnels an already secure channel	
	(TLS VI.2 traffic). No security claimed as per FIPS	
	140-2 IG 1.23 – option 2c.	
L2TP Key	Non-approved algorithm used to facilitate	L2TP Service
Transforms	random number generation for an insecure	(Tunneling of TLS VI.2 traffic)
(no security	communications channel (L2TP) which tunnels an	
claimed)	already secure channel (TLS V1.2 traffic). No	
	security claimed as per FIPS 140-2 IG 1.23 –	
	option 2c.	

The module supports the following Non-Approved Algorithms in the non-FIPS Approved Mode of Operation.

Algorithm(s)	Non-compliant Service Mapping
AES-128-CTR (non-compliant),	SSHv2 IP Tunnel
AES-256-CTR (non-compliant),	
DH 2048 (non-compliant),	
DRBG (SP800-90A AES-256-CTR) (non-compliant),	
ECDH P-256, P-384, P-521 (non-compliant),	
ECDSA P-256, P-384, P-521 (non-compliant),	
HMAC-SHA-256 (non-compliant),	
HMAC-SHA-512 (non-compliant),	
RSA 2048 (non-compliant),	
SSHv2 KDF (non-compliant)	
AES-256-CTR (non-compliant),	IPSec
AES-256-GCM (non-compliant),	
DH 4096-bit MODP group (non-compliant),	
DRBG (SP800-90A AES-256-CTR) (non-compliant),	
EdDsa Ed25519 (non-compliant),	
IKEv2 KDF SHA-512 (non-compliant),	
SHA-512 (non-compliant)	
AES-128-GCM (non-compliant),	RADSec
AES-128-CBC (non-compliant),	
DRBG (SP800-90A AES-256-CTR) (non-compliant),	
ECDH P-256 (non-compliant),	
ECDSA P-384 (non-compliant),	
RSA 4096 (non-compliant),	
SHA-256 (non-compliant),	
TLS V1.2 KDF (non-compliant)	

Table 11 - Non-Approved Algorithms

7. IDENTIFICATION AND AUTHENTICATION POLICY

The module supports a Cryptographic Officer (CO), a User and a FW Download User. The module does support concurrent operators. The module supports role-based authentication.

The CO is responsible for installation and initialization of the module as per Section 5.1 of the Security Policy. After installation, the CO can access the module over TLS V1.2 and perform the authenticated services defined for the role in Section 5.1.2 FIPS Approved Services. Module can support only one CO at a time.

The User operates the module in the field and accesses the module over 802.11 Wi-Fi Protected Access (WPA) II. Please see Section 5.1.2 FIPS Approved Services for more information on the services available to the User. Module can support up to 256 Users simultaneously.

The FW Download User can only perform the Upgrade service, and is authenticated using ECDSA P-384 SHA-384 Digital Signature Verification. Module can support only one FW Download User at a time.

Role	Authentication type	Authentication data
Cryptographic Officer (CO)	Role-Based	Cloud TLS Public Key
		(RSA 4096 or ECDSA P-384)
User	Role-Based	WPA2 Pre-Shared Key (256-bits) or
		WPA2 Master Session Key (MSK) (256-bits)
FW Download User	Role-Based	Mist Firmware Upgrade Public Key (ECDSA P-384)

Table 12 - Roles and Required Identification and Authentication

Authentication mechanism	Strength of mechanism		
Cloud TLS Public Key signature verification (RSA 4096 or ECDSA P-384)	When the CO authenticates to the module, the Cloud TLS Public Key will enter the boundary in plaintext during the TLS V1.2 handshake. The module performs validations on the incoming public key to ensure it is either an RSA 4096-bit or an ECDSA P-384 public key.		
	RSA 4096 has an equivalent computational resistance to attack of 2 ¹²⁸ , while ECDSA P-384 has an equivalent computational resistance to attack of 2 ¹⁹² . As such, taking a pessimistic approach we will use RSA 4096 for the following calculations.		
	The probability of a successful random attempt is 1/(2 ¹²⁸). This probability is less than the 1/1,000,000 required by FIPS 140-2.		
	The module supports an exponential back off, starting with a 1 second delay where 33% delay is incrementally added after each unsuccessful authentication attempt (e.g. module will impose a 1 second delay for the first attempt, a 1.33 second delay on second attempt, a 1.7689 on third attempt, etc.) Taking a pessimistic approach, within a one-minute period the module can process 10 authentication attempts.		
	The probability of a successful random attempt in a minute period is 10/2 ¹²⁸ . This probability is less than the 1/100,000 required by FIPS 140-2.		

Table 13 - Strengths of Authentication Mechanisms

Authentication mechanism	Strength of mechanism
WPA2 Pre-Shared Key (256-bits)	The user can authenticate to the module using 802.11i WPA2 Pre-Shared Key (256-bits).
	The probability of a successful random attempt is $1/(2^{256})$. This probability is less than the $1/1,000,000$ required by FIPS 140-2.
	The module can process WPA2 authentication attempts in less than 1.6ms, being pessimistic and reducing the authentication duration by 50% to 0.8ms, the module could process 75,000 attempts in a minute period (75,000 = 60,000ms/0.8ms).
	The probability of a successful random attempt in a minute period is 75,000/(2 ²⁵⁶). This probability is less than the 1/100,000 required by FIPS 140-2.
WPA2 Master Session Key (MSK) (256-bits)	The user can also authenticate to the module via RADIUS using 802.1x WPA2 Master Session Key (MSK) (256-bits).
	The probability of a successful random attempt is 1/(2 ²⁵⁶). This probability is less than the 1/1,000,000 required by FIPS 140-2.
	The module imposes a 6 second delay interval for each RADIUS authentication attempt. In a one minute period, there can be a maximum of 10 authentication attempts.
	The probability of a successful random attempt is 10/(2 ²⁵⁶). This probability is less than the 1/100,000 required by FIPS 140-2.

Authentication mechanism	Strength of mechanism
Mist Firmware Upgrade Public Key (ECDSA P-384)	The module enforces ECDSA P-384 keys for FW Download, which have a minimum equivalent computational resistance to attack of 2 ¹⁹² .
	Thus the probability of a successful random attempt is 1/(2 ¹⁹²). This probability is less than the 1/1,000,000 required by FIPS 140-2.
	If the verification fails, the module enforces a reboot to abort the operation and forces the module to run the power-up self-tests before allowing the "Upgrade" service again. Each power-up event takes approximately 37 seconds, therefore being pessimistic the number of attempts possible in a one minute period is limited to 2.
	The probability of a successful random attempt in a minute period is 2/2 ¹⁹² . This probability is less than the 1/100,000 required by FIPS 140-2.

8. ACCESS CONTROL POLICY

This section describes the access per service of the module to Keys and CSPs. The types of access can be any of the following: Read (R), Write(R), Execute(E), and Zeroize (Z),

Service	Role	CSPs and public keys	Type of Access
Power-up self-tests	None	N/A	N/A
Show status	None	N/A	N/A
Extended status report	None	N/A	N/A
Upgrade	FW Download	Mist Firmware Upgrade Public Key	R, E
	User		
Reset Push button	None	N/A	N/A
Reboot	CO	This service is issued over TLS V1.2.	E
		Please see "TLS V1.2 EP Terminator".	
Disconnect clients	CO	This service is issued over TLS V1.2.	E
		Please see "TLS V1.2 EP Terminator".	

Table	14 - Access	Control	Policv
i ubio	11 1100000	001101	i onoy

Service	Role	CSPs and public keys	Type of Access
Bounce Ethernet Ports	CO	This service is issued over TLS V1.2. Please see "TLS V1.2 EP Terminator".	E
Radio Reinit	CO	This service is issued over TLS V1.2. Please see "TLS V1.2 EP Terminator".	E
Network Status Test	CO	This service is issued over TLS V1.2. Please see "TLS V1.2 EP Terminator".	E
Configure IoT Block	CO	This service is issued over TLS V1.2. Please see "TLS V1.2 EP Terminator".	E
Zeroize	CO	All CSPs	Z
AP Configuration	CO	This service is issued over TLS V1.2. Please see "TLS V1.2 EP Terminator".	E

Service	Role	CSPs and public keys	Type of Access
TLSV1.2 EP Terminator	CO	OpenssI SP800-90A DRBG Internal DRBG state {V, Key}	R, W, E
		Openssl SP800-90A DRBG DRBG Entropy input	R, W, E
		Openssl SP800-90A DRBG DRBG Seed	R, W, E
		Module TLS ECCCDH Private Key	R, W, E, Z
		TLS Pre-Master Secret	R, W, E, Z
		TLS Master Secret	R, W, E, Z
		TLS Session Encryption and Integrity Key	R, W, E
		TLS KDF Internal State	R, W, E
		Mist CA certificate	R, E
		Cloud TLS Public Key	R, W, E
		Module TLS ECCCDH Public Key	R, W, E
		Cloud (Extern) TLS ECCCDH Public Key	R, W, E
RADIUS	User	Radius secret R, E	
		Radius AES KW KEK	R, E
		Radius MACK	R, E

Service	Role	CSPs and public keys	Type of Access
802.1X WPA2	User	WPA2 Master Session Key (MSK) This service utilizes the same CSPs as the "WPA2" service with exception of the WPA2 Pre-Shared Key. Please see WPA2".	R, W, E E
WPA2	User	WPA2 Pre-shared key 802.11i PTK	R, E R, W, E
		802.11i MIC keys (KCK)	R, W, E
		802.11i Key Encryption Key (KEK)	R, W, E
		802.11i Temporal keys (AES-CCM 128- bits)	R, W, E
		802.11i Group Master Key (GMK)	R, W, E
		802.11i Gnonce	R, W, E
		Group Temporal Key (GTK) R, W, E	
		802.11i KDF internal state	R, W, E
Bonjour	CO	This service is configured over TLS V1.2. E Please see "TLS V1.2 EP Terminator".	
L2TP	CO	This service is configured over TLS V1.2. E Please see "TLS V1.2 EP Terminator".	
BLE	CO	This service is configured over TLS VI.2. E Please see "TLS VI.2 EP Terminator".	
MESH	CO	This service is configured over TLS V1.2. E Please see "TLS V1.2 EP Terminator".	

Service	Role	CSPs and public keys	Type of Access
ALS	CO	This service is configured over TLS V1.2. Please see "TLS V1.2 EP Terminator".	E
Network configure	CO	Radius secret	R, W
		Radius AES KW KEK	R, W
		Radius MACK	R, W
		WPA2 Pre-shared key	R, W
		This service is issued over TLS VI.2. Please see "TLS VI.2 EP Terminator".	E

9. SECURITY RULES

The following specifies the security rules under which the cryptographic module shall operate:

- The module is considered to be operating in the FIPS Approved Mode of Operation when abiding by the security rules and requirements in the Security Policy. The module is shipped to the end customer in the FIPS Approved Mode of Operation. Any violation of the Security Policy will immediately place the module in a non-FIPS Approved Mode of Operation, and the module is not considered fit to protect sensitive but unclassified information.
- 2. By procedural guidance, to zeroize the entire module the operator is required to issue the "Zeroize" service and power cycle the module.
- 3. The module inhibits data output when performing power-up self-tests; interfaces are not enabled until such a time that all power-up self-test pass.
- 4. The module logically inhibits data output from processes performing key generation and zeroization.
- 5. The module supports a FIPS Error State. Any failure of power-up self-tests, or conditional self-tests, will transition the module to this state.
- 6. The module inhibits data output when in the FIPS Error State.
- 7. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 8. The module does not support concurrent operators.
- 9. The module will clear results of previous authentications when it is power-cycled; operator shall be required to reauthenticate into the module before executing any authenticated services.
- 10. The module does not support feedback (e.g. echo) of authentication data during the authentication procedure.
- 11. The module supports a limited operational environment; it only loads and executes trusted code; signed by Mist using ECDSA P-384 SHA-384. In such case all of the FIPS 140-2 Area 6 requirements are not applicable.
- 12. The IoT interface does not support data input (latent-functionality); only data output is supported by the module. To enable the pins and data output capability, use the "Configure IoT Block" service to modify the "iot_config" and specify the following for each of the 8-pins:

"enabled": true "output": true

13. The module complies with FIPS 140-2 IG A.5 Technique #1: TLS 1.2 protocol IV generation

-Module is a TLS client and performs all necessary operations entirely within the cryptographic boundary.

-The keys for the client and server negotiated in the handshake process (client_write_key and server_write_key) are compared and the module aborts the session if the key values are identical.

-The IV is 96 bits in length. The counter portion of the IV (64-bits) is set by the module within its cryptographic boundary; when the nonce_explicit part of the IV exhausts the maximum number of possible values for a given session key the module will trigger a handshake to establish a new encryption key.

-In case the module's power is lost and then restored, a new key for use with the AES GCM will be established.

10. CRITICAL SECURITY PARAMETERS and PUBLIC KEYS

The module supports the following CSPs and public keys. By procedural guidance, to zeroize the entire module the operator is required to issue the "Zeroize" service and power cycle the module.

Name	Туре	Generation	Input/output	Storage	Zeroization
Openssl SP800-90A DRBG Internal DRBG state {V, Key}	AES-256-CTR DRBG with DF	SP800-90A DRBG	Input: N/A Output: N/A	Plaintext in RAM	Power cycle
Openssl SP800-90A DRBG DRBG Entropy input	384 bits from ENT (P)	SP800-90B ENT (P)	Input: N/A Output: N/A	Plaintext in RAM	Function completion or Power cycle
Openssl SP800-90A DRBG DRBG Seed	384 bit seed	SP800-90A DRBG	Input: N/A Dutput: N/A	Plaintext in RAM	Power cycle
Module TLS ECCCDH Private Key	SP800- 56Ar3 ECCCDH (P-256)	SP800-90A DRBG	Input: N/A Output: N/A	Plaintext in RAM	Actively overwritten after Pre-Master Secret calculation or Power cycle
TLS Pre-Master Secret	256-bits	N/A – established by KAS-SSC.	Input: N/A Output: N/A	Plaintext in RAM	Actively overwritten after Master Secret calculation or Power cycle
TLS Master Secret	384-bits	N/A – established by TLS VI.2 KDF.	Input: N/A Output: N/A	Plaintext in RAM	Actively overwritten after Session Key calculation or Power cycle
TLS Session Encryption and Integrity Key	AES-GCM (128 and 256 bits)	N/A – established by TLS VI.2 KDF.	Input: N/A Dutput: N/A	Plaintext in RAM	Zeroize service or Power cycle

Table 15 – Secret Keys and CSPs

Name	Туре	Generation	Input/output	Storage	Zeroization
TLS KDF Internal State	SP800-135 KDF with SHA-256 or SHA-384	SP800-135 TLS V1.2 KDF	Input: N/A Output: N/A	Plaintext in RAM	Power cycle
Radius secret	Fixed config string as per RFC-2865 (8-64 characters)	N/A	Input: Encrypted using TLS V1.2 Output: N/A	Plaintext in NAND and RAM	Zeroize service and Power cycle
Radius AES KW KEK	SP800-38F AES KW (128-bits)	N/A	Input: Encrypted using TLS V1.2 Output: N/A	Plaintext in NAND and RAM	Zeroize service and Power cycle
Radius MACK	HMAC-SHA-1 (128-bits)	N/A	Input: Encrypted using TLS V1.2 Output: N/A	Plaintext in NAND and RAM	Zeroize service and Power cycle
WPA2 Pre-shared key	256-bits	N/A	Input: Encrypted using TLS VI.2 Output: N/A	Plaintext in NAND and RAM	Zeroize service and Power cycle
WPA2 Master Session Key (MSK)	256-bits	N/A	Input: Encrypted using "Radius AES KW KEK" Output: N/A	Plaintext in RAM	Power cycle
802.11i PTK	512-bits	N/A – established by SP800-108 KDF (SHA-256) with either the WPA2 Pre-	Input: N/A Output: N/A	Plaintext in RAM	Power cycle

Name	Туре	Generation	Input/output	Storage	Zeroization
		shared key or the WPA2 Master Session Key (MSK) as the Key Input (KI) depending on the Authentication Mechanism chosen.			
802.11i MIC keys (KCK)	HMAC-SHA-1 (128-bits)	N/A – portion of PTK established by SP800-108 KDF (SHA-256). See "802.11i PTK" row above for the Key Input (KI).	Input: N/A Output: N/A	Plaintext in RAM	Power cycle
802.11i Key Encryption Key (KEK)	SP800-38F AES KW (128-bits)	N/A – portion of PTK established by SP800-108 KDF (SHA-256). See "802.11i PTK" row above for the Key Input (KI).	Input: N/A Output: N/A	Plaintext in RAM	Power cycle
802.11i Temporal keys (AES-CCM 128-bits)	AES-CCM (128-bits)	N/A – portion of PTK established by SP800-108 KDF (SHA-256). See "802.11i PTK" row above for the Key Input (KI).	Input: N/A Output: N/A	Plaintext in RAM and BCM43694 register table	Zeroize service and Power cycle
802.11i Group Master Key (GMK)	256-bits	SP800-90A DRBG	Input: N/A Output: N/A	Plaintext in RAM	Actively overwritten after GTK calculation or Power cycle
802.11i Gnonce	256-bits	N/A – established by SP800-108 KDF (SHA-256) with the 802.11i Group Master	Input: N/A Output: N/A	Plaintext in RAM	Actively overwritten after GTK calculation or Power cycle

Name	Туре	Generation	Input/output	Storage	Zeroization
Group Temporal Key (GTK)	AES-CCM	Key (GMK) as the Key Input (KI). N/A – established by	Input: N/A	Plaintext in	Zeroize service
	(128-bits)	SP800-108 KDF (SHA-256) with the 802.11i Group Master Key (GMK) as the Key Input (KI).	Output: Encrypted using "802.11i Key Encryption Key (KEK)"	RAM and BCM43694 HW key table	and Power cycle
802.11i KDF internal state	SP800-108 KDF (SHA-256)	SP800-108 KDF	Input: N/A Output: N/A	Plaintext in RAM	Power cycle

Name Type Generation Input/output Storage ECDSA N/A – Generated outside of Input: N/A Plaintext in NAND Mist Firmware Upgrade Public Key P-384 the module during and RAM Output: N/A SHA-384 manufacturing, Mist CA certificate RSA PSS 4096 N/A - Generated outside of Input: N/A Plaintext in NAND the module during with SHA-256 and RAM Output: N/A manufacturing, or ECDSA P-384 SHA-384 RSA PSS 4096 Input: Plaintext Cloud TLS Public Key N/A Plaintext in RAM with SHA-256 over TLS V17 or handshake ECDSA Output: N/A P-384 SHA-384 Module TLS ECCCDH SP800-56Ar3 SP800-56ARev3 (Derived Plaintext in RAM Input: N/A Public Key ECCCDH from private key) **Dutput: Plaintext** (P-256) over TLS V1.2 handshake Cloud (Extern) TLS SP800-56Ar3 N/A Input: Plaintext Plaintext in RAM ECCCDH Public Key ECCCDH over TLS V1.2 (P-256) handshake Output: N/A

Table 16 – Public Keys

11. PHYSICAL SECURITY POLICY

The module is a Level 2 module with production grade materials, an opaque enclosure, and tamper evident materials. The module is shipped from manufacturing with Tamper Evident Labels (TELs) applied. A total of QTY.5 Labels will be present as per Figure 14. The TELs are not re-orderable parts. If during the inspection there is suspected compromise, this product is no longer considered fit to protect sensitive but unclassified information and must be returned to Manufacturer.

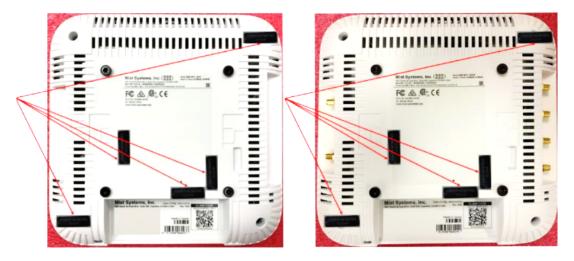


Table 17 - Inspection of Physical Security Mechanisms

Physical security mechanisms	Recommended frequency of inspection	Inspection guidance details
TELs	Once per year	Check for label damage or evidence of adhesive
		showing

12. MITIGATION OF OTHER ATTACKS POLICY

The module does not mitigate against other attacks outside the scope of FIPS 140-2.

Table 18 - Mitigation	of Other Attacks
-----------------------	------------------

Other attacks	Mitigation mechanism	Specific limitations
N/A	N/A	N/A

13. ACRONYMS

Acronyms related to the cryptographic module that will be referenced in this document are found below.

Term	Description
АР	Access Point
APT	Adaptive Proportion Test
CO	Cryptographic Officer
DRBG	Deterministic Random Bit Generator
ECCCDH	Elliptic Curve Cryptography Cofactor Diffie-Hellman
ENT (P)	Physical Entropy Source
FIPS	Federal Information Processing Standards
KAS	Key Agreement Scheme
КАТ	Known Answer Test
KTS	Key Transport Scheme
RCT	Repetition Count Test
RSA	Rivest Shamir Adleman
SHS	Secure Hashing Standard
SSC	Shared Secret Calculation
TEL	Tamper Evident Label

Table 19 - Specification of Acronyms and their Descriptions