Hughes Network Systems, LLC

HT Satellite Terminals Hardware Version: HT2300, HT2500, HT2550, HT2650 Firmware Version: 7.4.1.19

Prepared for:

HUGHES

Hughes Network Systems, LLC

11717 Exploration Lane Germantown, MD 20876 United States of America

Phone: +1 301 428 5500 www.hughes.com/ Prepared by:

Corsec Security, Inc. 13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

Phone: +1 703 267 6050 www.corsec.com

Table of Contents

1.	Intro	Introduction4				
	1.1	Purpose	4			
	1.2	References	4			
	1.3	Document Organization	4			
2.	Hugł	hes HT Satellite Terminals	5			
	2.1	Overview	5			
	2.2	Module Specification	7			
		2.2.1 Modes of Operation	10			
	2.3	Module Interfaces	10			
	2.4	Roles, Services, and Authentication	11			
		2.4.1 Authorized Roles	12			
		2.4.2 Operator Services	12			
		2.4.3 Additional Services	14			
		2.4.4 Non-Approved Services	15			
		2.4.5 Authentication	15			
	2.5	Physical Security	16			
	2.6	Operational Environment	16			
	2.7	Cryptographic Key Management	17			
	2.8	EMI / EMC	20			
	2.9	Self-Tests	20			
		2.9.1 Power-Up Self-Tests	20			
		2.9.2 Conditional Self-Tests	20			
		2.9.3 Critical Function Self-Tests	21			
		2.9.4 Self-Test Failures	21			
	2.10	Mitigation of Other Attacks	21			
3.	Secu	re Operation	22			
	3.1	Installation and Setup	22			
		3.1.1 Initial Tamper-Evident Label Inspection	22			
		3.1.2 Initial Setup and Configuration	25			
	3.2	Crypto Officer Guidance	25			
		3.2.1 Management	26			
		3.2.2 Load IPSec Key Files	26			
		3.2.3 Un-Demand Self-Tests	26			
		3.2.4 Zeroization	20			
		3.2.5 Decommission	20			
	2 2	J.z.u Working Status	∠1 27			
	5.5 2 /	Additional Guidance and Usage Policies	∠1 27			
_	J. 4		<u> </u>			
4.	Appe	endix	28			
	4.1	Acronyms	28			

List of Tables

Table 1 – Security Level per FIPS 140-2 Section Table 2 – Cryptographic Algorithm Providers	6 7
Table 3 – Algorithm Certificate Numbers (Hughes HT Satellite Terminal OpenSSL Crypto Library 1.0)	7
Table 4 – Algorithm Certificate Numbers (Hughes HT Satellite Terminal SWP Hardware Crypto Library 1	.0)8
Table 5 – Algorithm Certificate Numbers (Hughes HT Satellite Terminal UPP Hardware Crypto Library 1	.0)9
Table 6 – Algorithm Certificate Numbers (Hughes HT Satellite Terminal DPP Hardware Crypto Library 1.	0)9
Table 7 – Algorithm Certificate Numbers (Hughes HT Satellite Terminal IKEv2 Protocol Library 1.0)	9
Table 8 – Allowed Algorithm Implementations	9
Table 9 – FIPS 140-2 Logical Interface Mappings	10
Table 10 – LEDs and Status Indications	11
Table 11 – Mapping of Authenticated Module Services to Roles, CSPs, and Type of Access	12
Table 12 – Mapping of Unauthenticated Module Services to Roles, CSPs, and Type of Access	13
Table 13 – Additional Services	14
Table 14 – Non-Approved Services	15
Table 15 – Cryptographic Keys, Cryptographic Key Components, and CSPs	17
Table 16 – Acronyms	28

List of Figures

Figure 1 – Terminals within the Jupiter System	5
Figure 2 – Back View of the HT2300	23
Figure 3 – Bottom view of the HT2300	23
Figure 4 – Top View of the HT2500/HT2550	24
Figure 5 - Bottom right view of HT2650	
Figure 6 - Bottom left view of HT2650	25

1. Introduction

1.1 Purpose

This is a non-proprietary Cryptographic Module Security Policy for the HT Satellite Terminals from Hughes Network Systems, LLC, hereafter referred to as "Hughes". This Security Policy describes how the HT Satellite Terminals meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S.¹ and Canadian government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment (CSE) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 2 FIPS 140-2 validation of the module. The HT Satellite Terminals are referred to collectively in this document as Terminals, crypto module, or the module.

1.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Hughes website (<u>https://www.Hughes.com</u>) contains information on the full line of products from Hughes.
- The search page on the CMVP website (<u>https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Validated-Modules/Search</u>) can be used to locate and obtain vendor contact information for technical or sales-related questions about the module.

1.3 Document Organization

The Security Policy document is organized into two primary sections. Section 2 provides an overview of the validated module. This includes a general description of the capabilities and the use of cryptography, as well as a presentation of the validation level achieved in each applicable functional area of the FIPS standard. It also provides high-level descriptions of how the module meets FIPS requirements in each functional area. Section 3 documents the guidance needed for the secure use of the module, including initial setup instructions and management methods and policies.

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to Hughes. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to Hughes and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Hughes.

¹ U.S. – United States

2. Hughes HT Satellite Terminals

2.1 Overview

Hughes is a global leader in broadband satellite technology and managed network services for home and office. Hughes' broadband satellite systems enable operators and enterprises to deliver a comprehensive range of services including broadband Internet access, cellular backhaul, communications on the move, and VoIP² telephony.

The Hughes' Jupiter System is a broadband satellite system designed to support high-throughput satellite communications and offers a range of operations for optimized traffic capacity, terminal performance, gateway (GW) design, and network management. It consists of satellite terminals, single rack or multi rack Jupiter GWs (facilities used to host the equipment providing uplink and downlink connectivity to the satellite), and the capabilities to manage these devices over the network.

The Hughes Terminals is the indoor unit (IU), which connects the client workstation to the outdoor unit (ODU) over an inter-facility link (IFL). **Figure 1** below shows the Terminals integration within the Hughes Jupiter System.

Figure 1 – Terminals within the Jupiter System

The Hughes Terminals FIPS 140-2 validation focuses on the following Terminals models:

² VoIP – Voice Over Internet Protocol

- HT2300 desktop chassis
- HT2500 1U rack mount server
- HT2550 1U rack mount server
- HT2650 rugged outdoor chassis

Even though they vary in form factor, each model offers the following market-leading, next-generation functions:

- Forward channel wideband DVB-S2X³ support
- Return channel Low Density Parity Coding (LDPC) with Adaptive In-route Selection (AIS)
- Provides 200 Mbps⁴ throughput support

The Terminals provide an embedded web-based GUI⁵. The GUI provides easy accessibility for quick and reliable installation, status monitoring, troubleshooting, and diagnostics.

The Terminals firmware supports control plane and data plane cryptography through the Hughes OpenSSL Crypto Library, which is based on the OpenSSL FOM⁶ 2.0.16 (with OpenSSL 1.0.1p). Random number generation is provided by a hash based DRBG, which receives entropy from an SP800-90B compliant entropy source. The module supports SNMP and IKE through protocol-specific cryptographic libraries. An Acadia ASIC⁷ provides AES-NI encryption acceleration.

The Terminals cryptographic module is validated at the FIPS 140-2 Section levels shown in Table 1.

Section	Section Title	Level
1	Cryptographic Module Specification	2
2	Cryptographic Module Ports and Interfaces	2
3	Roles, Services, and Authentication	2
4	Finite State Model	2
5	Physical Security	2
6	Operational Environment	N/A ⁸
7	Cryptographic Key Management	2
8	EMI/EMC ⁹	2
9	Self-tests	2
10	Design Assurance	2
11	Mitigation of Other Attacks	N/A

Table 1 – Security Level per FIPS 140-2 Section

³ DVB-S2X – Digital Video Broadcasting – Satellite – Second Generation (Extension)

⁷ ASIC – Application Specific Integrated Circuit

⁹ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

HT Satellite Terminals ©2023 Hughes Network Systems, LLC

This document may be freely reproduced and distributed whole and intact including this copyright notice.

⁴ Mbps – Megabits per second

⁵ GUI – Graphical User Interface

⁶ FOM – FIPS Object Module

 $^{^{8}}$ N/A – Not Applicable

2.2 Module Specification

The Terminals are hardware modules with a multiple-chip standalone embodiment. The overall security level of the module is 2. The cryptographic boundary is defined by the physical enclosure of each of the Terminals and includes all internal hardware as well as the v7.4.1.19 application firmware. The module includes an Acadia ASIC with an ARM Cortex-A9 Quad Core 720 MHz¹⁰ processor.

The module includes the cryptographic algorithm providers listed in Table 2 below.

Table 2 – Cryptographic Algorithm Providers

Certificate Number	Implementation Name and Version	Use
A1460	Hughes HT Satellite Terminal OpenSSL Crypto Library 1.0	Firmware-based cryptographic primitives (based on OpenSSL FOM 2.0.16 with OpenSSL 1.0.2S)
A1437	Hughes HT Satellite Terminal SWP Hardware Crypto Library 1.0	Hardware-based cryptographic primitives
A1435	Hughes HT Satellite Terminal UPP Hardware Crypto Library 1.0	Hardware-based cryptographic primitives
A1436	Hughes HT Satellite Terminal DPP Hardware Crypto Library 1.0	Hardware-based cryptographic primitives
A1461	Hughes HT Satellite Terminal IKEv2 Protocol Library 1.0	IKE KDF (based on a Hughes proprietary IKE library)

The FIPS-Approved algorithms listed in Table 3 are implemented in the Hughes Terminals OpenSSL Crypto Library.

Certificate Number	Algorithm	Standard	Mode / Method	Key Lengths / Curves / Moduli	Use
A1460	AES ¹¹	FIPS PUB 197	CBC ¹² , CTR ¹³	128, 256	Encryption/decryption
Vendor Affirmed	CKG ¹⁴	NIST SP 800-133rev2	-	-	Cryptographic key generation
A1460	DRBG ¹⁵	NIST SP 800-90Arev1	Hash-based	SHA ¹⁶ -256	Deterministic random bit generation
A1460	DSA ¹⁷	FIPS PUB 186-4	PKCS ¹⁸ v1.5	2048 (SHA2-256)	Digital signature verification
N/A	ENT (NP) ¹⁹	NIST SP 800-90B	-	-	Non-deterministic random bit generation
A1460	HMAC ²⁰	FIPS PUB 198-1	SHA-1, SHA2-256-128, SHA2-256	-	Message authentication

Table 3 – Algorithm Certificate Numbers (Hughes HT Satellite Terminal OpenSSL Crypto Library 1.0)

¹⁰ MHz – Mega Hertz

¹¹ AES – Advanced Encryption Standard

¹² CBC – Cipher Blocker Chaining

- ¹³ CTR Counter
- ¹⁴ CKG Cryptographic Key Generation
- $^{\rm 15}\,{\rm DRBG}$ Deterministic Random Bit Generator

¹⁶ SHA – Secure Hash Algorithm

¹⁷ DSA – Digital Signature Algorithm

¹⁸ PKCS – Public Key Cryptography Standard

¹⁹ ENT - Entropy

²⁰ HMAC – (keyed-) Hashed Message Authentication Code

©2023 Hughes Network Systems, LLC

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Certificate Number	Algorithm	Standard	Mode / Method	Key Lengths / Curves / Moduli	Use
A1460	KAS-SSC ²¹	NIST SP 800-56Arev3	FFC ²² DH ²³ Primitive	Key establishment methodology provides 112 or 150 bits of encryption strength (MODP-2048 and MODP-4096)	Shared secret computation
A1460	RSA ²⁴	FIPS PUB 186-4	PKCS v1.5 SigGen	2048 (SHA2-256)	Digital signature generation
			PKCS v1.5 SigVer	2048 (SHA2-256)	Digital signature verification
A1460	Safe Primes Key Generation	NIST SP 800-56Arev3	Safe Prime Groups: MODP-2048 MODP-4096	2048, 4096	Diffie-Hellman key agreement
A1460	SHS ²⁵	FIPS PUB 180-4	SHA2-256-128, SHA2-256	-	Message digest The cryptographic library supports the truncation of HMAC SHA-2 to 128 bits according to NIST SP 800- 107rev1.

The module includes the following vendor-affirmed security methods in the Hughes Terminals OpenSSL Crypto Library v1.0:

• *Cryptographic key generation* – As per *NIST SP 800-133rev2*, the module uses the FIPS-Approved Hashbased DRBG specified in *NIST SP 800-90Arev1* to generate random seeds. The resulting generated seeds are unmodified output from the DRBG. According FIPS 140-2 Implementation Guidance D.12, a component key generation (CKG) using the unmodified output of an approved DRBG can be used to generate seed for the asymmetric key generation. This method is valid per option 1 from section "4. Using the Output of a Random Bit Generator" of FIPS SP 800-133rev2. Based on Additional Comments #1 of FIPS IG D.12, this statement is enough and it is not necessary that the vendor justifies the equivalency between this operation and XORing U and V with V as a string of zeros.

The FIPS-Approved algorithms listed in Table 4, Table 5, and Table 6 below are implemented in the module hardware.

Certificate Number	Algorithm	Standard	Mode / Method	Key Lengths / Curves / Moduli	Use
A1437	AES	FIPS PUB 197	СВС	256	Encryption/decryption
A1437	HMAC	FIPS PUB 198-1	SHA2-256	-	Message authentication

Table 1 - Algorithm Cortificate Numbers	Hughos UT Satallita Tarminal SM/D	Hardwara Crypta Library 1.0 \
Table 4 – Algorithin Certificate Numbers	nugiles n'i Saleille Terminal Swr	naluwale ciypto Libialy 1.0 j

²¹ KAS-SSC – Key Agreement Scheme Shared Secret Computation

²² FFC – Finite Field Cryptography

²³ DH – Diffie-Hellman

²⁴ RSA – Rivest Shamir Adleman

²⁵ SHS – Secure Hash Standard

Certificate Number	Algorithm	Standard	Mode / Method	Key Lengths / Curves / Moduli	Use
A1437	SHS	FIPS PUB 180-4	SHA2-256	-	Message digest

Table 5 – Algorithm Certificate Numbers (Hughes HT Satellite Terminal UPP Hardware Crypto Library 1.0)

Certificate Number	Algorithm	Standard	Mode / Method	Key Lengths / Curves / Moduli	Use
A1435	AES	FIPS PUB 197	CTR ²⁶	256	Encryption/decryption

Table 6 – Algorithm Certificate Numbers (Hughes HT Satellite Terminal DPP Hardware Crypto Library 1.0)

Certificate Number	Algorithm	Standard	Mode / Method	Key Lengths / Curves / Moduli	Use
A1436	AES	FIPS PUB 197	CTR	256	Encryption/decryption

The FIPS-Approved algorithms listed in Table 7 below are implemented in the Hughes Terminals IKEv2 Protocol Crypto Library.

Table 7 – Algorithm Certificate Numbers (Hughes HT Satellite Terminal IKEv2 Protocol Library 1.0)

Certificate Number	Algorithm	Specification	Mode / Method	Key Lengths / Curves / Moduli	Use
A1461	CVL	NIST SP 800-135rev1	IKEv2	-	Key derivation function
A1401	CVL	NIST SI 600-15516V1			No parts of the IKE protocol, other than the KDFs, have been tested by the CAVP or CMVP.

The algorithm implementations shown in Table 8 below are allowed for use in a FIPS-Approved mode of operation:

Table 8 – Allowed Algorithm Implementations

Algorithm	Caveat	Use
AES ²⁷ (Cert. A1437)	-	Key unwrapping

The module implements the non-Approved algorithms listed below (these algorithms shall not be used in the Approved mode of operation):

• SNMPv2²⁸ KDF (non-compliant)

²⁶ CTR - Counter

²⁷ MD5 – Message Digest

²⁸ SNMP – Simple Network Management Protocol

2.2.1 Modes of Operation

The module supports two modes of operation: Approved and Non-approved. The module will be in FIPS-Approved mode when all power up self-tests have completed successfully, and only Approved or Allowed algorithms are invoked. See Table 3, Table 4, Table 5, Table 6, and Table 7 for a list of the Approved and Allowed algorithms.

The module can alternate service-by-service between Approved and non-Approved modes of operation. The module will switch to the non-Approved mode upon execution of a non-Approved service. The module will switch back to the Approved mode upon execution of an Approved service.

The services available in the non-Approved mode of operation are listed in section 2.4 below.

2.3 Module Interfaces

The module's design separates the physical ports into four logically distinct and isolated categories. They are:

- Data Input Interface
- Data Output Interface
- Control Input Interface
- Status Output Interface

The cryptographic boundary is defined as the outer casing of the Terminals. The physical access points on the appliance are the interfaces for the module. Table 9 below specifies the physical ports and manual controls employed by the module and provides a mapping from the physical interfaces to logical interfaces as defined by FIPS 140-2.

		Quantity			FIPS 140-2	
Physical Port/Interface	НТ2500/ НТ2550 НТ2650		HT2650	Description	Logical Interface	
Satellite In	1	1	1	F-Type coaxial connector	Data Input	
Satellite Out	1	1	1	F-Type coaxial connector	Data Output	
Ethernet Port	4	4	2	10/100/1000Base-T RJ-45 Ethernet LAN ²⁹ port	 Data Input Data Output Control In Status Out 	
Power Connector	1	1	1	HT2300 – 4-pin Molex Connector HT2500/HT2550 – 3-pin Molex Connector HT2650 – XLR 3-pin DC Power Cable	Power supply	
Reset/Rescue Button	1	1	1	Button to turn power to the modem on/off	Control Input	

Table 9 – FIPS 140-2 Logical Interface Mappings

²⁹ LAN – Local Area Network

The HT2300, HT2500 and 2550 models have a USB³⁰ port and the HT2500, HT2550 and HT2650 have a NMEA port. The USB port is not in use while the NMEA port provides GPS location data and is not security-relevant. All data input and output are inhibited through these ports. The HT2500 and HT2550 models have a console port that are not used in the evaluated configuration.

The module uses LEDs³¹ to provide status indications for the state and health of the modem. Table 10 below lists each LED and its meaning.

NOTE: The LEDs and their meaning are the same for all modems being validated.

LED Type	Description	FIPS 140-2 Logical Interface
Ethernet LAN LED	 OFF: no connection ON: modem is connected to a computer network card or Ethernet BLINKING: transmitting and/or receiving data 	Status output
Transmit LED	 OFF: condition preventing transmission ON: transmit path is operational BLINKING – FAST: transmitting data BLINKING – SLOW: the terminal is measuring the distance to the satellite to calibrate transmit timing and transmit power 	Status output
Receiver LED	 OFF: condition preventing receipt of data ON: receive path is operational BLINKING: receiving data 	Status output
System LED	 OFF: condition preventing full operation ON: connection established BLINKING: error state 	Status output
Power supply LED	 OFF: no power ON – BLUE (HT2300), WHITE (HT2500/HT2550): power is on and the terminal is functioning normally ON – RED: error condition BLINKING: operating with fallback-bin (backup) version of software 	Status output

Table 10 – LEDs and Status Indications

2.4 Roles, Services, and Authentication

The sections below describe the module's roles and services and define any authentication methods employed.

³⁰ USB – Universal Serial Bus

³¹ LED – Light Emitting Diode

2.4.1 Authorized Roles

As required by FIPS 140-2, the module supports two roles that operators may assume: Crypto Officer (CO) role and User role. The CO role has access to all module services, while the User has access to a subset of services. Operators implicitly assume the CO and User roles upon invocation of the services specified in tables 10 or 11 below, note that the services in table 10 require authentication in order for the operator to invoke. The module supports multiple concurrent operators.

2.4.2 Operator Services

Descriptions of the services available to the CO role and User role are provided in Table 11 below. Please note that the keys and Critical Security Parameters (CSPs) listed in the table indicate the type of access required using the following notation:

- R Read: The CSP is read.
- W Write: The CSP is established, generated, or modified.
- X Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.
- Z Zeroize: The CSP is zeroized.

Table 10 below specifies the services which require authentication to the module.

Convico	Operator		Description	lagut	Quitaut	CSP and Type of Access	
Service	со	User	Description	mput	Output	CSF and Type of Access	
Load Firmware	~	~	Load new firmware into the module while in a FIPS- approved mode of operation	Command and parameters	Status Output	Firmware Verification Key – R/X NMS-Terminal SDL Protocol – R/X	
Upload SBC Config file	~		Upload new or replacement SBC Config file	Command and parameters	Command response	SBC Config file Verification Key – R/X NMS-Terminal SDL Protocol – R/X	
Decommission	~	~	Decommissions the module	Command	Command response	All ephemeral keys – Z IKE/IPsec Authentication Certificate - Z IKE/IPsec Authentication RSA Private Key – Z	

Table 11 – Mapping of Authenticated Module Services to Roles, CSPs, and Type of Access

Service	Operator		Description	Innut	Output	CSP and Type of Access	
	со	User	Description	mput	output	con and type of Access	
Zeroize	~	~	Zeroize keys and CSPs	Command	Command response	All ephemeral keys – Z IKE/IPsec Authentication CA Certificate – Z IKE/IPsec Authentication Certificate – Z IKE/IPsec Authentication RSA Private Key – Z	

Table 11 below specifies the services which do not require authentication to the module.

Table 12 Mapping of onduction deduce betwees to holes, col s, and type of Access
--

Service	Operator		Description	Input	Output	CSP and Type of Access	
Scruce	со	User	Description	mpac	Output	CSP and Type of Access	
Decrypt keys	~	~	Decrypt effective master key; decrypt session keys	Command	Status output	$TMK^{32} - R/X$ $EEMK^{33} - R/X$ $EMK^{34} - W/R/X$ $EUSK^{35} - R/X$ $USK^{36} - W$ $EMSK^{37} - R/X$ $MSK^{38} - W$ $EISK^{39} - R/X$ $ISK^{40} - W$	
Perform terminal key request	•		Request updated session keys from the KMS ⁴¹	Command	Command response	EMK - R/X $EUSK^{42} - R/X$ $USK^{43} - W$ $EMSK^{44} - R/X$ $MSK^{45} - W$ $EISK^{46} - R/X$ $ISK^{47} - W$	
Encrypt/decrypt link layer traffic	~	✓	Secure unicast, multi-cast, and in- route traffic	Command and parameters	Command response	USK – R/X MSK – R/X ISK – R/X	

³² TMK – Terminal Master Key

³³ EEMK – Encrypted Effective Master Key

³⁴ EMK – Effective Master Key

³⁵ EUSK – Encrypted Unicast Session Key

- ³⁶ USK Unicast Session Key
- ³⁷ EMSK Encrypted Multicast Session Key
- ³⁸ MSK Multicast Session Key
- ³⁹ EISK Encrypted In-route Session Key
- ⁴⁰ ISK In-route Session Key
- ⁴¹ KMS Key Management Server
- ⁴² EUSK Encrypted Unicast Session Key
- ⁴³ USK Unicast Session Key
- ⁴⁴ EMSK Encrypted Multicast Session Key
- ⁴⁵ MSK Multicast Session Key
- ⁴⁶ EISK Encrypted In-route Session Key
- ⁴⁷ ISK In-route Session Key

HT Satellite Terminals ©2023 Hughes Network Systems, LLC This document may be freely reproduced and distributed whole and intact including this copyright notice.

Servico	Operator		Description	Input	Output	CSP and Type of Access	
	со	User	Description	mpac	Output	CSF and Type of Access	
Establish IKE/IPsec session	✓	~	Establish IKE/IPsec session for secure data transmission	Command and parameters	Command response	IKE/IPsec Authentication CA ⁴⁸ Certificate – R/X IKE/IPsec Authentication Certificate – R/X IKE/IPsec Authentication RSA Private Key – R/X DH Public Key (DH public key component) – R/W/X DH Secret Key (DH private Key component) – R/W/X IKE Shared Secret – W/X IKE Session Key – W/X IKE Authentication Key – W/X IPsec Shared Secret – W/X IPsec Sated Secret – W/X IPsec Session Key – W/X IPsec Session Key – W/X IPsec Session Key – W/X IPsec Session Key – W/X DRBG Entropy – R/X DRBG Seed – R/W/X DRBG 'C' Value – R/W/X	
Perform self-tests on demand	✓	✓	Perform self-tests on demand by rebooting or power-cycling the module	Command	Status output	FW Verification Key – R/X All ephemeral keys - Z	

2.4.3 Additional Services

The module provides a limited number of services for which the operator is not required to authenticate or assume an authorized role. Table 13 lists the services for which the operator is not required to assume an authorized role or authenticate to the module in order to perform. None of these services disclose or substitute cryptographic keys and CSPs or otherwise affect the security of the module.

Service	Description	Input	Output	CSP and Type of Access
Authenticate to the module	Authenticate to the module	Command and parameters	Status output	Authentication password – R/W/X
Show status	View system status	Command	Status output	None
Display status and statistics	View current VSAT status and statistics, including IKE/IPSEC	Command	Command response	None

Service	Description	Input	Output	CSP and Type of Access
Display result of built-in self-test	Display results of non-cryptographic self- tests to confirm the health of the system	Command	Status output	None
Access help	Link to Jupiter Worldwide Enterprise to access help information for troubleshooting and operating the system	Command	Status output	None
Reboot	Manually reboot the module	Power-cycle; reset button	Status output	All ephemeral keys – Z

2.4.4 Non-Approved Services

The module performs service-by-service switching between FIPS-Approved and non-FIPS Approved mode. Table 14 below lists the services available in the non-Approved mode of operation.

Table 14 – Non-Approved Services

C omico	Operator			
Service	со	User	Security Function(s)	
Get VSAT statistics via SNMPv2	\checkmark	\checkmark	None	
Send/Receive SNMPv2 traps	\checkmark	\checkmark	SNMPv2 KDF (non-compliant)	

2.4.5 Authentication

The module supports role-based authentication. The VSAT provides access to Limited Advanced page locally only, via a PC connected to the VSAT LAN port. Certain links on the Limited Advanced page are password protected.

A successful authentication grants access to services that require authentication, and the module does not offer a method to change roles. Once an operator logs out, then re-authentication is required to again access module services.

Operator passwords shall be constructed using uppercase and lowercase letters, digits, and special characters, and will follow the password complexity policies found in section 3.4 of this document. The minimum length of the password is eight characters, with 90 different case-sensitive alphanumeric characters and symbols possible for usage. The probability that of a random attempt will succeed or a false acceptance will occur is 1 per 90⁸ possible passwords, or 1 per 4.3x10¹⁵ attempts, which is a lesser probability than 1 per 1,000,000 required by FIPS 140-2.

The fastest network connection supported by the module is 1000 Mbps. At most $(1x10^9 \text{ bits/second} \times 60 \text{ seconds}) = 6x10^{10} = 60,000,000,000 \text{ bits of data can be transmitted in one minute. The minimum password is 64 bits (8 bits per character x 8 characters), meaning 9.375x10⁸ passwords can be passed to the module (assuming there is no overhead). This equates to a 1:4,591,650 chance of a random attempt will succeed, or a false acceptance will occur in a one-minute period, which is a lesser probability than 1 per 100,000 required by FIPS 140-2.$

2.5 Physical Security

The Terminals comprise a multiple-chip standalone cryptographic module. The contents of the module, including hardware components, firmware, and data are all protected by the module enclosure. The module enclosure is opaque within the visible spectrum and consists of a hard production-grade metal case that completely encloses all internal components. The enclosures have a removable cover that is secured with screws and serialized tamper-evident labels. Note that tamper evident labels used on the HT2650 are larger than on the other models but are otherwise identical in function.

In addition, all internal components of the module are production-grade and coated with commercial-standard passivation.

2.6 **Operational Environment**

The module does not provide a general-purpose OS to the user. The module has an Acadia ASIC processor which runs the MontaVista Linux (kernel 3.10.53) The module offers no mechanisms for the operator to modify software/firmware components of the operating system, nor does it offer a way to load and execute software or firmware that was not included as part of the module validation. Only the signed image installed on each module can be executed.

2.7 Cryptographic Key Management

The module supports the CSPs listed below in Table 15.

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
Firmware Verification Key	2048-bit RSA public key	Generated externally and installed at the factory	Never exits the module	Plaintext in non-volatile memory	N/A	Used in firmware integrity check and firmware load test
SBC Config file Verification Key	2048-bit RSA public key	Generated externally and installed at the factory	Never exits the module	Plaintext in non-volatile memory	N/A	Used in SBC config file integrity check
NMS-Terminal SDL Protocol Key	2048-bit DSA public key	Generated externally and installed during initial configuration	Never exits the module	Plaintext in non-volatile memory	N/A	Authentication of packets sent from the NMS to the module
тмк	256-bit AES-CBC key	Generated externally and installed at the factory	Never exists the module	Plaintext in non-volatile memory	Decommission	Encryption/decryption – decrypts EEMK
EEMK	256-bit AES-CTR key	Generated externally and installed during initial configuration	Never exists the module	Encrypted in non-volatile memory	Decommission	Decrypted with TMK to generate the EMK
ЕМК	256-bit AES-CTR key	Generated internally by decrypting the EEMK	Never exits the module	Plaintext in volatile memory	Decommission, reboot, power cycle, or session termination	Decrypts the session keys
EUSK	256-bit AES-CTR key	Generated externally and entered encrypted via SDL protocol	Never exits the module	Encrypted in non-volatile memory	Decommission	Decrypted with EMK to generate the USK
USK	256-bit AES-CTR key	Generated internally by decrypting the EUSK	Never exits the module	Plaintext in volatile memory	Decommission, reboot, power cycle, or session termination	Secure session traffic
EMSK	256-bit AES-CTR key	Generated externally and entered encrypted via SDL protocol	Never exits the module	Encrypted in non-volatile memory	Decommission	Decrypted with EMK to generate the MSK

Table 15 – Cryptographic Keys, Cryptographic Key Components, and CSPs

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
MSK	256-bit AES-CTR key	Generated internally by decrypting the EMSK	Never exits the module	Plaintext in volatile memory	Decommission, reboot, power cycle, or session termination	Secure session traffic
EISK	256-bit AES-CTR key	Generated externally and entered encrypted via SDL protocol	Never exits the module	Encrypted in non-volatile memory	Decommission	Decrypted with EMK to generate the ISK
ISK	256-bit AES-CTR key	Generated internally by decrypting the EISK	Never exits the module	Plaintext in volatile memory	Decommission, reboot, power cycle, or session termination	Secure session traffic
Authentication Password	SHA-256 hash value	Generated externally and hashed during initial configuration	Never exits the module	Obfuscated in non-volatile memory	Decommission	Used for authentication
IKE/IPsec Authentication CA Certificate	2048-bit RSA public key	Generated externally and installed during initial configuration	Never exits the module	Plaintext in configuration file in non-volatile memory	Decommission, deletion of configuration file	Authentication during IKE/IPsec session negotiation
IKE/IPsec Authentication Certificate	2048-bit RSA public key	Generated externally and installed during initial configuration	Never exits the module	Plaintext in configuration file in non-volatile memory	Decommission, deletion of configuration file	Authentication during IKE/IPsec session negotiation
IKE/IPsec Authentication RSA Private Key	2048-bit RSA private key	Generated externally and installed during initial configuration	Never exits the module	Plaintext in configuration file in non-volatile memory	Decommission, deletion of configuration file	Authentication during IKE/IPsec session negotiation
DH Public Key (DH public key component)	2048 and 4096-bit DH public key	Internally generated based on SafePrime key generation method	Exits the module in plaintext	Plaintext in volatile memory	Decommission, reboot; power cycle; session termination	Derivation of the IKE/IPsec Session Keys and IKE/IPsec Authentication Keys
DH Secret Key (DH private key component)	2048 and 4096-bit DH public key	Internally generated based on SafePrime key generation method	Never exits the module	Plaintext in volatile memory	Decommission, reboot; power cycle; session termination	Derivation of the IKE/IPsec Session Keys and IKE/IPsec Authentication Keys
IKE Shared Secret	Shared Secret	Derived internally via DH shared secret computation	Never exits the module	Plaintext in volatile memory	Decommission, reboot; remove power; session termination	Derivation of the IKE Session Key and IKE Authentication Key

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
IKE Session Key	256-bit AES key	Derived internally via IKE KDF	Never exits the module	Plaintext in volatile memory	Decommission, reboot; power cycle; session termination	Encryption and decryption of IKE session packets
IKE Authentication Key	256-bit HMAC key	Derived internally via IKE KDF	Never exits the module	Plaintext in volatile memory	Decommission, reboot; power cycle; session termination	Authentication of IKE session packets
IPsec Shared Secret	Shared Secret	Derived internally via DH shared secret computation	Never exits the module	Plaintext in volatile memory	Decommission, reboot; remove power; session termination	Derivation of the IPsec Session Key and IPsec Authentication Key
IPsec Session Key	256-bit AES key	Derived internally via IKE KDF	Never exits the module	Plaintext in volatile memory	Decommission, reboot; power cycle; session termination	Encryption and decryption of IPsec session packets
IPsec Authentication Key	256-bit HMAC key	Derived internally via IKE KDF	Never exits the module	Plaintext in volatile memory	Decommission, reboot; power cycle; session termination	Authentication of IPsec session packets
DRBG Seed	Hash based DRBG 440-bit value	Generated internally	Never exits the module	Plaintext in volatile memory	Decommission, reboot; power cycle	Seed material for NIST SP 800-90A Hash DRBG
DRBG Entropy	Hash based DRBG 256-bit value	Generated internally	Never exits the module	Plaintext in volatile memory	Decommission, reboot; power cycle	Entropy material for NIST SP 800-90A Hash DRBG
DRBG 'V' Value	Internal state value	Generated internally	Never exits the module	Plaintext in volatile memory	Decommission, reboot; power cycle	Used for NIST SP 800-90A Hash DRBG
DRBG 'C' Value	Internal state value	Generated internally	Never exits the module	Plaintext in volatile memory	Decommission, reboot; power cycle	Used for NIST SP 800-90A Hash DRBG

Notes:

The module does not generate RSA keys. All RSA keys are generated externally and loaded into the module.

2.8 EMI / EMC

The Terminals were tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (business use).

2.9 Self-Tests

Cryptographic self-tests are performed automatically by the module when the module is first powered up and loaded into memory as well as conditionally. The following sections list the self-tests performed by the module, their expected error status, and the error resolutions.

2.9.1 Power-Up Self-Tests

The Terminals performs the following self-tests at power-up:

• Firmware

0

- Firmware integrity test (RSA 2048-bit with SHA256)
 - Hughes HT Satellite Terminal OpenSSL Crypto Library 1.0
 - AES encrypt and decrypt KATs⁴⁹ (ECB-mode)
 - DRBG KAT (NIST SP800-90A Hash DRBG)
 - HMAC KAT with SHA-1 (160-bit) and SHA2-2 (256-bit)
 - DSA pairwise consistency test
 - RSA KAT
 - DH Primitive "Z" Computation KAT (MODP-2048 and MODP-4096)

NOTE: A separate test for SHA-1 and SHA-2 is not needed as these algorithms are tested in the HMAC KAT.

- Hardware
 - Hughes HT Satellite Terminal SWP Hardware Crypto Library 1.0
 - AES encrypt and decrypt KATs (CBC-mode)
 - HMAC KAT using SHA2-256
 - SHA2-256 KAT
 - Hughes HT Satellite Terminal UPP Hardware Crypto Library 1.0
 - AES encrypt and decrypt KATs (CTR-mode)
 - Hughes HT Satellite Terminal DPP Hardware Crypto Library 1.0
 - AES encrypt and decrypt KATs (CTR-mode)

2.9.2 Conditional Self-Tests

The Terminals performs the following conditional self-tests:

- Firmware:
- Hughes HT Satellite Terminal OpenSSL Crypto Library 1.0
 - Firmware Load Test (2048-bit RSA with SHA2-256)

⁴⁹ KAT – Known Answer Test

- Continuous Health Tests on the entropy source:
 - Stuck test on entropy source
 - Adaptive Proportion Test on entropy source
 - Repetition Count Test on entropy source
 - Lag predictor test

The entropy source are also performed on 1024 consecutives noise source samples at module power-up.

The module performs all applicable assurances for its key agreement scheme as specified in section 9 of *NIST SP* 800-56Arev3.

2.9.3 Critical Function Self-Tests

The module performs health checks for the DRBG's Generate, Instantiate, and Reseed functions as specified in section 11.3 of *NIST SP 800-90Arev1*. These tests are performed at module power-up.

2.9.4 Self-Test Failures

If the module enters the critical error state due to a failure of the firmware integrity test, the fallback firmware is loaded, and the error message will be logged in the /var/log/sig.log file. The error condition is considered to have been cleared if the module successfully passes the integrity test and then all subsequent power-up self-tests. If the module continues to return to a halted state, the module is considered to be malfunctioning or compromised, and Hughes Customer Support must be contacted.

If the module enters the critical error state due to a failure of any of the remaining power-up self-tests, or if a conditional self-test fails (other than the firmware load test), all cryptographic functions and data output services are inhibited and an error message will be logged in the /fIO/fipskat_result.txt log file and is also visible on the GUI. The CO must contact Hughes Customer Support if this error persists.

If the firmware load test fails, the firmware load process is aborted and no firmware is loaded; however, no module halts or restarts are required to clear the error state. This is a transient error state; once the module sends a status message of the error, then the error state is automatically cleared, and the module returns to a fully operational state.

The module outputs status on both success and failure of the power-up self-tests, check /fl0/fipskat_result.txt for the results of self-tests.

2.10 Mitigation of Other Attacks

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2 Level 2 requirements for this validation.

3. Secure Operation

The sections below describe how to place and keep the module in the FIPS-approved mode of operation. Any operation of the module without following the guidance provided below will result in non-compliant use and is outside the scope of this Security Policy.

3.1 Installation and Setup

The CO is responsible for receiving the module, verifying package contents, and ensuring the site is prepared for initial setup and configuration. Prior to beginning this process, the CO must review the appropriate User Guide and Install Manual provided by Hughes. The following sections provide guidance for verifying placement of the tamper evident seals and performing initial setup and configuration. All steps must be completed before the module's first use.

3.1.1 Initial Tamper-Evident Label Inspection

Tamper-evident labels are applied at the factory to the Terminals to protect against unauthorized access to the modules. The tamper evident seals shall be installed for the module to operate in the approved mode of operation. If an attacker attempts to remove the labels, a residue will be left on the appliance. When the module is received, the operator must confirm placement of all tamper-evident labels.

For the HT2300, tamper-evident labels are placed on the back, top, and bottom of the enclosure (3 in total). The tamper-evident label on the back of the enclosure connects the back to the top of the device. The tamper-evident labels on the top and bottom of the enclosure secure the seams. The label placement connects both surfaces of the device so evidence of a tamper attempt will be left behind if an attacker tries to open the enclosure. If upon inspection it is found the labels have been tampered with the CO shall return the module to Hughes.

Refer to Figure 2 and Figure 3 below for placement of the tamper-evident labels.

Figure 2 – Back View of the HT2300

Figure 3 – Bottom view of the HT2300

The HT2500/HT2550 has a single (1) tamper-evident label connecting the front closure to the top of the metal enclosure. The metal enclosure is a single unit that slides off the back of the appliance. Placement of the tamper-evident label between these two surfaces ensures that evidence of tampering would be visible if an attacker tried to remove the enclosure. Refer to Figure 4 below for placement of the tamper-evident label.

Figure 4 – Top View of the HT2500/HT2550

The bottom cover of the HT2650 is connected to the top cover of the server with screws. If these screws are removed, then the components of the module are exposed. A tamper-evident label is placed on a screw on the right and left side of the bottom cover (2 in total). Placement of the tamper-evident labels on each screw ensures that evidence of tampering would be visible if an attacker tried to remove the enclosure. Refer to Figure 5 and Figure 6 below for placement of the taper-evident labels.

Figure 5 - Bottom right view of HT2650

Figure 6 - Bottom left view of HT2650

3.1.2 Initial Setup and Configuration

For installation instructions, the CO shall refer to the User Guide and Install Guide for the appropriate model of the module. During the initial setup process the following steps will be performed:

- 1. The CO will power up the module, install the outdoor antenna, connect the cables and execute the terminal installation and registration procedure. As part of this procedure, will register with the system and the configuration files will automatically be downloaded from NMS. [Note: The terminal is NOT in FIPS-Approved mode when coming out of factory].
- 2. The SDL DSA Public key for SDL signature validation is downloaded from NMS
- 3. Configuration files are downloaded via SDL protocol. IPSec Keys are downloaded as a part of these configuration files
- 4. The module will check to confirm "FIPS_Mode = Enabled" in the configuration files. If enabled, the module will automatically reboot. Upon reboot, the firmware integrity check and power-up self-tests will be performed

The CO will validate that the module is operating in a FIPS-Approved mode by verifying status on the Web UI⁵⁰.

3.2 Crypto Officer Guidance

The CO is responsible for ensuring that the module is operating in the FIPS-Approved mode of operation.

⁵⁰ UI – User Interface

3.2.1 Management

Once installed and configured, the CO is responsible for maintaining and monitoring the status of the module to ensure that it is running in its FIPS-Approved mode. Please refer to sections 3.1, 3.2, and 3.4 for guidance that the CO must follow to ensure that the module is operating in a FIPS-Approved manner.

3.2.2 Load IPSec Key Files

The CO must follow the procedure below to load the key files, and only after this is done can the module be operated in the FIPS Approved mode. This process can be repeated whenever the module is in a FIPS-Approved mode of operation to update keys. The following steps are performed to load the key file:

- 1. The CO loads new keys into NMS
- 2. The SDL protocol automatically informs the Terminal that updated keys are available
- 3. The Terminal automatically executes the SDL protocol with the NMS and downloads the updated key files
- 4. The Terminal automatically deletes the existing keys and loads the new key file into non-volatile memory

3.2.3 On-Demand Self-Tests

Although power-up self-tests are performed automatically during module power up, they can also be manually launched on demand. Self-tests can be executed by power-cycling the module, using the reset button on the platform (if applicable), or via the Web UI in "Self-Test" submenu.

3.2.4 Zeroization

There are many CSPs within the module's cryptographic boundary including symmetric keys, private keys, public keys, and passphrases. CSPs reside in multiple storage media including the RAM⁵¹ and system memory. All ephemeral keys are zeroized on module reboot, power removal, or session termination. Before taking the module out of FIPS-Approved mode, the CO must zeroize all unprotected secret and private keys by performing the following steps:

- 1. Authenticate to the Web UI and navigate to Advanced Menu -> Installation -> Advanced -> Delete Key Files
- 2. Select the **Delete Key Files** button
- 3. A "Delete All Key Files successfully" message will appear when all keys are deleted
- 4. Verify all key files are deleted by navigating to **Advanced Menu -> Installation -> Advanced -> Display Key Files**. A message of "No Key File found" will be displayed.

3.2.5 Decommission

To decommission the VSAT modules, the CO must do the following:

```
<sup>51</sup> RAM – Random Access Memory
```

- 1. Authenticate to the Web UI and navigate to Advanced Menu -> Installation -> Install
- 2. Select the Reinstall button
- 3. A confirmation message will be displayed
- 4. Click OK to confirm. The VSAT will perform the decommission process and reboot automatically.

3.2.6 Monitoring Status

The CO shall be responsible for regularly monitoring the module's status for the FIPS-Approved mode of operation. The CO confirms the module status via the dashboard of the Web UI.

3.3 User Guidance

While the CO is responsible for ensuring that the module's physical security mechanisms are in place and that the module is running in a FIPS-Approved mode of operation, users should also monitor appliance status. Any changes in the status of the module should immediately be reported to the CO.

3.4 Additional Guidance and Usage Policies

The notes below provide additional guidance and policies that must be followed by module operators:

- For services requiring authentication the module shall be administered locally.
- To execute the module's power-up self-tests on-demand, the module's host device can be rebooted or power-cycled using the reboot command from the WebGUI or the reset button.
- All passwords are created and updated through the Hughes internal systems as hash values. Even though the Hughes internal system is outside the scope of this validation, it is the responsibility of all operators to ensure that the following password restrictions followed:
 - Password must be eight (8) characters long
 - o At least one lowercase letter
 - At least one uppercase letter
 - At least one digit
 - At least one special character (~, `, !, @, #, \$, %, ^, &, *, -, _, =, +, {, }, [,], |, \, :, <, >, /, ., ,, ", ")
- The SDL service monitors the system for new firmware. When new firmware is available, it is automatically loaded into the module. Before loading the new firmware, a Firmware Load Test is performed. If the Firmware Load Test passes, the new firmware is loaded into flash and will replace the existing firmware when the module is rebooted. If the Firmware Load Test fails, the firmware is discarded, an error is logged, and the module returns to normal operation.

4. Appendix

4.1 Acronyms

Table 16 provides definitions for the acronyms used in this document.

Acronym	Definition
AES	Advanced Encryption Standard
AIS	Adaptive In-route Selection
API	Application Programming Interface
ASIC	Application Specific Integrated Circuit
СА	Certificate Authority
CAVP	Cryptographic Algorithm Validation Program
СВС	Cipher Block Chaining
cccs	Canadian Centre for Cyber Security
CKG	Cryptographic Key Generation
СМVР	Cryptographic Module Validation Program
со	Crypto Officer
CPU	Central Processing Unit
CRC	Cyclic Redundancy Check
CSP	Critical Security Parameter
CTR	Counter
CVL	Component Validation List
DH	Diffie-Hellman
DRBG	Deterministic Random Bit Generator
DSA	Digital Signature Algorithm
DVB-S2X	Digital Video Broadcasting – Satellite – Second Generation (Extension)
EC	Elliptic Curve
ECC CDH	Elliptic Curve Cryptography Cofactor Diffie Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
EEMK	Encrypted Effective Master Key
EMI/EMC	Electromagnetic Interference/Electromagnetic Compatibility
ЕМК	Effective Master Key
FFC	Finite Field Cryptography
FIPS	Federal Information Processing Standard

Table 16 – Acronyms

HT Satellite Terminals ©2023 Hughes Network Systems, LLC This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 28 of 31

Acronym	Definition
FOM	FIPS Object Module
GUI	Graphical User Interface
GW	Gateway
НМАС	(keyed-) Hash Message Authentication Code
IFL	Inter-Facility Link
IKE	Internet Key Exchange
IP	Internet Protocol
IPsec	Internet Protocol Security
ISK	In-Route Session Key
IU	Indoor Unit
IV	Initialization Vector
KAS	Key Agreement Scheme
KAS-SSC	Key Agreement Scheme – Shared Secret Computation
КАТ	Known Answer Test
KDF	Key Derivation Function
KMS	Key Management Server
KPG	Key Pair Generation
LAN	Local Area Network
LDPC	Low Density Parity Coding
LED	Light-Emitting Diode
Mbps	Megabits Per Second
MBX	Multiplexed Block Exchange
MHz	Mega Hertz
MSK	Multi-Cast Session Key
N/A	Not Applicable
NIST	National Institute of Standards and Technology
NMS	Network Management Server
ODU	Outdoor Unit
OS	Operating System
РСТ	Pairwise Consistency Test
PKCS	Public Key Cryptography Standard
PUB	Publication
RAM	Random Access Memory
RNG	Random Number Generator
RSA	Rivest Shamir Adleman
SATA	Serial Advanced Technology Attachment

HT Satellite Terminals ©2023 Hughes Network Systems, LLC This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 29 of 31

Acronym	Definition			
SCSI	Small Computer System Interface			
SDL	Software Download			
SHA	Secure Hash Algorithm			
SHS	Secure Hash Standard			
SNMP	Simple Network Management Protocol			
SP	Special Publication			
SSL	Secure Socket Layer			
тмк	Terminal Master Key			
UI	User Interface			
U.S.	United States			
USB	Universal Serial Bus			
USK	Unicast Session key			
VolP	Voice Over Internet Protocol			
VSAT	Very Small Aperture Terminal			

Prepared by: Corsec Security, Inc.

13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

> Phone: +1 703 267 6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>