

AWS-LC Cryptographic Module

Module Version: AWS-LC FIPS 1.0.2

FIPS 140-3 Non-Proprietary Security Policy

Document version: 1.4

Last update: 2023-09-11

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

1 Table of Contents

1	Gen	ieral	5
	1.1	This Security Policy Document	. 5
	1.2	How this Security Policy was Prepared	. 6
2	Cry	ptographic Module Specification	7
	2.1	Module Overview, Embodiment, Type	. 7
	2.2	Module Design, Components, Versions	. 7
	2.2.	1 Components Excluded from the Security Requirements	. 7
	2.3	Security Level	. 7
	2.4	Tested Operational Environments	. 7
	2.5	Vendor Affirmed Operational Environments	. 8
	2.6	Modes of Operation of the Module	. 8
	2.7	Security Functions	
	2.7.	1 Approved Algorithms	. 8
	2.7.	2 Non-Approved Algorithms Allowed in the Approved Mode of Operation	14
	2.7.		11
	2.7.	urity Claimed	
	2.7.	Rules of Operation	
3	-	ptographic Module Interfaces	
4		es, Services, and Authentication	
-	4.1	Roles	
	4.2	Authentication	
	4.3	Services	
	4.3.	1 Service Indicator	18
	4.3.	2 Approved Services	18
_	4.3.	3 Non-Approved Services	20
5		3 Non-Approved Services tware/Firmware Security	
5			21
5	Sof	tware/Firmware Security	21 21
5	Sof 5.1	tware/Firmware Security Integrity Techniques	21 21 21
5	Sof 5.1 5.2 5.3	tware/Firmware Security Integrity Techniques On-Demand Integrity Test	21 21 21 21 21
_	Sof 5.1 5.2 5.3	tware/Firmware Security Integrity Techniques On-Demand Integrity Test Executable Code	 21 21 21 21 21 22
_	Sof 5.1 5.2 5.3 Ope	tware/Firmware Security Integrity Techniques On-Demand Integrity Test Executable Code erational Environment	 21 21 21 21 21 22
_	Sof 5.1 5.2 5.3 Ope 6.1	tware/Firmware Security Integrity Techniques On-Demand Integrity Test Executable Code erational Environment Applicability	 21 21 21 21 21 22 22 22

© 2023 Amazon Web Services, Inc., atsec information security.

8	Non	-Inva	sive Security	24
9	Sen	sitive	Security Parameter Management	25
	9.1	Rando	om Bit Generator	27
	9.2	SSP G	eneration	27
	9.3	SSP E	ntry and Output	27
	9.4	SSP E	stablishment	28
	9.5	SSP S	torage	28
	9.6	Zeroiz	zation	28
10	Self	-Tests	5	29
	10.1	Pre-O	perational Self-Tests	30
	10.1	.1 P	Pre-Operational Software Integrity Test	30
	10.1	.2 P	re-Operational Bypass and Critical Functions Tests	30
	10.2	Condi	tional Self-Tests	30
	10.2	.1 0	Cryptographic Algorithm Self-Tests	30
	10.2	.2 0	Conditional Pairwise Consistency Tests	30
	10.3	Period	lic/On-Demand Self-Tests	30
	10.4	Error	States	31
11	Life	-Cycle	e Assurance	32
	11.1	Delive	ery and Operation	32
	11.2	Crypt	o Officer Guidance	33
	11.2	.1 A	ES-GCM IV Generation	33
	11.3	End o	f Life Procedure	34
12	Miti	gatio	n of Other Attacks	35
13	Glos	ssary	and Abbreviations	36
14	Refe	erence	es	37

Copyrights and Trademarks

Amazon is a registered trademark of Amazon Web Services, Inc. or its affiliates.

1 General

This document is the non-proprietary FIPS 140-3 Security Policy for version AWS-LC FIPS 1.0.2 of the AWS-LC Cryptographic Module. It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for an overall Security Level 1 module.

Table 1 describes the individual security areas of FIPS 140-3, as well as the security levels of those individual areas.

ISO/IEC 24759 Section 6. Subsections	FIPS 140-3 Section Title	Security Level
1	General	1
2	Cryptographic Module Specification	1
3	Cryptographic Module Interfaces	1
4	Roles, Services, and Authentication	1
5	Software/Firmware Security	1
6	Operational Environment	1
7	Physical Security	N/A
8	Non-invasive Security	N/A
9	Sensitive Security Parameter Management	1
10	Self-tests	1
11	Life-cycle Assurance	1
12	Mitigation of Other Attacks	1

Table 1: Security Levels.

1.1 This Security Policy Document

This Security Policy describes the features and design of the module named AWS-LC Cryptographic Module using the terminology contained in the FIPS 140-3 specification. The FIPS 140-3 Security Requirements for Cryptographic Module specifies the security requirements that will be satisfied by a cryptographic module utilized within a security system protecting sensitive but unclassified information. The NIST/CCCS Cryptographic Module Validation Program (CMVP) validates cryptographic module to FIPS 140-3. Validated products are accepted by the Federal agencies of both the USA and Canada for the protection of sensitive or designated information.

The Security Policy document is one document in a FIPS 140-3 Submission Package. In addition to this document, the Submission Package contains:

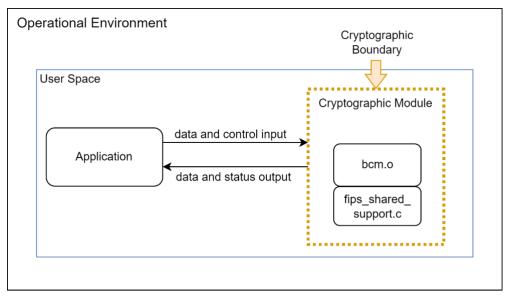
- The validation report prepared by the lab.
- The Entropy Assessment Report (EAR) if applicable.
- Other supporting documentation and additional references.

This Non-Proprietary Security Policy may be reproduced and distributed, but only whole and intact and including this notice. Other documentation is proprietary to their authors.

1.2 How this Security Policy was Prepared

The vendor has provided the non-proprietary Security Policy of the cryptographic module, which was further consolidated into this document by atsec information security together with other vendor-supplied documentation. In preparing the Security Policy document, the laboratory formatted the vendor-supplied documentation for consolidation without altering the technical statements therein contained. The further refining of the Security Policy document was conducted iteratively throughout the conformance testing, wherein the Security Policy was submitted to the vendor, who would then edit, modify, and add technical contents. The vendor would also supply additional documentation, which the laboratory formatted into the existing Security Policy, and resubmitted to the vendor for their final editing.

2 Cryptographic Module Specification


2.1 Module Overview, Embodiment, Type

The AWS-LC Cryptographic Module (hereafter referred to as "the module") is a Software Multichip standalone cryptographic module. The module provides cryptographic services to applications running in the user space of the underlying operating system through a C language Application Program Interface (API).

2.2 Module Design, Components, Versions

The block diagram in Figure 1 shows the cryptographic boundary of the module, its interfaces with the operational environment and the flow of information between the module and operator (depicted through the arrows).

The module components consist of the <code>bcm.o</code> file in executable form and <code>fips_shared_support.c</code> file that holds the pre-computed integrity check value. They are all of version AWS-LC FIPS 1.0.2.

Figure 1: Block diagram depicting the cryptographic boundary and data flow between the module interfaces and operator.

2.2.1 Components Excluded from the Security Requirements

There are no components excluded from the security requirements.

2.3 Security Level

The module is validated according to FIPS 140-3 at overall security level 1. The security levels of individual areas are indicated in Table 1.

2.4 Tested Operational Environments

The module has been tested on the platforms indicated in Table 2, with the corresponding module variants and configuration options with and without PAA.

#	Operating System	Hardware Platform	Processor	PAA/Acceleration	
1	Ubuntu 20.04	Amazon EC2 c5.metal with 192 GiB system memory and	Intel ®Xeon ® Platinum	AES-NI and SHA extensions (PAA)	
2	Amazon Linux 2	Elastic Block Store (EBS) 200 GiB	8275CL		
3	Ubuntu 20.04	Amazon EC2 c6g.metal with 128 GiB system memory and	Graviton 2	Neon and Crypto Extension (CE)	
4	Amazon Linux 2	Elastic Block Store (EBS) 200 GiB		(PAA)	

Table 2: Tested Operational Environments.

2.5 Vendor Affirmed Operational Environments

The vendor claims the platforms listed in Table 2-a to be vendor affirmed. The module functions the same way as it functions on the tested operational environments and provides the same services on the systems listed in Table 2-a.

Note: The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

#	Operating System	Hardware Platform
1	RHEL5	Amazon m4.4xlarge with Intel® Xeon® CPU E5-2686
2	Amazon Linux 2012	Amazon m4.4xlarge with Intel® Xeon® CPU E5-2686

Table 2-a: Vendor-Affirmed Operational Environments

2.6 Modes of Operation of the Module

When the module starts up successfully, after passing the pre-operational self-test and the cryptographic algorithms self-tests (CASTs), the module is operating in the approved mode of operation by default and can only be transitioned into the non-approved mode by calling one of the non-approved services listed in Table 9. Section 4 provides details on the service indicator implemented by the module. The service indicator identifies when an approved service is called.

2.7 Security Functions

2.7.1 Approved Algorithms

Table 3 lists the approved security functions (or cryptographic algorithms) of the module, including specific key lengths employed for approved services, and implemented modes or methods of operation of the algorithms.

CAVP Cert.	Algorithm and Standard	Mode/Method	Description/Key Size(s)/Key Strength(s)	Use/Function
A2177	AES	СВС	128, 192, 256 bits	Encryption/Decryption
A2180	FIPS197,		with 128-256 bits of key strength	AES_cbc_encrypt
A2183	SP800-38A			
A2186				
A2190				
A2194	AES FIPS197,	ССМ	128 bits with 128	Encryption/Decryption
	SP800-38C		bits of key strength	EVP_aead_aes_128_*
	AES FIPS197,	СМАС	128, 256 bits with 128 and 256 bits of	Message Authentication Generation
	SP800-38B		key strength	EVP_aead_aes_*
	AES	CTR	128, 192, 256 bits with 128-256 bits of	Encryption/Decryption
	FIPS197,		key strength	AES_ctr*_encrypt
A2177	- SP800-38A	ECB	128, 192, 256 bits	Encryption/Decryption
A2178			with 128-256 bits of key strength	AES_ecb_encrypt
A2180			key strength	
A2181				
A2183				
A2184				
A2186				
A2187				
A2188				
A2189				
A2190				
A2191				
A2192				
A2193				
A2194				
A2195				
A2196				
A2197				

CAVP Cert.	Algorithm and Standard	Mode/Method	Description/Key Size(s)/Key Strength(s)	Use/Function
A2178	AES FIPS197,	GCM with Internal IV Mode 8.2.2	128, 256 bits with 128 and 256 bits of	Authenticated Encryption/Decryption
A2181	SP800-38D		key strength	EVP_aead_aes_# ¹ _gcm_ran
A2184				dnonce
A2187				
A2188				
A2189				
A2191				
A2192				
A2193				
A2195				
A2196				
A2197				
A2178	-	GCM with external IV	128, 256 bits with 128 and 256 bits of	Authenticated Encryption/Decryption
A2181			key strength	EVP_aead_aes_# ¹ _gcm_tls1
A2184				2
A2187				EVP_aead_aes_#1_gcm_tls1
A2188				5
A2189				
A2191				
A2192				
A2193				
A2195				
A2196				
A2197				

 $\ensuremath{\mathbb{C}}$ 2023 Amazon Web Services, Inc., atsec information security.

¹ Here, the "#" can be 128 or 256. This number corresponds to the respective key size used for GCM.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

CAVP Cert.	Algorithm and Standard	Mode/Method	Description/Key Size(s)/Key Strength(s)	Use/Function
A2178		GMAC	128, 192, 256 bits	Message Authentication
A2181			with 128-256 bits of key strength	Generation
A2184				EVP_aead_aes_*
A2187				
A2188				
A2189				
A2191				
A2192				
A2193				
A2195				
A2196				
A2197				
A2177	AES FIPS197,	KW	128, 192, 256 bits	Key Wrapping/Unwrapping
A2180	SP800-38F		with 128-256 bits of key strength	
A2183				
A2186				
A2190				
A2194				
A2177		KWP		
A2180				
A2183				
A2186				
A2190				
A2194				
N/A	CKG IG D.H, SP800- 133rev2 section 5.1	Vendor Affirmed	RSA: 2048, 3072, 4096 bits with 112, 128, 149 bits of key strength; EC: P-224, P-256, P-384, P-521 elliptic	Key Generation RSA_generate_key_fips, EC_KEY_generate_key_fips EVP_PKEY_keygen
			curves with 112-256 bits of key strength	

© 2023 Amazon Web Services, Inc., atsec information security.

CAVP Cert.	Algorithm and Standard	Mode/Method	Description/Key Size(s)/Key Strength(s)	Use/Function
A2177	DRBG	CTR_DRBG no DF, no	256 bit key with 256	Random Number Generation
A2180	SP800-90Arev1	PR	bits of key strength	
A2183				
A2186				
A2190				
A2194				
A2182	ECDSA	B.4.2 Testing	P-224, P-256, P-384,	Key Generation
A2185	FIPS 186-4	Candidates	P-521 elliptic curves with 112-256 bits of	EC_KEY_generate_key_fips
A2198			key strength	or EVP_PKEY_keygen
A2199		N/A	P-224, P-256, P-384,	Key Verification
A2200	.2200		P-521 elliptic curves with 112-256 bits of key strength	
		SHA2-224, SHA2-256, SHA2-384, SHA2-512	P-224, P-256, P-384, P-521 elliptic curves with 112-256 bits of key strength	Signature Generation
				EVP_DigestSign or
				EVP_DigestSignInit
				EVP_DigestSignUpdate
				EVP_DigestSignFinal
		SHA2-224, SHA2-256,	P-224, P-256, P-384, P-521 elliptic curves	Signature Verification
		SHA2-384, SHA2-512	with 112-256 bits of	EVP_DigestVerify or
			key strength	EVP_DigestVerifyInit
				EVP_DigestVerifyUpdate
				EVP_DigestVerifyFinal
N/A	ENT (NP)	CPU jitter source	N/A	Random Number Generation
	SP800-90B			
A2182	НМАС	HMAC-SHA-1,	112 bits or greater	Message Authentication
A2185	FIPS198-1	HMAC-SHA2-224, HMAC-SHA2-384,	with key strength of 112 bits or greater	Generation
A2198		HMAC-SHA2-512		
A2199				
A2200				

CAVP Cert.	Algorithm and Standard	Mode/Method	Description/Key Size(s)/Key Strength(s)	Use/Function
A2179		HMAC-SHA2-256		
A2182				
A2185				
A2198				
A2199				
A2200				
A2182	KAS ECC SSC	ECC Ephemeral Unified	P-224, P-256, P-384,	Shared Secret Computation
A2185	SP800-56ARev3	scheme	P-521 elliptic curves with 112-256 bits of	
A2198			key strength	
A2199				
A2200				
CVL:	KDF TLS	TLS 1.0/1.1/TLS 1.2:	N/A	Key Derivation
A2182	SP800-135rev1	SHA2-256, SHA2-384,		
A2185		SHA2-512		
A2198				
A2199				
A2200				
A2177	ктѕ	AES-KW, AES-KWP	128, 192, 256 bits	Key Wrapping/Unwrapping
A2180	SP800-38F		with 128-256 bits of key strength	
A2183			itely screnger	
A2186				
A2190				
A2194				
A2182	RSA	B.3.3 Random Probable	2048, 3072, 4096	Key Generation
A2185	FIPS 186-4	Primes	bits with 112, 128, 149 bits of key	RSA_generate_key_fips or
A2198			strength	EVP_PKEY_keygen
A2199		PKCS#1v1.5 and PSS	2048, 3072, 4096	Signature Generation
A2200		with SHA2-224, SHA2-256, SHA2-384,	bits with 112, 128, 149 bits of key	EVP_DigestSign or
		SHA2-512	strength	EVP_DigestSignInit
				EVP_DigestSignUpdate
				EVP_DigestSignFinal
				-

CAVP Cert.	Algorithm and Standard	Mode/Method	Description/Key Size(s)/Key Strength(s)	Use/Function
		PKCS#1v1.5 and PSS with SHA-1, SHA2-224,	2048, 3072, 4096 bits with 112, 128,	Signature Verification
		SHA2-256, SHA2-384,	149 bits of key	EVP_DigestVerify or
		SHA2-512	strength	EVP_DigestVerifyInit
				EVP_DigestVerifyUpdate
				EVP_DigestVerifyFinal
A2182	SHA FIPS180-4	SHA-1, SHA2-224,	N/A	Message Digest
A2185		SHA2-384, SHA2-512, SHA2-512/256		
A2198				
A2199				
A2200				
A2179		SHA2-256		
A2182				
A2185				
A2198				
A2199				
A2200				

Table 3: Approved Algorithms.

Note: no parts of the TLS v1.0/1.1, v1.2 protocols, other than the approved cryptographic algorithms and the KDFs, have been tested by the CAVP and CMVP.

2.7.2 Non-Approved Algorithms Allowed in the Approved Mode of Operation

The module does not implement non-approved algorithms that are allowed in the approved mode of operation.

2.7.3 Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed

Table 4 lists the non-approved algorithms that are allowed in the approved mode of operation with no security claimed. These algorithms are used by the approved services listed in Table 8.

Algorithm	Caveat	Use/Function
MD5	Allowed per IG 2.4.A	Message Digest used in TLS 1.0/1.1 KDF only

Table 4: Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed.

© 2023 Amazon Web Services, Inc., atsec information security.

2.7.4 Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

Table 5 lists non-approved algorithms that are not allowed in the approved mode of operation. These algorithms are used by the non-approved services listed in Table 9.

Algorithm/Functions	Use/Function
DES	Encryption/Decryption
Triple-DES	Encryption/Decryption
AES with OFB or CFB modes	Encryption/Decryption
AES-GCM with 192 bits	Encryption/Decryption
AES using aes_*_generic function	Encryption/Decryption
AES GMAC using aes_*_generic	Message Authentication Generation
Diffie Hellman	Shared Secret Computation
MD4	Message Digest
MD5	Message Digest (outside of TLS)
SHA-1	Signature Generation
RSA using <i>RSA_generate_key_ex</i>	Key Generation
ECDSA using EC_KEY_generate_key	Key Generation
RSA using keys less than 2048 bits	Signature Generation/Verification
RSA	Key Wrapping, sign/verify primitive operations without hashing
TLS KDF using any SHA algorithms not listed in Table 3	Key Derivation

Table 5: Non-Approved Algorithms, Not Allowed in the Approved Mode of Operation.

2.8 Rules of Operation

The module initializes upon power-on. After the pre-operational self-tests are successfully concluded, the module automatically transitions to the operational state. In this state, the module awaits services requests from the operator.

3 Cryptographic Module Interfaces

As a Software module, the module interfaces are defined as Software or Firmware Module Interfaces (SMFI), and there are no physical ports. The interfaces are mapped to the API provided by the module, through which the operator can interact. The interfaces are listed in Table 6.

All data output via data output interface is inhibited when the module is performing preoperational test or zeroization or when the module enters error state.

Logical Interface	Data that passes over port/interface
Data Input	API input parameters for data.
Data Output	API output parameters for data.
Control Input	API function calls.
Status Output	API return codes, error message.

Table 6: Ports and Interfaces.²

² The control output interface is omitted on purpose because the module does not implement it. The physical ports are not applicable because the module is software only.

4 Roles, Services, and Authentication

4.1 Roles

The module supports the Crypto Officer role only. This sole role is implicitly assumed by the operator of the module when performing a service.

Table 7 lists the roles supported by the module with corresponding services with input and output.

Role	Service	Input	Output	
Crypto	Encryption	Plaintext, key	Ciphertext	
Officer	Decryption	Ciphertext, key	Plaintext	
	Authenticated Encryption	Plaintext, key	Ciphertext, authentication tag	
	Authenticated Decryption	Ciphertext, authentication tag, key	Plaintext	
	Key Unwrapping	Key unwrapping key, key to be unwrapped	Unwrapped key	
	Key Wrapping	Key wrapping key, key to be wrapped	Wrapped key	
	Message Authentication Generation	Message, HMAC key, AES key	Message authentication code	
	Message Digest	Message	Digest of the message	
	Random Number Generation	Number of bits	Random numbers	
	Key Generation	Key size	Key pair	
	Key Verification	ey Verification Key to verify		
	Signature Generation	Message, hash algorithm, private key	Signature	
	Signature Verification	Signature, hash algorithm, public key	Verification result	
	Shared Secret Computation	Private key, public key from peer	Shared secret	
	Key Derivation	PRF algorithm, TLS pre- master secret, TLS master secret	Derived keys	
	Zeroization	Context containing SSPs	none	
	On-Demand Self-test	Module reset	Result of self-test (pass/fail)	
	On-Demand Integrity Test	None	Result of test (pass/fail)	

© 2023 Amazon Web Services, Inc., atsec information security.

Show St	atus	None	Return codes and/or log messages
Show Ve	ersion	None	Name and version information

Table 7: Roles, Service Commands, Input and Output.

4.2 Authentication

The module does not support authentication.

4.3 Services

The module provides services to operators who assume the available role. All services are described in detail in the developer documentation.

The next subsections define the services that utilize approved and allowed security functions, and the services that utilize non-approved security functions in this module. For the respective tables, the convention below applies when specifying the access permissions (types) that the service has for each SSP.

- G = Generate: The module generates or derives the SSP.
- R = Read: The SSP is read from the module (e.g., the SSP is output).
- W = Write: The SSP is updated, imported, or written to the module.
- E = Execute: The module uses the SSP in performing a cryptographic operation.
- Z = Zeroize: The module zeroizes the SSP.

For the role, CO indicates "Crypto Officer".

4.3.1 Service Indicator

The module implements a service indicator that indicates whether the invoked service is approved. The service indicator is a return value 1 from the

FIPS_service_indicator_check_approved function. This function is used together with two other functions. The usage is as follows:

• STEP 1: Should be called before invoking the service.

int before = FIPS_service_indicator_before_call();

• STEP 2: Make a service call i.e., API function for performing a service.

func;

• STEP 3: Should be called after invoking the service.

int after = FIPS_service_indicator_after_call();

• STEP 4: Return value 1 indicates approved service was invoked.

int Return= FIPS_service_indicator_check_approved(before, after);

Alternatively, all the above steps can be done by using a single call using the function CALL SERVICE AND CHECK APPROVED (approved, func).

4.3.2 Approved Services

Table 8 lists the approved services that utilize approved and allowed security functions.

© 2023 Amazon Web Services, Inc., atsec information security.

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to SSPs	Indicator
Encryption	Encryption	AES CBC, CTR, ECB	AES Key	CO	W, E	Return
Decryption	Decryption	listed in Table 3				value 1 from the
Authenticated Encryption	Authenticated Encryption	AES CCM AES GCM listed in	AES Key	со	W, E	function
Authenticated Decryption	Authenticated Decryption	Table 3				service_ indicator _
Key wrapping	Encrypting a key	AES KW, KWP	AES key	CO	W, E	check_ approved(
Key unwrapping	Decrypting a key	AES KW, KWP	AES key	СО	W, E)
Message	MAC computation	AES CMAC	AES Key	CO	W, E	
Authentication Generation		AES GMAC	HMAC Key			
		НМАС				
Message Digest	Generating message digest	SHA	N/A	СО	N/A	
Random	Generating random	CTR_DRBG, ENT	Entropy Input	CO	W, E	
Number Generation	numbers	(NP)	DRBG Seed, V, Key	СО	G, E	
Key Generation	Generating key pair	RSA listed in Table 3, CKG	RSA key pair	со	W, E, G	
		ECDSA listed in Table 3, CKG	ECDSA key pair	СО		
Key Verification	Verifying the public key	ECDSA listed in Table 3	ECDSA Public key	СО	W, E	
Signature Generation	Generating signature	RSA, ECDSA listed in Table 3	RSA/ECDSA private key	СО	W, E	
Signature Verification	Verifying signature	RSA, ECDSA listed in Table 3	RSA/ECDSA public key	СО	W, E	
	Calculating shared	KAS-ECC-SSC	EC key pair	CO	W, E	
Computation	secret		Shared secret	CO	G	
Key Derivation	Deriving TLS keys	TLS KDF 1.0/1.1/1.2	TLS pre-master secret	со	W, E	
			TLS master secret	СО	W, E, G	
			TLS derived keys		G	
Zeroization	Zeroize PSP in volatile memory	None	All SSPs	CO	Z	

© 2023 Amazon Web Services, Inc., atsec information security.

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to SSPs	Indicator
On-Demand Self-test	Initiate power-on self- tests by reset	AES, HMAC, SHA, DRBG, RSA, ECDSA, KAS ECC SSC, TLS KDF	N/A ³	СО	N/A	
On-Demand Integrity Test	Initiate integrity test on-demand	HMAC-SHA2-256	N/A ³	СО	N/A	
Show Status	Show status of the module state	N/A	N/A	СО	N/A	
Show Version	Show the version of the module using awslc_version_strin g	N/A	N/A	СО	N/A	

Table 8: Approved Services.

4.3.3 Non-Approved Services

Table 9 lists the non-approved services that utilize non-approved security functions.

Service	Description	Algorithms Accessed	Role	Indicator
Encryption	Encryption	AES, DES, Triple-DES		Return value 0
Decryption	Decryption	listed in Table 5		from the function
Message Authentication Generation	MAC computation	AES GMAC listed in Table 5		service_ indicator_ check
Message Digest	Generating message digest	MD4, MD5 outside TLS 1.0 usage		approved()
Signature Generation	Generating signature	Using SHA-1		
		RSA listed in Table 5		
Signature Verification	Verifying signature	RSA listed in Table 5		
Key Generation	Generating key pair	RSA or ECDSA listed in Table 5		
Shared Secret Computation	Calculating shared secret	Diffie-Hellman		
Key Derivation	Deriving TLS keys	TLS KDF listed in Table 5]	
Key Unwrapping	Decrypting a key	RSA		
Key Wrapping	Encrypting a key	RSA		

Table 9: Non-Approved Services.

© 2023 Amazon Web Services, Inc., atsec information security.

³ Keys for self-tests are not SSPs.

5 Software/Firmware Security

5.1 Integrity Techniques

The integrity of the module is verified by comparing a HMAC value calculated at run time on the bcm.o file, with the HMAC-SHA2-256 value stored in the module file <code>fips_shared_support.c</code> that was computed at build time.

5.2 On-Demand Integrity Test

The module provides on-demand integrity test. The integrity test is performed by the On-Demand Integrity Test service, which calls the <code>BORINGSSL_integrity_test</code> function. The integrity test is also performed as part of the Pre-Operational Self-Tests.

5.3 Executable Code

The module consists of executable code in the form of bcm.o file. The compilers and control parameters required to compile the code into an executable format are specified in Section 11.

6 Operational Environment

6.1 Applicability

The module operates in a modifiable operational environment. The module runs on a commercially available general-purpose operating system executing on the hardware specified in section 2. The module does not support concurrent operators. The module does not support software/firmware loading.

6.2 Requirements

The module should be compiled and installed as stated in section 11. The user should confirm that the module is installed correctly by following steps 4 and 5 listed in section 11.1.

6.3 Vendor Affirmation

The vendor claims the platforms listed in Table 2-a to be vendor affirmed, and the module functions the same way as it functions on the tested operational environments.

7 Physical Security

The module is comprised of software only and therefore this section is not applicable.

8 Non-Invasive Security

The module claims no non-invasive security techniques.

9 Sensitive Security Parameter Management

Table 10 summarizes the SSPs that are used by the cryptographic services implemented in the module.

Key/SSP Name/ Type	Strength	Security Function and Cert. Number ⁴	Generation	Import /Export	Establish ment	Stora ge	Zeroization	Use and related keys
AES key	128 to 256	A2177	N/A	Import: CM	MD/EE	RAM	OPENSSL_cleanse,	Use:
	bits	A2178		from TOEPP Path.			EVP_AEAD_CTX_zero	Encryption, Decryption,
		A2180		Passed into				Authenticat ed
		A2181		the module via API input				Encryption,
		A2183		parameter in				Authenticat ed
		A2184		plaintext (P) format.				Decryption,
		A2186						Key wrapping,
		A2187						Key unwrapping,
		A2188						Message
		A2189						Authenticati on
		A2190						Generation
		A2191						
		A2192						
		A2193						
		A2194						
		A2195						
		A2196						
		A2197						
HMAC key	112 or	A2179	N/A	-	MD/EE	RAM	HMAC_CTX_cleanup	Use:
	greater	A2182						Message Authenticati
		A2185						on
		A2198						Generation
		A2199						
		A2200						
DRBG	256	A2177	N/A	Obtained from	N/A	RAM	CTR_DRBG_clear	Use:
Entropy Input		A2180		the ENT (NP)				Random Number
	A2183				Generation			
		A2186						Related
		A2190						SSPs: DRBG Seed,
		A2194						V, Key
DRBG Seed,	256	A2177	Per SP800-	N/A	N/A	RAM	CTR_DRBG_clear	Use:
V, Key		A2180	90Arev1 DRBG					Random

⁴ See for the algorithm certificate numbers of each algorithm listed in this column.

 $\ensuremath{\mathbb{C}}$ 2023 Amazon Web Services, Inc., atsec information security.

Key/SSP Name/ Type	Strength	Security Function and Cert. Number ⁴	Generation	Import / Export	Establish ment	Stora ge	Zeroization	Use and related keys
		A2183						Number Generation
		A2186 A2190 A2194						Related SSPs: DRBG Entropy Input
RSA key pair	112 to 150 bits	A2182 A2185 A2198 A2199 A2200	Per FIPS 186-4; random values generated using DRBG	Import/Expor t: CM to/from TOEPP Path. Passed into or out of the module via API input or	MD/EE	RAM	RSA_free	Use: Key Generation, Signature Generation, Signature Verification
ECDSA key pair	112 to 256 bits	A2182 A2185 A2198 A2199 A2200		output parameters in plaintext (P) format.		RAM	EC_GROUP_free, EC_POINT_free, EC_KEY_free	Use: Key Generation, Key Verification, Signature Generation, Signature Verification
ECDH key pair	-	A2182 A2185 A2198 A2199 A2200				RAM		Use: Shared Secret Computatio n Related SSPs: Shared Secret
Shared secret		A2182 A2185 A2198 A2199 A2200	Per SP800- 56Arev3			RAM	OpenSSL_cleanse	Use: Shared Secret Computatio n Related SSPs: ECDH key pair
TLS pre- master secret	112 to 256 bits	A2182 A2185 A2198 A2199 A2200	N/A	Import: CM to TOEPP Path. Passed into the module via API input parameters in plaintext (P) format.	MD/EE	RAM	OPENSSL_cleanse	Use: Key Derivation Related SSPs: TLS master secret
TLS master secret	384 bits	A2182 A2185 A2198 A2199 A2200	Generated using SP800- 135rev1 TLS KDF	N/A	N/A	RAM		Use: Key Derivation Related SSPs: TLS pre-master secret

© 2023 Amazon Web Services, Inc., atsec information security.

Key/SSP Name/ Type	Strength	Security Function and Cert. Number ⁴	Generation	Import /Export	Establish ment	Stora ge	Zeroization	Use and related keys
TLS Derived key (AES/HMAC)	256 bits HMAC: 112 or greater	A2182 A2185 A2198 A2199 A2200		Export: CM from TOEPP Path. Passed out of the module via API output parameters in plaintext (P) format.		RAM		Use: Key Derivation Related SSPs: TLS master secret

Table 10: SSPs.

9.1 Random Bit Generator

The module provides an SP800-90Arev1-compliant Deterministic Random Bit Generator (DRBG) using CTR_DRBG mechanism with AES-256 for creation of key components of asymmetric keys, and random number generation. The module uses the entropy source specified in Table 11. This entropy source is located within the physical perimeter, but outside of the cryptographic boundary of the module.

Entropy Source	Minimum number of bits of entropy	Details
SP800-90B compliant ENT (NP)	256 bits of entropy in the 256-bit output	CPU Jitter entropy source with SHA-3 as the vetted conditioning component is located within the physical perimeter of the operational environment but outside the software module cryptographic boundary.

Table 11: Non-Deterministic Random Number Generation Specification.

9.2 SSP Generation

For generating RSA, ECDSA and EC Diffie-Hellman keys, the module implements asymmetric key generation services compliant with FIPS186-4 and using a DRBG compliant with SP800-90Arev1. The random value used in asymmetric key generation is obtained from the DRBG. In accordance with FIPS 140-3 IG D.H, the cryptographic module performs Cryptographic Key Generation (CKG) for asymmetric keys as per section 5.1 of SP800-133rev2 (vendor affirmed) by obtaining a random bit string directly from an approved DRBG and that can support the required security strength requested by the caller (without any V, as described in Additional Comments 2 of IG D.H).

The module does not provide a dedicated service for generating symmetric key. However, symmetric keys can be derived using SP800-135rev1 for TLS KDF algorithm. This generation method maps to section 6.2 of SP800-133rev2.

9.3 SSP Entry and Output

The module does not support manual SSP entry or intermediate key generation output. The module does not support entry and output of SSPs beyond the physical perimeter of the operational environment. The SSPs are provided to the module via API input parameters in the plaintext form and output via API output parameters in the plaintext form to and from the calling application running on the same operational environment.

The output of plaintext CSPs requires two independent internal actions. Specially, the first action is creation of the cipher context to request the service and to hold the CSPs to be output from the module. The second action is to process the 'Key Generation' service request using the context created. Only after successful completion of this request, the generated CSP is output via the API output parameter.

9.4 SSP Establishment

The module provides EC Diffie-Hellman shared secret computation compliant with SP800-56Arev3, in accordance with scenario 2 (1) of IG D.F.

The module provides SP800-38F approved key transport methods according to IG D.G. The key transport method is provided using an AES-KW or AES-KWP key wrapping algorithm.

According to "Table 2: Comparable strengths" in SP800-57, the key sizes of AES and EC Diffie-Hellman provide the following security strengths:

- EC Diffie-Hellman shared secret computation provides between 112 and 256 bits of encryption strength.
- AES key wrapping provides between 128 and 256 bits of encryption strength.

Additionally, the module also supports key derivation using TLS 1.2 KDF compliant to SP800-135rev1.

9.5 SSP Storage

SSPs are provided to the module by the calling process and are destroyed when released by the appropriate zeroization function calls. The module does not perform persistent storage of SSPs.

9.6 Zeroization

The zeroization is performed by the module overwriting zeroes or predefined values to the memory location occupied by the SSP and further deallocating that area. The calling application interacting with the module, is responsible for calling the appropriate destruction functions using the zeroization APIs listed in Table 10. The completion of a zeroization routine will indicate that a zeroization procedure succeeded.

10 Self-Tests

The module performs the pre-operational self-test and CASTs automatically when the module is loaded into memory; the pre-operational self-test ensures that the module is not corrupted, and the CASTs ensure that the cryptographic algorithms work as expected. While the module is executing the pre-operational tests, services are not available, and input and output are inhibited.

All the self-tests are listed in Table 12, with the respective condition under which those tests are performed. The software integrity test is performed after all conditional algorithm self-tests (CASTs) are performed.

The entropy source performs its required self-tests; those are not listed here, as the entropy source is not part of the cryptographic boundary of the module.

Algorithm	Parameters	Condition for Test	Туре	Test
HMAC- SHA2-256	HMAC key	Software integrity test on power up (load)	Pre-Operational Self- Test	MAC verification on software component
AES	128-bit AES	Power up	Conditional Algorithm Self-Test	Encrypt KAT for CBC
	key			Decrypt KAT for CBC
				Encrypt KAT for GCM
				Decrypt KAT for GCM
SHS	None	Power up	Conditional Algorithm Self-Test	SHA-1, SHA2-256 and SHA2-512 KAT
DRBG	AES 256	Power up	Conditional Algorithm Self-Test	CTR_DRBG KAT AES 256
DRBG	N/A	Power up	Conditional Algorithm Self-Test	SP800-90Ar1 Section 11.3 Health Test
ECDSA	P-256 curve	Power up	Conditional Algorithm Self-Test	Sign KAT
	and SHA2- 256			Verify KAT
ECDSA	Respective curve and SHA2-256	Key generation	Conditional Pairwise consistency Test	Sign and verify PCT
KAS ECC SSC	P-256 curve	Power up	Conditional Algorithm Self-Test	Z computation
TLS KDF	SHA2-256	Power up	Conditional Algorithm Self-Test	TLS 1.2 KAT
RSA	2048 bit	Power up	Conditional Algorithm Self-Test	Sign KAT
	key and SHA2-256			Verify KAT

© 2023 Amazon Web Services, Inc., atsec information security.

Algorithm	Parameters	Condition for Test	Туре	Test
RSA	SHA2-256 and respective keys	Key generation	Conditional Pairwise Consistency Test	Sign and verify PCT

Table 12: Self-Tests.

10.1 Pre-Operational Self-Tests

The module transitions to the operational state only after the pre-operational self-test is passed successfully. The pre-operational self-test is executed automatically after the automatic execution of the cryptographic algorithm self-tests.

The types of pre-operational self-tests are described in the next sub-section.

10.1.1 Pre-Operational Software Integrity Test

The integrity of the software component of the module is verified according to Section 5, using HMAC-SHA2-256. If the comparison verification fails, the module transitions to the error state (Section 10.4). The CAST for the integrity algorithm is performed before the integrity test itself.

10.1.2 Pre-Operational Bypass and Critical Functions Tests

The module does not implement pre-operational bypass or critical functions tests.

10.2 Conditional Self-Tests

10.2.1 Cryptographic Algorithm Self-Tests

The module performs self-tests on approved cryptographic algorithms supported in the approved mode of operation, using the tests shown in Table 12 (and indicated as CASTs) and using the provision of IG 10.3.A and IG 10.3.B for optimization of the number of self-tests. Data output through the data output interface is inhibited during the self-tests. The cryptographic algorithm self-tests are performed in the form of Known Answer Tests (KATs), in which the calculated output is compared with the expected known answer (that are hard-coded in the module). A failed match causes a failure of the self-test.

If any of these self-tests fails, the module transitions to error state and is aborted.

10.2.2 Conditional Pairwise Consistency Tests

The module implements RSA and ECDSA key generation service and performs the respective pairwise consistency test using sign and verify functions when the keys are generated (Table 12).

10.3 Periodic/On-Demand Self-Tests

On demand self-tests can be invoked by powering-off and reloading the module. This service performs the same pre-operational test that includes integrity test and cryptographic algorithm tests executed during power-up. The integrity test can also be performed on demand by calling the BORINGSSL_integrity_test function. During the execution of the on-demand self-tests, cryptographic services are not available, and no data output or input is possible.

10.4 Error States

If the module fails any of the self-tests, the module enters the error state. In the error state, the module outputs the error through the status output interface and the abort function is called that raises the SIGABRT signal, causing the program termination such that module is no longer operational. In the error state, as the module is no longer operational the data output interface is inhibited. In order to recover from the Error state, the module needs to be rebooted.

Error State	Error Condition	Status Indicator
Error	Pre-operational test failure	Error message is output on the stderr and then the module is aborted.
	Conditional test failure	Error message is output in the error queue and then the module generates new key, If the PCT still does not pass, eventually the module will be aborted after 5 tries.

Table 13: Error States.

11 Life-Cycle Assurance

11.1 Delivery and Operation

The module bcm.o is distributed embedded into the shared library libcrypto.so which can be obtained building the source code at the following location. The set of files specified in the archive constitutes the complete set of source files of the validated module. There shall be no additions, deletions, or alterations of this set as used during module build.

https://github.com/awslabs/aws-lc/archive/refs/tags/AWS-LC-FIPS-1.0.2.zip

The downloaded zip file can be verified by issuing the "sha256sum aws-lc-FIPS-1.0.2.zip" command. The expected SHA2-256 digest value is:

dbd5fe8677a117c1b272a8b17b620177cac03355282adc25002263f0f9cc7cce

After the zip file is extracted, the instructions listed below will compile the module. The compilation instructions must be executed separately on platforms that have different processors and/or operating systems. Due to four possible combinations of OS/processor, the module count is four i.e., there are four separate binaries generated, one for each entry listed in Table 2.

- 1. Gather the following tools
 - GCC compiler version 7, gcc-7 (<u>https://gcc.gnu.org/gcc-7/</u>)
 - Go programming language version 1.12.7 (<u>https://golang.org/dl/</u>)
 - Ninja build system version 1.90 (https://github.com/ninja-build/ninja/releases)
- 2. Once the above tools have been obtained, issue the following command to create a CMake toolchain file to specify the use of GCC:

printf "set(CMAKE_C_COMPILER \"gcc-7\")\nset(CMAKE_CXX_COMPILER \"g++-7\")\n" >
\${HOME}/toolchain

- 3. Having the source code in the aws-lc-FIPS-1.0.2 folder, the following commands are used to compile the module:
 - a. cd aws-lc-FIPS-1.0.2
 - b. mkdir build && cd build && cmake -GNinja -DCMAKE_TOOLCHAIN_FILE=\${HOME}/toolchain -DFIPS=1 -DBUILD_SHARED_LIBS=1 -DCMAKE_BUILD_TYPE=Release ...
 - c. ninja
 - d. ninja run_tests
- 4. Upon completion of the build process, the module's status can be verified by the command below. If the value obtained is "1" then the module i.e. the bcm.o has been installed and configured in to operate in approved mode.

./tool/bssl isfips

5. Lastly, the user can call the "show version" service using <code>awslc_version_string</code> function and the expected output is "AWS-LC FIPS 1.0.2" which is the module version. Additionally, the "AWS-LC FIPS" also acts as the module identifier. This will confirm that the module is in approved mode.

11.2 Crypto Officer Guidance

11.2.1 AES-GCM IV Generation

The module offers three AES GCM implementations. The GCM IV generation for these implementations complies respectively with IG C.H under Scenario 1, Scenario 2, and Scenario 5. The GCM shall only be used in the context of the AES-GCM encryption executing under each scenario, and using the referenced APIs explained next.

11.2.1.1 Scenario 1, TLS 1.2

For TLS 1.2, the module offers the GCM implementation via the functions $EVP_aead_aes_128_gcm_t1s12()$ and $EVP_aead_aes_256_gcm_t1s12()$, and uses the context of Scenario 1 of IG C.H. The module is compliant with SP800-52rev2 and the mechanism for IV generation is compliant with RFC5288. The module supports acceptable AES-GCM ciphersuites from Section 3.3.1 of SP800-52rev2.

The module explicitly ensures that the counter (the nonce_explicit part of the IV) does not exhaust the maximum number of possible values of 2⁶⁴-1 for a given session key. If this exhaustion condition is observed, the module returns an error indication to the calling application, which will then need to either abort the connection, or trigger a handshake to establish a new encryption key.

In the event the module's power is lost and restored, the consuming application must ensure that a new key for use with the AES-GCM key encryption or decryption under this scenario shall be established.

11.2.1.2 Scenario 2, Random IV

In this implementation, the module offers the interfaces *EVP_aead_aes_128_gcm_randnonce()* and *EVP_aead_aes_256_gcm_randnonce()* for compliance with Scenario 2 of IG C.H and SP800-38D Section 8.2.2. The AES-GCM IV is generated randomly internal to the module using module's approved DRGB. The DRBG seeds itself from the entropy source. The GCM IV is 96 bits in length. Per Section 9, this 96-bit IV contains 96 bits of entropy.

11.2.1.3 Scenario 5, TLS 1.3

For TLS 1.3, the module offers the AES-GCM implementation via the functions $EVP_aead_aes_128_gcm_t1s13()$ and $EVP_aead_aes_256_gcm_t1s13()$, and uses the context of Scenario 5 of IG C.H. The protocol that provides this compliance is TLS 1.3, defined in RFC8446 of August 2018, using the ciphersuites that explicitly select AES-GCM as the encryption/decryption cipher (Appendix B.4 of RFC8446). The module supports acceptable AES-GCM ciphersuites from Section 3.3.1 of SP800-52rev2.

The module implements, within its boundary, an IV generation unit for TLS 1.3 that keeps control of the 64-bit counter value within the AES-GCM IV. If the exhaustion condition is observed, the module will return an error indication to the calling application, who will then need to either trigger a re-key of the session (i.e., a new key for AES-GCM), or terminate the connection.

In the event the module's power is lost and restored, the consuming application must ensure that new AES-GCM keys encryption or decryption under this scenario are established. TLS 1.3 provides session resumption, but the resumption procedure derives new AES-GCM encryption keys.

11.3 End of Life Procedure

When the module is at end of life, for the GitHub repo, the README will be modified to mark the library as deprecated. After a 6-month window, more restrictive branch permissions will be added such that only administrators can read from the FIPS branch.

The module does not possess persistent storage of SSPs. The SSP value only exists in volatile memory and that value vanishes when the module is powered off. So as a first step for the secure sanitization, the module needs to be powered off. Then for actual deprecation, the module will be upgraded to newer version that is approved. This upgrade process will uninstall/remove the old/terminated and provide a new replacement.

12 Mitigation of Other Attacks

RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA decryption or signature operations, blinding must be used to protect the RSA operation from that attack.

The module provides the mechanism to use the blinding for RSA. When the blinding is on, the module generates a random value to form a blinding factor in the RSA key before the RSA key is used in the RSA cryptographic operations.

13 Glossary and Abbreviations

AES	Advanced Encryption Standard			
AES-NI	Advanced Encryption Standard New Instructions			
CAVP	Cryptographic Algorithm Validation Program			
CAST	Cryptographic Algorithm Self-Test			
CBC	Cipher Block Chaining			
ССМ	Counter with Cipher Block Chaining-Message Authentication Code			
CFB	Cipher Feedback			
СМАС	Cipher-based Message Authentication Code			
СМТ	Cryptographic Module Testing			
СМУР	Cryptographic Module Validation Program			
CSP	Critical Security Parameter			
CTR	Counter Mode			
DES	Data Encryption Standard			
DSA	Digital Signature Algorithm			
DRBG	Deterministic Random Bit Generator			
ECB	Electronic Code Book			
ECC	Elliptic Curve Cryptography			
FIPS	Federal Information Processing Standards Publication			
FSM	Finite State Model			
GCM	Galois Counter Mode			
НМАС	Hash Message Authentication Code			
КАТ	Known Answer Test			
KW	AES Key Wrap			
KWP	AES Key Wrap with Padding			
ΜΑϹ	Message Authentication Code			
NIST	National Institute of Science and Technology			
OFB	Output Feedback			
O/S	Operating System			
PAA	Processor Algorithm Acceleration			
PR	Prediction Resistance			
PSS	Probabilistic Signature Scheme			
RNG	Random Number Generator			
RSA	Rivest, Shamir, Addleman			
SHA	Secure Hash Algorithm			
SHS	Secure Hash Standard			

14 References

- FIPS140-3 FIPS PUB 140-3 Security Requirements for Cryptographic Modules March 2019 https://doi.org/10.6028/NIST.FIPS.140-3
- FIPS140-3_IG Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation Program

September 2020 https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements

- FIPS180-4 Secure Hash Standard (SHS) March 2012 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
- FIPS186-4 Digital Signature Standard (DSS) July 2013 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
- FIPS197 Advanced Encryption Standard November 2001 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
- FIPS198-1 The Keyed Hash Message Authentication Code (HMAC) July 2008 http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
- PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1 February 2003 http://www.ietf.org/rfc/rfc3447.txt
- SP800-38A Special Publication 800-38A Recommendation for Block Cipher Modes of Operation Methods and Techniques December 2001 http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
- SP800-38B NIST Special Publication 800-38B Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication May 2005 http://csrc.nist.gov/publications/nistpubs/800-38B/SP 800-38B.pdf
- SP800-38C NIST Special Publication 800-38C Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality May 2004 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
- SP800-38D NIST Special Publication 800-38D Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC November 2007 http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

© 2023 Amazon Web Services, Inc., atsec information security.

- SP800-38F NIST Special Publication 800-38F Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping December 2012 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
- SP800-38G NIST Special Publication 800-38G Recommendation for Block Cipher Modes of Operation: Methods for Format - Preserving Encryption March 2016 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf
- SP800-56Ar3 NIST Special Publication 800-56A Revision 2 Recommendation for Pair Wise Key Establishment Schemes Using Discrete Logarithm Cryptography May 2013 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
- SP800-90Ar1 NIST Special Publication 800-90A Revision 1 Recommendation for Random Number Generation Using Deterministic Random Bit Generators June 2015 http://nylpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
- SP800-90B (Second DRAFT) NIST Special Publication 800-90B Recommendation for the Entropy Sources Used for Random Bit Generation January 2016 http://csrc.nist.gov/publications/drafts/800-90/sp800-90b_second_draft.pdf
- SP800-NIST Special Publication 800-131A Revision 1- Transitions:131Ar1Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths
November 2015
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
- SP800-NIST Special Publication 800-133rev2 Recommendation for133rev2CryptographicKey Generation

June 2020

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf

- SP800-135r1 NIST Special Publication 800-135 Revision 1 Recommendation for Existing Application-Specific Key Derivation Functions December 2011 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf
- SP800-140B NIST Special Publication 800-140B CMVP Security Policy Requirements March 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140B.pdf

© 2023 Amazon Web Services, Inc., atsec information security.