

NOKIA Corporation

7705 SAR-OS SAR-18/8/X/Ax/Wx/W/H/Hc Control Plane Cryptographic Module (SARCM)

FIPS 140-2 Non-Proprietary Security Policy

FIPS Security Level:1

Document Version: 3.5

December 8th, 2023

TABLE OF CONTENTS

G	LOSSAI	RY	3
1.	INT	RODUCTION	5
	1.1 1.2	PurposeVersions Available for FIPS	
2.	SAR	-OS CRYPTOGRAPHIC MODULE OVERVIEW	6
	2.1 2.2 2.3 2.4	SARCM CHARACTERISTICS	8 9
3.	SAR	CM ROLES AND SERVICES	11
4.	PHY	SICAL SECURITY	12
5.	OPE	CRATIONAL ENVIRONMENT	13
6.	KEY	TABLE	14
	6.1	KEYS/CSPS ALGORITHMS IN FIPS-140-2 MODE	14
7.	EMO	C/EMI (FCC COMPLIANCE)	18
8.	SEL	F TESTS	19
	8.1.1 8.1.2 8.2		
9.	FIPS	S-140 USER GUIDANCE	22
	9.1 9.2 9.3	FIPS-140-2 Mode Configuration	22
10). R	EFERENCES	24
		LIST OF FIGURES	

Figure 2-1: SARCM Diagram of Logical and Physical Boundaries......6

GLOSSARY

AES	Advanced Encryption Standard		
BGP	Border Gateway Protocol		
СВС	Cipher Block Chaining		
CFM	Control / Forwarding Module		
CLI	Command Line Interface		
CMVP	Cryptographic Module Validation Program		
CSM	Control Switch Module		
CSP	Critical Security Parameter		
CVL	Component Validation List		
ESP	Encapsulating Security Payload		
FIPS	Federal Information Processing Standard		
GRE	Generic Routing Encapsulation		
HMAC	Hashed Message Authentication Code		
ICMP	Internet Control Message Protocol		
ICV	Integrity Check Value		
IGMP	Internet Group Management Protocol		
IP	Internet Protocol		
IPSec	IP Security		
LDP	Label Distribution Protocol		
LSP	Label Switched Path		
MPLS	Multi-protocol label switching		
NDRNG	Non-Deterministic RNG		
NGE	Network Group Encryption		
NIST	National Institute of Standards and Technology		
OSPF	Open Shortest Path First		
PFS	Perfect Forward Secrecy		
RNG	Random Number Generator		
SA	Security Association		
SAM	Service Aware Manager		
SFM	Switch Fabric Module		
SHA	Secure Hash Algorithm		
SSH	Secure Shell		
SPI	Security Parameter Index		

TLS	Transport Layer Security
TM	Traffic Management
VPLS	Virtual Private LAN Service

Table 1 - Glossary

1. INTRODUCTION

1.1 Purpose

This document describes the non-proprietary SAR-OS (Service Aggregation Router Operating System) Cryptographic Module (SARCM 3.1) Security Policy for the 7705 Service Aggregation Router (SAR) product family. These are referenced in the document as either 7705 or SAR.

This security policy provides the details for configuring and running the 7705 products in a FIPS-140-2 mode of operation and describes how the module meets the level 1 requirements of FIPS 140-2. Please see the references section for a full list of FIPS 140-2 requirements.

Section	Section Title	Level
1	Cryptographic Module Specification	1
2	Cryptographic Module Ports and Interfaces	1
3	Roles, Services, and Authentication	1
4	Finite State Model	1
5	Physical Security	N/A
6	Operational Environment	1
7	Cryptographic Key Management	1
8	EMI/EMC	1
9	Self-Tests	1
10	Design Assurance	1
11	Mitigation of Other Attacks	N/A

Table 2 - Security Level per FIPS 140-2 Section

1.2 Versions Available for FIPS

The following platforms of the 7705 products that implement the module are either tested or compatible for running SARCM in a FIPS approved mode:

Platform	Model(s)
7705 Service Aggregation Router (SAR)	SAR-8, SAR-18, SAR Ax, SAR-H, SAR-Hc, SAR-W, SAR-Wx, SAR-X

Table 3 - FIPS Capable Platforms and Models

2. SAR-OS CRYPTOGRAPHIC MODULE OVERVIEW

The section provides an overview of the SAR-OS Cryptographic Module (SARCM) and the FIPS validated cryptographic algorithms used by services requiring those algorithms. The SARCM doesn't implement any services or protocols directly. Instead, it provides the cryptographic algorithm functions needed to allow SAR-OS to implement cryptography for those services and protocols that require it.

2.1 SARCM Characteristics

SAR-OS Operating System SAR-OS Services and Protocol Applications SAR-OS Cryptographic Module SAR-OS Data Encryption

Figure 2-1: SARCM Diagram of Logical and Physical Boundaries

The SARCM logical and physical properties and boundary considerations is illustrated in Figure 2-1. The solid blue line represents the physical boundary of the cryptographic module that represents the hardware system on which SAR-OS is running and hence where SARCM is also running. The dashed blue line indicates the logical cryptographic boundary of the SARCM within SAR-OS. The SARCM is available as a cryptographic service for any SAR-OS services or protocols that require cryptographic operations.

The SARCM provides the cryptographic services required for the control plane (ie routing protocols etc). On the 7705 SAR-18/8 and SAR-X/Ax/Wx/W/H/Hc, all the control plane functionality is part of the Control and Switching Module (CSM), while the data plane is managed by the Winpath network processor. It should be noted on SAR-X/Ax/Wx/W/H/Hc platforms the CSM and line cards are physically on the same hardware, but logically separate. The Winpath network processor on these platforms is encryption capable. Also on SAR-18/8, all the control plane functionality is part of the Control and Switching Module (CSM) while the data plane is managed by the Winpath network processor which is present on all interface cards.

The SARCM is part of two SAR-OS binary files (both.tim and support.tim) that are used to run the full SAR-OS application. SARCM is classified as a multi-chip standalone software module and SARCM is statically included within the SAR-OS application code. SARCM has been validated on each CSM used by the hardware platforms listed in the following table. Note that the CSM is integrated into the chassis of 7705 SAR-X/Ax/Wx/W/H/Hc variants while the CSM is a separate hardware module on the SAR-8/18 systems and integrated into the chassis on all other 7705 variants.

Platform	Cavium Control Processor
SAR-8	6 core @ 800 MHz, on CSMv2 module
SAR-18	8 core @ 600 MHz on SAR-18 CSM module
SAR-H	2 core @ 600 MHz on chassis
SAR-Hc	2 core @ 600 MHz on chassis
SAR-X	8 core @ 800 MHz on chassis
SAR-W	1 core @ 500 MHz on chassis
SAR-Wx	2 core @ 600 MHz on chassis
SAR-Ax	2 core @600 Mhz on chassis

Table 4 – Validated Hardware and FIPS Compatible Platforms

The Software version used to validate version 3.1 of the SARCM was SAR-OS 21.10R5.

2.2 SARCM Approved Algorithms

The SARCM uses the following FIPS approved algorithms:

	CAVP Cert
AES CBC (e/d; 128, 192, 256); CFB128 (e/d;128); CTR (e only; 128,	(21.10R5) C2023 C2024
192, 256)	<u>C2023</u> <u>C2024</u>
Triple-DES (TCBC) (e/d; keying option 1)	C2023 C2024
CKG	Vendor Affirmed
RSA	C2023 C2024
FIPS186-4: ANSI X9.31 2048-bit & 3072-bit Signature Generation	<u>C2023</u> <u>C2024</u>
FIPS186-4: PKCS v1.5 2048-bit & 3072-bit Signature Generation	
FIPS186-4:PKCSPSS 2048-bit & 3072-bit Signature Generation	
FIPS186-2:ANSI X9.31 1024-bit & 1536-bit& 2048-bit & 3072-bit &	
4096-bit signature verification	
FIPS186-2:PKCS v1.5 1024-bit & 1536-bit& 2048-bit & 3072-	
bit Signature Verification	
FIPS186-2:PKCSPSS 1024-bit & 1536-bit& 2048-bit & 3072-bit &	
4096-bit Signature Verification	
FIPS186-4: ANSI X9.31 1024-bit & 2048-bit & 3072-bit Signature	
Verification	
FIPS186-4:PKCS v1.5 1024-bit & 2048-bit & 3072-bit Signature	
Verification	
FIPS186-4:PKCSPSS 1024-bit & 2048-bit & 3072-bit Signature	
Verification	
FIPS186-4: 2048-bit Key Pair Generation [FIPS186-4_Fixed_e	
(10001);	
HMAC (HMAC-SHA-1, HMAC-SHA2-224, HMAC-SHA2-256,	C2023 C2024
HMAC-SHA2-384, HMAC-SHA2-512)	
CMAC AES-128 Generation	C2023 C2024
 Capabilities: 	
Direction: Generation	
Key Length: 128	
MAC: 64, 96, 128	
 Message Length: 0, 128, 320, 480, 	
512, 524288	
Capabilities:	
 Direction: Verification 	
Key Length: 128	
■ MAC: 64, 96, 128	
 Message Length: 0, 128, 320, 480, 	
カーノ・カフリフ みさ	
512, 524288	
<u> </u>	C2023 C2024
SHS (SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512) DRBG CTR_DRBG (AES-256)	C2023 C2024 C2023 C2024

FIPS186-4: 1024-bit PQG Verification; 2048-bit & 3072-bit PQG	
Generation & Verification	
FIPS186-4: 2048-bit Key Pair Generation [(2048,256)]	
2048-bit & 3072-bit Signature Generation	
1024-bit, 2048-bit & 3072-bit Signature Verification	
CVL	C2023 C2024
KDF_IKEv1: (SHA-2) SHA2-256, SHA2-384, SHA2-512	
CVL	
KDF_IKEv2: (SHA-2) SHA2-256, SHA2-384, SHA2-512	
KAS-SSC	A3133 A3134)
SP 800-56Arev3	
FFC: dhEphem scheme per Section 6.1.2.1 in SP 800-56Arev3	
KAS	KAS-SSC (Certs.
KAS-SSC per SP 800-56Arev3	A3133 and #A3134)
(Cert. #A3133 and #A3134)	with CVL (Certs.
FFC: dhEphem scheme per Section 6.1.2.1 in SP 800-56Arev3.	C2023 and C2024)
CVL per SP 800-135:	
IKEv1 KDF (Certs. C2023 and C2024)	
IKEv2 KDF (Certs. C2023 and C2024)	

Table 5 – Approved Algorithm Implementations

2.3 SARCM non-Approved but Allowed Algorithms

The module supports the following non-FIPS approved algorithms which are:

• NDRNG seeded with 256 bits of entropy.

2.4 SARCM Interfaces

The physical ports used by SARCM within SAR-OS are the same as those available on the system which is running SAR-OS per the platforms specified in the previous section. The logical interface is a C-language application program interface (API).

The Data Input interface consists of the input parameters of the API procedures and includes plaintext and/or cipher text data.

The Data Output interface consists of the output parameters of the API procedures and includes plaintext and/or cipher text data.

The Control Input interface consists of API functions that specify commands and control data used to control the operation of the module. The API may specify other functions or procedures as control input data.

The Status Output includes the return status, data and values associated with the status of the module.

The module provides logical interfaces to the other services within SAR-OS and those other SAR-OS services use the following logical interfaces for cryptographic functions: data input, data output, control input, and status output.

Interface	Description
Data Input	API input parameters including plaintext and/or cipher text data
Data Output	API output parameters including plaintext and/or cipher text data
Control Input	API procedure calls that may include other function calls as input, or input arguments that specify commands and control data used to control the operation of the module.
Status Output	API return code describing the status of SARCM

Table 6 – FIPS 140-2 Logical Interface Mappings

3. SARCM ROLES AND SERVICES

The SARCM meets all FIPS 140-2 level 1 requirements for Roles and Services, implementing support for both the Crypto Officer and User roles within the SARCM. The support for both Crypto Officer and User roles within the SARCM is classed as a process. As allowed by FIPS 140-2, the SARCM does not support user authentication for these roles. Only one role may be using the SARCM at a time and the module does not allow concurrent operators to access the SARCM.

The User and Crypto Officer roles are implicitly assumed by the entity accessing the services implemented by the SARCM:

• Installation and initialization of the SARCM which is embedded in the SAR-OS image and installed on the SAR-OS platforms is assumed implicitly as the Crypto Officer when installation and initialization occurs.

The services available by the SARCM in FIPS mode to the Crypto Officer and User roles consist of the following:

Services	Access	Critical Security Parameters	Crypto Officer	User
Encryption	Execute	Symmetric keys AES, Triple-DES	X	X
Decryption	Execute	Symmetric keys AES, Triple-DES	X	X
Hash (HMAC)	Execute	HMAC SHA keys	X	X
Key generation	Write/execute	Symmetric key AES, Triple-DES, Asymmetric RSA, DSA, Diffie-Hellman public and private keys	X	X
Key agreement	Execute	DH public/private key	X	X
Perform Self-Tests	Execute/read	NA	X	X
DRBG	Execute	Seed input	X	X
Show Status	Execute	NA	X	X
Signature signing	Execute	Asymmetric private key DSA, RSA	X	X
Signature verification	Execute	Asymmetric public key DSA, RSA,	X	X
Zeroization	Execute	Symmetric key, asymmetric key, HMAC-SHA keys, seed key, seed	X	X
Module Initialization	Execute	All CSPs	X	

Table 7 – Module Services

4. PHYSICAL SECURITY

The module obtains its physical security from any platform running SAR-OS with production grade components and standard passivation as allowed by FIPS 140-2 level 1.

5. OPERATIONAL ENVIRONMENT

The SARCM was tested on the following platforms that represent the required HW components that runs SAR-OS and the SARCM.

Platform used for testing/validation	Hardware running SAR-OS	Processor
SAR-8	6 core @ 800 MHz, on CSMv2 module	Cavium Octeon II
SAR-18	8 core @ 600 MHz on SAR-18 CSM module	Cavium Octeon Plus
SAR-H	2 core @ 600 MHz on chassis	Cavium Octeon Plus
SAR-Hc	2 core @ 600 MHz on chassis	Cavium Octeon II
SAR-X	8 core @ 800 MHz on chassis	Cavium Octeon II
SAR-W	1 core @ 500 MHz on chassis	Cavium Octeon Plus
SAR-Wx	2 core @ 600 MHz on chassis	Cavium Octeon II
SAR-Ax	2 core @ 600 MHz on chassis	Cavium Octeon II

Table 8 – Hardware and Platforms Used to Test Module

6. KEY TABLE

6.1 Keys/CSPs Algorithms In FIPS-140-2 Mode

The following keys and CSPs are available when running in FIPS-140-2 mode for the SARCM:

Key or CSP	Usage (Service)	Storage	Generation/Input	Zeroization	Access Role (R,W,X)
Triple DES-CBC	IKE	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-128-CFB	SNMPv3	Non-Volatile memory (Encrypted*)	Operator – Manually	Command	R, W
AES-128-CBC	SSHv2, Secure Copy, SFTP	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-128-CBC	IKE	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-192-CBC	SSHv2, Secure Copy, SFTP	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-192-CBC	IKE	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-256-CBC	SSHv2, Secure Copy	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-256-CBC	IKE	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-128-CTR	SSHv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-192-CTR	SSHv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-256-CTR	SSHv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
Triple DES-CBC	SSHv2, AA Local List File	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
AES-CMAC	SSHv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X

Key or CSP	Usage (Service)	Storage	Generation/Input	Zeroization	Access Role (R,W,X)
HMAC-SHA-1	OSPF, IS-IS, RSVP, Software Integrity	DRAM (plaintext)	Operator – Manually	Command	R, W
HMAC-SHA-1	SSHv2,	DRAM (plaintext)	Operator – Manually	Command	R, W, X
HMAC-SHA-256	SSHv2,	DRAM (plaintext)	Operator – Manually	Command	R, W, X
HMAC-SHA-512	SSHv2,	DRAM (plaintext)	Operator – Manually	Command	R, W, X
HMAC-SHA-1	SNMPv3	DRAM (plaintext)	Operator – Manually	Command	R, W
HMAC-SHA-1	IKE, PKI	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
HMAC-SHA-224	PKI	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
HMAC-SHA-256	OSPF, IS-IS, SSHv2, RSVP	DRAM (plaintext)	Operator – Manually	Command	R, W
HMAC-SHA-256	IKE	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
HMAC-SHA-256	PKI	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
HMAC-SHA-384	IKE	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
HMAC-SHA-384	PKI	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
HMAC-SHA-512	IKE	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
HMAC-SHA-512	PKI, SSHv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
DSA Public Key	Certificate Signing Request, CMPv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X

Key or CSP	Usage (Service)	Storage	Generation/Input	Zeroization	Access Role (R,W,X)
DSA Private Key	Certificate Signing Request generation, CMPv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
RSA Public Key	SSHv2, Certificate Signing Request generation, CMPv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
RSA Private Key	SSHv2, Certificate Signing Request Generation, CMPv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
Diffie-Hellman Public Key Group 14 (P=>2K prime numbers, q>224)	SSHv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
Diffie-Hellman Private Key Group 14 (p=>2K prime numbers, q>224)	SSHv2	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
Diffie-Hellman Public Key Group 14, 15 (P=>2K prime numbers, q>224)	IKE	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
Diffie-Hellman Private Key Group 14, 15 (P=>2k prime numbers, q>224)	IKE	DRAM (plaintext)	Approved DRBG, API parameter	Reboot, Command	R, W, X
DRBG Seed	Key generation	DRAM (plaintext)	Internally Generated	Reboot	R, W
DRBG Entropy	Key generation	DRAM (plaintext)	Internally Generated	Reboot	R, W
DRBG 'V' Value	Key generation	DRAM (plaintext)	Internally Generated	Reboot	R, W
DRBG 'Key' Value	Key generation	DRAM (plaintext)	Internally Generated	Reboot	R, W
IKEv1/IKEv2 KDF	IPsec	DRAM (plaintext)	Internally Generated	Reboot	R, W

$Table\ 9-Cryptographic\ Keys\ and\ CSPs$

* Encrypted via AES-128-CBC

Access roles include "R"- Read, "W" - Write, and "X" - Execute.

No network protocols including SNMP, SSH, or IKE have been reviewed or tested by the CAVP or CMVP. SSH and IKE KDF were tested.

7. EMC/EMI (FCC COMPLIANCE)

The SAR chassis where the CSM, SAR-OS and SARCM runs were tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (business use).

8. SELF TESTS

8.1 Self Tests on the CSM

When FIPS-140-2 mode is enabled the node performs the following startup tests:

- Software integrity check on startup using HMAC-SHA-256
- DRBG KAT and health test
- Triple-DES CBC encrypt KAT
- Triple-DES CBC decrypt KAT
- AES encrypt 128, 192,256 KAT
- AES decrypt 128, 192,256 KAT
- AES CBC 128, 192, 256 KAT
- AES CFB128 KAT
- AES CTR 128, 192, 256 KAT
- AES GCM 256 KAT
- AES GMAC 256 KAT
- AES CMAC 128 KAT
- HMAC SHA-1 KAT, HMAC SHA-224 KAT, HMAC-SHA-256 KAT, HMAC SHA-384 KAT, HMAC SHA-512 KAT
- SHA-1 KAT, SHA-224 KAT, SHA-256 KAT, SHA-384 KAT, SHA-512 KAT
- RSA sign and verify
- A DSA pairwise consistency test
- KAS-FFC-SSC KAT
- IKEv1 KDF
- IKEv2 KDF

Should any of these tests fail, the SARCM does not allow the node to continue booting the image. An error is displayed on the console port that indicates the failed test and the SARCM forces a reboot to attempt the self-tests again.

8.1.1 Cryptographic DRBG Startup Test

A known answer test is used by the DRBG on startup (by using a known seed). If the startup test fails, then an error message is printed on the console and the node will attempt the boot sequence again.

8.1.2 RSA Startup test

SARCM performs an initial startup test with a known public key, a known digital signature and a test that verifies it can perform a proper verification of the known signature with the known public key. If the SARCM fails to successfully perform this startup test, then a message is printed on the console, the SARCM causes the node to reboot and tries to perform all the startup tests successfully again from the beginning.

8.2 Conditional Test on the CSM

When FIPS-140-2 mode is enabled the node performs the following conditional self tests during normal operation of the node:

- Manual Key Entry Tests
- Pairwise Consistency Test for RSA / DSA
- DRBG Continuous Random Number Generator Test (CRNGT)
- NDRNG Continuous Random Number Generator Test (CRNGT)

Descriptions of the tests are described in the following sections.

SARCM Failure

When a Conditional Test (e.g. the pairwise consistency tests or the CRNGT test) fails, then the SARCM is considered as failed. The node will print a message on the console that indicates that the SARCM has failed.

Manual Kev Entry Tests

<u>Cryptographic key or key components manually entered into the cryptographic module are entered using duplicate entries. If the duplicate entries do not match, the test shall fail.</u>

Pairwise Consistency Test for RSA and DSA

The Pairwise Consistency Test is performed whenever public or private keys are generated. The consistency of RSA/DSA keys is tested by the calculation and verification of a digital signature. If the digital signature cannot be verified, the test shall fail.

An additional test is performed on RSA key pairs. A plaintext value is encrypted by the RSA public key. The resulting ciphertext value is compared to the original plaintext value. If the two values are equal, then the test shall fail. If the two values differ, then the private key is used to decrypt the ciphertext and the resulting value are compared to the original plaintext value. If the two values are not equal, the test shall fail.

Continuous Random Number Generator Test (CRNGT)

The CRNGT is performed for every RNG call. Each call to a RNG produces blocks of 128 bits. The first 128-bit block generated after power-up, initialization, or reset is not used, but is saved

for comparison with the next 128-bit block to be generated. Each subsequent generation of an 128-bit block is compared with the previously generated block. The test shall fail if any two compared 128-bit blocks are equal.

9. FIPS-140 USER GUIDANCE

The following sections described the SAR-OS user guidance for configuring the SAR systems where the SARCM is embedded and accessed by SAR-OS.

9.1 FIPS-140-2 Mode Configuration

To enable FIPS-140-2 on the 7705 a configurable parameter is available in the bof.cfg file. When configured in the bof.cfg, the node boots in FIPS-140-2 mode and the following behaviors are enabled on the node:

- Only FIPS-140-2 approved algorithms are available for encryption and authentication for any cryptographic function on the CSM where SAR-OS and the SARCM reside
- Diffie-Hellman with non-compliant key sizes must not be used in FIPS mode; otherwise the module will enter a non-FIPS mode.
- Startup tests are executed on the CSM when the node boots
- Conditional tests are executed when required during normal operation (e.g. manual key entry test, pairwise consistency checks and RNG tests)

The current state of the bof and the parameters used for booting can be verified with the following CLI commands:

*A:bkvm12>show bof

*A:bkvm12>show bof booted

The output of "show bof booted" would show "fips-140-2" instead of "no fips-140-2".

Note the FIPS-140-2 parameter in the bof.cfg does not take effect until the node has been rebooted. When running in FIPS mode the system will display a value in the system command that indicates this is the case.

9.2 Configurations Not Allowed when running in FIPS-140-2 Mode

When the node is configured in FIPS-140-2 mode the following disallowed algorithms are visible in CLI but not available. The User must not configure the following algorithms and functions when running in FIPS-140-2 mode or reverse the configuration steps in Section 9.1:

- MD5
 - o SNMP, OSPF, BGP, LDP, NTP authentication, multi-chassis redundancy
- HMAC-MD5

SNMP, IS-IS, RSVP

- HMAC-MD5-96
 - o SNMP

- HMAC-SHA-1-96
 - o SNMP, OSPF, BGP, LDP
- AES-128-CMAC-96
 - o BGP, LDP

9.3 Non-FIPS-140-2 Mode

The module supports the Crypto Officer and User roles while in the non-Approved mode of operation.

To disable FIPS-140-2 on the SAR-8/18/H/Hc/X/W/Wx/Ax, the User must configure the bof with "no fips-140-2" and reboot the system to transition to the non FIPS-140-2 mode. The User must delete persistent keys before switching mode.

10.REFERENCES

[FIPS 140-2] FIPS PUB 140-2, Security Requirements for Cryptographic Modules, May

25, 2001, CHANGE NOTICES (12-03-2002).

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[FIPS 140-2 DTR] Derived Test Requirements for FIPS PUB 140-2, Security Requirements

for Cryptographic Modules, January 4, 2011 Draft.

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-

2/FIPS1402DTR.pdf

[FIPS 140-2 IG] Implementation Guidance for FIPS PUB 140-2 and the Cryptographic

Module Validation Program, December 3, 2019.

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-

2/FIPS1402IG.pdf