
FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 1 of 36

FIPS 140-2 Non-Proprietary Security Policy

CryptoComply for .NET

Software Version 1.0.2

Document Version 1.0

January 10, 2024

SafeLogic Inc.

530 Lytton Ave, Suite 200
Palo Alto, CA 94301
www.safelogic.com

http://www.safelogic.com/

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 2 of 36

Overview

This document provides a non-proprietary FIPS 140-2 Security Policy for CryptoComply for .NET.

SafeLogic's CryptoComply for .NET is designed to provide FIPS 140-2 validated cryptographic

functionality and is available for licensing. For more information, visit www.safelogic.com/cryptocomply.

https://www.safelogic.com/cryptocomply

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 3 of 36

Table of Contents

Overview .. 2

1 Introduction .. 5
1.1 About FIPS 140 ... 5
1.2 About this Document.. 5
1.3 External Resources ... 5
1.4 Notices .. 5

2 CryptoComply for .NET .. 6
2.1 Cryptographic Module Specification .. 6

2.1.1 Validation Level Detail ... 6
2.1.2 Modes of Operation ... 7
2.1.3 Approved Cryptographic Algorithms ... 8
2.1.4 Non-Approved But Allowed Cryptographic Algorithms ... 15
2.1.5 Non-Approved Mode of Operation ... 15

2.2 Critical Security Parameters and Public Keys ... 16
2.2.1 Critical Security Parameters ... 16
2.2.2 Public Keys ... 17

2.3 Module Interfaces .. 19
2.4 Roles, Services, and Authentication ... 20

2.4.1 Assumption of Roles .. 20
2.4.2 Services .. 21

2.5 Physical Security ... 26
2.6 Operational Environment ... 26

2.6.1 Use of External RNG ... 27
2.7 Self-Tests .. 27

2.7.1 Power-Up Self-Tests ... 27
2.7.2 Conditional Self-Tests .. 29

2.8 Mitigation of Other Attacks ... 29

3 Security Rules and Guidance ... 31
3.1 Basic Enforcement .. 31
3.2 Basic Guidance ... 31
3.3 Enforcement and Guidance for AES GCM IVs ... 31
3.4 Enforcement and Guidance for Use of the Approved PBKDF ... 32
3.5 Rules for Setting the N and the S String in cSHAKE .. 32
3.6 Software Installation .. 32

4 References and Acronyms ... 33
4.1 References .. 33
4.2 Acronyms .. 35

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 4 of 36

List of Tables

Table 1 - Validation Level by FIPS 140-2 Section ... 6

Table 2 - FIPS Approved Algorithm Certificates ... 8

Table 3 - Approved Cryptographic Functions Implemented with Vendor Affirmation ... 15

Table 4 - Non-Approved But Allowed Cryptographic Algorithms .. 15

Table 5 - Non-Approved Cryptographic Functions for Use in non-Approved mode Only ... 15

Table 6 - Critical Security Parameters .. 16

Table 7 - Public Keys .. 18

Table 8 - Logical Interface / Physical Interface Mapping ... 20

Table 9 - Description of Roles .. 21

Table 10 - Module Services, Descriptions, and Roles .. 21

Table 11 - CSP Access Rights within Services ... 23

Table 12 - Tested Environments .. 26

Table 13 - Power-Up Self-Tests .. 27

Table 14 - Conditional Self-Tests ... 29

Table 15 – References ... 33

Table 16 - Acronyms and Terms .. 35

List of Figures

Figure 1 – Module Boundary and Interfaces Diagram ... 19

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 5 of 36

1 Introduction

1.1 About FIPS 140

Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic

Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but

Unclassified environment. The National Institute of Standards and Technology (NIST) and Canadian

Centre for Cyber Security (CCCS) Cryptographic Module Validation Program (CMVP) run the FIPS 140

program. The NVLAP accredits independent testing labs to perform FIPS 140 testing; the CMVP validates

modules meeting FIPS 140 validation. Validated is the term given to a module that is documented and

tested against the FIPS 140 criteria.

More information is available on the CMVP website at https://csrc.nist.gov/projects/cryptographic-

module-validation-program.

1.2 About this Document

This non-proprietary Cryptographic Module Security Policy for CryptoComply for .NET from SafeLogic

Inc. (“SafeLogic”) provides an overview of the product and a high-level description of how it meets the

overall Level 1 security requirements of FIPS 140-2.

CryptoComply for .NET may also be referred to as the “module” in this document.

1.3 External Resources

The SafeLogic website (www.safelogic.com) contains information on SafeLogic services and products.

The Cryptographic Module Validation Program website contains links to the FIPS 140-2 certificate and

SafeLogic contact information.

1.4 Notices

This document may be freely reproduced and distributed in its entirety without modification.

https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program
http://www.safelogic.com/

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 6 of 36

2 CryptoComply for .NET

2.1 Cryptographic Module Specification

CryptoComply for .NET is a standards-based “Drop-in Compliance™” cryptographic engine for .NET

runtime environments. The module delivers core cryptographic functions to mobile and server platforms

and features robust algorithm support, including Suite B algorithms.

The module’s software version is 1.0.2. The module's logical cryptographic boundary is the Windows

Dynamic Link Library (DLL) file (ccn-1.0.2.dll).

The module is a software module that relies on the physical characteristics of the host platform. The

module’s physical cryptographic boundary is defined by the enclosure of the host platform, which is the

General Purpose Device that the module is installed on. For the purposes of FIPS 140-2 validation, the

module’s embodiment type is defined as multi-chip standalone.

All operations of the module occur via calls from host applications and their respective internal

daemons/processes. As such there are no untrusted services calling the services of the module.

2.1.1 Validation Level Detail

The following table lists the module’s level of validation for each area in FIPS 140-2:

Table 1 - Validation Level by FIPS 140-2 Section

FIPS 140-2 Section Title Validation Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

Electromagnetic Interference / Electromagnetic Compatibility 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks 1

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 7 of 36

2.1.2 Modes of Operation

The module supports two modes of operation: FIPS Approved mode and non-Approved mode. The

module will be in FIPS Approved mode when the appropriate factory is called. To verify that a module is

in the FIPS Approved mode of operation, the user can call a FIPS status method

(CryptoServicesRegistrar.isInApprovedOnlyMode()). If the module is configured to allow FIPS Approved

mode and non-Approved mode operations, a call to CryptoServicesRegistrar.setApprovedMode(true) will

switch the current thread of user control into FIPS Approved mode.

In FIPS Approved mode, the module will not provide non-Approved algorithms, therefore, exceptions

will be called if the user tries to access non-Approved algorithms in the FIPS Approved mode.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 8 of 36

2.1.3 Approved Cryptographic Algorithms

2.1.3.1 CAVP Tested Approved Algorithms

The module’s cryptographic algorithm implementations have received the following certificate numbers from the Cryptographic Algorithm

Validation Program (CAVP).

Table 2 - FIPS Approved Algorithm Certificates

CAVP Cert. Algorithm Standard Mode/Method
Key Lengths, Curves or

Moduli
Use

A1905 AES FIPS 197
SP 800-38A
Addendum to
SP 800-38A
(2010)

CBC, CBC-CS1, CBC-
CS2, CBC-CS3, ECB,
CFB8, CFB128, CTR,
OFB

128, 192, 256 Encryption, Decryption

A1905 AES CCM SP 800-38C CCM 128, 192, 256 Authenticated Encryption,
Decryption

A1905 AES CMAC SP 800-38B CMAC 128, 192, 256 Authenticated Encryption,
Decryption

A1905 AES-FF1 SP 800-38G FF1 128, 192, 256 Format Preserving Encryption,
Decryption

A1905 AES
GCM/GMAC1

SP 800-38D GCM/GMAC 128, 192, 256 Authenticated Encryption,
Decryption

A1905 AES KW, KWP SP 800-38F KW, KWP 128, 192, 256 Key Wrapping

A1905 CVL: KDF,
Existing
Application-
Specific2

SP 800-135 TLS v1.0/1.1 KDF,
TLS 1.2 KDF,
X9.63 KDF

Various (See #A1905 for
details)

KDF Services

1 GCM encryption with an internally generated IV as outlined in Section 8.2.2 of NIST SP 800-38D; see Section 8.3 concerning external IVs. See Security Policy

section 3.3 concerning external IVs. IV generation is compliant with IG A.5.
2 These protocols have not been reviewed or tested by the CAVP and CMVP.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 9 of 36

CAVP Cert. Algorithm Standard Mode/Method
Key Lengths, Curves or

Moduli
Use

A1905 DRBG SP 800-90A Hash DRBG
HMAC DRBG
CTR DRBG

112, 128, 192, 256
(SHA-1, SHA-2,
3-Key Triple DES, AES)

Random Bit Generation

A1905 DSA3

FIPS 186-4 Key Pair Generation,
PQG Generation,
PQG Verification,
Signature
Generation,
Signature Verification

(1024, 160)4
(2048, 224)
(2048, 256)
(3072, 256)

Digital Signature Services

A1905 ECDSA FIPS 186-4 Key Generation,
Signature
Generation,
Signature
Verification,
Public Key Validation,
Signature Generation
Component (CVL)

P-1925, P-224, P-256, P-384,
P- 521,
K-1636, K-233, K-283, K-409,
K-571,
B-1637, B-233, B-283, B-409,
B-571

Digital Signature Services

3 DSA signature generation with SHA-1 is only for use with protocols
4 Key size only used for Signature Verification
5 In approved mode of operation, the use of this curve for anything other than verification is non-compliant.
6 In approved mode of operation, the use of this curve for anything other than verification is non-compliant.
7 In approved mode of operation, the use of this curve for anything other than verification is non-compliant.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 10 of 36

CAVP Cert. Algorithm Standard Mode/Method
Key Lengths, Curves or

Moduli
Use

A1905 HMAC FIPS 198-1 HMAC-SHA-1,
HMAC-SHA-224,
HMAC-SHA-256,
HMAC-SHA-384,
HMAC-SHA-512,
HMAC-SHA-512/224,
HMAC-SHA-512/256,
HMAC-SHA3-224,
HMAC-SHA3-256,
HMAC-SHA3-384,
HMAC-SHA3-512

Various (KS<BS, KS=BS,
KS>BS)

HMAC Generation,
HMAC Authentication

A1905 KAS8 SP 800-56Ar3 KAS-FFC:
dhEphem, dhStatic

KAS-ECC:
ephemeralUnified,
staticUnified

• FB, FC

• ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192

• MODP-2048, MODP-
3072, MODP-4096,
MODP-6144, MODP-8192

• P-224, P-256, P-384, P-
521

• K-233, K-283, K-409, K-
571

• B-233, B-283, B-409, B-
571

Key Agreement

For KAS-ECC, the key

establishment methodology

provides between 112 and 256 bits

of encryption strength; anything

less than 112 bits of encryption

strength is non-compliant.

For KAS-FFC, the key establishment

methodology provides between

112 and 200 bits of encryption

strength; anything less than 112

bits of encryption strength is non-

compliant.

8 Keys are not directly established into the module using KAS-ECC and KAS-FFC.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 11 of 36

CAVP Cert. Algorithm Standard Mode/Method
Key Lengths, Curves or

Moduli
Use

A1905 KAS (KAS-SSC
Cert. #A1905,
CVL Cert.
#A1905)9

SP 800-56Ar3
SP 800-135

SP 800-56Ar3 KAS-SSC with TLS v1.0/1.1 KDF, TLS 1.2
KDF or X9.63 KDF.
Compliant to IG D.8 X1 Option 2, testing the shared
secret and separately testing the key derivation
function.

Key Agreement

A1905 KAS (KAS-SSC
Cert. #A1905,
KDA Cert.
#A1905)10

SP 800-56Ar3
SP 800-56Cr2

SP 800-56Ar3 KAS-SSC with One Step KDA or HKDF
KDA.
Compliant to IG D.8 X1 Option 2, testing the shared
secret and separately testing the key derivation
function.

Key Agreement

A1905 KAS-SSC SP 800-56Ar3 KAS-FFC:
dhEphem, dhStatic

KAS-ECC:
ephemeralUnified,
staticUnified

• FB, FC

• ffdhe2048, ffdhe3072,

ffdhe4096, ffdhe6144,

ffdhe8192

• MODP-2048, MODP-

3072, MODP-4096,

MODP-6144, MODP-8192

• P-224, P-256, P-384, P-

521

• K-233, K-283, K-409, K-

571

• B-233, B-283, B-409, B-

571

Key Agreement – Shared Secret
Computation

9 Keys are not directly established into the module using KAS-ECC and KAS-FFC.
10 Keys are not directly established into the module using KAS-ECC and KAS-FFC.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 12 of 36

CAVP Cert. Algorithm Standard Mode/Method
Key Lengths, Curves or

Moduli
Use

A1905 KDA, One Step SP 800-56Cr2 PRFs:

• SHA-1

• SHA-224, SHA-256, SHA-384, SHA-512, SHA-

512/224, SHA-512/256

• SHA3-224, SHA3-256, SHA3-384, SHA3-512

• HMAC SHA-1

• HMAC SHA-224, HMAC SHA-256, HMAC SHA-384,

HMAC SHA-512, HMAC SHA-512/224, HMAC SHA-

512/256

• HMAC SHA3-224, HMAC SHA3-256, HMAC SHA3-

384, HMAC SHA3-512

• KMAC-128, KMAC-256

Key Derivation

A1905 KDA, HKDF SP 800-56Cr2 PRFs:

• HMAC SHA-1

• HMAC SHA-224, HMAC SHA-256, HMAC SHA-384,

HMAC SHA-512, HMAC SHA-512/224, HMAC SHA-

512/256

• HMAC SHA3-224, HMAC SHA3-256, HMAC SHA3-

384, HMAC SHA3-512

Key Derivation

A1905 (AES) KTS: Key
Wrapping Using
AES11

SP 800-38F AES KW, AES KWP 128, 192, 256 Key Transport
For AES, the key establishment
methodology provides between
128 and 256 bits of encryption
strength

11 Keys are not established directly into the module using key unwrapping.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 13 of 36

CAVP Cert. Algorithm Standard Mode/Method
Key Lengths, Curves or

Moduli
Use

A1905
(TDES)

KTS: Key
Wrapping Using
TDES12

SP 800-38F TKW 3-key Triple-DES Key Transport
For Triple-DES, key establishment
methodology provides 112 bits of
encryption strength

A1905 KTS-RSA13 SP 800-56Br2 KTS-OAEP-basic 2048, 3072, 4096 Key Transport
Key establishment methodology
provides 112 or 128 bits of
encryption strength

A1905 PBKDF SP 800-132 PBKDF with Option
1a only.

HMAC-based KDF using SHA-
1, SHA-224, SHA-256, SHA-
384, SHA-512, SHA-512/224,
SHA-512/256, SHA3-224,
SHA3-256, SHA3-384, SHA3-
512

Key Derivation

A1905 RSA14 FIPS 186-4

SP 800-56B
Section 7.1.2

FIPS 186-2

Key Pair Generation:
2048, 3072, 4096
Signature Generation (ANSI X9.31, PKCS 1.5, and
PKCSPSS): 2048, 3072, 4096
Signature Verification (ANSI X9.31, PKCS 1.5, and
PKCSPSS): 1024, 2048, 3072, 4096
RSA Decryption Primitive Component (CVL) per SP
800-56B:
2048

Signature Verification (ANSI X9.31, PKCS 1.5, and
PKCSPSS): 1024, 1536, 2048, 3072, 4096 bits

Digital Signature Services, Key
Transport (per SP 800-56B)

12 Keys are not established directly into the module using key unwrapping.
13 Keys are not established directly into the module using key transport.
14 Keys are not established directly into the module using key transport.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 14 of 36

CAVP Cert. Algorithm Standard Mode/Method
Key Lengths, Curves or

Moduli
Use

A1905 SHA-3, SHAKE FIPS 202 SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512,
SHAKE128,
SHAKE256,

N/A Digital Signature Generation,
Digital Signature Verification, non-
Digital Signature Applications

A1905 SHA-3 Derived
Functions

SP 800-185 • cSHAKE-128, cSHAKE-256

• KMAC-128, KMAC-256

• TupleHash-128, TupleHash-256

• ParallelHash-128, ParallelHash-256

A1905 SHS

FIPS 180-4 SHA-115,
SHA-224,
SHA-256,
SHA-384,
SHA-512,
SHA-512/224,
SHA-512/256

N/A Digital Signature Generation,
Digital Signature Verification, non-
Digital Signature Applications

A1905 Triple-DES SP 800-67 TCBC, TCFB8,
TCFB64, TECB, TOFB,
CTR

2-key, 3-key16 Encryption, Decryption

A1905 Triple-DES
CMAC

SP 800-38B CMAC 2-key, 3-key17 Generation, Authentication

A1905 Triple-DES TKW SP 800-38F TKW 3-key18 Key Wrapping

15 Only for verification.
16 216 block limit is enforced by the module, 2-key encryption is disabled.
17 216 block limit is enforced by the module. In FIPS Approved mode, the use of 2-key Triple-DES to generate MACs for anything other than verification

purposes is non-compliant.
18 216 block limit is enforced by the module.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 15 of 36

2.1.3.2 Vendor Affirmed Approved Algorithms

The following Approved cryptographic algorithms were implemented with vendor affirmation.

Table 3 - Approved Cryptographic Functions Implemented with Vendor Affirmation

Algorithm IG Reference Use

CKG using output
from DRBG19

Vendor Affirmed
per IG D.12

[SP 800-133]
Section 6.1 (Asymmetric from DRBG)
Section 7.1 (Symmetric from DRBG)
Using DRBG #A1905

2.1.4 Non-Approved But Allowed Cryptographic Algorithms

The module supports the following FIPS 140-2 non-Approved but allowed algorithms that may be used

in the FIPS Approved mode of operation.

Table 4 - Non-Approved But Allowed Cryptographic Algorithms

Algorithm Use

MD5 within TLS [IG D.2, IG 1.23 example 2a]

RSA Key Wrapping, Non-SP 800-

56B compliant20

[IG D.9]

RSA may be used by a calling application as part of a key

encapsulation scheme.

Key sizes: >= 2048 bits

Key wrapping; key establishment methodology provides 112 or

128 bits of encryption strength.

2.1.5 Non-Approved Mode of Operation

The module supports a non-Approved mode of operation. The algorithms listed in this section are not to

be used by the operator in the FIPS Approved mode of operation.

Table 5 - Non-Approved Cryptographic Functions for Use in non-Approved mode Only

Algorithm Use

AES (non-compliant) Encryption, Decryption

ARC4 (RC4) Encryption, Decryption

Camellia Encryption, Decryption

ChaCha Encryption, Decryption

DSA (non-compliant21) Public Key Cryptography

19 The resulting key or a generated seed is an unmodified output from a DRBG
20 Keys are not established into the module using RSA
21 Deterministic signature calculation, support for additional digests, and key sizes.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 16 of 36

Algorithm Use

ECDSA (non-compliant22) Public Key Cryptography

EdDSA Public Key Cryptography

ElGamal Public Key Cryptography

FF3-1 Encryption, Decryption

NewHope Key Agreement

OpenSSL PBKDF (non-compliant) Key Derivation

PKCS#12 PBKDF (non-compliant) Key Derivation

Poly1305 Message Authentication

RSA (non-compliant23) Public Key Cryptography

SEED Encryption, Decryption

Serpent Encryption, Decryption

SPHINCS-256 Signature Scheme

2.2 Critical Security Parameters and Public Keys

2.2.1 Critical Security Parameters

The table below provides a complete list of Critical Security Parameters used within the module:

Table 6 - Critical Security Parameters

CSP Description / Usage

AES Encryption Key [FIPS 197, SP 800-38A, SP 800-38C, SP 800-38D, SP 800-38G,
Addendum to SP 800-38A]
AES (128/192/256) encrypt key24

AES Decryption Key [FIPS 197, SP 800-38A, SP 800-38C, SP 800-38D, SP 800-38G,
Addendum to SP 800-38A]
AES (128/192/256) decrypt key

AES Authentication Key [FIPS 197]
AES (128/192/256) CMAC/GMAC key

AES Wrapping Key [SP 800-38F]
AES (128/192/256) key wrapping key

DH Agreement Key [SP 800-56Ar3]
Diffie-Hellman (224 - 512 bits) private key agreement key

DRBG (CTR AES) V (128 bits) and AES key (128/192/256), entropy input (length
dependent on security strength)

DRBG (CTR Triple-DES) V (64 bits) and Triple-DES key (192 bits), entropy input (length
dependent on security strength)

22 Deterministic signature calculation, support for additional digests, and key sizes.
23 Support for additional digests, signature formats, and key sizes.
24 The AES GCM key is generated randomly per IG A.5, and the Initialization Vector (IV) is also generated

randomly and at least 96 bits. In the event of power loss the AES-GCM key will be lost and the consuming

application must ensure that new AES-GCM keys for encryption or decryption are re-distributed. Refer also to

Security Policy section 3.3.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 17 of 36

CSP Description / Usage

DRBG (Hash) V (440/888 bits) and C (440/888 bits), entropy input (length
dependent on security strength)

DRBG (HMAC) V (160/224/256/384/512 bits) and Key (160/224/256/384/512
bits), entropy input (length dependent on security strength)

DSA Signing Key [FIPS 186-4]
DSA (2048/3072 bits) signature generation key

EC Agreement Key [SP 800-56Ar3]
EC (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233,
B-283, B-409 and B-571) private key agreement key

EC Signing Key [FIPS 186-4]
ECDSA (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-
233, B-283, B-409 and B-571) signature generation key

HMAC Authentication Key [FIPS 198-1]
Keyed-Hash key (SHA-1, SHA-2, SHA-3). Key size determined by
security strength required (>= 112 bits)

PBKDF Secret [SP 800-132]
Secret value used in construction of Keyed-Hash key for the
specified PRF

RSA Signing Key [FIPS 186-4]
RSA (>=2048 bits) signature generation key

RSA Key Transport Key [SP 800-56Br2]
RSA (>=2048 bits) key transport (decryption) key

TLS KDF Secret Value [SP 800-135]
Secret value used in construction of Keyed-Hash key for the
specified TLS PRF

Triple-DES Encryption Key [SP 800-67]
Triple-DES (192 bits) encryption key

Triple-DES Decryption Key [SP 800-67]
Triple-DES (128/192 bits) decryption key

Triple-DES Authentication Key [SP 800-67]
Triple-DES (128/192 bits) CMAC key

Triple-DES Wrapping Key [SP 800-38F]
Triple-DES key wrapping (192 bits)/unwrapping key (128/192 bits)

X9.63 KDF Secret Value [SP 800-135]
Secret value used in construction of input for the specified X9.63
PRF

SP 800-56C-rev2
One-Step
Derivation Function

[SP 800-56C-rev2]
Secret value used in construction of key for underlying PRF.

SP 800-56C-rev2
Hash Derivation Function (HKDF)

[SP 800-56C-rev2]
Secret value used in construction of key for underlying PRF.

2.2.2 Public Keys

The table below provides a complete list of the public keys used within the module:

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 18 of 36

Table 7 - Public Keys

Public Key Description / Usage

DH Agreement

Key

[SP 800-56Ar3]

Diffie-Hellman (>=2048) public key agreement key (All SP 800-56A-rev3 parameter

sets)

DSA Verification

Key

[FIPS 186-4]

DSA (1024/2048/3072) signature verification key

EC Agreement

Key

[SP 800-56Ar3]

EC (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409

and B-571) public key agreement key

EC Verification

Key

[FIPS 186-4]

ECDSA (P-192, P-224, P-256, P-384, P-521, K-163, K-233, K-283, K-409, K-571, B-

163, B-233, B-283, B-409 and B-571) signature verification key

RSA Key

Transport Key

[SP 800-56Br2]

RSA (2048 - 16384) key transport (encryption) key

RSA Verification

Key

[FIPS 186-4]

RSA (1024, 1536, >=2048) signature verification key

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 19 of 36

2.3 Module Interfaces

The figure below shows the module’s physical and logical block diagram:

Figure 1 – Module Boundary and Interfaces Diagram

The module’s physical boundary is the boundary of the General Purpose Computer (GPC) that the

module is installed on, which includes a processor and memory. The interfaces (ports) for the physical

boundary include the computer’s network port, keyboard port, mouse port, power plug, and display.

When operational, the module does not transmit any information across these physical ports because it

is a software cryptographic module. Therefore, the module’s interfaces are purely logical.

Figure 1 shows the logical relationship of the cryptographic module to the other software and hardware

components of the GPC. The module classes are executed on the .NET Framework Common Language

Runtime (CLR) using the classes of the Framework Class Library (FCL). The CLR is the interface to the

computer’s Operating System (OS), which is the interface to the various physical components of the

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 20 of 36

computer. The logical interface is provided through an Application Programming Interface (API) that a

calling daemon can operate. The API itself defines the module’s logical boundary, i.e. all access to the

module is through this API. The API provides functions that may be called by an application (see Section

2.4 – Roles, Services, and Authentication for the list of available functions). The module distinguishes

between logical interfaces by logically separating the information according to the defined API.

The API provided by the module is mapped onto the FIPS 140- 2 logical interfaces, which relate to the

module’s callable interface as follows:

Table 8 - Logical Interface / Physical Interface Mapping

FIPS 140-2

Interface
Logical Interface Module Physical Interface

Data Input API input parameters – plaintext and/or ciphertext data Network Interface

Data Output API output parameters and return values – plaintext

and/or ciphertext data

Network Interface

Control

Input

API method calls – method calls, or input parameters,

that specify commands and/or control data used to

control the operation of the module

Network Interface,

Keyboard Interface,

Mouse Interface

Status

Output

API output parameters and return/error codes that

provide status information used to indicate the state of

the module

Display Controller,

Network Interface

Power None Power Supply

When the module performs self-tests or is in an error state, the module prevents all output on the

logical data output interface. Activities in the module are single-threaded, and when in an error state,

the module does not return any output data, only an error value.

2.4 Roles, Services, and Authentication

2.4.1 Assumption of Roles

The module supports two distinct operator roles, which are the User and Crypto Officer (CO), as

indicated in Table 9 - Description of Roles. The cryptographic module implicitly maps the two roles to

the services. A user is considered the owner of the thread that instantiates the module and, therefore,

only one concurrent user is allowed.

The module does not support a Maintenance role or bypass capability. The module leverages the CLR to

allow multiple threads (concurrent operations), and the operating system and CLR manage separate

memory for each thread. In addition, there is high level thread management implemented by the

module. The module does not support authentication.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 21 of 36

Table 9 - Description of Roles

Role Role Description Authentication Type

CO Crypto Officer – Initialize the

module

N/A – Authentication is not a requirement for FIPS 140

Level 1

User User – Use of the complete API N/A – Authentication is not a requirement for FIPS 140

Level 1

2.4.2 Services

All services implemented by the module are listed in Table 10 - Module Services, Descriptions. The

second column provides a description of each service, and availability to the Crypto Officer and User is

indicated in columns three and four, respectively. Table 11 - CSP Access Rights within Services describes

all CSP usage by services. All services available to the User are also available to the Crypto Officer. Only

one role may be active at a time and the module does not allow concurrent operators, although an

operator may perform more than one task concurrently.

Authentication of the Crypto Officer and/or User is not supported by the module but is a task performed

by the host environment.

Table 10 - Module Services, Descriptions, and Roles

Service Description CO User

Initialize Module and Run
Self-Tests on Demand

The CLR will call the static constructor for self-tests on
module initialization.

X

Show Status A user can call CryptoStatus.IsReady() at any time to
determine if the module is ready.
IsInApprovedOnlyMode() can be called to determine the FIPS
mode of operation.

 X

Zeroize / Power-off The module uses the CLR garbage collector on thread
termination when objects are reclaimed.

 X

Data Encryption Used to encrypt data. X

Data Decryption Used to decrypt data. X

MAC Calculation Used to calculate data integrity codes with CMAC. X

Signature Generation Used to generate digital signatures (DSA, ECDSA, RSA). X

Signature Verification Used to verify digital signatures (DSA, ECDSA, RSA). X

DRBG (SP 800-90A)
output

Used for random number and IV key generation. X

Key Generation – Based
on DRBG (SP 800-90A)

Used for key generation.

Message Hashing Used to generate a SHA-1, SHA-2, or SHA-3 message digest,
SHAKE output.

 X

Keyed Message Hashing Used to calculate data integrity codes with HMAC. X

TLS Key Derivation
Function

(secret input) (outputs secret) Used to calculate a value
suitable to be used for a master secret in TLS from a pre-
master secret and additional input.

 X

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 22 of 36

Service Description CO User

X9.63 Derivation
Function

(secret input) (outputs secret) Used to calculate a value
suitable to be used for a secret key from an input secret and
additional input.

 X

SP 800-56Cr2 One-Step
Derivation Function

(secret input) (outputs secret) Used to calculate a value
suitable to be used for a secret key from an input secret and
additional input.

 X

SP 800-56Cr2 Hash
Derivation Function
(HKDF)

(secret input) (outputs secret) Used to calculate a value
suitable to be used for a secret key from an input secret and
additional input.

 X

Password-Based Key
Derivation Function
(PBKDF)

(secret input) (outputs secret) Used to generate a key using
an encoding of a password and an additional function such as
a message hash.

 X

Key Agreement Schemes Used to calculate key agreement values (SP 800-56Ar3) X

Key Wrapping/Transport Used to encrypt a key value. (RSA, AES, Triple-DES) X

Key Unwrapping Used to decrypt a key value. (RSA, AES, Triple-DES) X

NDRNG Callback Gathers entropy in a passive manner from a user-provided
function.

 X

Utility Miscellaneous utility functions, does not access CSPs. X

Note: The module services are the same in the FIPS Approved and non-Approved modes of operation.

The only difference is the function(s) used (Approved/allowed or non-Approved/non-allowed).

Services in the module are accessed via the public APIs of the DLL. The ability of a thread to invoke non-

Approved services depends on whether it has been registered with the module as FIPS Approved mode

only. In FIPS Approved only mode, no non-Approved services are accessible.

Table 11 - CSP Access Rights within Services defines the relationship between access to CSPs and the

different module services. The modes of access shown in the table are defined as:

• G = Generate: The module generates the CSP.

• R = Read: The module reads the CSP. The read access is typically performed before the module

uses the CSP.

• E = Execute: The module executes using the CSP.

• W = Write: The module writes the CSP. The write access is typically performed after a CSP is

imported into the module, when the module generates a CSP, or when the module overwrites an

existing CSP.

• Z = Zeroize: The module zeroizes the CSP.

Note: keys are not established directly into the module using derivation functions or unwrapping

schemes.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 23 of 36

Table 11 - CSP Access Rights within Services

Services

CSPs

A
ES

 E
n

cr
yp

ti
o

n
 K

ey

A
ES

 D
ec

ry
p

ti
o

n
 K

ey

A
ES

 A
u

th
en

ti
ca

ti
o

n
 K

ey

A
ES

 W
ra

p
p

in
g

K
ey

D
H

 A
gr

ee
m

en
t

K
ey

D
R

B
G

 (
C

TR
 A

ES
)

D
R

B
G

 (
C

TR
 T

ri
p

le
-D

ES
)

D
R

B
G

 (
H

as
h

)

D
R

B
G

 (
H

M
A

C
)

D
SA

 S
ig

n
in

g
K

ey

EC
 A

gr
ee

m
en

t
K

ey

EC
 S

ig
n

in
g

K
ey

H
M

A
C

 A
u

th
en

ti
ca

ti
o

n
 K

ey

P
B

K
D

F
Se

cr
et

R
SA

 S
ig

n
in

g
K

ey

R
SA

 K
ey

 T
ra

n
sp

o
rt

 K
ey

SP
 8

0
0

-5
6

C
 C

o
n

ca
t.

 D
F

Se
cr

et

SP
 8

0
0

-5
6

C
 H

K
D

F
Se

cr
et

TL
S

K
D

F
Se

cr
et

Tr
ip

le
-D

ES
 E

n
cr

yp
ti

o
n

 K
e

y

Tr
ip

le
-D

ES
 D

ec
ry

p
ti

o
n

 K
ey

Tr
ip

le
-D

ES
 A

u
th

en
ti

ca
ti

o
n

 K
e

y

Tr
ip

le
-D

ES
 W

ra
p

p
in

g
K

ey

X
9

.6
3

 K
D

F
Se

cr
et

 V
al

u
e

Initialize
Module and
Run Self-
Tests on
Demand

Show Status

Zeroize /
Power-off

Z

Data
Encryption

R R

Data
Decryption

 R R

MAC
Calculation

 R R

Signature
Generation

 R R R

Signature
Verification

 R R R

DRBG (SP
800-90A)
output

G G G G G GR GR GR GR G G G G G G G G G G

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 24 of 36

Key
Generation –
Based on
DRBG (SP
800-90A)

 R R R R

Message
Hashing

Keyed
Message
Hashing

 R

TLS Key
Derivation
Function

 R

X9.63
Derivation
Function

 G G G R

SP 800-56r2
One-Step
Derivation
Function

 G G G R

SP 800-56r2
Hash
Derivation
Function
(HKDF)

 G G G R

PBKDF GR R

Key
Agreement
Schemes

G G G G R R G R G G G G

Key
Wrapping/
Transport

 R R R R

Key
Unwrapping

 R R R R

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 25 of 36

NDRNG
Callback

 G G G G

Utility

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 26 of 36

2.5 Physical Security

The module is a software-only module and does not have physical security mechanisms.

2.6 Operational Environment

The module operates in a modifiable operational environment under the FIPS 140-2 definitions.

The module runs on a GPC running one of the operating systems specified in the approved operational

environment list in this section. Each approved operating system manages processes and threads in a

logically separated manner. The module’s user is considered the calling application that instantiates the

module within the process space of the CLR. When the Module is not otherwise configured, it will start

by default in the non-FIPS-approved mode.

The module was tested on the following platforms:

Table 12 - Tested Environments

Operating System .NET Framework Version Hardware Platform Processor (CPU)

Microsoft Windows 10

Professional (64-bit)

.NET 4.5.2 framework

(CLR version 4)

Dell XPS 15 7590 Intel Core i7 9750H

FIPS 140-2 validation compliance is maintained for other compatible operating systems (in single user

mode) where the module source code is unmodified, and the requirements outlined in NIST IG G.5 are

met. No claim can be made as to the correct operation of the module or the security strengths of the

generated keys when ported to an operational environment which is not listed on the validation

certificate.

The module is vendor-affirmed to be FIPS 140-2 compliant when running one of the .NET Runtime

environments on any of the following supported single-user operating systems for which operational

testing and algorithm testing were not performed:

• Windows Vista with .NET 4.5.2

• Windows 7 with .NET 4.6.1

• Windows 8 with .NET 4.5.2

• Windows 8 with .NET 4.6.1

• Windows 8.1 with .NET 4.6.1

• Windows Server 2008 R2 SP1 with .NET 4.5.2

• Windows Server 2012 R2 with .NET 4.5.2

• Windows Server 2012 R2 with .NET 4.6.1

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 27 of 36

2.6.1 Use of External RNG

The module makes use of FipsSecureRandom to seed the DRBG. FipsSecureRandom has three builder

methods used to control how entropy is provided. The method FromDefaultEntropy() shall not be used

in the FIPS Approved mode of operation. In the FIPS Approved mode either

FromEntropySource(SecureRandom) or FromEntropySource(IEntropySourceProvider) can be used. In

either case, the user shall ensure an Approved entropy source is provided and will block, or fail, if it is

unable to provide the amount of entropy requested.

The module's FipsSecureRandom() function will request entropy as appropriate to the security strength

and seeding configuration for the DRBG that is using it. In FIPS Approved mode, the minimum amount of

entropy that would be requested is 112 bits, with a larger minimum being set if the security strength of

the operation requires it.

The module will wait until the FipsSecureRandom() returns the requested amount of entropy before

seeding the DRBG.

2.7 Self-Tests

Each time the module is powered up, it tests that the cryptographic algorithms still operate correctly

and that sensitive data has not been damaged. Power-up self-tests are available on demand by power

cycling the module.

On power-up or reset, the module performs the self-tests that are described in Table 13 - Power-Up

Self-Tests. All KATs must be completed successfully prior to any other use of cryptography by the

module. If one of the KATs fails, the module enters the Self-Test Failure error state. The module will

output a detailed error message when CryptoStatus.isReady() is called. The error state can only be

cleared by reloading the module and calling CryptoStatus.isReady() again to confirm successful

completion of the KATs.

2.7.1 Power-Up Self-Tests

Table 13 - Power-Up Self-Tests

Test Target Description

Software Integrity Check HMAC-SHA-512 (HMAC Cert. #A1905)

AES KATs: Encryption, Decryption
Modes: ECB
Key sizes: 128 bits

AES CCM KATs: Generation, Verification
Key sizes: 128 bits

AES CMAC KATs: Generation, Verification
Key sizes: 128 bits

AES GCM/GMAC KATs: Generation, Verification
Key sizes: 128 bits

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 28 of 36

Test Target Description

DRBG KATs: HASH_DRBG, HMAC_DRBG, CTR_DRBG
Security Strengths: 256 bits

DSA KAT: Signature Generation, Signature Verification
Key sizes: 2048 bits

ECDSA KAT: Signature Generation, Signature Verification
Curves/Key sizes: P-256, B-233

HKDF (SP 800-56Cr2) KATs: Key derivation
PRFs: HMAC-SHA-256

HMAC KATs: Generation, Verification
SHA sizes: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256, SHA3-224, SHA3-256, SHA3-384, SHA3-512

DH Agreement KAT: Agreement Test (Diffie-Hellman computation)
Parameter Sets/Key sizes: ffdhe2048

KAS: FFC KATs: Per IG D.8 Scenario X1 – Primitive “Z” Computation
Parameter Sets/Key sizes: ffdhe2048

KAS: ECC KATs: Per IG D.8 Scenario X1 – Primitive “Z” Computation
Parameter Sets/Key sizes: P-256, B-233

KDA (SP 800-56Cr2) KATs: Key derivation
Modes: One-Step
PRFs: HMAC-SHA-256, SHA-256, KMAC-256

KDF, Existing Application-
Specific (CVL)

• MD5 KAT performed to verify operation of MD5 digest used in TLS 1.0
KDF

• TLS 1.0 SHA-1 KDF KAT performed to verify TLS 1.0 KDF, TLS 1.1/1.2
KDF

• SHA-256-HMAC KAT performed to verify TLS 1.1/1.2 KDF

• X9.63 SHA-256 KDF KAT performed to verify X9.63 KDF

PBKDF KATs: Master key derivation
PRFs: HMAC-SHA-256

RSA KATs: Signature Generation, Signature Verification
Key sizes: 2048 bits

RSA, Key Transport KATs: SP 800-56Br2 specific KATs per IG D.4
Key sizes: 2048 bits

SHS KATs: Output Verification
SHA sizes: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA512/224,
SHA-512/256, SHA3-224, SHA3-256, SHA3-384, SHA3512

Triple-DES KATs: Encryption, Decryption
Modes: TECB
Key sizes: 3-Key

Triple-DES CMAC KATs: Generation, Verification
Key sizes: 3-Key

XOF (Extendable-Output
functions)

KATs: Output Verification
XOFs: SHAKE128, SHAKE256

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 29 of 36

2.7.2 Conditional Self-Tests

The module implements the following conditional self-tests upon key generation, or random number

generation (respectively):

Table 14 - Conditional Self-Tests

Test Target Description

DRBG DRBG Continuous Test performed when a random value is requested from

the DRBG (all DRBGs).

DRBG Health Checks Performed conditionally on DRBG (all DRBGs), per SP 800-90A Section 11.3.

DSA DSA Pairwise Consistency Test performed on every DSA key pair generation.

ECDSA ECDSA Pairwise Consistency Test performed on every EC key pair generation.

KAS: Pairwise

consistency

DH Pairwise Consistency Test performed on every DH key pair generation

(FFC and ECC)

KAS: SP 800-56A

Assurances

Performed conditionally per SP 800-56Ar3 Sections 5.5.2 and/or 5.6.2.

Required per IG 9.6 and IG D.8.

NDRNG NDRNG Continuous Test performed when a random value is requested from

the entropy source.

RSA RSA Pairwise Consistency Test performed on every RSA key pair generation.

2.8 Mitigation of Other Attacks

The module implements basic protections to mitigate against timing-based attacks against its internal

implementations. There are two countermeasures used.

The first countermeasure is Constant Time Comparisons, which protect the digest and integrity

algorithms by strictly avoiding “fast fail” comparison of MACs, signatures, and digests so the time taken

to compare a MAC, signature, or digest is constant regardless of whether the comparison passes or fails.

The second countermeasure is made up of Numeric Blinding and decryption/signing verification which

both protect the RSA algorithm.

Numeric Blinding prevents timing attacks against RSA decryption and signing by providing a random

input into the operation which is subsequently eliminated when the result is produced. The random

input makes it impossible for a third party observing the private key operation to attempt a timing

attack on the operation as they do not have knowledge of the random input and consequently the time

taken for the operation tells them nothing about the private value of the RSA key.

Decryption/signing verification is carried out by calculating a primitive encryption or signature

verification operation after a corresponding decryption or signing operation before the result of the

decryption or signing operation is returned. The purpose of this is to protect against Lenstra's CRT attack

by verifying the correctness of the private key calculations involved. Lenstra's CRT attack takes

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 30 of 36

advantage of undetected errors in the use of RSA private keys with CRT values and, if exploitable, can be

used to discover the private value of the RSA key.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 31 of 36

3 Security Rules and Guidance

3.1 Basic Enforcement

The module design corresponds to the module security rules. This section documents the security rules

enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 1

module.

1. The module provides two distinct operator roles: User and Crypto Officer.

2. The module does not provide authentication.

3. The operator may command the module to perform the power up self-tests by cycling power or

resetting the module.

4. Power-up self-tests do not require any operator action.

5. Data output is inhibited during key generation, self-tests, zeroization, and error states.

6. Status information does not contain CSPs or sensitive data that if misused could lead to a

compromise of the module.

7. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.

8. The module does not support concurrent operators.

9. The module does not have any external input/output devices used for entry/output of data.

10. The module does not enter or output plaintext CSPs from the module’s physical boundary.

11. The module does not output intermediate key values.

3.2 Basic Guidance

Functionality in the module is provided via distinct classes that provide access to the FIPS Approved and

non-Approved services provided by the module.

When the module is being used in FIPS Approved-only mode, classes providing implementations of

algorithms which are not FIPS Approved, or allowed, are explicitly disabled.

3.3 Enforcement and Guidance for AES GCM IVs

The module supports two methods of AES GCM IV generation.

The first method of GCM IV generation is when AES GCM is used as part of TLS 1.2 cipher suites

conformant to IG A.5 Scenario 1, RFC 5288 and SP 800-52 Section 3.3.1. The construction of the 64-bit

nonce_explicit part of the IV is generated using the FipsNonceGenerator, where a monotonically

increasing counter is used as the basis for the nonce. Rollover of the counter in the FipsNonceGenerator

will result in an IllegalStateException indicating the FipsNonceGenerator is exhausted. Per IG A.5 (where

used for TLS), rollover will terminate any TLS session in process using the current key and the exception

can only be recovered from by using a new handshake and creating a new FipsNonceGenerator.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 32 of 36

The GCM IV can also be generated randomly, per IG A.5, Scenario 2. The IV is constructed to be at least

96 bits. The module enforces the use of an approved DRBG in conformance with Section 8.2.2 of SP 800-

38D.

Per IG A.5, Section 2.2.1 of this Security Policy also states that in the event module power is lost and

restored the consuming application must ensure that any of its AES-GCM keys used for encryption or

decryption are re-distributed.

3.4 Enforcement and Guidance for Use of the Approved PBKDF

In line with the requirements for SP 800-132, keys generated using the approved PBKDF must only be

used for storage applications. Any other use of the approved PBKDF is non-compliant.

In FIPS Approved mode the module enforces that any password used must encode to at least 14 bytes

(112 bits) and that the salt is at least 16 bytes (128 bits) long. The iteration count associated with the

PBKDF should be as large as practical.

As the module is a general purpose software module, it is not possible to anticipate all the levels of use

for the PBKDF, however a user of the module should also note that a password should at least contain

enough entropy to be unguessable and also contain enough entropy to reflect the security strength

required for the key being generated. In the event a password encoding is simply based on ASCII, a 14-

byte password is unlikely to contain sufficient entropy for most purposes. Users are referred to

Appendix A, “Security Considerations” in SP 800-132 for further information on password, salt, and

iteration count selection.

3.5 Rules for Setting the N and the S String in cSHAKE

To customize the output of the cSHAKE function, the cSHAKE algorithm permits the operator to input

strings for the Function-Name input (N) and the Customization String (S).

The Function-Name input (N) is reserved for values specified by NIST and should only be set to the

appropriate NIST specified value. Any other use of N is non-conformant.

The Customization String (S) is available to allow users to customize the cSHAKE function as they wish.

The length of S is limited to the available size of a byte array in the CLR running the module.

3.6 Software Installation

The module is provided directly to solution developers and is not available for direct download to the

general public. Only the compiled module is provided to solution developers. The module and its host

application are to be installed on an operating system specified in Section 2.6 or on an operating system

where portability is maintained.

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 33 of 36

4 References and Acronyms

4.1 References

Table 15 – References

Abbreviation Full Specification Name

ANSI X9.31 X9.31-1998, Digital Signatures using Reversible Public Key Cryptography for the

Financial Services Industry (rDSA), September 9, 1998

FIPS 140-2 Security Requirements for Cryptographic modules, May 25, 2001

FIPS 180-4 Secure Hash Standard (SHS)

FIPS 186-2 Digital Signature Standard (DSS)

FIPS 186-4 Digital Signature Standard (DSS)

FIPS 197 Advanced Encryption Standard

FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC)

FIPS 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

IG Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module

Validation Program

PKCS#1 v2.1 RSA Cryptography Standard

PKCS#5 Password-Based Cryptography Standard

SP 800-38A Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext

Stealing for CBC Mode

SP 800-38B Recommendation for Block Cipher Modes of Operation: The CMAC Mode for

Authentication

SP 800-38C Recommendation for Block Cipher Modes of Operation: The CCM Mode for

Authentication and Confidentiality

SP 800-38D Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM)

and GMAC

SP 800-38F Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping

SP 800-38G Recommendation for Block Cipher Modes of Operation: Methods for Format-

Preserving Encryption

SP 800-56Ar3 Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography

SP 800-56Br2 Recommendation for Pair-Wise Key Establishment Schemes Using Integer

Factorization Cryptography

SP 800-56Cr2 Recommendation for Key Derivation through Extraction-then- Expansion

SP 800-67 Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher

SP 800-89 Recommendation for Obtaining Assurances for Digital Signature Applications

SP 800-90A Recommendation for Random Number Generation Using Deterministic Random Bit

Generators

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 34 of 36

Abbreviation Full Specification Name

SP 800-131Ar2 Transitioning the Use of Cryptographic Algorithms and Key Lengths

SP 800-132 Recommendation for Password-Based Key Derivation

SP 800-133 Recommendation for Cryptographic Key Generation

SP 800-135 Recommendation for Existing Application–Specific Key Derivation Functions

SP 800-185 SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 35 of 36

4.2 Acronyms

The following table defines acronyms found in this document:

Table 16 - Acronyms and Terms

Acronym Term

AES Advanced Encryption Standard

API Application Programming Interface

CBC Cipher-Block Chaining

CCM Counter with CBC-MAC

CCCS Canadian Centre for Cyber Security

CDH Computational Diffie-Hellman

CFB Cipher Feedback Mode

CLR Common Language Runtime

CMAC Cipher-based Message Authentication Code

CMVP Cryptographic Module Validation Program

CO Crypto Officer

CPU Central Processing Unit

CS Ciphertext Stealing

CSP Critical Security Parameter

CTR Counter Mode

CVL Component Validation List

DES Data Encryption Standard

DH Diffie-Hellman

DLL Dynamic Link Library

DRAM Dynamic Random Access Memory

DRBG Deterministic Random Bit Generator

DSA Digital Signature Algorithm

EC Elliptic Curve

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EdDSA Edwards Curve DSA using Ed25519, Ed448

EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

FCL Framework Class Library

FIPS Federal Information Processing Standard

GCM Galois/Counter Mode

GMAC Galois Message Authentication Code

GPC General Purpose Computer

HMAC (Keyed-) Hash Message Authentication Code

IG Implementation Guidance

IV Initialization Vector

KAS Key Agreement Scheme

KAT Known Answer Test

FIPS 140-2 Non-Proprietary Security Policy: CryptoComply for .NET

Document Version 1.0 © SafeLogic Inc. Page 36 of 36

Acronym Term

KDF Key Derivation Function

KW Key Wrap

KWP Key Wrap with Padding

MAC Message Authentication Code

MD5 Message Digest algorithm MD5

N/A Not Applicable

NDRNG Non Deterministic Random Number Generator

OCB Offset Codebook Mode

OFB Output Feedback

OS Operating System

PBKDF Password-Based Key Derivation Function

PKCS Public-Key Cryptography Standards

PQG Diffie-Hellman Parameters P, Q and G

PRF Pseudorandom Function

RC Rivest Cipher, Ron’s Code

RIPEMD RACE Integrity Primitives Evaluation Message Digest

RSA Rivest, Shamir, and Adleman

SHA Secure Hash Algorithm

TCBC TDEA Cipher-Block Chaining

TCFB TDEA Cipher Feedback Mode

TDEA Triple Data Encryption Algorithm

TDES Triple Data Encryption Standard

TECB TDEA Electronic Codebook

TOFB TDEA Output Feedback

TLS Transport Layer Security

USB Universal Serial Bus

XOF Extendable-Output Function

