

This document can be freely distributed in its entirety without modification Page 1

Pensando TLS Library

by Pensando Systems, Inc.

Version 1.0

FIPS 140-2 Level 1 Non-Proprietary Security Policy

Document Version Number: 1.2

Date: February 27, 2024

This document can be freely distributed in its entirety without modification Page 2

Table of Contents

1. Module Overview 3

2. Modes of Operation 4

3. Ports and interfaces 7

4. Roles and Services 7

5. Cryptographic Keys and CSPs 8

6. Self-tests 10

7. References 10

This document can be freely distributed in its entirety without modification Page 3

1. Module Overview

Pensando TLS Library is a set of standard Transport Layer Security (TLS) functions that are written in

the GO programming language. It supports TLS protocol version 1.2 (client and server) and standard

cryptographic functions, such as SHA, AES, etc.

This GO TLS Library is used in all Pensando products to secure the management plane communications

such as product provisioning, policy distribution, API orchestration, etc.

Table 1.1: Configuration tested by the lab

Module Platform Processor Operating Systems

Pensando TLS Library HPE:ProLiant

DL360 Gen10

Intel Xeon Gold 6140

with and without AES-NI

CentOS v7.7 on VMware

ESXi 6.7

Pensando TLS Library Capri 1.01
Capri 1.01 Linux 4.14.18

Pensando TLS Library Aruba CX

10000 Switch

Intel Xeon D-1637 with

and without AES-NI

ArubaOS-CX

version 10.12

1Capri 1.0 is both the platform and the processor. The entire OS as well as the Pensando TLS

Library run on it.

Table 1.2: Module Security Level Statement

FIPS Security Area Security Level

Cryptographic Module Specification 1

Module Ports and Interfaces 1

Roles, Services and Authentication
1

1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

1
 This Level 1 module does not implement authentication.

This document can be freely distributed in its entirety without modification Page 4

Figure 1: Pensando TLS Library

Physical Boundary (General Purpose Computer hardware)

2. Modes of Operation

Application

Software Cryptographic Boundary

(Pensando TLS Library 1.0)

Operating Environment

Hardware

Virtual Machine

This document can be freely distributed in its entirety without modification Page 5

The Pensando TLS Library supports the following two modes of operation to accommodate

different operating requirements. The mode is selected implicitly based on the services used.

 1) If an operator uses an approved function (Table 2.1), the module is in the FIPS mode.

 2) If an operator uses a non-approved function (Table 2.2), the module is in a non-FIPS mode.

The CSPs shall not be shared between the approved and non-approved modes.

2.1 Approved and Allowed Cryptographic Functions

The following approved cryptographic algorithms are used in FIPS approved mode of operation.

Table 2.1: Approved Cryptographic Functions.

CAVP

Cert

Library Algorithm Standard Model/

Method

Key

Lengths,

Curves or

Moduli

Use

A1289

A4801

Pensando

TLS

Library

KAS-

ECC-

SSC1

SP800-56Ar3 ECC Ephemeral

Unified Scheme

P-256 TLS Shared

Secret

Computation

C2155

Pensando

TLS

Library

AES FIPS 197,

SP 800-38D

CBC, GCM2

128, 256 Encryption/

Decryption

 CTR

C2156

A4801

Pensando

TLS

Library

AES FIPS 197,

SP 800-38D

CBC, GCM2

128, 256 Encryption/

Decryption

 CTR

ECDSA3 FIPS 186-4 ECDSA

KeyGen

P-256,

P-384

Key

Generation,

Key

Verification,

Signature

Generation,

Signature

Verification

ECDSA

KeyVer

ECDSA SigGen P-224, P-

256, P-384,

P-521
ECDSA SigVer

HMAC

FIPS198-1 HMAC-SHA-1

HMAC-SHA-256

HMAC-SHA-384

160, 256,

384

TLS Message

Authenticatio

n Code

HMAC

DRBG

SP800-90A SHA2-256 Deterministic

Random Bit

Generation

KBKDF SP800-108 HMAC-SHA-1,

HMAC-SHA2-

256, HMAC-

 Key

Derivation

This document can be freely distributed in its entirety without modification Page 6

CAVP

Cert

Library Algorithm Standard Model/

Method

Key

Lengths,

Curves or

Moduli

Use

SHA2-384

CVL

KDF TLS

SP800-135

 TLS Key

Derivation4

RSA FIPS 186-4 RSA SigGen

RSA SigVer

PKCS 1.5

SHA-256,

SHA-384,

SHA-512

Mod 2048;

Mod 3072

Signature

Generation,

Signature

Verification

SHS FIPS 180-4 SHA-1, SHA-

256, SHA-384,

SHA-512

 TLS Message

Digest

CKG
(vendor

affirmed)

Cryptographic

Key
Generation

 Key

Generation5

Note 1: Not all CAVS-tested modes of the algorithms are used in this module.

1Key establishment methodology provides 128 bits of encryption strength.

2The module’s AES-GCM implementation complies with IG A.5 scenario 1 and RFC 5288, and supports acceptable

GCM cipher suites from Section 3.3.1 of SP 800-52 Rev 1 or SP 800-52 Rev 2. AES-GCM is only used in TLS

version 1.2. When the IV exhausts the maximum number of possible values for a given session key, the first party,

client or server, that encounters this condition will trigger a handshake to establish a new encryption key. New AES-

GCM keys are generated by the module if the module loses power.

3SHA-1 is only allowed and CAVS tested in ECDSA Signature Verification. It is not used for Signature Generation.

4No parts of this protocol, other than the KDF, has been tested by the CAVP and CMVP.

5CKG can be used to generate symmetric keys and asymmetric keys. The module directly uses the output of the

DRBG. The generated symmetric key or a seed used in the asymmetric key generation is an unmodified output from

DRBG. Section 4, example 1, of SP800-133r2 “Using the Output of a Random Bit Generator” is applicable.

Table 2.2: Non FIPS Approved Cryptographic Functions

Algorithm Use

RC4 Encryption/Decryption

3DES-EDE (non-compliant) Encryption/Decryption

CHACHA20 Encryption/Decryption

POLY1305 Message Authentication Code

This document can be freely distributed in its entirety without modification Page 7

Algorithm Use

Ed25519 Digital Signature

SHA224 (non-compliant) Hashing

SHA512/224 (non-compliant) Hashing

SHA512/256 (non-compliant) Hashing

RSA Key generation (non-compliant) Digital Signature

RSA-PSS (non-compliant) Digital Signature

Diffie-Hellman Key Establishment

RSA Key Wrapping Key Establishment

3. Ports and interfaces

The physical ports of the module are the same as those of the computer system on which it is

executing. The logical interfaces of the module are implemented via an Application Programming

Interface (API). The following table describes each logical interface.

Table 3: FIPS 140-2 Logical Interfaces

Logical Interface Description

Data Input Input parameters that are supplied to the API commands

Data Output Output parameters that are returned by the API commands

Control Input API commands

Status Output Return status provided by API commands

4. Roles and Services

The module supports the following roles:

User role: The user uses the cryptographic services provided by the module.

Crypto Officer role: The Crypto Officer installs and manages the module.

Table 4: Roles and Services

This document can be freely distributed in its entirety without modification Page 8

Service
Corresponding

Roles

Types of Access to Cryptographic Keys and CSPs

 R – Read or Execute

 W – Write or Create

 Z – Zeroize

Installation Crypto Officer N/A

Initialize Crypto Officer N/A

Self-test Crypto Officer N/A

Show status Crypto Officer

User

N/A

Zeroization Crypto Officer All:Z

Reboot or

shutdown

Crypto Officer

N/A

Deterministic

random number

generation

User DRBG CSPs: R, W

Hashing

User N/A

Symmetric

encryption and

decryption using

AES

User AES key: R

Message

authentication

using HMAC

User HMAC key: R

Digital signature

creation and

verification using

ECDSA and RSA

User RSA keys: R

ECDSA keys: R

Key agreement

using ECC DH

User ECC DH keys: R, W

Symmetric and

asymmetric key

generation

User DRBG CSPs: R,W

TLS Key

derivation

User TLS keys: R,W

SP800-108 Key

derivation

User AES key: R

HMAC key: R

Non-Approved services are implementations of non FIPS Approved Cryptographic Functions.

They are listed in the Table 2.2.

5. Cryptographic Keys and CSPs

This document can be freely distributed in its entirety without modification Page 9

The table below describes the cryptographic keys and CSPs used by the module.

Table 5: Cryptographic Keys and CSPs

Key Description/Usage Storage

AES Key

Established using KDF TLS,

KBKDF or DRBG

Used during AES encryption /

decryption

RAM in plaintext

ECDSA public and private

keys

Established using DRBG

Used for Sign/Verify RAM in plaintext

HMAC Key

Established using KDF TLS,

KBKDF or DRBG

Used during calculation of HMAC RAM in plaintext

HMAC_DRBG CSPs:

entropy input, V and Key

Entropy is loaded externally

Used during generation of random

numbers

RAM in plaintext

TLS master secret

Established using KDF TLS

Used to derive TLS AES Key and

TLS HMAC Key

RAM in plaintext

TLS pre-master secret

Established using

KAS-ECC-SSC

Used to derive TLS master

secret

RAM in plaintext

RSA public and private keys

Set by operators

Used for Sign/Verify RAM in plaintext

Elliptic Curve Diffie Hellman

public and private keys

Established using DRBG

Diffie-Hellman key agreement RAM in plaintext

Note-1: public keys are not considered CSPs

Note-2: All keys, that are generated by this module, are generated by using HMAC DRBG. Since

the entropy is loaded externally, there is no assurance of the minimum strength of generated keys.

The minimum length of the entropy field is 256 bits. Assuming that the entropy source provides

full entropy, the module receives 256 bits of entropy.

This document can be freely distributed in its entirety without modification Page 10

Note-3: Keys can be provided to the module via API input parameters. The module does not enter or

output keys outside its physical boundary. Zeroization is performed using power cycle. See Table 2.1

for size and strength of the keys.

6. Self-tests

The module performs the following power-up and conditional self-tests. Upon failure or a power-

up or conditional self-test the module halts its operation.

Table 6: Self-Tests

Algorithm Power-up Test

Software integrity HMAC-SHA2-256

AES KAT(CBC / GCM encryption/decryption are separately tested)

KAS (ECC-SSC) Primitive “Z” Computation KAT per implementation guidance

ECDSA Pairwise Consistency Test (curve sizes P-256) using SHA256

HMAC KAT (HMAC-SHA-1)

KBKDF KAT

DRBG KAT

TLS 1.2 KDF KAT

RSA KAT (key size tested: 2048, using SHA-256)

SHA KAT (SHA-256, SHA-512)

 Conditional Test

KAS (ECC-SSC) ECC DH Private/Public Key Validation tests as per SP800-56Ar3

including ECC Full Public-Key Validation Routine

ECDSA Pairwise Consistency Test

DRBG Continuous Random Number Generator test

DRBG health tests, performed per SP 800-90A Section 11.3

7. References

Table 7: References

This document can be freely distributed in its entirety without modification Page 11

Reference Specification

[ANS X9.31]

Digital Signatures Using Reversible Public Key Cryptography for the

Financial Services Industry (rDSA)

[FIPS 140-2]

Security Requirements for Cryptographic modules, May 25, 2001

[FIPS 180-4] Secure Hash Standard (SHS)

[FIPS 186-2/4]

Digital Signature Standard

[FIPS 197]

Advanced Encryption Standard

[FIPS 198-1]

The Keyed-Hash Message Authentication Code (HMAC)

[FIPS 202] SHA‐3 Standard: Permutation‐Based Hash and Extendable‐Output Functions

[PKCS#1 v2.1]

RSA Cryptography Standard

[PKCS#5] Password‐Based Cryptography Standard

[PKCS#12] Personal Information Exchange Syntax Standard

[SP 800‐38A] Recommendation for Block Cipher Modes of Operation: Three Variants of

Ciphertext Stealing for CBC Mode

[SP 800-38B]

Recommendation for Block Cipher Modes of Operation: The CMAC Mode for

Authentication

[SP 800-38C]

Recommendation for Block Cipher Modes of Operation: The CCM Mode for

Authentication and Confidentiality

[SP 800-38D]

Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode

(GCM) and GMAC

[SP 800‐38F] Recommendation for Block Cipher Modes of Operation: Methods for Key

Wrapping

[SP 800-56A]

Recommendation for Pair-Wise Key Establishment Schemes Using Discrete

Logarithm Cryptography

[SP 800‐56B] Recommendation for Pair‐Wise Key Establishment Schemes Using Integer

Factorization Cryptography

[SP 800‐56C] Recommendation for Key Derivation through Extraction‐then‐Expansion

[SP 800-67R1]

Recommendation for the Triple Data Encryption Algorithm (TDEA) Block

Cipher

[SP 800‐89] Recommendation for Obtaining Assurances for Digital Signature Applications

[SP 800-90A]

Recommendation for Random Number Generation Using Deterministic

Random Bit Generators

[SP 800‐108] Recommendation for Key Derivation Using Pseudorandom Functions

[SP 800‐132] Recommendation for Password‐Based Key Derivation

[SP 800‐135] Recommendation for Existing Application –Specific Key Derivation Functions

