

Pensando TLS Library

by Pensando Systems, Inc.

Version 1.0

FIPS 140-2 Level 1 Non-Proprietary Security Policy

Document Version Number: 1.2 Date: February 27, 2024

Table of Contents

1.	Module Overview	3
2.	Modes of Operation	4
3.	Ports and interfaces	7
4.	Roles and Services	7
5.	Cryptographic Keys and CSPs	8
6.	Self-tests	10
7.	References	10

1. Module Overview

Pensando TLS Library is a set of standard Transport Layer Security (TLS) functions that are written in the GO programming language. It supports TLS protocol version 1.2 (client and server) and standard cryptographic functions, such as SHA, AES, etc.

This GO TLS Library is used in all Pensando products to secure the management plane communications such as product provisioning, policy distribution, API orchestration, etc.

Table 1.1: Configuration	n tested by the lab
--------------------------	---------------------

Module	Platform	Processor	Operating Systems
Pensando TLS Library	HPE:ProLiant	Intel Xeon Gold 6140	CentOS v7.7 on VMware
	DL360 Gen10	with and without AES-NI	ESXi 6.7
Pensando TLS Library	Capri 1.0 ¹	Capri 1.0 ¹	Linux 4.14.18
Pensando TLS Library	Aruba CX	Intel Xeon D-1637 with	ArubaOS-CX
	10000 Switch	and without AES-NI	version 10.12

¹Capri 1.0 is both the platform and the processor. The entire OS as well as the Pensando TLS Library run on it.

Table 1.2: Module Security	Level Statement
----------------------------	-----------------

FIPS Security Area	Security Level
Cryptographic Module Specification	1
Module Ports and Interfaces	1
Roles, Services and Authentication ¹	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

¹ This Level 1 module does not implement authentication.

2. Modes of Operation

The Pensando TLS Library supports the following two modes of operation to accommodate different operating requirements. The mode is selected implicitly based on the services used.

- 1) If an operator uses an approved function (Table 2.1), the module is in the FIPS mode.
- 2) If an operator uses a non-approved function (Table 2.2), the module is in a non-FIPS mode.

The CSPs shall not be shared between the approved and non-approved modes.

2.1 Approved and Allowed Cryptographic Functions

The following approved cryptographic algorithms are used in FIPS approved mode of operation.

Table 2.1: Approved Cryptographic Functions	Table	2.1: Ap	proved Cry	ptographic	: Functions
---	--------------	---------	------------	------------	-------------

CAVP Cert	Library	Algorithm	Standard	Model/ Method	Key Lengths	Use
Gert				Methou	Curves or Moduli	
A1289	Pensando	KAS-	SP800-56Ar3	ECC Ephemeral	P-256	TLS Shared
A4801	TLS	ECC-		Unified Scheme		Secret
	Library	SSC ¹				Computation
C2155	Pensando	AES	FIPS 197,	CBC, GCM ²	128, 256	Encryption/
	TLS		SP 800-38D			Decryption
	Library			CTR		V I
CO 1 F (100 076	
C2156	Pensando	AES	FIPS 197,	CBC, GCM ²	128, 256	Encryption/
A4801			SP 800-38D	СТР		Decryption
	Library			CIK		
		ECDSA ³	FIPS 186-4	ECDSA	P-256,	Key
				KeyGen	P-384	Generation,
				ECDSA		Key
				KeyVer		Verification,
				ECDSA SigGen	P-224, P-	Signature
				ECDSA SigVer	256, P-384,	Generation,
					P-521	Signature
						Verification
		HMAC	FIPS198-1	HMAC-SHA-1	160, 256,	TLS Message
				HMAC-SHA-256	384	Authenticatio
			GD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HMAC-SHA-384		n Code
		HMAC	SP800-90A	SHA2-256		Deterministic
		DRBG				Kandom Bit
		VDVDE	GD 000, 100			Generation
		KBKDF	SP800-108	HMAC-SHA-I,		Key
				HMAC-SHA2-		Derivation
				230, HMAC-		

CAVP Cert	Library	Algorithm	Standard	Model/ Method	Key Lengths, Curves or Moduli	Use
				SHA2-384		
		CVL KDF TLS	SP800-135			TLS Key Derivation ⁴
		RSA	FIPS 186-4	RSA SigGen RSA SigVer PKCS 1.5 SHA-256, SHA-384, SHA-512	Mod 2048; Mod 3072	Signature Generation, Signature Verification
		SHS	FIPS 180-4	SHA-1, SHA- 256, SHA-384, SHA-512		TLS Message Digest
CKG (vendor affirmed)			Cryptographic Key Generation			Key Generation ⁵

Note 1: Not all CAVS-tested modes of the algorithms are used in this module.

¹Key establishment methodology provides 128 bits of encryption strength.

²The module's AES-GCM implementation complies with IG A.5 scenario 1 and RFC 5288, and supports acceptable GCM cipher suites from Section 3.3.1 of SP 800-52 Rev 1 or SP 800-52 Rev 2. AES-GCM is only used in TLS version 1.2. When the IV exhausts the maximum number of possible values for a given session key, the first party, client or server, that encounters this condition will trigger a handshake to establish a new encryption key. New AES-GCM keys are generated by the module if the module loses power.

³SHA-1 is only allowed and CAVS tested in ECDSA Signature Verification. It is not used for Signature Generation.

⁴No parts of this protocol, other than the KDF, has been tested by the CAVP and CMVP.

⁵CKG can be used to generate symmetric keys and asymmetric keys. The module directly uses the output of the DRBG. The generated symmetric key or a seed used in the asymmetric key generation is an unmodified output from DRBG. Section 4, example 1, of SP800-133r2 "Using the Output of a Random Bit Generator" is applicable.

Table 2.2: Non FIPS Approved Cryptographic Functions

Algorithm	Use
RC4	Encryption/Decryption
3DES-EDE (non-compliant)	Encryption/Decryption
CHACHA20	Encryption/Decryption
POLY1305	Message Authentication Code

Algorithm	Use
Ed25519	Digital Signature
SHA224 (non-compliant)	Hashing
SHA512/224 (non-compliant)	Hashing
SHA512/256 (non-compliant)	Hashing
RSA Key generation (non-compliant)	Digital Signature
RSA-PSS (non-compliant)	Digital Signature
Diffie-Hellman	Key Establishment
RSA Key Wrapping	Key Establishment

3. Ports and interfaces

The physical ports of the module are the same as those of the computer system on which it is executing. The logical interfaces of the module are implemented via an Application Programming Interface (API). The following table describes each logical interface.

Logical Interface	Description	
Data Input	Input parameters that are supplied to the API commands	
Data Output	Output parameters that are returned by the API commands	
Control Input	API commands	
Status Output	Return status provided by API commands	

4. Roles and Services

The module supports the following roles:

User role: The user uses the cryptographic services provided by the module.

Crypto Officer role: The Crypto Officer installs and manages the module.

Table 4: Roles and Services

Service	Corresponding Roles	Types of Access to Cryptographic Keys and CSPs R – Read or Execute W – Write or Create Z – Zeroize
Installation	Crypto Officer	N/A
Initialize	Crypto Officer	N/A
Self-test	Crypto Officer	N/A
Show status	Crypto Officer User	N/A
Zeroization	Crypto Officer	All:Z
Reboot or shutdown	Crypto Officer	N/A
Deterministic random number generation	User	DRBG CSPs: R, W
Hashing	User	N/A
Symmetric encryption and decryption using AES	User	AES key: R
Message authentication using HMAC	User	HMAC key: R
Digital signature creation and verification using ECDSA and RSA	User	RSA keys: R ECDSA keys: R
Key agreement using ECC DH	User	ECC DH keys: R, W
Symmetric and asymmetric key generation	User	DRBG CSPs: R,W
TLS Key derivation	User	TLS keys: R,W
SP800-108 Key derivation	User	AES key: R HMAC key: R

Non-Approved services are implementations of non FIPS Approved Cryptographic Functions. They are listed in the Table 2.2.

5. Cryptographic Keys and CSPs

The table below describes the cryptographic keys and CSPs used by the module.

Table 5: Cryptographic Keys and CSPs

Key	Description/Usage	Storage
AES Key	Used during AES encryption /	RAM in plaintext
	decryption	
Established using KDF TLS,		
KBKDF OF DRBG		
ECDSA public and private	Used for Sign/Verify	RAM in plaintext
keys		
Established using DRBG		
HMAC Key	Used during calculation of HMAC	RAM in plaintext
Established using KDF 1LS, KBKDE or DRBG		
HMAC DRBG CSPs	Used during generation of random	RAM in plaintext
entropy input, V and Key	numbers	
Entropy is loaded externally		
TLS master secret	Used to derive TLS AES Key and	RAM in plaintext
Established using KDE TLS	ILS HMAC Key	
TLS pre-master secret	Used to derive TLS master	RAM in plaintext
	secret	
Established using		
KAS-ECC-SSC		
RSA public and private keys	Used for Sign/Verify	RAM in plaintext
Set by operators		
Elliptic Curve Diffie Hellman	Diffie-Hellman key agreement	RAM in plaintext
public and private keys		
Established using DRBG		

Note-1: public keys are not considered CSPs

Note-2: All keys, that are generated by this module, are generated by using HMAC DRBG. Since the entropy is loaded externally, there is no assurance of the minimum strength of generated keys. The minimum length of the entropy field is 256 bits. Assuming that the entropy source provides full entropy, the module receives 256 bits of entropy.

Note-3: Keys can be provided to the module via API input parameters. The module does not enter or output keys outside its physical boundary. Zeroization is performed using power cycle. See Table 2.1 for size and strength of the keys.

6. Self-tests

The module performs the following power-up and conditional self-tests. Upon failure or a power-up or conditional self-test the module halts its operation.

Algorithm	Power-up Test	
Software integrity	HMAC-SHA2-256	
AES	KAT(CBC / GCM encryption/decryption are separately tested)	
KAS (ECC-SSC)	Primitive "Z" Computation KAT per implementation guidance	
ECDSA	Pairwise Consistency Test (curve sizes P-256) using SHA256	
НМАС	KAT (HMAC-SHA-1)	
KBKDF	КАТ	
DRBG	КАТ	
TLS 1.2 KDF	КАТ	
RSA	KAT (key size tested: 2048, using SHA-256)	
SHA	KAT (SHA-256, SHA-512)	
	Conditional Test	
KAS (ECC-SSC)	ECC DH Private/Public Key Validation tests as per SP800-56Ar3 including ECC Full Public-Key Validation Routine	
ECDSA	Pairwise Consistency Test	
DRBG	Continuous Random Number Generator test	
	DRBG health tests, performed per SP 800-90A Section 11.3	

Table 6: Self-Tests

7. References

Table 7: References

Reference	Specification	
[ANS X9.31]	Digital Signatures Using Reversible Public Key Cryptography for the	
	Financial Services Industry (rDSA)	
[FIPS 140-2]	Security Requirements for Cryptographic modules, May 25, 2001	
[FIPS 180-4]	Secure Hash Standard (SHS)	
[FIPS 186-2/4]	Digital Signature Standard	
[FIPS 197]	Advanced Encryption Standard	
[EIDC 100 1]	The Kenned Herb Masses a Anthentication Code (UMAC)	
[FIPS 198-1]	The Keyed-Hash Message Authentication Code (HMAC)	
[EIDS 202]	SUA 2 Standard: Dormutation Deced Hash and Extendeble Output Eurotions	
$\begin{bmatrix} PIFS 202 \end{bmatrix}$	STA-5 Standard: Permutation-Based Hash and Extendable-Output Functions	
[FKC3#1 v2.1]	KSA Cryptography Standard	
[PKCS#5]	Password-Based Cryptography Standard	
[PKCS#12]	Personal Information Exchange Syntax Standard	
[SP 800-38A]	Recommendation for Block Cipher Modes of Operation: Three Variants of	
	Ciphertext Stealing for CBC Mode	
[SP 800-38B]	Recommendation for Block Cipher Modes of Operation: The CMAC Mode for	
	Authentication	
[SP 800-38C]	Recommendation for Block Cipher Modes of Operation: The CCM Mode for	
	Authentication and Confidentiality	
[SP 800-38D]	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode	
	(GCM) and GMAC	
	Deserves detien for Die le Cinter Meder of Orenetiens Methods for Vers	
[SP 800-38F]	Recommendation for Block Cipner Modes of Operation: Methods for Key	
	wrapping	
[SP 800-56A]	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete	
	Logarithm Cryptography	
[SP 800-56B]	Recommendation for Pair-Wise Key Establishment Schemes Using Integer	
	Factorization Cryptography	
[SP 800-56C]	Recommendation for Key Derivation through Extraction-then-Expansion	
[SP 800-67R1]	Recommendation for the Triple Data Encryption Algorithm (TDEA) Block	
	Cipher	
[SP 800-89]	Recommendation for Obtaining Assurances for Digital Signature Applications	
[SP 800-90A]	Recommendation for Random Number Generation Using Deterministic	
[CD 000 100]	Random Bit Generators	
[SP 800-108]	Recommendation for Key Derivation Using Pseudorandom Functions	
[SP 800-132]	Recommendation for Password-Based Key Derivation	
[SP 800-135]	Recommendation for Existing Application – Specific Key Derivation Functions	