
The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 1

RSA™ BSAFE® RSA™ BSAFE® RSA™ BSAFE® RSA™ BSAFE®

CryptoCryptoCryptoCrypto----CCCC
Toolkit Module Toolkit Module Toolkit Module Toolkit Module
Security PolicySecurity PolicySecurity PolicySecurity Policy

Version 4.11
June 27, 2001

RSA Data Security, Inc.

2955 Campus Drive, Suite 400
San Mateo, California 94403-2507

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 2

Revision History
Table 1: Revision History

Revision Date Author Description
4.11 2/8/99 David Young Initial NIST Submission
4.11 2/22/99 David Young Temporarily removes X9.31 from FIPS140 Mode. To be reinstated in Version 4.2
4.11 2/24/99 Eliza Sachs/

Dave Young
Merge in corrections from technical writing group.

4.11 4/05/99 Dave Young Add support in policy for key distribution and import.
Fix some naming inconsistencies.

4.11 4/15/99 Dave Young Modify per NIST comments
4.11 4/16/99 Dave Young Re-sequence, eliminate numbering system, add in edits from Eliza Sachs

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 3

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 4

Introduction

The RSA BSAFE Crypto-C Toolkit Module (Crypto-C Module) is a software module,
implemented as a 32-bit Windows™ ’98 compatible DLL, which provides a variety of
cryptographic services that are accessed by calls from C-language programs through an
Application Program Interface (API). This API is documented in the RSA BSAFE
Crypto-C Library Reference Manual. The Module is accessed from your C-language
programs using the same method as the BSAFE Crypto-C static toolkit, via the inclusion
of the include file “BSAFE.h”. With a few exceptions, you can use the same API calls
that are used in the BSAFE Crypto-C Toolkit Static Library. In addition, the Crypto-C
Module enables OEM software developers to construct Crypto-C -based applications that
rely on FIPS140-1 certified cryptographic functions.

The module supports the FIPS approved DSA, DES and SHA-1 algorithms. It also
provides non-FIPS approved RSA Encryption/Decryption, MD2, MD5, HMAC, Triple
DES, Triple DES CFB, Triple DES CBC, DESX, RC2, RC4, RC5, Elliptic Curve
(F2&Fp), Elliptic Curve Encryption Scheme, Elliptic Curve DSA, and Bloom-Shamir
algorithms.

Existing applications can easily be modified to take advantage of the BSAFE Crypto-C
Module. To do so, just change the name of the algorithm chooser in your source code to
SAFETY_ALGORITHM_CHOOSER (see the section The Algorithm Chooser in
Chapter 1 of the RSA BSAFE Crypto-C Library Reference Manual).

Your cryptographic application will undoubtedly contain many features that are not a
part of the RSA BSAFE Crypto-C Toolkit Module. You will likely add some method for
entering, storing and even exporting key data and of course you will perform data
encryption or authentication. Basing your application on RSA Crypto-C components
will give you a great head start in building your own FIPS140-1 compliant application.

Overview of FIPS 140-1 Categories

The RSA BSAFE Crypto-C Toolkit Module conforms to FIPS140-1 Level 1 as shown in
Table I, Category Levels tested for the RSA BSAFE Crypto-C Toolkit Module.

Table I, Category Levels tested for the RSA BSAFE Crypto-C Toolkit Module

FIPS140-1 TEST CATEGORY LEVEL
Cryptographic Modules 1

Module Interfaces 1
Roles & Services 1

Finite State Machine Model 1
Physical Security 1
Software Security 1

Operating System Security 1

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 5

Key Management 1
Cryptographic Algorithms 1

EMI/EMC 3
Self-Tests 1

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 6

Overview of Features

Cryptographic Modules

The Crypto-C Module is viewed in FIPS140-1 terms as a “multi-chip standalone
module.” To come up with a complete platform, RSA Data Security, Inc. provides the
software and you add the hardware, an IBM Compatible PC. A “secure cryptographic
boundary” is defined for FIPS140-1 purposes as those applicable software and hardware
components internal to a host IBM-compatible PC that is running the Windows™ ’98
Operating System (OS).

Additionally, the Windows™ ‘98 OS imposes rules that segregate user processes into
protected memory spaces called “process spaces.” Each such process space belongs to a
single user. Access to the process space is enforced by the OS and by the underlying
central processing unit (CPU) hardware so that other users cannot write to or read from
the process’ memory. The Crypto-C Toolkit Module resides in one of these “process
spaces.” More than one Crypto-C Toolkit Module can reside inside a cryptographic
boundary, but the modules operate completely independently and unaware of each other,
each in its own “process space”. The operating system performs multi-tasking operations
so that only one Crypto-C Toolkit Module is active at any particular moment in time.

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 7

Roles and Services

The RSA BSAFE Crypto-C Toolkit Module meets FIPS140-1 Level 1 requirements for
Roles and Services. It implements the following two roles: Crypto-Officer role and User
role. The Crypto-C Toolkit Module does not support user identification or authentication
for these roles.

Only one role may be active at a time and the Crypto-C Module does not allow
concurrent operators. API functions can also only be executed one at a time. The use of
roles is enforced by the BSAFE Crypto-C Module and not by an external policy.

These roles restrict access to the operation of the BSAFE Crypto-C Toolkit Module. In
the BSAFE Cryptographic Toolkit Module, the roles are defined per the FIPS140-1
standard as follows:

! A User is any entity that can operate a client process that uses the Crypto-C
Toolkit Module’s API. When the User is active, the Crypto-C Toolkit Module
is in the User State.

! A Crypto Officer is any entity that can operate a client process that uses the
Crypto-C API, initiate self-tests, and review the pass-fail results of each self-
test. When the Crypto Officer is active, the Crypto-C Toolkit Module is in the
Crypto Officer State.

! There is no Maintenance role.

The Crypto-Officer is responsible for initiating self-tests and reviewing the status of each
test. The User normally operates client processes that use the services of the Crypto-C
Module by making API calls to the module from within the same process space. The
Crypto Officer can run self-tests with the knowledge that self-test results cannot be
accidentally exposed while in the User State. The User is assured that self-tests cannot be
initiated during the normal operation of the Module.

It is important to realize that when a transition is made from a User State to a Crypto
Officer State all data objects, intermediate states, and key values within the User’s or
Crypto Officer’s process space are actively zeroized. This provides you with a handy
way of partitioning access to the Crypto-C Module without having to terminate your
application in order to restart your application.

When the Crypto-C Toolkit Module finishes its startup validation and self-tests, it
transitions by default into the User Role. A “User” is the owner of a calling process that
is operating in the User Role. This is the normal mode in which your application will
operate. In this discussion, the User can be thought of as an application program that is
making calls to the Crypto-C Toolkit Module.

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 8

The User accesses the Crypto-C Toolkit Module API through the use of application
programs that are written by application software developers. Application programs are
then constructed by developers to import the needed DLL interface definitions and to
make API calls to the BSAFE Crypto-C Module. The DLL import library “bsafe411.lib”
is provided along with the Crypto-C Toolkit Module “bsafe411.dll” that very purpose.
All API algorithm objects (AI) and key objects (KI) that are described in the RSA BSAFE
Crypto-C Library Reference Manual may be used by either the User or the Crypto
Officer. The exceptions to the rule are calls that use the “BHAPI” hardware interface.
The Crypto-C Module is self-contained and does not rely on underlying cryptographic
hardware.

When the Crypto-C Module is started, before the User State is entered, both the Crypto-C
Module and the calling User Module are verified for structural integrity and a self-test
battery is run to verify the cryptographic functions.

What a User Can Do

• Call the Crypto-C API to perform encryption operations.
• Operate the following API commands:

int setOfficerSignInState();
int signInStateIsOfficer();
int signInStateIsUser();
int signInStateIsDisabled();

Prototypes for calling these commands are available in the C-language file signin.h.

• Enter the Crypto Officer State by calling setOfficerSignInState.

What a Crypto Officer Can Do

• Call the Crypto-C API to perform encryption operations.
• Initiate self-test operations by calling the API command runSelfTests.
• View self-test data by calling getSelfTestStatus.
• Operate the following API commands:

int setUserSignInState();
int signInStateIsOfficer();
int signInStateIsUser();
int signInStateIsDisabled();

Prototypes for calling these commands are available in the C-language file signin.h

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 9

Key Management

The RSA BSAFE Crypto-C Toolkit Module provides cryptographic algorithm support for
FIPS140-1 Level 1 requirements for Key Management.

Protocol Support
The Crypto-C Module provides the “low-level” cryptographic functionality that is
necessary for implementing key exchange protocols. It does not implement the key
exchange protocols themselves. The User can export or import keys by writing
additional code to do that. When he/she does, the code that imports or exports the keys
will reside in the same Windows ’98 “process space” as the Module, assuring safe access
between any plain text key data and the Module. To obtain FIPS140-1 validation of the
additional application, the user must then distribute keys in a manner that is compatible
with the rules of FIPS140-1. The Crypto-C Module only supports the manual and
electronic distribution of symmetric or asymmetric keys.

That means that it is the User’s responsibility to select FIPS140-1 compliant algorithms
to perform the key exchange. It is the User’s responsibility to understand which
algorithms are FIPS-approved and which are not. This information is available in the
RSA BSAFE Crypto-C Library Reference Manual. The NIST web site also lists approved
implementations of NIST-approved cryptographic algorithms.

Key Generation
The Crypto-C Module supports generation of the DSA public and private keys through
user services and employs a FIPS-approved key generation method.

Symmetric keys are not generated by the Crypto-C Module.

The Crypto-C Module supports the entry of electronic keys. However, all keys are stored
and used in the Crypto-C Module only for immediate use by a cryptographic process.
The Crypto-C Module supports electronic key distribution if a NIST-approved
commercial protocol is used. Such protocols employ various secret key, RSA public key
and Diffie-Hellman encryption algorithms to properly secure the distribution of electronic
keys.

Key Storage
The Crypto-C Module does not provide long-term cryptographic key storage. If the User
stores keys, the User is responsible for storing keys in a manner that is compatible with
the rules of FIPS140-1.

Two special purpose keys are stored in the Crypto-C Module. There is a single secret
cryptographic key that is embedded in the Module as well as a single public DSA key.
The secret key is used to decrypt the DSA public key, which is in turn used to validate
the Module’s integrity. If the User stores keys, the User is responsible for storing keys in
a manner that is compatible with the rules of FIPS140-1. That also means that it is the
User’s responsibility to select FIPS140-1 compliant algorithms to perform the key

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 10

exchange. It is the User’s responsibility to understand which algorithms are FIPS-
approved and which are not. This information is available in the RSA BSAFE Crypto-C
Library Reference Manual.

Zeroization of Keys
The Crypto-C Module loads cryptographic keys for use by the User’s client process.
When the User’s process is finished, the keys are zeroized before the client process
detaches. The term “client process” refers to the unique memory, CPU time, and other
assets that are assigned to a particular task in the host PC.

When a User’s process exits or aborts for any reason, the BSAFE Crypto-C Module
actively zeroizes all data objects, intermediate states, and key values within the User’s
process space. In particular, this includes any data that was used with FIPS-based
algorithms.

All keys are zeroized from memory prior to unloading the Crypto-C Module and
returning its memory to the operating system. The Crypto-C Module zeroizes all keys
from computer memory when one of the following occurs:

• Self-tests are initiated
• Transition from User Role to Crypto Officer Role
• Transition from Crypto Officer Role to User Role
• An Error is detected in a cryptographic algorithm
• Just before the Crypto-C Module Exits, or Terminates

Protection of Keys
The Windows ™ ‘98 internal memory manager allocates a unique memory space for each
algorithm from the User’s process space. This process is enforced in the hardware of the
Intel Pentium Microprocessor where memory mapping information is maintained by the
OS. Additionally, the Module prevents data structures that have been allocated to FIPS-
approved algorithms from being accessed by non-FIPS algorithms. This is enforced by
an internal type check for both key and IV data structures and for intermediate algorithm
structures. That check is made every time an operation is performed. “Spoofing” is also
prevented because internal checks prevent multiple instances of the same object type.

Any data structures allocated by the Module for use by any algorithm, notably FIPS-
approved algorithms, are zeroized before they are released back to the process memory
space. This provides a logical partition between the data structures for FIPS-approved
and non-FIPS-approved algorithms.

Channel Definitions

FIPS140-1 defines a cryptographic boundary and also channels, through which
information is allowed to enter and leave the cryptographic boundary. Defining channels

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 11

can be straight-forward for developers of hardware modules, but developers of software
modules are faced with the task of choosing an appropriate set of channel definitions.

FIPS140-1 requires the definition of Data Input/Output and Command/Status channel
interfaces. The Crypto-C Module defines these interfaces through the Crypto-C Module’s
exported DLL library API. The API provides the means to Input and Output Data and to
determine the status of the Module. The Data Input/Output interface and the Status
interface are active only during the User and Crypto Officer States.

The FIPS140-1 Control interface is used to initiate the Crypto-C Module. It is activated
by the operating system when your program asks the Windows ™ ’98 OS to start up the
Crypto-C Module. It is otherwise only active during the User and Crypto Officer States
when commands are issued via the API in the form of procedure calls. A selected call
initiates a specific action. That constitutes “control”.

Self-Test
Power-up tests include the known-answer test for the DSA cryptographic algorithm,
SHA-1 cryptographic algorithm, DES cryptographic algorithm, and software/firmware
digital signature verification. Conditional tests check for failures on an on-going basis.
They include the continuous random number generator test as well as pair-wise tests.

An internal failure, such as is detected by a power-up or initiated self-test or by a
continuity test will result in a Fatal Error State. A Fatal Error State causes all
confidential keying information or other critical data structures to be erased before they
are released from the User’s process space. An error code that identifies the Fatal Error
State is passed to the operating system.

No confidential keying information or other critical data can be received, stored, or
transmitted while self-tests are in operation.

Startup Self-Tests
Self-tests are executed on an automatic, mandatory basis at the startup of each User
process. That means that for each program that you write, when the program calls the
Crypto-C Module for the first time, a delay will occur while self-tests are run. This will
happen even if another program is running another “instance” of the Module.

If any of the self-tests fail, the Module will not stay loaded in memory and it will not
enter either the User or Crypto Officer State. The module is able to “dump” itself from
memory first zeroizing all of the internal data structures, including keying and
intermediate data, and then make an “exit” to Windows™ ’98. Windows™ ‘98 then
releases the data that was associated with the Module back to system memory.
If any of the self-tests fail, the Module will enter a Fatal Error State. The Fatal Error
Status reason code is then passed via the exit command to the operating system.

Conditional Self-Tests

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 12

All pseudo-random data that is generated by a FIPS-approved Secure Hash Algorithm
(FIPS180-1) is tested to ensure that only non-repeating data is generated (for example, a
“stuck” Pseudo-Random Number Generator will be detected.)

All pseudo-random data that is generated by non-FIPS-approved hash algorithms (MD2,
MD2x, MD5, MD5x) is also tested for continuity.

Pair-wise Self-Tests
All FIPS-approved public/private key pairs for the DSS (FIPS186) algorithm are tested
for pair-wise consistency before they are returned to the caller.

All non-FIPS public/private key pairs that are generated for non-FIPS algorithms (e.g.
RSA, Elliptic Curve) are tested for pair-wise consistency before they are returned to the
caller.

Tests on Imported Parameters
Imported parameters (P, Q, G, X and Y) for the DSS (FIPS186) algorithm are tested for
validity. If the imported parameter is invalid, the Module will neither store it nor permit
its use in the Module. In addition, a non-zero error will be returned to the User.

Operating Modes

FIPS 140-1 Mode
The Module may run in FIPS140-1 Mode or in non-FIPS140-1 Mode. To run in
FIPS140-1 Mode, the Module must use only FIPS-approved cryptographic algorithms as
specified by FIPS140-1.

Non-FIPS 140-1 Mode
When the Module is using any non-FIPS-approved cryptographic algorithms, it is in non-
FIPS140-1 Mode.

FIPS-Approved Algorithms
It is the User’s responsibility to understand which algorithms are FIPS-approved and
which are not. This information is available in RSA BSAFE Crypto-C Library Reference
Manual. NIST also supports a web site that lists approved implementations of NIST-
approved cryptographic algorithms.

BSAFE Crypto-C implements a number of FIPS-approved algorithms. These interfaces
are documented fully in the RSA BSAFE Crypto-C Library Reference Manual. FIPS
compliant Algorithm Object (AI) interfaces are provided by the Crypto-C API are as
follows:

Table II, Algorithm Object Interfaces (AI’s) for FIPS-Approved Algorithms

The RSA BSAFE Crypto-C Toolkit Module Security Policy
Version 4.11

Page 13

Algorithm Object Interfaces (AI’s) for FIPS-Approved Algorithms
AI_CBC_IV8
AI_DES_CBC_BSAFE1
AI_DES_CBC_IV8
AI_DES_CBCPadBER
AI_DES_CBCPadIV8
AI_DES_CBCPadPEM
AI_DSA
AI_DSAKeyGen
AI_DSAParamGen
AI_DSAWithSHA1
AI_DSAWithSHA1_BER
AI_FeedbackCipher (DES Modes Only)
AI_SHA1
AI_SHA1_BER
AI_SHA1WithDES_CBCPad
AI_SHA1WithDES_CBCPadBER

Some of these interfaces can be used together with several other algorithms, not all of
which might be FIPS approved. A User Module that restricts its use to FIPS-approved
algorithms can access the Crypto-C Module and claim that it is operating in “FIPS 140-1
mode”. A User Module that uses any of the above-listed interfaces to access non-FIPS-
approved algorithms is by definition no longer in “FIPS 140 mode”. It is the user’s
responsibility to craft his application in such a way as to warn potential operators of this
hazard. NIST also supports a web site that lists approved implementations of NIST-
approved cryptographic algorithms.

Also, when an RSA or DSA key is generated, it must be exported or used in a secure
protocol by the User. Any other use of the RSA key takes the Module out of FIPS140-1
mode because there are no FIPS-approved RSA algorithms in the Crypto-C Module.
This is likely to change in the next release of the Crypto-C Module, for which plans exist
to include FIPS186-2 rDSA signatures.

	Introduction

