
FIPS PUB 140-1
Netscape Security Policy

Updated 3/15/99 to reflect NIST / Infogard recommended changes

[Updated to reflect Security Module 1.01 Maintenance Validation]

1.1 Specification of Security Policy
A security policy includes the precise specification of the security rules under which the cryptographic module
must operate, including rules derived from the security requirements of the FIPS PUB 140-1 standard, and the
additional security rules imposed by Netscape. The rules of operation of the cryptographic module that define
within which role(s), and under what circumstances (when performing which services), an operator is allowed to
maintain or disclose each security relevant data item of the cryptographic module.

There are three major reasons for developing and following a precise cryptographic module security policy:
To induce the cryptographic module vendor (Netscape) to think carefully and precisely about who they want to
access the cryptographic module, the way different system elements can be accessed, and which system elements
to protect.
To provide a precise specification of the cryptographic security to allow individuals and organizations (e.g.,
validators) to determine whether the cryptographic module, as implemented, does obey (satisfy) a stated security
policy.
To describe to the cryptographic module user (organization, or individual operator) the capabilities, protections,
and access rights they will have when using the cryptographic module.

It should be noted that Netscape utilizes RSA's PKCS #11, version 1.1, to form most of its cryptographic
boundary. This, along with some certificate handling mechanisms, comprise the entire cryptographic module
boundary. The following table states the various security policy rules which will be adhered to by each Netscape
product:

Table I. Netscape Security Policy Rules

Rule Statement of Netscape Security Policy Rule

1 Netscape's cryptographic module shall consist of a series of binary software libraries compiled for each
supported platform and utilized by ALL Netscape client and server products.

2 The cryptographic module shall rely on the underlying operating system to ensure the integrity of the
cryptographic module loaded into memory.

3 The cryptographic module shall enforce a single role approach which is a combination of the User Role
and the Cryptographic User Role as defined in FIPS PUB 140-1.

4 A cryptographic module user shall have access to ALL the services supplied by the cryptographic
module.

5 Cryptographic module services shall consist of public services which require no authentication, and
private services which require authentication.

6 Public key certificates shall be stored in plain text form because of their public nature and internal
CA-signing integrity features.

1 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

7
SSL 2.0 and 3.0 shall utilize authentication mechanisms above the cryptographic module which
pass-through to utilize PKCS #11 authentication mechanisms which are within the cryptographic
module.

8
SSL master secrets (private key data) shall be protected within the boundary of the cryptographic
module (the SSL secure session ID cache shall be considered within the boundary of the cryptographic
module).

9 For the FIPS PUB 140-1 mode of operation, the cryptographic module shall enforce rules specific to
FIPS PUB 140-1 requirements.

10
The FIPS PUB 140-1 cryptographic module shall use an exception handling mechanism to ensure that
critical errors are not allowed to compromise security (i. e. - whenever a critical error is encountered,
the cryptographic module shall be required to be reinitialized).

11

Upon initialization of the FIPS PUB 140-1 cryptographic module, the following power-up self-tests shall
be performed:

(1) RC2-ECB Encrypt/Decrypt,
(2) RC2-CBC Encrypt/Decrypt,
(3) RC4 Encrypt/Decrypt,
(4) DES-ECB Encrypt/Decrypt,
(5) DES-CBC Encrypt/Decrypt,
(6) triple DES-ECB Encrypt/Decrypt,
(7) triple DES-CBC Encrypt/Decrypt,
(8) MD2 Hash,
(9) MD5 Hash,
(10) SHA-1 Hash,
(11) RSA Encrypt,
(12) RSA Decrypt,
(13) RSA Signature,
(14) RSA Signature Verification,
(15) DSA Signature, and
(16) DSA Signature Verification.

Additionally, if the user performs logout services, these same power-up self-tests are performed when the
user logs back in to the FIPS PUB 140-1 cryptographic module.

12

Subsequent logins to the FIPS PUB 140-1 cryptographic module during the same established session
shall execute the same series of power-up self-tests detailed above when logging-in under the FIPS PUB
140-1 mode. This allows a user to execute these power-up self-tests on demand as defined in section
4.11.1 of FIPS PUB 140-1.

13 The FIPS PUB 140-1 cryptographic module shall require the user to establish a password (for the user
role) in order for subsequent authentications to be enforced.

14 All passwords shall be stored in an encrypted form in secondary storage.

15
Once a password has been established for the FIPS PUB 140-1 cryptographic module, it shall only
allow the user to use security services if and only if the user successfully authenticates to the FIPS PUB
140-1 cryptographic module.

16
In order to verify the user's stored password, the user shall enter the password, and the verification that
the password is correct shall be performed by the cryptographic module via PKCS #5 password-based
encryption mechanisms.

17 The user's password shall act as the key material to encrypt/decrypt private key material via PKCS #5
using Triple-DES.

2 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

18 The cryptographic module shall only extract private keys wrapped with a password according to PKCS
#12.

19 Private keys, plain text PINs, and other security relevant data items (SRDIs) shall be maintained under
the control of the cryptographic module, and shall not be passed to higher level callers.

20 All private keys shall be stored in an encrypted form in secondary storage.

21 Integrity checks shall be applied to the private and public key material retrieved from the database to
ensure genuine data.

22 Once the FIPS PUB 140-1 mode of operation has been selected, the cryptographic module shall only
allow FIPS PUB 140-1 cipher suite functionality.

23
The FIPS PUB 140-1 cipher suite shall consist solely of DES (FIPS PUB 46-2) for
encryption/decryption, SHA-1 (FIPS PUB 180-1) for hashing, RSA for key distribution, and DSA (FIPS
PUB 186) for generic signature signing and verifying functionality.

24 Once the FIPS PUB 140-1 mode of operation has been selected, DES and triple-DES shall be limited in
its use to perform encryption/decryption using either CBC (TCBC) or ECB (TECB) mode.

25 Once the FIPS PUB 140-1 mode of operation has been selected, SHA-1 shall be the only algorithm used
to perform one-way hashes of data.

26 Once the FIPS PUB 140-1 mode of operation has been selected, RSA can be used for signature
functionality to sign and verify key material for key exchange and perform general purpose signatures.

27 Once the FIPS PUB 140-1 mode of operation has been selected, DSA can be used to generate signatures
and perform verification on them for general purpose signatures.

28
In the FIPS PUB 140-1 mode of operation, the cryptographic module shall perform a pairwise
consistency test upon each invocation of RSA and DSA key generation as defined in section 4.11.2 of
FIPS PUB 140-1.

29 The FIPS PUB 140-1 cryptographic module shall employ its prime number generation and verification
via the mechanisms described in Appendix 2 of FIPS PUB 186.

30 The FIPS PUB 140-1 cryptographic module shall utilize pseudorandom number generation as defined
via the mechanisms described in Appendix 3 of FIPS PUB 186.

31

The FIPS PUB 140-1 cryptographic module shall seed its pseudorandom number generation via
invoking a noise generator specific to the platform on which it was implemented (e. g. - MacIntosh,
UNIX, or Windows). Pseudorandom number generator shall be seeded with noise derived from the
execution environment such that the noise is not predictable.

32 The FIPS PUB 140-1 cryptographic module's pseudorandom number generator shall periodically reseed
itself with pseudorandom noise.

33
In the FIPS PUB 140-1 mode of operation, the cryptographic module shall perform a pseudorandom
number generation test upon each invocation of the pseudorandom number generator as defined in
section 4.11.2 of FIPS PUB 140-1.

34
Upon exit from the FIPS PUB 140-1 mode of operation, all security relevant data items within the
cryptographic module which are stored to secondary storage shall be zeroized by having their memory
contents rewritten with zeroes.

35

The TLS pseudorandom function (PRF) is contained within the cryptographic module, and it shall
enforce if one hash is weak the PRF function would remain strong, this is accomplished by
exclusive-oring the results of the two hashes in computation of security relevant data items -- specifically
SSL pre-master secrets.

Additionally, a cryptographic module security policy should be expressed in terms of the roles, services,
cryptographic keys, and other critical security parameters. It should consist of, at a minimum, an
identification and authentication (I&A) policy and an access control policy. An I&A policy specifies whether

3 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

a cryptographic module operator is required to identify his or her self to the system, and, if so, what information
is required and how it should be presented to the system in order for the operator to prove his or her identity to
the system (i.e., authenticate themselves). Information required to be presented to the system might be
passwords or individually unique biometric data. Once an operator can perform service(s) using the
cryptographic module, an access control policy specifies what mode(s) of access he or she has to each security
relevant data item while performing a given service.

1.2 Specification of Roles
A series of security libraries represent the cryptographic module which present the same application
programmer interface (API) to all Netscape client and server products. There are minor variations, listed in the
module interfaces description, but these do not break the following definition of roles. Netscape's cryptographic
module utilizes a single role approach -- this role is a combination of both the User Role and the Cryptographic
Officer Role, and will be referenced below as Netscape User. A Netscape User utilizes secure services, and is
also responsible for making decisions related to retrieval, updating, and deletion of keys from their key database.
This is true for both client and server products. For multiple user products, like the HTTP Server (Enterprise
Server 3.0), the server still operates in this single role paradigm, under a single identity.

1.2.1 Authentication Policy

Netscape's cryptographic module utilizes Role-Based Authentication - An operator who is allowed to use the
cryptographic module must perform an authentication sequence using information unique to that operator
(individual password) to perform sensitive services using the cryptographic module. Role-based authentication
is utilized to safeguard a users private key information. However, Discretionary Access Controls (DAC) are
used to safeguard all other Netscape User information (e.g., the Public Key Certificate database). A Netscape
User may use a product (e.g. Netscape Navigator) without establishing a personal private key -- e.g., they may
utilize SSL 3.0 Server Authentication without having a private key established. However, to enable SSL on the
server products, a private key and public key certificate are required to enable secure services. An individual
password is required in order to start the server -- this password is used to decrypt the private key.

1.3 Specification of Maintenance Roles
This section is not applicable to Netscape products since they do not have a Maintenance Role.

1.4 Multiple Concurrent Operator Roles and Services
Since Netscape applications always operate under a single role, under a single identity, no separate concurrent
processes take place within a Netscape application. In the case of separate threads of execution within the same
process, Netscape's threading model consists of a shared data segment with separate stack instances, and does
not allow threads to leak insecurity into or out of the given process. Further, since a thread is not a separate
process, and all threads of a given process live within the confines of that process, then all threads are subject to
the same security imposed on the process itself.

1.5 Specification of Services
The vendor documentation shall fully describe each service including its purpose and function. Possible services
may include, but not be limited to, the following:
Cryptographic operations such as encryption, decryption, message integrity, digital signature generation, digital
signature verification, and other operations that require the use of cryptography.
Key management operations such as key and parameter entry, key generation, key output , key archiving, key
zeroization, and other key management functions.

4 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

Cryptographic management functions such as audit parameter entry and setting, alarm handling and resetting,
and other cryptographic management functions.
Performance of operator-selectable self tests, such as cryptographic algorithm tests, software/firmware tests ,
critical functions tests, statistical random number generator tests, or any additional tests that can be initiated by
an operator.

The vendor documentation shall specify, for each service, the service inputs, corresponding service outputs,
and the authorized role or roles in which the service can be performed. Service inputs shall consist of all data
or control inputs to the module that initiate or obtain specific services, operations, or functions. Service outputs
shall consist of all data and status outputs that result from services, operations or functions initiated or obtained
by service inputs. The vendor may supply a matrix that displays the services that can be performed in each role.

In each of the following services, since there is only one role, the user has access to ALL the services mediated
by the application (for both client and server products). Routines have been specified for each service and
denoted whether or not they are public, meaning that they require no authentication to utilize, or private,
meaning that authentication must be provided prior to the routine being utilized. This model allows a type of
safety state by allowing a Netscape user to logout (thus disallowing any access to private services) without
ending the session, and then log back in to re-authenticate private services rendered by the cryptographic
module. All public and private services are listed in the following table:

Table II. Services

Name of Service Description of Service in Terms of Routines

Certificate
Storage and

Retrieval

This private service consists of six routines used to perform certificate storage and
retrieval including SEC_OpenPermCertDB(), AddCertToPermDB(),
SEC_TraversePermCerts(), SEC_FindPermCertByKey(), SEC_DeletePermCertificate(),
and CERT_ClosePermCertDB().

Digital
Signatures

This private service consists of the four routines used to perform DSA signature
generation including DSA_CreateSignContext(), DSA_PreSign(), DSA_Sign(), and
DSA_DestroySignContext(), and the three routines used to perform DSA signature
verification including DSA_CreateVerifyContext(), DSA_Verify(), and
DSA_DestroyVerifyContext(). Performing public key exchange between two parties or
performing RSA signature generation, consists of the three routines used for entity
association, or performing RSA signature generation, including RSA_Sign(),
RSA_CheckSign(), and RSA_CheckSignRecover(), and the three raw routines used for
entity association including RSA_SignRaw(), RSA_CheckSignRaw(), and
RSA_CheckSignRecoverRaw(). In general, the key generation service must be invoked
prior to invoking this service.

Encryption/
Decryption

This private service consists of the five routines used to perform DES or triple-DES
Encryption/Decryption including DES_CreateContext(), DES_Encrypt(),
DES_Decrypt(), DES_PadBuffer(), and DES_DestroyContext().

Hashing

This public service consists of the eight routines used to perform SHA-1 hashing
including SHA1_NewContext(), SHA1_CloneContext(), SHA1_Begin(),
SHA1_Update(), SHA1_End(), SHA1_HashBuf(), SHA1_Hash(), and
SHA1_DestroyContext().

Key

This private service is utilized to perform key generation and consists of the three
routines used to perform DSA key generation including DSA_CreateKeyGenContext(),
DSA_KeyGen(), and DSA_DestroyKeyGenContext(), and the one routine used for
RSA private key generation called RSA_NewKey(). When RSA_NewKey() is used in

5 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

Generation public key exchange between two parties, the Pairwise Consistency Test requires
routines to check this symmetric algorithm. These consist of two routines which
include RSA_EncryptBlock(), and RSA_DecryptBlock(), and two raw routines which
include RSA_EncryptRaw(), and RSA_DecryptRaw().

PKCS #5
Password-Based

Encryption

The PKCS #5 API specifies a standard interface based upon the PKCS #5 standard
which allows this private service to be used to perform password-based encryption and
consists of the three routines including SEC_PKCS5GetSalt(),
SEC_PKCS5CipherData(), and SEC_PKCS5CreateAlgorithmID().
The PKCS #11 API specifies a standard interface based upon the PKCS #11 standard
which allows for the selection of a FIPS PUB 140-1 mode of operation that provides
both public and private services as well as a means of authentication into all private
services, creates and maintains entry points for all FIPS PUB 140-1 specific routines
including pk11_fipsPowerUpSelfTest() at initialization as well as on demand for
subsequent logins, and enforces a pairwise consistency check on all key generation
algorithms. Netscape's FIPS PUB 140-1 PKCS #11 implementation defines the
following standard crypto API:
Category Function Description

FIPS PUB 140-1
specific

FC_GetFunctionList Return the list of FIPS PUB 140-1
functions

General
purpose

FC_Initialize initializes Cryptoki

FC_Finalize finalizes Cryptoki (1.1)
FC_GetInfo obtains general information about

Cryptoki

Slot and
token
management

FC_GetSlotList obtains a list of slots in the system
FC_GetSlotInfo obtains information about a particular

slot

FC_GetTokenInfo obtains information about a particular
token

FC_GetMechansimList obtains a list of mechanisms supported
by a token

FC_GetMechanismInfo obtains information about a particular
mechanism

FC_InitToken initializes a token

FC_InitPIN initializes the normal user’s PIN
FC_SetPIN modifies the PIN of the current user

Session
management

FC_OpenSession opens a connection or "session"
between an application and a
particular token

FC_CloseSession closes a session
FC_CloseAllSessions closes all sessions with a token

FC_GetSessionInfo obtains information about the session
FC_GetOperationState saves the state of the cryptographic

operation in a session (1.1)

FC_SetOperationState restores the state of the cryptographic
operation in a session (1.1)

FC_Login logs into a token
FC_Logout logs out from a token

Object FC_CreateObject creates an object

6 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

PKCS #11

management FC_CopyObject creates a copy of an object

FC_DestroyObject destroys an object
FC_GetObjectSize obtains the size of an object in bytes

FC_GetAttributeValue obtains an attribute value of an object
FC_SetAttributeValue modifies an attribute value of an object

FC_FindObjectsInit initializes an object search operation

FC_FindObjects continues an object search operation
FC_FindObjectsFinal finishes an object search operation

(1.1)

Encryption
and
decryption

FC_EncryptInit initializes an encryption operation
FC_Encrypt encrypts single-part data

FC_EncryptUpdate continues a multiple-part encryption
operation

FC_EncryptFinal finishes a multiple-part encryption
operation

FC_DecryptInit initializes a decryption operation

FC_Decrypt decrypts single-part encrypted data

FC_DecryptUpdate continues a multiple-part decryption
operation

FC_DecryptFinal finishes a multiple-part decryption
operation

Message
digesting

FC_DigestInit initializes a message-digesting
operation

FC_Digest digests single-part data
FC_DigestUpdate continues a multiple-part digesting

operation

FC_DigestKey continues a multi-part
message-digesting operation by
digesting the value of a secret key as
part of the data already digested (1.1)

FC_DigestFinal finishes a multiple-part digesting
operation

Signature
and
verification

FC_SignInit initializes a signature operation

FC_Sign signs single-part data
FC_SignUpdate continues a multiple-part signature

operation
FC_SignFinal finishes a multiple-part signature

operation

FC_SignRecoverInit initializes a signature operation, where
the data can be recovered from the
signature

FC_SignRecover signs single-part data, where the data
can be recovered from the signature

FC_VerifyInit initializes a verification operation

FC_Verify verifies a signature on single-part data
FC_VerifyUpdate continues a multiple-part verification

operation

7 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

FC_VerifyFinal finishes a multiple-part verification
operation

FC_VerifyRecoverInit initializes a verification operation
where the data is recovered from the
signature

FC_VerifyRecover verifies a signature on single-part data,
where the data is recovered from the
signature

Dual-function
cryptographic
operations

FC_DigestEncryptUpdate continues a multiple-part digesting
and encryption operation (1.1)

FC_DecryptDigestUpdate continues a multiple-part decryption
and digesting operation (1.1)

FC_SignEncryptUpdate continues a multiple-part signing and
encryption operation (1.1)

FC_DecryptVerifyUpdate continues a multiple-part decryption
and verify operation (1.1)

Key
management

FC_GenerateKey generates a secret key

FC_GenerateKeyPair generates a public-key/private-key
pair

FC_WrapKey wraps (encrypts) a key
FC_UnwrapKey unwraps (decrypts) a key

FC_DeriveKey derives a key from a base key

Random number
generation

FC_SeedRandom mixes in additional seed material to
the random number generator

FC_GenerateRandom generates random data

Function
management

FC_GetFunctionStatus obtains updated status of a function
running in parallel with the
application

FC_CancelFunction cancels a function running in parallel
with the application

Callbacks Notify processes notifications from Cryptoki

PKCS #12
Personal

Information
Exchange

The PKCS #12 API will specify a standard interface based upon the forthcoming PKCS
#12 standard which allows this private service to be used to exchange data such as
private keys and certificates between two parties and consists of the two routines
including SEC_PKCS12GetPFX() and SEC_PKCS12PutPFX().

Prime
Number

Generation

This public service consists of the four routines used for generating a prime number
including prm_PrimeFind(), prm_GeneratePrimeRoster(), prm_PseudoPrime(), and
prm_RabinTest().

Private Key
Storage and

Retrieval

This private service is utilized to perform private key storage and retrieval and consists
of the seven routines including SECKEY_OpenKeyDB(), SECKEY_TraverseKeys(),
SECKEY_UpdateKeyDBPass1() SECKEY_UpdateKeyDBPass2(),
SECKEY_FindKeyByPublicKey(), SECKEY_DeleteKey(), and
SECKEY_CloseKeyDB().
This public service consists of the four routines used for global pseudorandom number
generation including RNG_RNGInit(), RNG_GenerateGlobalRandomBytes(),
RNG_RandomUpdate(), and RNG_ResetRandom(), the six routines used for

8 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

Pseudorandom
Number

Generation

pseudorandom number generation on a per object basis including
RNG_CreateContext(), RNG_Init(), RNG_GenerateRandomBytes(), RNG_Update(),
RNG_Reseed(), and RNG_DestroyContext(), and the three routines used for seeding
pseudorandom number generation including RNG_GetNoise(),
RNG_SystemInfoForRNG(), and RNG_FileForRNG(). A continuous pseudorandom
number generator test is performed whenever a new pseudorandom number is
generated.

SSL Session ID
Cache
(Secret

Management)

This public service consists of the five routines used to perform session ID cache
management including SSL_ConfigServerSessionIDCache(), ssl_FreeSID(),
ssl_LookupSID(), ssl_ChooseSessionIDProcs(), and SSL_ClearSessionCache().

TLS pseudorandom
function (PRF)

TLS pseudorandom function (PRF) is utilized by SSL 3.0 protocol to produce FIPS
140-1 compliant hashes of security relevant data items [pre-master secret]. See SSL
changes in Security Module 1.01 for full details.

1.6 Bypass Capabilities
This section is not applicable to Netscape products since they do not allow for any bypass capability.

1.7 Access Control Policy
The access control policy enforced by the cryptographic module must be sufficiently precise, and of sufficient
detail to allow the operator and testers to know what security relevant data items the operator has access to
while performing a service, and the modes of access he or she has to these data items. Also, the testers and
operator must be able to know if and how the kinds of data items accessible changes when the service is invoked
from each role in which it can be invoked.

1.7.1 Security Relevant Data Items

Security relevant data items consist of data types used for Certificate Storage and Retrieval, Digital Signatures,
Encryption/Decryption, Generic Containers, Hashing, Key Generation, PKCS #5 Password-Based Encryption,
PKCS #12 Personal Information Exchange, Private Key Storage and Retrieval, Pseudorandom Number
Generation, and SSL Session ID Cache (Secret Management).

All security relevant data items are identified by category, type, name, and description in the following table:
Table III. Security Relevant Data Items

Category Type of Data Item Name of Data Item Description of Data Item

Certificate
Storage and

Retrieval

typedef struct
CERTCertificateStr CERTCertificate

The structure representing an
X.509 certificate object (the
unsigned form).

typedef struct
CERTCertDBHandleStr CERTCertDBHandle

The structure representing a
handle to an open certificate
database.

typedef struct
CERTCertTrustStr CERTCertTrust The trust structure containing

flags for SSL and email.

typedef struct _certDBEntryCert certDBEntryCert The structure for certificate
database entries.
The structure representing the

9 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

Digital
Signatures

typedef struct
DSASignContextStr DSASignContext

context of a digital signature
containing data associated with
the private portion of the DSA
key pair.

typedef struct
DSAVerifyContextStr DSAVerifyContext

The structure representing the
context of a digital signature
verification containing data
associated with the public
portion of the DSA key pair.

typedef struct
RSAPrivateContextStr RSAPrivateContext

The structure representing the
context of an RSA signature
generation or decryption
mechanism containing data
associated with the private
portion of the RSA key pair.

typedef struct
RSAPublicContextStr RSAPublicContext

The structure representing the
context of an RSA signature
verification or encryption
mechanism containing data
associated with the public
portion of the RSA key pair.

Encryption/
Decryption typedef struct DESContextStr DESContext

The structure representing the
context of a DES or triple-DES
encryption/decryption
containing an encrypt/decrypt
flag, space for up to three
distinct keys, space for the
carry-forward needed for CBC
modes of DES, and function
pointers to the appropriate
encryption and decryption
functions associated with that
mode of DES.

typedef struct CMPInt Generic container used to hold
very large numbers.

typedef struct
SECAlgorithmIDStr SECAlgorithmID

The structure containing two
SECItems which identify the
X.500 algorithm.

typedef struct SECItemStr SECItem
Generic container used to hold
type of data, actual data content,
and length of data.

typedef struct
SECKEYLowPrivateKeyStr SECKEYLowPrivateKey

Generic container used for
low-level private key structures
including RSA and DSA private
keys. This structure is used
below the PKCS #11 service
layer and contains the actual
private key.
Generic container used for
low-level public key structures

10 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

Generic
Containers

typedef struct
SECKEYLowPublicKeyStr SECKEYLowPublicKey

including RSA and DSA public
keys. This structure is used
below the PKCS #11 service
layer and contains the actual
public key.

typedef struct
SECKEYPrivateKeyStr SECKEYPrivateKey

Generic container used as a
high-level pointer to the defined
private key structures, and is
used above the PKCS #11
service layer.

typedef struct
SECKEYPublicKeyStr SECKEYPublicKey

Generic container used as a
high-level pointer to the defined
public key structures, and is
used above the PKCS #11
service layer.

typedef enum SECOidTag
Generic container used to
identify the supported object
IDs.

typedef enum _SECStatus SECStatus
Generic container used
primarily to indicate success or
failure.

Hashing typedef struct SHA1ContextStr SHA1Context

The structure representing the
context of a SHA-1 hash
containing information relevant
to performing a SHA-1 hash.

Key
Generation

typedef struct
DSAKeyGenContextStr DSAKeyGenContext

The structure representing the
context of a digital signature
key generation containing
multiple items including
pointers to both low-level
public and private key
structures containing the public
and private portions of the DSA
key pair.

typedef struct
DSAPrivateKeyStr DSAPrivateKey

The structure containing the
private portion of the DSA key
pair.

typedef struct DSAPublicKeyStr DSAPublicKey
The structure containing the
public portion of the DSA key
pair.

typedef struct
RSAKeyGenContextStr RSAKeyGenContext

The structure representing the
context of a key generation used
for key exchange containing
multiple items including a
low-level private key structure
containing the private portion of
the RSA key pair (and the
public portion of the RSA key
pair which is replicated inside
of the private portion of the

11 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

RSA key pair).

typedef struct
RSAPrivateKeyStr RSAPrivateKey

The structure containing the
private portion of the RSA key
pair.

typedef struct RSAPublicKeyStr RSAPublicKey
The structure containing the
public portion of the RSA key
pair.

PKCS #5
Password-Based

Encryption
typedef struct SECItemStr SECItem

Utilizes this generic container to
hold password-based encryption
data.

PKCS #12
Personal

Information
Exchange

typedef struct SECItemStr SECItem
Utilizes this generic container
for data associated with
personal information exchange.

Private Key
Storage and

Retrieval

typedef struct
SECKEYKeyDBHandleStr SECKEYKeyDBHandle

The structure representing a
handle into the private key
database.

typedef struct
SECKEYLowPrivateKeyStr SECKEYLowPrivateKey

Utilizes this generic container
used for low-level private key
structures.

Pseudorandom
Number

Generation
typedef struct RNGContextStr RNGContext

The structure representing the
context of pseudorandom
number generation dependent
upon a SHA1Context and a seed
value among other data items.

SSL Session ID
Cache
(Secret

Management)

typedef struct
SSLSecurityInfoStr SSLSecurityInfo

The structure containing all
information relevant to SSL
security.

typedef struct SSLSessionIDStr SSLSessionID

The structure containing data
relevant to the SSL session ID
including the session ID cache
and the master secret.

1.7.2 Service Relationships to Security Relevant Data Items Matrix

Table IV. Service Routine to Security Relevant Data Items Matrix

Service Service Routine Security Relevant Data Item Read
Access

Write
Access

AddCertToPermDB()

CERTCertDBHandle X X
CERTCertificate X X
CERTCertTrust X X
certDBEntryCert X -

CERT_ClosePermCertDB() CERTCertDBHandle X X
CERTCertDBHandle X X

12 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

Certificate
Storage and

Retrieval

SEC_FindPermCertByKey() SECItem X X
certDBEntryCert X -

SEC_OpenPermCertDB()
CERTCertDBHandle X X
SECStatus X -

SEC_DeletePermCertificate()
CERTCertDBHandle X X
CERTCertificate X X
SECStatus X -

SEC_TraversePermCerts()
CERTCertDBHandle X X
SECStatus X -

Digital
Signatures

DSA_CreateSignContext()
SECKEYLowPrivateKey X -
DSASignContext - X

DSA_PreSign()
DSASignContext X X
SECStatus X -

DSA_Sign()
DSASignContext X X
SECStatus X -

DSA_DestroySignContext() DSASignContext - X

DSA_CreateVerifyContext()
SECKEYLowPublicKey X -
DSAVerifyContext - X

DSA_Verify()
DSAVerifyContext X X
SECStatus X -

DSA_DestroyVerifyContext() DSAVerifyContext - X

RSA_Sign()
SECKEYLowPrivateKey X -
SECStatus X -

RSA_CheckSign()
SECKEYLowPublicKey X -
SECStatus X -

RSA_CheckSignRecover()
SECKEYLowPublicKey X -
SECStatus X -

RSA_EncryptBlock()
SECKEYLowPublicKey X -
SECStatus X -

RSA_DecryptBlock()
SECKEYLowPrivateKey X -
SECStatus X -

RSA_SignRaw()
SECKEYLowPrivateKey X -
SECStatus X -

RSA_CheckSignRaw()
SECKEYLowPublicKey X -
SECStatus X -

RSA_CheckSignRecoverRaw()
SECKEYLowPublicKey X -
SECStatus X -

RSA_EncryptBlockRaw()
SECKEYLowPublicKey X -
SECStatus X -

13 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

RSA_DecryptBlockRaw()
SECKEYLowPrivateKey X -
SECStatus X -

Encryption/
Decryption

DES_CreateContext() DESContext - X

DES_Encrypt()
DESContext X X
SECStatus X -

DES_Decrypt()
DESContext X X
SECStatus X -

DES_DestroyContext() DESContext - X

Hashing

SHA1_NewContext() SHA1Context - X

SHA1_CloneContext()
SHA1Context X -
SHA1Context - X

SHA1_Begin() SHA1Context - X
SHA1_Update() SHA1Context X X
SHA1_End() SHA1Context X X
SHA1_HashBuf() SECStatus X -
SHA1_Hash() SECStatus X -
SHA1_DestroyContext() SHA1Context - X

Key
Generation

DSA_CreateKeyGenContext() DSAKeyGenContext - X

DSA_KeyGen()

DSAKeyGenContext X X
SECKEYLowPublicKey - X
SECKEYLowPrivateKey - X
SECStatus X -

DSA_DestroyKeyGenContext() DSAKeyGenContext - X

RSA_NewKey()
RNGContext X X
SECItem X X
SECKEYLowPrivateKey - X

PKCS #5
Password-Based

Encryption

SEC_PKCS5GetSalt()
SECAlgorithmID X X
SECItem X -

SEC_PKCS5CipherData()
SECAlgorithmID X X
SECItem X X
SECItem X -

SEC_PKCS5CreateAlgorithmID()
SECOidTag X -
SECItem X X
SECAlgorithmID - X

PKCS #12
Personal

Information
Exchange

SEC_PKCS12GetPFX()
SECOidTag X -
SECItem X -

SEC_PKCS12PutPFX()
SECItem X -
SECOidTag X -
SECStatus X -

14 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

Prime
Number

Generation

prm_PrimeFind()
CMPInt X X
SECStatus X -

prm_GeneratePrimeRoster() SECStatus X -

prm_PseudoPrime()
CMPInt X -
SECStatus - X
SECStatus X -

prm_RabinTest()
CMPInt X -
SECStatus - X
SECStatus X -

Private Key
Storage and

Retrieval

SECKEY_CloseKeyDB() SECKEYKeyDBHandle X X

SECKEY_DeleteKey()
SECKEYKeyDBHandle X X
SECStatus X -

SECKEY_Find()
SECKEYKeyDBHandle X X
SECItem X X
SECKEYLowPrivateKey X X

SECKEY_OpenKeyDB() SECKEYKeyDBHandle X -

SECKEY_TraversePermKeys()
SECKEYKeyDBHandle X X
SECStatus X -

SECKEY_UpdateKeyDBPass1()
SECKEYKeyDBHandle X X
SECStatus X -

SECKEY_UpdateKeyDBPass2()
SECKEYKeyDBHandle X X
SECItem X X
SECStatus X -

Pseudorandom
Number

Generation

RNG_RNGInit()
RNGContext - X
SECStatus X -

RNG_GenerateGlobalRandomBytes()
RNGContext X X
SECStatus X -

RNG_RandomUpdate()
RNGContext X X
SECStatus X -

RNG_ResetRandom()
RNGContext X X
SECStatus X -

RNG_CreateContext()
RNGContext X X
RNGContext - X

RNG_Init() RNGContext - X

RNG_GenerateRandomBytes()
RNGContext X X
SECStatus X -

RNG_Update()
RNGContext X X
SECStatus X -

RNG_Reseed()
RNGContext X X
SECStatus X -

15 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

RNG_DestroyContext() RNGContext - X

SSL Session ID
Cache
(Secret

Management)

ssl_ChooseSessionIDProcs()
SSLSecurityInfo X X
SSLSessionID - X

SSL_ClearSessionCache() SSLSessionID X X

ssl_LookupSID()
SSLSessionID X X
SSLSessionID X -

ssl_FreeSID()
SSLSessionID X X
SSLSessionID - X

SSL pre-master secrets pk11_PRF() const SECItem *secret X X

1.8 Means of Access
Prior to execution of the Client or Server products, the Security Libraries are stored on disk in compiled binary
form. Netscape relies on Discretionary Access Controls (DAC) to protect the binary image from being tampered
with.

1.9 Zeroization
Within the Security Libraries, there are a number of explicit zeroization steps that are taken to clear the memory
region previously occupied by a private key or password. A complete reference to such zeroizations is listed in
section 8.0 of this document.

1.10 Role-based Authentication
Since all Netscape products utilize role-based authentication, and all products use a single-role mechanism
referred to above as a Netscape User, authentication shall always be required upon initializing the FIPS
Cryptographic Module. This is true of all Netscape client and server products, and shall be handled via the
PKCS #11 mechanism of required authentication.

1.11 Identity-based Authentication
This section is not applicable to Netscape products since it is only applicable to products attempting to be
certified to security level three or four.

16 of 16 3/19/01 10:16 AM

FIPS PUB 140-1: 1.0 : Security Policy file:////Katherine/cmvp/Security Policies/OLD SP's/Cert 7.htm

