
A New Leakage Exploitation Framework and Its
Application to Authenticated Encryption

Vahid Jahandideh, Léo Weissbart, Bart Mennink, and Lejla Batina

Radboud University, Nijmegen, The Netherlands
{v.jahandideh, l.weissbart, b.mennink, lejla}@cs.ru.nl

Abstract. We target a 32-bit XOR instruction with a secret input and
a known random operand and recover the secret with around 10K traces.
Based on the leakage of this linear instruction, we propose a framework
for power analysis of the unprotected software implementations of final-
ists of the NIST lightweight cryptography competition. The approach
applies to (almost) all finalists and clarifies which details in their design
enable successful power analysis attacks. Furthermore, the diversity of
the studied ciphers in this work elucidates how mode and primitive de-
sign can help to mitigate leakage without demanding a heavy masking
countermeasure that conflicts with the lightweight design goals.

1 Introduction

Power analysis attacks are a practical concern for ciphers’ real-world security,
especially in embedded devices designed for lightweight applications. In these
devices, power traces are relatively easy to capture after gaining physical ac-
cess to the target device. Given enough power consumption traces for an un-
protected cipher, various side-channel (SC) attacks can recover hidden secrets
effectively [17,8,27,31]. These attacks are classified into differential and simple
power analysis (DPA and SPA, respectively). Normally, DPA relies on (a) divide-
and-conquer and needs (b) sufficiently many traces. SPA attacks are used when
(a) is not applicable or (b) does not hold. DPA is generally easier to apply and
more successful in practice. To withstand SC attacks, specifically DPA attacks,
implementation-level protections such as masking and hiding are commonly used
[19]. Masking, at order d, at least in theory, ensures that any collection of power
samples with at most d − 1 members cannot convey usable leakage about the
running cryptographic algorithm [16]. This immunity comes at the cost of an
O(d2) blowup in the computational load of the running code and consequently
results in a penalty on performance. Considering the energy and power budget,
there may be no room in lightweight battery-powered setups to opt for high
values of d (e.g., d ≥ 3). On the other hand, in practice, low-order masking is
successfully attacked with device-dependent micro-architectural leakages rooted
in the hidden interactions and couplings of the registers [2,28]. Furthermore, ad-
vanced SPA, such as horizontal attacks, demonstrate that some commonly used
masking gadgets, such as the ISW gadget for AND operation [16,25], are insecure
irrespective of the deployed masking order d [4].

Addressing these and many other challenges in the implementation-level leak-
age mitigation, new cryptographic algorithms are highly desired to contribute to
SC security at the mode level. This mode-level security, starting from the initial
proposal, was one of the objectives of the NIST LWC contest in the lightweight
cryptography domain for designing authenticated encryption with associated
data (AEAD) [21]. The competition is currently over, and ASCON [11] is se-
lected as the winner1 after several years of being under scrutiny. In this work,
we compare the side-channel properties of ASCON with some of its fellow final-
ists. As our main contribution, we lay a framework to clarify to which extent an
AEAD mode is (in)secure in case of DPA key/plaintext recovery attacks, with
the primary goal of identifying prominent features in their construction that can
help to achieve more SC-aware AEAD designs in future.

1.1 Related works on SC analysis of AEAD ciphers

Tailored for AEAD constructions, Guo et al. [14] and Berti et al. [6] augmented
CCA indistinguishability and ciphertext integrity (CI) definitions with a compre-
hensive set of assumptions for leakage and nonce reuse/misuse. Later, Bellizia et
al. [5] looked into the implications of these leakage-bearing definitions for some
NIST LWC candidates. Their work notably clarified which parts of the various
AEAD constructions should be protected against DPA. This work got recently
expanded to include more ciphers [30]. However, the DPA discussion in these
papers is an overview and needs practical/implementation details. On the ex-
perimental side, successful applications of SC attacks for some NIST candidates
are reported in individual projects [32,26,36,15,24]. From the countermeasures
side, with a notable impact on the computational load of masking protection,
Pereira et al. [22] proposed to design ciphers such that not all parts demand the
same level of protection. This property is called leveled implementation. It is also
referred to as uniform vs. non-uniform masking [5]. The idea is that, in a uniform
case, the whole cipher needs to be masked, contrasted to the non-uniform case
where masking only some sensitive segments is enough. Particularly, ASCON, in
the face of key recovery DPA, needs only non-uniform masking. However, for
plaintext recovery DPA attacks, costly uniform protection is unavoidable. Re-
cently, following a NIST SC evaluation proposal, many groups/labs took part in
hardware/software analysis of the third-round finalists of NIST LWC to evaluate
T-test/DPA/masking on them with frequently updated reports.2

1.2 Our contributions

We perform improved SC analysis of software implementations of ASCON along
with some of the third-round NIST LWC finalists. To do so, we propose a generic
DPA framework that applies to almost all of the candidates. This approach
clarifies how (in some of the considered ciphers) details, such as parameter choice,
1 https://csrc.nist.gov/Projects/lightweight-cryptography
2 https://cryptography.gmu.edu/athena/index.php?id=LWC

2

https://csrc.nist.gov/Projects/lightweight-cryptography
https://cryptography.gmu.edu/athena/index.php?id=LWC

simplicity of key schedule, or invertibility of the permutation path, make DPA
attacks possible or more accessible. To build the DPA framework as broadly as
possible, we stick to the simple linear XOR instruction instead of seeking non-
linear operations such as S-box. In practice, linear operations (alone) are not a
primary choice for DPA attacks because they are expected to leak less than non-
linear operations. Moreover, if some bit-positions are not leaking, higher leakage
of other bit-positions cannot compensate. With this in mind, our contributions
are as follows.

– We target an isolated XOR operation with one secret input and one known
random operand. We demonstrate that, given enough traces, there are vari-
ous SC techniques for extracting the secret operand. More precisely, we apply
and compare correlation power analysis (CPA), linear regression (LR), deep
learning (DL), and their combinations.

– We use this XOR observation to argue the NIST candidates’ DPA (in)security.
The basic assumption is that if w-bit chunks of an n-bit target secret are pro-
cessed in n

w separate XOR operations, each with a known random operand,
the attacker can learn that secret.

– We explore the unprotected optimized code of the AEAD candidates to
locate (if existing) a set of XOR operations for key/plaintext recovery.

– For the case of ASCON, we demonstrate the applicability of the proposed
model in our experimental setup.

– The most significant part of our contribution is that we make clear which
property in the underlying unprotected ciphers is helping the feasibility of
a DPA attack. For example, in the case of Xoodyak, we show that a high
absorption rate and invertible permutation chain make DPA possible, or in
the case of Grain128-AEAD, bit-oriented implementation enables the attack.
For GIFT-COFB, we demonstrate that the attack uses the simplicity of the
key schedule. Considering the diversity of studied ciphers, our discussions
clarify how future designs can be more SC-aware.

– We additionally provide a table summarizing our SC analysis for studied
AEAD ciphers.

1.3 Structure of this paper

Section 2 gives our framework for power analysis attacks. Section 3 explains
the generic construction of AEAD ciphers. In Section 4, we discuss the power
analysis of ASCON and some of its competitors. DPA for plaintext recovery is
discussed in Section 5. Finally, in Section 6, we give a summary of the results.

2 Leakage modeling and exploitation

The first step of a power analysis attack is to represent the exploitable leak-
age with a mathematical model. For software implementations, power leakage is
attributed mostly to the bit-flips of the operands (registers) in the instruction-
level description of the running algorithm. It assumes that power samples in a

3

trace are linear mixes of power consumption of successive instructions of the
running assembly code, and the power consumption of each instruction is a
noisy function of its operands [28,20]. Details of the employed Instruction Set
Architecture (ISA) should be known for conducting a case study. In this work,
we use the ARMv7-M architecture. This platform is a common choice for SC
investigations. It contains 16 shift registers, each of which holds a 32-bit num-
ber. In the listings presented in this paper, the shift registers are labeled as
{r0, ..., r9, sl, fp, ip, sp, lr, pc}. The operations that manipulate these registers
for carrying a proper computation are instructions. Typically, each line of an
assembly code describes an instruction INST that works with a specified set of
registers [34].

2.1 Recovering secret parameters with leakage
We demonstrate that leakage of XOR instruction with a known and random
operand p and a secret operand k contains a noisy correlation with k ⊕ p that
can reveal k. Depending on the trace sampling rate and the clock frequency of
the target device, the time interval of execution of an XOR instruction contains
m samples. Let us denote these samples for the ith execution with Ti. So, Ti =
{Ti[1], . . . , Ti[m]} is a trace. In an experimental setup for a singled-out XOR
with N traces, we use SC techniques such as CPA, LR, and DL followed by
key-ranking to extract the correct k from {pi,Ti}N

i=1 collection.

2.2 DPA attack with XOR
We use the assembly code in Listing 1.1 that helps set apart XOR’s leakage by
enough leading and trailing nop operations. During a nop instruction, the pro-
cessor ideally performs no activity on the registers. With enough nop operations,
we are sure that the transition effects of the trigger signals will be damped. eor.w
and eors both denote XOR operation.

... ; r3 = k r9 = p
8000 aa8: bf00 nop
8000 aaa: ea89 0903 eor.w r9 , r9 , r3 ; r9 = r9⊕ r3
8000 aae: bf00 nop

Listing 1.1: Assembly code for XOR leakage.

Attack with CPA. In the Hamming weight (HW) leakage model, samples in
T, in specific instances (also known as Points of Interest (PoI)), are assumed to
contain HW of the processed intermediates with some additive Gaussian noise.
For the case of our experiment, we assume that there is at least one PoI index
in T, denoted by random variable l, which for some noise n and constant a can
be described as l = aHW(p⊕ k) + n. If p[j] and k[j] for 0 ≤ j ≤ 3 represent the
corresponding bytes of pi and k, we can write:

l = a

3∑
j=0

HW(p[j] ⊕ k[j]) + n.

4

Values of HW(pi[j] ⊕ k[j]) for different bytes are independent of each other.
Thanks to this property, we conduct a CPA attack with a collection of N traces
with 32-bit random p to learn k.

The CPA attack can consider all samples in T without worrying about the
selection of PoIs. For attack, we compute the following m-dimensional vector of
empirical correlation coefficients Cj [k∗] = cor(HW(k∗ ⊕p[j]),T) for all hypothe-
ses 0 ≤ k∗ ≤ 255 [19]:

Cj [k∗] =
∑N

i=1(HW(k∗ ⊕ pi[j]) − 4) · (Ti − T̄))√∑N
i=1(HW(k∗ ⊕ pi[j]) − 4)2 ·

∑N
i=1(Ti − T̄)2

, (1)

where m-dimensional T̄ is the sample average of the traces. In the computations
of Cj [k∗] for byte j, the value of the other bytes of k are unknown and are
treated as noise. The correct k[j] is assumed to be the k∗ corresponding to the
largest value in 256 ×m matrix Cj . The same traces can be used to recover all
the key bytes.

The drawback of this approach. Estimating the key in the given byte by byte
method lowers the computation load compared to the direct exhaustive search
on the 232 possible k candidates. However, the penalty paid is the increase in
the number of required traces to compensate for the noise effect of non-targeted
key bytes.

Attack with LR. The HW leakage l of a w-bit variable v in terms of its bits
is l = aHW(v) + n = a

∑w
j=1 v[j] + n where index j runs on bits. In practice,

this model can be fine-tuned as l =
∑w

j=1 ajv[j] + n by finding a fitting set of
coefficients aj [27]. The method used for approximating ajs is linear regression,
and the estimation quality improves as the number of measurements N increases.

In the case of the 32-bit XOR, for leakage of the output variable, ignoring
noise n, we can write:

l =
32∑

j=1
aj(k[j] ⊕ p[j]) =

∑
k[j]=0

ajp[j] +
∑

k[j]=1

aj(1 − p[j])

=
∑

k[j]=0

ajp[j] −
∑

k[j]=1

ajp[j] + b,

(2)

for some constant b independent of p [13]. In the attack scenario, an adversary
unaware of k can approximate a set of coefficients a′

j with linear regression for
the following estimation:

li ≈
w∑

j=1
a′

jpi[j] + b′,

where index i runs over different traces, and li is the value of a single sample
(PoI) in the traces. The main observation is that sign of a′

j will reveal the value of

5

k[j]: positive (resp. negative) a′
j means that k[j] equals 0 (resp. 1). aj values are

typically positive; however, for more caution, it is better to run the experiment
with a known key once and record the signs of ajs. We need to select a PoI in the
traces to conduct this attack. Usually, PoI is selected by examining all samples
in T to peak one that minimizes the variance of residual noise after estimation.

Attack with DL. Inspired by [18], for the XOR experiment, as our third attack
approach, we use a multilayer perceptron (MLP) deep learning (DL) network to
approximate HW(k ⊕ p) with the knowledge of p and T. In our neural network,
the input nodes are m (normalized) samples in T and 32 bits of p with relu as
the activation function. The network has one hidden dense layer again with relu.
There are 33 output nodes to cover all possible HW values. The activation for
the output layer is sigmoid. See [35] for the methodology of neural networks in
SC works. We used 100K pairs of random (ki, pi,Ti) for training and testing the
network, with the cross-entropy metric as the loss function. The search for the
network parameters was done by trial and error. The code for the network is in
Python and developed with Keras API.3

...

...

...
... ...

Ti[1]

Ti[2]

Ti[m]

pi[1]

pi[2]

pi[32]

Pr(HW(k ⊕ pi) = 0)

Pr(HW(k ⊕ pi) = 1)

Pr(HW(k ⊕ pi) = 2)

Pr(HW(k ⊕ pi) = 32)

Select
the

m
ost

probable
value

A
pply

C
PA

or
LR

Fig. 1: MLP schematic used for estimation of HW(k⊕ pi) with the knowledge of
{pi,Ti}, where the Ti[j]s are samples in trace Ti, and the pi[j]s are bits of pi.

After the training phase, for conducting an attack, the 32-bit search space
is big, so we cannot directly use probabilities computed by the neural network
model. See [35] for the typical neural network model in the attack phase. To
mitigate this challenge, as depicted in Figure 2, we propose to use the model’s
output combined with CPA and LR. For inputs Ti and pi, the most probable
3 https://keras.io

6

https://keras.io

output of the model is interpreted as an estimation of HW(k⊕pi). This estimation
will be the input of CPA or LR attack. In this sense, the constructed MLP model
mainly tries to denoise the targeted HW value.

2.3 Experimental results

Our SC evaluation setup is a Chipwhisperer CW308 UFO board,4 with an
STM32F405 32-bit microcontroller running at the clock frequency of 7.37 MHz.
The trace collection is with Chipwhisperer lite at a synchronized rate of four
times the clock frequency.

In this setup, with 10K measurements, we could recover the value of all the
key bytes with high certainty for the XOR operation. In these bytes, the correct
value had a rank of one or two. See Figure 2 for the results. The constructed DL
model effectively decreases the required traces for both CPA and LR.

102 103 104

80

70

60

50

40

30

20

10
5

CPA 2nd byte
DL+CPA 1st byte
CPA other bytes
DL+CPA other bytes

Number of traces

Average rank of the correct key byte

102 103 104
2

4

6

8

10

12
LR 4 bytes
DL+LR 4 bytes

Number of traces

Average number of incorrect key bits

Fig. 2: (Left) CPA with and without DL. The CPA attack for the 2nd byte
produces slightly better results. DL+CPA in the used model worked better for
the 1st byte. Results for other bytes are also shown. (Right) LR with and without
DL.

For the presented byte by byte CPA attack, optimally ranking the key given
the ranking of its bytes is not a trivial problem [23]. However, in our proof of
concept experiments in this work, this is not a concern. Instead, we assume
that the rank of the key is roughly the multiplication of the ranks of its bytes.
Whereas, for the results reported in Figure 2, for the case of an LR attack, our
metric differs from CPA and is the average number of bit positions in the 32-bit
key that are estimated correctly.

4 https://github.com/newaetech/chipwhisperer

7

https://github.com/newaetech/chipwhisperer

2.4 Limitations of our model

The assumption that the attacker can separate the leakage of a single instruction
requires complete knowledge of the running assembly code that might not always
be available. Overlapping leakages and pipeline effects will likely increase the
number of required traces for a successful attack. However, for the particular
case of ASCON, we will demonstrate the possibility of this attack model in our
experimental setup.

3 Structure of AEAD ciphers

We define a prototype AEAD scheme X and describe its algorithms and input-
output parameters as a generic interface such that all candidates are regarded
as different instantiations. This approach unifies discussions about the various
ciphers and abstracts common explanations in one place.

Notation. A binary string of length m ∈ N belongs to {0, 1}m, and {0, 1}∗

represents arbitrary length strings. The same pattern applies to unary strings
(e.g., 0m). With 0†, we mean the concatenation of an adequate number of zeros.
Lengths are always in bits, and the length of string B is |B|. To partition a
string B into blocks of r bits, we write (B1, . . . , Bt) = Split(B, r), where the
last block, i.e., Bt, can be of size less than r bits. For a string B of size ≥ m,
Trunc(B,m) denotes the first m bits of B, starting from the leftmost bit. The
concatenation of two strings, B and C, is denoted as B ∥C. For a times shift
to the left (resp. to the right), we write B ≪ a (resp. B ≫ a). Bitwise NOT
and OR operations are shown with ∼ and |, respectively. With π, we denote a
cryptographic permutation {0, 1}n → {0, 1}n, where n is called the state size.
We refer to a rounds of application of π as πa. Usually, a is a security parameter.
To clarify instances of π, we append -p at the end of their names (e.g., Keccak-p).

A prototype authenticated encryption scheme. For cipher X, we denote
by X-Encryption the corresponding encryption algorithm. Inputs to X-Encryption
are a key K, nonce N , message M ∈ {0, 1}∗, and associated data A ∈ {0, 1}∗.
Outputs of X-Encryption are a ciphertext C with |C| ≥ |M | and tag T . It is
possible that a separate X-Authentication with K, N , A, and C, generates T .
In either case, T is responsible for validating both C and A. During decryption
of a received tuple (N,A,C, T), X-Decryption will check the validity of T . If T
is found valid, the corresponding message M will be the output. Otherwise, a
failure notice will be the output of the decryption.

Attack assumptions. Following [1], we assume the strongest possible attacker:
it has access to encryption and decryption devices and knows their running
assembly codes. So, it can encrypt any tuple (N,A,M) and record the associated
leakage. It can also try to decrypt any tuple (N,A,C, T) and receive the leakage.

8

This means that an attack may fall in a chosen nonce scenario. Encryption
and decryption devices may try to impose nonce uniqueness. Nevertheless, it
is much more difficult for decryption devices since old ciphertexts should still
be decryptable. Keeping this in mind, for each presented attack, we make clear
whether the attacker needs a chosen nonce (including nonce-reuse) or a random
nonce. We have not examined the case of non-fixed nonce such as a counter.
However, most of the discussed attacks will fail with non-uniform randomness.

4 Power analysis of selected NIST LWC finalists

For the candidates, we study their unprotected official (GCC – O2) optimized
ARMv7-M assembly code and try to identify a set of XOR instructions for ap-
plying DPA key recovery attack of Section 2.1. A masking countermeasure con-
sideration will follow the discussion for each cipher, with the sole objective of
identifying whether the cipher can be protected with non-uniform masking or
not. However, we will not consider details of masking protection or their effec-
tiveness in withstanding the proposed attacks.

4.1 Power analysis of ASCON

ASCON is announced as the winner of the NIST LWC contest. It is also one of the
finalists of the CAESAR competition and is recommended for lightweight appli-
cations.5 It has two instances that both claim 128-bit security. The instances dif-
fer in the choice of internal parameters [11]. This cipher is sponge-based and uses
ASCON-p with state size n = 320 for its cryptographic permutation. ASCON-p is
suitable for optimized bit-sliced implementation. Some other NIST LWC candi-
dates (e.g., ISAP) also rely on this permutation. The ASCON specification states
that its design prevents internal state recovery attacks from leading to the dis-
closure of K or forgery of T . Inside the assembly code of ASCON, we point to
several XOR instructions that fulfill the DPA requirements (see Section 2.1). The
target secret for all of these DPAs is K.

Composition of ASCON. Key, nonce, and tag are each of size 128 bits.
Plaintext and associated data are separately partitioned into r-bit blocks. The
plaintext is always padded with one 1 and an adequate number of 0s, even
if |M | = 0, such that |(M∥1∥0†)| is a multiple of r. In this way, we have
(M1, . . . ,Mt) = Split(M∥1∥0†, r). If associated data is present, i.e., if |A| > 0, it
will be padded similarly: (A1, . . . , As) = Split(A∥1∥0†, r). Ciphertext C is also
in blocks of r bits and has the same length as M . ASCON-Encryption, as de-
picted in Figure 3, is responsible for generating both C and T . For one instance
of ASCON, the parameters are (a, b, r) = (12, 6, 64). For the other one, they are
(a, b, r) = (12, 8, 128). For both of them, the 64-bit IV is (1288 ∥ r8 ∥ a8 ∥ b8 ∥ 032),
where the subscripts denote the number of bits that are used for the left-MSB
5 https://competitions.cr.yp.to/caesar-submissions.html

9

https://competitions.cr.yp.to/caesar-submissions.html

representation. It is relevant to our SC discussion that the permutation π is easy
to invert. However, both encryption and decryption need only forward compu-
tation of it. We skip detailing ASCON-Decryption since it trivially follows the
construction of ASCON-Encryption with an appropriate swap of plaintext and
ciphertext blocks.

IV∥K∥N

πa

Initialization

0†∥K

A1

πb

As

πb

Associated Data

0†∥1

M1C1

πb

Mt−1 Ct−1

πb

Plaintext

MtCt

K∥0†

πa

Finalization

K

T

128

Fig. 3: ASCON-Encryption. a and b denote the number of permutation rounds.

DPA possibilities. We are looking for instructions combining secret interme-
diates with known random values. Inside the assembly code of ASCON, there are
various instances where such instructions show up.

Initialization phase of ASCON-Encryption. In this phase, N and K are merged
inside permutation π. This early involvement of N makes it possible to find
instructions accepting bits of N and bits of K as their operands. Listing 1.2 is
part of the computation for the first round of πa in the initialization.

... ; r0 holds address of the parameters
10 b60: e9d0 1205 ldrd r1 , r2 , [r0 , #20]; r1 = K2, r2 = N1
10 b64: e9d0 7601 ldrd r7 , r6 , [r0 , #4] ; r7 = IV0, r6 = K1
10 b68: e9d0 5403 ldrd r5 , r4 , [r0 , #12]; r5 = K0, r4 = K3
... ; r1 ,r2 ,r4 ,r5 ,r6 ,r7 are not touched
10 b7e: e9d0 ec08 ldrd lr , ip , [r0 , #32]; lr = N3, ip = N2
10 b82: 69c3 ldr r3 , [r0 , #28] ; r3 = N0
10 b84: f8d0 8000 ldr.w r8 , [r0] ; r8 = IV1
10 b88: f084 04f0 eor.w r4 , r4 , #240 ; K3 = K3⊕ 0xf0
10 b8c: ea86 0904 eor.w r9 , r6 , r4 ; r9 = K1⊕ K3
10 b90: ea88 0a0e eor.w sl , r8 , lr ; sl = IV1⊕ N3
10 b94: ea82 0b0e eor.w fp , r2 , lr ; fp = N1⊕ N3
10 b98: ea62 0e0e orn lr , r2 , lr ; lr = N1|(∼ N3)
10 b9c: ea8e 0e09 eor.w lr , lr , r9 ; lr = K1⊕ K3⊕ (N1|(∼ N3))
10 ba0: ea82 0206 eor.w r2 , r2 , r6 ; r2 = N1⊕ K1

Listing 1.2: Inside the initialization of ASCON-Encryption.

In this listing, we represent 32-bit words of N and K, for 0 ≤ i ≤ 3, with Ni
and Ki, respectively. For words of the 64-bit IV, we use IV0 and IV1. At address

10

0X10ba0 in Listing 1.2, N1 and K1 are operands of one eor (XOR) instruction
with relation r2 = N1⊕K1. With the assumption that the attacker can choose N1
uniformly random, this instruction fulfills the requirements of DPA to recover
K1. After recovering K1, the instruction at address 0X10b9c can be the target
(with the same traces) for recovering K3. In the subsequent instructions, there
are similar XOR operations for attacking the remaining words of K. Samwel
and Daemen [26], with a Hamming leakage model for an experimental setup
with a more complex operation (compared to our proof of concept simple XOR
instruction), used DPA to recover K from the initialization phase.

Finalization phase of ASCON-Encryption. In this phase, K is directly XORed
with part of the state, and the result is T , which will be available to the attacker.
For non-fixed inputs, T can be considered random. Hence, mixing it with bits
of K is catastrophic (from a power analysis security point of view). Listing 1.3
highlights some of the relevant instructions of this phase.

... ; r4 holds address of the state , r5 address of the key
109 ae: e9d5 0100 ldrd r0 , r1 , [r5] ; r0 = K0, r1 = K1
109 b2: 69a2 ldr r2 , [r4 , #24] ; r2 = S0
109 b4: 69e3 ldr r3 , [r4 , #28] ; r3 = S1
109 b6: 4050 eors r0 , r2 ; r0 = K0⊕ S0 (T0 = r0)
... ; r0 ,r2 are not touched , and r4 has not changed

Listing 1.3: Inside the finalization of ASCON-Encryption.

We denote the last 128 bits of the state with S, and we have T = K ⊕ S with
the corresponding assembly code in Listing 1.3. Words of S are denoted with Si
for 0 ≤ i ≤ 3. At address 0X109b6, K0 (the first word of K) and S0 are operands
of an eors (XOR operation), which with a DPA attack will reveal K0, with the
assumption that with non-fixed inputs, Sis are uniform. There are similar eors
instructions to recover the rest of Kis.

Data absorption. In our SC model, the attacker can control associated data bits
and message bits for its purposes. These bits are XORed with the state bits.
Consequently, if the rate r is high, it will recover many state bits. However, we
leave the question of whether r = 64 or r = 128 for n = 320 in ASCON can or
cannot be used to recover all bits of the state for future research.

State recovery is not revealing K. As stated in the specification of ASCON,
thanks to XOR of 0† ∥K and K ∥ 0† at the initialization and finalization, even if
the attacker recovers the state of any of the permutations in the middle phases
of encryption/decryption, it will not be able to recover K or forge T . This
property is also beneficial for masking the cipher. An implementation can employ
masking only at initialization and finalization to withstand key recovery attacks
for encryption and decryption. However, ASCON needs uniform masking for
plaintext recovery attacks (if they are to be cared for); see also Section 5.

11

Experimental validation of the attacks. Figure 4 depicts the results of
our experiment for the described attack in the initialization phase of ASCON.
Recall that we need to recover bytes of K1, and then with the knowledge of these
bytes and using leakage of one instruction before, bytes of K3 are estimated.
With 20K traces, the correct values for the bytes have a rank of one/two in our
setup. A profiling phase with a known key is required to find the time interval
of targeted instructions. As in Figure 4, we are only interested in the peak value
of the correlation in the interval of the targeted instruction. Our attack in the
finalization phase also proceeds similarly with one exception. The correct values
for the key bytes in their targeted instructions correspond to negative peaks.
There, we are interested in the leakage of an input operand of the instructions.

10 20 30 40 50 60 70 80 90

0

0.1

−0.1

0.2

−0.2

0.3

−0.3

0.4

−0.4

CPA for two first bytes of K1
CPA for two first bytes of K3

CPA value for othe bytes of K1

CPA value for othe bytes of K3
CPA for wrong hypothesis

Time (trace samples)

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

CPA results for bytes of K in ASCON

Fig. 4: Attacking the initialization phase of ASCON. Interval for K1 is one in-
struction after that of K3.

4.2 Power analysis of GIFT-COFB
GIFT-COFB [3] uses the block cipher GIFT in a Combined Output FeedBack
(COFB) mode. Neither the mode nor the block cipher claims to have built-in
leakage resistance. Thus, it is no surprise that the DPA requirements are met
for various instructions. K is only used within the block cipher. Because of this,
we skip the mode description and only focus on the block cipher. From the mode,
we need to know that for absorbing associated data and for encrypting plaintext,
GIFT is called with the same K under some (for the attacker) controllable input
or known output data. We will discuss how each call is susceptible to a DPA key
recovery attack, implying that every GIFT invocation should be protected for an
SC secure implementation. As a result, GIFT-COFB requires uniform masking.

12

Structure of GIFT. Figure 5 shows that GIFT : (K, I) → O has a classical
substitution-permutation network (SPN) design, with K and I as the inputs and
O as the output, where |K| = |I| = |O| = 128. This block cipher is composed of
40 similar rounds. In each round, 64 bits of the state are XORed with a 64-bit
round key. Relevant to our SC discussion, the key schedule is simple: the round
keys are derived with specific shifts of K, so knowledge of any two consecutive
round keys is sufficient to learn K.

I

SubW
ords

Perm
Bits

XO
R

R
K

1

XO
R

B
1

Round 1

SubW
ords

Perm
Bits

XO
R

R
K

40

XO
R

B
40

Round 40

O

Fig. 5: GIFT block cipher. The RKis are round key, and the Bis are constant.

DPA possibilities in GIFT-COFB. In the initialization phase, the input to
GIFT is used for key recovery, and in the message encryption phase the output
of GIFT is used for the attack.

Initialization phase. In this phase, the input I is N . This enables the attacker
to exploit leakages of the two initial rounds to recover all bytes of K. In Listing
1.4, we have extracted the relevant XOR instructions of these rounds.

... ;Round1

... ; t0 = (K12≪ 8)|K13, t1 = (K14≪ 8)|K15
10 cae: 406a eors r2 , r5; r2 = S1, S1 ⊕= ((t0≪ 16)|t1)
... ; t2 = (K4≪ 8)|K5, t3 = (K6≪ 8)|K7
10 cc6: ea83 0308 eor.w r3 , r3 , r8; r3 = S2, S2 ⊕= ((t2≪ 16)|t3)
... ;Round2
... ; t0 = (K8≪ 8)|K9, t1 = (K10≪ 8)|K11
10 cae: 406a eors r2 , r5; r2 = S1, S1 ⊕= ((t0≪ 16)|t1)
... ; t2 = (K0≪ 8)|K1, t3 = (K2≪ 8)|K3
10 cc6: ea83 0308 eor.w r3 , r3 , r8; r3 = S2, S2 ⊕= ((t2≪ 16)|t3)

Listing 1.4: Inside the initialization of GIFT-COFB-Encryption.

In Listing 1.4, the XOR instructions (i.e., eors and eor.w) are 32-bit. Ki, for
0 ≤ i ≤ 15, denotes bytes of K. Si, for 0 ≤ i ≤ 3, denotes words of the state of
GIFT. Registers r5 and r8 contain the round keys. Since N is the input of GIFT,
the Si values in the first round are known. For the second round, the round key,
i.e., (t0 ≪ 16)|t1 and (t2 ≪ 16)|t3, is required. Therefore, a successful DPA in
the first round is a prerequisite for attacking the second round.

13

Plaintext encryption phase. For encryption of each plaintext block, GIFT is called
with K and some input I to produce output O. The corresponding ciphertext
block is produced as C = O ⊕M . Hence, the attacker that knows both 128-bit
M and C can compute O. Combined with the leakage information of the last
two rounds, in an almost similar way to the initialization phase, the attacker
can recover four 32-bit secrets that collectively reveal K. Hou et al. [15] also
presented an SC attack targeting K with only knowledge of C without requiring
M .

4.3 Power analysis of Grain128-AEAD
Grain128-AEAD uses a stream cipher as its core cryptographic primitive. For this
candidate, the specification does not mention resilience to SC attacks. However,
due to involvement of many non-linear relations, it seems infeasible to identify
sufficient instructions to mount a DPA on key K. Our main observation, from
SC point of view, is that the bits of K, in the initialization phase, are processed
in separate XORs. However, there is no known randomness associated with these
XOR operations. In this cipher, the bits of K only appear in the initialization.
Moreover, because of the non-linear and hard-to-invert computations of the core
stream cipher, we assume that state recovery after the initialization phase will
not reveal anything about K. Based on these two reasons, the DPA discussion
will be confined to the initialization phase. We could particularly conclude that
only the initialization needs masking.

The initialization of Grain128-AEAD. The cipher comprises one LFSR and
one NFSR, both with 128-bit states. In the initialization phase, the LFSR is
loaded with a 96-bit N , and the NFSR is loaded with a 128-bit K. During the
initialization, in each clock cycle 0 ≤ t ≤ 511, these two states are updated and
merged via a non-linear function H that operates on the bits of the two states.
More concretely, let St = [st

0, s
t
1, . . . , s

t
127] be the content of the NFSR after clock

t, and Bt = [bt
0, b

t
1, . . . , b

t
127] be that of the LFSR. The NFSR is preloaded with

the key as b0
i = ki for 0 ≤ i ≤ 127, where the kis are the bits of K. For the LFSR,

we have s0
i = ni, for 0 ≤ i ≤ 95, s0

i = 1 for 96 ≤ i ≤ 126, and s0
127 = 0, where

nis are bits of N . With a linear feedback function L and a non-linear feedback
function F, during 0 ≤ t ≤ 319, the two 128-bit shift registers are updated as

st+1
127 = L(St) ⊕ H(St, Bt),
bt+1

127 = st
0 ⊕ F(Bt) ⊕ H(St, Bt).

(3)

For 320 ≤ t ≤ 383, the states are updated with reintroducing the key bits as

st+1
127 = L(St) ⊕ H(St, Bt) ⊕ kt−256,

bt+1
127 = st

0 ⊕ F(Bt) ⊕ H(St, Bt) ⊕ kt−320.
(4)

Finally, for 384 ≤ t ≤ 511, state are once again updated, this time with

st+1
127 = L(St),
bt+1

127 = st
0 ⊕ F(Bt).

(5)

14

DPA analysis of the initialization phase. The first place for seeking DPA
vulnerable instructions are those governed with relations (3) for 0 ≤ t ≤ 319.
During these instructions, the attacker can track the mixing of the key bits
and randomness bits. However, non-linear relations will come into play such
that it seems unlikely that an attacker can locate enough linear combinations to
recover all the bits of K. The next place where the bits of K are involved is for
320 ≤ t ≤ 383. Listing 1.5 belongs to this segment of the assembly code.

10954: ea88 0606 eor.w r6 ,r8 ,r6 ;r6 = r8⊕ r6,r8 = kt−256 ,r6 = L(St)
10970: ea83 0509 eor.w r5 ,r3 ,r9 ;r5 = r3⊕ r9,r3 = kt−320 ,r9 = st

0

Listing 1.5: Inside the initialization, where the key bits are reintroduced.

The XOR instructions in Listing 1.5 are inside a loop called for 320 ≤ t ≤ 383.
Each bit of K participates in one operation and there is no known randomness.
The attacker only knows that r6 (at the input of XOR) and r9 are not fixed. Joint
leakage of r6 before and after XOR can leak corresponding K bits. In Listing 1.5,
all registers contain only one bit of information. For this cipher, to generate an
ARMv7-M compatible assembly, only reference C code was available, which was
bit-oriented. For single-bit registers, HW leakages of r8 and r3 are enough to
recover K completely because, for single-bit variable v, we have HW(v) = v. This
discussion is an excellent example of how bit-slicing can improve SC security.

4.4 Power analysis of ISAP

ISAP [10] is designed to offer mode-level protection against various implementa-
tion attacks. It is sponge-based and has four instances that differ in the value of
some parameters and the internal permutation π, which is either Ascon-p, with
state size n = 320, or Keccak-p, with n = 400.

ISAP-Encryption works as in Figure 6a. It first creates a fresh (n − 128)-
bit session key by calling the Re-Keying algorithm (see Figure 6b). In this call,
the randomness bits Yis are the 128 bits of N . A separate algorithm ISAP-
Authentication, as in Figure 6c, is used for generating a 128-bit tag T . This
means that ISAP has an encrypt-then-MAC composition.

The Re-Keying is called twice: once for producing a session key and once
during tag generation. The IV, z, and Yis are different for the two use cases. For
a fixed π, {IVA, IVKE, IVKA} are constant.

DPA prevention in ISAP. In this mode, DPA attacks are avoided, even in the
initialization and finalization phases, without requiring any leak-free component.
The divide-and-conquer strategy of SC attacks is not feasible, and finding a
sufficient number of instructions for a successful DPA attack seems impossible.
We look at different parts of the mode to justify DPA prevention.

Inside Re-Keying. In the computation of πa(K∥IV), since no random value
is involved, the attacker cannot mount a DPA attack. In the absorbing ran-
domness phase, the Yis are known and random parameters. The main obstacle

15

N

128

Re-Key

KIVke

128

K∗
e

n−128

Initialize

πe

Mi Ci

rh

Encrypt Plaintext

πe

Mt Ct

≤ rh

(a) Encryption.

K ∥ IV

πa

Initialize

Y1
rb

πb

Absorb Randomness

Y128
rb

πa

K∗

z

Squeeze

(b) Re-Keying

N

IVa

πh

Initialize

Ai

rh

πh

Authenticate Ass. Data

As

rh

πh

0† ∥ 1

Ci

rh

πh

Authenticate Ciphertext

Ct

rh

πh πhRe-Key

T

KIVka

128Y128 K∗
a 128

Finalize

(c) Authentication

Fig. 6: ISAP working mode.

for the attacker is that K is well-mixed before the start of this phase, so it
is impossible to find any intermediate that is only based on a fraction of K.
The attacker can target Yi absorb operations. For example, for Y1, we have a
Trunc(πa(K ∥ IV), 1) ⊕ Y1 operation. However, this combination does not pro-
vide enough randomness for a successful DPA attack [29,12]. Since rb is 1, Y1
has only two possible values, where πa(K ∥ IV) is 32-bit or even more. Finally,
the squeezing phase is also DPA-secure since no randomness is involved in its
computations.

Inside ISAP-Encryption. After the computation of a fresh session key K∗
E, the

sponge is squeezed at rate rh, and the output bits are used to encrypt plaintext
blocks. K∗

E is entirely fresh each time. Therefore, the requirement of DPA attacks
that the targeted secret remains fixed during multiple executions is not satisfied.

Inside ISAP-Authentication. For a DPA attack, phases before finalization are not
helpful since no secret is involved. The finalize itself is composed of Re-Keying
with randomness Y and an extra permutation πh. We have already considered
Re-Keying. The permutation is also DPA-secure since it involves no randomness.

Masking considerations. For this candidate, state recovery during encryp-
tion/decryption is not leading to key recovery. However, state recovery in each
of the permutations inside Re-Keying reveals K. That is because both Ascon-p
and Keccak-p are invertible. Hence, Re-Keying should be uniformly protected. We

16

were unable to point to a possible DPA attack. Thus, the discussion about pro-
tected implementation is only meaningful considering state recovery SC attacks.
Otherwise, no protection is needed.

4.5 Power analysis of Xoodyak

Xoodyak [9] is also a sponge-based AEAD candidate. In this cipher, the authors
propose using Taha and Schaumont’s method [29] to combat DPA key recovery
attacks at the initialization phase, similar to ISAP in Section 4.4. Meanwhile,
the source code submitted to the NIST LWC competition does not include this
SC protection. We skip the power analysis of the initialization phase and focus
on the relatively high absorption rate of associated data.

Construction of Xoodyak. Xoodyak-Encryption works as in Figure 7. The
internal permutation π is Xoodoo-p with state size n = 384 bits and a con-
stant number of rounds. The permutation is invertible, even though only for-
ward computation is required for the regular operation of the cipher. The tag,
nonce, and key are all 128 bits long. The computations and the assembly code
are byte-oriented. Rate ra, by which the associated data is absorbed, satisfies
ra = (44 × 8) = n− 32. Message blocks are rb = (24 × 8) = n/2 bits long, except
for the last block, i.e., Mt, which can have less than rb bits. The constant byte
0x01 is used to pad the Ais and Mis.

P(K, N)

π

Initialize
0†∥0x03

A1∥0x01

π

Absorb Ass. Data

A2∥0x01

π π

As∥0x01

0†∥0x80

π

M1∥0x01 C1

π

Encrypt Plaintext

M2∥0x01 C2

π π

Mt∥0x01 Ct

π

0†∥0x40

π

T

Gen. Tag

Fig. 7: Xoodyak-Encryption, with P(K,N) = K∥N∥0x80∥0x01∥0†∥0x02.

DPA possibilities in Xoodyak. In the associated data absorption phase (see
Figure 7), ra bits of the state are mixed with (for the attacker) controllable as-
sociated data. State recovery with DPA on the corresponding XOR instructions
is possible, provided it is allowed to ask for encryption (or decryption) of mes-
sages under the same nonce. By doing so, for absorbing a (ra = 8 × 44)-bit Ai,
there are 44 XOR instructions in the assembly code (one for each byte of Ai)
that can be targeted with DPA for recovering the corresponding bytes of the
state. Successful application of these attacks will provide 44 out of 48 bytes of
the state. The remaining 4 bytes can be found by exhaustive search to learn the
state entirely. Recovery of the state directly uncovers K, since Xoodoo-p is easy
to invert.

17

4.6 Power analysis of Elephant

The NIST LWC candidate Elephant [7] has an encrypt-then-MAC construction
and includes three instances. The one with the smallest state size, i.e., n = 160,
is the main recommendation of its designers for the competition. The instances
differ in the choice of internal building permutation π, and consequently, in
their state size. They also differ in the length of the tag. Elephant has no claim
for SC security of its unprotected implementation, and unsurprisingly there are
successful key recovery attacks with power analysis for it [32]. For this cipher,
we describe the Elephant-Encryption algorithm. Inside the encryption, we point
to XOR operations that are enabling a key recovery DPA.

Specification of Elephant. The encryption works as in Algorithm 1. The
permutation π has input and output length n. The sequences Ra,b(K), for
b ∈ {0, 1, 2} and a ∈ N, are generated with a byte-oriented LFSR, whose
state size n and feedback polynomial depend on the choice of π. The function
ψ : {0, 1}n → {0, 1}n, on each call, produces its output by n/8 times clocking
the LFSR and concatenating the output bytes.

Algorithm 1 Elephant-Encryption
Input (K, N, A, M) ∈ {0, 1}128 × {0, 1}96 × {0, 1}∗ × {0, 1}∗

Output (C, T) ∈ {0, 1}|M| × {0, 1}|T |

1: (M1 . . . Mt) = Split(M, n)
2: for i = 1 to t do
3: Ci = Mi ⊕ π((N ∥ 0n−96)⊕Ri−1,1(K))⊕Ri−1,1(K)
4: C = Trunc(C1∥ . . . ∥Ct, |M |)
5: (A1 . . . As) = Split(N ∥A ∥ 1, n)
6: (C1 . . . Ct′) = Split(C ∥ 1, n)
7: T ′ ← A1
8: for i = 2 to s do
9: T ′ = T ′ ⊕ π(Ai ⊕Ri−1,0(K))⊕Ri−1,0(K)

10: for i = 1 to t′ do
11: T ′ = T ′ ⊕ π(Ci ⊕Ri−1,2(K))⊕Ri−1,2(K)
12: T ′ = π(T ′ ⊕R0,0(K))⊕R0,0(K)
13: return (C, Trunc(T ′, |T |))

The sequences Ra,b(K) are generated as follows, where a number over ψ denotes
the number of times it is composed:

Ra,0(K) = ψa(π(K ∥ 0n−128)),
Ra,1(K) = ψa+1(π(K ∥ 0n−128)) ⊕ ψa(π(K ∥ 0n−128)),
Ra,2(K) = ψa+2(π(K ∥ 0n−128)) ⊕ ψa(π(K ∥ 0n−128)).

(6)

18

DPA on Elephant. Successful application of power analysis exploits two fea-
tures of Elephant: (a) π is invertible for all the three alternatives and (b) the
states of the underlying LFSRs (and so the ψs), as for LFSRs in general, can be
reconstructed with access to a certain amount of their output bits. The source
code of Elephant is byte-oriented. This means that the intermediates of the corre-
sponding assembly code are 8 bits. Compared to ASCON, the key is not directly
used at multiple points. It is only used for creating stream Ra,b(K). Therefore,
for a key recovery attack, Ra,b(K) should be targeted. Internal computations of
Ra,b(K) involve no randomness. Thus, it is not the best place to mount DPA.
However, stream Ra,b(K) is XORed with N frequently. These occasions can lead
to the recovery of enough bytes of Ra,b(K), which quickly results in recovery
of K because Ra,b(K) for any b ∈ {0, 1, 2} is a linear system of equations with
π(K∥0n−128) as its unknowns. By finding π(K∥0n−128), the attacker can com-
pute K since π is invertible.

Masking concerns of Elephant. The cipher is suitable for parallel computa-
tion. This feature is retained in the masked implementation as well. Also, the
function ψ has no non-linearity. Thus, it is easy to mask. However, the masking
overhead will be high: since the recovery of output bits of each Ra,b(K) will lead
to recovery of K, all iterations of encryption (for each message block), and all
iterations of MAC (for each ciphertext block and associated data block) should
be protected.

4.7 Power analysis of TinyJambu

TinyJambu uses a keyed permutation πK derived from a non-linear stream ci-
pher with (n = 128)-bit state. This cipher supports various key sizes. Here, we
consider its 128-bit instance. The nonce is 96 bits, and the tag is 64 bits [33].
The cipher has an optimized 32-bit C code. The absorption rate of the nonce is
r = 32. Our investigation of the corresponding assembly code demonstrates that
r = 32 is high enough to make the initialization phase vulnerable to a DPA key
recovery attack.

The initialization of TinyJambu. This cipher, at its core, utilizes an NFSR
with a 128-bit shift register. Let S = [s0, s1, . . . , s127] be the state of this NFSR,
and F be the non-linear feedback polynomial of it. Permutation πa

K : {0, 1}128 →
{0, 1}128 is computed by a times clocking the NFSR. If X is the input to πa

K , X
will be the initial state of the NFSR, and the state of the NFSR after a clock will
be πa

K(X). In each clock t, the bits in S will be shifted one position to the left,
and s127 will update as

s127 = F(S) ⊕ kt mod n, (7)

where kis for 0 ≤ i ≤ 127 are the bits of K. The initialization is composed of
two steps. First, K is absorbed, then a 96-bit nonce N is merged with the state
in blocks of 32 bit. More concretely, the initialization is given in Algorithm 2.

19

Algorithm 2 TinyJambu-Initialization
Input (K, N) ∈ {0, 1}128 × {0, 1}96

Output 128-bit state S of the NFSR
1: function πa

K(S)
2: for t = 0 to a− 1 do
3: b = F(S)⊕ kt mod n

4: for j = 0 to 126 do
5: sj = sj+1

6: s127 = b

7: return S

8: S = 0128

9: S = π1024
K (S) ▷ The key setup phase

10: for i = 0 to 2 do ▷ The nonce absorbing phase
11: s36 = s36 ⊕ 1
12: S = π640

K (S)
13: for j = 0 to 31 do
14: s96+j = s96+j ⊕N32·i+j ▷ Nis denote bits of the nonce
15: return S

The pseudocode in Algorithm 2 is bit-oriented. However, the feedback function
F and the nonce XORing steps are designed to fit in 32-bit bit-sliced operations
nicely.

First order DPA in the Initialization. In Algorithm 2, it is apparent that
inside a for loop, bits of N are XORed with bits of the state. In the optimized
bit-sliced implementation, the inner for loop (lines 13 and 14 of Algorithm 2) are
laid in a single 32-bit XOR. The code at line 0x10636 in Listing 1.6 is exactly
this XOR for the first iteration of the outer for loop (at line 10 of Algorithm 2).

... ;First iteration : i = 0
10636: ea83 0302 eor.w r3 , r3 , r2 ; r3 = S3, r2 = N0, S3 = S3⊕ N0
10632:68 c3 ldr r3 , [r0 , #12] ; Save the result
... ;Second iteration : i = 1
10518:68 c4 ldr r4 , [r0 , #12] ; Load the result to r4
1051e:046b lsls r3 , r5 , #17 ; r5 = S2, r3 = S2≪ 17
10520: ea4f 1a44 mov.w sl , r4 , lsl #5 ;sl = S3≪ 5
10526: ea43 33d6 orr.w r3 , r3 , r6 , lsr #15;r3 = (S1≫ 15)|(S2≪ 17)
1052a:ea4a 6ad5 orr.w sl , sl , r5 , lsr #27;sl = (S2≫ 27)|(S3≪ 5)
1053e:ea83 030a eor.w r3 , r3 , sl ; r3 = r3⊕ sl
10542:407 b eors r3 , r7 ; r7 = K0

Listing 1.6: Inside the initialization of TinyJambu-Encryption.

In Listing 1.6, Ni, Si, and Ki for 0 ≤ i ≤ 3 denote words of N , the state, and
K, respectively. The first line of the presented Listing is S3 = S3 ⊕ N0, which
with a random nonce fulfills the requirements of a DPA attack to recover S3.

20

After successfully recovering S3, the attacker can go for S2 with the leakage
of the orr.w instruction at line 0x1052a. In this second DPA attack, S3 is the
known randomness, and S2 is the target secret. We consider S3 as random, since
in this stage, it is XORed the with first word of the nonce. In the ARMv7-M
architecture, orr.w is a bitwise OR operation. With the recovery of S2, the value
of the shift register sl at line 0x1052a will be known. The attacker can do almost
the same steps to conduct the third DPA attack, this time for recovering r3 with
the leakage of the instruction at line 0x1053e. For this attack, sl is the known
randomness. However, because of the OR operation, even with a uniform S3, the
distribution of sl is not necessarily uniform. As a result, practically, this DPA
will have low success. The leakage of the XOR instruction at line 0x10542 with
known randomness r3 with the fourth DPA can finally uncover a word of K.
The attack, in somewhat similar reasoning, continues to recover all words of K.

Masking considerations for TinyJambu. For absorption of associated data
and also for the plaintext encryption phase, the permutation πK is called immedi-
ately after XORing the state with a block of 32-bit (for the attacker) controllable
data. These calls have the same structure as the nonce absorption phase. There-
fore, they are also vulnerable to the presented DPA attack. Consequently, all of
these calls to πK should be protected for secure implementation. In other words,
uniform masking for the entire cipher is required.

5 Plaintext recovery with leakage

SC works primarily target recovery of the key. However, leakage can be exploited
for other malicious purposes as well, see [6,5] for tag forging with leakage. In this
section, we discuss plaintext recovery attacks in detail. Assume that an attacker
wants the plaintextM∗ for a received challenge tuple (N∗, A∗, C∗) without know-
ing a valid tag. It is allowed to ask for the decryption of tuples (N,A,C, T) and
receive the leakage. For invalid tags, the decryption responds with a failure sym-
bol. For some candidates, this access enables to run a DPA attack to learn M∗.6
For example, in ASCON (see Figure 3), an r-bit plaintext block Mi is blinded
with part of the current state S as Ci = Mi ⊕ Trunc(S, r). For decryption, the
same state S is used to unblind Ci as Mi = Ci ⊕ Trunc(S, r). Starting from the
first word of C∗ in a chosen nonce setup, the attacker can ask for the decryption
of a random C1 block with the same (N∗, A∗) and learn Trunc(S∗, r) by DPA
over the decryption XOR instructions. Knowledge of Trunc(S∗, r) is sufficient for
unblinding C∗

1 . Similar DPA attacks can successively recover all parts of C∗.
However, in an encrypt-then-MAC mode, since there is a separate authenti-

cation algorithm, it is impossible to get decryption leakage without knowing a
valid tag.

6 This game is formally defined in [14]. Here, we are interested in the applicability of
our DPA with the XOR model.

21

6 Summary of the results

Table 1 summarizes the results of this paper for the considered AEAD ciphers
of the NIST LWC competition. In this table, column (A) is checked if, for the
candidate, there is a DPA key recovery attack in the random nonce setting.
Column (B) is checked if our DPA key recovery attack requires chosen nonce. For
some candidates (specified in column (C)), the requirement of known randomness
for a DPA is not satisfied; however, the key is being processed in different XOR
operations. As discussed in Section 4.3, these operations can leak the key for
the case of w = 1. This means that the assembly codes’ word size (in column
(D)) is relevant for power analysis, see also the discussion in Section 3. For
protected implementations, we discussed in the introduction that non-uniform
masking is an advantage. With caring only for key recovery attacks, the list
of candidates requiring only non-uniform masking is in (E). The ciphers that
prevent decryption leakage are highlighted in (F), see the discussion in Section
5. Finally, in (G), for the applicable candidates, we specify that their SC-aware
version is not heavier than the primary instance by putting a check mark. A
blank space in column (G) means this candidate has no SC-aware instance. In
other columns, a blank space means that there is already a more practical attack.

Cipher (A) (B) (C) (D) (E) (F) (G)

ASCON ✓ 32 bit ✓ ×
Elephant ✓ 8 bit × ✓
GIFT-COFB ✓ 32 bit × ×
Grain128-AEAD × × ✓ 1 bit ✓ ×
ISAP × × × 32 bit ✓ ✓ ✓
TinyJambu ✓ 32 bit × ×
Xoodyak × ✓ 8 bit × × ×

Table 1: Summary of our power analysis results for the studied AEAD ciphers.

7 Conclusion

This work, for the first time, systematically investigates the impact and potential
exploitation of DPA attacks on linear operations in lightweight authenticated
encryption schemes. We presented a theoretical discussion for each of the seven
ciphers investigated in this work, all of which are finalists in the NIST LWC
competition. In addition, for ASCON, we presented experimental evidence that
the introduced framework applies. However, we stress that these discussions are
only for the unprotected versions of the schemes. As future work, it is interesting
to investigate the robustness of the protected versions of the ciphers against our
framework.

22

References

1. Azouaoui, M., Bellizia, D., Buhan, I., Debande, N., Duval, S., Giraud, C., Jaul-
mes, È., Koeune, F., Oswald, E., Standaert, F.X., Whitnall, C.: A Systematic
Appraisal of Side Channel Evaluation Strategies. In: van der Merwe, T., Mitchell,
C., Mehrnezhad, M. (eds.) Security Standardisation Research. pp. 46–66. Springer
International Publishing, Cham (2020)

2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.X.: On the Cost
of Lazy Engineering for Masked Software Implementations. In: Joye, M., Moradi,
A. (eds.) Smart Card Research and Advanced Applications. pp. 64–81. Springer
International Publishing, Cham (2015)

3. Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T.,
Sasaki, Y., Sim, S.M., Todo, Y.: GIFT-COFB (v1.1). The NIST Lightweight
Cryptography (LWC) Standardization project (A Round-3 Candidate), 2021.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
(2021)

4. Battistello, A., Coron, J.S., Prouff, E., Zeitoun, R.: Horizontal Side-Channel
Attacks and Countermeasures on the ISW Masking Scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded Systems – CHES
2016. pp. 23–39. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

5. Bellizia, D., Bronchain, O., Cassiers, G., Grosso, V., Guo, C., Momin, C., Pereira,
O., Peters, T., Standaert, F.X.: Mode-Level vs. Implementation-Level Physical
Security in Symmetric Cryptography. In: Micciancio, D., Ristenpart, T. (eds.)
Advances in Cryptology – CRYPTO 2020. pp. 369–400. Springer International
Publishing, Cham (2020)

6. Berti, F., Pereira, O., Peters, T., Standaert, F.X.: On Leakage-Resilient Authen-
ticated Encryption with Decryption Leakages. IACR Transactions on Symmet-
ric Cryptology p. 271–293 (2017). https://doi.org/10.13154/tosc.v2017.i3.271-293,
https://tosc.iacr.org/index.php/ToSC/article/view/774

7. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Elephant (v2).
The NIST Lightweight Cryptography (LWC) Standardization project (A
Round-3 Candidate), 2021. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/finalist-round/updated-spec-doc/
elephant-spec-final.pdf (2021)

8. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Joye, M., Quisquater, J.J. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2004. pp. 16–29. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2004)

9. Daemen, J., Hoffert, S., Mella, S., Peeters, M., Van Assche, G., Van Keer,
R.: Xoodyak, a lightweight cryptographic scheme. The NIST Lightweight
Cryptography (LWC) Standardization project (A Round-3 Candidate), 2021.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
(2021)

10. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Pri-
mas, R., Unterluggauer, T.: ISAP (v2.0). The NIST Lightweight Cryp-
tography (LWC) Standardization project (A Round-3 Candidate), 2021.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/isap-spec-final.pdf (2021)

23

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
https://doi.org/10.13154/tosc.v2017.i3.271-293
https://tosc.iacr.org/index.php/ToSC/article/view/774
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon (v1.2).
The NIST Lightweight Cryptography (LWC) Standardization project, 2021.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf (2021)

12. Dobraunig, C., Mennink, B.: Leakage Resilient Value Comparison with Application
to Message Authentication. In: Canteaut, A., Standaert, F.X. (eds.) Advances in
Cryptology – EUROCRYPT 2021. pp. 377–407. Springer International Publishing,
Cham (2021)

13. Fu, S., Wang, Z., Wei, F., Xu, G., Wang, A.: Linear Regression Side Channel Attack
Applied on Constant XOR. Cryptology ePrint Archive, Paper 2017/1217 (2017),
https://eprint.iacr.org/2017/1217, https://eprint.iacr.org/2017/1217

14. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Authenticated Encryption with
Nonce Misuse and Physical Leakage: Definitions, Separation Results and First
Construction. In: Schwabe, P., Thériault, N. (eds.) Progress in Cryptology – LAT-
INCRYPT 2019. pp. 150–172. Springer International Publishing, Cham (2019)

15. Hou, X., Breier, J., Bhasin, S.: DNFA: Differential No-Fault Analysis of Bit Per-
mutation Based Ciphers Assisted by Side-Channel. In: 2021 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). pp. 182–187 (2021).
https://doi.org/10.23919/DATE51398.2021.9474154

16. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003. pp.
463–481. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

17. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
Advances in Cryptology — CRYPTO’ 99. pp. 388–397. Springer Berlin Heidelberg,
Berlin, Heidelberg (1999)

18. Kumar, S., Dasu, V.A., Baksi, A., Sarkar, S., Jap, D., Breier, J., Bhasin, S.: Side
Channel Attack On Stream Ciphers: A Three-Step Approach To State/Key Re-
covery. IACR Transactions on Cryptographic Hardware and Embedded Systems
pp. 166–191 (2022)

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Se-
crets of Smart Cards (Advances in Information Security). Springer-Verlag, Berlin,
Heidelberg (2007)

20. Marshall, B., Page, D., Webb, J.: MIRACLE: MIcRo-ArChitectural Leakage
Evaluation: A study of micro-architectural power leakage across many devices.
IACR Transactions on Cryptographic Hardware and Embedded Systems p.
175–220 (Nov 2021). https://doi.org/10.46586/tches.v2022.i1.175-220, https://
tches.iacr.org/index.php/TCHES/article/view/9294

21. NIST: Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process, 2019. https://csrc.
nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf (2019)

22. Pereira, O., Standaert, F.X., Vivek, S.: Leakage-Resilient Authentication and
Encryption from Symmetric Cryptographic Primitives. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Secu-
rity. p. 96–108. CCS ’15, Association for Computing Machinery, New York,
NY, USA (2015). https://doi.org/10.1145/2810103.2813626, https://doi.org/
10.1145/2810103.2813626

23. Poussier, R., Standaert, F.X., Grosso, V.: Simple Key Enumeration (and Rank
Estimation) Using Histograms: An Integrated Approach. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded Systems – CHES
2016. pp. 61–81. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

24

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://eprint.iacr.org/2017/1217
https://eprint.iacr.org/2017/1217
https://doi.org/10.23919/DATE51398.2021.9474154
https://doi.org/10.46586/tches.v2022.i1.175-220
https://tches.iacr.org/index.php/TCHES/article/view/9294
https://tches.iacr.org/index.php/TCHES/article/view/9294
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://doi.org/10.1145/2810103.2813626
https://doi.org/10.1145/2810103.2813626
https://doi.org/10.1145/2810103.2813626

24. Ramezanpour, K., Abdulgadir, A., Diehl, W., Kaps, J.P., Ampadu, P.: Active and
Passive Side-Channel Key Recovery Attacks on Ascon. In: Proc. NIST Lightweight
Cryptogr. Workshop. pp. 1–27 (2020)

25. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.X. (eds.) Cryptographic Hardware and Embedded Systems,
CHES 2010. pp. 413–427. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

26. Samwel, N., Daemen, J.: DPA on Hardware Implementations of Ascon and
Keyak. In: Proceedings of the Computing Frontiers Conference. p. 415–424.
CF’17, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3075564.3079067, https://doi.org/10.1145/3075564.
3079067

27. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2005. pp. 30–46. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005)

28. Shelton, M.A., Samwel, N., Batina, L., Regazzoni, F., Wagner, M., Yarom, Y.:
ROSITA: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers.
NDSS (2021)

29. Taha, M., Schaumont, P.: Side-channel countermeasure for SHA-3 at
almost-zero area overhead. In: 2014 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST). pp. 93–96 (2014).
https://doi.org/10.1109/HST.2014.6855576

30. Verhamme, C., Cassiers, G., Standaert, F.X.: Analyzing the Leakage Resistance
of the NIST’s Lightweight Crypto Competition’s Finalists. In: CARDIS. Lec-
ture Notes in Computer Science, Springer (2022), https://perso.uclouvain.be/
fstandae/PUBLIS/279b.pdf

31. Veyrat-Charvillon, N., Gérard, B., Standaert, F.X.: Soft Analytical Side-Channel
Attacks. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT
2014. pp. 282–296. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

32. Vialar, L.: Fast Side-Channel Key-Recovery Attack against Elephant Dumbo.
Cryptology ePrint Archive (2022)

33. Wu, H., Huang, T.: TinyJAMBU: A Family of Lightweight Authen-
ticated Encryption Algorithms. The NIST Lightweight Cryptogra-
phy (LWC) Standardization project (A Round-3 Candidate), 2019.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf (2019)

34. Yiu, J.: The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors.
Newnes (2013)

35. Zhang, J., Zheng, M., Nan, J., Hu, H., Yu, N.: A Novel Evaluation Metric for
Deep Learning-Based Side Channel Analysis and Its Extended Application to
Imbalanced Data. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems p. 73–96 (Jun 2020). https://doi.org/10.13154/tches.v2020.i3.73-96,
https://tches.iacr.org/index.php/TCHES/article/view/8583

36. Zhang, J., Li, L., Li, Q., Zhao, J., Liang, X.: Power Analysis Attack on a
Lightweight Block Cipher GIFT. In: Liu, Q., Liu, X., Li, L., Zhou, H., Zhao, H.H.
(eds.) Proceedings of the 9th International Conference on Computer Engineering
and Networks. pp. 565–574. Springer Singapore, Singapore (2021)

25

https://doi.org/10.1145/3075564.3079067
https://doi.org/10.1145/3075564.3079067
https://doi.org/10.1145/3075564.3079067
https://doi.org/10.1109/HST.2014.6855576
https://perso.uclouvain.be/fstandae/PUBLIS/279b.pdf
https://perso.uclouvain.be/fstandae/PUBLIS/279b.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf
https://doi.org/10.13154/tches.v2020.i3.73-96
https://tches.iacr.org/index.php/TCHES/article/view/8583

	 A New Leakage Exploitation Framework and Its Application to Authenticated Encryption

